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ABSTRACT 

The Evolutionary Ecology of a Bioluminescent 

Vertebrate-Microbe Symbiosis 

 

by 

 

Alison L. Gould 

 

Chair: Paul V. Dunlap 

 

 

The evolution of a symbiosis requires the maintenance of an intimate host-

symbiont association over ecological time. My dissertation research investigates the 

ecological mechanisms that help to maintain and promote specificity of a vertebrate-

microbe symbiosis involving the cardinalfish, Siphamia tubifer (Perciformes: 

Apogonidae), and the luminous bacterium, Photobacterium mandapamensis, over host 

generations. I integrated field studies that describe aspects of the life history and 

behavioral ecology of the host in Okinawa, Japan, with newly developed genomic 

methods to test the hypothesis that the host’s ecology genetically structures natural 

populations of the symbiont over time and space, consequently driving specificity of 

the symbiosis. 

Life history of Siphamia tubifer. The sea urchin cardinalfish, S. tubifer, inhabits 

shallow coral reefs in the Indo-Pacific. Mouthbrooding males release their larvae into 

the plankton, and early in development the larvae initiate a symbiosis with the 

luminous bacterium, P. mandapamensis, which they acquire from the environment. 

The timing and location of symbiont acquisition in the wild was previously unknown 

as was the fish’s pelagic larval duration (PLD) and other aspects of the host’s life 

history, which might also shape the symbiosis. To build a foundation for 

understanding the host’s biology relevant to the maintenance of the symbiosis, I 

described the growth and reproductive rates of S. tubifer as well as symbiont 

population growth in host light organs. Results indicated that the PLD of S. tubifer is 

approximately one month, during which symbiont acquisition occurs, and once settled, 
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the fish grows quickly, reproduces early, and typically survives much less than a year. 

Additionally, light organs house an average of 107 luminous bacterial cells, with the 

symbiont population continuing to grow throughout the host’s lifespan. These 

characteristics suggest that high mortality might shape the cryptic nature of S. tubifer 

as a luminous reef fish.  

 Behavioral ecology of Siphamia tubifer. Cardinalfishes are known to express 

fidelity to daytime resting sites and for their ability to return to a home reef from 

relatively large distances, thereby affecting both nutrient cycling and the community 

assemblage at a reef. To determine whether such behaviors, which might also influence 

the symbiosis, are exhibited by S. tubifer, I used mark-recapture methods to define the 

fish’s fidelity to a particular home site, its ability to return home after displacement, 

and its preference for relevant olfactory cues. The results revealed that the fish 

exhibits daily fidelity to a home site and significant homing abilities from up to two 

kilometers. These behaviors result in the local enrichment of a home reef with 

luminous symbionts released daily by the resident S. tubifer population and 

consequently, might help to maintain the specificity of the symbiosis between host 

generations. Additionally, in a two-channel choice flume, S. tubifer preferred the 

chemical cues of its home site water and luminous bacterial symbiont, and juvenile 

fish also preferred the olfactory cues of conspecifics to unconditioned seawater. These 

results indicate that S. tubifer can use site-specific chemical cues, including that of 

their symbiont, to home and potentially for self-recruitment and symbiont acquisition. 

Population genomics of the symbiosis. To examine the possible relationship 

between adult homing behavior, larval recruitment patterns and symbiont acquisition, 

I applied double-digest, restriction site associated sequencing (ddRAD-seq) to define 

the fine-scale population genomic structure of S. tubifer and P. mandapamensis in the 

Okinawa Islands, Japan. Analysis of over 10,000 single nucleotide polymorphisms 

(SNPs) across nearly 300 individuals from 11 locations and over three years revealed 

low F
ST

 values between host fish populations and no evidence of genetic structure at 

spatial scales ranging from a few to over 100 kilometers. The lack of population 

structure in the host fish suggests that, despite adult homing, S. tubifer larvae disperse 

substantial distances and apparently do not recruit to natal reefs. However, an analysis 

of the presence or absence of haplotypes at 607 variable loci throughout the P. 

mandapamensis genome indicated that light organ symbiont populations are 
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genetically differentiated between the same reefs approximately 100 kilometers apart. 

Therefore, the daily site fidelity and symbiont release exhibited by S. tubifer apparently 

promotes the specificity of the symbiosis between host generations by locally 

enriching the symbiont pool in the seawater surrounding a reef site. This result 

provides evidence of host-mediated diversification of a marine bacterium and suggests 

symbiont acquisition by larval fish occurs near the locally enriched symbiont pool at a 

settlement site. 
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CHAPTER I 

Introduction 

 

 

Symbiotic associations are an integral part of life; virtually all organisms, 

including humans, depend on symbioses with bacteria for their success. The 

integration of a host organism and its microbial symbiont enables them to collectively 

occupy a broader ecological niche than either organism could occupy independently 

(Saffo 1992). Examples of such “evolutionary innovations” (Margulis 1989) driven by 

symbiotic interactions are well established, including nitrogen-fixing bacteria in 

legumes (Wilkinson and Parker 1996), endosymbiotic bacteria within various insect 

hosts (e.g. Smith and Douglas 1987, Nardon and Grenier 1991, Moran and Telang 

1998), and chemoautotrophic bacteria in the tissues of invertebrates inhabiting 

hydrothermal vents (Cavanaugh 1994). However, how such intimate associations 

become established and evolve specificity remains poorly understood.  

The evolution of symbioses between host organisms and microbial symbionts is 

first dependent on ecological interactions that allow for the formation and 

maintenance of the particular association over host generations. Such specificity is 

maintained in vertically transmitted symbioses through the direct transfer of symbiont 

from parent to offspring and commonly leads to co-speciation (e.g., Chen et al. 1999, 

Clark et al. 2000, Moran et al. 2003, Hosokawa et al. 2006). In contrast, the 

establishment of most horizontally transmitted symbioses requires both the initiation 

of the association with a specific symbiont from the environmental pool and the 

maintenance of that specificity over evolutionary time; therefore, a lower level of host-

symbiont specificity is expected in horizontally transmitted symbioses. This is 

particularly true for horizontal symbioses established in highly-connected ocean 

environments, in which the microbial community is assumed to be well mixed (Mullins 

et al. 1995, Darling et al. 2000, Massana et al. 2000, Morris et al. 2002, Finlay 2002, 

Fenchel and Finlay 2004, Finlay and Fenchel 2004, Baldwin et al. 2005).
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Nevertheless, many horizontally acquired symbioses, including those in marine 

environments, exhibit a surprising degree of specificity (e.g., Cavanaugh 1994, 

Nishiguchi et al. 1998, Nishiguchi 2001, Kaeding et al. 2007), indicating the 

establishment of the association between the host and a particular symbiont type from 

the environment is maintained by some mechanism over time. Such mechanisms might 

include environmental factors, genetic recognition, and aspects of the ecology, 

behavior, and physiology of the host organism, and are not mutually exclusive. My 

dissertation research investigates whether aspects of the distinct life history and 

behavioral ecology of a host fish facilitates the establishment and maintenance of its 

horizontally transmitted, bioluminescent symbiosis. 

The underlying hypothesis regarding most bioluminescent symbioses suggests 

that the environment influences which symbiont type is acquired by a host as 

determined by the proportion of symbiont genotypes present in the water at the time 

of acquisition (Nealson and Hastings 1991). However, bioluminescent symbioses, 

especially those involving fish hosts, display a higher degree of specificity than what 

would be expected due to random within-species symbiont acquisition from the marine 

environment (e.g. Dunlap et al. 2007, Kaeding et al. 2007). How this specificity is 

achieved and maintained remains poorly understood, and may in part be due to the 

ecology of the host, as determined for the symbiosis involving the squid, Euprymna 

scolopes and the luminous bacterium, Aliivibrio (Vibrio) fischeri (Lee and Ruby 1994, 

Nyholm et al. 2000, Nyholm and McFall-Ngai 2004, Visick and Ruby 2006, Wang et al. 

2010). In contrast, there is little direct evidence of a host’s role in establishing 

specificity for bioluminescent vertebrate-microbe symbioses, largely due to a lack of 

understanding of the biology and ecology of symbiotically luminous fishes.  

There are over 450 species of symbiotically luminous fishes, yet details of their 

ecology, especially with respect to symbiont acquisition, remain undescribed because 

they are challenging to study in their natural environments; many bioluminescent fish 

inhabit deep or open waters and are nocturnally active. In addition, the critical window 

of time during which fish acquire a symbiont generally occurs during larval 

development, and larval fish can be even more challenging to study than adults due to 

their small size and planktonic state. These factors make bioluminescent fish hosts 

and the process of symbiont acquisition by larvae extremely difficult to study in the 

wild. The focal host fish of my dissertation research, however, is experimentally 
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tractable, inhabiting shallow coral reefs; therefore, I integrate experimental field 

studies with population genomic studies of the host and symbiont to determine the 

extent to which the host’s life history and behavioral ecology influences the 

establishment and maintenance of specificity of its bioluminescent symbiosis. 

 

 

The Symbiosis  

 

The sea urchin cardinalfish, Siphamia tubifer, (formerly referred to as Siphamia 

versicolor (Smith and Radcliffe 1911), now considered a junior synonym of S. tubifer 

(Gon and Allen 2012)), resides on coral reefs throughout the Indo-Pacific and is easily 

observed and collected in the wild. Therefore, S. tubifer provides a unique opportunity 

to describe aspects of a bioluminescent host fish’s ecology and their effects on 

symbiont acquisition. Distinct from most other symbiotically luminous fishes, S. 

tubifer aggregates in groups among the long spines of the sea urchins Diadema 

setosum and Echinothrix calamaris in coral reef habitats during the day. This behavior 

facilitates the direct observation of fish in its natural habitat and the collection of 

specimens. Additionally, S. tubifer can be raised in culture, making the symbiosis 

experimentally tractable in the lab (Dunlap et al. 2012) and rendering it an excellent 

model association that can be extrapolated to other vertebrate-microbe symbioses.  

Furthermore, the S. tubifer-P. mandapamensis symbiosis is apparently more 

specific than other bioluminescent fish-bacteria associations (Dunlap et al. 2007, 

Kaeding et al. 2007). To date, all light organ symbionts of S. tubifer examined are 

closely related, genetically clustering within the P. mandapamensis phylogeny (Kaeding 

et al. 2007, Dunlap et al. unpublished). Siphamia tubifer harbors a dense population of 

P. mandapamensis in a specialized, abdominal light organ attached to the fish’s gut 

(Dunlap and Nakamura 2011, Dunlap et al. 2009). Initially, the light organ is 

unreceptive to colonization by a luminous symbiont, but after eight days of larval 

development in the plankton, the symbiosis with P. mandapamensis can become 

established (Dunlap et al. 2012). It has yet to be determined how long a light organ 

remains receptive to colonization, whether the timing of symbiont acquisition is the 

same in the wild, and where in the environment S. tubifer larvae are during symbiont 

acquisition.  
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Siphamia tubifer utilizes the light produced by its symbiotic bacteria to 

illuminate its ventral surface while foraging over the reef at night. Previous work 

established that S. tubifer releases excess symbiont cells into the intestine via a duct 

from the light organ such that the fish’s feces are rich in the symbiotic bacteria 

(Dunlap and Nakamura 2011). This regular release of luminous symbiont cells into the 

environment can enhance the environmental concentration of strains of P. 

mandapamensis symbiotic with S. tubifer populations at reefs with a high density of 

fish hosts and consequently, might play a role in maintaining the specificity of the 

symbiosis. The enrichment of seawater with luminous symbionts by a host has 

previously been reported for other luminous fishes (Haygood et al. 1984, Nealson et al. 

1984) as well as for the squid host, Euprymna scolopes (Lee and Ruby 1994) and was 

later linked to population genetic structure in the symbiont of the squid (Wollenberg 

and Ruby 2009). However, a better understanding of the life history and ecology of S. 

tubifer is necessary to investigate host enrichment as a potential mechanism for 

maintaining specificity of the S. tubifer-P. mandapamensis association over time.  

Like other cardinalfishes (Perciformes: Apogonidae), S. tubifer is a paternal 

mouthbrooder; male parents carry their fertilized eggs in their mouth through 

hatching (Breder and Rosen 1966). A few days after S. tubifer larvae hatch in the mouth 

they are released into the plankton to complete larval development, after which they 

navigate to a suitable reef habitat for settlement. Other cardinalfishes are capable of 

returning to a home reef from significant distances after displacement (Marnane 2000, 

Døving et al. 2006), and some cardinalfish larvae can also navigate back to their natal 

reef for settlement (Gerlach et al. 2007). This larval homing behavior can result in 

significant levels of population genetic differentiation among populations of 

cardinalfishes (Gerlach et al. 2007, Kolm et al, 2005). In fact, Gerlach et al. (2007) 

provided evidence of population genetic structure of the cardinalfish, Ostorhinchus 

doederleini, at the scale of only a few kilometers. Therefore, the potential for S. tubifer 

larvae to also return to a natal reef exists and could have a direct influence on 

symbiont acquisition and specificity of the association.  
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Preview of Chapters 

 

In my dissertation, I characterize previously undefined life history and 

behavioral traits of S. tubifer, a symbiotically luminous, coral reef fish host and use a 

population genomics approach to determine the role of these traits in establishing and 

maintaining the high degree of specificity of its symbiosis with P. mandapamensis over 

host generations. In Chapter II, I define life history characteristics of S. tubifer, 

including diet, reproduction, and growth rates, as well as the growth of the light organ 

bacterial population relative to the host. Results of this study provide much-needed 

perspective on the biology of the host relevant for symbiont acquisition. Aspects of the 

behavioral ecology of S. tubifer, also pertinent to the symbiosis, are defined in 

Chapters III and IV. Specifically, in Chapter III, I examine the nocturnal foraging and 

site fidelity behaviors of S. tubifer and test fish’s ability to return to a home reef after 

displacement. Such behaviors have the potential to influence the distribution and 

abundance of P. mandapamensis in the environment and can therefore affect symbiont 

acquisition by larval fish. In Chapter IV, I determine whether olfaction can play a role 

in navigation to a settlement site, or perhaps in symbiont recognition and acquisition. 

To do so, I test the olfactory preferences of the S. tubifer for the chemical cues of its 

home reef and luminous bacterial symbiont over unfamiliar reef waters. In the final 

two chapters, I identify patterns of genomic structure in both the host fish and the 

luminous bacterial symbiont to test the hypothesis that the ecology of the host helps 

to maintain the high degree of specificity of the symbiosis observed. I apply a recently 

developed molecular method to test for fine scale patterns of structure between host 

populations across a range of spatial and temporal scales in Chapter V and then 

compare these patterns to those observed for the bacterial symbiont at the same scales 

in Chapter VI (Figure 1.1). In doing so, I indirectly determine the influence of the host’s 

behavioral ecology on symbiont acquisition by the next generation of S. tubifer larvae. 

The combined chapters of my dissertation highlight the potential of the S. tubifer-P. 

mandapamensis symbiosis as an effective model association to investigate future 

questions of the evolution of symbiotic interactions, including other vertebrate-

microbe associations, as well as the role of host animals in bacterial biogeography, 

diversification and speciation. 
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Figure 1.1 The four most extreme possible outcomes from the genomic analyses of 
host and symbiont populations in Chapters V and VI. Panel A represents a “pseudo-
vertical” mode of symbiont transmission, where host larvae self-recruit to their natal 
reef and acquire a symbiont near their parents. Panel D depicts the opposite extreme 
outcome, where no genetic structure exists among populations of the host or 
symbiont. Panel B represents the scenario where host populations are genetically 
structured but the symbiont is genetically admixed, and panel C depicts the inverse 
scenario where the symbiont populations are genetically structured but the host 
populations are not.

A B 

C D 

host 

symbiont 

established 
symbiosis 

Population genomics approach 

*colors indicate 
  genotype 

Structure 
in symbiont: 

No structure 
in symbiont: 

Structure  
in host: 

No structure 
in host: 
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CHAPTER II 

Life history of Siphamia tubifer 1  

 

 

Abstract 

 

Characteristics of the life history of the coral reef-dwelling cardinalfish 

Siphamia tubifer, from Okinawa, Japan, were defined. A paternal mouthbrooder, S. 

tubifer is unusual in forming a bioluminescent symbiosis with Photobacterium 

mandapamensis. The examined fish (n = 1,273) ranged in size from 9.5 mm to 43.5 

standard length (L
S
) and the minimum size at sexual maturity was 22 mm L

S
. The 

number of fish associated during the day among the spines of host urchins was 22.9 ± 

16.1 (Diadema setosum) and 3.6 ± 3.2 (Echinothrix calamaris). Diet consisted primarily 

of crustacean zooplankton. Batch fecundity (number of eggs) was related to L
S
 by the 

equations: males (fertilized eggs) = 27.5(L
S
) - 189.46; females (eggs) = 31.3(L

S
) – 392.63. 

Individual mass as a function of L
S
 was described by the equation: mass (g) = 9.74 x 10-

5(L
S
)2.68. Growth, determined from otolith microstructure analysis, was described with 

the von Bertalanffy growth function with the following parameters: L
∞
 = 40.8 mm L

S
, K 

= 0.026 d-1, and t
0
 = 23.25 d. Planktonic larval duration was estimated to be 30 days. 

The age of the oldest examined individual was 240 days. The light organ of S. tubifer, 

which harbours the symbiotic population of P. mandapamensis, increased linearly in 

diameter as fish L
S
 increased, and the bacterial population increased logarithmically 

with fish L
S
. These characteristics indicate that once settled, S. tubifer grows quickly, 

reproduces early, and typically survives much less than a year in Okinawa. These 

characteristics are generally similar to other small reef fishes, but they indicate that S. 

tubifer experiences higher mortality.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
1Published as: Gould, AL, KE Dougan, ST Koenigbauer, PV Dunlap (2016) Life history of the 
symbiotically luminous cardinal fish Siphamia tubifer (Perciformes: Apogonidae). Journal of Fish 
Biology doi:10.1111/jfb.13063 
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Introduction 

 

Cardinalfishes (Perciformes: Apogonidae) are common on coral reefs worldwide 

and are often among the most abundant family of fish present in a reef community 

(Bellwood, 1996). Cardinalfishes are paternal mouthbrooders (Vagelli 2011) that 

actively forage at night (Marnane and Bellwood 2002) and seek shelter during the 

daytime, often in high densities among reef structures, including reef-dwelling 

invertebrates (Gardiner and Jones 2005, 2010). As highly abundant, small-bodied fish 

that often exhibit fidelity to a reef site, cardinalfishes play an important role as prey 

for larger, predatory fish and as planktivores that help recycle nutrients within the reef 

community (Marnane 2000, Marnane and Bellwood 2002).  

Despite the diversity and ecological importance of cardinalfishes, 

comprehensive knowledge of the life history of individual species remains limited, and 

key life history traits critical for population success, such as growth and reproductive 

rates, are not widely documented. Nearly 350 species of cardinalfishes have been 

identified (Eschmeyer and Fong 2015), yet the growth rates of only six species have 

been described in detail (Kume et al. 1998, Okuda et al. 1998, Kume et al., 2003, 

Longenecker and Langston 2006, Raventos 2007, Wu 2009, Ndobe et al. 2013, 

Kingsford et al. 2014). Many studies to date have emphasized the reproductive biology 

of cardinalfishes (e.g. Kuwamura 1985, Vagelli 1999, Kume et al. 2000b, Okuda 2001, 

Fishelson and Gon 2008), whereas a few studies have described larval growth and the 

pelagic larval duration (PLD) of some cardinalfish species (Brothers 1983, Ishihara and 

Tachihara 2011, Kingsford et al. 2014, Leis et al. 2015) as well as the diets and feeding 

ecologies of others (Chave 1978, Marnane and Bellwood 2002, Barnett et al. 2006). 

Additionally, certain aspects of the behavioural ecology, e.g., sociality, site fidelity, and 

homing behaviour, of a few species have been recently described (Marnane 2000, 

Gardiner and Jones 2005, Kolm et al. 2005, Døving et al. 2006, Gardiner and Jones 

2010, Gould et al. 2014, Rueger et al. 2014).   

Life history information is particularly sparse for bioluminescent cardinalfishes. 

There are three genera with autogenously luminous species, Archamia, Jaydia, and 

Rhabdamia, and one bacterially luminous genus, Siphamia (Thacker and Roje 2009). 

The sea urchin cardinalfish Siphamia tubifer Weber 1909 (Gon and Allen 2012), 

formerly classified as Siphamia versicolor (Smith and Radcliffe, in Radcliffe 1911; 
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Tominaga 1964), is possibly the most widespread species of luminous cardinalfish. 

Some characteristics of the ecology and behaviour of S. tubifer have been documented 

recently (Gould et al. 2014, 2015), and the fish’s symbiosis with the luminous 

bacterium, Photobacterium mandapamensis, has been the subject of several studies 

(Leis and Bullock 1986, Wada et al. 2006, Kaeding et al. 2007, Dunlap and Nakamura 

2009, 2011, Dunlap et al. 2012). However, key aspects of the fish’s life history, 

including diet, reproduction, and growth, remain largely undescribed, and there is a 

general lack of detailed life history knowledge for the more than 450 species of 

bacterially luminous fishes found worldwide (Nelson 2006, Froese and Pauly 2015). 

Therefore, the general goal of this study was to describe in detail aspects of the life 

history of S. tubifer in order to provide a foundation of understanding of the fish’s 

biology for future research and to provide additional perspective on the biology of 

both reef-dwelling cardinalfishes and bacterially luminous fishes. The specific aims 

were to define the fish’s body size, length to weight ratio, size distribution, 

aggregation size, diversity of diet, reproduction, growth, and symbiont population 

growth in host light organs.  

 

 

Materials and Methods 

 

Field collection 

 

Juvenile and adult Siphamia tubifer were collected from reefs at various 

locations in Okinawa, Japan (26.5° N, 128° E), during summer months (June-August) of 

2011 through 2014. Fish were collected with their host sea urchin on SCUBA using a 

gaff hook and a 20 L bucket; the resident group of S. tubifer remained with their host 

urchin as it was gently guided into a bucket using the hook. After collection, urchins 

were returned to their site of capture. The protocols used here for capture, care, and 

handling of fish were approved by the University of Michigan’s University Committee 

on Use and Care of Animals, and they conform to the University of the Ryukyus’ Guide 

for Care and Use of Laboratory Animals (Dobutsu Jikken Kisoku, version 19.6.26). 

The standard length (L
S
) of each fish was measured to the nearest 0.5 mm using 

calipers and the total wet mass of several individual fish was measured to the nearest 
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0.001 g. The length to mass relationship was estimated using the function: M = a(L
S
)b, 

where M is total mass in g, a is a constant, and b is the growth exponent (LeCren 1951). 

In 2013, the numbers of fish associated with an individual host sea urchin, either 

Diadema setosum or Echinothrix calamaris, were recorded for analysis of aggregation 

size of S. tubifer in association with each urchin species at two reefs with a high 

abundance of both urchins near Sesoko Station, the University of the Ryukyu’s Tropical 

Biosphere Research Center (26°38'N, 127°52'E).  

 

Diet 

 

The nocturnal diet of S. tubifer was characterised for 27 individuals captured 

together at dawn immediately upon their return to their host urchin (Diadema 

setosum) after nocturnal foraging (Gould et al. 2014). Fish stomachs were removed and 

preserved in 10% buffered-formalin in seawater for gut content analysis. The prey 

items present in each stomach were examined using a steromicroscope (Leica MZ 12.5) 

and identified to the best possible taxonomic classification level. The percent of empty 

stomachs examined, or vacuity index (VI), was calculated as well as the percent 

composition of each prey category for each fish with stomach contents. The mean 

percent composition of each prey type was compared between small, reproductively 

immature fish and large, reproductively mature fish. The percent occurrence (presence 

or absence) of each prey type among all individuals in each size class was also 

determined.  

 

Reproduction 

 

To describe the reproductive potential of S. tubifer, the sex of mature fish was 

determined by gonad examination, and the total number of fertilized eggs in the 

mouths of brooding males and mature eggs within the body of gravid females were 

counted using a steromicroscope (Leica MZ 12.5). Only the eggs from females with 

highly developed oocytes were counted, as they were easily separated from one 

another and individually sorted. The relationship between fish L
S
 and batch fecundity, 

the number of eggs and fertilized eggs per clutch for gravid females and brooding 

males, respectively, was fit with a linear regression
. 
To test for a difference between 
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batch fecundity of females and males, an analysis of covariance (ANCOVA) was 

performed in R version 3.1.1 (R Core Team 2014) with sex as the factor and fish L
S
 as 

the covariate. Five fertilized eggs per brood were also selected at random from 35 male 

fish and the egg diameters along two perpendicular axes (one slightly longer than the 

other) were measured to the nearest 0.05 mm using a stage micrometer and 

steromicroscope (Leica MZ 12.5); the mean diameter of each perpendicular axis was 

calculated for each of the 35 broods examined. 

 

Growth 

 

Pairs of sagittal otoliths from individual S. tubifer were removed, cleaned, and 

stored dry for microstructure analysis. The diameters of the right sagittae from several 

specimens were measured using a dissecting microscope (Zeiss SteREO Discovery.V8) 

equipped with a digital camera (Zeiss AxioCam MRc). Images were taken of whole 

otoliths (Figure 2.1a), and the longest axis through the primordium from one margin 

edge to the other was measured to the nearest 0.01 mm using Axio Vision 4 software. 

The percentage of fish L
S
 was also calculated

 
for each otolith diameter.  

To estimate fish age, individual otoliths were mounted and adhered onto glass 

slides with KrazyGlue (Elmer's Products, Inc.) and ground to their transverse mid-plane 

using 2000-grit wet/dry polishing paper until daily growth bands became visible. Both 

sides of larger otoliths were ground to clearly expose bands; however, smaller otoliths 

were ground only on one side if growth bands became clearly visible. Images of each 

cross-section were taken with transmitted light under a compound microscope (Nikon 

Eclipse E600) equipped with a SPOT 2 Slider (1.4.0) digital camera, and the total 

number of daily growth bands along a continuous radial transect, if possible, was 

counted twice, each time by a different observer for each image, using Adobe 

Photoshop (CS6 Extended). First daily increment formation typically occurs at or close 

to hatching in reef fishes (Thorrold and Hare 2002); therefore growth bands were 

counted from the first visible band after the hatch mark, a distinct, dark circle 

surrounding the primordium, to the outer margin of each otolith. The increments 

between growth bands were also measured for several individuals (n = 10) to look for a 

change in increment width as an indication of the timing of settlement out of the 

plankton (Victor 1986, Kingsford et al. 2011).  
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 The average number of bands counted for each otolith by both observers was 

used as the final value for the age of the fish. If the two counts differed by more than 

10%, a third count was made and the average of the closest two counts was used as the 

fish’s age. If the third count was not within 10% of the first two counts, the otolith was 

not included in the analysis. Growth was described by the von Bertalanffy growth 

function: where L
t
 is the L

S
 at time t (days), L

∞
 is the L

S
 at which mean 

asymptotic growth is reached, K is the growth coefficient (days-1), and t
0
 is the 

theoretical age (days) at which fish length is zero. The function was fitted to individual 

length-at-age data for S. tubifer using the package ‘fishmethods’ version 1.7-0 (Nelson 

2014) in R version 3.1.1 (R Core Team 2014). Akaike information criterion (AIC) scores 

were determined and used for selection of the von Bertalanffy growth model over a 

linear growth model. 

Daily growth bands were verified for sagittal otoliths of S. tubifer using a 

tetracycline immersion method (Kingsford et al. 2014) at Sesoko Station in June of 

2013. Adult fish (n = 50, ranging in size from 23 to 41.5 mm L
S
) were immersed in a 

0.25 g/L tetracycline solution in buffered seawater with aeration for 18 hours and 

maintained in aquaria under natural light conditions with flowing seawater for an 

additional 5, 10, or 15 days after immersion. While in aquaria, fish were fed nightly 

with an excess of wild-caught live zooplankton, collected with a 53 mm zooplankton 

net using a spotlight at dusk from the pier adjacent to their home reef, to simulate the 

natural diet and timing of foraging. Following each post-immersion period, the sagittae 

of the randomly selected and sacrificed individuals were immediately removed and 

stored dry in the dark until processing. Otolith cross-sections were examined under a 

compound microscope (Nikon Eclipse E600) with fluorescent light for tetracycline 

marks (Odense and Logan 1974); if a fluorescent band was visible, the otolith was 

photographed in the same position under both transmitted and fluorescent light 

(Figure 2.1b). The number of bands present between the fluorescent mark and the 

otolith margin for each otolith with a visible tetracycline mark was counted without 

knowledge of the number of days post-immersion that the fish was sacrificed. The 

band counts were then compared to the number of days post-treatment for each fish 

and averaged within each treatment group. 

 

Light organ and symbiont population growth 

Lt = L∞[1− e
−K (t−t0 ) ]
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Light organs of S. tubifer were dissected from the fish and measured on the 

longer, anterior to posterior, axis to the nearest 0.1 mm using a stereomicroscope 

(Leica MZ 12.5) fitted with an ocular micrometer. To quantify bacterial population 

sizes, light organs from fish of different L
S 
were aseptically dissected from the fish and 

individually homogenized in 0.5 ml of buffered 70% seawater (25 mM HEPES, pH 7.25, 

filter-sterilized) (BSW-70) in sterile, hand-held tissue grinders. The homogenates were 

then serially diluted 1:100 and 1:100 in BSW-70, and 25 ml aliquots of the second 

dilution were spread onto plates of LSW-70 agar medium (Kaeding et al. 2007), which 

contained per litre: 10 g tryptone, 5 g yeast extract, 700 ml seawater, 300 ml de-

ionized water, and 15 g of agar. The plates were then incubated at room temperature 

(25°C – 29°C) for 12 to 18 hours to allow the formation of bacterial colonies. The 

bacterial colonies were counted in the light, to quantify the number of colonies, and in 

the dark in a photographic darkroom, to confirm that all colonies were luminous and 

had the characteristic appearance of the symbiont, P. mandapamensis. Light organ 

population sizes were calculated from colony counts times the dilution factor used. 

Population sizes were log
10

-transformed, and the relationship with fish L
S
 was fitted 

linearly. 

 

 

Results 

 

Size 

 

The body size of S. tubifer collected from reefs in Okinawa over the four-year 

study period (n = 1,273) ranged in length from 9.5 mm to 43.5 mm L
S
; 12% of the fish 

observed were greater than 32 mm L
S
 (Figure 2.2). Brooding males (n = 95) ranged in 

size from 22 to 43.5 mm L
S
 (Figure 2.2).

 
 The mass of S. tubifer increased as a 

curvilinear function with fish L
S
 (Figure 2.3). The mean mass of all S. tubifer weighed 

was 0.780 ± 0.540 g, with a minimum and maximum mass of 0.043 and 2.300 g, 

corresponding to fish that were 11 mm and 42.5 mm L
S
, respectively.  

The numbers of S. tubifer associated in groups with individual host urchins 

varied between the two urchin species; the mean number of fish associated with D. 
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setosum was 22.9 ± 16.1, whereas the mean number associated with E. calamaris was 

3.6 ± 3.2 (Figure 3.4). Approximately 35% of the E. calamaris examined (n = 69) were 

occupied by one S. tubifer, whereas only 6% of D. setosum (n = 36) were occupied by a 

single fish (Figure 3.4). Moreover, the largest group of S. tubifer observed with an E. 

calamaris urchin contained 15 fish, less than the mean group size associated with D. 

setosum. The largest group of S. tubifer associated with a D. setosum urchin consisted 

of 75 fish. 

 

Diet 

 

The general nocturnal diet of S. tubifer was diverse, consisting primarily of a 

variety of crustaceans and other zooplankton, and gut contents varied among 

individuals collected together from the same urchin (Table 2.1). The only empty 

stomachs observed were from the two brooding males collected (vacuity index, VI = 

7.4%), confirming that S. tubifer does not forage while brooding (Gould et al. 2014). 

Brooding males were excluded from the diet analysis. On one occasion, 31 eggs (0.5 

mm in diameter) of an unknown fish species were present in the stomach of a large, 

non-brooding fish (26 mm L
S
) in addition to other prey items. The diets of small and 

large S. tubifer differed somewhat, although both amphipods and small decapod 

shrimp were common prey items for both size classes; amphipods made up 

approximately 18% and 10% of the diets of small and large fish, whereas decapod 

shrimps composed a mean of over 30% of the diet of all fish examined (Table 2.1). 

Several prey items were present in over half of the small individuals examined, 

including amphipods, decapod crab zooea, and decapod shrimps. Over half of the large 

fish also consumed decapod shrimps, however nearly half of this size class also 

consumed mysid shrimps and small teleost larvae, which were unidentifiable due to 

digestive state. Copepods were observed in the stomachs of both size classes but made 

up a larger percent of the diets of smaller fish (Table 2.1).  

 

Reproduction 

 

Total numbers of fertilized eggs in the buccal cavity of brooding S. tubifer males 

ranged from 415 to 838 with a mean of 650 ± 146, and the numbers increased linearly 
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with L
S
 (Figure 2.5). Similarly, the total number of eggs in ovaries of gravid females 

increased linearly with L
S
, ranging from 440 to 838 total eggs, and the mean was very 

similar to that for males, 678 ± 164. The relationship between batch fecundity and L
S
 

was not significantly different between males and females (ANCOVA, F = 2.7, P = 0.11; 

Figure 2.5). Fertilized eggs in the mouths of male S. tubifer were nearly round, with one 

axis slightly longer than its perpendicular axis; the mean long axis diameter was 0.87 ± 

0.07 mm, whereas the shorter axis mean was 0.80 ± 0.07 mm. The ranges in diameter 

were 0.65 - 1.00 mm and 0.70 -1.20 mm for the short and long axes, respectively.  

 

Growth 

 

Sagittal otolith diameter increased linearly with fish length (L
S
 = 15.0(O

L
) - 1.16, 

r2 = 0.97, where O
L
 is otolith diameter in mm) and ranged from 0.83 mm to 3.07 mm. 

The mean length of all otolith diameters as a percentage of fish L
s
 was 7.05 ± 0.44%. 

From counts of otolith daily increments, the growth of S. tubifer was described by the 

von Bertalanffy growth model (VBGM) (Figure 2.6), which indicated that asymptotic 

growth is reached at 40.8 mm L
S
. The relationship between ln(L

∞
 − L

t
) and apparent age 

of S. tubifer was linear (r2 = 0.82) and validated the use of the VBGM (Everhart and 

Youngs 1981), as did a comparison of AIC scores between a linear model and the 

VBGM; the AIC score for the VBGM was considerably lower (ΔAIC = 145). Based on this 

growth curve, the age at first reproduction of S. tubifer is 57.5 days at 22 mm L
S
, the 

smallest size observed of reproductively mature fish. Furthermore, the age of the 

oldest individual examined was estimated to be 240 days at 43 mm L
S
. Settlement 

marks were not evident in S. tubifer otoliths and there was no observable pattern in 

increment width between growth bands that would indicate the timing of settlement; 

increment widths varied overall from 4.8 – 19.5 mm (13.8 ± 3.2 mm, mean ± S.D). 

However, the youngest fish analyzed was 31 days old (11.5 mm L
S
), which was close to 

the smallest size of S. tubifer collected with an urchin (Figure 2.2); therefore the PLD 

for S. tubifer in Okinawa is estimated to be approximately 30 days. 

The tetracycline immersion method confirmed that the growth bands used for 

aging represented daily growth increments of S. tubifer. Sagittal otoliths of 22% of the 

chemically treated fish showed clear incorporation of tetracycline into their otolith 

microstructure, visible as a fluorescent band under UV light (Figure 2.1b). The number 



!16!

of bands between the fluorescent mark and the otolith margin of these otoliths 

corresponded with the number of days post-immersion for these individuals (Table 

2.2).  

 

Light organ and symbiont population growth 

 

Light organs of S. tubifer increased linearly in diameter as fish L
S
 increased with 

no sign of asymptotic growth (r2 = 0.82, Figure 2.7a). The smallest light organ 

measured was 0.8 mm in diameter (11.0 mm L
S 
),

 
and the two largest light organs were 

both 2.9 mm in diameter (36.0 and 37.0 mm L
S
). The population sizes of P. 

mandapamensis in light organs also increased with fish L
S
 (r2 = 0.62, Figure 2.7b), 

increasing from 7.0 x 106 (13.8 mm L
S
) to 8.7 x 107 (38.2 mm L

S
) cells.  

 

 

Discussion 

 

 Among cardinalfishes, S. tubifer is unusual for its symbiosis with the luminous 

bacterium, Photobacterium mandapamensis. This study provides additional evidence of 

the fish’s distinct biology and also highlights some biological similarities to other 

apogonids, including a diverse, carnivorous diet and large group aggregation sizes. In 

particular, the results presented here indicate that S. tubifer is the shortest-lived 

cardinalfish studied to date, which in addition to a high natural mortality rate, might 

result from high predation pressure, as direct predation on S. tubifer by other reef 

fishes has been observed at the study site (Gould et al. 2014). As a consequence, 

predation might have played a role in shaping the fish’s cryptic behaviour as a small, 

bioluminescent coral reef fish that seeks refuge among urchin spines during the day 

and uses ventral luminescence, potentially for countershading, while foraging at night 

(Dunlap and Nakamura 2011).  

Within the cardinalfish family, there is an overall positive, linear relationship 

between maximum species size and longevity (Marnane 2001). This relationship holds 

true for small species such as Doederlein's cardinalfish Ostorhinchus doederleini 

(Jordan and Snyder 1901) and the rubyspot cardinalfish Ostorhinchus rubrimacula 

(Randall and Kulbicki 1998), the life histories of which have both been recently 
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described (Table 2.3). Results of this study are similar to that of O. rubrimacula, 

suggesting that S. tubifer is also short-lived in Okinawa (<2/3 year), and support the 

positive relationship between maximum body size and longevity of apogonids. In 

addition, the size distributions reported for other Siphamia species are similar to that 

of S. tubifer; the siphonfishes S. corallicola and S. jebbi, range in size from 10.7-30.5 

mm L
S
 (n = 55) and 11.7-24.8 (n = 39), respectively (Allen 1993).  It should be noted, 

however, that a larger maximum body size (7.0 cm L
T
) of S. tubifer was reported from 

Tahiti on FishBase (Froese and Pauly 2015), which indicates that the fish has the 

potential to live longer than observed in this study. 

Aggregation sizes vary between different species of cardinalfish and can range 

from solitary or paired individuals to hundreds of fish. Gardiner and Jones (2010) 

determined that the mean group size of the five-lined cardinalfish Cheilodipterus 

quinquelineatus Cuvier 1982 was 13 with over half of the observed groups consisting 

of only 1-6 individuals, whereas the longspine cardinalfish Zoramia leptacanthus 

Bleeker 1856 groups were much larger, averaging 98 individuals and containing as 

many as 700 fish. The numbers of fish per aggregation reported for S. jebbi was 

between 20 and 40 individuals in association with pocilloporid coral heads (Allen 

1993). This aggregation size is similar to the number of S. tubifer reported here in 

association with D. setosum, however the group size associated with E. calamaris was 

much lower, likely due to the shorter spines of E. calamaris, which cannot physically 

accommodate or protect a large number of fish. The group size of S. tubifer associated 

with E. calamaris was similar to the aggregation size reported for Siphamia sp. among 

the spines of the crown-of-thorns sea star Acanthaster planci (2–18 fish per group, 

mean = 6.2) (Stier et al. 2009), which also have shorter spines than D. setosum. 

Conversely, the numbers of silver siphonfish Siphamia argentea Lachner 1953 

associated with the sea urchin Astropyga radiate in Madagascar were reported to be so 

large that the sea urchin could not accommodate all of the fish; the fish therefore 

formed a dense aggregation in the form of an urchin directly above the urchin itself 

(Fricke 1970). 

Despite the use of ventral luminescence while foraging, the diet of S. tubifer was 

similar to that reported for non-luminous cardinalfishes. Most apogonids are nocturnal 

predators and feed primarily on benthic invertebrates and zooplankton; their diet is 

diverse, yet often dominated by crustaceans (Hiat and Strasburg 1960, Allen 1993, 
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Marnane and Bellwood 2002, Longenecker and Langston 2006). Similar to the findings 

reported here, the diet of S. tubifer (S. permutata) from the Red Sea was reported to 

consist of copepods, gastropod veligers, worm chaeta, stomatopod larvae, benthic 

amphipods and juvenile shrimps (Fishelson et al. 2005). All brooding males examined 

in this study had empty stomachs, and therefore, apparently do not forage during this 

incubation period. One non-brooding individual had several eggs in its stomach, but 

the eggs were smaller in diameter than S. tubifer eggs; filial cannibalism, as reported 

for other cardinalfishes (Okuda and Yanagisawa 1996, Okuda 1999, Kume et al. 2000a) 

was not observed in this study. Although daytime feeding was not examined, S. tubifer 

may consume small zooplankton prey throughout the day while sheltered among its 

host urchin’s spines (Magnus 1967, Tamura 1982). Overall, Siphamia spp., like most 

cardinalfishes, have a generalist carnivore diet and forage nocturnally on a diverse 

array of benthic zooplankton prey, especially decapod shrimps. 

Mouthbrooding is one of the most effective ways of protecting offspring under 

high predation pressure (Oppenheimer 1970), and is therefore a successful 

reproductive strategy for the relatively small-bodied family of cardinalfishes. Within 

the family, however, brood sizes carried by males vary widely, from as low as 40 to 

tens of thousands of eggs, as do egg diameters (Vagelli 2011), and there is no 

indication that brood or egg size varies in relation to fish body size. However, smaller 

cardinalfish species, including Siphamia spp., generally have ovaries that are relatively 

large compared to their body size and spawn fewer, larger eggs than do larger species 

(Fishelson and Gon 2008). Within Siphamia, a physically small cardinalfish genus, 

brood sizes have been reported as low as 162 eggs for S. corallicola (25.0 mm L
S
) (Allen 

1993) and up to 600 for the crown-of thorns cardinalfish Siphamia fuscolineata 

Lachner, 1953 (27.7 mm L
S
) (Vagelli 2011); both instances were reported for a single 

brooding male. The mean number of eggs per brood for S. tubifer was similar to that 

reported for S. fuscolineata, however, the largest brood in this study contained over 

800 eggs. The number of eggs previously reported in the ovaries of S. tubifer (26 mm 

L
S
) (Fishelson and Gon 2008) corresponds with the lower range of total eggs counted in 

gravid S. tubifer females in this study. There was little to no difference between the 

total number of fertilized eggs in broods carried by male S. tubifer and eggs in female 

gonads, indicating that few, if any, eggs are lost in the process of fertilization and 

transfer to the male.  
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Egg diameters reported for other Siphamia spp. are similar to those reported 

here and elsewhere (Tominaga 1964); fertilized eggs of S. corallicola and S. fuscolineata 

were between 0.95-1.0 mm and 0.7-0.8 mm in diameter (Allen 1993, Vagelli 2011), 

respectively. However, egg diameters in female ovaries of S. tubifer (S. permutata) and 

S. roseigaster were 1.2 mm and 1.3 mm in diameter (Fishelson and Gon 2008), both 

larger than the maximum diameter of fertilized eggs observed in the mouths of S. 

tubifer males in this study. Overall, Siphamia spp. eggs are average in size compared to 

the eggs of other apogonids and correspond with the general trend that fish with 

larger broods have smaller eggs (Vagelli 2011).  

In a survey of sagittal otolith diameter as a percentage of fish L
S
 across 247 

species in 147 marine fish families, Paxton (2000) determined that nearly half of the 

species with the largest otoliths (> 7% L
S
) surveyed were luminous, including one 

species of apogonid (Archamia fucata), which had a larger otolith than its non-

luminous counterpart examined (Apogon aureus). This trend was true for most 

families with both luminous and non-luminous members (Paxton 2000). However, the 

otolith diameter of S. tubifer appears to be similar (~7% L
S
) to that of the non-luminous 

apogonid species examined by Paxton (2000). 

 The von Bertalanffy growth parameters for S. tubifer are similar to those 

reported for another relatively small cardinalfish, O. rubrimacula (Longenecker and 

Langston 2006, Table 2.3). Both fish have similar asymptotic lengths (L
∞
) and 

longevities less than one year, but S. tubifer had an initial growth rate (K) twice that of 

both O. rubrimacula and O. doederleini (Longenecker and Langston 2006, Kingsford et 

al. 2014). Additionally, the maximum age observed for S. tubifer in Okinawa was even 

shorter than those reported for two Ostorhinchus spp; the oldest observed O. 

rubrimacula in Fiji was 274 days (Longenecker and Langston 2006), and the oldest O. 

doederleini reported in the southern Great Barrier Reef, Australia was 368 days. Yet, 

much like this study, few fish examined were older than 200 days (Kingsford et al. 

2014).  

No indication of the timing of settlement was evident in the otolith 

microstructure of S. tubifer; however the youngest fish observed was 31 days old and 

was similar in size (11.5 mm L
S
) to the settlement sizes of other apogonid species (Leis 

et al. 2015). Assuming that S. tubifer settle directly onto the reef and immediately take 

up residence among the spines of a host urchin, the PLD of S. tubifer could be 
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approximately 30 days. This result is similar to that reported for the weed cardinalfish 

Foa brachygramma (Jenkins 1903) in Okinawa with a mean PLD of 30.6 days at 11 mm 

L
S
 (Ishihara and Tachihara 2011), and it is relatively long in comparison to the PLDs 

reported for other species (Leis et al. 2015). However, some apogonids undergo a two-

phase recruitment process, settling first onto sand rubble habitat before eventually 

taking up residence on a continuous reef with adults (Finn and Kingsford 1996). Thus 

far, there is no evidence to suggest that S. tubifer settles out of the plankton onto non-

urchin habitat prior to taking residence with adults at an urchin. There is also an 

undefined period of time (estimated as a few days) after S. tubifer embryos have 

hatched in the male’s mouth but prior to their release into the plankton as larvae 

(Dunlap et al. 2009, 2012), which could have an influence on the PLD of the fish and 

should be considered in future studies.  

There are few studies of the life histories and ecology of other bacterially 

luminous fishes. Previous studies either described aspects of the life history the fish 

with no examination of the fish’s symbiosis with luminous bacteria (Murty 1986, 

Okuda et al. 2005), or they focused primarily on the bioluminescent symbiosis 

(Hastings and Mitchell 1971, Haygood 1993); few studies have examined the growth of 

the light organ and the symbiont population relative to the growth of the host fish 

(Dunlap 1984, McFall-Ngai and Dunlap 1984). This study shows that light organs of S. 

tubifer continue to increase linearly in diameter with fish L
S
, and that the number of 

luminous symbionts housed within a light organ also increases throughout the fish’s 

life span (Figure 2.7). However, the maximum estimated symbiont population size in S. 

tubifer was lower than that reported for leiognathids, monocentrids, and anomalopids, 

and may be consistent with the generally smaller light organ of adult S. tubifer 

compared to light organs of adults of these other fishes (Haygood 1993). 

 The symbiosis with P. mandapamensis does not begin immediately upon 

hatching in S. tubifer (Dunlap et al. 2012); the light organ of S. tubifer becomes 

receptive to colonisation by the symbiotic bacteria after one week or more of 

development post-release from the male’s mouth (Dunlap et al. 2012), and larvae that 

were 2.8 mm in length had no luminous symbionts in light organs, whereas larvae that 

were 3.5 and 10.4 mm L
S
 had symbionts (Leis and Bullock 1986). It remains unknown 

how many bacterial cells initially colonise a light organ and for how long initial 

colonisation is possible, but evidence from this study suggests that, once established, 
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the population size of P. mandapamensis within a light organ increases throughout a 

host fish’s lifespan. 

Before the current analysis of S. tubifer in Okinawa, O. rubrimacula in Fiji 

(Longenecker and Langston 2006) was the smallest and most short-lived cardinalfish 

reported. However, results of this study suggest that S. tubifer, despite its similar size, 

is even more short-lived than O. rubrimacula, and once settled on a reef, grows at a 

rate twice that of both O. doederleini and O. rubrimacula (Longenecker and Langston 

2006, Kingsford et al. 2014, Table 2.3). Despite having similar lengths of asymptotic 

growth, S. tubifer reaches sexual maturity sooner than O. rubrimacula and reproduces 

over more of its lifespan, as reflected by the lower reproductive load in S. tubifer (Table 

2.3); however, the mean brood size of S. tubifer is much lower than that of O. 

rubrimacula (Longenecker and Langston 2006). The rapid growth to maturity and short 

lifespan of S. tubifer correspond with the fish’s cryptic behaviour and support the 

hypothesis that high mortality, possibly due to predation, has influenced the ecology 

of this small, bioluminescent coral reef fish.  
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Table 2.1 Summary of the diet of Siphamia tubifer (n = 25) in Okinawa, Japan. Percent 
gut content is the mean percent composition of each prey item of the total diet across 
all individuals of the size class indicated. Percent occurrence is the percentage of 
individuals in each size class in which that prey category was present in the diet. Rank 
indicates the relative importance of each prey item to the diet of each size class as a 
reflection of percent occurrence combined with percent content  
 

Prey type 
fish < 22 mm LS (n = 14) fish > 22 mm LS (n = 11) 

% content (± SE) % occurrence rank % content (± SE) % occurrence rank 

Amphipoda 18.1 (± 4.4) 64.3 2 10.1 (± 9.1) 18.2 6 

Decapod crab megalops 2.8 (± 2.1) 14.3 8 6.0 (± 2.7) 36.4 4 

Decapod crab zooea 8.9 (± 2.9) 50.0 3 5.1 (± 3.6) 18.2 8 

Decapod shrimp 34.4 (± 8.0) 78.6 1 31.7 (± 9.0) 63.6 1 

Chaetognatha 0.7 (± 0.7) 7.1 10 - - - 

Copepoda 11.3 (± 5.6) 35.7 5 1.5 (± 1.0) 18.2 9 

Isopoda - - - 0.6 (± 0.6) 9.1 13 

Mollusca - - - 0.7 (± 0.7) 9.1 10 

Mysidacea 6.5 (± 5.3) 21.4 6 9.4 (± 3.6) 45.5 3 

Ostracoda 0.5 (± 0.5) 7.1 11 0.7 (± 0.7) 9.1 10 

Polychaeta 2.2 (± 1.2) 21.4 7 10.6 (± 5.6) 27.3 5 

Stomatopoda 12.5 (± 7.2) 35.7 4 3.9 (± 3.1) 18.2 7 

Tanaidacea 2.3 (± 1.6) 14.3 9 0.7 (± 0.7) 9.1 10 

Teleost larvae  - - - 19.2 (± 9.5) 45.5 2 

Fish eggs - - - 0.6 (± 0.6) 9.1 13 
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Table 2.2 Otolith growth band validation. Treatment refers to the number of days after 
tetracycline immersion that otoliths were sampled, n

i
 and n

f
 indicate the numbers of 

fish treated and the number of otoliths recovered with visible UV bands, respectively 
 

Treatment (days) ni LS range (mm) nf Mean count (± SE) 

5 12 27.5 - 41.0 1 5 

10 15 27.5 - 41.5 5 10.8 (± 1.7) 

15 15 29.0 - 37.5 5 14.6 (± 2.7) 
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Table 2.3 The von Bertalanffy growth parameters, L
∞
, K, and t

0
, available for apogonid fishes. Minimum size and time at 

maturity, L
m
 and t

m
, and maximum size and longevity, L

max
 and t

max
 are also listed. Reproductive load, L

m
/L

∞
, was 

calculated when possible. Lengths in bold are reported as total lengths, L
T
, and times or rates in bold are in years; all 

other lengths are reported as standard lengths, L
S
, and times or rates are in days. 

 
Species L∞ (mm) K (time-1) t0 Lm  (mm) tm Lmax (mm) tmax Lm/L∞ Location Reference 

Apogon fasciatus 105.5 1.88 -0.04 46.4 - - - - SW Taiwan Wu (2009) 

Apogon imberbis 120.5 0.41 -0.57 55 1 121 5 0.46 NW Mediterranean Sea Raventos (2007) 

Apogon lineatus 86.6 (118.5) 1.12 (0.37) -0.01 (-1.03) 53 (65) 1 103 (112) 3 0.61 (0.55) Tokyo Bay, Japan Kume et al. (1998) 

  94.7 (85.0) 0.50 (1.23) -0.88 (-0.07) 51.3 (65) 1 110 4 (5) 0.54 (0.77) Niigata Prefecture, Japan Kume et al. (2003) 
Ostorhinchus 
doederleini 65.04 0.01 - - - 74 mm 368 - Great Barrier Reef, 

Australia 
Kingsford et al. 
(2014) 

  86.5 (88.6) 1.56 (1.62) -0.02 (-0.02) 69 (73) 1 92.5 mm* 6 (7) 0.80 (0.82) Shikoku Island, Japan Okuda et al. (1998) 
Ostorhinchus 
rubrimacula 40.8 0.014 22.45 d 35 162  43 mm** 274 0.86 Koro, Fiji Longenecker and 

Langston (2006) 
Pterapogon kauderni 71 0.74 -0.11 40 1 66 mm 3-5 0.56 Banggai Islands, Indonesia Ndobe et al. (2013) 

Siphamia tubifer 40.8 0.026 23.25 22 53 43.5 mm 240 0.54 Okinawa, Japan this study 
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Figure 2.1 (a) Photograph of a right sagittal otolith of Siphamia tubifer (27 mm L
S
) and 

(b) overlay of two images of the outer edge of a sagittal otolith cross-section from an 
individual taken 15 days post-immersion in a tetracycline-seawater solution. For (b), 
the image at the left was captured under transmitted light, and the image at the right 
was captured under ultraviolet light. The black tick marks indicate daily growth bands 
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Figure 2.2 Frequency histogram of the lengths of Siphamia tubifer from various 
locations in Okinawa, Japan from 2011-2014. White bars indicate length frequencies of 
brooding males  
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Figure 2.3 Total wet mass of Siphamia tubifer as a function of fish length (n = 121) 
fitted with the curvilinear function indicated 
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Figure 2.4 The number of Siphamia tubifer aggregated together among the spines of a 
host sea urchin: (a) Diadema setosum and (b) Echinothrix calamaris 
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Figure 2.5 Batch fecundity of Siphamia tubifer represented as the number of fertilized 
eggs in the mouths of brooding males (n = 46, r2 = 0.46, F = 39.47, P < 0.001) and eggs 
in the ovaries of females (n = 49, r2 = 0.63, F = 82.59, P < 0.001) as a function of fish 
length
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Figure 2.6 Length of Siphamia tubifer by age as determined from counts of daily 
growth bands in sagittal otoliths fitted to the von Bertalanffy growth function 
indicated 
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Figure 2.7 Light organ growth of Siphamia tubifer. (a) The diameter of a Siphamia 
tubifer light organ (n = 299, r2 = 0.82, F = 1,345, P < 0.001) and (b) the number of 
luminous bacteria present in a light organ (n = 58, r2 = 0.62, F = 92.5, P < 0.001) as a 
function of fish length 
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CHAPTER III 

Homing and site fidelity of Siphamia tubifer 2 

 

 

Abstract 

 

The sea urchin cardinalfish, Siphamia tubifer (Perciformes: Apogonidae), is 

unusual among coral reef fishes for its use of bioluminescence, produced by symbiotic 

bacteria, while foraging at night. As a foundation for understanding the relationship 

between the symbiosis and the ecology of the fish, this study examined the diel 

behavior, host urchin preference, site fidelity, and homing of S. tubifer in June and July 

of 2012 and 2013 at reefs near Sesoko Island, Okinawa, Japan (26º38’N, 127º52’E). 

After foraging, S. tubifer aggregated in groups among the spines of the longspine sea 

urchin, Diadema setosum, and the banded sea urchin, Echinothrix calamaris. A 

preference for D. setosum was evident (P < 0.001), especially by larger individuals (> 25 

mm standard length, P < 0.01), and choice experiments demonstrated the ability of S. 

tubifer to recognize and orient to a host urchin and to conspecifics. Tagging studies 

revealed that S. tubifer exhibits daily fidelity to a host urchin; 43-50% and 26-37% of 

tagged individuals were associated with the same urchin after three and seven days. 

Tagged fish also returned to their site of origin after displacement; by day two, 23-43% 

and 27-33% of tagged individuals returned from displacement distances of one and 

two kilometers. These results suggest that S. tubifer uses various environmental cues 

for homing and site fidelity; similar behaviors and cues might be used by larvae for 

recruitment to settlement sites and for the acquisition of luminous symbiotic bacteria.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
2 Published as: Gould, AL, S Harii, and PV Dunlap (2014) Host preference, site fidelity and 
homing behavior of the symbiotically luminous cardinalfish, Siphamia tubifer (Perciformes: 
Apogonidae). Marine Biology 161(12):2897-2907 
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Introduction 

 

Many coral reef fishes have restricted home ranges and return to home sites 

daily after foraging and after displacement (Sale 1978a). Having a home site can 

enhance an individual fish’s fitness through benefits associated with familiarity of 

local resources and the location of competitors, predators, and mates (Shapiro 1986, 

Noda et al. 1994, Brown and Dreier 2002). Furthermore, the diel homing behavior of 

fishes can directly affect nutrient transfer within a reef environment (e.g. Meyer et al. 

1983, Bellwood 1995) as well as processes that influence population dynamics, such as 

mortality and recruitment (Sale 1978b). Among reef fishes, the cardinalfishes 

(Perciformes: Apogonidae) are one of the most abundant and species-rich groups in the 

Indo-Pacific (Allen 1993, Bellwood 1996). Cardinalfishes typically forage at night and 

form aggregations during the day around reef structures, such as branching corals 

(Greenfield and Johnson 1990, Gardiner and Jones 2005, 2010). Some cardinalfishes 

exhibit fidelity to their daytime home sites over the course of months (Kuwamura 

1985, Okuda andYanagisawa 1996, Marnane 2000), and few species are known to 

return to home sites when displaced substantial distances (Marnane 2000, Kolm et al. 

2005). However, despite their abundance in reef communities, cardinalfishes remain 

one of the least studied families of reef fishes (Bellwood 1996). In particular, little is 

known of the behavioral ecology of members of the symbiotically luminous genus of 

cardinalfish, Siphamia.  

Siphamia tubifer may be the most widespread Siphamia species; a recent taxonomic 

revision reclassified Siphamia versicolor (Smith and Radcliffe, in Radcliffe 1911; 

Tominaga 1964), reported from many locations throughout the Indo-West Pacific 

region, as a junior synonym of S. tubifer Weber, 1909 (Gon and Allen 2012). Like other 

cardinalfishes, S. tubifer is a paternal mouth brooder; the adult male orally broods his 

fertilized clutch of eggs (Breder and Rosen 1966, Thresher 1984, Dunlap et al. 2012) 

and releases pre-flexion larvae into the plankton (Dunlap et al. 2009). Unusual for most 

cardinalfishes and other coral reef fishes, however, bioluminescence apparently plays a 

major role in the biology of S. tubifer. The abdominal light organ of S. tubifer, which is 

connected to the intestine by a duct, begins to develop in larvae after their release into 

the plankton and remains free of bacteria for at least seven days of post-release 

development (Leis and Bullock 1986; Dunlap et al. 2009). The luminous bacteria, 
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identified as members of clade II of Photobacterium mandapamensis (Kaeding et al. 

2007, Urbanczyk et al. 2011), are then taken up from the environment and colonize the 

fish’s light organ (Dunlap and Nakamura 2011, Dunlap et al. 2012). The fish carries a 

large population of the symbiotic bacteria in the light organ and emits the bacterial 

light as an even glow over its ventrum while it forages at night (Dunlap and Nakamura 

2011). After returning to an urchin from foraging, the fish release fecal material 

containing large numbers of the symbiotic bacteria (Dunlap and Nakamura 2011). 

Despite progress in understanding the symbiosis of S. tubifer and P. 

mandapamensis, the behavioral ecology of the fish and the functional role of the 

symbiosis in its daily life remain largely unknown. During the day, S. tubifer associates 

in small to large groups with the longspine sea urchin, Diadema setosum, or the 

banded sea urchin, Echinothrix calamaris, remaining quiescent among the urchin’s 

spines (Lachner 1955, Eibl-Eibesfeldt 1961, Tamura 1982). A preference for a host 

urchin species would indicate which reef sites are suitable for incoming recruits, and 

predictable home sites could influence the distribution of competitors and predators 

at that reef. However, whether the fish exhibits the homing behavior and site fidelity 

seen other cardinalfishes and whether the symbiosis is influenced by or contributes to 

these activities are not known. Therefore, to begin building a foundation for 

understanding the ecology of this group of apogonids with respect to the 

bioluminescent symbiosis, I examined the diel behavior, host urchin preference, site 

fidelity, and homing of S. tubifer at reefs in Okinawa, Japan. 

 

 

Materials and Methods 

 

Study sites 

 

 This study was carried out at shallow coral reefs at Sesoko Island, Okinawa, Japan 

(26º38’N, 127º52’E) and at nearby reefs on Motobu Peninsula (Figure 3.1) during June 

and July of 2012 and 2013. Observations of diel behavior of Siphamia tubifer were 

made at reefs fronting Sesoko Station (Tropical Biosphere Research Center, University 

of the Ryukyus) on Sesoko Island, as were site fidelity experiments. Transects and 

homing experiments were carried out at a site in the vicinity of Motobu town, across 
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the channel from Sesoko Island (Figure 3.1). The protocols used here for the capture, 

care, and handling of S. tubifer were approved by the University of Michigan’s 

Institutional Animal Care and Use Committee, and they accord with animal handling 

guidelines of the University of the Ryukyus Guide for Care and Use of Laboratory 

Animals. 

 

Diel behavior 

 

 Observations of groups of S. tubifer associated with Diadema setosum were made 

using SCUBA to determine the timing of departure from and return to a host urchin. 

On July 1, 2012, the group of fish at an urchin was monitored from approximately 

fifteen minutes before sunset until no other fish left the urchin. An additional 

observation of the urchin was made at midnight to determine whether any fish had 

returned from foraging by this time. On July 4, 2012, the same urchin was monitored 

beginning at one hour before sunrise until the time after which no additional fish 

returned to the urchin. One group of fish (n = 26) was collected immediately after their 

return to an urchin and examined for stomach fullness and contents.  

 

Host preference 

 

 To determine the natural preference for S. tubifer to associate with D. setosum or 

Echinothrix calamaris (Figure 3.2), surveys along randomly placed transects were 

carried out at a site approximately 40 m offshore where both species of urchin were 

abundant (Figure 3.1). A total of six independent 50 m transects were surveyed using 

SCUBA for the number of urchins and associated S. tubifer along the backside of the 

reef and the adjacent sand flat. Transects were randomly placed, regardless of 

substrate (reef or sand), at least 20 m apart, and each urchin within two m of either 

side of the transect tape was examined by divers. The urchin species and number of S. 

tubifer associated with each urchin were recorded along with the substrate type. The 

size of each S. tubifer observed was also estimated and recorded as either “small” (< 25 

mm standard length, SL) or “large” (> 25 mm SL) for three of the transects, as a 

difference in size of fish associated with each host urchin species became evident 

during the first three transects. 
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 For choice experiments, six groups of S. tubifer, which varied in standard lengths 

and number of fish, were collected with their urchins from reefs fronting Sesoko 

Station (Figure 3.1) and maintained in aerated aquaria with flowing natural seawater. 

Individual fish were placed in the middle area of a large aquarium (two m x one m x 

one m) that contained approximately 1,200 L of natural seawater. The tank was 

partitioned into three equal sections with square plastic mesh (20 x 20 mm2) through 

which the fish could swim. Different combinations of choices were presented to each 

fish in the two opposing sections of the aquarium, and the sides in which the stimuli 

were presented were randomly and periodically switched between fishes to ensure no 

side bias existed in the tank. For each trial, the side that an individual fish swam to 

and remained settled at for at least 30 seconds was recorded. Fish were allowed up to 

two minutes to choose a side, and any individual that did not choose a side within the 

two minutes was not included in the analysis. The aquarium was flushed with flowing 

seawater after each trial, and each fish was tested only once. The combination of 

choices presented and the number of fish tested for each combination were: a D. 

setosum urchin from a different patch of reef at least 20 m away from the collected 

fish (unfamiliar urchin) or no urchin (only seawater), n = 38; the D. setosum urchin 

collected with the fish (familiar urchin) or an unfamiliar D. setosum (unfamiliar urchin), 

n = 87; a group of ten S. tubifer collected from an urchin > 20 m away (unfamiliar fish) 

or no fish (only seawater), n = 28; a group of ten S. tubifer collected from the same 

urchin (familiar fish) or an unfamiliar group of ten S. tubifer collected from a different 

urchin > 20 m away, n = 57; a familiar D. setosum or a familiar group of ten S. tubifer, n 

= 19; and an unfamiliar D. setosum or an unfamiliar E. setosum (both collected > 20 m 

away), n = 35. All groups of S. tubifer presented as a conspecific choice were kept in 

place in the aquarium with the same mesh structure used to partition the tank. On no 

occasion did any of these fish swim away from the group of fish or the mesh structure.  

 

Tagging 

 

 Groups of S. tubifer, which varied in numbers and in standard lengths of 

individuals (Table 3.1), were collected from the reef with their associated host urchin, 

taken to the laboratory, and tagged. Individual fish were lightly anesthetized with 2-

phenoxyethanol (Acros Organics) (0.2 mL per L of seawater) and measured to the 
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nearest 0.5 mm SL prior to tagging. The standard length of all tagged fish (n = 313) 

ranged from 12.5 to 38.5 mm, with a mean length of 26.8 ± 5.1 (SD) mm. Brooding 

male fish were not included in these experiments, as they do not leave an urchin while 

brooding (Dunlap and Nakamura 2011, this study). Fluorescent visual implant 

elastomer (VIE) tags (Northwest Fisheries Supplies, Inc.) of different colors were 

injected subcutaneously at varying body locations to uniquely identify each group of S. 

tubifer collected with an individual urchin. After tagging, fish were given a four-hour 

recovery period in aquaria with aerated flowing seawater and were then released back 

into the field as a group with a D. setosum urchin. No fatalities occurred during this 

four-hour period in the experimental groups. To test for mortality associated with 

tagging, an additional group of S. tubifer (n = 41) was tagged and maintained in an 

aquarium for one week and fed daily with wild-caught zooplankton. Of this group of 

fish, one individual did not survive handling, and another fish was found dead in the 

aquarium one day after tagging. The remaining individuals (> 95%) were seemingly 

healthy by the end of one week after tagging, and all tags were clearly visible, 

indicating that mortality due to handling and tagging is less than 5% and likely occurs 

during handling or by day one and that the tags remain in place and visible for this 

period of time. 

 

Site fidelity 

 

 Analysis of site fidelity was carried out using groups of S. tubifer associated with 

individual D. setosum. Observations during this study indicated that divers could 

recognize individual urchins by their appearance and specific locations at reef sites, to 

which the urchins returned daily from short nocturnal foraging distances (generally < 

5 m) (Magnus 1967, this study). Three groups of S. tubifer (Table 3.1) were collected 

with their urchins from reefs fronting Sesoko Station in June 2013 and uniquely 

marked with VIE tags. After a four-hour recovery period, each group of fish was 

released with their urchin at its site of origin at least two hours before sunset. The 

number of tagged fish from each group that were associated with their original urchin 

was determined on days one, two, three, and seven after release. In addition, the 

surrounding 10 m-radius area was surveyed for the presence of tagged fish on other 

urchins. 
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Homing behavior 

 

 To determine the homing ability of S. tubifer, three replicate groups of uniquely 

tagged S. tubifer (Table 3.1) were released with an unfamiliar D. setosum urchin 

(collected from a different reef) at sites one or two kilometers from their reef of origin 

(Figure 3.1) and monitored for their return over one week. The original urchin with 

which a group of fish was collected was returned back to its capture site at its reef of 

origin. Three control groups of fish were released with their urchin of origin at their 

capture site after tagging and recovery. Additional groups (three groups per 

displacement distance) were released one and two kilometers from their reef of origin; 

the two-kilometer release site was located northeast of the site of origin, and the one-

kilometer site was located southwest of the site of origin (Figure 3.1). An additional 

one-kilometer release site northeast of the site of origin was also tested to determine if 

the direction of the release site relative to the capture site influenced the homing 

ability of the fish. The percentage of fish that returned from this experimental group 

after one week (19%) was within the range of those returning from the other one-

kilometer site (19-24%). Original urchins and the surrounding 10 m-radius area at the 

reef of origin were monitored for the presence of tagged individuals on days one, two, 

three, and seven after displacement.  

 

Statistical analysis 

 

 Each transect at the study site was treated independently for the analysis of the 

distribution of S. tubifer on D. setosum and E. calamaris as host urchins. Because the 

data were not normally distributed, a Wilcoxson rank-sum test was performed, with 

correction for continuity, to test the preference of S. tubifer to associate with D. 

setosum or E. calamaris. To test whether small (≤ 25 mm SL) and large (> 25 mm SL) 

fish associate more frequently with an urchin species, chi-square tests of independence 

were preformed on the number of fish of each size category in association with D. 

setosum or E. calamaris. In addition, Manly’s alpha scores (Manly et al. 1972, Chesson 

1978) were calculated for all fish surveyed and converted into electivity indices 

(Chesson 1983, Shima 2001) to analyze the use of each urchin species as a host relative 
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to their abundance on both reef and sand substrate at the study site. To analyze the 

choice experiments, chi-square tests of independence were performed on the number 

of fish that chose either stimulus for each pair of choices presented.  

 To analyze site fidelity data, a repeated-measures ANOVA followed by pairwise t-

tests between days was used to test for the effect of time on the proportion of 

individuals that returned to the same urchin daily. Homing data were analyzed using a 

generalized linear mixed model with a binomial distribution and a logit link function, 

with time in days, distance, and mean body length (mm, SL) of each group of fish 

(Table 3.1) as fixed effects and each replicate group as a random effect. The final 

model was chosen by stepwise selection based on lowest Akaike information criterion 

(AIC) scores. Individual body size was measured only during the initial tagging process, 

therefore the correlation between homing success and fish body size was examined 

using metrics of size describing an entire group of tagged fish, such as the proportion 

of small individuals (< 25 mm) and mean body length. All statistical analyses were 

performed in R, version 2.15.1 (R Development Core Team 2012). 

 

 

Results 

 

Diel behavior 

 

 Field observations of Siphamia tubifer associated with Diadema setosum revealed 

that the fish alternates between a non-feeding, protective association with an urchin 

during the day and foraging for zooplankton away from the urchin at night (Table 3.2); 

ambient light levels at dusk and dawn apparently cue this behavior. As dusk 

approached after sunset, the fish changed from a uniform nearly black, dark-brown 

color to a pattern of silver with three lengthwise dark stripes. At this time, the fish 

moved away from the urchin test toward the outer ends of the spines. The fish 

hovered at this position for several minutes, facing outward from the urchin. They 

then turned entirely silver in color and individually darted away from the urchin; 

approximately ten fish would leave the urchin within a few seconds of each other. All 

fish except brooding males had left the urchin, presumably to forage, within a few 

minutes (Table 3.2). Brooding males, identified by their swollen, distended jaws, 
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remained dark-brown in color among the urchin spines throughout the night. As dawn 

approached, the foraging fish returned to the urchin, arriving singly or in pairs, and 

were silver in color. All fish arrived within several minutes of each other and had 

assembled among the urchin’s spines by approximately half an hour before sunrise. In 

one instance, a returning fish was chased by a larger, presumably predatory, fish 

(unknown species); the chased fish darted into a crevice of a Porites coral close to an 

urchin, remained still in this crevice for several minutes, and then darted among the 

spines of a nearby D. setosum urchin. Examination of the stomachs of the fish collected 

from an urchin immediately after their return at dawn revealed the stomachs to be full 

and to contain mostly benthic zooplankton. In contrast, the stomachs of brooding 

males were empty. 

 

Host preference 

 

 The natural and apparently exclusive daytime hosts of S. tubifer are D. setosum and 

Echinothrix calamaris in the Motobu Peninsula area. During the day, I found S. tubifer 

primarily in association with the longspine urchin, D. setosum, but also frequently with 

the banded urchin E. calamaris, which has shorter spines (Figure 3.2). Despite 

extensive observations, I did not find the fish during the day in association with any 

other urchin species, with corals, with the crown-of-thorns seastar Acanthaster (Stier et 

al. 2009), or in other areas of the reef. The transect site (Figure 3.1) contained more E. 

calamaris than D. setosum, and both urchin species occurred on the backside of the 

reef as well as on adjacent sand flats; however, 85% of all urchins surveyed were 

located on the sand flat (Figure 3.3). Of the D. setosum surveyed, 65% were found on 

the reef, whereas only 3% of E. calamaris were on reef substrate (Figure 3.3). The 

distribution of S. tubifer at this site was therefore influenced by the distribution of 

host urchins.  

 Of all urchins surveyed, 41% had S. tubifer associated with them, but fish were 

found more frequently in association with D. setosum; 56% of all fish surveyed were 

associated with D. setosum despite its low relative abundance at the study site (Figure 

3.3, Wilcoxson ranked-sum test, T = 7911.5, P < 0.001). When comparing host urchins 

occupied by small (< 25 mm SL) and large (> 25 mm SL) S. tubifer, more small fish were 

associated with E. calamaris than large fish (Χ 2 = 78.7, df = 1, P < 0.0001); 82% of fish 
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associated with E. calamaris were small (Figure 3.3). Conversely, there was little 

difference in the numbers of small and large fish associated with D. setosum (Χ2 = 0.30, 

df = 1, P < 0.58); 53% and 47% of the fish surveyed with D. setosum were small and 

large, respectively (Figure 3.3). An electivity score (ε) of 0.68 for all fish surveyed over 

both substrates indicate that S. tubifer selectively associate with D. setosum, although 

this preference is stronger for large fish (ε = 0.37) than for small fish (ε = 0.15) (Table 

3.3). In contrast, all electivity scores calculated for fish associated with E. calamaris 

were negative, which indicates a lack of preference for E. calamaris as a host urchin. 

On the reef, all S. tubifer surveyed appeared to avoid E. calamaris as a host; no fish 

were seen in association with E. calamaris on the reef and consequently the electivity 

scores were -1.00 for all fish, regardless of size (Table 3.3).  

 The results of choice experiments in the aquarium confirmed the observed 

preference of S. tubifer for D. setosum. Compared to an empty area with no urchin, S. 

tubifer associated more frequently with D. setosum (Χ 2 = 13.88, P < 0.0001) as well as 

with conspecifics (Χ 2 = 4.95, P < 0.05) (Figure 3.4). The fish also exhibited a preference 

for D. setosum over E. calamaris; 71% of S. tubifer tested associated with D. setosum (Χ 2 

= 2.85, P = 0.09). Although not statistically significant, the preference for D. setosum 

(Figure 3.4) is consistent with the higher numbers of S. tubifer associated with D. 

setosum compared to E. calamaris in the wild. With respect to choosing between 

familiar and unfamiliar urchins and conspecifics, S. tubifer showed no obvious 

preference; 49% and 54% of fish tested associated with familiar urchins (Χ 2 = 0.03, P = 

0.86) and conspecifics (Χ 2 = 0.15, P = 0.70), respectively (Figure 3.4). 

 

Site fidelity 

 

 Consistent with field observations, S. tubifer exhibits daily fidelity to an individual 

urchin at a site. Tagged fish were re-sighted on their original urchin seven days after 

tagging, with an average of 55%, 51%, 46%, and 33% of tagged individuals re-sighted on 

the same urchin on days one, two, three, and seven, respectively (Figure 3.5). Time 

after release had a significant effect on proportion of fish found with the same urchin 

(P < 0.01); a lower proportion of fish were re-sighted at the same urchin after one week 

than on days one and two (P < 0.05). In some instances, up to 5% of tagged fish were 

sighted with other D. setosum within five meters from their original urchin. 
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Homing behavior 

 

 In addition to host urchin preference and site fidelity, S. tubifer is able to return to 

its home reef site from substantial distances, regardless of the direction of 

displacement. When fish were displaced one kilometer (southwest of their capture site) 

and two kilometers (northeast of capture site) (Figure 3.1), an average of 35% and 29%, 

respectively, were re-sighted on an urchin within a ten m radius of their original urchin 

at their capture site by day two, with up to 24% of individuals returning to their 

original urchin. On day seven, an average of 34% and 24% of fish from the one- and 

two-kilometer groups, respectively, were re-sighted within a ten m radius of their 

original urchin (Figure 3.6a). Averages of control-group fish, tagged and released at 

their capture site with their original urchin, re-sighted on days one, two, three, and 

seven after release, were 48%, 35%, 42%, and 17%, respectively (Figure 3.6a). Thus, 

displacement distance had a significant effect on the proportion of fish that returned 

to their site of origin (P < 0.01). There was also a strong effect of mean group standard 

length (Table 3.2) on homing (P < 0.0001); a smaller proportion of fish homed from 

groups with a lower mean standard length than from groups with a higher mean 

standard length, irrespective of release distance (Figure 2.6b). The proportion of small 

fish in a group, however, did not have a significant effect on the proportion of fish that 

homed (P = 0.38) and its relationship with homing was weaker (R2 = 0.17, F = 6.85, P = 

0.01) than that of mean body length (R2 = 0.45, F = 29.9, P < 0.001) (Figure 3.6b).  

 

 

Discussion 

  

 Together with the ability to emit ventral luminescence, the behaviors and 

preferences described here for S. tubifer appear to function to minimize predation. The 

daytime association with an urchin allows the fish, which typically is dark in coloration 

at that time, to be cryptic. Consistent with our field observations, Tamura (1982) 

observed S. tubifer at dusk and documented the fish’s body color change, from dark 

brownish black to silver striped to all silver, as the fish left an urchin. The fish 

remained silver all night, which presumably helps S. tubifer avoid detection while 
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foraging. Ventral luminescence, which begins to be emitted at dusk (Dunlap and 

Nakamura 2011), might complement the silver coloration, helping the fish remain 

cryptic while foraging. Nonetheless, predation rates on S. tubifer are probably high; 

direct predation by lionfish has been observed (Michael 2013), and during this study, 

predatory fish, including larger apogonid species, were often sighted near urchins 

occupied by S. tubifer and observed preying on fish leaving and returning to an urchin.  

 The preference of S. tubifer for Diadema setosum as its daytime host over 

Echinothrix calamaris, a shorter-spined urchin (Figure 3.2), is consistent with the 

observation that the fish prefer urchins with longer spines (Tamura 1982). Longer 

spines presumably provide better protection from predators, especially for larger S. 

tubifer. When both E. calamaris and D. setosum are present at a reef, small fish may be 

able to find adequate protection from predators among the shorter spines of E. 

calamaris. It is also possible that learning occurs with age; larger fish might have 

learned that the longer spines of D. setosum provide better protection than those of E. 

calamaris. Intraspecific interference competition (e.g. Holbrook and Schmitt 2002) 

could also influence the distribution of small and large S. tubifer associated with both 

urchin species; larger fish may outcompete smaller fish for space among the more 

protective D. setosum spines, and consequently displace smaller individuals to take 

residence among the shorter spines of E. calamaris. Additional studies, e.g. testing 

different size classes of the fish, “small” and “large”, with D. setosum versus E. 

calamaris in choice experiments, would provide further insight on host characteristics 

important for the fish throughout development.  

This study establishes that S. tubifer exhibits daily site fidelity and returns to a 

home site after being displaced one and two kilometers. Like host preference, site 

fidelity and homing by S. tubifer are likely to be shaped by the need to avoid predators. 

Knowledge of the local reef structure and the location of urchins and resident 

predators presumably enhances survival of fish departing from and returning to a 

home reef site and urchin. In this study, the percentage of tagged fish re-sighted at 

home reef sites for the control group of the homing study was similar to the 

proportion of fish re-sighted in the site fidelity experiment, which suggests that the 

lower numbers of fish returning over time to a home site and urchin reflect losses due 

to predation. The natural mortality rate of S. tubifer might also be relatively high, as 

the lifespans of other apogonids are short (< 1-2 years) (Chrystal et al. 1985, Marnane 



!44!

2000, Kingsford et al. 2014). Another factor that could have influenced the proportion 

of fish recovered during the homing study was the study site itself; the collection 

(control) site was selected due to the high abundance of S. tubifer, which correlated 

with a high density of host urchins. Consequently, more tagged fish may have returned 

to the general area but were not re-sighted in the surveyed home site radius.  

  Consistent with our results, previous studies have shown that various apogonids 

can return to a home reef site when displaced substantial distances (Marnane 2000, 

Kolm et al. 2005). Marnane (2000) showed that between 33% and 63% of three apogonid 

species returned to their site of origin within three days when translocated two 

kilometers. Additional studies have shown that other apogonids, including members of 

Siphamia, exhibit site fidelity and remain at the same reef site for weeks to months 

(Strasburg 1966, Allen 1972, Kuwamura 1985, Okuda and Yanagisawa 1996, Marnane 

2000), the consequences of which may directly affect nutrient distribution within a 

reef as well as the assembly of predator and prey species at that reef (Marnane 2000, 

Marnane and Bellwood 2002). The daily site fidelity and homing by S. tubifer might 

lead to a local enrichment of their luminous symbiont in the water at a home site 

because excess symbiont cells are released daily with the fish’s feces (Dunlap and 

Nakamura 2011).  

 Previous studies have also shown that site fidelity and homing behavior of fishes 

can vary with ontogeny (Yoshiyama et al. 1992, Shima et al. 2012, White and Brown 

2013); older fish are more likely to risk the return to a home site across unfamiliar 

waters, although this is not always the case for all fishes (White and Brown 2013). Our 

homing results appear to be consistent with this view, but additional studies are 

needed to empirically test whether larger S. tubifer are actually more successful at 

homing than smaller fish. The lower proportion of fish that homed from groups with 

smaller mean body size, however, may reflect a greater loss of smaller fish to 

predation. High predation risk could, therefore, play a critical role in shaping the 

highly cryptic life history of S. tubifer and provide incentive for the homing behaviour 

observed in this study; prior knowledge of the predator and urchin communities in an 

area could outweigh the risks of making the return trip home. 

 The mechanisms used by fishes to navigate daily to home sites and those used by 

recruitment-stage larvae to find suitable settlement sites may involve visual, olfactory, 

and auditory cues. From short distances, S. tubifer likely uses visual cues to recognize 
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and navigate within a familiar area to its daytime urchin host and probably has some 

spatial memory of a home site (e.g. White and Brown 2013), including the location of 

the host urchins in the area. However, to navigate back to a home site after 

displacement or to find a settlement site as a larva, S. tubifer presumably uses 

additional cues. Other cardinalfishes use olfaction to discriminate between familiar 

and unfamiliar reef waters, and settlement-stage apogonids might use chemical cues to 

recruit to their natal reefs (Atema et al. 2002, Døving et al. 2006, Geralch et al. 2007). 

Previous studies have also shown that apogonids are attracted to reef sounds, which 

could also serve as cues for larval fish to navigate to a settlement site (Leis et al. 2003, 

Simpson et al. 2004, 2005). Sound can propagate relatively long distances through 

water, regardless of the direction of current flow (Rogers and Cox 1988), and urchins 

produce distinct sounds at frequencies detectable by fish against the background 

noises of coral reef communities (Radford et al. 2008, 2010). Therefore, S. tubifer could 

use a combination of olfactory and auditory cues for homing, which could also convey 

habitat quality to incoming S. tubifer recruits searching for a suitable settlement site.  

 The homing and site fidelity behavior of S. tubifer described here, together with 

other studies that suggest settling fishes might use environmental cues to navigate to 

natal reefs (Atema et al. 2002, Leis et al. 2003, Simpson et al. 2004, 2005, Geralch et al. 

2007), lead us to speculate that S. tubifer larvae use similar environmental cues to 

recognize and recruit to reefs inhabited by adult conspecifics. If so, the larvae might 

encounter higher numbers of symbiotic bacteria near the reef compared to in the 

plankton, due to the daily release of the bacteria by adults at their daytime home sites 

(Dunlap and Nakamura 2011). Depending on the developmental timing of recruitment, 

light organ development, and the timing of symbiont acquisition by S. tubifer larvae 

(Leis and Bullock 1986, Dunlap et al. 2012), this interaction might function to ensure 

the successful initiation of the symbiosis, by establishing a quasi-vertical, adult to 

larvae, form of symbiont transfer. However, the environmental cues used by S. tubifer 

larvae for settlement and the relationship between settlement and initiation of the 

symbiosis remain to be determined. 
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Table 3.1 Number and standard lengths of individuals from groups of Siphamia tubifer 
tagged for the homing and site fidelity studies 
 

Study (treatment) N Mean fish length 
(± SD, mm) 

Minimum fish 
length (mm) 

Maximum fish 
length (mm) 

Proportion of fish ≤ 
25 mm (SL) 

Homing (0 km) 11 31.5 (± 4.9) 21.0 37.5 0.09 

  13 27.1 (± 3.4) 19.0 34.0 0.15 

  22 29.2 (± 4.1) 22.0 36.0 0.14 

Homing (1 km) 18 28.6 (± 3.6) 21.5 37.0 0.05 

  23 27.9 (± 4.7) 19.5 37.0 0.22 

  22 21.8 (± 5.8) 13.0 30.0 0.55 

Homing (2 km) 34 28.0 (± 4.1) 21.0 38.0 0.56 

  22 22.3 (± 7.6) 12.5 36.5 0.24 

  25 23.7 (± 5.6) 23.5 37.0 0.59 

Site fidelity 58 27.8 (± 3.6) 20.0 37.0 0.25 

  30 25.7 (± 4.5) 15.5 38.5 0.33 

  35 28.6 (± 3.1) 21.0 35.5 0.09 
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Table 3.2 Timetable of observations of Siphamia tubifer leaving the protection of the 
spines of a D. setosum urchin to forage at dusk, and returning to the same urchin at 
dawn on a reef fronting Sesoko Station, Okinawa, Japan. All observations from sunset 
through midnight were made on July 1, 2012. Observations in the morning hours 
through sunrise were made on July 4, 2012.  

Time Observation 

19:26 Sunset 

19:50 Color change from black to striped 

19:59 Fish moved to the end of the urchin’s spines and hovered, changing to silver in color 

20:01 First group of approximately 10 fish left the urchin 

20:03 Another group of approximately 10 fish left the urchin 

20:07 Last two fish left the urchin (two brooders remained with the urchin) 

00:00 Two brooders still remained with the urchin (no other fish with the urchin) 

04:45 Only the two brooders with the urchin 

05:00 One fish returned to the urchin  

05:04 Three fish returned to the urchin 

05:07 One fish returned to the urchin 

05:11 One fish returned to the urchin 

05:12 Two fish returned to the urchin 

05:13 One fish returned to the urchin 

05:14 The last fish returned to the urchin, pausing first near a coral head to avoid a predator fish 

05:42 Sunrise 
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Table 3.3 Electivity indicies (e) for Siphamia tubifer calculated from Manly’s 
alpha indicies based on the numbers of fish observed on either host urchin 
species on each substrate (reef or sand) relative to the abundance of each urchin 
on that substrate. Small fish are < 25 mm SL and large fish are > 25 mm SL. A 
positive index score indicates more freuqent habitat use and a negative score 
idicates a lack of preference for that habtiat 
 
!! Reef Sand Both substrates 

!! D. setosum E. calamaris D. setosum E. calamaris D. setosum E. calamaris 

 Small fish 1.00 -1.00 0.48 -0.48 0.15 -0.15 

 Large fish 1.00 -1.00 0.87 -0.87 0.37 -0.37 

 All fish 1.00 -1.00 0.83 -0.83 0.68 -0.68 
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Figure 3.1 Map of the study area in Okinawa, Japan. Study sites are indicated with 
black circles and labeled as follows: A) Sesoko Station (site fidelity study); B) study site 
near Motobu, the point of origin for the homing study and site of all field transects; C) 
1 km release site for the homing study; and D) 2 km release site for the homing study. 
Light gray shaded areas (left) indicate areas <10 m in depth. Map modified from 
Hohenegger et al. (1999) 
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Figure 3.2 Groups of Siphamia tubifer associated with a longspine sea urchin, Diadema 
setosum, (top) and a banded sea urchin Echinothrix calamaris (bottom) on the reef 
fronting Sesoko Station in Okinawa, Japan  
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Figure 3.3 Habitat preference of host urchins and of Siphamia tubifer. The proportion 
of host urchin species surveyed along transects that were associated with sand or reef 
as substrate (top). The proportion of large (> 25 mm SL) and small (< 25 mm SL) 
Siphamia tubifer surveyed that were associated with each host urchin species (bottom). 
Total numbers of individuals surveyed are indicated at the top of each bar  
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Figure 3.4 Choices made by Siphamia tubifer when provided stimuli on opposing sides 
of an aquarium. Numbers of fish tested that made a choice (and the number that did 
not make a choice) for each experiment, from top to bottom were: 34(4), 80(7), 25(3), 
52(5), 16(3), 31(4). All urchins were Diadema setosum with the exception of the choice 
between host urchin species (bottom). Significant differences in choices made by fish 
(P < 0.05) are indicated by * 
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Figure 3.5 Site fidelity of Siphamia tubifer. The mean proportion of tagged fish per 
group that were observed with their original urchin on days one, two, and three, and 
seven. Error bars indicate standard error 
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Figure 3.6 Homing behavior of Siphamia tubifer. Results from homing experiments in 
which Siphamia tubifer were tagged and released distances of 0 (control), 1, or 2 km.  
(a) The mean proportion of tagged fish per group that were observed at their site of 
origin over seven days. Error bars indicate standard error. (b) The mean proportion of 
fish from a group that were recovered at their site of origin by mean body size 
(standard length) of the group (F = 29.9, P < 0.001). Bars indicate the range of the mean 
proportion of fish recovered across all time points sampled for each group
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CHAPTER IV 

Olfactory preferences of Siphamia tubifer 3 

 

 

Abstract 

 

 The symbiotically luminous, reef-dwelling cardinalfish, Siphamia tubifer 

(Perciformes: Apogonidae), exhibits daily site fidelity, homing behavior, and a 

preference for the long-spined urchin, Diadema setosum, as its daytime host. The fish 

acquires its symbiont during larval development and releases large numbers of the 

bacteria with its feces daily at a host urchin. To examine the role of olfaction in site 

fidelity and homing by S. tubifer, juvenile and adult fish were tested in a two-channel 

choice flume for their olfactory preferences. Neither juveniles nor adults showed a 

preference for seawater conditioned by D. setosum. Juvenile fish, but not adults, 

preferred seawater conditioned by conspecific fish versus unconditioned seawater. 

Both juveniles and adults preferred seawater conditioned by their luminous symbiont 

and also preferred home site water to foreign reef water. These results suggest that S. 

tubifer uses chemical cues for homing and possibly settlement and symbiont 

acquisition, but not for host urchin recognition. 

 

 

Introduction 

 

Cardinalfishes (Apogonidae) display strong site fidelity and homing ability 

through navigation using a combination of auditory, visual, and chemical cues 

(Marnane 2000, Kolm et al. 2005, Døving et al. 2006, Fukumori et al. 2010, Gardiner 

and Jones 2010, Gould et al. 2014). Olfaction, in particular, plays an important role for

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
3 Published as: Gould, AL, S Harii, and PV Dunlap (2015) Cues from the reef: olfactory 
preferences of a symbiotically luminous cardinalfish. Coral Reefs 34(2):673-677 
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both larval and adult fish returning to reefs, with various chemical cues known to 

indicate habitat quality (Atema et al. 2002, Dixson et al. 2010, 2011, 2014, Døving et al. 

2006, Gerlach et al. 2007, Coppock et al. 2013). Adult apogonids have strong olfactory 

abilities, distinguishing between the odors of conspecifics from a home reef and those 

from a foreign reef (Døving et al. 2006), and larval apogonids use olfactory cues for 

settlement, sometimes to a reef of origin (Atema et al. 2002, Gerlach et al. 2007). 

Analysis of the use of olfactory cues can therefore provide insight into how fish 

recognize and navigate to their daytime resting sites, identify suitable settlement 

habitat, and return to natal reefs. 

The sea urchin cardinalfish, Siphamia tubifer, inhabits coral reefs in the Indo-

Pacific and aggregates in groups by day among the spines of sea urchins, particularly 

the long-spined sea urchin, Diadema setosum. Early in development, S. tubifer initiates 

a symbiosis with the luminous bacterium, Photobacterium mandapamensis, which it 

acquires from the environment (Dunlap et al. 2012). The bacteria establish a large 

light-producing population in an abdominal light organ that connects to the intestine; 

the fish uses the bacterial light to illuminate its ventrum while foraging at night 

(Dunlap and Nakamura 2011, Gould et al. 2014). Along with strong homing ability, 

returning to a reef of origin when displaced two kilometers, adult S. tubifer exhibit 

daily site fidelity, returning to a specific urchin each dawn after foraging (Gould et al. 

2014). The fish’s diel behavior is thought to enrich the concentration of the symbiotic 

bacteria near a host urchin; S. tubifer release feces rich in the symbiotic bacteria after 

foraging (Dunlap and Nakamura 2011).  

To examine the possible use of olfactory cues by adult S. tubifer for homing 

after displacement and in returning daily to a home site, I used a two-channel choice 

flume to test the preferences of adult fish for water conditioned by the presence of the 

host sea urchin, conspecific fish, and their luminous symbiont, and for seawater from 

their home site. I also investigated the potential use of these chemical cues by recent 

recruits for settlement by testing the olfactory preferences of small juvenile S. tubifer 

and determined whether their olfactory preferences differ from those of adults. 

 

 

 

Materials and Methods 
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Study site 

 

This study was carried out at Sesoko Station (Tropical Biosphere Research 

Center, University of the Ryukyus) on Sesoko Island, Okinawa, Japan (26º38’N, 

127º52’E). Test fish were collected from coral reefs nearby Sesoko Station and from 

two additional sites: a small harbor near Itoman in Kyan town at the southern tip of 

Okinawa main island (26º05’N, 127º39’E) and a reef at Ikei Island on the east side of 

Okinawa (26º23’N, 127º59’E) (Figure 4.1). The protocols used for the capture, care, and 

handling of S. tubifer were approved by the University of Michigan’s Institutional 

Animal Care and Use Committee, and they accord with animal handling guidelines of 

the University of the Ryukyus’ Guide for Care and Use of Laboratory Animals. 

 

Olfactory choice trials 

 

A two-channel choice flume was designed after the Atema flume (Atema et al. 

2002, Gerlach et al. 2007, Dixson et al. 2011, 2014, Munday et al. 2013), with the 

dimensions scaled up (40 x 8 x 6 cm3) to test both adult (≥23 mm standard length, SL) 

and juvenile (<20 mm SL) S. tubifer (Figure 4.2). The discrete size categories were 

defined by the size at which S. tubifer are reproductively mature (22 mm SL or greater), 

based on the presence of developed gonads. Many of the juveniles tested were 12 to 15 

mm SL and had presumably recently settled on the reef. A 12 cm divider separated the 

two channels, and the remaining test area, partitioned by 2 mm plastic screens, 

measured 8 x 8 cm2. The flume was constructed with gray, translucent acrylic to 

increase opacity and had a removable piece of acrylic that was placed over the test area 

to increase shade and minimize stress on the test fish. The fish were easily monitored 

through the translucent lid and from behind the test area where the lid was not 

covering. Water flow was collimated at the entry by a series of 1 mm mesh screens, 

and the gravity-driven flow rate was set at 100 ml min-1 for juveniles (water height: 3 

cm) and at 150 ml min-1 for adults (water height: 4 cm). Following a three-minute 

acclimation period, individual fish were tested for two minutes, during which the fish’s 

position (side A or B; Figure 4.2) was recorded every five seconds. Fish that appeared 

stressed, as noted by quick and erratic movements, were not tested, and fish that did 
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not actively swim in both water sources during both acclimation periods were excluded 

from the study. To eliminate possible side-bias in the flume, the two water sources 

were switched from one side to the other by momentarily stopping the flow, switching 

the hoses connected to the water sources, and turning on the valves to allowing the 

new flow to re-establish during a one-minute rest period; no observations of the fish 

were recorded during this time. The process of switching water sources took no longer 

than ten seconds and did not appear to affect the test fish. The three-minute 

acclimation and two-minute test periods were then repeated. I carried out periodic dye 

tests and carefully monitored the laminar flow to ensure that the two water sources 

remained parallel and separate throughout the test area (Figure 4.3).  

Pairwise choice experiments were carried out on individual S. tubifer to test the 

fish’s preference for seawater conditioned by D. setosum urchins, conspecifics, and the 

symbiotic luminous bacteria versus unconditioned seawater, and for the preference for 

home site water versus foreign reef water. All seawater used for conditioned and 

unconditioned water treatments, with the exception of home site water, was pumped 

from approximately 100 m offshore at the reef fronting Sesoko Station. To condition 

the treatment water, unoccupied sea urchins collected near Sesoko (two in 20 L) and 

conspecifics (15 to 20 fish from the same site as the test fish, without an urchin, in 20 

L) were held, respectively, in seawater for two to four hours; the seawater was then 

filtered through 150-µm mesh before use in the flume to remove any particulates that 

accumulated during the holding period. To determine if S. tubifer prefers seawater 

conditioned by the symbiont, treatment water was prepared by incubating a dense 

culture of the bacteria, isolated from the light organ of S. tubifer and grown on agar 

plates of a seawater-based medium (Dunlap and Nakamura 2011), in 1 L volumes of 

seawater for eight hours. Each 1 L of treatment water was then filtered through several 

layers of cheesecloth to remove most of the bacteria, and the filtrate was added to 20 L 

of seawater to be used in the flume. To test the preference for home site water versus 

water from the reef fronting Sesoko Station, S. tubifer and seawater were collected 

from two distant sites, Ikei and Itoman (Figure 4.1). All fish were held overnight in 

captivity in their home site water with the host urchin from their collection site for at 

least twelve hours prior to testing. After testing, each fish was measured (standard 

length, mm) and released back at the collection site with its urchin or preserved for 

future analyses.  
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Analysis 

 

Choice experiments were conducted on a minimum of 15 individuals, with the 

exception of fish from Ikei where only four adults were collected, and each fish was 

only tested once. The difference in the percent of time spent in each water source, as 

determined by the percent of five second observations in which an individual was in 

the conditioned or unconditioned seawater was calculated and two-tailed Wilcoxon 

signed rank tests were performed to determine whether the differences were 

significantly different from zero for each experimental treatment and size group. Zero 

difference (a random distribution) in time spent between water masses was expected if 

an individual did not prefer either water source. The few individuals (6% of all fish 

tested) that did not switch sides during the test periods, and therefore showed a zero 

preference for both water source, were included in the analysis; the inclusion of these 

fish had no significant effect on the results. Wilcoxson rank sum tests were used to 

determine whether there was a difference in the response of juvenile versus adult fish 

for each odor stimulus. All statistical analyses were carried out in R, version 2.15.1 (R 

Development Core Team 2012).  

 

Results and Discussion 

 

Although S. tubifer return daily after foraging to urchins at home reef sites 

(Gould et al. 2014), the fish showed no preference for seawater conditioned by D. 

setosum urchins. Both juveniles and adults spent approximately equal time in urchin-

conditioned and unconditioned seawater (p=0.41 and p=0.18) (Figure 4.4). Therefore, 

urchin-specific odors are apparently not used by the fish to navigate to a home reef 

site or urchin. Spatial memory and other cues not tested here, such as visual and 

auditory cues, are presumably involved in urchin recognition. For example, apogonids 

are attracted to reef sounds (Leis et al. 2003, Simpson et al. 2004, 2005), and urchins 

produce distinguishable sounds above background reef noises (Radford et al. 2008, 

2010). 

Juvenile S. tubifer, but not adults, showed a preference for seawater conditioned 

by conspecific fish (p<0.01). Juveniles spent approximately 38% more time in 
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conspecific-conditioned seawater than in unconditioned seawater (p<0.001), whereas 

adults spent an average of 53% of their total time in the treatment water (p=0.07) 

(Figure 4.4). The preference exhibited by juveniles might relate to age- and size-specific 

use of conspecific odors for settlement or to minimize the predation risk of smaller 

individuals by fish, such as other apogonid species and lionfish (Gould et al. 2014). 

Døving et al. (2006) showed similar results for the five-lined cardinalfish, 

Cheilodipterus quinquelineatus; adults exhibited no preference for conspecific odors 

over background reef water. However, C. quinquelineatus adults did prefer conspecific 

fish from their home reef to those from a foreign reef, indicating that adult fish do 

recognize conspecific odors (Døving et al. 2006). It is therefore possible that adult S. 

tubifer recognize but do not exhibit a preference for conspecific odors over 

background reef water. 

Siphamia tubifer also preferred seawater conditioned by the presence of their 

luminous symbionts to unconditioned seawater. Juveniles and adults spent an average 

of 34% and 26% more time, respectively, in seawater conditioned with their symbiont 

than in unconditioned seawater (p<0.01 and p<0.05) (Figure 4.4). On the reef, the 

symbiont odor is presumably released daily at a home urchin with the fish’s feces, 

which is rich in luminous bacteria (Dunlap and Nakamura 2011, Gould et al. 2014). 

Other fishes respond to specific chemical cues in feces, such as conspecific alarm cues 

in predators’ diets (Brown 2003). Symbiont odor, a possible sign of the presence of 

adults and juveniles, could serve as a cue for daily site fidelity and homing after 

displacement and possibly as an indication of good habitat quality for incoming 

recruits. 

Responses of juveniles and adults to home site water varied between the two 

locations. Adult fish collected from a small harbor near Itoman (Figure 4.1) preferred 

home site water (p<0.05), whereas juveniles spent nearly equal time in home and 

foreign site water (p=0.38) (Figure 4.4); however, the difference in preference between 

juveniles and adults from this location was not significant (p=0.61). Conversely, 

juveniles from the reef at Ikei (Figure 4.1) preferred their home reef water to foreign 

reef water (p<0.01); too few adult fish were examined from this location to test for a 

significant preference. The difference in response between juveniles from the two 

locations might reflect a difference in the conditions between sites; water in the 

protected harbor at Itoman had low visibility and little current flow, whereas water at 
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the natural reef at Ikei was clearer and exposed to ocean currents. Similar to the 

percent of time that S. tubifer spent in their home site water, Devine et al. (2012) 

showed that adult Cheilodipterus quinquelineatus spent 67% of their time in a home 

versus foreign site conspecific odor source. Furthermore, larval apogonids appear to 

prefer lagoon water to open ocean water (Atema et al. 2002) and exhibit preferences 

(7.0-17.1%) for their home site water to foreign reef water, corresponding to genetic 

differentiation between populations a few kilometers apart (Gerlach et al. 2007). In our 

study, juveniles from the reef home site seemingly preferred their home water to 

unfamiliar reef water, therefore S. tubifer larvae might also use olfaction to recognize 

and remain near their natal reef.  

Our results contribute to the growing body of evidence demonstrating the 

importance of olfaction in marine and freshwater fishes, particularly as a mechanism 

used by apogonids and other reef fishes for navigation (Atema et al. 2002, Døving et al. 

2006, Gerlach et al. 2007, Dixson et al. 2008, 2011, 2014, Gerlach and Atema 2012). It 

should be noted, however, that studies using experimental choice flumes are carried 

out with the assumption that the behaviors observed in such artificial conditions are 

reflective of what occurs in nature. In addition, studies here and elsewhere have certain 

limitations such as small sample sizes, limited amounts of treatment water and short 

acclimation times. Nonetheless, this and other studies that use choice flumes 

demonstrate that fish exhibit distinct responses to olfactory cues and may use certain 

chemical cues in the environment for navigation. Specifically, I demonstrate here the 

potential for S. tubifer to use olfaction to return daily to a resting site, to a home reef 

when displaced and possibly for recruitment, and the novel ability of this symbiotically 

luminous fish to recognize and orient to the odor of its luminous bacterium.    
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Figure 4.1 Map of the study area in Okinawa, Japan, with labels designating Sesoko 
Station (“Sesoko”), home site 1 - a harbor south of Itoman (“Itoman”), and home site 2 - 
a reef at Ikei Island (“Ikei”) 
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Figure 4.2 Schematic of the two-channel choice flume used to test olfactory 
preferences of Siphamia tubifer. Odor stimuli were presented on either side (A or B) of 
the two separated channels. a) inflow valves, b) collimator of plastic screens to evenly 
disperse water flow, c) channels separated by a barrier, d) upstream and e) downstream 
screens to contain test fish, and f) outflow valve 

a b    c    d       e             f  
   

2 cmA
B
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Figure 4.3 Photograph of a dye test highlighting the separation of the two water 
masses in the two-channel choice flume (left, blue dye; right, green dye) 
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Figure 4.4 The olfactory preferences of juvenile and adult Siphamia tubifer for 
chemical cues in a two-channel flume. Preference is reported as the difference between 
the percent of total time fish spent in seawater conditioned by each olfactory cue and 
the percent of time spent in unconditioned seawater; positive values indicate 
preferences for conditioned water. Seawater from home sites 1 and 2 were tested on 
fish from those locations, respectively, against seawater from the reef fronting Sesoko 
Station. Box plots indicate the upper and lower quartiles (box), the median value (line), 
the mean value (diamond), and values within 1.5 times the interquartile range 
(whiskers); outlier points removed. Significant preferences are indicated by * (p<0.05), 
** (p<0.01), *** (p<0.001), and a significant difference between preferences of juveniles 
and adults is indicated by ++ (p<0.01). Sample sizes are shown below the boxes  
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CHAPTER V 

Population genomics of Siphamia tubifer4 

 

 

Abstract 

 

Discrepancies between potential and observed dispersal distances of reef fish 

indicate the need for a better understanding of the influence of larval behavior on self-

recruitment and population connectivity patterns. Population genetic studies can 

reveal the degree to which populations are genetically connected, providing insight on 

larval recruitment and dispersal patterns relative to expectations based on behavior. 

The recent development of restriction site associated sequencing (RAD-Seq) methods 

has made genomic analyses of non-model organisms more accessible. In this study, I 

applied double digest RAD-Seq methods to test for population differentiation in the 

coral reef-dwelling cardinalfish, Siphamia tubifer, which based on behavioral studies of 

newly settled recruits, have the potential to use navigational cues to return to natal 

reefs. Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan 

from eleven locations over three years reveal little genetic differentiation between 

groups of S. tubifer at spatial scales from 2 to 140 kilometers and between years at one 

location: pairwise F
ST

 values ranged from 0.0116 to 0.0214. These results suggest S. 

tubifer exists as one panmictic population within the study region, probably due to 

larval dispersal influenced by the Kuroshio Current. Therefore, and in contrast to 

expectations based on studies of a similar cardinalfish, S. tubifer larvae do not self-

recruit and instead retain high levels of population connectivity. These findings 

highlight the need for more studies of individual species within and between 

geographic regions to better understand the potential connections between larval 

behavior and population connectivity in reef fishes.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
4 In review in Molecular Ecology as: Gould, AL and PV Dunlap. Genomic analysis of a coral reef 
cardinalfish reveals high connectivity despite larval homing potential. 
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Introduction 

 

The degree to which coral reef fish populations are connected has been debated 

for decades and has large consequences on their persistence and resilience to 

disturbances. For most reef fishes, dispersal occurs during a planktonic larval phase 

that lasts from a few days to months, creating the potential for large dispersal 

distances (Barlow 1981, Shulman and Bermingham 1995), but the challenges associated 

with tracking the direct movement of relatively small larvae in a dynamic, fluid 

environment has limited our knowledge of the connectivity patterns of most reef 

fishes (Jones et al. 2009). Recently, however, the rapid advancement of genetic tools 

has facilitated the study of reef fish populations, revealing the wide variation of spatial 

scales at which marine populations exhibit connectivity (e.g. Terry et al. 2000, Planes 

2002, Jones et al. 2005, Taylor and Hellberg 2003, Purcell et al. 2006, Gerlach et al. 

2007, Horne et al. 2008, van der Meer et al. 2012). Most coral reef fish metapopulations 

lie somewhere in the middle of the spectrum between having relatively closed (low 

connectivity and high self-recruitment) to open (high connectivity and no self-

recruitment) populations (Cowen et al. 2000, Mora and Sale 2002, Jones et al. 2009) yet 

a surprising number of studies have provided evidence that reef fish populations are 

more closed than expected and exhibit a significant degree of local recruitment (Jones 

et al. 1999, 2005, Swearer et al. 1999, 2002, Cowen et al. 2000, 2006, Bode et al. 2006, 

Almany et al. 2007) or genetic differentiation at relatively small spatial scales (e.g. 

Planes 1993, Planes et al. 1998, Taylor and Hellberg 2003, Gerlach et al. 2007).  

In response to the growing evidence of somewhat restricted gene flow among 

reef fish populations, the links between early life history traits, larval behavior, and 

patterns of larval recruitment and dispersal have been examined. Contrary to 

expectations, levels of genetic differentiation of marine fishes are generally not 

correlated with pelagic larval duration (PLD) or spawning mode (Shulman 1998, Bowen 

et al. 2006, Galarza et al. 2009, Jones et al. 2009), and the genetic structure of reef fish 

populations is often observed at smaller scales than predicted by larval dispersal alone 

(e.g. Taylor and Hellberg 2003, Rocha et al. 2005). These discrepancies can often be 

explained by larval fish behavior, through which larvae can employ some control over 

their dispersal trajectories (Kingsford et al. 2002, Leis and McCormick 2002, Sponaugle 
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et al. 2002, Leis et al. 2006, Montgomery et al. 2006), including larval swimming ability 

(Fisher et al. 2005), vertical migration (Paris and Cowen 2004), and the use of various 

navigational cues, such as chemical and acoustic cues in the environment (Kingsford et 

al. 2002, Leis et al. 2003, 2011, Dixson et al. 2008, Simpson et al. 2008, Atema et al. 

2012, Paris et al. 2013). Studies of larval fish behavior suggest that fish larvae are not 

passive particles in the plankton, but instead can actively orient and navigate to 

settlement sites. Incorporating larval behavior into dispersal models can therefore 

dramatically alter projected population connectivity patterns (e.g. Paris and Cowen 

2004, Cowen et al. 2006, Sale et al. 2005, Leis 2007, Paris et al. 2007, Staaterman et al. 

2012). Nonetheless, few studies have linked larval traits and behaviors to gene flow 

and levels of population genetic differentiation, and it remains unknown how 

conserved such links may be across species and within regions.  

Carindalfishes (family Apogonidae) are known for their homing ability from 

relatively large distances and for their fidelity to particular daytime resting sites 

(Marnane 2000, Kolm et al. 2005, Døving et al. 2006, Gould et al. 2014, Rueger et al. 

2014). However, there are only a few population genetic studies of cardinalfishes, most 

of which examined the same focal species, the Banggai cardinalfish Pterapogon 

kauderni, which lacks a planktonic larval stage, and all have indicated genetic 

differentiation at small spatial scales (Bernardi and Vagelli 2004, Hoffman et al. 2005, 

Gerlach et al. 2007, Vagelli et al. 2008, Gotoh et al. 2009). One study of the 

cardinalfish, Ostorhinchus doederleini, which has a PLD of 16-27 days, linked larval 

behavior to self-recruitment and genetic differentiation between populations only a 

few kilometers apart. Furthermore, the population genetic structure observed was 

linked to olfactory preferences exhibited by O. doederleini larvae for their home reef 

water over the other nearby reefs examined (Gerlach et al. 2007). Due to the lack of 

population genetic studies of other cardinalfishes, it remains unknown whether the 

results of the O. doederleini study were specific to the particular study system and 

whether other cardinalfishes with planktonic larvae also exhibit the same degree of 

fine-scale genetic structure attributed to larval homing. 

To further investigate the link between larval behavior and recruitment in 

cardinalfishes, I examined the population genetics of the sea urchin cardinalfish 

Siphamia tubifer, for which homing and olfaction preferences have been described 

(Gould et al. 2014, 2015). Similar to other cardinalfishes, S. tubifer adults and juveniles 
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exhibit fidelity to a home site and return to a home reef from displacement distances 

of at least two kilometers (Gould et al. 2014). As described for O. doederleini (Gerlach 

et al. 2007), recently settled S. tubifer also exhibit a preference for the olfactory cues of 

their home reef to that of a foreign reef (Gould et al. 2015). These findings suggest the 

possibility that S. tubifer larvae also use olfaction to recognize and return to their natal 

reef. Additionally, S. tubifer are short-lived (typically <200 days) like O. doederleini, 

with a slightly longer PLD of up to 30 days (Kingsford et al. 2014, Gould et al. 2016). 

Despite these similarities, S. tubifer is distinct among cardinalfishes in that it is 

symbiotically bioluminescent, hosting in an abdominal light organ a dense population 

of the luminous bacterium Photobacterium mandapamensis, which it acquires from the 

environment during larval development, and uses the bacterially-emitted light while 

foraging at night (Iwai 1958, Dunlap and Nakamura 2011, Dunlap et al. 2012). 

Therefore, describing the dispersal distances and connectivity patterns of S. tubifer 

may also provide insight on the location of symbiont acquisition by developing larvae. 

To test for population genetic differentiation in S. tubifer, I applied double 

digest restriction site-associated sequencing (ddRAD-Seq) methods to identify fine-

scale patterns of genetic divergence among groups of S. tubifer collected over a three-

year period from various locations in Okinawa, Japan. I used ddRAD-Seq methods as 

they do not require an extensive marker discovery process and enable the development 

of thousands of genomic markers without any prior genetic data for the focal species 

(Davey and Blaxter 2010, Seeb et al. 2011). Our specific aims were to test for patterns 

of population genetic differentiation between groups of S. tubifer sampled at various 

spatial scales and to test the stability of S. tubifer populations by examining temporal 

patterns of genetic divergence at certain reef sites. If the link between larval olfactory 

preferences, homing potential, and self-recruitment are conserved across similar 

cardinalfish species, I predicted that populations of S. tubifer would have significant 

levels of genetic differentiation at small spatial scales but no differentiation at the 

same reef over time. However, if the observed behaviors do not indicate larval homing, 

I expected to detect little or no genetic differentiation between groups of S. tubifer 

sampled from different reefs and between years at the same reef.  
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Materials and Methods 

 

Sampling 

 

A total of 300 Siphamia tubifer were collected from different locations 

(approximately 20 individuals per location) over three years in the Okinawa Islands, 

Japan. Ten of these locations were sampled during the summer of 2013, three of which 

were again sampled in 2014, and one location was sampled in three consecutive years, 

2012, 2013, and 2014 (Figure 5.1). Fish of various sizes associated with several 

different host sea urchins and from a broad sampling area were collected at each 

sampling location (Table 5.1). Upon collection, fish were immediately euthanized and 

placed on ice. The intact light organ of each fish was then aseptically dissected and 

individually preserved in RNAlater®, and the remainder of the fish specimen was 

stored in 98% ethanol at -20°C.  

 

DNA extraction and library preparation 

 

Genomic DNA was extracted from the intact, preserved light organ using 

QIAGEN DNeasy Blood and Tissue Kits and following the manufacturer’s protocol from 

whole, preserved light organs, which are comprised of fish tissue and contain the 

symbiotic population of luminous bacteria. A total of six ddRAD-Seq DNA libraries 

were constructed, each from the genomic DNA of 50 S. tubifer light organs, for a total 

of 300 samples, following a modified combination of the methods described in 

Parchman et al. (2012) and Peterson et al. (2012). For each library, approximately 200 

ng of genomic DNA from each light organ was digested with the high-fidelity 

restriction enzymes MseI and EcoRI at 37°C for three hours. A standardized 

concentration per library of each digestion product was then ligated to a uniquely 

barcoded Illumina adaptor at the EcoRI cut site and an Illumina adaptor at the MseI cut 

site. The ligation products were individually amplified with the Illumina Illpcr1 and 

Illpcr2 primers in two 20 ml PCR reactions per sample with a 98°C start, 12 cycles of 

98°C for 20 seconds, 65°C for 30 seconds, 72°C for 40 seconds, followed by 10 minutes 

at 72°C, after which, the PCR products from all samples within a library were pooled 

and concentrated to an approximate volume of 150 ml. Samples were purified with 
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Agencourt AMPure XP magnetic beads following standard protocols after the digestion, 

ligation, and PCR steps. The pooled, purified PCR products were then size-selected 

between 300-400 bp on a Pippin Prep (Sage Science) machine, and the size-selected 

DNA libraries were each sequenced in one lane on the Illumina HiSeq2000 platform 

(San Diego, CA) at the Center for Applied Genomics, Toronto, ON, Canada, to generate 

100 bp, single-end sequence reads.  

 

Sequence analysis and processing 

 

Raw sequence reads were quality filtered and processed primarily using the 

program Stacks v. 1.35 (Catchen et al. 2011, 2013). Raw reads were demultiplexed, 

trimmed to 90 bp, and quality filtered for a Phred score of 33 or higher using the 

process_radtags command in Stacks. To distinguish sequence reads that belonged to 

the host fish from those of the bacterial symbiont, I used the ‘very_sensitive’ command 

in Bowtie2 v. 2.2.0 (Langmead and Salzberg 2012) to filter all reads against the 

reference genome of Photobacterium mandapamensis (Urbanczyk et al. 2011). To 

ensure that all bacterial reads were removed, I also filtered all reads against the 

genomes of Escherichia coli K12 (Durfee et al. 2008) and Vibrio campbellii (Lin et al. 

2010) in the same manner. Sequence reads that did not align to the bacterial genomes 

were assigned as fish (S. tubifer) sequences.  

Fish sequence reads were processed and assembled de novo to call single 

nucleotide polymorphisms (SNPs) using the Stacks pipeline with the rxstacks correction 

step. I first ran the denovo_map program with the parameters -m 3, -M 2, and -n 3, 

optimized to prevent over- and under- merging of homologous loci. These parameters 

were previously recommended to increase the number of loci but minimize genotyping 

error for the de_novo assembly of other RAD datasets (Mastrett-Yanes et al. 2015). I 

then implemented the rxstacks correction step using a bounded model (--bound_high 

0.1) in which excess haplotypes were pruned, and loci for which 25% of individuals had 

a confounded match in the catalog (--conf_lim 0.25) or an average log likelihood less 

than (-10.0) were removed. After running this correction step, the cstacks (-n 3) and 

sstacks programs were re-applied to produce the final set of RAD tags across all 

individuals in the study. 
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Population analysis 

 

The mean depth of coverage per locus across all individuals was determined 

from the Stacks output files, and individuals with a mean coverage less than 10 across 

all loci were excluded from the analyses. Population summary statistics were computed 

with the populations program in Stacks for sites present in at least 10 populations and 

in 70% of individuals per population. Population differentiation was evaluated with 

pairwise F
ST

 values calculated in the populations program in Stacks for loci found in all 

populations and in 70% of individuals per population with a minor allele frequency 

greater that 5%. Pairwise AMOVA F
ST

 values were also computed in GenoDive (Meirmans 

and Van Tienderen 2004) with 1,000 bootstrap resampling steps, producing P-values 

for all pairwise population comparisons. Isolation by distance (IBD) was assessed by 

conducting Mantel tests with the Isolation by Distance Web Service (Jensen et al. 2005) 

on pairwise F
ST

 values and the natural logarithm of the shortest distances over water 

between sites; one-sided P-values were calculated by randomizing the data 30,000 

times. Using the hierfstat program (Goudet 2005) in R v. 3.1.1 (R Core Team 2014) the 

per locus F
ST

 values across all individuals for each dataset were calculated to compare 

and examine their distributions. 

To visualize genetic structure, principal components analyses (PCAs) were 

implemented on the same dataset used to calculate F
ST

 values in R with the dudi.pca 

function in the adegenet v. 1.4.2 package (Jombart 2008, Jombart and Ahmed 2011). 

Missing data values were replaced with the mean value across the entire dataset at that 

locus. Analyses of molecular variance (AMOVA) (Excoffier et al. 1992) were carried out 

in GenoDive to test for genetic differences between populations and region 

(populations on the east and west coast of Okinawa). Both PCAs and AMOVAs were 

performed separately on the 2013 and 2014 populations as well as on the three-year 

dataset from the Sesoko site (S) (Figure 5.1). 

Complimentary clustering analyses were also performed with the program 

STRUCTURE v. 2.3.4 (Pritchard et al. 2000) using the output data files from Stacks 

comprised of only the first SNP per locus (to eliminate any SNPs that are linked within 

the same RAD site from the analysis) for loci present in at least 70% of all individuals 

and in at least 10 populations for each dataset. Group assignments in STRUCTURE 

were made using the admixture model with 10,000 burn-in steps and 10,000 MCMC 
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iterations for each number of pre-determined genotypic groups (K). Analyses were 

repeated ten times for each value of K. For the 2013 and 2014 datasets, K was set from 

1 to the total number of sites sampled (10 and 4, respectively). Probable K values were 

inferred by examining the change in the posterior probability of the log likelihood 

across all K values (ln P(X|K)) and by applying the Evanno DK method (Evanno et al. 

2005) with STRUCTURE HARVESTER (Earl 2012). All STRUCTURE results were 

visualized using the program DISTRUCT (Rosenberg 2004).  

 

Ethics statement 

 

The protocols used here for the capture and handling of fish specimens were 

approved by the University of Michigan’s University Committee for the Use and Care of 

Animals (PRO00004825), and they followed the requirements outlined in the University 

of the Ryukyus’ Guide for Care and Use of Laboratory Animals (Dobutsu Jikken Kisoku, 

version 19.6.26). 

 

 

Results 

 

Sequence analysis and processing 

 

The six ddRAD libraries each produced high quality sequence data with 

sufficient depth of coverage across most individuals for population-level genetic 

analyses. Thirteen individuals that had fewer than 800,000 remaining reads after 

quality filtering (Figure 5.2) were discarded from the analysis. On average, 87.05 ± 

2.58% of all reads were retained from each library, with an average of 9.72 ± 2.29% and 

3.23 ± 2.51% of reads discarded for having ambiguous barcodes or RADtags or for low 

quality, respectively (Table 5.2).  

Prior to genetic analysis, sequence reads that aligned to the genome of the light 

organ symbiont, P. mandapamensis, or to the other examined bacterial genomes were 

removed from the dataset. The average percent of quality-filtered reads per individual 

that aligned to the P. mandapamensis genome was 26.9 ± 9.1% (Figure 5.2), and of the 

reads that did not align to P. mandapamensis, the average percent per individual that 
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aligned to the V. campbelli or the E. coli genomes were 0.293 ± 0.155% and 0.003 ± 

0.155%, respectively. These bacterial sequence reads were removed from the dataset, 

and the remaining reads were assigned as S. tubifer sequences, resulting in an average 

of 72.7 ± 9.3% of total reads per individual assigned as S. tubifer (Figure 5.2). After de 

novo assembly of the S. tubifer sequence reads across all remaining individuals, the 

mean depth of coverage per locus was 21.6 ± 8.3. One individual with mean sequence 

coverage per locus below 10 was also removed from further analyses (Figure 5.2), 

resulting in a total of 280 individuals in the dataset (Table 5.1).   

 

Population summary statistics 

 

For RAD sites that were polymorphic in at least one population (Table 5.3), the 

average major allele frequency (P) and observed heterozygosity (H
obs

) across all 

populations ranged from 0.9593 to 0.9607 and 0.0485 to 0.0519, respectively. These 

values changed as expected when also including sites that are fixed across all 

populations (Table 5.4); P increased up to 0.9983 and H
obs

 values all decreased to 

0.0022. Across variant sites, the percentages of polymorphic loci in populations 

sampled in 2013 were between 30.92% and 36.09%, whereas the percentages of 

polymorphic loci in populations sampled in 2014 were slightly higher, ranging from 

36.79% to 41.75% (Table 5.3). Levels of overall nucleotide diversity (p) across all sites, 

fixed and variant, were similar for all groups of fish sampled, varying between 0.0026 

and 0.0028. Average measures of Wright’s inbreeding coefficient (F
IS
) calculated for all 

variant sites ranged from 0.0407 to 0.0567 across all populations (Table 5.3). These F
IS
 

values are all relatively low, indicating a lack of cryptic population structure or 

assortative mating within populations.  

 

Analysis of genetic differentiation 

 

Population genetic analyses of the 11,836 SNPs identified revealed no significant 

genetic structure over the sampling range or over time. In 2013, pairwise F
ST

 values 

were consistently low between sites, ranging between 0.0157 and 0.0214, with only a 

few significant values (Table 5.5), most of which were for comparisons with fish 

sampled at the Motobu (M) site (Figure 5.1). Pairwise F
ST

 values for the 2014 samples 
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were similarly low and non-significant, ranging from 0.0116 to 0.0139 (Table 5.6). An 

analysis of temporal differentiation at the Sesoko (S) site (Figure 5.1) over three years 

also revealed no significant differentiation between years (F
ST

 values ranged from 

0.0158 to 0.0177, Table 5.7). Similarly the additional two sites that were sampled in 

consecutive years, Itoman (It) and Ikei (Ik) (Figure 5.1), had low and non-significant F
ST

 

values (It: F
ST

 = 0.0151, Ik: F
ST

 = 0.0165) between years. Per locus F
ST

 values for each 

dataset were all low with seemingly normal distributions around zero. The maximum 

F
ST

 value calculated across all datasets was 0.166 for a locus in the Sesoko dataset, 

whereas the maximum values in the 2013 and 2014 datasets were 0.0954 and 0.148, 

respectively (Figure 5.3).  

Isolation by distance analyses revealed no significant relationship between the 

low levels of population differentiation observed and geographic distance between 

locations within either sampling year (2013: F
1,43

 = 0.369, R2 = 0.0085, P = 0.547; 2014: 

F
1,4

 = 3.372, R2 = 0.457 P = 0.140; Figure 5.4). Similarly, results from the AMOVA 

indicate that all of the observed genetic variation is attributed to variation within (F
IT
) 

and among (F
IS
) individuals and none is attributed to differences between populations 

or between the east and west coast regions of Okinawa (Table 5.8).  

Principal components analyses confirmed the lack of genetic structure, with no 

apparent clustering of individuals by sampling location (Figure 5.5). The first two PC 

axes for the 2013 analysis each described less than 1% of the variation in the data. 

These values rose slightly for the 2014 data, accounting for a combined (PC1 and PC2) 

total of 2.57% of the total genetic variation (Figure 5.5). The PCA carried out on the 

temporal dataset from the Sesoko site also indicates a lack of structure over time 

(Figure 5.6) and is consistent with the low, non-significant pairwise F
ST

 values between 

groups of fish collected at that site in subsequent years (Table 5.5). Similarly, 

clustering analyses in STRUCTURE revealed that a K = 1 is most likely for both the 

2013 and 2014 datasets (Figure 5.7). In the case where K = 1, the Evanno ΔK method of 

detecting the true value of K is ineffective (Evanno et al. 2005). I therefore examined 

the mean posterior probabilities for each K value in both datasets; the log likelihood 

was highest for K = 1 in both years (Figure 5.8). These results provide further evidence 

that one panmictic population of S. tubifer was sampled in Okinawa, spanning the area 

around Okinawa Island and including Kume Island (K), one hundred kilometers to the 

west (Figure 5.1).  
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Discussion 

 

The observed discrepancies between potential and actual dispersal distances of 

reef fish larvae (e.g. Taylor and Hellberg 2003, Rocha et al. 2005, Bowen et al. 2006, 

Galarza et al. 2009, Jones et al. 2009) highlight the need for a better understanding of 

the influence of larval fish behavior on connectivity patterns of reef fish populations. 

To narrow this gap, general links between larval behavior across groups of fishes and 

species’ patterns of population connectivity are needed. I applied RAD-Seq methods to 

look for evidence of larval homing in S. tubifer, which had been observed for another 

cardinalfish species with similar life history traits and behavior (Gerlach et al. 2007). 

Despite the potential of RAD-Seq methods to detect fine-scale genetic structure, and in 

contrast to other genetic studies of cardinalfishes, I found no evidence of genetic 

differentiation between groups of S. tubifer at spatial scales ranging up to 140 

kilometers. The observed genetic admixture of S. tubifer within Okinawa indicates a 

high level of connectivity in the region. Presumably, this connectivity results from 

larval dispersal and mixing by ocean currents.  

Evidence suggests that the typical dispersal distances of reef fish larvae may be 

on the order of 50 to 100 kilometers, with some local retention, and that populations 

of fishes with high mortality rates tend to be subsidized with larvae from greater 

distances (Cowen et al. 2006). Consistent with this model, S. tubifer is apparently 

subject to high mortality rates (Gould et al. 2014, 2016), and may therefore depend on 

larval subsidies for population persistence. Siphamia tubifer also has highly 

specialized habitat requirements; groups of S. tubifer closely associate with the sea 

urchins Diadema setosum and Echinothrix calamaris during the daytime, seeking 

shelter among the urchins’ long spines (Lachner 1955, Eibl-Eibesfeldt 1961, Tamura 

1982, Gould et al. 2014). The distribution of diademed urchins in reef habitats can be 

patchy, driven partially by variation in sediment size (Nishihira et al. 1991, Dumas et 

al. 2007). Therefore, the distribution of suitable settlement habitat available for 

dispersing S. tubifer larvae may be highly variable between reefs. In addition to specific 

habitat requirements, larval S. tubifer must acquire the appropriate luminous 

bacterium from the environment during development to establish its bioluminescent 

symbiosis. Both of these factors may limit the recruitment success of S. tubifer and 
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could largely contribute to the admixture observed, as the amount of gene flow 

required to maintain genetic connectivity over a large scale is on the order of only a 

few individuals per generation (Shulman and Bermingham 1995, Shulman 1998, Leis 

2002). If few, far-dispersing S. tubifer larvae settle sporadically on reefs, there is little 

potential for genetic divergence to accumulate between populations over time and in 

the absence of local recruitment. 

  Corresponding with high genetic connectivity in the region, the islands in 

Japan’s Ryukyu Archipelago receive larval supply from other reef habitats in the south. 

In particular, small reef fish from the Philippines have an ecologically significant 

linkage potential to the Ryukyu Islands (Treml et al. 2015). The connectivity potential 

from the northern Phillipines is driven by the strong ocean currents in the region; the 

Kuroshio Current originates off the coast of the Philippines and flows northward, 

passing through the Ryukyu Archipelago (Figure 5.1). A study of the crown-of-thorns 

sea star Acanthaster planci, which has a PLD of over 14 days (Lucas 1973), established 

evidence of genetic homogeneity among the Philippine Islands and across the Ryukyu 

Islands following the Kuroshio Current. There was also no signature of IBD within the 

region, consistent with substantial larval dispersal and connectivity (Yasuda et al. 

2009). Similarly, there is high genetic connectivity for the broadcast-spawning coral 

Acropora digitifera throughout the Ryukyu Island chain (Nakajima et al. 2010), and 

within Okinawa there is evidence of gene flow for several coral species (Nishikawa et 

al. 2003, Nishikawa 2008). However, two distinct genetic clusters, between the North 

and South regions of Okinawa Island, exist for the scleractinian coral Goniastrea 

aspera, indicating a substantial number of locally-produced recruits and the potential 

for self-recruitment in the region despite the strong influence of currents in the region 

(Nishikawa and Sakai 2005). 

Connectivity between reef fish populations is dependent on the certain larval 

characteristics, such as dispersal duration and swimming behavior. However, the 

degree to which these behaviors influence a species’ dispersal potential and self-

recruitment is disputed and is most likely species-specific (Cowen et al. 2000, Mora 

and Sale 2002, Warner and Cowen 2002, Sale 2004). Furthermore, abiotic factors, 

including the direction and speed of ocean currents and the availability and 

distribution of downstream settlement habitat, have large effects on connectivity 

patterns of marine populations (Treml et al. 2008). Our study indicates that one 
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panmictic population of S. tubifer exists in Okinawa; these results suggest that larval 

dispersal maintains genetic connectivity over substantial distances. For similarly 

“open” populations of reef fishes, a large scale for management would be necessary to 

maintain the appropriate levels of gene flow. However, inferences regarding 

ecologically important levels of connectivity are limited when there is panmixia, as it is 

difficult to directly measure connectivity patterns under high-gene-flow conditions 

(Hedgecock et al. 2007, Jones et al. 2009).  

In addition to spatial differentiation, I examined temporal genetic divergence in 

S. tubifer at one of our study sites by sampling over three consecutive years. The 

dynamics of temporal genetic structure may be even more informative than spatial 

dynamics in marine systems, but this issue has been largely overlooked for most 

marine populations (Hellberg et al. 2002, Hedgecock et al. 2007). Of the studies that 

have examined temporal structure, instances of temporal stability have been rare 

(Bernal-Ramírez et al. 2003, Larsson et al. 2010), whereas temporal genetic 

differentiation has been reported for several marine fishes (e.g. Planes and Lenfant 

2002, Maes et al. 2006, Selkoe et al. 2006, Klanten et al. 2007). Genetic differentiation 

over time at a location can result from selection, random genetic drift, or from variable 

larval supply from different source populations (Hedgecock et al. 2007). Between 

groups of S. tubifer sampled at the same site over three years, I observed low levels of 

differentiation similar to those observed between sampling locations within the same 

year. Siphamia tubifer is short-lived, with an expected longevity of less than 200 days 

(Gould et al. 2016); therefore some degree of genetic turnover within a location is 

reasonable to expect, particularly when considering the potential variability in larval 

supply consistent with the predicted dispersal distances in this study. However, to 

further understand the importance of genetic variation over time in predicting patterns 

of marine connectivity and population genetic structure more studies are needed that 

investigate the temporal aspect of population genetic differentiation. 

Overall our study supports the need to identify general patterns of connectivity 

within specific geographic regions across diverse fish species, as well as species-

specific patterns of genetic differentiation across groups of fishes, to adequately 

define the relationships between life history traits, larval behavior, and gene flow. I 

highlight the effectiveness of RAD-Seq methods, which have been used very recently to 

examine the genomics of other coral reef fishes (Puebla et al. 2014, Gaither et al. 2015, 
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Saenz-Agudelo et al. 2015, Stockwell et al. 2016, Picq et al. 2016). RAD-Seq methods 

have the ability to continue to narrow our gap in knowledge of the patterns of 

connectivity, speciation, and adaptation for an array of species, as no extensive marker 

discovery process and no prior genetic information are required (Davey and Blaxter 

2010), and they can be used to infer genetic differentiation with finer precision, even 

with small sample sizes (Luikart 2003, Coates et al. 2009, Willing et al. 2012, Bradbury 

et al. 2015).  

 In this study, I show that in contrast to the cardinalfish O. doederleini in the 

Great Barrier Reef (Gerlach et al. 2007), S. tubifer in Okinawa lacks population genetic 

structure, indicating that larvae disperse significant distances during their planktonic 

phase, despite the species’ homing potential and olfactory preferences for a home reef. 

These findings suggest that larval settlement behavior does not promote genetic 

divergence in S. tubifer. Instead, strong ocean currents combined with a month-long 

pelagic larval phase promote dispersal and gene flow in the region. Future 

investigations of S. tubifer at varying locations across this species’ broad, Indo-Pacific 

distribution will provide insight on whether the scale of genetic admixture observed 

here is region-specific or if there are consistent patterns of larval dispersal maintained 

at the species level. 

  



!80!

Table 5.1 Sampling locations and years of Siphamia tubifer in Okinawa, Japan. The 
range and mean standard lengths (SL) of fish specimens collected at each sampling site 
are listed as well as the numbers of individuals collected (N

i
) and included in the final 

genomic dataset after quality filtering (N
f
) 

!
ID Site Latitude Longitude Year SL (mean); mm Ni Nf 
S Sesoko 26.6354 127.8658 2012 15.0 - 31.0 (22.9) 17 17 
        2013 22.0 - 38.5 (28.5) 18 18 
        2014 15.0 - 38.0 (28.4) 22 21 
M Motobu 26.6558 127.8803 2013 21.0 - 35.5 (29.5) 26 20 
N Nago 26.6037 127.9324 2013 18.5 - 42.5 (29.5) 24 21 
Hd Hedo 26.8488 128.2525 2013 17.5 - 37.5 (26.3) 17 17 
It Itoman 26.0952 127.6585 2013 23.0 - 36.5 (27.9) 15 14 
        2014 13.5 - 20.0 (16.8) 27 27 
O Ou 26.1280 127.7690 2013 16.5 - 25.0 (20.1) 16 16 
Y Yonabaru 26.2030 127.7712 2013 21.0 - 38.5 (28.7) 16 16 
Ik Ikei 26.3935 127.9886 2013 11.5 - 31.0 (17.3) 16 15 
     2014 13.0 - 30.5 (21.5) 22 22 
Hk Henoko 26.5346 128.0461 2013 14.5 - 27.5 (19.6) 17 17 
A Ada 26.7420 128.3211 2013 23.0 - 34.5 (28.5) 16 15 
K Kume 26.3516 126.8201 2014 15.5 - 41.5 (27.9) 26 24 
!
!
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Table 5.2 Details for each of the six ddRAD-Seq libraries. Numbers of total reads from 
each library that did not pass the filters set in Stacks are listed as ambiguous or low 
quality reads. The total number and percent of total reads retained for further 
processing and analysis are also listed 
 

Library  Total reads 
Ambiguous reads Low quality reads Retained reads 

total %! total %! total %!
1 115,966,572 16,262,201 14.02 2,100,938 1.81 97,603,433 84.17 
2 124,642,686 10,945,491 8.78 9,698,364 7.78 103,998,831 83.44 
3 129,099,530 9,280,426 7.19 5,504,011 4.26 114,315,093 88.55 
4 145,903,444 13,321,386 9.13 3,482,628 2.39 129,099,430 88.48 
5 142,669,390 13,708,785 9.61 3,409,093 2.39 125,551,512 88.00 
6 154,050,631 14,812,053 9.62 1,126,946 0.73 138,111,632 89.65 
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Table 5.3 Population genetic summary statistics calculated for each group of Siphamia 
tubifer sampled using only nucleotide positions that are polymorphic in at least one 
population. Statistics listed are the average number of individuals analyzed at each 
locus (N), the total number of nucleotide positions in the dataset (Sites), the number of 
unique variable sites in each population (Private), the percent of polymorphic sites (% 
Poly), the average frequency of the major allele (P), the average per locus observed 
heterozygosity (H

obs
), the average nucleotide diversity (π), and Wright’s average 

inbreeding coefficient (F
IS
). All statistics were calculated in Stacks  

!
Population N Sites Private % Poly P Hobs π FIS 
A-13 14.3 109,236 2,474 32.38 0.9600 0.0517 0.0631 0.0416 
Hd-13 16.0 109,504 2,663 33.96 0.9598 0.0512 0.0630 0.0452 
Hk-13 16.0 107,956 2,627 34.03 0.9597 0.0514 0.0632 0.0455 
Ik-13 14.1 108,401 2,284 31.71 0.9602 0.0509 0.0625 0.0419 
Ik-14 20.7 106,997 3,274 37.55 0.9601 0.0505 0.0623 0.0502 
It-13 13.1 109,264 2,120 30.92 0.9598 0.0516 0.0632 0.0407 
It-14 25.6 110,648 4,581 41.75 0.9593 0.0519 0.0635 0.0545 
K-14 22.4 98,587 3,210 38.43 0.9595 0.0501 0.0631 0.0567 
M-13 18.5 82,512 2,166 34.92 0.9607 0.0485 0.0615 0.0534 
N-13 19.6 98,854 2,692 36.09 0.9601 0.0492 0.0624 0.0550 
O-13 15.0 106,753 2,382 32.67 0.9603 0.0507 0.0624 0.0439 
S-12 15.5 97,232 2,070 32.56 0.9602 0.0495 0.0622 0.0473 
S-13 16.8 108,356 2,846 34.69 0.9598 0.0510 0.0630 0.0473 
S-14 19.7 107,381 3,086 36.79 0.9599 0.0505 0.0627 0.0511 
Y-13 15.1 108,186 2,539 33.07 0.9603 0.0514 0.0624 0.0418 
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Table 5.4 Population genetic summary statistics calculated for each group of Siphamia 
tubifer sampled across all nucleotide positions (variant and fixed). Statistics listed are 
the average number of individuals analyzed at each locus (N), the total number of 
nucleotide positions in the dataset (Sites), the number of unique variable sites in each 
population (Private), the percent of polymorphic sites (% Poly), the average frequency of 
the major allele (P), the average per locus observed heterozygosity (H

obs
), the average 

nucleotide diversity (π), and Wright’s average inbreeding coefficient (F
IS
). All statistics 

were calculated in Stacks 
 

Population N Sites Private % Poly P Hobs π FIS 
Ad-13 14.3 2,570,792 2,474 1.38 0.9983 0.0022 0.0027 0.0018 
H-13 16.0 2,573,525 2,663 1.44 0.9983 0.0022 0.0027 0.0019 
Hk-13 16.0 2,529,561 2,627 1.45 0.9983 0.0022 0.0027 0.0019 
Ik-13 14.0 2,546,147 2,284 1.35 0.9983 0.0022 0.0027 0.0018 
Ik-14 20.7 2,511,160 3,274 1.60 0.9983 0.0022 0.0027 0.0021 
ItH-13 13.1 2,569,206 2,120 1.32 0.9983 0.0022 0.0027 0.0017 
ItH-14 25.7 2,601,977 4,581 1.78 0.9983 0.0022 0.0027 0.0023 
Ku-14 22.4 2,241,314 3,210 1.69 0.9982 0.0022 0.0028 0.0025 
M-13 18.5 1,851,345 2,166 1.56 0.9982 0.0022 0.0027 0.0024 
N-13 19.6 2,251,233 2,692 1.58 0.9982 0.0022 0.0027 0.0024 
Ou-13 15.0 2,501,900 2,382 1.39 0.9983 0.0022 0.0027 0.0019 
S-12 15.5 2,209,429 2,070 1.43 0.9983 0.0022 0.0027 0.0021 
S-13 16.8 2,535,756 2,846 1.48 0.9983 0.0022 0.0027 0.0020 
S-14 19.7 2,503,012 3,086 1.58 0.9983 0.0022 0.0027 0.0022 
Y-13 15.1 2,549,868 2,539 1.40 0.9983 0.0022 0.0026 0.0018 
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Table 5.5 Pairwise F
ST

 values (top diagonal) and the shortest distance (km) through 
water (bottom diagonal) between groups of Siphamia tubifer sampled in 2013. F

ST
 

values in bold have a P-value < 0.05 
!
2013 A Hd Hk Ik It M N O S Y 
A - 0.0187 0.0191 0.0197 0.0207 0.0182 0.0169 0.0192 0.0183 0.0194 
Hd 22.4 - 0.0179 0.0191 0.0198 0.0172 0.0161 0.0184 0.0170 0.0183 
Hk 38.2 59.7 - 0.0192 0.0198 0.0173 0.0163 0.0184 0.0176 0.0184 
Ik 51.4 73.3 17.7 - 0.0214 0.0183 0.0172 0.0193 0.0185 0.0194 
It 104.5 117.3 71.5 54.8 - 0.0189 0.0174 0.0205 0.0192 0.0199 
M 68.0 47.8 105.3 119.5 72.4 - 0.0157 0.0176 0.0169 0.0176 
N 78.2 58.0 115.5 129.3 80.8 10.4 - 0.0167 0.0157 0.0168 
O 89.0 111.3 58.6 38.1 15.8 84.4 83.5 - 0.0181 0.0186 
S 70.4 50.1 107.7 121.9 68.2 2.8 8.6 82.1 - 0.0175 
Y 83.6 105.0 51.8 33.4 32.1 100.5 99.8 16.8 98.4 - 
!
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Table 5.6 Pairwise F
ST

 values (top diagonal) and the shortest distance (km) through 
water (bottom diagonal) between groups of Siphamia tubifer sampled in 2014 
 
2014 Ik It K S 
Ik - 0.0120 0.0130 0.0139 
It 54.8 - 0.0116 0.0127 
K 141.8 80.0 - 0.0135 
S 121.9 68.2 100.0 - 
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Table 5.7 Pairwise F
ST

 values between groups of Siphamia tubifer sampled at the 
Sesoko site (see Figure 5.1) over three consecutive years 
 
Sesoko 2012 2013 2014 
2012 - 0.0177 0.0161 
2013  - 0.0158 
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Table 5.8 Analysis of molecular variance (AMOVA) of groups of Siphamia tubifer 
sampled in 2013. Populations were grouped into regions determined by collection sites 
on the east or west coast of Okinawa (see Figure 5.1) 
!
Source of variation Nested in % Variance F-statistic P-value 
Within individual -- 86.4 FIT -- 
Among individual Population 13.6 FIS 0.001 
Among population Region 0.0 FSC 0.245 
Among region -- 0.0 FCT 0.012 
!
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Figure 5.1 Sampling locations of Siphamia tubifer in Okinawa, Japan from 2012 to 
2014, and the general current patterns in the region 
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Figure 5.2 Summary of sequence reads produced from each RAD library. (a) The 
number of retained reads after quality filtering in Stacks for each individual 
sequenced. Individuals that were discarded due to a low number of sequence reads are 
in red. (b) The proportion of retained reads that aligned to the bacterial genome 
sequences and subsequently discarded (green) or that were assigned as Siphamia 
tubifer sequences (blue) for the remaining analyses. (c) Mean sequence coverage per 
locus across all loci for quality-filtered individuals. Individuals that were discarded 
from the analysis due to low mean coverage are in red 
 
 
 
 

(a)

(b)

(c)



!90!

Figure 5.3 Per locus F
ST

 estimates for 11, 836 SNPs identified for Siphamia tubifer 
calculated across all individuals, individuals sampled in 2013 and 2014, and 
individuals sampled consecutively over three years (2012 – 2014) at the Sesoko site  
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Figure 5.4 Analysis of isolation by distance based on pairwise differentiation 
calculated between groups of Siphamia tubifer collected in 2013 (circles) and 2014 
(triangles). Distances were measured as the shortest straight-line distance across water 
between each pair of sites 
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Figure 5.5 Principal components analyses (PCA) of genetic differentiation among the 
280 genotyped Siphamia tubifer in 2013 and 2014. Points represent individuals along 
the PC1 and PC2 axes of genetic variation with the amount of variation explained by 
each axis in parentheses. Different colors and shapes indicate the sampling locations 
(see Figure 5.1) 
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Figure 5.6 Principal components analyses (PCA) of genetic differentiation among the 
genotyped Siphamia tubifer sampled from the Sesoko site (see Figure 1) in three 
consecutive years, 2012 (crossed), 2013 (open), and 2014 (closed). Points represent 
individuals along the PC1 and PC2 axes of genetic variation with the amount of 
variation explained by each axis in parentheses  
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Figure 5.7 Posterior probabilities from the STRUCTURE analyses for individual 
Siphamia tubifer that were assigned to the number of groups (K) indicated. Analysis of 
(a) individuals collected in 2013 (b) individuals collected in 2014 and (c) individuals 
collected from the Sesoko site over three consecutive years: 2012-2014. The K values 
depicted represent the number of groups sampled for that dataset. Each bar represents 
an individual fish and the colors within each bar correspond with the probability of 
membership in a genotypic group. Individuals are grouped by sampling locations, 
which are divided by black lines 
 

(a)

(b) (c)
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Figure 5.8 Mean estimates (±SD) of the posterior probability of each K value from the 
STRUCTURE analysis (Pritchard 2000) of Siphamia tubifer for the 2013 (left) and 2014 
(right) datasets   
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CHAPTER VI 

Population genomics of Photobacterium mandapamensis5 

 

Abstract 

 

The study of biogeography provides insights into the mechanisms that promote 

the evolutionary processes of diversification, speciation, and extinction. Until recently, 

this field has been dominated by studies of macroorgansims, limiting our 

understanding of the processes that have produced the immense diversity of bacteria 

described to date. Additionally, the classic view in microbiology is that “everything is 

everywhere”, especially in highly connected marine environments. In this study, I 

introduce the application of a recently developed reduced representation genomic 

method to define and compare patterns of the population genomic structure of both a 

host fish and its bacterial symbiont in a specific, pairwise bioluminescent symbiosis. I 

show significant genetic differentiation between light organ symbiont populations 100 

km apart, despite genetic admixture in the host fish at this scale. I also demonstrate 

temporal stability of the luminous symbiont populations over a three-year period. 

Collectively, our results provide evidence of fine-scale biogeographic patterns of a 

facultative marine symbiont and suggest a host-mediated mechanism for promoting 

genetic divergence of bacterial symbiont populations. In doing so, I highlight the 

effectiveness of restriction site associated sequencing as a tool to investigate the 

biogeographic patterns of symbiotic associations and of natural bacterial populations.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
5!In preparation as: Gould AL and PV Dunlap. Host-mediated symbiont divergence in a 
bioluminescent vertebrate-microbe symbiosis.  
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Introduction 

 

The classic view in microbial biogeography that “everything is everywhere, but 

the environment selects” was proposed nearly a century ago (Baas-Becking 1934) and 

remains a central belief of many microbiologists today. This perspective has been 

particularly upheld for microbes living in highly connected ocean environments, for 

which numerous studies have portrayed cosmopolitan distributions (Mullins et al. 

1995, Darling et al. 2000, Massana et al. 2000, Morris et al. 2002, Finlay 2002, Fenchel 

and Finlay 2004, Finlay and Fenchel 2004, Baldwin et al. 2005). However, as molecular 

methods advanced and genetic examinations of microorganisms accumulated, an 

increasing number of studies revealed unexpected patterns of geographic structure in 

certain marine bacteria (Staley and Gosink 1999, Cho and Tiedje 2000, Whitaker et al. 

2003, Ivars-Martinez et al. 2008), although many of these patterns were observed at 

broad geographic or taxonomic scales (Fuhrman et al. 1992, Pommier et al. 2005, 2007, 

Brown et al. 2012) or can be attributed to environmental factors (Karner et al. 2001, 

Herndl et al. 2005, Martiny et al. 2006). Despite the increasing evidence of 

biogeographic patterns of microbes, few studies have examined the spatial scale of 

intra-specific patterns of marine bacterial populations. Using a novel application of 

recently developed molecular methods, I provide evidence of host-mediated population 

genomic structure of a symbiotically luminous bacterium within a homogeneous 

marine environment. Our results suggest that the distinct ecology of a host animal can 

help to promote the genetic divergence of a facultative bacterial symbiont through the 

local enrichment and isolation of symbiont populations over host generations, further 

challenging the conventional panmictic view of marine microorganisms and 

broadening our understanding of the mechanisms that can promote speciation in 

bacteria. 

The primary mechanisms by which bacterial diversity is believed to arise are by 

lateral gene transfer (LGT), homologous recombination, and the accumulation of 

mutations that can result in a competitive advantage upon which selection can act. 

This view of adaptive bacterial evolution is primarily supported by the large size of 

most bacterial populations and by the ability of bacteria to disperse freely, thereby 

limiting the potential of neutral processes like genetic drift to promote divergence. 

Facilitating these processes, however, the physical isolation of microbial populations 
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can facilitate microbial diversification (Papke and Ward 2004), as is the case for certain 

extremophiles associated with hot springs (Papke et al. 2003) and hydrothermal vents 

(Whitaker et al. 2003). Additionally, host organisms can act as ecological ‘islands” for 

microbial populations, promoting isolation over time without physical barriers to 

dispersal and gene flow (Papke and Ward 2004, Taylor et al. 2005). This has been well-

documented for many vertically transmitted host-microbe associations, for which co-

evolution and diversification have been documented and can even result in symbiont 

genome reduction over time (reviews by Baumann 2005, Dale and Moran 2006, Moran 

et al. 2008, McCutcheon and Moran 2011). However, the role of a host organism in 

promoting population divergence of horizontally acquired symbionts is much less 

understood.  

Bacterial symbionts acquired from the environment can persist, although often 

dormant or inactive, outside of their host for variable amounts of time. Consequently, 

horizontally transmitted symbionts have greater dispersal potential than do their 

vertically transmitted counterparts. This is particularly true in the marine 

environment, in which ocean currents can maintain environmental homogeneity over 

large distances and promote dispersal and population connectivity. Therefore, in open 

marine environments lacking physical barriers, the role of host organisms as “islands” 

for their microbial symbionts may be especially important in promoting microbial 

diversification (Taylor et al. 2005). To better understand this potential, I examined a 

highly specific, pairwise association between the coral reef-dwelling, sea urchin 

cardinalfish Siphamia tubifer and the luminous bacterium Photobacterium 

mandapamensis, a member of the Vibrionaceae, in the Okinawan Islands of Japan.  

 

A bioluminescent vertebrate-microbe symbiosis 

 

The symbiosis involving S. tubifer and P. mandapamensis is a mutualistic 

association in which the symbiotic bacterium is provisioned in a ventral light organ by 

the host fish in exchange for light production. The fish host, which remains quiescent 

among the long spines of sea urchins during the daytime (Lachner 1955, Eibl-Eibesfeldt 

1961, Tamura 1982, Gould et al. 2014), uses the bacterially produced light to 

illuminate its ventral surface while foraging at night. The light organ, containing a 

dense population of P. mandapamensis (~107-8 cells, Gould et al. 2016), is connected by 
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a duct to the host’s gut, and luminous bacterial cells are released periodically from the 

duct into the intestines and eventually, into the seawater with fecal material (Dunlap 

and Nakamura 2011). This purging of bacterial cells from the light organ presumably 

acts to promote growth and light production by the symbiont population.  

The initiation of the symbiosis occurs during larval development, however, 

aspects of this critical process remain undefined, including the location and timing of 

symbiont acquisition in the wild as well as the number of bacterial cells that initially 

colonize a light organ. In culture, the light organs of S. tubifer larvae were not receptive 

to colonization by P. mandapamensis until at least eight days of having been released 

into the plankton; therefore, the direct transfer of symbiont from parent to offspring is 

not possible (Dunlap et al. 2012). The planktonic larval duration of S. tubifer is 

approximately 30 days (Gould et al. 2016), and the light organs of all juvenile fish 

collected from reefs have an established symbiont population, suggesting that the 

symbiosis becomes established between day eight in the plankton and settlement onto 

a reef. How long a light organ remains receptive to colonization by P. mandapamensis 

and how many symbiont cells initially infect a light organ have yet to be determined. 

The host fish also exhibits fidelity to a host urchin at a reef and will return to that reef 

if displaced distances of at least 2 km (Gould et al. 2014). Therefore, once settled out 

of the plankton, S. tubifer remain associated with a home reef through the rest of their 

lifespan, which is typically less than 200 days (Gould et al. 2016).  

In addition to being both biologically and experimentally tractable (e.g. Dunlap 

et al. 2012, Gould et al. 2014, 2015), this pairwise association appears to be more 

specific in comparison to other bioluminescent fish symbioses (Kaeding et al. 2007), 

thereby providing an ideal binary association to investigate the ecological processes 

that lead to the evolution of host-bacteria associations, including other vertebrate-

bacteria symbioses. To do so, I applied a recently developed molecular method that 

utilizes next generation sequencing technology to examine the influence of the host’s 

ecology on the fine-scale genomic patterns of its luminous bacterial symbiont. 

 

Application of RAD-Seq methods 

 

Restriction site associated sequencing methods were developed within the past 

decade (review by Rowe et al. 2011) but have not been used to examine the genetic 
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structure of natural bacterial populations to date. This reduced representation 

genomics approach has the ability to produce genome-wide markers that can be used 

to detect fine scale patterns of population structure without any prior genetic 

information of the focal species. Therefore the application of RAD-Seq methods has 

become widespread and it has the potential to expand our understanding of the 

biogeographic patterns of microbial populations and the processes that shape them. 

In this study, I used double digest, restriction-site associated sequencing 

(ddRAD-Seq) methods to define and compare the population genomic structure of both 

the host fish and its light organ symbionts. In doing so, I identified thousands of single 

nucleotide polymorphisms (SNPs) throughout the host fish’s genome and hundreds of 

variant sites throughout the bacterial symbiont’s genome (Figure 6.1) with which 

Idefined and compared patterns of population structure of host and symbiont. 

Specifically, using the restriction enzymes EcoRI and MseI, I identified 607 90-bp 

regions (RADtags) distributed randomly throughout the P. mandapamensis genome 

with sequence variability with which to examine population genomic structure of the 

luminous symbiont populations. Using these variable loci, I addressed the following 

questions: Is there population genomic structure of the light organ symbionts of S. 

tubifer at spatial scales ranging from 2 to over 100 kilometers and between years at 

the same location? and if symbiont population genomic structure exists, does it 

correlate with patterns of genomic structure of the host?  

  

Symbiont population differentiation 

 

I sampled the light organs of hundreds of S. tubifer specimens from various 

locations in the Okinawa Islands over a range of spatial scales and in three consecutive 

years (Table 6.1) to examine the effects of local symbiont enrichment on the 

population genomic structure of P. mandapamensis. Upon examination of the 607 

RADtags throughout the P. mandapamensis genome (Figure 6.1), I detected a 

significant signature of population genomic structure between the light organ 

symbionts from Kume and Okinawa Islands, which are approximately 100 km apart 

(Figure 6.2). Additionally, the genetic distance between light organ symbiont 

populations correlated significantly with geographic distance (r = 0.19, P = 0.001), and 

there was a significant effect of sampling location on genetic distance (Table 6.2). In 
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contrast, the host fish exhibited no genomic structure at this spatial scale (Figure 6.2) 

and showed no significant signature of isolation by distance (Gould et al. in review). 

Consequently, there was also no significant correlation between the observed genetic 

distances of populations of the symbiont and that of their hosts (r = 0.59, P = 0.201). 

At the finer geographic scales of tens of kilometers examined, symbiotic P. 

mandapamensis around Okinawa Island were more genetically homogeneous, as were 

populations of their hosts (Figure 6.3); although a significant correlation between the 

genetic distance of light organ symbionts and geographic distance was also evident at 

this scale (r = 0.052, P = 0.001). As seen at the regional scale, there is no correlation 

between genetic distance of the host and symbiont at these scales as well (r = 0.45, P = 

0.17). The ocean currents in the study region are largely influenced by the Kuroshio 

Current, which provides the potential for long distance dispersal and mixing of free-

living marine microbes over a broad geographic area. This mixing potential is made 

evident by the genetic admixture observed in the host fish at the same geographic 

scales examined (Figures 6.2, 6.3, Gould et al. in review). Future studies over broader 

geographic ranges and in regions with weaker currents might reveal even higher levels 

of genetic divergence of symbiont populations and perhaps of the host fish as well. 

To test the temporal stability of the symbiont population, I examined the 

genomic structure of P. mandapamensis from the light organs of S. tubifer collected 

from one location (Sesoko, Figures 6.2, 6.3) in three consecutive years. In contrast to 

the regional scale differences observed, populations of symbiotic P. mandapamensis 

were not significantly different between years (Figure 6.4, Table 6.2). Therefore 

populations of light organ symbionts appear to be temporally stable over host 

generations at a particular reef. 

The observed genetic differentiation between populations of symbiotic P. 

mandapamensis suggests that the luminous symbionts acquired by S. tubifer larvae 

that settle on reefs at Kume and Okinawa Islands are from genetically differentiated 

symbiont pools in the seawater. Moreover, the genetic panmixia observed for the host 

fish in the region indicates that S. tubifer larvae settling at both islands might have 

originated from the same southern source population, including the Philippines (Gould 

et al. in review). Consequently, it is unlikely that larvae remain near their natal reef 

during symbiont acquisition and there must be some mechanism serving to promote 

the isolation of P. mandapamensis genotypes that colonize the light organs of S. 
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tubifer between Kume and Okinawa Islands. The currents are highly mixed in the 

region and there are no apparent differences in environmental conditions between the 

two islands, therefore I propose that the distinct ecology of the host fish is facilitating 

the observed symbiont population differentiation. 

The distinct life history and behavioral ecology of S. tubifer as a coral reef 

dwelling cardinalfish of releasing excess symbiont cells from the light organ and 

returning to the same home reef site after foraging can enrich the seawater at a reef 

with the P. mandapamensis genotypes present in light organs of the resident host fish 

population at that reef. This continual local enrichment of the seawater with symbionts 

can consequently be promoting the genetic isolation of P. mandapamensis populations 

over time, and is the most likely mechanism behind the observed regional pattern of 

genomic differentiation between symbiotic populations of P. mandapamensis. The local 

enrichment of symbiotic P. mandapamensis by the resident S. tubifer population at a 

reef also supports the temporal stability of light organ symbiont populations that I 

observed at the Sesoko site. This example of host-mediated bacterial divergence 

provides evidence of how patterns of biogeographic structure of marine microbes can 

arise in the absence of physical boundaries to dispersal and gene flow in the marine 

environment. 

 

Loci correlated with population divergence 

 

Between symbiotic populations of P. mandapamensis at Kume and Okinawa 

Islands, I examined specific loci potentially driving the divergence patterns observed. 

Of the 607 RADtags examined throughout the P. mandapamensis genome, 32 loci 

located at various sites throughout the genome contained haplotypes that were highly 

correlated (either positively or negatively) with the primary axis of genetic variance 

differentiating the Kume and Okinawa Island populations (Figure 6.5). Of these 32 

candidate loci, only two were in non-coding regions of the genome and 18 had 

haplotypes that were positively correlated with the primary axis of variation driving 

the genetic divergence between the light organ symbionts at Kume and Okinawa Island 

(Table 6.3). Nucleotide substitutions within these haplotypes were primarily non-

synonymous (76%) but showed no obvious pattern of functional effects (Table 6.4).  
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The environmental conditions within the study region are presumably uniform 

with respect to nutrient availability and other abiotic factors affecting P. 

mandapamensis fitness. Similarly, conditions within the host light organs between 

sampling locations are expected to be constant, especially considering the host fish 

sampled are one panmictic population (Gould and Dunlap in review). The patterns of 

genetic divergence observed for the bacterial symbionts in this study do not appear to 

be due to a selective advantage between the genotypes at these locations, but rather 

are a result of neutral processes that carried genetic novelties through the symbiont 

population over host generations.  

 

Symbiont acquisition 

 

The RAD-Seq methods applied also enabled us to infer previously undefined 

aspects of symbiont acquisition by developing S. tubifer larvae in the wild. First, the 

regional scale of genetic differentiation observed between symbiotic populations of P. 

mandapamensis suggests that settling larvae acquire a symbiont from the locally 

enriched waters near the adult host population at their settlement reef; therefore, I 

deduce that the window of time during which a light organ remains receptive to 

colonization by a luminous symbiont lasts through larval development until S. tubifer 

are near their settlement site. Second, I determine the minimum possible number of P. 

mandapamensis genotypes that initially colonized a light organ as the maximum 

number of haplotypes across all 607 RADtags examined within each light organ. On 

average, 6.0 ± 1.6 (S.D.) distinct symbiont genotypes were observed within a light 

organ, and the minimum and maximum numbers of strains across all 282 light organs 

were 2 and 9; no monocultures of light organ symbionts were evident (Figure 6.6). 

Furthermore, to determine whether the observed symbiont diversity was due to 

multiple colonization events over time or is a reflection of the number of cells that 

initially colonize a light organ, I tested for an increase in symbiont diversity over time, 

using fish standard length as a proxy for age (Gould et al. 2016). There was no 

correlation between fish length and minimum number of symbiont genotypes (F
1,290

 = 

1.477, R2

Adj
 = 0.00164, P = 0.225), indicating that continual colonization by new P. 

mandapamensis cells throughout a host’s lifespan is unlikely. This also corresponds 

with the observation of the regular release of symbiotic bacteria out of the duct, the 
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only pathway connecting the light organ to the rest of the host fish (Dunlap and 

Nakamura 2011).  

The rapid accumulation of mutations giving rise to new symbiont genotypes 

within a light organ after colonization is also unlikely because older S. tubifer do not 

have higher light organ symbiont diversity than do younger individuals. Therefore, the 

genetic diversity of P. mandapamensis within a light organ is a direct reflection of the 

initial colonizing cells, and on average at least six distinct P. mandapamensis 

genotypes enter a light organ during the window of colonization. This is in contrast to 

the sepiolid squid symbiosis, for which light organ crypts are initially colonized by at 

most two luminous bacterial cells (Wollenberg and Ruby 2009). Despite the 

opportunity for multiple luminous bacterial cells to colonize a light organ, the S. 

tubifer – P. mandapamensis symbiosis remains highly specific (Kaeding et al. 2007) 

indicating that additional mechanisms (i.e. physiologic or genetic) function to maintain 

the specificity of the association. Future investigations of these mechanisms are 

needed and will provide further insight into the evolution and maintenance of other 

vertebrate-microbe symbioses. 

 

 

Discussion 

  

The concurrent genomic analyses of the host fish and light organ symbiont 

populations using ddRAD-Seq methods suggests that S. tubifer larvae disperse 

significant distances within the Okinawan Islands and acquire a symbiont from the 

enriched environment near the resident host population at their non-natal settlement 

site. The mechanism of bacterial symbiont enrichment by a marine host was first 

proposed by Ruby et al. (1980) to explain the unexpected, high concentrations of a 

luminous bacterium in seawater sampled at several hundred meters, the typical depth 

inhabited by midwater, luminous fishes. The release of luminous bacterial symbionts 

from light organs into the surrounding seawater was also demonstrated in the 

laboratory for other symbiotically luminous fishes (Haygood et al. 1984, Nealson et al. 

1984) and observed in natural habitats in Hawaii of the squid host, Euprymna scolopes 

(Lee and Ruby 1994), which was similarly linked with local geographic symbiont 

population structure (Wollenberg and Ruby 2009). Furthermore, evidence of a non-
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random geographic distribution of particular strains of Photobacterium leiognathi was 

observed in the light organs of other luminous fish hosts (Ast et al. 2007). These 

examples of symbiont enrichment further support our conclusion that host animals 

can shape the distribution patterns of their facultative marine symbionts and can 

subsequently promote the isolation of distinct symbiont genotypes over time. 

Our study also highlights the effectiveness of the application of RAD-Seq 

methods to define and compare the fine-scale patterns of genomic structure of an 

animal host and its symbiotic bacteria. This approach can be used to examine an array 

of other host-microbe associations, including other bioluminescent symbioses and 

those involving vertebrate hosts. Such future applications will broaden our 

understanding of the influence host animals have on the biogeographic patterns of 

their microbial symbionts and the evolutionary processes that lead to host-symbiont 

integration and specificity. Moreover, RAD-Seq methods provide a genome-wide 

snapshot of nucleotide sequence information that can be applied to examine other 

natural populations of bacteria without any prior genetic information. The accessibility 

of this powerful genomic method therefore has the potential to further advance our 

limited view of microbial population genomics and biogeography beyond the broad 

taxonomic and geographic scales of most studies to date.  

The study of biogeography provides insights into the mechanisms that promote 

the evolutionary processes of diversification, speciation, and extinction. Until recently, 

this field has been dominated by studies of macroorgansims, limiting our 

understanding of the processes that have produced the immense diversity of bacteria I 

see today. In this study, I examined a pairwise vertebrate-microbe symbiosis to 

highlight the role of a host animal as a promoter of genetic divergence of its bacterial 

symbiont. Furthermore, in highly connected ocean environments where the classic view 

of microbial biogeography suggests that “everything is everywhere” I illustrated that 

fine-scale patterns of genomic population structure can arise, even in a region 

dominated by strong ocean currents and without physical barriers to gene flow, when 

facilitated by a host organism. The environmental symbiont enrichment behavior of S. 

tubifer ensures that the next generation of host fish can initiate its bioluminescent 

symbiosis with its particular luminous bacterial partner, a critical process for the 

success of the host. This host facilitation functions to maintain the high degree of 

specificity observed of the partnership over time, and can incidentally, promote 
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symbiont population divergence. Overall, using a novel molecular approach, this study 

provides evidence of the genetic divergence of a facultative symbiotic bacterium with 

fine-scale resolution and reveals host-mediated microevolutionary processes that can 

lead to diversification and ultimately speciation in a marine bacterium. 

 

 

Methods 

 

Sampling, DNA extraction and library preparation 

 

Siphamia tubifer specimens were collected over three years from various 

locations in the Okinawa Islands, Japan (Table 6.1). Ten collection sites were sampled 

during June and July of 2013, and in June 2014, light organs were sampled from S. 

tubifer at Kume Island as well as from fish at three sites previously sampled in 2013. 

One reef site (Sesoko, “S”) that was sampled in 2013 and 2014 was also sampled in July 

of 2012, providing a three-year dataset from that location. Fish ranging in body lengths 

and associated with different host sea urchins were targeted for collection at each 

sampling location. Fish were immediately euthanized upon collection following an 

approved protocol by the University of Michigan’s Institutional Animal Care and Use 

Committee and in accord with animal handling guidelines of the University of the 

Ryukyus Guide for Care and Use of Laboratory Animals.  

The whole, intact light organ, composed of fish tissue and containing the 

luminous bacterial symbiont population, was aseptically removed from each fish 

specimen and individually preserved in RNAlater®. Genomic DNA was extracted from 

each light organ using a QIAGEN DNeasy Blood and Tissue Kit following the 

manufacturer’s protocol, and a total of six double digest restriction site-associated 

sequencing (ddRAD-Seq) DNA libraries were built from the DNA of 50 S. tubifer light 

organs, each individually barcoded with unique 10 bp DNA sequences for downstream 

identification. The protocol used to construct the ddRAD-Seq libraries followed a 

modified combination of the methods in Parchman et al. (2012) and Peterson et al. 

(2012), using the restriction enzymes MseI and EcoRI, and is described in further detail 

in Gould and Dunlap (in review). All DNA libraries were sequenced at the Center for 

Applied Genomics, Toronto, ON, Canada, on the Illumina HiSeq2000 platform (San 
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Diego, CA) generating100 bp single-end reads.  

 

Sequence processing and data analysis 

 

Raw sequence reads were de-multiplexed and quality-filtered for a Phred score 

of 33 or higher with the process_radtags command in Stacks v1.35 (Catchen et al. 2011, 

2013). After the DNA sequence barcodes were removed, the remaining 90-bp sequence 

reads were aligned against the ~4.5 Mb reference genome of Photobacterium 

mandapamensis (Urbanczyk et al. 2011) using the very_sensitive command in Bowtie2 

v2.2.0 (Langmead and Salzberg 2012) to remove the fish sequences from the bacterial 

dataset. Aligned P. mandapamensis sequences in .SAM file format were then 

additionally quality filtered using SAMtools v1.3 (Li et al. 2009), retaining only reads 

with a MAPQ score greater than 10. The quality-filtered, aligned P. mandapamensis 

sequences were then processed with the ref_map command in Stacks, requiring a 

minimum stack depth of three (-m 3). Individuals with fewer than 100,000 total 

sequence reads or a mean depth of coverage per stack less than 100x were discarded 

from the analysis (Figure 6.7), resulting in 282 light organs included in the genetic 

analysis (Table 6.1).  

Loci present in at least 200 light organs with a maximum of 25 SNPs per locus 

across all samples were extracted from the entire catalog of loci produced by Stacks for 

the analysis. Subsequently, loci not present in at least 50% of individuals in each 

population were removed from the dataset. The final dataset consisted of 607 loci 

(RADtags), from which haplotypes with at least 5x coverage within a light organ were 

analyzed for patterns of genomic structure between symbiont populations of the 

groups of host fish. To analyze patterns of both spatial and temporal genomic 

structure, locations sampled in 2013 and 2014 were analyzed separately and the 

Sesoko site was analyzed over three consecutive years. Principal coordinates analyses 

(PCoA) were performed on the Bray-Curtis distance matrices calculated from the 

presence or absence of each symbiont haplotype across the 607 RADtags within a light 

organ. Calculations were carried out with the “vegan” package (Oksanen et al. 2016) in 

R v.3.1.1 (R Core Team 2014). 

Analyses of variance were performed with the adonis function to test for the 

effects of various factors on the genetic distance matrices calculated across individuals 
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within each dataset (2013, 2014, Sesoko). Factors tested included RAD library, 

sampling site, region, year, as well as all possible interaction effects of these factors 

(Table 6.2). Additional analyses of similarity (ANOSIM) were performed on the same 

Bray-Curtis distance matrices to test for genetic differences between groups within 

each factor above. Tukey’s post hoc tests were carried out on factors that had a 

significant effect in the ANOSIM to identify significantly different levels within that 

factor. To test for pearson correlations between genetic and geographic distances, 

Mantel tests with 1,000 permutations were performed between the Bray-Curtis distance 

matrix calculated for light organ genotypes and a matrix of pairwise distances, 

estimated as the shortest straight-line distance through water between collection sites. 

All analyses were performed with the “vegan” and “ecodist” (Goslee and Urban 2007) 

packages in R. 

Patterns of genetic structure between the luminous bacterial symbiont and the 

host fish were also compared by first analyzing the genomic structure of the host fish 

at the same scales as the bacterial symbiont. Briefly, S. tubifer sequence reads were 

assembled de novo in Stacks and genotypes across a set of identified loci were assigned 

to all individuals (see Gould et al. in review for details). In this study, I analyzed a 

subset of the genetic data of S. tubifer presented in Gould and Dunlap (in review). 

Specifically, the first single nucleotide polymorphism (SNP) within each of 8,637 loci 

present in 70% of individuals in each population with a minor allele frequency of 5% or 

greater were analyzed across the host fish from the 282 light organs described 

previously. A principal components analysis (PCA) was performed on the S. tubifer SNP 

dataset with the “adegenet” package (Jombart 2008, Jombart and Ahmed 2011) in R. 

Pairwise genetic distances between each individual were calculated with the Kosman 

and Leonard (2005) method using the “PopGenReport” package (Adamack and Gruber 

2014) in R. The genetic distance matrix of the host fish was then compared to that of 

its light organ symbionts with a Mantel test as described above. 

To examine loci driving the patterns of genetic divergence observed between 

light organ symbionts at Kume and Okinawa Islands, a constrained analysis of 

principal coordinates (CAP) was performed on the 2014 P. mandapamensis genetic 

distance matrix with “vegan” in R. The resulting CAP scores for each light organ and 

for all haplotypes examined across all individuals were examined to identify 

haplotypes driving the observed patterns. The light organ symbionts from Kume Island 
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were divergent from the other populations primarily along the CAP1 axis (Figure 6.5). 

Haplotypes with the highest and lowest CAP1 scores were therefore identified as 

candidate drivers of divergence of P. mandapamensis populations and the loci to which 

they belong were identified (Table 6.3). Differences in nucleotide sequences within the 

outlier haplotypes were then analyzed and changes between the Kume and Okinawa 

populations were identified as synonymous or non-synonymous and categorized as 

having low, moderate, or a modifying effect on the gene products with the SnpEff 

(Cingolani et al. 2012) program (Table 6.4).   
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Table 6.1. Sampling locations of Siphamia tubifer light organs in the Okinawan Islands, 
Japan for the population genomic analysis 
 
ID Site Latitude Longitude Year N 
S Sesoko 26.635409 127.865832 2012 16 
        2013 18 
        2014 21 
M Motobu 26.655806 127.880286 2013 20 
N Nago 26.603673 127.932404 2013 21 
Hd Hedo 26.848756 128.252513 2013 17 
It Itoman 26.095109 127.658478 2013 14 
        2014 27 
O Ou 26.127916 127.768981 2013 16 
Y Yonabaru 26.203032 127.771178 2013 16 
Ik Ikei 26.393535 127.988601 2013 15 
     2014 22 
Hk Henoko 26.534554 128.046181 2013 17 
A Ada 26.741936 128.321107 2013 16 
K Kume 26.351617 126.820149 2014 26 
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Table 6.2. Results of the analyses of genetic variance (Adonis) and similarity (ANOSIM) 
across the datasets indicated. For each model, the factors’ degrees of freedom (DF), 
sum of squares (SS), mean of squares (MS), predicted F-value (F), R2 and P-value are 
shown. Library refers to which RAD-Seq library an individual was sequenced in, Region 
indicates whether an individual was sample from Kume Island, or the West or East 
Coast of Okinawa Island, and Location refers to the sampling location of an individual. 
Non-significant P-values are listed as NS (>0.1)  
 

Model Adonis test ANOSIM 
  DF SS MS F R2 P   F  P   

All samples                     
Library 1 0.350 0.350 3.115 0.011 0.001 *** 9.739 0.000 *** 
Region 2 0.458 0.229 2.041 0.014 0.001 *** 30.387 0.000 *** 
Location 11 1.739 0.158 1.407 0.053 0.001 *** 11.903 0.000 *** 
Year 1 0.112 0.112 0.996 0.003 0.488 NS 0.801 0.450 NS 
Library:Region 2 0.259 0.130 1.155 0.008 0.042 * - - - 
Library:Location 9 0.952 0.106 0.942 0.029 0.930 NS - - - 
Library:Year 1 0.113 0.114 1.010 0.003 0.445 NS - - - 

2014                     
Library 1 0.096 0.096 0.836 0.009 0.933 NS 0.083 0.775 NS 
Region 2 0.546 0.273 2.377 0.049 0.001 *** 23.102 0.000 *** 
Location 1 0.165 0.164 1.433 0.015 0.007 ** 18.172 0.000 *** 
Library:Region 2 0.242 0.121 1.052 0.022 0.261 NS - - - 
Library:Location 1 0.085 0.085 0.739 0.008 0.991 Ns - - - 

2013                     
Library 1 0.379 0.379 3.405 0.020 0.001 *** 29.298 0.000 *** 
Region 1 0.126 0.126 1.132 0.007 0.132 NS 20.345 0.000 *** 
Location 8 1.133 0.142 1.272 0.059 0.001 *** 10.821 0.000 *** 
Library:Region 1 0.105 0.105 0.945 0.005 0.667 NS - - - 
Library:Location 6 0.663 0.111 0.993 0.034 0.555 NS - - - 
2013, w/o Lib. 2                     
Library 1 0.243 0.243 2.323 0.018 0.001 *** 0.531 0.589 NS 
Region 1 0.122 0.122 1.168 0.009 0.076 . 4.001 0.048 * 
Pop 6 0.637 0.106 1.014 0.047 0.359 NS 1.561 0.153 NS 
Library:Region 1 0.105 0.105 1.005 0.008 0.464 NS - - - 
Library:Location 6 0.663 0.111 1.056 0.049 0.116 NS - - - 

Sesoko                     
Library 1 0.152 0.152 1.447 0.027 0.002 ** 0.212 0.930 NS 
Year 1 0.110 0.110 1.046 0.019 0.300 NS 0.027 0.974 NS 
Library:Year 1 0.105 0.105 0.995 0.018 0.499 NS - - - 
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Table 6.3. RADtags within the Photobacterium mandapamensis genome correlated with 
the primary axis of genetic variation driving the patterns of divergence between 
symbiont populations at Kume and Okinawa Islands, Japan. Listed are the RADtag ID, 
whether haplotypes within the locus are positively or negatively correlated with the 
axis of variation, the scaffold in which a locus is located, and the assigned COG group 
and the putative gene product of the protein coding region in which the RADtag is 
located 
 
RADtag  Correlation Scaffold COG Gene product 
47 - II K DNA-directed RNA polymerase subunit beta 
92 + II J RNA-binding protein Hfq 
166 + II M rare lipoA family protein 
356 - IV R smr domain protein 
600 + IV - non-coding  
667 +/- IV O molecular chaperone DnaK 
712 + IV K transcriptional regulator 
715 - IV G PTS acetylglucosamine transporter subunit IIB 
145 - IV H thiamine biosynthesis protein ApbE 
239 - IV R radical SAM protein 
286 + IV S hypothetical protein 
355 + IV V acriflavin resistance protein 
375 - IV G D-hexose-6-phosphate mutarotase 
391 - IV O clpX -ATP-dependent Clp protease ATP-binding subunit ClpX 
794 +/- V G phosphoglycerate kinase 
811 + V T hybrid sensor histidine kinase/response regulator 
822 - V J alanine--tRNA ligase 
890 - VI C glutathione-disulfide reductase 
991 - VII C glycerol dehydrogenase 
1089 + VIII - non-coding  
1235 - VIII M penicillin-binding protein1B; penicillin-sensitive transpeptidase 
1254 + VIII R phenazine biosynthesis protein PhzF 
1261 - VIII G chitinase 
1269 + VIII P cobalamin ABC transporter substrate-binding protein 
1407 + VIII E glycine dehydrogenase (aminomethyl-transferring) 
1417 + VIII R GTPase YlqF 
1429 + VIII R paraquat-inducible protein B (pqiB) 
1098 - VIII T transcriptional regulator 
1160 + VIII R conserved repeat domain protein 
1162 + VIII S hypothetical protein 
1163 - VIII S hypothetical protein 
1195 - VIII M AsmA family protein 
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Table 6.4. Effects of the nucleotide substitutions examined within the divergent 
Photobacterium mandapamensis RADtag sequences between Kume and Okinawa 
Islands. The ID of each variant corresponds to each locus’ RADtag ID. Multiple variant 
regions examined within a single RADtag are indicated as _n, where n corresponds to 
the order in which that variant appears in the 90 bp sequence. Also listed are the types 
of variants and the degree to which they affect function as determined with the SnpEff 
program (Cingolani et al. 2012)  
 
ID Type Effect 
92 synonymous variant low 
166_1 downstream gene variant modifier 
166_2 downstream gene variant modifier 
286 downstream gene variant modifier 
355 missense variant moderate 
600 upstream gene variant modifier 
667 upstream gene variant modifier 
712 upstream gene variant modifier 
794 missense variant moderate 
811 upstream gene variant modifier 
1089_1 upstream gene variant modifier 
1089_2 upstream gene variant modifier 
1160 synonymous variant low 
1162 synonymous variant low 
1235 missense variant moderate 
1254 upstream gene variant modifier 
1269 synonymous variant low 
1407 upstream gene variant modifier 
1417_1 upstream gene variant modifier 
1417_2 upstream gene variant modifier 
1417_3 synonymous variant low 
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Figure 6.1. Genome map of Photobacterium mandapamensis (Urbanczyk et al. 2011), 
the light organ symbiont of Siphamia tubifer. Sequence scaffolds I - XI are indicated on 
the outside of the map. Protein-coding genes are color coded according to the COG 
categories listed. Outer tick marks represent the locations of the 607 90-bp RADtags 
analyzed for genomic differentiation. Candidate RADtags identified as potential 
drivers of population differentiation between Kume and Okinawa Islands are 
highlighted on the inner circle of the map   
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Figure 6.2. Genomic analysis of host and symbiont sampled from fish light organs in 
2014. (a) Sampling locations of S. tubifer light organs in the Okinawan Islands, Japan. 
(b) Principal coordinates analysis of genetic differentiation of symbiotic P. 
mandapamensis calculated from Bray-Curtis distances of the presence or absence of 
haplotypes within a light organ across 607 RADtags identified throughout the bacterial 
genome. (c) Principal components analysis of the genetic differentiation of the 
corresponding Siphamia tubifer hosts based on 8,637 SNPs. Points in (b) and (c) 
represent individuals along the first and second axes of genetic variation with different 
colors and shapes representing the sampling locations in (a)  
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Figure 6.3. Genomic analysis of host and symbiont sampled from fish light organs in 
2013. (a) Sampling locations of S. tubifer light organs around Okinawa Island, Japan. (b) 
Principal coordinates analysis of genetic differentiation of light organ symbiont 
population across the 607 identified RADtags for P. mandapamensis. (c) Principal 
components analysis of the genetic differentiation of the corresponding Siphamia 
tubifer hosts based on 8,637 SNPs. Points in (b) and (c) represent individuals along the 
first and second axes of genetic variation with different colors and shapes representing 
the sampling locations in (a) 
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Figure 6.4. Genomic analysis of host and symbiont sampled from fish light organs at 
Sesoko Island in Okinawa, Japan in 2012, 2013, and 2014. (a) Principal coordinates 
analysis of genetic differentiation of symbiotic P. mandapamensis across 607 RADtags 
throughout the bacterial genome. (b) Principal components analysis of the genetic 
differentiation of the corresponding Siphamia tubifer hosts based on 8,637 SNPs. 
Points represent individuals along the first and second axes of genetic variation with 
different shapes representing the sampling year  
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Figure 6.5. Results of the constrained analysis of principal coordinates (CAP) on the 
2014 genetic distance matrix of Photobacterium mandapamensis haplotypes across 
607 RADtags. The resulting CAP scores (a) for each light organ and (b) for all 
haplotypes within each RADtag. The following colors and shapes in (a) represent each 
sampling location: Kume Island (red diamonds), Sesoko (blue triangles), Itoman (black 
circles), Ikei (green squares). In (b), outlier haplotypes as putative drivers of the 
divergence patterns between light organ symbiont populations are highlighted in red 

Kume
Sesoko
Itoman
Ikei

(a)

(b)



!119!

 

 
Figure 6.6. Frequency distribution of the minimum number of Photobacterium 
mandapamensis genotypes within Siphamia tubifer light organs (N = 282) as 
determined by the maximum number of haplotypes observed across all 607 RADtags 
within a light organ 
  



!120!

 
Figure 6.7. Summary of Photobacterium mandapamensis sequence reads produced 
from each RAD-Seq library. (a) The number of aligned P. mandapamensis reads 
retained after quality filtering in Stacks (Catchen et al. 2011, 2013) for each light organ. 
Individuals that were discarded form the analysis due to a low number of sequence 
reads are in red. (b) The number of sequenced loci per light organ as determined with 
the ref_map command in Stacks within the P. mandapamensis genome. (c) Mean 
sequence coverage per locus across all loci for quality-filtered individuals. Individuals 
that were discarded from the analysis due to low mean coverage are in red  
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CHAPTER VII 

Conclusion  
 

 

 The primary objectives of my dissertation were to define key characteristics of 

the biology and behavioral ecology of a host fish that can facilitate the maintenance 

specificity of a horizontally acquired bioluminescent symbiosis and to test whether 

such characteristics influence the process of symbiont acquisition by developing 

larvae, and hence, the specificity of the symbiosis. To address these objectives, I 

examined a model vertebrate-microbe symbiosis involving the sea urchin cardinalfish, 

Siphamia tubifer, and the facultative symbiotic bacterium, Photobacterium 

mandapamensis, which is both experimentally tractable and maintains high specificity 

in the marine environment. I integrated life history descriptions with behavioral field 

experiments of the host fish and population genomic studies of both the host and 

bacterial symbiont to investigate potential mechanisms involved in the establishment 

and maintenance of specificity for a pairwise marine symbiosis over host generations. 

The main results of my dissertation research are as follows: 

 

(1) Siphamia tubifer has similar life history attributes as other small-bodied 

coral reef cardinalfish (Perciformes: Apogonidae), including short longevity, a 

fast initial growth rate, and early age at first reproduction. However, S. 

tubifer has a slightly longer pelagic larval duration of approximately 30 days 

in comparison to other similar apogonid fishes.  

 

(2) Siphamia tubifer exhibited daily fidelity to a particular host urchin at a reef 

and returned to that reef when displaced at least 2 kilometers. Both adults 

and juveniles exhibited homing behavior, although larger fish were more 

successful at returning to their home reef.
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(3) Adult and juvenile S. tubifer recognized and preferred the chemical signature 

of their home reef water to that of unfamiliar reef water. Adults and 

juveniles also preferred seawater conditioned by their luminous bacterial 

symbiont but not by their host urchins over unconditioned seawater. 

Juvenile S. tubifer but not adults preferred the chemical cue of conspecifics. 

 

(4) Within the Okinawa Islands, Japan, S. tubifer is genetically admixed; 

populations ranging from 2 to 140 kilometers apart were not genetically 

differentiated and showed no signature of isolation by distance. During the 

month-long pelagic larval duration, S. tubifer larvae can disperse significant 

distances due to the strong current patterns in the region. 

 

(5) Despite genetic admixture of the host fish at the same geographic scale, 

symbiotic populations of P. mandapamensis from the light organs of S. 

tubifer were genetically divergent between reefs 100 kilometers apart. Light 

organ symbiont populations are more genetically admixed at smaller spatial 

scales of tens of kilometers around Okinawa Main Island, but a significant 

correlation still exists between genetic and geographic distances at this scale.  

 

Overall, the combined results of my dissertation chapters provide evidence that 

the life history and behavioral ecology of S. tubifer as a coral reef cardinalfish help to 

maintain and promote the specificity of its pairwise symbiosis with P. mandapamensis 

over host generations. Specifically, the daily release of excess P. mandapamensis cells 

from the light organs of the resident S. tubifer population at a reef combined with the 

host fish’s fidelity to that reef provides a constant source of symbiotic P. 

mandapamensis cells to the surrounding seawater. The light organs of S. tubifer larvae 

are not receptive to colonization by P. mandapamensis until at least eight days of 

having been released into the plankton (Dunlap et al. 2012) and larvae can travel 

significant distances during their 30-day larval phase before finding a suitable reef 

upon which to settle. Based on the olfactory preferences of newly settled S. tubifer, 

larval fish might also have the ability to recognize the chemical signature of both 

conspecifics and their luminous symbiont in the seawater, and can use these cues to 

locate and navigate to a reef with an established resident population of S. tubifer. The 
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bacterial pool surrounding a settlement site is enriched with symbiotic P. 

mandapamensis genotypes from the light organs of the host fish at that reef, therefore 

the larvae settling at that reef are more likely to encounter symbiotic P. 

mandapamensis genotypes that are abundant in the resident host population at that 

reef. This proposed mechanism of maintaining specificity of the symbiosis between 

host generations through the local symbiont-enrichment of the seawater can also 

incidentally promote genetic divergence of symbiotic P. mandapamensis populations 

by isolating the light organ symbiont populations between regions and enabling 

genetic differences within these populations to accumulate over time. The patterns of 

genetic divergence observed between light organ symbionts from Kume and Okinawa 

Islands support this hypothesis and provide evidence that host organisms can facilitate 

the diversification of marine bacteria. 

 

 

Future Directions  
 
 

This research further establishes the S. tubifer-P. mandapamensis symbiosis as a 

model symbiosis for future studies of bacterial associations and as a vertebrate 

counterpart to the bioluminescent invertebrate squid symbiosis. Yet many aspects of 

the S. tubifer –P. mandapamensis association remain undefined or poorly understood, 

one of which remains the specificity of the symbiosis. Future studies are warranted to 

address whether the specificity of the association is attributed solely to the host-

mediated mechanisms described here, or whether other factors such as host 

physiology and genetics also help to maintain the pairwise association. For example, 

additional light organ colonization experiments in which the luminous symbionts of 

other host animals are presented to S. tubifer larvae in culture would reveal whether S. 

tubifer is capable of establishing a symbiotic association with any luminous bacterium 

other than P. mandapamensis. The results of such studies might also lead to future 

questions of the cellular processes involved in symbiont recognition and colonization 

of the light organ. 

Additional studies expanding upon the olfactory preferences of S. tubifer 

presented here can also enhance our understanding of symbiont acquisition and larval 

recruitment. Specifically, the preferences of S. tubifer larvae for the chemical cues of 
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other marine bacteria, both luminous sand non-luminous, can be determined to test 

the robustness of the olfactory preference for P. mandapamensis observed here. 

Similarly, the density of P. mandapamensis required to evoke an olfactory response by 

S. tubifer can be tested, and this density threshold can then be compared to the density 

of P. mandapamensis cells in the seawater surrounding a resident S. tubifer population. 

Results of this comparison would provide a better indication as to whether S. tubifer 

does in fact use the chemical cue of its luminous symbiont to detect and navigate to a 

settlement reef, and perhaps, even for symbiont acquisition. 

Thus far, only the luminous symbionts of Siphamia tubifer from the Okinawa 

Island region of Japan have been identified. Whether the S. tubifer-P. mandapamensis 

symbiosis maintains the same level of specificity over the fish’s entire geographic 

range remains unknown. Similarly, it is unknown whether other Siphamia spp. exhibit 

the same degree of specificity with P. mandapamensis or are hosts to other luminous 

bacteria and whether the symbiosis has remained stable over time. Future studies 

identifying the light organ symbionts of S. tubifer across the host’s entire Indo-Pacific 

home range, from southern Africa through the Indian Ocean and into Australia, will 

reveal the degree to which the specificity of the symbiosis with P. mandapamensis is 

conserved. Additionally, the stability of the symbiosis over time can be examined by 

comparing museum specimens collected nearly a century ago to S. tubifer specimens 

collected from the same locations today. Such an examination of the temporal stability 

of the symbiosis might reveal more insight into the evolutionary processes that lead to 

host-symbiont integration and specificity.  

Future research efforts can also focus more broadly across the entire Siphamia 

genus, which in addition to being the only symbiotically luminous group of 

cardinalfishes, diverged approximately 50 million years ago from all other apogonids 

(Cowman and Bellwood 2011, Thacker 2014), is apparently monophyletic (Mabuchi et 

al. 2014), and is the third most speciose of the 40 cardinalfish genera (Froese and 

Pauly 2015) (Figure 7.1).  The importance of microbial symbionts in providing new 

function to their hosts, often enabling the exploitation of new resources is highly 

recognized (Margulis and Fester 1991); yet there are still few examples of symbiont-

assisted speciation in the literature (Brucker and Bordenstein 2012). Future 

investigations of the role of the symbiosis in promoting the initial divergence of 

Siphamia as well as facilitating speciation within the Siphamia genus can provide a 
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better understanding of the evolution of specialized pairwise associations between 

vertebrate hosts and their microbial symbionts over evolutionary time, potentially 

broadening our understanding of symbiont-assisted speciation. 

 

 

Significance 

 

Symbioses with microorganisms are ubiquitous in nature and can provide new 

functions to their hosts, yet I still know relatively little regarding the processes 

involved in the establishment and maintenance of symbiotic associations between host 

generations. This is especially true for horizontally transmitted symbioses in which 

symbionts are acquired from the environment. Through an integrative investigation of 

a highly specific, bioluminescent vertebrate-microbe symbiosis, my dissertation 

research exemplifies the importance of a hosts’ ecology in promoting a pairwise 

symbiotic association over time.  

Furthermore, the role of microbial symbionts in altering animal behavior has 

been studied in some detail (review by Shropshire and Bordenstein 2016), but there are 

fewer examples of the effects of animal behavior on their microbial symbionts (Ezenwa 

et al. 2012). In my dissertation, I demonstrate that the behavioral ecology of S. tubifer 

has significant effects on the biogeography of its symbiotic luminous bacterium, 

promoting population divergence over time. Such genetic divergence is the first step 

towards diversification and ultimately, speciation; therefore, my research highlights 

the potential for host animals to play an important role in promoting speciation in 

bacteria.  

Host organisms might play an especially critical role in bacterial diversification 

in the oceans, where microorganisms have few physical boundaries to dispersal and 

consequently have been thought to have very cosmopolitan distributions. Yet there is a 

immense diversity of bacterial species in the ocean, suggesting that genetic divergence 

and speciation has occurred regularly through time and creating a gap in our 

understanding of microbial marine biogeography and diversification processes. The 

hypothesis of host organisms as “ecological islands” that can both alter the 

biogeographic patterns of bacterial populations and promote the isolation of genetic 

novelties between different populations is one potential mechanism that narrows this 
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gap, and the S. tubifer-P. mandapamensis association is one example, building a 

foundation for future research in this area. 

In a broader sense, understanding the ecological processes involved in the 

establishment and maintenance of species-specific symbioses over time is especially 

important today as rapidly changing environments threaten to de-couple these 

associations. Yet the ecological interactions that facilitate the maintenance of most 

symbiotic associations remain poorly understood. My research demonstrates the 

importance of a host organism’s daily behavior and ecology to its symbiosis with a 

specific bacterium. With this knowledge, improved predictions as to how the 

association might respond to future environmental changes can be made. For example, 

if olfaction is essential for S. tubifer recruitment and symbiont acquisition as 

suggested, then environmental changes, such as ocean acidification, that can affect the 

olfactory abilities of S. tubifer might have detrimental effects on the symbiosis. 

Therefore, with improved knowledge of the behavioral and ecological mechanisms 

involved in maintaining symbiotic associations, the fate of these critical partnerships 

can be better predicted in our changing world. 
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Figure 7.1. Non-representative depiction of the phylogenetic relationships among 
Apogonoidei fishes and the relative membership to various Apogonidae genera 
including Siphamia (simplified from Thacker 2014) 

Figure 1. Non-representative depiction of the 
phylogenetic relationships among Apogonoidei fishes 
and relative membership to the Apogonidae genera 
including Siphamia (simplified from Thacker 2014). 
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