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CHAPTER 1

Introduction

1.1 Multiple Quantile Regression with High Dimensional

Covariates

Quantile regression has become a widely used method to evaluate the effect of

regressors on the conditional distribution of a response variable (Koenker, 2005).

Compared to linear regression analysis, quantile regression is less sensitive to the mis-

specification of error distributions and provides more comprehensive information on

the relationship between the response variable and the covariates. It is important to

study quantile regression in the high-dimensional setting because high-dimensional

data arise from many modern application areas such as signal processing and ge-

nomics. We focus on the cases where, p, the number of covariates, is greater than n,

the sample size.

There has been a line of recent work on variable selection for quantile regression

models (Li and Zhu, 2008; Zou and Yuan, 2008a,b; Wu and Liu, 2009). In the

high-dimensional setting, the penalization methods with the `1 penalty (Belloni and

Chernozhukov, 2011; Wang, 2013), weighted `1 penalty (Zheng et al., 2013; Fan et al.,

2014a) and smoothly clipped absolute deviation (SCAD) penalty (Wang et al., 2012;

1
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Fan et al., 2014b) have been used to obtain consistent model selection. Belloni

and Chernozhukov (2011) establish consistency in parameter estimation with the `1

penalty. Wang et al. (2012) consider the SCAD penalty, and show that the oracle

estimate is one of the local minima of their non-convex optimization problem. Fan

et al. (2014a) use the weighted `1 penalty based on the SCAD penalty function, and

establish the model selection consistency and asymptotic normality.

Although the aforementioned work establish nice theoretical properties, empirical

evidence shows that the sets of variables selected at two nearby quantiles are often

unpleasantly different. The stability of selected variables across quantiles is desirable

both for the purpose of interpreting results and for understanding the impact of a

particular covariate on the conditional quantile functions. For example, a covariate

that is selected at quantiles 0.5 and 0.6 but not at 0.55 would not be much appreciated

unless there is a strong reason. The motivation and the main contribution of our

work is to show joint modeling across quantiles could lead to stable models. Zou

and Yuan (2008a,b), Bang and Jhun (2012), Jiang et al. (2013), Peng et al. (2014),

and Volgushev et al. (2014) consider joint quantile regression and provide consistent

estimators. He (1997), Dette and Volgushev (2008), Bondell et al. (2010), and Jang

and Wang (2015) study non-crossing quantile regression at multiple quantiles. A

related piece of work by Zheng et al. (2015) focus on the selection of all the variables

that impact one of the quantile functions. In Chapter 2, we aim to identify what

impacts each quantile function by allowing subsets of covariates for each quantile to

vary smoothly across quantiles.
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1.2 Matrix Variate Model

In the second part, we study matrix variate models (Dawid, 1981; Gupta and

Varga, 1992) to explain two-way dependencies in data. Recent work on matrix variate

models (Dutilleul, 1999; Lu and Zimmerman, 2005; Werner et al., 2008; Efron, 2009;

Allen and Tibshirani, 2010; Yin and Li, 2012; Hoff, 2011a) has focused on developing

algorithms and theoretical properties for using the Kronecker product covariance

models to explain the two-way dependencies in the observational data that arise from

diverse areas such as image and signal processing, wireless communication, biology

and genomics, and neuroscience. To explain the dependencies in spatiotemporal data

(Cressie and Wikle, 2011), Smith et al. (2003) decompose data into functions of time

and space. Leng and Tang (2012) consider the Kronecker product model with sparse

graphical structure and Zhou (2014) analyzes this sparse Kronecker product model

with one matrix variate data. Kalaitzis et al. (2013) use a Kronecker sum model,

which is related to our work, to explain the structure of a precision matrix. The

Kronecker sums and products of covariance functions describe the additive processes

in the context of errors-in-variables models, spatial statistics and spatiotemporal

modeling (Carroll et al., 1985; Stefanski, 1985; Hwang, 1986; Iturria et al., 1999;

Carroll et al., 2006).

The present work fits a new ensemble of additive covariance models to biological

and neuroscience datasets. The baseline Kronecker sum covariance structure has the

form of Σ = A⊕B := A⊗ In + Im ⊗B ∈ Rmn×mn, where A ∈ Rm×m and B ∈ Rn×n

are positive definite matrices, and In ∈ Rn×n is an identity matrix. This Kronecker

sum model is motivated by the additive model of X = X0 + W ∈ Rm×n, where we
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use one covariance component A to describe the covariance among columns of X0,

and the other component B to describe the covariance among rows of W .

The additive covariance model has potential for applications. For example, we

may consider brain image data collected over time with additive noise, which yields

a grainy appearance. If each row in the data represents the full image at a given

time while each column represents a voxel, corresponding to an unique brain region,

then the matrix A may show the relationships between brain regions, and the ma-

trix B may uncover the noise pattern over time. If the rows of X are time series

measurement at different locations, this model describes the temporal dynamics and

the spatial correlation. If the rows of X are repeated trials, with each trial pro-

ducing a time series, this model describes the temporal dynamics and the trial-wise

dependence. In some settings, we may find that one summand in the decomposition

X = X0 +W is primarily “signal” and the other is primarily “noise”.

In Chapter 3, we review recent methods for errors-in-variables regression un-

der the Kronecker sum covariance model, and compare Lasso-type and Conic-type

estimators used in Rudelson and Zhou (2015). The estimators can be used in node-

wise regression procedure to estimate the inverse covariance matrices Θ = A−1 and

Ω = B−1 in Chapter 4. We apply the Kronecker sum model to neuromotor con-

trol study of hawkmoths (Sponberg et al., 2015), where the data consist of torque

measurement (movement) and motor signal. We analyze the temporal and spatial

dynamics in the movement data. To assess the goodness of fit of the Kronecker sum

model to neuromotor control study, we use a scale-invariant statistic, which shows

that the movement data is explained well by the Kronecker sum model. We use mea-

surement error regression techniques from Chapter 3, and analyze the relationship
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between neural firing and torque.



CHAPTER 2

Multiple Quantile Regression with High

Dimensional Covariates

2.1 Introduction

In this paper, we consider joint quantile regression in the high dimensional setting,

where the number of potential covariates as well as the number of quantiles are

allowed to increase with n. The penalty we use consists of two components; the first

shrinks the magnitudes of the coefficients toward zero; the second controls the rate

of changes in coefficients at adjacent quantiles. Both contribute to sparse and stable

model selection across quantiles. We propose to minimize the combined penalty in

a way that is similar to the Dantzig selector proposed by Candes and Tao (2007).

Throughout this paper, the size of set differences of the selected models at adjacent

quantiles and the size of the union of the selected covariates across all quantiles of

interest will be used to quantify stability of selected models. Moreover, we study a

post–selection quantile regression estimate and establish its asymptotic distribution.

The rest of the part is organized as follows. In Section 2.2, we describe the

quantile regression model and the proposed Dantzig–type joint quantile regression

estimation under consideration. Its theoretical properties are presented in Section

6
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2.3. An implementation of the proposed method is described in Section 2.4, which

is shown in Section 2.5 to be consistent in recovering the exact model structure with

high probability. Section 2.6 discusses post–selection joint quantile regression and its

theoretical properties. The simulation results presented in Section 2.7 demonstrate

that the proposed method provides sparse and stable model selection across quantiles.

A real data example and some concluding remarks are given in Section 2.8 and

Section 2.9, respectively. All technical proofs and the additional simulation study

are presented in the Supplementary material.

2.2 Model and Method

LetX = (x1, · · · , xn)T be an n×p fixed design matrix and Y = (y1, · · · , yn)T ∈ Rn

be an n-dimensional response vector. Consider the following quantile regression

model at multiple quantile levels 0 < τ1 < · · · < τKn < 1, where Kn is allowed to

increase with n,

Y = Xβ(τk) + ε(k) (k = 1, . . . , Kn), (2.1)

where β(τk) ∈ Rp is a τk-th quantile coefficient vector in the sense that xi
Tβ(τk) is the

τk-th quantile of yi evaluated at xi, which will be called the conditional quantile of yi

given xi for the sake of convenience, and ε(k) = (ε
(k)
1 , · · · , ε(k)

n )T is an n-dimensional

vector with mutually independent elements and

P
[
ε

(k)
i ≤ 0 | xi

]
= τk (i = 1, . . . , n; k = 1, . . . , Kn).

In the special case where we have a linear model with i.i.d. errors, ε(k) would depend

on k only through a location shift. Our model assumes that the conditional quantile

of yi given xi is linear at each τk, but no distributional assumptions are made on



8

ε(k). Let T (k) be the support set of β(τk) and B(k) be the indices where the quantile

coefficients at the τk-th quantile are different from those at the τk−1-th quantile; that

is,

T (k) = {j ∈ {1, . . . , p} : βj(τk) 6= 0} (k = 1, . . . , Kn), (2.2)

B(k) = {j ∈ {1, . . . , p} : βj(τk) 6= βj(τk−1)} (k = 2, . . . , Kn).

Let sk = |T (k)| denote the sparsity level of the model for the τk-th quantile. We

consider a high dimensional sparse model with max(n,Kn) = o(p), where p =

o
(
exp(nb)

)
for some constant b > 0. Let s0 := maxk sk. Our goal is to recover

support sets T (k) (k = 1, . . . , Kn), B(k) (k = 2, . . . , Kn), and coefficient vectors

β(τk) (k = 1, . . . , Kn).

Let w(k) (k = 1, . . . , Kn) and v(k) (k = 2, . . . , Kn) be p-dimensional vectors of

nonnegative weights, λ be a regularization parameter, and rk > 0 for k = 1, . . . , Kn

be constraint bounds to be chosen. We consider the following convex optimization

problem:

min
B=[β(1),··· ,β(Kn)]∈Rp×Kn

Kn∑
k=1

p∑
j=1

w
(k)
j |β

(k)
j |+ λ

Kn∑
k=2

p∑
j=1

v
(k)
j

|β(k)
j − β

(k−1)
j |

|τk − τk−1|
, (2.3)

s.t. ∀k, β(k) ∈ R(k)(rk) =

{
β ∈ Rp :

1

n

n∑
i=1

ρτk(yi − xiTβ) ≤ rk

}
, (2.4)

where ρτ (t) = t(τ−1{t ≤ 0}) is the τ -th quantile loss function (Koenker and Basset,

1978).

Let B̂ = [β̂(1), · · · , β̂(K)] be any optimum of (2.3) and (2.4), as an estimator

of the true parameter Bo = [β(τ1), . . . , β(τKn)]. In (2.3), two types of penalties are

required to simultaneously provide sparse and stable models. The first one, a sparsity

penalty, aims to obtain a sparse model. The second one, a weighted total variation
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penalty (WTV), controls the rate of change in quantile coefficients functions; see the

related work by Rudin et al. (1992) and Tibshirani et al. (2005). The feasible set of

the optimization problem (2.3) is non-empty for any choices of positive rks because

there always exists β ∈ Rp satisfying Y = Xβ provided that the column space of X

spans Rn.

Throughout the paper, it is to be understood that the design matrix X is nor-

malized to have column `2 norm
√
n, and non-stochastic. The quantities p, s0 and

Kn depend on the sample size n. Given a vector δ = (δ1, · · · , δp)T ∈ Rp and a set

of indices S ⊂ {1, . . . , p}, denote by δS ∈ Rp the vector with the jth component

δS,j = δjI(j ∈ S). Let ‖δ‖0, ‖δ‖∞ and ‖δ‖q for any positive integer q be the number

of nonzero components, the maximum absolute value and the `q norm of δ, respec-

tively. Let Sc be the complement set of S. For p-dimensional vectors β(1), · · · , β(K),

let [β(1), · · · , β(K)] be the p ×K matrix whose kth column is β(k) for k = 1, . . . , K.

For two numbers a and b, we also use the notation a∨b = max{a, b}, a∧b = min{a, b}

and x+ = xI(x > 0) for x ∈ R. For sequences {an} and {ζn}, we write an = O(ζn)

to mean that an ≤ Cζn for a universal constant C > 0. Similarly, an = Ω(ζn) when

an ≥ C ′ζn for some universal constant C ′ > 0.

We also summarize notations used in the theorems in Table 2.1.



10

Table 2.1: Notations used in the Chapter
Parameters Definitions

λ = A regularization parameter in (2.3)

dmin = mink≥2 |τk − τk−1|
W0 = maxk

∥∥∥w(k)
(T (k))

c

∥∥∥
∞

∨
maxk≥2

∥∥∥v(k)
(B(k))

c

∥∥∥
∞

W1 = maxk
∥∥w(k)

T (k)

∥∥
∞

∨
maxk≥2

∥∥v(k)
B(k)

∥∥
∞

W2 = mink minj∈{T (k)}c w
(k)
j

∧
mink≥2 minj∈{B(k)}c v

(k)
j

c0 = (dminW1 + 2λW ) / (dminW2 − 2λW )

ψλ= (dmin + 2λ) / (dmin − 2λ)

Mn = maxi
∥∥xi,∪kT (k)

∥∥
∞

d0 = |T (1)|+
∑K

k=2 |B(k) \ T (k)|
M(S) = Median of a sequence of real number S

2.3 Theoretical Properties

We first define the following cone constraint: for any set J ⊂ {1, · · · , p} and any

positive number c,

C(J, c) = {x ∈ Rp | x 6= 0, ‖xJc‖1 ≤ c‖xJ‖1} .

Define a restricted eigenvalue (RE) condition (Bickel et al., 2009; van de Geer and

Buhlmann, 2009): for any integer 0 < s < p and any positive number c > 0, RE(s, c)

means

k2(s, c) := min
J⊆{1,...,p},
|J |≤s

min
δ∈C(J,c)

δTXTXδ

n‖δJ‖2
2

> 0, (2.5)

which is imposed on the p× p sample covariance matrix XTX/n. The RE condition

is needed to guarantee consistency of the Lasso and Dantzig selectors (Bickel et al.,

2009). This condition also implies that the gram matrix XTX/n behaves like a

positive definite matrix over the cone C(J, c) for any J such that |J | ≤ s.
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Similarly, we introduce a restricted nonlinear impact (RNI) condition, as in Bel-

loni and Chernozhukov (2011): For any integer 0 < s < p and any positive number

c > 0, RNI(s, c) means

q(s, c) := min
J⊆{1,...,p},
|J |≤s

min
δ∈C(J,c)

‖Xδ‖3
2

n1/2‖Xδ‖3
3

> 0, (2.6)

which controls the norm ‖Xδ‖3 by ‖Xδ‖2 over the cone C(J, c) for any J such that

|J | ≤ s. RNI(s, c) can be equivalently written as for δ ∈ C(J, c),(
1

n

n∑
i=1

|xTi δ|2
)3

≥ q2(s, c)

(
1

n

n∑
i=1

|xTi δ|3
)2

,

which implies that the third sample moment is controlled by the second sample

moment. This condition is necessary to control the quantile regression objective

function by quadratic terms (Belloni and Chernozhukov, 2011).

Condition 2.3.1. [On the conditional density] For each i = 1, . . . , n, let fi(·)

denote the probability density function of yi given xi. The function fi(·) has a

continuous derivative f ′i(·). For each i, fi(·) ≤ f , |f ′i(·)| ≤ f and mink fi
(
xi
Tβ(τk)

)
≥

f for some constants f, f > 0.

Condition 2.3.2. [On the weights] Let W0 and W1 be the maximum weight

imposed on the zero components and nonzero components, respectively, and W2 be

the minimum weight imposed on zero components. The weights satisfy

W2

W0 ∨W1

≥ 2.5λ

mink |τk − τk−1|
.

Condition 2.3.3. [On the growth rate of the sparsity] The maximal sparsity s0

satisfies the growth condition, s0 log p = o(n).
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Condition 2.3.1 is the same as Condition D.1 in Belloni and Chernozhukov (2011).

For the location model and the location-scale model, Belloni and Chernozhukov

(2011, Lemmas 1 and 2) analyze the sufficient conditions of Condition 2.3.1 by spec-

ifying the values of f , f . Condition 2.3.2 imposes a lower bound on W2/(W0 ∨W1).

This condition implies that W2 must not be too small, which means that zero com-

ponents must be penalized in the optimization problem (2.3) and (2.4). In Sections

2.3 and 2.4, we show that W0,W1 and W2 can be constructed from an appropriate

initial estimator, and W0 and W1 are upper bounded and W2 is lower bounded by

some constants. Condition 2.3.3 is necessary for the consistency of our estimators.

Remark 2.3.1. Note that the regular adaptive lasso weights are used in Jiang et al.

(2013), where w
(k)
j = 1/|β̃(k)

j |q and v
(k)
j = 1/|β̃(k)

j − β̃
(k−1)
j |q with an initial estimate

β̃(k) at quantile level τk and q > 0. Condition 2.3.2 is not guaranteed for this weight

because W0 ∨W1 can have any arbitrary large number. This motivates us to use

a different type of weights, and in Section 3 the derivative of the SCAD penalty

function is used for calculating the weights w
(k)
j and v

(k)
j that satisfy Condition 2.3.2

with high probability, as can be seen in the proof of Theorem 2.5.1.

Throughout this section, for any η ≥ 0, let Eη be the event

Eη =

{
0 ≤ rk −

1

n

n∑
i=1

ρτk
(
yi − xiTβ(τk)

)
≤ η (k = 1, . . . , K)

}
. (2.7)

The following theorem shows the consistency of the proposed estimator B̂.

Theorem 2.3.1. Suppose that Conditions 2.3.1-2.3.2, RE(2s0, c0) and RNI(2s0, c0)

hold. Let B̂ = [β̂(1), · · · , β̂(K)] be the solution to (2.3) and (2.4). Let ηn = o(1) be

any sequence of positive numbers with 0 ≤ ηn < 9f 3q2(2s0, c0)/(32f
2
). Then we have
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with probability at least 1− 1/n− P(Ecηn),

max
k
‖β̂(k) − β(τk)‖2 ≤ ξ1

√
s0 log p

n
+ ηn, (2.8)

K∑
k=1

‖β̂(k)

{T (k)}c‖1

∨
λ

K∑
k=2

∥∥∥∥∥{β̂(k) − β̂(k−1)}{B(k)}c

|τk − τk−1|

∥∥∥∥∥
1

≤ ξ3s0K

√
log p

n
+ ξ3

√
s0K
√
ηn,

(2.9)

where for some absolute constant C1 > 0,

ξ1 =
2(1 + c0)2

k(2s0, c0)
√
f

{
1 +

2C1

k(s0, c0)

}
and ξ3 = ξ1

W1

W2

. (2.10)

The upper bound in (2.8) implies that the estimates β̂(k) for k = 1, · · ·Kn are

uniformly consistent when ηn = o(1) and n = Ω(s0 log p). The upper bound in (2.8)

has two components, where the first component
√
s0 log p/n is within a factor of

√
log p of the oracle rate, and the second component

√
ηn characterizes the bias

induced by the use of the feasible region R(k)(rk) in (2.7). To obtain the consistency

rate
√
s0 log p/n for β̂(k) in (2.8), which is an expected bound for high dimensional

models (Belloni and Chernozhukov, 2011; Fan et al., 2014a; Zheng et al., 2015),

ηn = O(s0 log p/n) is required. By using a consistent initial estimate, we can choose

such ηn with rk such that the event Eηn holds with a high probability; See (2.16) for

details.

As can be seen in (2.8), as ηn increases, the estimation error bound is larger while

the probability P(Ecηn) becomes smaller. The optimal rk is 1
n

∑n
i=1 ρτk

(
yi − xiTβ(τk)

)
,

which provides the fastest convergence rate. Therefore, using rk near this optimal

value in (2.4) is a key part of our implementations. We use a proper initial estimate

of β(k) to estimate the optimal value rk in (2.11).



14

Inequality (2.9) shows that the `1 norm of the quantile coefficients estimates

for inactive predictors (with true zero coefficients) converges to zero provided that

W1/W2 = o(1), K2
nηn = o(1) and n = Ω(K2

ns0 log p). Moreover, the `1 norm is

deceasing as W1/W2 becomes smaller, which implies that choosing smaller weights

W1 and larger weights W2 would improve the rate of convergence, which is consistent

with the idea used in adaptive Lasso.

Later in Theorem 2.5.2, we will discuss exact model structure selection by us-

ing (2.9) with an additional beta–min condition.

Remark 2.3.2. The quantity ξ1 in (2.10) depends on n by the term k(2s0, c0) and

k(s0, c0). Consider a simple case that τk− τk−1 = 1/Kn for all k, and w
(k)
j = v

(k)
j = 1

for all k and j. Then W0 = W1 = W2 = 1, and Condition 2.3.2 reduces to λ ≤

2/(5Kn). If λ = 2/(5Kn), then the condition of c0 in Theorem 2.3.1 is equivalent to

c0 ≥ 9. Specifically, if c0 = 9, then ξ1 is less than some universal constant given that

k(2s0, 9) is lower bounded by some universal constant.

Remark 2.3.3. Our formulation (2.3) enables us to use rk as a tunning parameter,

and the scale of rk is more interpretable than a tuning parameter in the Lagrangian

formulation. Letting the weights of the quantile loss functions for all quantile levels

to be equal in the dual problem is proposed by Jiang et al. (2013) under the fixed p

setting, which includes fewer regularization parameters. But it is not clear whether

model selection consistency holds for such estimators in the high dimensional setting.

Moreover, our empirical work shows that, in terms of model selection, our proposed

method outperforms the implementation based on the equal weights in the dual

problem. See Section 2.7 for details.
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2.4 Implementation

We provide a specific realization for the Dantzig–type joint quantile regression in-

troduced in Section 2.2. This procedure involves the derivative of the SCAD penalty

function (Fan and Li, 2001):

Pζ(x) = I(x ≤ ζ) +
(3.7ζ − x)+

2.7ζ
I(x > ζ)

with a regularization parameter ζ ≥ 0. We now specify the multi-step procedure.

Step 1. Obtain initial estimates. We obtain initial estimates following Belloni

and Chernozhukov (2011). Let λ̃ = 1.1 Π(0.9) be a regularization parameter, where

Π(0.9) is defined in Remark 2.4.1,

β̃(k) = arg min
β∈Rp

1

n

n∑
i=1

ρτk
(
yi − xiTβ

)
+ λ̃‖β‖1 (k = 1, . . . , Kn). (2.11)

Step 2. Solve the Dantzig-type optimization. To solve the optimization (2.3)

and (2.4), we use the following specifications.

Step 2a: For the parameters in the objective function (2.3), we use the following

specifications. Let s̃ = maxk ‖β̃(k)‖0.

ζn = 0.1
√
s̃ log p/n, (2.12)

w
(k)
j = Pζn

(
|β̃(k)
j |
)

(k = 1, . . . , Kn), (2.13)

v
(k)
j = Pζn

(
|β̃(k)
j − β̃

(k−1)
j |

)
(k = 2, . . . , Kn), (2.14)

λ = 0.4 min
k≥2
|τk − τk−1|. (2.15)

Step 2b Let h > 0 denote a scaling parameter to be chosen and Λ
(h)
k ≥ 0 (k =

1, . . . , Kn) be regularization parameters taken to be Λ
(h)
k = M(Rk)h, where M is



16

defined in Table 1 and Rk =
{
|yi − xiT β̃(k)| : i = 1, . . . , n

}
. For the parameter rk

in the constraint (2.4), we use

r
(h)
k =

1

n

n∑
i=1

ρτk

(
yi − xiT β̃(k)

)
+ Λ

(h)
k

s̃ log p

n
(k = 1, . . . , Kn). (2.16)

Step 3. Choose h. We use 5-fold cross validation to minimize the sum of

the quantile loss functions over all quantiles of interest. More specifically, we ran-

domly split the data into five roughly equal parts X(1), · · · , X(5) ∈ R[n/5]×p and

y(1), · · · , y(5) ∈ R[n/5]×1, respectively. For t = 1, · · · , 5, let X(t) =
[
x

(t)
1 , · · · , x(t)

[n/5]

]T
.

Let β̂
(k)
t (h) (k = 1, · · · , Kn) be the solution to the (2.3) and (2.4) following Step 1

and Step 2 for the data X and Y excluding the tth fold. Let the CV score function

score(h) :=
5∑
t=1

Kn∑
k=1

[n/5]∑
i=1

ρτk

(
y

(t)
i − (x

(t)
i )T β̂

(k)
t (h)

)
.

We choose h0 from the set S := {0.01, 0.02, · · · , 4} that minimizes the score, that is,

ho := arg min
h∈S

score(h).

The Dantzig-type estimate β̂(k) is the solution to (2.3) and (2.4) using the afore-

mentioned specifications with h = ho, Λk := Λ
(ho)
k , and rk := r

(h0)
k .

In Step 2 (b), Λ
(h)
k plays the role of scaling to achieve scale equivariance of the

method. It is obvious that those choices of the regularization parameters do not

give the best results for any given models, but they lead to good empirical results

in a variety of settings and could help understand how the proposed Dantzig–type

penalization performs with reasonable choices of these tuning parameters.

Remark 2.4.1. Following Belloni and Chernozhukov (2011), define

Π := max
1≤k≤Kn

max
1≤j≤p

1

n

∣∣∣∣∣
n∑
i=1

xij (τk − I(ui ≤ τk))√
τk(1− τk)

∣∣∣∣∣ ,
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where u1, · · · , un are independent and identically distributed from the uniform distri-

bution on (0, 1) and independent of xis, and xij is the jth component of the design

xi for i = 1, . . . , n and j = 1, . . . , p. Let Π(0.9) be the 0.9th quantile of Π that

can be computed using simulated Π. As seen in Step 1, we use λ̃ = 1.1 Π(0.9),

where the constant factor 1.1 differs from the recommendation made in Belloni and

Chernozhukov (2011), giving us initial estimates with low false negative rates.

2.5 Theoretical Properties (continued)

Let B̂ = [β̂(1), · · · , β̂(Kn)] be any optimum of (2.3) and (2.4), where w
(k)
j s, v

(k)
j s and

rks are defined in (2.13), (2.14) and (2.16). Define an event for the initial estimates

β̃(k)s for k = 1, . . . , Kn as follows: for some positive constants C2, C3 and C4,

E1 =

{
λ̃ ≤ C2

√
log p

n
, max

k
‖β̃(k) − β(τk)‖2 ≤ C3

√
s0 log p

n
, max

k
‖β̃(k)‖0 ≤ C4s0

}
,

(2.17)

Denote by γn := P(Ec
1) the probability that the event E1 does not occur.

Belloni and Chernozhukov (2011) prove that their estimators and the correspond-

ing regularization parameters as stated in (2.11) satisfy condition E1 with probability

close to 1.

For theoretical properties of the estimates detailed in Section 2.4, we assume the

following conditions.

Condition 2.5.1. [On the regularization parameters] Assume that

min
k

Λk ≥ 6
√
C4 + 1C3 and ζn ≥ 2C3

√
s0 log p/n.
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Condition 2.5.2. [On the non-zero coefficients] The following beta-min conditions

hold for some positive constants C5 and C6,

min
k

min
j∈T (k)

|βj(τk)| > C5

√
s0 log p

n
, (2.18)

min
k≥2

min
j∈B(k)

|βj(τk)− βj(τk−1)|
|τk − τk−1|

> C6Kn

√
s0 log p

n
, (2.19)

where we assume n = Ω(K2s0 log p).

Our multi-step Dantzig–type joint quantile estimator B̂ is consistent as shown in

the following theorems.

Theorem 2.5.1. Suppose Conditions 2.3.1,2.3.3,2.5.1, RE(2s0, ψλ) and RNI(2s0, ψλ)

hold. Then with probability at least 1− 2/n− γn, B̂ satisfies

max
k
‖β̂(k) − β(τk)‖2 ≤ ξ2

√
s0 log p

n
,

where for some absolute constant C > 0, ξ2 = C

k(2s0,ψλ)
√
f

√
1 + maxk Λk.

The following Theorem 2.5.2 shows that B̂ recovers the exact model structure

under appropriate conditions.

Theorem 2.5.2. Suppose that the conditions of Theorem 2.5.1 and Condition 2.5.2

hold. Then

P
({
T̂ (k) = T (k) and B̂(k) = B(k) for all k

})
≥ 1− 2

n
− γn.

Theorem 2.5.1 follows from (2.8) in Theorem 2.3.1 and shows that our multi-step

Dantzig–type joint quantile estimator B̂ is consistent when n = Ω(s0 log p) under

appropriate conditions. Theorem 2.5.1 requires the lower bound of Λk for the feasible
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regions (2.4) to include the true parameter Bo with high probability. In simulations,

our estimator still worked quite well even if Λk is set to zero so Condition 2.5.1 is

violated.

Theorem 2.5.2 implies that the true parameter Bo belongs to the set of optimal

solutions with high probability and B̂ recovers the true model structure with high

probability, which also satisfies the exact model selection property (Zhao and Yu,

2006; Wainwright, M., 2009; Fan et al., 2014a).

Remark 2.5.1. The beta-min condition (2.18) imposes a lower bound of the nonzero

coefficients. While Condition (2.18) has been studied in high dimensional analysis

to establish the exact model selection property (Meinshausen and Bühlmann, 2006;

van de Geer et al., 2011; Bühlmann and van de Geer, 2011), the beta-min condition

(nonzero rate of change in interquantile coefficients) that provides a lower bound on

the nonzero interquantile differences rate has not been considered elsewhere.

The beta–min condition (2.19) can be demonstrated by the following example.

For simplicity, we consider equally-spaced quantile levels τk (k = 1, . . . , Kn) with

τk − τk−1 � 1/Kn. Consider a location–scale model, as used in Example 2.7.2 in

Section 2.7, yi = xi
Tβ + xi

T rεi, where the design xi and the vector r ∈ Rp have

nonnegative components with xTi r > 0 for all i. Then (2.19) holds as long as the

components of r satisfy rj1{rj 6= 0} � Kn

√
s0 log p/n (j = 1, . . . , p), where rj is the

jth component of r.

2.6 Post–Selection Joint Quantile Regression

We consider a post–selection joint quantile regression that minimizes the sum

of quantile loss functions over all quantiles of interest based on the model struc-
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ture T̂ (k) (k = 1, . . . , Kn) and B̂(k) (k = 2, . . . , Kn) of the multi-step Dantzig–type

joint quantile estimator B̂ = [β̂(1), · · · , β̂(K)] as described in Section 2.4. The post–

selection joint quantile estimator (POST JQR) denoted by B̂po is a minimizer of

min
B=[β(1),··· ,β(Kn)]∈G

∑
k

∑
i

ρτk
(
yi − xiTβ(k)

)
, where (2.20)

G =
{
B = [β(1), . . . , β(Kn)] ∈ Rp×Kn : β(k)

{T̂ (k)}c = 0, β(k)
{B̂(k)}c = β(k−1)

{B̂(k)}c

}
is a set of matrices whose induced model structure is the same as the structure

of B̂. Throughout this section, we assume that T̂ (k) = T (k) (k = 1, . . . , Kn) and

B̂(k) = B(k) (k = 2, . . . , Kn), which holds with probability tending to 1. As can be

seen in the proof of Theorem 2.6.1 in the Supplementary material, there is a one-

to-one mapping T between G and Rd0 , where d0 is the effective dimension of the

parameter for the selected model as defined in Table 4.1. In other words, the set

G ⊂ Rp×Kn in (2.20) can be embedded in Rd0 . We use T (B̂po) to estimate T (Bo),

which is a d0–dimensional vector that consists of the active components of Bo.

To establish the theoretical properties of T (B̂po), we redefine POST JQR. As

defined in the proof of Theorem 2.6.1 in the Supplementary material, there exist

new design variables z
(k)
i (i = 1, . . . , n; k = 1, . . . , Kn) such that

T (B̂po) = arg min
β∈Rd0

∑
k

∑
i

ρτk

(
yi − (z

(k)
i )Tβ

)
. (2.21)

Now to establish the asymptotic convergence rate and asymptotic normality of

T (B̂po), we use the following sparse eigenvalue condition: For 0 < s < p,

Sparse(s) : φ(s) = max
‖δ‖0≤s

‖Xδ‖2
2

n‖δ‖2
2

<∞. (2.22)

Sparse(s) means that the maximal s-sparse eigenvalue of the gram matrix XTX/n

is bounded by some constant (Rudelson and Zhou, 2013; Belloni et al., 2015; Zheng
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et al., 2015). We use the following conditions to show the theoretical properties of

the estimator.

Condition 2.6.1(a). [On the sample size]

n = Ω
(
d0s

3
0(log n)6 ∨M4

nd0(log n)2
)
.

Condition 2.6.1(b). n = Ω (d5
0s

3
0(log n)6 ∨M2

nd
3
0s0) .

Condition 2.6.1(a) is used to show the asymptotic oracle consistency of the estima-

tor in Theorem 2.6.1, and Condition 2.6.1(b) is required for showing the asymptotic

normality of the estimator in Theorem 2.6.2. These conditions involve d0, s0, Mn

and n. If the entries in xi are uniformly bounded, and d0 and s0 grow slowly with

n, Condition 2.6.1(a) is quite mild. The POST JQR enjoys the asymptotic oracle

consistency rate as follows:

Theorem 2.6.1. Suppose the conditions of Theorem 2.5.2 together with Condition

2.6.1(a) and Sparse(s0). Then

‖T (B̂po)− T (Bo)‖2 = Op

(√
d0/n

)
. (2.23)

Theorem 2.6.2. Suppose that the conditions of Theorem 2.6.1 and Condition

2.6.1(b) hold. Then, for any sequence of vectors αn ∈ Rd0 with ‖αn‖2 = 1, T (B̂po) is

asymptotically normal,

αTn
√
n(An

−1BnAn
−1)−

1
2

(
T (B̂po)− T (Bo)

)
→d N(0, 1),

where

An =
Kn∑
k=1

n∑
i=1

1

n
fi
(
xi
Tβ(τk)

)
z

(k)
i

(
z

(k)
i

)T
,
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Bn =
n∑
i=1

∑
k,k′=1,...,Kn

1

n
z

(k)
i

(
z

(k′)
i

)T
(τk ∧ τk′ − τkτk′) ,

with z
(k)
i given in the proof of Theorem 2.6.1 in the Supplementary material.

Theorem 2.6.2 provides sufficient conditions for the asymptotic normality of

POST JQR, which relies on the exact model structure property as defined in Theo-

rem 2.5.2. This property is typically fragile without beta-min condition, and is not

uniformly valid (Leeb and Pötscher, 2005). Leeb and Pötscher (2003) and Belloni

et al. (2015) considered the post-model-selection estimator conditional on selecting

an incorrect model, and established the uniform asymptotic distribution of the esti-

mator. Establishing an asymptotic distribution without beta-min condition in our

setting will also be of interest in a follow-up work.

2.7 Numerical Studies

Our optimization problem (2.3) is equivalent to a linear programming problem

with the aid of slack variables, and can be solved by existing optimization packages in

a way that is similar to the problem of Jiang et al. (2013). For the other estimators,

we use β̃(k) as an initial estimate at τk-th quantile. More specifically, ALasso at τk is

arg min
β∈Rp

1

n

n∑
i=1

ρτk(yi − xiTβ) + λad,k

p∑
j=1

|βj|/|β̃(k)
j |,

where λad,k is the regularization parameter to be chosen by 5-fold cross validation to

minimize the τk-th quantile loss function, and FAL (Jiang et al., 2013) finds

arg min
[β(1),··· ,β(Kn)]∈Rp×K

1

n

Kn∑
k=1

n∑
i=1

ρτk
(
yi − xiTβ(k)

)
+ λa

(
Kn∑
k=1

p∑
j=1

w
(k)
j |β

(k)
j |+

Kn∑
k=2

p∑
j=1

v
(k)
j |β

(k)
j − β

(k−1)
j |

)
,
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where w
(k)
j = 1/|β̃(k)

j | and v(k)
j = 1/|β̃(k)

j − β̃
(k−1)
j | and λa is the regularization

parameter to be chosen by 5-fold cross validation to minimize the sum of quantile loss

functions over all quantiles of interest. Our proposed estimator Dantzig is described

in Section 2.4.

To assess the performances of the competing methods, the following performance

measures were calculated based on 100 Monte Carlo replications.

1. “FPk”, the number of false positives in the selected model at τk, i.e., |T̂ (k)\T (k)|;

2. “FNk”, the number of false negatives in the selected model at τk, i.e., |T (k)\T̂ (k)|;

3. “SDk”, the size of the set difference of the selected models for adjacent quantile

levels, τk and τk−1, i.e., |T̂ (k)4T̂ (k−1)| for k = 2, . . . , Kn;

4. “FPU”, the number of false positives in the union of the selected models across

all quantile levels, i.e., | ∪k T̂ (k)\ ∪k T (k)|;

5. “FNU”, the number of false negatives in the union of the selected models across

all quantile levels, i.e., | ∪k T (k)\ ∪k T̂ (k)|.

In the following examples, we consider five different models, a location model, a

location-scale model and a random coefficient model.

Example 2.7.1. Consider the linear regression model with (n, p,Kn, s0) = (100, 500, 5, 6)

and (τ1, τ2, τ3, τ4, τ5) = (0.30, 0.40, 0.50, 0.60, 0.70):

yi = xi
Tβ + εi, β = (1.0, 0.8, 0.0, 0.9, 0.5, 0.0, 0.3, 0.7, 0.0, · · · , 0.0)T ,

where εis are independent and identically distributed from the standard normal distri-

bution and independent of xis. The regressors are xi = (1, zi)
T , where zij ∼ N(0,Σ)
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is generated from the autoregressive model, AR(1), with correlation 0.5, that is,

Σ(i,j) = 0.5|i−j|.

Example 2.7.2. Consider the following location-scale model with (n, p,Kn, s0) =

(100, 500, 5, 7) and (τ1, τ2, τ3, τ4, τ5) = (0.30, 0.40, 0.50, 0.60, 0.70):

yi = x1 + 0.8x2 + 0.9x4 + 0.5x5 + 0.3x7 + 0.75x8 + (0.5x2 + x3 + 0.5x8)εi,

where εis are independent and identically distributed from the standard normal dis-

tribution and independent of xis. The regressors are generated in two steps, following

Wang et al. (2012). First generate x̃ij ∼ N(0,Σx) from the AR(1) model, with cor-

relation 0.5, and then xij = Φ(x̃ij) (j = 2, 3, 8) and xij = x̃ij (j 6= 2, 3, 8), where Φ is

the cumulative distribution function of the standard normal distribution.

Example 2.7.3. Consider the random coefficient model with (n, p,Kn, s0) = (100, 500, 5, 6)

and (τ1, τ2, τ3, τ4, τ5) = (0.70, 0.75, 0.80, 0.85, 0.90):

yi = xi
Tβ(ui), β(ui) = (β1(ui), · · · , βp(ui))T ,

where u1, · · · , un are independent and identically distributed from the uniform dis-

tribution on (0, 1) and independent of xi, and β1(u) = 1.7 + Φ−1(u), β2(u) = 0.35,

β3(u) = 3(u− 0.8)+, β5(u) = 0.5 + 0.5× 2u, β6(u) = 0.5 + u, β10(u) = 0.4 +
√
u and

βj(u) = 0 (j 6= 1, 2, 3, 5, 6, 10). The regressors are generated in the same way as in

Example 2.7.2.

Example 2.7.4. Consider the model, which is same as Example 1 in the main

paper except that εis follow the standard Cauchy distribution.

Example 2.7.5. Consider the model, which is same as Example 1 in the main

paper except that εis follow the standard Laplace distribution.
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Figure 2.1 shows the performance measures defined in Subsection 2.7.1 for Exam-

ples 2.7.1–2.7.3. The first, second and third rows correspond to Example 2.7.1, Ex-

ample 2.7.2 and Example 2.7.3, respectively. Each row consists of three sub-figures.

The first and the second sub-figures show the number of false positives and the num-

ber of false negatives for each of the five quantile levels, respectively, which explains

the quality and the sparsity of the selected models. The last sub-figure shows the

size of the set differences of the selected models at adjacent quantile levels, and the

number of false positives and false negatives of the union of the selected covariates

over the five quantile levels, which explains the stability of the model. Across all

figures, the largest standard errors for the false positives, the false negatives and the

size of set differences are less than 0.9, 0.1 and 0.5, respectively.

As seen in Figures 2.1 and 2.2, Dantzig includes smaller number of false positives

with more false negatives compared to the other methods. But this increase in

false negatives is relatively small considering the decrease in false positives. Dantzig

has a smaller size of set difference for two neighboring quantiles, and fewer false

positives than other methods for the union of the selected variables across the five

quantile levels. This indicates that Dantzig shares many common variables across

different quantiles, and provides more stable models. Overall, at each quantile,

Dantzig provides sparser model than other competitors in all the examples. In terms

of stability of the selected models across quantiles, Dantzig outperforms the others.
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Figure 2.1: Results for Example 2.7.1 (top), 2.7.2 (middle) and 2.7.3 (below): Include

false positives(left), false negatives (middle) and the stability measures

(right). Four competing procedures are evaluated: Lasso, ALasso, FAL

and Dantzig.
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Figure 2.2: Results for Example 2.7.4 (top) and 2.7.5 (below): Include false positives

(left), false negatives (middle) and the stability measures (right). Four

competing procedures are evaluated: Lasso, ALasso, FAL and Dantzig.

2.8 Application

We consider the proposed Dantzig–type joint quantile regression method in an

application to a genetic data set used in Scheetz et al. (2006). This data set consists

of the expression values of 31042 probe sets for 120 rats. As in Huang et al. (2008),

Kim et al. (2008) and Wang et al. (2012), we are interested in finding genes that are

related to gene TRIM32, which is known for causing Bardet-Biedl syndrome.

The model selection approach is applied to 300 probe sets that pass an initial

screening. See Huang et al. (2008) for details of the screening steps. We apply
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Dantzig, Lasso, ALasso and FAL, which are defined in Section 2.7, and SCAD (Wang

et al., 2012) on these 300 probe sets (p = 300) with 120 rats (n = 120). SCAD is a

single quantile regression method, which uses the SCAD penalty function to penalize

quantile coefficients. We consider two sets of five quantile levels (τ1, τ2, τ3, τ4, τ5) as

(0.48, 0.49, 0.50, 0.51, 0.52) and (0.81, 0.82, 0.83, 0.84, 0.85), representing interests in

the middle and the upper tail of the distribution of the target gene expressions.

To select a tuning parameter for each method, we use 5-fold cross validation. See

Subsections 2.4.1 and 2.7.1 for details.

We report the number of nonzero coefficients (“SIZ”) selected by each method

at each quantile level. The size of the set difference of the selected models at ad-

jacent quantile levels (“DIF”) and the size of the union of the selected covariates

over five quantile levels (“TOT”) are considered to investigate the stability of the

selected models. As can be seen in Table 2.2, the Dantzig–type estimators, Dantzig

and Dantzig0, consistently provide sparser model than other methods. Dantzig also

provides the most stable model as we expected.

We also randomly divide the data set into a training set and a test set; the training

set includes 80 rats and the test set includes 40 rats. We estimate the models with

each method, by using the training set, and record “SIZ”, “DIF” and “TOT”. The

prediction error (“PRE”) is calculated over the test set as the quantile loss for each

quantile level τk. We repeat this random experiments 100 times and report the

average value of “SIZ”, “DIF”, “TOT” and “PRE” over the 100 repetitions for each

method in Table 2.3. As seen in Table 2.3, all of the six methods are similar in

terms of prediction error. In terms of the sparsity of the selected models, all of the

methods except Lasso are similar. But in terms of the stability of models, Dantzig
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outperforms other competitors as we expected. In Table 2.3, the largest standard

errors for the columns corresponding to SIZ, DIF, PRE and TOT are less than 0.7,

0.3, 0.05 and 1.2, respectively.

Table 2.2: Performance results of whole dataset
Method SIZ DIF TOT Method SIZ DIF TOT

Lasso (0.48) 37 Lasso (0.81) 37

Lasso (0.49) 38 9 Lasso (0.82) 41 8

Lasso (0.50) 35 15 Lasso (0.83) 39 8

Lasso (0.51) 36 5 Lasso(0.84) 36 7

Lasso (0.52) 37 3 45 Lasso (0.85) 38 4 49

SCAD (0.48) 24 SCAD (0.81) 20

SCAD (0.49) 24 0 SCAD (0.82) 25 9

SCAD (0.50) 20 6 SCAD (0.83) 16 9

SCAD (0.51) 14 7 SCAD (0.84) 29 13

SCAD (0.52) 18 5 25 SCAD (0.85) 27 4 35

ALasso (0.48) 27 ALasso (0.81) 25

ALasso (0.49) 17 14 ALasso (0.82) 24 3

ALasso (0.50) 20 7 ALasso (0.83) 22 4

ALasso (0.51) 14 6 ALasso (0.84) 21 3

ALasso (0.52) 15 1 29 ALasso (0.85) 28 7 34

FAL (0.48) 21 FAL (0.81) 25

FAL (0.49) 21 0 FAL (0.82) 25 1

FAL (0.50) 22 2 FAL (0.83) 26 2

FAL (0.51) 21 3 FAL (0.84) 25 2

FAL (0.52) 21 2 25 FAL (0.85) 25 2 26

Dantzig (0.48) 21 Dantzig (0.81) 21

Dantzig (0.49) 19 2 Dantzig (0.82) 20 1

Dantzig (0.50) 20 1 Dantzig (0.83) 21 1

Dantzig (0.51) 21 3 Dantzig (0.84) 22 2

Dantzig (0.52) 20 1 22 Dantzig (0.85) 21 1 24
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Table 2.3: Performance results of 100 random partitions of the data
Method SIZ DIF PRE TOT Method SIZ DIF PRE TOT

Lasso (0.48) 30.94 1.79 Lasso (0.81) 32.94 1.33

Lasso (0.49) 31.10 3.35 1.79 Lasso (0.82) 33.04 4.22 1.30

Lasso (0.50) 31.76 4.38 1.78 Lasso (0.83) 33.00 6.36 1.26

Lasso (0.51) 31.92 4.66 1.78 Lasso (0.84) 32.88 4.20 1.23

Lasso (0.52) 32.60 4.78 1.78 37.73 Lasso (0.85) 32.78 4.34 1.21 40.28

SCAD (0.48) 22.04 1.79 SCAD (0.81) 20.90 1.32

SCAD (0.49) 22.82 5.10 1.78 SCAD (0.82) 20.32 6.46 1.27

SCAD (0.50) 21.86 5.44 1.78 SCAD (0.83) 21.02 6.62 1.27

SCAD (0.51) 21.38 4.52 1.78 SCAD (0.84) 22.10 6.12 1.23

SCAD (0.52) 21.66 5.40 1.79 28.74 SCAD (0.85) 20.50 5.16 1.20 28.86

ALasso (0.48) 19.96 1.82 ALasso (0.81) 19.98 1.34

ALasso (0.49) 19.70 2.98 1.79 ALasso (0.82) 19.22 4.04 1.31

ALasso (0.50) 19.32 3.46 1.80 ALasso (0.83) 20.04 5.34 1.26

ALasso (0.51) 19.08 3.40 1.80 ALasso (0.84) 19.92 3.36 1.25

ALasso (0.52) 19.64 3.76 1.80 24.56 ALasso (0.85) 19.44 3.60 1.21 25.78

FAL (0.48) 19.75 1.85 FAL (0.81) 20.95 1.37

FAL (0.49) 20.70 1.28 1.82 FAL (0.82) 21.71 2.34 1.32

FAL (0.50) 20.72 1.94 1.88 FAL (0.83) 20.33 3.90 1.27

FAL (0.51) 20.18 2.40 1.82 FAL (0.84) 20.18 2.76 1.25

FAL (0.52) 19.94 2.59 1.83 23.63 FAL (0.85) 21.74 2.20 1.22 24.55

Dantzig (0.48) 20.20 1.84 Dantzig (0.81) 21.94 1.33

Dantzig (0.49) 20.06 0.98 1.84 Dantzig (0.82) 21.72 1.02 1.31

Dantzig (0.50) 19.98 1.82 1.82 Dantzig (0.83) 21.98 2.70 1.27

Dantzig (0.51) 20.70 2.01 1.81 Dantzig (0.84) 21.60 1.78 1.25

Dantzig (0.52) 21.02 2.52 1.80 22.90 Dantzig (0.85) 21.42 1.18 1.22 23.86

2.9 Conclusion

Model selection stability across quantile levels adds credibility and interpretabil-

ity of the selected models in applications. If the selected models vary significantly

from one quantile to the next when the quantile levels used are very close to each

other, it could be an undesirable feature of model selection. The proposed Dantzig–

type approach leads to a much more stable selection without a noticeable sacrifice

on the prediction error. We adopt a Dantzig–type optimization problem and es-

tablish the uniform non-asymptotic error bounds and model selection consistency
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under appropriate conditions. By using the selected model structure, we also study

post–selection joint quantile regression and establish its asymptotic distributions.

The simulation study and real data analysis show that the proposed method consis-

tently provides sparse and stable models, and reduces the noisy component in model

selection at single quantile levels for both homogeneous and heterogeneous cases.

2.10 Supplementary Material

Let Fi denote the conditional distribution of yi given xi for i = 1, . . . , n, that is

Fi(x) = P [yi ≤ x | xi] for all x ∈ R. Define the diagonal matrices

Hk = diag
[
f1

(
x1

Tβ(τk)
)
, · · · , fn

(
xn

Tβ(τk)
)]

(k = 1, . . . , Kn),

where f1, · · · , fn are defined in Condition 2.3.1 of the main paper. Then for any

vector δ ∈ Rp, we define an intrinsic norm as in Belloni and Chernozhukov (2011),

‖δ‖k,2 =

√
δT
XTHkX

n
δ (k = 1, . . . , Kn). (2.24)

For any positive constant c and the sets T (k) (k = 1, . . . , Kn) defined in (2.2), let

A(k)(c) =
{
δ : δ 6= 0, δ ∈ Rp, ‖δ{T (k)}c‖1 ≤ c‖δT (k)‖1

}
.

Define the function as follows: for k = 1, . . . , Kn,

Q(k)
n (β) =

1

n

n∑
i=1

ρτk(yi − xiTβ),

where the subdifferential of Q(k)
n (β) at β is the following set of vectors (Wang et al.,

2012):

∂Q(k)
n (β) =

{
δ ∈ Rp | δj = −τ

n

∑
i

xijI(yi > xi
Tβ) +

1− τ
n

∑
i

xijI(yi < xi
Tβ)− 1

n

∑
i

xijvi

}
,



32

where xij is the jth component of xi, and vi = 0 if yi 6= xi
Tβ and vi ∈ [τ − 1, τ ]

otherwise. For simplicity, for any B = [β(1), · · · , β(K)] ∈ Rp×Kn , let

G(B) =
Kn∑
k=1

p∑
j=1

w
(k)
j |β

(k)
j |+ λ

Kn∑
k=2

1

|τk − τk−1|

p∑
j=1

v
(k)
j |β

(k)
j − β

(k−1)
j |, (2.25)

which is the objective function of our optimization problem as defined in (2.3), where

w(k) (k = 1, . . . , Kn) and v(k) (k = 2, . . . , Kn) are p-dimensional wight vectors.

For any square matrix A, let λmax(A) and λmin(A) be the maximum eigenvalue

and the minimum eigenvalue of A, respectively.

Preliminary Results

The following Lemma 2.10.1 controls the empirical error over all vectors inA(k)(c0)

for all k = 1, . . . , Kn and is analogous to Lemma 5 of the Belloni and Chernozhukov

(2011).

Lemma 2.10.1. Let c0 and t1, · · · , tKn be positive numbers. Suppose Condition

2.3.1 and RE(2s0, c0) hold. Let

Q̃(k)(v) = E
[
Q(k)
n {β(τk) + v} −Q(k)

n {β(τk)}
]
−Q(k)

n {β(τk) + v}+ Q(k)
n {β(τk)}.

for any v ∈ Rp. Then we have

P

{
sup

v∈A(k)(c0),‖v‖k,2≤tk

∣∣∣Q̃(k)(v)
∣∣∣ > C1

1 + c0

k(s0, c0)
tk

√
s0 log p

n
(k = 1, . . . , Kn)

}
≤ 1

n

(2.26)

for some absolute constant C1 > 0.

Proof of Theorem 2.3.1

We begin by providing several lemmas that will be used for the proof.
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Lemma 2.10.2. Let c0 be a positive number. Suppose RE(2s0, c0) holds. Then we

have for all k = 1, . . . , Kn,

‖δ‖1 ≤
√
s0

1 + c0√
fk(s0, c0)

‖δ‖k,2, ‖δ‖2 ≤
1 + c0√
fk(2s0, c0)

‖δ‖k,2

for all δ ∈ A(k)(c0).

The following Lemma 2.10.3 is a fixed design version of (3.7) in Belloni and

Chernozhukov (2011), which provides the lower bound of the difference of the ex-

pected values of quantile loss function over all vectors in the cone A(k)(c0) for all

k = 1, . . . , Kn.

Lemma 2.10.3. Let c0 be a positive number. Suppose Condition 2.3.1 and RNI(2s0, c0)

hold. Then we have for all k = 1, . . . , Kn,

E
[
Q(k)
n {β(τk) + δ} −Q(k)

n {β(τk)}
]
≥

3f 3/2q(2s0, c0)

8f̄
‖δ‖k,2 ∧

1

4
‖δ‖2

k,2 (2.27)

for all δ ∈ A(k)(c0).

The following Lemma 2.10.4 shows that β̂(k) − β(τk) is included in the specific

cone for all k.

Lemma 2.10.4. Let η be any positive number. Let [β̂(1), · · · , β̂(Kn)] be an optimum

of (2.3) and (2.4) in the main paper. Suppose Condition 2.3.2 holds. Then on event

Eη defined in (2.7) in the main paper, we have

β̂(k) − β(τk) ∈ A(k)

(
dminW1 + 2λ(W0 ∨W1)

dminW2 − 2λ(W0 ∨W1)

)
(k = 1, . . . , Kn),

where W1 and W2 are defined in Table 2.1.
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We fix any c0 and η, which satisfy the conditions in Theorem 2.3.1. Let δk =

β̂(k) − β(τk) (k = 1, . . . , Kn). Let E2 be the event

sup
v∈A(k)(c0),‖v‖k,2≤‖δk‖k,2

∣∣∣Q̃(k)(v)
∣∣∣ ≤ C1

1 + c0

k(s0, c0)
‖δk‖k,2

√
s0 log p

n
(k = 1, . . . , Kn),

where C1 is the constant used in Lemma 2.10.1 and P (E2) ≥ 1 − 1/n by Lemma

2.10.1.

Proof of (5) in Theorem 2.3.1. Throughout the proof, we assume E2 ∩ Eηn holds.

Lemma 2.10.4 implies that δk is in A(k)(c0) for k = 1, . . . , Kn. By Lemma 2.10.3, we

have that for k = 1, . . . , Kn,

‖δk‖2
k,2

4
∧

3f 3/2q(2s0, c0)

8f̄
‖δk‖k,2

≤ Q(k){β̂(k)} −Q(k){β(τk)}

= Q(k)
n {β̂(k)} −Q(k)

n {β(τk)}+ [Q(k){β̂(k)} −Q(k){β(τk)} −Q(k)
n {β̂(k)}+ Q(k)

n {β(τk)}]

≤ ηn + [Q(k){β̂(k)} −Q(k){β(τk)} −Q(k)
n {β̂(k)}+ Q(k)

n {β(τk)}]

≤ ηn + C1
1 + c0

k(s0, c0)

√
s0 log p

n
‖δk‖k,2, (2.28)

where C1 is the absolute constant stated in Lemma 2.10.1.

Notice that (2.28) implies that the first term in the left hand side must be less

than the second term. Suppose otherwise, that is, ‖δk‖k,2 ≥ 3f 3/2q(2s0, c0)/(2f̄).

Then we have

3f 3/2q(2s0, c0)

8f̄
‖δk‖k,2 ≤ ηn + C1

1 + c0

k(s0, c0)

√
s0 log p

n
‖δk‖k,2,

which contradicts the assumption that 0 ≤ ηn < 9f 3q2(2s0, c0)/(32f̄ 2), Thus, we

conclude

‖δk‖2
k,2

4
≤ η + C1

1 + c0

k(s0, c0)

√
s0 log p

n
‖δk‖k,2 (k = 1, . . . , Kn),
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which yields

‖δk‖k,2 ≤ 4C1
1 + c0

k(s0, c0)

√
s0 log p

n
+ 2
√
ηn (k = 1, . . . , Kn). (2.29)

By Lemma 2.10.2 and (2.29), we have

‖δk‖2 ≤ 4C1
(1 + c0)2

k(2s0, c0)k(s0, c0)
√
f

√
s0 log p

n
+ 2

1 + c0

k(2s0, c0)
√
f

√
ηn (k = 1, . . . , Kn),

which implies

‖β̂(k) − β(τk)‖2 ≤
(1 + c0)2

k(2s0, c0)
√
f

{
2 +

4C1

k(s0, c0)

}√
s0 log p

n
+ ηn = ξ1

√
s0 log p

n
+ ηn,

(2.30)

where

ξ1 =
(1 + c0)2

k(2s0, c0)
√
f

{
2 +

4C1

k(s0, c0)

}
.

This completes the proof. �

Proof of (2.8) in Theorem 2.3.1. Throughout the proof, we assume E2 ∩ Eηn holds.

The main idea is to compare the objective functions of our optimization problem as

stated in (2.3) at B̂ and Bo. Since Bo is feasible, G(B̂) must not be greater than

G(Bo), where the function G(·) is defined in (2.25). So we have

0 ≤ G(Bo)−G(B̂) =
K∑
k=1

∑
j∈T (k)

w
(k)
j |βj(τk)|+

K∑
k=2

λ

|τk − τk−1|
∑
j∈B(k)

v
(k)
j |βj(τk)− βj(τk−1)|

−
Kn∑
k=1

∑
j∈T (k)

w
(k)
j |β̂

(k)
j |+

Kn∑
k=2

λ

|τk − τk−1|
∑
j∈B(k)

v
(k)
j |β̂

(k)
j − β̂

(k−1)
j |+

Kn∑
k=1

∑
j∈{T (k)}c

w
(k)
j |β̂

(k)
j |

+
Kn∑
k=2

λ

|τk − τk−1|
∑

j∈{B(k)}c
v

(k)
j |β̂

(k)
j − β̂

(k−1)
j |.

By the triangle inequality with the definition of W1 and (2.30), the above inequality
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implies

Kn∑
k=1

∑
j∈{T (k)}c

w
(k)
j |β̂

(k)
j |+

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈{B(k)}c
v

(k)
j |β̂

(k)
j − β̂

(k−1)
j |

≤
Kn∑
k=1

∑
j∈T (k)

w
(k)
j |β̂

(k)
j − βj(τk)|+

Kn∑
k=2

λ

|τk − τk−1|
∑
j∈B(k)

v
(k)
j |β̂

(k)
j − β̂

(k−1)
j − βj(τk) + βj(τk−1)|

≤ W1

Kn∑
k=1

‖{β̂(k) − β(τk)}T (k)‖1 +W1

Kn∑
k=2

λ

|τk − τk−1|
‖{β̂(k) − β(τk)}B(k)‖1

+W1

Kn∑
k=2

λ

|τk − τk−1|
‖{β̂(k−1) − β(τk−1)}B(k)‖1

≤ W1

√
Kn

√
s0

√√√√ Kn∑
k=1

‖{β̂(k) − β(τk)}‖2
2 (2.31)

+ 2W1
λ

mink≥2 |τk − τk−1|
√
Kn

√
2s0

√√√√ Kn∑
k=1

‖{β̂(k) − β(τk)}‖2
2

≤ ξ1(W1 +
√

2W1)
√
s0Kn

√
s0 log p

n
+ ηn, (2.32)

where the third inequality comes from the Cauchy-Schwarz inequality with |T (k)| ≤ s0

and |B(k)| ≤ 2s0. Applying (2.32) and the definition of W2, we complete the proof.

�

Proofs of Theorem 2.5.1

We begin by providing the following lemmas that will be used for the proof of

Theorem 2.5.1. Lemma 2.10.5 is only used to show Lemma 2.10.6.

Lemma 2.10.5. For an n×p design matrix X = (x1, · · · , xn)T , which is normalized

to have column `2 norm
√
n, we have with probability at least 1− 1/n,

max
k

∥∥∥ n∑
i=1

xi[τk − I{yi ≤ xi
Tβ(τk)}]/n

∥∥∥
∞
≤ 3

√
log p

n
. (2.33)

Recall on event E1 defined in (2.17) in the matin paper, we have for all k,

λ̃ ≤ C2

√
log p/n, ‖β̃(k) − β(τk)‖2 ≤ C3

√
s0 log p/n, ‖β̃(k)‖0 ≤ C4s0. (2.34)
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Now we have the following lemma, which implies that we can find proper ηn on

event E1.

Lemma 2.10.6. Let E1 be the event as defined in (2.17) in the main paper. Suppose

the conditions of Theorem 2.5.1 hold. Then we have P (Eη∗n | E1) ≥ 1 − 1/n, where

η∗n =
(
C2C3

√
C4 + 1 + C4 maxk Λk

)
s0 log p/n.

Lemma 2.10.6 implies

P(Eη∗n ∩ E1) = P(E1)P(Eη∗n | E1) ≥ (1− P(Ec
1)) (1− 1/n) ≥ 1− 1

n
− P(Ec

1).

Let δk = β̂(k) − β(τk) (k = 1, . . . , Kn). On event E3, we have

sup
v∈A(k)(ψλ),‖v‖k,2≤‖δk‖k,2

∣∣∣Q̃(k)(v)
∣∣∣ ≤ C1

1 + ψλ
k(s0, ψλ)

‖δk‖k,2

√
s0 log p

n
(k = 1, . . . , Kn),

where ψλ = (dmin +2λ)/(dmin−2λ) as defined in Theorem 2.5.1, and P(E3) ≥ 1−1/n

by Lemma 2.10.1.

Proof of Theorem 2.5.1. Throughout the proof, we assume Eη∗n ∩ E1 ∩ E3, where

P(Eη∗n ∩ E1 ∩ E3) ≥ 1 − 2/n − P(Ec
1). To exploit the results of Theorem 2.3.1, we

first show that the conditions stated in Theorem 2.3.1 hold and then find a constant

c0 in the current settings. Note that we have W0 ∨ W1 = W2 = 1 because the

maximum absolute value of Pa,ζn(·) is at most 1, and Pa,ζn

(
β̃

(k)
j

)
= 1 (j ∈ {T (k)}c)

and Pa,ζn

(
β̃

(k)
j − β̃

(k−1)
j

)
= 1 (j ∈ {B(k)}c), which follows from

|β̃(k)
j | ≤ ‖β̃(k) − β(τk)‖2 ≤ C3

√
s0 log p

n
< ζn (j ∈ {T (k)}c),

|β̃(k)
j − β̃

(k−1)
j | ≤ ‖β̃(k) − β(τk)‖2 + ‖β̃(k−1) − β(τk−1)‖2

≤ 2C3

√
s0 log p

n
≤ ζn (j ∈ {B(k)}c).
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Therefore, Condition 2.3.2 holds and we have

dminW1 + 2λ(W0 ∨W1)

dminW2 − 2λ(W0 ∨W1)
≤ ψλ.

By using the growth condition of Theorem 2.5.1, where

C̃2 :=
9f 3q2(2s0, ψλ)

32f̄ 2

{
k2(s0, ψλ)

8C2
1(1 + ψλ)2

∧ 1

C2C3

√
C4 + 1 + C4 maxk Λk

}
,

we see that the conditions of Theorem 2.3.1 hold with c0 = ψλ and η = η∗n. Hence

we can use the results of Theorem 2.3.1 with η = η∗n and c0 = ψλ. Hence we have

‖β̂(k) − β(τk)‖2

≤ 4d2
min

(dmin − 2λ)2k(2s0, ψλ)
√
f

√
s0 log p

n
+ {C2C3

√
C4 + 1 + C4 max

k
Λk}

s0 log p

n

≤ ξ2

√
s0 log p

n
(k = 1, . . . , Kn), (2.35)

where

ξ2 =
4d2

min

(dmin − 2λ)2k(2s0, ψλ)
√
f

√
1 + C2C3

√
C4 + 1 + C4 max

k
Λk.

This completes the proof. �

Proofs of Theorem 2.5.2

Let C5 = {(aα + C3) ∨ ξ2} and C6 = {(aα + 2C3) ∨ 2ξ2}/(Kndmin), where α =

ζn(s0 log p/n)−0.5. We first state the following lemma, which is useful to prove The-

orem 2.5.2.

Lemma 2.10.7. Suppose the conditions of Theorem 2.5.2 hold. Then on event E1,

we have W1 = 0, where W1 is defined in Subsection 2.3.2.
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Proof of Theorem 2.5.2. Throughout the proof, we assume Eη∗n∩E1∩E3. By Lemma

2.10.7, we have

G(Bo) =
Kn∑
k=1

∑
j∈{T (k)}c

w
(k)
j |βj(τk)|+

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈{B(k)}c
v

(k)
j |βj(τk)− βj(τk−1)| = 0,

where G(·) is the objective function of our optimization problem as defined in (2.25)

and Bo is the true parameter, which shows that Bo becomes one of optimal solutions.

To show the second part of Theorem 2.5.2, notice that the proof of Theorem 2.3.1

and the result of Theorem 2.5.1 shows that (3.6) in the main paper holds with η = η∗n

and c0 = ψλ. Then the equation (3.6) with W1 = 0 implies

β̂
(k)

{T (k)}c = 0 (k = 1, . . . , Kn), {β̂(k) − β̂(k−1)}{B(k)}c = 0 (k = 2, . . . , Kn). (2.36)

We also have

min
k

min
j∈T (k)

|β̂(k)
j | ≥ min

k
min
j∈T (k)

|βj(τk)| −max
k
‖β̂(k) − β(τk)‖2

> ξ2

√
s0 log p

n
− ξ2

√
s0 log p

n
= 0, (2.37)

where the second inequality holds from the beta-min condition as stated in Theorem

2.5.2. Similarly,

min
k≥2

min
j∈B(k)

|β̂(k)
j − β̂

(k−1)
j | ≥ min

k≥2
min
j∈B(k)

|βj(τk)− βj(τk−1)| − 2 max
k
‖β̂(k) − β(τk)‖2

> 2ξ2

√
s0 log p

n
− 2ξ2

√
s0 log p

n
= 0. (2.38)

By (2.36), (2.37) and (2.38), we have that B̂ provides the exact model structure,

which completes the proof. �

Proofs of Theorem 2.6.1

Here, we define the map T and new design matrix z
(k)
i , which are stated in Section

2.5. We first define a map M : {1, . . . , p} × {1, . . . , Kn} → Rd0 as follows:
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1. If β̂
(k)
j = 0, then M(j, k) = 0.

2. if β̂
(k)
j = β̂

(k−1)
j , then M(j, k) = M(j, k − 1).

3. If β̂
(k)
j 6= 0, β̂

(k′)
j′ = 0 (k′ = 1, . . . , Kn; j′ = 1, . . . , j − 1) and β̂

(k′)
j = 0 (k′ =

1, . . . , k − 1), then M(j, k) = 1.

4. If β̂
(k)
j 6= 0 and β̂

(k)
j 6= β̂

(k−1)
j , then

M(j, k) = 1 + max(M1,M2),

where M1 := {M(j′, k′) : k′ = 1, . . . , Kn; j′ = 1, . . . , j − 1} and

M2 := {M(j, k′) : k′ = 1, . . . , k − 1}.

5. If β̂
(1)
j 6= 0 for j ≥ 2, then

M(j, 1) = 1 + max{M(j′, k′) : k′ = 1, . . . , Kn; j′ = 1, . . . , j − 1}.

By using the map M , we arrive at a new design matrix denoted by z
(k)
i ∈

Rd0 (i = 1, . . . , n; k = 1, . . . , Kn). First let M(T (k), k) = {M(j, k) : j ∈ T (k)}

for k = 1, . . . , Kn, where the elements in M(T (k), k) are in ascending order. Then let

z(k)
i,M(T (k),k) = xi,T (k) and z

(k)
i,j = 0 for j ∈ {1, · · · , d0} \M(T (k), k).

We also define the map T as follows. Let IM = {(j, k) : M(j, k) 6= 0, M(j, k) 6=

M(j, k − 1)}, which is the location indices account for effective components. Then

for any B ∈ G, T (B) ∈ Rd0 , where T (B)i = Bj,k (i = 1, . . . , d0) for i satisfying

M(j, k) = i and (j, k) ∈ IM. We can see that for any B ∈ G, T (B) is the d0–

dimensional vector, which can construct B given its structure.

Remark 2.10.1. Illustrative example of the M and T .
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Suppose that we consider the model, where p = 5, n = 10 and Kn = 3 with the

three quantile levels τ1, τ2 and τ3. Assume that we obtain the following estimates

from our Dantzig-type optimization problem:

B̂ =



0.9 0.9 0.0

1.1 1.5 1.5

0.0 0.0 0.0

0.5 0.0 1.0

0.0 0.2 0.2


=

[
β̂(1), β̂(2), β̂(3)

]
.

Then M is the function such that

M(j, k) = M̃j,k for j = 1, · · · , 5, and k = 1, 2, 3,

where

M̃ =



1 1 0

2 3 3

0 0 0

4 0 5

0 6 6


is the indices matrix that uses the model structure of B̂.

Here d0 = 6, and

T (B̂) = [0.9, 1.1, 1.5, 0.5, 1.0, 0.2]T .

Lemma 2.10.8. Assume d0M
4
n(log n)2 = o(n). Let ∆ > 0 and Θ = {θ ∈ Rd0 :

‖θ‖2 ≤ ∆}. For any θ ∈ Θ, let

I2(θ) =
1

‖θ‖2

∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx,
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where ε
(k)
i = yi − xi

Tβ(τk) = yi − {z(k)
i }TT (Bo). Then with probability at least

1− n−9d0 logn − 2f̄Kn/n,

sup
θ∈Θn

|I2(θ)− E[I2(θ)]| ≤ 2n−1/4Kn∆1/2s
3/4
0 (d0)5/4(log n)3/2.

Proof of Theorem 2.6.1. We will show that for any constant ε > 0, there exists a

sufficiently large constant ∆ > 0 satisfying

P
[

inf
‖θ‖2=∆, θ∈Rd0

Ln

(
T (Bo) +

√
d0

n
θ
)
> Ln(T (Bo))

]
≥ 1− ε, (2.39)

where Ln(θ) =
∑

k

∑
i ρτk [yi−{z

(k)
i }T θ] for any θ ∈ Rd0 . Since the objective function

Ln is a strict convex function over θ ∈ Rd0 , (2.39) implies that the global minimum

T (B̂) lies within the ball whose center is T (Bo) and the radius is ∆
√
d0/n with

probability at least 1− ε, which proves the theorem. Let

Gn(θ) = Ln

(
T (Bo) +

√
d0

n
θ

)
− Ln (T (Bo)) .

By using the Knight’s identity,

Gn(θ) =
∑
k

∑
i

ρτk

[
yi − {z(k)

i }TT (Bo)−
√
d0

n
{z(k)

i }T θ
]
− ρτk

[
yi − {z(k)

i }TT (Bo)
]

=

√
d0

n

∑
k

∑
i

{z(k)
i }T θ{I(ε

(k)
i < 0)− τk}

+
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx

:= I1(θ) + I2(θ),

where ε
(k)
i is defined in Lemma 2.10.8. First consider I1(θ). Let v

(k)
i = I(ε

(k)
i < 0)−τk
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and Θ = {θ ∈ Rd0 : ‖θ‖2 = ∆}. Then we have

E
[

sup
θ∈Θ

I2
1 (θ)

]
=

d0

n
E

 sup
‖θ‖2∈Θ

{
(
∑
k

∑
i

z
(k)
i v

(k)
i )T θ

}2


=
d0

n
E
[

sup
‖θ‖2∈Θ

θTZZT θ
]

≤ d0

n
∆2E[λmax(ZZT )], (2.40)

where Z =
∑

k

∑
i{z

(k)
i v

(k)
i }. Note that ZZT is a zero matrix or rank–one matrix,

and ZTZ is a eigenvalue of ZZT when ZZT is rank–one. Hence λmax(ZZT ) ≤ ZTZ,

which implies with (2.40) that

E
[

sup
θ∈Θ

I2
1 (θ)

]
≤ d0

n
∆2E[ZTZ]

=
d0

n
∆2E[

∑
k

∑
k′

∑
i

v
(k)
i v

(k′)
i {z

(k)
i }T z

(k′)
i ]

=
d0

n
∆2
∑
k

∑
k′

(τk ∧ τk′ − τkτk′)
∑
i

{z(k)
i }T z

(k′)
i

≤ ∆2K2
nd

2
0.

Hence, by Markov inequality,

P

(
sup
‖θ‖2∈Θ

|I1(θ)| ≥ ∆Knd0√
ε/2

)
≤ ε

2
.

Hence, with probability at least 1− ε/2, we have sup‖θ‖2∈Θ |I1(θ)| ≤ ∆Knd0√
ε/2

.
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Now consider I2(θ). Then for any θ ∈ Θ, we have

E (I2(θ)) =
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

P
(
yi ≤ xi

Tβ(τk) + x
)
− P

(
yi ≤ xi

Tβ(τk)
)
dx

=
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

xfi
(
xi
Tβ(τk)

)
+
x2

2
f ′i(xi

Tβ(τk) + x̃
(k)
i )dx

≥
∑
k

∑
i

fi
(
xi
Tβ(τk)

)
2

d0

n
[{z(k)

i }T θ]2 −
f̄

6

∑
k

∑
i

(d0

n

)1.5
[{z(k)

i }T θ]3

≥
d0f

2

∑
k

∑
i

θT
1

n
z

(k)
i {z

(k)
i }T θ −

∆Mnf̄d
1.5
0

√
s0

6
√
n

∑
k

∑
i

θT
1

n
z

(k)
i {z

(k)
i }T θ

≥
d0f

4

∑
k

∑
i

θT
1

n
z

(k)
i {z

(k)
i }T θ

≥
Knd0f

4
k2(s0, 0)∆2

where x̃
(k)
i ∈ (0, x) which depends on i and k in the second line, and the first and

the second inequality follow from Condition 2.3.1 and |{z(k)
i }T θ| ≤ ‖z

(k)
i ‖2‖θ‖2 ≤

Mn
√
s0∆. The third inequality holds due to M2

nd0s0 = o(n), and the last inequal-

ity follows from Condition 2.3.1 with the fact that
∑

i z
(k)
i {z

(k)
i }T/n is a sk × sk–

dimensional sub–matrix of
∑

i xixi
T/n. By Lemma 2.10.8 and the conditions of

Theorem 2.6.1, I2(θ) ≥ Knd0f

4
k2(s0, 0)∆2 − ∆3/2op(Knd0), where op(1) is uniformly

over θ ∈ Θ.

Hence for any ε > 0, with probability at least 1− ε/2,

inf
θ∈Θ

Gn(θ) ≥
Knd0f

4
k2(s0, 0)∆2 −∆3/2op(Knd0)− ∆Knd0√

ε/2
> 0

with a sufficiently large ∆, which completes the proof. �

Proofs of Theorem 2.6.2

Lemma 2.10.9. Let An and Bn be the matrix stated in Theorem 2.6.2. Then we
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have

f̄−2φ−2(s0)k2(s0, 0)(min
k
τk)(1−max

k
τk) ≤ λmin(An

−1BnAn
−1),

λmax(An
−1BnAn

−1) ≤ L−2
0 φ(s0)k−4(s0, 0).

Lemma 2.10.10. Assume conditions of Theorem 2.6.2 hold. Then for any sequence

of αn ∈ Rd0 with ‖αn‖2 = 1, the following asymptotic normality holds:

n−1/2αTn (An
−1BnAn

−1)−1/2An
−1
∑
k

∑
i

z
(k)
i

(
I(yi − xiTβ(τk) < 0)− τk

)
→ N(0, 1),

where An and Bn are d0 × d0 matrices defined in Theorem 2.6.2.

Proof of Theorem 2.6.2. Recall that T (B̂po) is

T (B̂po) = arg min
β∈Rd0

∑
k

∑
i

ρτk(yi − {z
(k)
i }Tβ) (2.41)

By θ =
√
n/d0 (β − T (Bo)), T (B̂po) = T (Bo) +

√
d0/nθ̂, where θ̂ is

θ̂ = arg min
θ∈Rd0

∑
k

∑
i

ρτk

[
yi − {z(k)

i }TT (Bo)−
√
d0

n
{z(k)

i }T θ
]
. (2.42)

Then θ̂ can be written as θ̂ = Gn(θ), where

Gn(θ) = argminθ∈Rd0
∑
k

∑
i

ρτk

(
yi − {z(k)

i }TT (Bo)−
√
d0

n
{z(k)

i }T θ

)
−

∑
k

∑
i

ρτk

(
yi − {z(k)

i }TT (Bo)
)
.

We consider θ over the set Θn = {θ ∈ Rd0 | ‖θ‖2 ≤ C} with some positive constant

C independent of n. Decompose Gn into two terms as similarly used in the proof of

Theorem 2.6.1:

Gn(θ) = I1(θ) + I2(θ),

where

I1(θ) =

√
d0

n

∑
k

∑
i

{z(k)
i }T θ{I(ε

(k)
i < 0)− τk},
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I2(θ) =
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx.

Consider the term I2(θ). From the proof of Theorem 2.6.1, we have

∣∣∣E[I2(θ)]−
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

fi(xi
Tβ(τk))xdx

∣∣∣
≤

∣∣∣∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

x2

2
f ′i(x̃

(k)
i )dx

∣∣∣
≤ f̄

6

∑
k

∑
i

(d0

n

)1.5|{z(k)
i }T θ|3

≤ f̄

6
K
d1.5

0

√
s0Mn√
n

‖θ‖3
2φ(s0)

= o(‖θ‖2K),

where x̃
(k)
i ∈ (xi

Tβ(τk), xi
Tβ(τk) + x) depends on i and k in the first inequality,

the second inequality follows from Condition 2.3.1, the third inequality holds due to

Sparse(s0) and |{z(k)
i }T θ| ≤ ‖z

(k)
i ‖2‖θ‖2 ≤ Mn‖θ‖2

√
s0, and the last small o results

follows from M2
nd

3
0s0 = o(n). Moreover, Lemma 2.10.8 and the conditions of Theorem

2.6.2 imply

I2(θ)− E[I2(θ)] = op(‖θ‖2Kn),

where op is uniform over θ ∈ Θn. Hence, for all θ ∈ Θn,

I2(θ) =
∑
k

∑
i

fi(xi
Tβ(τk))

2

d0

n
[{z(k)

i }T θ]2 + op(‖θ‖2Kn).

Thus, for all θ ∈ Θn, Gn(θ) can be written as

Gn(θ) =

√
d0

n

∑
k

∑
i

{z(k)
i }T θ

(
I(ε

(k)
i < 0)− τk

)
+

∑
k

∑
i

fi(xi
Tβ(τk))

2

d0

n
[{z(k)

i }T θ]2 + op(‖θ‖2Kn).
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By matrix calculus,

θ̂ =

√
n

d0

{∑
k

∑
i

fi(xi
Tβ(τk))z

(k)
i {z

(k)
i }T

}−1∑
k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}

+

(∑
k

∑
i

fi(xi
Tβ(τk))

2

d0

n
z

(k)
i {z

(k)
i }T

)−1

Knop(1)

= (nd0)−0.5An
−1
∑
k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}+ 2A−1

n

K

d0

op(1)

= d−0.5
0 (An

−1BnAn
−1)

1
2

[
n−0.5(An

−1BnAn
−1)−

1
2An

−1
∑
k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}

]
+

1

d0

op(1),

where op(1) represents any d0 dimensional vector whose `2 norm is op(1).

For any αn ∈ Rd0 with ‖αn‖2 = 1, Lemma 2.10.10 implies

αTn

[
n−0.5(An

−1BnAn
−1)−

1
2An

−1
∑
k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}

]
→ N(0, 1).

Hence

‖θ̂‖2 ≤ d−0.5
0 λmax{(An−1BnAn

−1)
1
2}Op{

√
d0}+ op(1)

≤ L−1
0

√
φ(s0)k−2(s0, 0)Op(1),

due to Lemma 2.10.9. Since C can be chosen to be much larger than L−1
0

√
φ(s0)k−2(s0, 0),

θ̂ is included in Θn. Hence by Lemma 2.10.10 ,

αTn
√
n(An

−1BnAn
−1)−

1
2

√
d0

n
θ̂ → N(0, 1).

Thus,

αTn
√
n(An

−1BnAn
−1)−

1
2{T (B̂po)− T (Bo)} → N(0, 1),

which completes the proof. �

Proof of Lemmas
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Proof of Lemma 2.10.1,2.10.2 and 2.10.3. The proofs essentially follow from the proofs

of Lemmas 4 and 5 in Belloni and Chernozhukov (2011) by using Kn < p. �

Proof of Lemma 2.10.4. Suppose Eη holds. Then β(τk) ∈ R(k)(rk) (k = 1, . . . , Kn),

where R(k)(rk) is defined in (3.1) which implies that

B(k) = [β̂(1), · · · , β̂(k−1), β(τk), β̂
(k+1), · · · , β̂(K)]

is feasible for all k. We fix any k. Since B̂ is a global minimizer of (3.1), we have

G(B̂) ≤ G{B(k)}, where G(·) is defined in (2.25), which implies

p∑
j=1

w
(k)
j |β̂

(k)
j |+

λ

|τk − τk−1|

p∑
j=1

v
(k)
j |β̂

(k)
j − β̂

(k−1)
j |+ λ

|τk+1 − τk|

p∑
j=1

v
(k+1)
j |β̂(k)

j − β̂
(k+1)
j |

≤
p∑
j=1

w
(k)
j |βj(τk)|+

λ

|τk − τk−1|

p∑
j=1

v
(k)
j |βj(τk)− β̂

(k−1)
j |+ λ

|τk+1 − τk|

p∑
j=1

v
(k+1)
j |βj(τk)− β̂(k+1)

j |.

By applying the triangle inequality and the definition of dmin, it reduces to

∑
j∈{T (k)}c

w
(k)
j |β̂

(k)
j | ≤

∑
j∈T (k)

w
(k)
j (|βj(τk)| − |β̂(k)

j |) +
λ

dmin

p∑
j=1

(v
(k)
j + v

(k+1)
j )|β̂(k)

j − βj(τk)|.

Rearranging the terms yields

∑
j∈{T (k)}c

[w
(k)
j −

λ

dmin

{v(k)
j +v

(k+1)
j }]|β̂(k)

j −βj(τk)| ≤
∑
j∈T (k)

[w
(k)
j +

λ

dmin

{v(k)
j +v

(k+1)
j }]|β̂(k)

j −βj(τk)|.

By the definition of W2, W1 and W as stated in Subsection 2.3.2, we have

∑
j∈{T (k)}c

(
W2 −

2λ

dmin

W

)
|β̂(k)
j − βj(τk)| ≤

∑
j∈T (k)

(
W1 +

2λ

dmin

W

)
|β̂(k)
j − βj(τk)|.

Condition 2.3.2 implies W2 − 2λ
dmin

(W0 ∨W1) > 0, and we have for k = 1, . . . , Kn,

∑
j∈{T (k)}c

|β̂(k)
j − βj(τk)| ≤

dminW1 + 2λ(W0 ∨W1)

dminW2 − 2λ(W0 ∨W1)

∑
j∈T (k)

|β̂(k)
j − βj(τk)|,

which completes the proof. �
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Proof of Lemma 2.10.5. Lemma 1.5 in Ledoux and Talagrand (1991) implies that

for any independent mean zero random variables Z1, · · · , Zn, which satisfy |Zi| ≤

ci (i = 1, . . . , n), where cis are some constants, we have that for any t > 0,

P

(
|

n∑
i=1

Zi| > t

)
≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
. (2.43)

Fix j, k and any t > 0. Let Zi = xij[τk − I{yi ≤ xi
Tβ(τk)}]/n, where xij is the jth

component of xi. It follows from (2.43) that

P

(∣∣∣∣∣
n∑
i=1

xij[τk − I{yi ≤ xi
Tβ(τk)}]/n

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2
∑n

i=1 x
2
ij/n

2

)
= 2 exp

(
−nt

2

2

)
,

where we set ci = xij/n. By the union bound,

P

(
max
k

max
j
|

n∑
i=1

xij[τk − I{yi ≤ xi
Tβ(τk)}]/n| ≥ t

)
≤ 2Kp exp(−nt

2

2
).

Putting t = 3
√

log p/n and using p > n ∨Kn yields

P

(
max
k

max
j
|

n∑
i=1

xij[τk − I{yi ≤ xi
Tβ(τk)}]/n| ≥ 3

√
log p/n

)
≤ 1

n
,

which completes the proof. �

Proof of Lemma 2.10.6. Suppose E1 holds. Then we have for all k = 1, . . . , Kn,

‖β̃(k) − β(τk)‖1 ≤
√
‖β̃(k) − β(τk)‖0‖β̃(k) − β(τk)‖2 ≤

√
(C4 + 1)s0C3

√
s0 log p

n
.

(2.44)

Note that (2.44) uniformly holds for all k, with probability at least 1− qn.

Note that rk in the Dantzig-type joint quantile regression setting stated in Section

2.4 is rk = Q(k)
n {β̃(k)} + Λks̃ log p/n, where s̃ = maxk ‖β̃(k)‖0. Then the event Eη,

which is defined in (3.3), is equivalent to

Q(k)
n {β(τk)} ≤ Q(k)

n (β̃(k)) + Λk
s̃ log p

n
≤ Q(k)

n {β(τk)}+ η (k = 1, . . . , Kn). (2.45)
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To prove (2.45), we use the fact that Q(k)
n is a convex function and −

∑n
i=1 xi[τk−

I{yi ≤ xi
Tβ(τk)}]/n is the subgradient of Q(k)

n at β(τk). Then we have

Q(k)
n {β̃(k)} −Q(k)

n {β(τk)} ≥

(
− 1

n

n∑
i=1

xi[τk − I{yi ≤ xi
Tβ(τk)}]

)T

{β̃(k) − β(τk)}

≥ −‖ 1

n

n∑
i=1

(xi[τk − I{yi ≤ xi
Tβ(τk)}])‖∞‖β̃(k) − β(τk)‖1. (2.46)

Let E4 be the event

E4 =

{
‖ 1

n

n∑
i=1

(xi[τk − I{yi ≤ xi
Tβ(τk)}])‖∞ ≤ 3

√
log p

n

}
. (2.47)

By Lemma 2.10.5, P (E4) ≥ 1− 1/n. Combining (2.44), (2.46) and (2.47), on event

E4,

Q(k)
n {β̃(k)} −Q(k)

n {β(τk)} ≥ −3
√
C4 + 1C3

s0 log p

n
,

≥ −Λk
s̃ log p

n
, (2.48)

where the last inequality uses the condition 4. Hence the first inequality of (2.45)

holds for all k.

Now, by using the fact that β̃(k)s and λ̃ satisfy (2.34) on event E1, we can show

that the second inequality of (2.45) holds with η = η∗n as follows:

Q(k)
n {β̃(k)}+ Λk

s̃ log p

n
≤ Q(k)

n {β(τk)}+ λ̃{‖β(τk)‖1 − ‖β̃(k)‖1}+ Λk
s̃ log p

n

≤ Q(k)
n {β(τk)}+ λ̃‖β(τk)− β̃(k)‖1 + Λk

s̃ log p

n

≤ Q(k)
n {β(τk)}+ C2C3

√
C4 + 1

s0 log p

n
+ Λk

s̃ log p

n

≤ Q(k)
n {β(τk)}+ {C2C3

√
C4 + 1 + C4 max

k
Λk}

s0 log p

n

= Q(k)
n {β(τk)}+ η∗n, (2.49)
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where the first inequality follows from the definition of β̃(k). Combining (2.48)

and (2.49) implies that (2.45) holds with η = η∗n, which completes the proof. �

Proof of Lemma 2.10.7. Suppose E1 holds. Then we have

min
k

min
j∈T (k)

|β̃(k)
j | ≥ min

k
min
j∈T (k)

|βj(τk)| −max
k
‖β̃(k) − β(τk)‖2

≥ (aα + C3)

√
s0 log p

n
− C3

√
s0 log p

n

= aα

√
s0 log p

n
= aζn, (2.50)

where the second inequality follows from the beta-min condition as stated in Theorem

2.5.2. Similarly,

min
k≥2

min
j∈B(k)

|β̃(k)
j − β̃

(k−1)
j | ≥ min

k≥2
min
j∈B(k)

|βj(τk)− βj(τk−1)| − 2 max
k
‖β̃(k) − β(τk)‖2

≥ (aα + 2C3)

√
s0 log p

n
− 2C3

√
s0 log p

n

= aα

√
s0 log p

n
≥ aζn. (2.51)

By (2.50) and (2.51), we have W1 = 0, which completes the proof. �

Proof of Lemma 2.10.8. We fix k ∈ {1, · · · , Kn}, and let

I
(k)
2 (θ) :=

∑
i

1

‖θ‖2

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx :=

∑
i

I
(k)
2,i (θ).

For the simplicity, let D := {θ ∈ Rd0 | ‖θ‖2 ≤ 1
nd0Mn

√
n
}. First consider the case

when ‖θ‖2 ∈ D. Then

|
√
d0

n
{z(k)

i }T θ| ≤
√
d0s0

n

Mn

nd0Mn

√
n
≤ 1

n2
.

Define the events B and C as follows:

B =

{
|ε(k)
i | >

1

n2
, for all i.

}
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C =

{
sup
θ: θ∈D

I
(k)
2 (θ) = 0

}
Then P(B) ≥ 1− n2f̄

n2 = 1− 2f̄
n

, which implies P(C) ≥ 1− 2f̄
n

. Moreover,

sup
θ∈D

∣∣∣E[I
(k)
2 (θ)]

∣∣∣ ≤ 2f̄

n
Mn

√
nd0s0 =

2f̄Mn

√
d0s0√

n
.

Hence with probability at least 1− 2f̄/n,

sup
θ∈D

∣∣∣I(k)
2 (θ)− E[I

(k)
2 (θ)]

∣∣∣ ≤ 2f̄Mn

√
d0s0√

n
.

Now consider the case when ‖θ‖2 > 1/(nd0Mn

√
n). We have for any λ > 0,

P
(
|I(k)

2 (θ)− E[I
(k)
2 (θ)]| ≥ t

)
≤ exp

(
−λt− λE[I

(k)
2 (θ)]

)
E
[
exp(λI

(k)
2 (θ))

]
.

We have

E
[
exp(λI

(k)
2 (θ))

]
=

∏
i

E
[
exp(λI

(k)
2,i (θ))

]
=

∏
i

E
[
1 + λI

(k)
2,i (θ) + λ2(I

(k)
2,i (θ))2O(1)

]
=

∏
i

(
1 + λE[I

(k)
2,i (θ)] + λ2O(E[(I

(k)
2,i (θ))2])

)
≤ exp

(
λ
∑
i

E[I
(k)
2,i (θ)] + λ2

∑
i

O(E[(I
(k)
2,i (θ))2])

)
,

where in the second equality O(1) holds uniformly for all i and θ, provided that

maxi |λI(k)
2,i (θ)| ≤ λMn

√
d0s0
n

= o(1). Hence

P
(
|I(k)

2 (θ)− E[I
(k)
2 (θ)]| ≥ t

)
≤ exp

(
−λt− λE[I

(k)
2 (θ)] + λ

∑
i

E[I
(k)
2,i (θ)] + λ2

∑
i

O(E[(I
(k)
2,i (θ))2])

)

= exp

(
−λt+ λ2

∑
i

O(E[(I
(k)
2,i (θ))2])

)

= exp

(
−λt+ λ2O

(
∆
s

3/2
0 (d0)3/2

√
n

))
,
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where we use

∑
i

E[(I
(k)
2,i (θ))2] ≤ 1

‖θ‖2
2

√
d0

n

f̄d0

2n

∑
i

‖{|z(k)
i }T θ‖2

2 max
i
|{z(k)

i }T θ| ≤
∆f̄M3

n

2

s
3/2
0 (d0)3/2

√
n

.

Choosing λ = t
√
n

2∆s
3/2
0 (d0)3/2 logn

with the growth condition tMn

∆s0d0 logn
= o(1), we

have

P(|I(k)
2 (θ)− E[I

(k)
2 (θ)]| ≥ t) ≤ exp

(
− t2

√
n

4∆s
3/2
0 (d0)3/2 log n

)
.

To apply the chaining argument, consider ε size balls that cover Θn. Then the

number of balls is (C/ε)d0 . Let B be the set of centers of the balls. Then we have

P(sup
θ∈B
|I(k)

2 (θ)− E[I
(k)
2 (θ)]| ≥ t) ≤ exp

(
d0 log

C

ε
− t2

√
n

4∆s
3/2
0 d

3/2
0 log n

)
.

Moreover, if θ1, θ2 /∈ D and |θ1 − θ2| ≤ ε, then

∣∣∣I(k)
2 (θ1)− E[I

(k)
2 (θ1)]− I(k)

2 (θ2) + E[I
(k)
2 (θ2)]

∣∣∣
≤

∣∣∣I(k)
2 (θ1)− I(k)

2 (θ2)
∣∣∣+
∣∣∣E[I

(k)
2 (θ1)]− E[I

(k)
2 (θ2)]

∣∣∣ .
Note that

|I(k)
2 (θ1)− I(k)

2 (θ2)| ≤ 1

‖θ1‖2‖θ2‖2

∣∣∣∣∣∑
i

‖θ2‖2‖θ1‖2I
(k)
2i (θ1)−

∑
i

‖θ1‖2‖θ2‖2I
(k)
2i (θ2)

∣∣∣∣∣
≤ n3d2

0M
2

(
‖θ2‖2

∣∣∣∣∣∑
i

‖θ1‖2I
(k)
2i (θ1)−

∑
i

‖θ2‖2I
(k)
2i (θ2)

∣∣∣∣∣+ |‖θ2‖2 − ‖θ1‖2|

∣∣∣∣∣∑
i

‖θ2‖2I
(k)
2i (θ2)

∣∣∣∣∣
)

≤ n3d2
0M

2
n

(
∆n

√
d0

n

√
s0Mnε+ εn

√
d0

n

√
s0Mn∆

)
= 2n3.5d2.5

0 s0.5
0 M3

nε∆.

Similarly,

∣∣∣E[I
(k)
2 (θ1)]− E[I

(k)
2 (θ2)]

∣∣∣ ≤ n3d2
0M

2
n

(
f̄
d0

n
ns0M

2
nε

2 + f̄ εn∆2d0

n
s0M

2
n

)
≤ 2n3d3

0s0M
2
nε∆

2.



54

If we choose t such that εn3.5d3
0M

3
n = o(t) and εn3d4

0M
2
n = o(t) with ε being small

enough, then the above implies that

P

(
sup

θ∈Θn\D
|I(k)

2 (θ)− E[I
(k)
2 (θ)]| ≥ t/2

)
≤ exp

(
d0 log

C

ε
− t2

√
n

4∆s
3/2
0 d

3/2
0 log n

)
.

Hence

P

(
sup

θ∈Θn\D
|I2(θ)− E[I2(θ)]|/‖θ‖2 ≥ tK/2

)
≤ exp

(
logK + d0 log

C

ε
− t2

√
n

4∆s
3/2
0 d

3/2
0 log n

)
.

Letting t = 3n−1/4∆1/2s
3/4
0 d

5/4
0 (log n)3/2 and ε = n−9 with the growth condition

d0M
4
n log2 n = o(n) yields that

P( sup
θ∈Θn\D

|I2(θ)− E[I2(θ)]|/‖θ‖2 ≥ 1.5n−1/4Kn∆1/2s
3/4
0 d

5/4
0 (log n)3/2) ≤ n−9d0 logn.

Note that we have shown with probability at least 1− 2f̄Kn
n

that

sup
θ∈D
|I2(θ)− E[I2(θ)]| ≤ 2f̄Mn

√
d0s0Kn√
n

.

Therefore, we have with probability at least 1− n−9d0 logn − 2f̄Kn
n

,

sup
θ∈Θn

|I2(θ)− E[I2(θ)]| ≤ 2n−1/4Kn∆1/2s
3/4
0 d

5/4
0 (log n)3/2.

�

Proof of Lemma 2.10.9. We can easily see that

Kfk2(s0, 0) ≤ λmin(An) ≤ λmax(An) ≤ Knf̄φ(s0),

(∑
k,k′

τk ∧ τk′ − τkτk′
)
k2(s0, 0) ≤ λmin(Bn) ≤ λmax(Bn) ≤

(∑
k,k′

τk ∧ τk′ − τkτk′
)
φ(s0).

Hence

λmin(An
−1BnAn

−1) ≥ λ2
min(An

−1)λmin(Bn)

= λ−2
max(An)λmin(Bn)

≥ f̄−2φ−2(s0)k2(s0, 0)

∑
k,k′ τk ∧ τk′ − τkτk′

K2
n

≥ f̄−2φ−2(s0)k2(s0, 0)(min
k
τk)(1−max

k
τk).
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Similarly,

λmax(An
−1BnAn

−1) ≤ λ2
max(An

−1)λmax(Bn)

= λ−2
min(An)λmax(Bn)

≤ L−2
0 φ(s0)k−4(s0, 0)

∑
k,k′ τk ∧ τk′ − τkτk′

K2
n

≤ L−2
0 φ(s0)k−4(s0, 0),

which completes the proof. �

Proof of Lemma 2.10.10. Recall ε
(k)
i = yi−xiTβ(τk) = yi−{z(k)

i }TT (Bo). Now define

Dn as follows:

Dn = αTn (An
−1BnAn

−1)−
1
2An

−1n−0.5
∑
i

∑
k

z
(k)
i {I(ε

(k)
i < 0)− τk} :=

∑
i

Zni,

where Zni = (n−0.5)
[
αTn (An

−1BnAn
−1)−

1
2An

−1∑
k z

(k)
i {I(ε

(k)
i < 0) − τk}

]
. Then

E[Zni] = 0 and

∑
i

Var(Zni)

=
∑
i

αTn (An
−1BnAn

−1)−
1
2An

−1
∑
k,k′

1

n
z

(k)
i {z

(k)
i }T{min(τk, τk′)− τkτk′}An−1(An

−1BnAn
−1)−

1
2αn

= αTn (An
−1BnAn

−1)−
1
2An

−1BnAn
−1(An

−1BnAn
−1)−

1
2αn

= 1.

Consider an upper bound of Zni for all i = 1, . . . , n:

|Zni| ≤ n−0.5‖
∑
k

z
(k)
i {I(ε

(k)
i < 0)− τk}‖2‖An−1(An

−1BnAn
−1)−

1
2αn‖2. (2.52)

Since
∑

k z
(k)
i {I(ε

(k)
i < 0)− τk} is a d0-dimensional vector and the absolute value of

each components is upper bounded by KnMn,

‖
∑
k

z
(k)
i {I(ε

(k)
i < 0)− τk}‖2 ≤

√
d0KMn. (2.53)
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Since ‖αn‖2 = 1, we have

‖(An−1BnAn
−1)−

1
2αn‖2 ≤ λmax{(An−1BnAn

−1)−
1
2}

= {λmin(An
−1BnAn

−1)}−0.5

≤ f̄φ(s0)k−1(s0, 0)(min
k
τk)
−0.5(1−max

k
τk)
−0.5,

where the second inequality uses Lemma 2.10.9. Similarly,

‖An−1(An
−1BnAn

−1)−
1
2αn‖2 ≤ λmax(An

−1)‖(An−1BnAn
−1)−

1
2αn‖2

≤ K−1L−1
0 k−3(s0, 0)f̄φ(s0)(min

k
τk)
−0.5(1−max

k
τk)
−0.5. (2.54)

Combing (2.53) and (2.54) with (2.52) yields

max
i
|Zni| ≤

√
d0/nMnL

−1
0 k−3(s0, 0)f̄φ(s0)(min

k
τk)
−0.5(1−max

k
τk)
−0.5.

Hence

∑
i

E(|Zni|3) ≤
∑
i

E(|Zni|2)

√
d0

n
MnL

−1
0 k−3(s0, 0)f̄φ(s0)(min

k
τk)
−0.5(1−max

k
τk)
−0.5

=
√
d0/nMnL

−1
0 k−3(s0, 0)f̄φ(s0)(min

k
τk)
−0.5(1−max

k
τk)
−0.5

→ 0.

Thus {Zni}ni=1 for all n are triangular array satisfying Lyapunov Condition. By

applying central limit theorem for triangular arrays,

∑
i

Zni → N(0, 1),

which completes the proof. �



CHAPTER 3

Errors-in-Variables Regression

3.1 Introduction

There are classical and recent results which involve measurement error models.

Rudelson and Zhou (2015) consider errors-in-variables regression with high dimen-

sional covariates by allowing measurement errors that are possibly dependent across

subjects. Liang and Li (2009) study variable selection for partially linear models

when the covariates are measured with additive errors. Søresen et al. (2014) con-

sider measurement error on linear regression with the Lasso penalty. They propose

the method of correction for measurement error in the Lasso, and establish model

selection consistency. In this chapter, we review the Kronecker sum covariance model

and errors-in-variables regression problem as in Rudelson and Zhou (2015). We aim

to compare Lasso-type and Conic-type estimators used in Rudelson and Zhou (2015)

via simulations in terms of convergence rates. This chapter helps to find an ap-

propriate errors-in-variables regression method which will be used to estimate the

covariance matrices in Chapter 4.

57
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3.2 The Model

In this section, we will first review the errors-in-variables regression model with

dependent measurements studied in Rudelson and Zhou (2015). The Kronecker sum

covariance model has been extensively studied in this context. Suppose that we

observe y ∈ Rn and X ∈ Rn×m in the model

y = X0β
∗ + ε, (3.1a)

X = X0 +W, (3.1b)

where β∗ ∈ Rm, X0 is a n × m matrix with independent rows, ε ∈ Rn is a noise

vector and W is a mean zero n × m random noise matrix, independent of X0 and

ε, with independent column vectors ω1, . . . , ωm. For the details of the model, see

Model 3.2.1. For a scalar random variable V , recall the norm

‖V ‖ψ2
:= inf{t > 0 : E(exp(V2/t2)) ≤ 2}.

In Model 3.2.1, we define a specific description of the model (3.1a) and (3.1b).

Model 3.2.1. (Rudelson and Zhou (2015)) Let Z be an n×m random matrix with

independent entries Zij satisfying

EZij = 0, 1 = EZ2
ij ≤ ‖Zij‖ψ2

≤ K.

Let Z1, Z2 be independent copies of Z. Consider (3.1a), and let

X ∼Mn,m(0, A⊕B), where A⊕B := A⊗ In + Im ⊗B (3.2)

the Kronecker sum of positive definite A ∈ Rm×m and B ∈ Rn×n. This model means

that
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(1) one covariance component A ⊗ In is used to describe the covariance of the

signal vec {X0 }, where X0 = Z1A
1/2 is an n×m random design matrix with inde-

pendent subgaussian row vectors,

(2) and the other component Im⊗B is used to describe that of the noise vec {W },

where W = B1/2Z2 is a noise matrix with independent subgaussian column vectors

w1, . . . , wm, independent of X0;

(3) the error vector ε ∈ Rn is independent of W or X0, with independent entries

εj satisfying Eεj = 0 and ‖εj‖ψ2
≤Mε.

3.3 The Lasso-type and Conic Programming Estimators

In this section, we will review the Lasso and Conic estimators in the errors-in-

variables regression model studied by Rudelson and Zhou (2015), where these esti-

mators can be used in nodewise regression method to estimate the inverse covariance

matrices Θ = A−1 and Ω = B−1 in Chapter 4.

Rudelson and Zhou (2015) focus on deriving the statistical properties of two

estimators for estimating β∗ in (3.1a) and (3.1b) despite the presence of the additive

error W in the observation matrix X. In the present work, we use the concentration

of measure results derived in Rudelson and Zhou (2015) to derive the theoretical

properties of the nodewise estimates.

Suppose that t̂r(B) is an estimator for tr(B); for example, if we know a tr(A),

we can construct an estimator for tr(B) (Rudelson and Zhou, 2015):

t̂r(B) = 1
m

(
‖X‖2

F − ntr(A)
)

+
, τ̂(B) := 1

n
t̂r(B) ≥ 0, (3.3)
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where (a)+ = max(a, 0). Let

Γ̂ =
1

n
XTX − τ̂(B)Im and γ̂ =

1

n
XTy. (3.4)

For chosen penalization parameters λ, b0 > 0, we consider the following variant of

the Lasso estimator, which provides regularized estimation with the `1-norm penalty,

β̂ = arg min
β:‖β‖1≤b0

1

2
βT Γ̂β − 〈 γ̂, β 〉 + λ‖β‖1, (3.5)

which is a variation of the Lasso Tibshirani (1996) or the Basis Pursuit Chen et al.

(1998) estimator.

For chosen penalization parameters λ, µ, τ > 0, we consider the following estima-

tor:

β̂ = arg min
{
‖β‖1 + λt : (β, t) ∈ Υ

}
where (3.6)

Υ =
{

(β, t) : β ∈ Rm,
∥∥∥γ̂ − Γ̂β

∥∥∥
∞
≤ µt+ τ, ‖β‖2 ≤ t

}
,

where γ̂ and Γ̂ are as defined in (3.4) with µ ∼
√

logm
n

, τ ∼
√

logm
n

when tr(B)/n =

Ω(1). We refer to this estimator as the Conic programming estimator. Recently,

Belloni et al. (2014) discuss the conic programming compensated matrix uncertainly

(MU) selector, which is a variant of the Dantzig selector Candes and Tao (2007),

Rosenbaum and Tsybakov (2010), and Rosenbaum and Tsybakov (2013).

3.4 Simulations

In this section, we use simulation studies to compare the two estimators when A

and B follows AR(1) and Random graph.
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1. AR(1) model : For ρa ∈ (0, 1), the covariance matrix A is of the form

A =



1 ρa ρ2
a · · · ρm−1

a

ρa 1 ρa · · · ρm−2
a

ρ2
a ρa 1 · · · ρm−3

a

...
...

...
. . .

...

ρm−1
a ρm−2

a ρm−3
a · · · 1


.

2. Random graph: The graph is generated according to a Erdos-Renyi random

graph model. Initially, we set Ω = In×n. Then we randomly select s ∈ {n, 2n}

edges and update Ω as follows: for each new edge (i, j), a weight w > 0 is

chosen uniformly at random from [0.1, 0.3]; we subtract w from ωij and ωji,

and increase ωii and ωjj by w. And we multiply the constant c > 0 to the Ω

such that tr(c−1Ω−1) = n, and B := c−1Ω−1, which makes the trace of B equal

to n.

For each experiment, we calculate the Signal-to-noise ratio used by Rudelson and

Zhou (2015):

S/M :=
K2‖β∗‖2

2

τ+
BK

2‖β∗‖2
2 +M2

ε

, τ+
B =

(
√
τB +

2(‖A‖1/2
2 + ‖B‖1/2

2 )√
m

)2

.

Figures 3.1 and 3.2 display the performances of the Lasso estimator defined in

(3.5) using the constraint ‖β‖1 ≤ R‖β∗‖1, where R ∈ {1, 2, 3, 7, 10}. We consider

the case where m = 400, n = 100, and the coefficient β∗ = [0.9, · · · , 0.9, 0, · · · , 0]T ,

which has a sparsity level 10. Three metrics are included: relative errors in `2 norm,

the probability of success for exact recovery of the sparsity pattern (success rate),

FPs and FNs; see Table 3.1 for details of these metrics, where we use T and T̂ for
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the support sets of β̂ and β∗, respectively. The estimates are not sensitive to the

choice of R in the sense that it provides similar relative errors, success rate and FNs.

Figure 3.3 displays the results using the same settings in Figure 3.2 except that

β∗ = [0.9, · · · , 0.9, 0, · · · , 0]T has a sparsity level 20. Figure 3.4 displays the success

rate of Lasso and thresholded Lasso estimator with thresholding level τ = σ
√

logm
n

when the β∗ has moderate nonzero signal. This thresholding level works well in this

numerical example. We can see that thresholding helps decrease false positives which

yields a higher success rate than Lasso.

Table 3.1: Metrics
Metric Definition

Relative errors in `2 norm ‖β̂ − β∗‖2/‖β∗‖2

Success rate Probability of success of T̂ = T

False positives (FPs) |T̂ \ T |
False negatives (FNs) |T \ T̂ |
True positives (TPs) |T̂ ∩ T |
True negatives (TNs) |T̂ c ∩ T c|
Recall TPs/(TPs + FNs)

Precision TPs/ (FPs+TPs)
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Figure 3.1: Plots for the Lasso estimator with a constraint ‖β‖1 ≤ R‖β∗‖1, where

β∗ = [0.5, · · · , 0.5, 0, · · · , 0]T , where d = 10 � 0.6n/log(m). Step size

η = 2‖A‖2 are chosen. Five values are used for R and λ change from 0 to

0.5, when m = 400 and n = 100. A is generated using AR(1) model with

parameter ρA = 0.5, and B = 0.1B∗, where B∗ follows AR(1) model

with parameter 0.8. The standard deviation of noise is σ = 1. The

Signal-to-noise ratio S/M is 1.35.
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Figure 3.2: Plots for the Lasso estimator under the same settings used in Figure 3.1

except that B = 0.7B∗. The Signal-to-noise ratio S/M is 0.50.
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Figure 3.3: Plots for the Lasso estimator with a constraint ‖β‖1 ≤ R‖β∗‖1, where

β∗ = [0.9, · · · , 0.9, 0, · · · , 0]T , where d = 20 � 1.2n/log(m). Step size

η = 2‖A‖2 are chosen. The other settings are exactly same as the one

used in Figure 3.2. The Signal-to-noise ratio S/M is 0.60.
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Figure 3.4: Plots for the Lasso estimator. The top plots are when m = 400, n =

100 and β∗ = [0.5, · · · , 0.5, 0, · · · , 0]T , where d = 10. The below plots

are when m = 600, n = 200 and β∗ = [0.9, · · · , 0.9, 0, · · · , 0]T , where

d = 20. A is generated using AR(1) model with parameter ρA = 0.5,

and B follows random model. The standard deviation of noise is σ =

1. The Signal-to-noise ratio S/M for top and below are 0.50 and 0.65,

respectively.

In Figure 3.5, we plot the relative errors in `2 norm for the Lasso (top) using

R = 2 and the Conic (middle), with dimension m ∈ {128, 256, 512}, sample size

n ∈ [50, 2700], and the sparsity level d = [
√
m]. For the below plots, we use Conic

with sparsity level d = [m1/3]. The coefficient β∗ has nonzero values between −1

and 1. The error versus the rescaled sample size n/(d logm) is also shown, where
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the curves roughly align for different values of m for the Lasso estimates. With

smaller sparsity level, Conic also show curves roughly aligned for different values of

m. This shows that the Conic requires smaller sparsity level to obtain the theoretical

convergence rate
√

(d logm)/n, which is analyzed by Rudelson and Zhou (2015).
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Figure 3.5: Plots for the relative error ‖β̂ − β∗‖2/‖β∗‖2 of the Lasso estimator (top)

and Conic estimator (middle) with the sparsity level d = [
√
m]. The

below plot is for Conic with d = [m1/3]. The left plot is an error plot

with m ∈ {128, 256, 512} and n changes from 50 to 2700. A is generated

using AR(1) model with parameter ρA = 0.5, and B follows random

model. The standard deviation of noise is σ = 0.5.
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3.5 Optimization Error

In this section, we analyze simple approximate algorithms for solving the Lasso

regression in (3.5). We use the composite gradient descent algorithm as studied in

Agarwal et al. (2012) and Loh and Wainwright (2012). Let L(β) := 1
2
βT Γ̂β− <

r̂, β >, where Γ̂ and r̂ are defined in (3.4). The gradient of this loss function is

OL(β) = Γ̂β − r̂. The composite projected gradient descent algorithm produces a

sequence of iterates {βt, t = 0, 1, 2, · · · , } by

βt+1 = arg min
‖β‖1≤b0

L(βt)+ < OL(βt), β − βt > +
η

2
‖β − βt‖2

2 + λ‖β‖1

with the stepsize parameter η > 0. This can be updated by two operations: Step 1

is soft thresholding the vector βt − 1
η
OL(βt) at a level λ. Step 2 is projecting the

thresholded vector on to the `1 ball {β : ‖β‖1 ≤ b0} by minimizing the Euclidean

distance if the thresholded vector has `1-norm greater than b0; see Agarwal et al.

(2012) for details of the steps.

The following theorem shows that the composite gradient descent algorithm pro-

vides the solution near the global optimum β̂.

Theorem 3.5.1. (Loh and Wainwright (2012)) Let φ denote the objective function

of (3.5). Let βt (t = 0, 1, · · · , ) be the tth iterate for composite projected gradi-

ent descent algorithm. For any optimum β̂ of the Lasso estimator in (3.5), there

are absolute positive constants c1 and c2 and a contraction coefficient r ∈ (0, 1),

independent of m and n such that the iterates satisfy

‖βt − β̂‖2
2 ≤ c1‖β̂ − βo‖2

2, for all t ≥ T � log
φ(β0)− φ(β̂)

‖β̂ − β∗‖2
2

.

Figure 3.6 demonstrates the statistical error and the optimization error of the
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above algorithm. We consider the errors-in-variables regression model in (3.1a) and

(3.1b) when A and B are generated using AR(1) model with parameter ρA = 1 and

the random graph model, respectively. The error vector ε has i.i.d. components

from N(0, σ2), where σ ∈ {0.5, 1}. The iterates {βt} geometrically converge to the

fixed point while the statistical error does not geometrically converge to zero. For

fixed τ > 0, it is seen that the iterates {βt} for σ = 0.5 requires larger T to achieve

‖βt − β̂‖2 ≤ τ for t ≥ T, compared to the iterates for σ = 2. This can be explained

by the lower bound of t in Theorem 3.5.1, i.e. T tends to be increasing as ‖β∗− β̂‖2

decreases, which is the case when σ = 0.5 than when σ = 2.
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Figure 3.6: Plot for the optimization error log(‖βt − β̂‖2) and statistical error

log(‖βt− β∗‖2) for each tth iterate. The blue lines and the red lines cor-

respond to the statistical error and the optimization error, respectively.

Each plot shows the solution path using 20 different starting points. We

fix m = 500, n = 200 and β∗ = [1, 0.9, · · · , 0.1, 0, · · · , 0]T , where the first

10 components are non-zero. A and B are generated using AR(1) model

with parameter ρA = 1 and the random graph model, respectively.



CHAPTER 4

Analysis of Kronecker Sum Model

4.1 Introduction

This chapter will demonstrate applications and methods for estimating the inverse

covariance matrices Θ := A−1 and Ω := B−1 in the Kronecker sum covariance model,

Σ = A⊗ In + Im ⊗B. (4.1)

This is motivated by the data generating scheme considered in Model 3.2.1.

High-dimensional covariance estimation has been studied under the sparsity as-

sumptions on the covariance matrix (Bickel and Levina, 2008; Lam and Fan, 2009;

Rigollet and Tsybakov, 2012), and the precision matrix (Meinshausen and Bühlmann,

2006; Friedman et al., 2007; Rothman et al., 2008; Yuan, 2010; Zhou et al., 2011;

Cai et al., 2011; Loh and Wainwright, 2012; Zhou, 2014). We rely on the spar-

sity assumption imposed on the precision matrix. The nodewise regression method

(Meinshausen and Bühlmann, 2006; Yuan, 2010; Loh and Wainwright, 2012) requires

the local sparsity restriction, i.e. the the number of nonzero entries on each column

in the precision matrix is bounded. The sparsity assumption of the graphical Lasso

method (Friedman et al., 2007; Rothman et al., 2008; Zhou, 2014) is imposed on

70
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the entire precision matrix, i.e. the number of nonzero entries in the precision ma-

trix is bounded. We consider the Kronecker sum model in (3.2), but now assume

normality, which is needed only for the graphical model interpretation as shown in

Definition 4.1.1.

Definition 4.1.1. Let Z = (Z1, ..., Zm)T ∼ Nm(0,Σ) be a mean zero random Gaus-

sian vector with covariance Σ. The corresponding undirected graph G = (V , F ) is

defined as follows: The vertex set V := {1, . . . ,m} has one vertex for each component

of the vector Z. The edge set F consists of pairs (j, k) joined by an edge. If Zj is

independent of Zk given the other variables, then (j, k) 6∈ F .

Denote the precision matrix by Θ = (θij) := Σ−1 ∈ Rm×m. Consider following m

regressions, where we regress one variable against all others:

Zi =
∑
j 6=i

ζ ijZj + Vi where Vi ∼ N (0, σ2
Vi

) independent of {Zj; j 6= i}

{i, j} ∈ F ⇐⇒ θij 6= 0 ⇐⇒ ζji 6= 0 and ζ ij 6= 0 assuming that Var(Vi),Var(Vj) > 0,

where ζ ij = −θij/θii, and Var(Vi) := σ2
Vi

= 1/θii (i, j = 1, . . . ,m).

This method was proposed and studied in Meinshausen and Bühlmann (2006).

Yuan (2010), Zhou et al. (2011), and Loh and Wainwright (2012) have also used the

nodewise regression to estimate the covariance matrix and its inverse. For any matrix

Z, let Zj and Z−j be the jth column of Z and the sub-matrix of Z without the jth

column, respectively. In the current setting, nodewise regression can be written as

following regression equation:

X0,j = X0,−jβ
j + εj, where βj = A−1

−j,−jA−j,j, (4.2)

and εji ∼ N(0, Ajj − Aj,−jA−1
−j,−jA−j,j) is independent of X0,−j for i = 1, · · · , n and
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j = 1, · · · ,m. By the inverse formula for block matrices, the inverse matrix Θ = A−1

satisfies

Θj,j = (Ajj − Aj,−jβj)−1, Θ−j,j = −(Ajj − Aj,−jβj)−1βj. (4.3)

In the above procedure, we can not observe the matrix X0 due to the W . There-

fore, we adapt the regression equation in (4.2) to our setting:

Xj = X0,−jβ
j + εj +Wj, X−j = X0,−j +W−j. (4.4)

Here, we only observe Xj and X−j, and the components in εj + Wj are depen-

dent due to Wj. To estimate βj, we regress Xj on X−j by using the Lasso-type

errors-in-variables regression estimate described in (3.5) as we can interpret W−j as

measurement errors.

In Section 4.2, we describe details of the nodewise regression procedure to esti-

mate Θ and Ω. Section 4.3 describes an alternative method (the graphical Lasso esti-

mation) as a comparison with the nodewise regression method. Section 4.4 includes

simulation study. In Section 4.5, we apply the Kronecker sum covariance model

to analysis of hawkmoth neural encoding data studied in Sponberg et al. (2015).

We demonstrate how the Kronecker sum model and measurement error regression

techniques developed earlier are informative in this setting.

Before we proceed, we fix notations. For sequences {an} and {ζn}, we write

an = O(ζn) to mean that an ≤ Cζn for a universal constant C > 0. Similarly,

an = Ω(ζn) when an ≥ C ′ζn for some universal constant C ′ > 0. We use an = o(ζn)

to mean that for every positive constant ε, there exists a constant N such that

|an| ≤ ε|bn| for all n ≥ N . Similarly sn = ω(ζn) when for every positive constant

ε, there exists a constant N such that |an| ≥ ε|bn| for all n ≥ N . In Table 4.1, we
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define other notations used in this chapter.

Table 4.1: The Notations

Parameters Definitions

Xi The ith column of a matrix X

X−i The sub-matrix of X without the ith column

diag(Σ) The diagonal matrix of a square matrix Σ

λmax(Σ) The maximum eigenvalue of a square matrix Σ

λmin(Σ) The minimum eigenvalue of a square matrix Σ

κ(Σ) The condition number of a square matrix Σ

τ(Σ) tr(Σ)/p for a square matrix Σ ∈ Rp×p

‖Σ‖0,off The number of nonzero non-diagonal entries in a square matrix Σ

‖Σ‖1,off

∑
i 6=j |Σij| for a square matrix Σ

‖Σ‖1 maxj
∑

i |Σij| for a matrix Σ

Sm The set of symmetric m×m matrices

Sm+ The set of positive symmetric m×m matrices

tr(Σ) The trace of a square matrix Σ

Θ A−1

Ω B−1

4.2 Nodewise Regression Procedure

In this section, we describe the nodewise regression procedure to estimate the

covariance matrix A and its inverse following Loh and Wainwright (2012).

Step 1: Nodewise regression: To construct an estimator for Θ = A−1 with

X = X0 +W as in (3.1b), we obtain m vectors of β̂i for i = 1, . . . ,m by solving (3.5)

with

Γ̂ = 1
n
(X−i)

TX−i − τ̂(B)Im−1 and γ̂ = 1
n
(X−i)

TXi, (4.5)

where τ̂(B) is defined in (3.3).
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Step 2: Intermediate step: To exploit (4.3), define an initial estimate of A:

Ã =
1

n
XTX − τ̂(B)Im. (4.6)

Denote âj = −(Ãjj − Ãj,−jβ̂j)−1. Based on the equation (4.3), define Θ̃:

Θ̃j,−j = âjβ̂
j, Θ̃jj = −âj. (4.7)

Step 3: Symmetrization: To obtain a symmetric matrix for the estimate, consider

Θ̂ = arg min
Σ∈Sm

‖Σ− Θ̃‖1. (4.8)

The matrices Θ̂ is an estimate of Θ.

Algorithm 4.2.1. (Nodewise procedure for estimating Θ)

1. Perform m Lasso-type errors-in-variables regressions in (3.5) with

Γ̂ =
1

n
XT
−jX−j − τ̂(B)Im, γ̂ =

1

n
XT
−jXj,

where τ̂(B) is defined in (3.3). Let β̂j be the estimates for j = 1, · · · ,m.

2. Denote âj = −(Ãjj − Ãj,−jβ̂j)−1, where Ã = 1
n
XTX − τ̂(B)Im.

Form Θ̃ with Θ̃j,−j = âjβ̂
j and Θ̃jj = −âj.

3. Set Θ̂ = arg minΣ∈Sm ‖Σ− Θ̃‖1.

Similarly, we can obtain the estimates of Ω := B−1. The theoretical and further

methodological development is an on-going joint work with Shedden and Zhou. This

nodewise regression based covariance matrix estimation does not guarantee positive-

ness of the estimates (Meinshausen and Bühlmann, 2006; Yuan, 2010; Cai et al.,

2011; Loh and Wainwright, 2012).



75

4.3 Projected Graphical Lasso Method

In this section, we consider the projected Graphical Lasso method (projected

GLasso) as an alternative to the nodewise regression method. Recall the initial

estimate of A defined in (4.6):

Ã :=
1

n
XTX − τ̂BIm. (4.9)

Consider the following projection:

Ã+ = arg min
C∈Sm+

{∥∥∥Ã− C∥∥∥} , (4.10)

where ‖·‖ can take the operator norm, the Frobenius norm or the matrix ‖·‖∞ norm

which bounds the maximum absolute entry-wise distance. Similarly, let B̃+ be the

projected matrix of B̃. We consider the maximum absolute entry-wise norm in (4.10).

Algorithms for solving such estimators (4.10) have been intensively discussed Schw-

ertmanand and Allen (1979), Higham (2002), Malick (2004), Gao and Sun (2010),

and Henrion and Malick (2012), where one can generally replace Sm+ with more

constraints when more about the covariance structure is known. The literature

recognizes the optimization problem as the constrained nearest correlation matrix

problem (Gao and Sun, 2010).

Consider the correlation matrix of Ã+,

Ã1 := diag(Ã+)−1/2Ã+diag(Ã+)−1/2. (4.11)

Let Â1 and B̂1 be the graphical lasso estimates:

Â1 = arg min
Σ�0

(
tr(Ã1Σ−1) + log |Σ|+ λA|Σ−1|1,off

)
, (4.12)
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where λA is a regularization parameter. The estimates of A is

Â := diag(Ã+)1/2Â1diag(Ã+)1/2. (4.13)

Algorithm 4.3.1. (projected GLasso procedure for estimating Θ)

1. Consider the projection Ã+ = arg minC∈Sm+

{∥∥∥Ã− C∥∥∥}, where Ã is the

initial estimate of A as described in (4.9).

2. Let Ã1 = diag(Ã+)−1/2Ã+diag(Ã+)−1/2.

3. Solve the Graphical Lasso program:

Θ̂1 = arg min
Σ∈Sm+

{tr(Ã1Σ−1) + log |Σ|+ λA|Σ−1|1,off}.

4. The estimate of Θ is Θ̂ := diag(Ã+)−1/2Θ̂1diag(Ã+)−1/2.

Similarly, we can obtain the estimates of Ω.

4.4 Simulations

In this section, we perform simulations to investigate the performances of the

proposed covariance matrix estimators. For the topologies of A and B, see Section

3.4. We compare the nodewise regression and the projected GLasso methods for

the estimation of A and B. We fix m = 400 and n = 100. We repeat 200 times and

record the average of the performances in the simulation study. For the projected

GLasso, we obtain the estimates by using λA and λB from the interval (0, 1). For the

nodewise regression, we use the constraint ‖β‖1 ≤ 2‖β∗‖1 and the penalty parameter

λ ∈ (0, 0.31).
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In Figure 4.1, we compare the relative Frobenius error of the nodewise regression

and the projected GLasso estimates by changing the regularization parameters. It

is seen that the performance of nodewise regression is better for the estimation of

the covariance matrix A when tr(A) is large. However, in terms of estimating B,

projected GLasso is better when τ(A) is less than τ(B). Overall, nodewise regression

method seems to work well when estimating the covariance matrix A, which has

relatively larger dimension than B. Figure 4.2 displays of ROC curve for the two

estimates when tr(A) = 1.5m. Nodewse regression provides more accurate edge

selection than projected GLasso. In Figures 4.3, we show Recall and Precision of

nodewise regression estimates for A and B, respectively. It is observed that the

estimator has accurate edge selection when the covariance matrix has larger trace.

Figure 4.4 displays relative L2 error curves aligned against a rescaled sample size

for m ∈ {128, 256, 512} cases. We see the agreement for the three cases, which

demonstrate the L2 error bound rate d
√

logm/n.
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Figure 4.1: The relative Frobenius error of the estimates Â = Θ̂−1 (top) and B̂ =

Ω̂−1 (below) when m = 400, n = 100 and the covariance matrix A is

AR(1). The left figure and the right figure show the relative Frobenius

error of nodewise regression estimate and projected GLasso estimate,

respectively.
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Figure 4.3: The recall and precision curves of the nodewise regression estimate of

Θ (top) and Ω (below), respectively, when m = 400, n = 100 and the

covariance matrix A is AR(1).
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Figure 4.4: The L2 error for the nodewise regression estimate Â when A is AR(1)

and B = 0.1B∗ (left) or B = 0.5B∗, where B∗ follows Random graph.

The error versus the rescaled sample size n/(d2 logm) are plotted for

three different m cases.
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To understand the relative performances of the two estimates with different trace

values of A, we record the performances of the estimates when τ(A) has a value from

0.1 to 1.9. We generate the Kronecker sum covariance matrix Σ = cA∗ ⊕ (2− c)B∗,

where A∗ and B∗ follow AR(1) and random graph model, respectively. Here the

matrices A := cA∗ and B := (2−c)B∗ are the parameters to be estimated. In Figure

4.5, the relative Frobenius error and L2 error are recorded for the two estimates. This

shows that the nodewise regression seems to be favorable when tr(A)/m is larger than

1. When tr(A)/m is small, projected GLasso has lower error rates. Overall, for the

estimation of the larger dimensional covariance matrix A, nodewise regression works

well than projected GLasso when tr(A)/m ≥ tr(B)/n for this example.
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Figure 4.5: The performance results of the estimates Â when τ(A) increases from 0.1

to 1.9; the dimensions are fixed at m = 200 and n = 200; the two plots

show the L2 error and Frobenius error, respectively.

4.5 Analysis of Hawkmoth Neural Encoding Data

In this section, we fit the Kronecker sum covariance model to the data studied

in Sponberg et al. (2015). The basic idea is to study how the turning behavior
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of hawkmoths in flight is related to the firing of neurons in their left and right

dorsolongitudinal muscles (DLMs). The difference in peak firing times between the

left and right DLM controls turning while the moth is in flight. The measured

difference in peak DLM firing time can be correlated with measured torque values.

As a baseline hypothesis, we anticipate a positive correlation between neural firing

and mean torque within each wingstroke.

In the experiment, both torque and neural firing were measured for up to 1020

wingstrokes of moths while in flight. Data were collected for seven moths. The

neural firing was measured using electrical probes, and the torque was measured via

a torque meter using an optical sensor. Separate left and right neural firing rates

were captured, and the time of peak firing prior to each wingstroke was obtained.

Thus, for each wingstroke we have single readings of peak neural firing time in the

left and right DLM, and a timecourse of 500 sampled torque values spanning the

duration of the wingstroke.

In this section, we demonstrate how the Kronecker sum model and measurement

error regression techniques developed earlier are informative in this setting. The

rationale for considering the Kronecker sum model for the torque time series is that

these measurements are difficult to obtain and are known to be quite noisy. Therefore

we consider whether the Kronecker sum model might be capable of separating the

underlying motion signal from measurement error. We then were able to calculate

what the relationship between neural firing and flight torque might have been based

on more accurate torque measurements.

The outline of this section is as follows. In Subsection 4.5.1, we propose a method

for assessing the goodness of fit for Kronecker sum and product models to a given
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dataset, and argue that the Kronecker sum model provides a better fit for the moth

torque data than the Kronecker product model. In Subsection 4.5.2, we introduce

a method to determine the trace of covariance matrix for Kronecker sum model. In

Subsection 4.5.3, we consider the graphical structures for the temporally dependent

signal component and for the signal component capturing dependence among trials.

We show that the temporally dependent signal component has an approximately

stationary time series structure, and the trial-by-trial correlations reflect similarities

between trials that are weakly connected to the mean torque of the trial. In Subsec-

tion 4.5.4, we further consider the relationship between the mean structure of the data

and the residual covariances among trials, viewing this as a form of mean-covariance

relationship. In Subsection 4.5.5, we use measurement error regression techniques

from chapter 3, and argue that the relationship between neural firing and torque is

stronger than apparent through simpler analyses. To the extent that the coefficient

patterns found when using measurement error regression are interpreted as being

constant, this is consistent with the simple 1-dimensional neuro-encoding hypoth-

esis, and suggests that any evidence for complementary neural-encoding pathways

may be an artifact resulting from not fully accounting for the presence of measure-

ment errors.

4.5.1 Fit of the Additive Covariance Model

We propose a method for assessing the goodness of fit for Kronecker sum and

product models to a given dataset. If X follows the Kronecker sum covariance model
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with covariance matrix Σ = A⊕B, then

Σ =



Σ(1, 1) Σ(1, 2) · · · Σ(1,m)

Σ(2, 1) Σ(2, 2) · · · Σ(2,m)

...
...

. . .
...

Σ(m, 1) Σ(m, 2) . . . Σ(m,m)


=



a11In +B a12In · · · a1mIn

a21In a22In +B · · · a2mIn

...
...

. . .
...

am1In am2In . . . ammIn +B


.

The sample covariance matrix Ŝ := vec(X)vec(X)T ∈ Rmn×mn is an unbiased but

noisy estimate of the covariance matrix, for Ŝ(i, j) = X·,iX
T
·,j ∈ Rn×n, 1 ≤ i, j ≤ m,

Ŝ =



Ŝ(1, 1) Ŝ(1, 2) · · · Ŝ(1,m)

Ŝ(2, 1) Ŝ(2, 2) · · · Ŝ(2,m)

...
...

. . .
...

Ŝ(m, 1) Ŝ(m, 2) . . . Ŝ(m,m)


(mn)×(mn)

To assess the goodness of fit of the Kronecker sum model, we use the fact that

if the covariance matrix has the form of Σ = A ⊕ B, then Σ(i, j)k,` = 0 for all

1 ≤ k 6= ` ≤ n and 1 ≤ i 6= j ≤ m. Define the statistic Soff

Soff :=
∑

1≤i 6=j≤m

∑
1≤k 6=`≤n

Ŝ(i, j)k,l/(
√
mn‖X‖2

F ),

If the true covariance matrix Σ is near the Kronecker sum space, then Soff should

be close to zero. The statistic Soff is also scale-invariant in X. This statistic can be

efficiently calculated as follows: Let Xk· and X·l be the sum of the entries on the

kth row and the lth column of X, respectively. The statistic Soff can be efficiently

calculated using

√
mn‖X‖2

FSoff = (
∑
i,j

Xij)
2 −

m∑
k=1

(Xk·)
2 −

n∑
l=1

(X·l)
2 + ‖X‖2

F .
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Remark 4.5.1. If a model follows Kronecker product, i.e. Σ = A⊗B, then

E

[ ∑
1≤i 6=j≤m

∑
1≤k 6=`≤n

Ŝ(i, j)k,l

]
=

( ∑
1≤i 6=j≤m

Aij

)( ∑
1≤k 6=`≤n

Bk`

)
.

If A follows AR(1) model with a parameter ρ, then we can show

∑
1≤i 6=j≤m

Aij = 2
ρ− (m+ 1)ρm+1 +mρm+2

(1− ρ)2
� 2m

ρ

1− ρ
,

provided that m is large enough.

Figure 4.6 displays the simulated Soff for 500 samples generated from Kronecker

sum or product when A is Star-Block (left) and AR(1) (right), respectively. It is

seen that the simulated statistic for the Kronecker sum model is more concentrated

around zero than those for the Kronecker product model.
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Figure 4.6: Histogram of the statistic Soff for 500 samples generated from Kronecker

sum or product when A is Star-Block (left) and AR(1) (right), respec-

tively. The blue vertical line is the expected value of the statistic for

the Kronecker product model. For the Star-Block model, the (mean,

standard deviation) from the sum and product model are (0.0016, 0.055)

and (0.1184, 0.2629), respectively. For the AR(1) model, the sum and

product model have (−0.0005, 0.0223) and (0.0206, 0.0671), respectively.

If we only have one data realization X, then we can simulate the reference dis-

tribution of Soff using the parametric Bootstrap. Let Â ⊕ B̂ and Ã ⊗ B̃ be the
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Kronecker sum and product estimates, respectively. We generate random samples

X∗(t) (t = 1, · · · , N) from N(0, Â⊕ B̂) and Z∗(t) (t = 1, · · · , N) from N(0, Ã⊗ B̃),

respectively. For each X∗(t), let Ŝ∗ = vec(X∗(t))vec(X∗(t))T ∈ Rmn×mn. We calculate

S∗off :=
∑

1≤i 6=j≤m

∑
1≤k 6=`≤n

Ŝ∗(i, j)k,l/(
√
mn‖X∗‖2

F ),

Similarly, we calculate the statistic for the samples Z∗(t) (t = 1, · · · , N). We then

compare the simulated statistic S∗off from the samples X∗(t) (t = 1, · · · , N) and

Z∗(t) (t = 1, · · · , N) with the observed statistic Soff from the original data X, and

choose the model which provides closer simulated statistics to the observed one.

Figure 4.7 displays the histogram of the simulated statistic S∗off for 500 bootstrap

samples generated from Kronecker sum and product estimates. This shows that the

observed statistic Soff is closer to the simulated S∗off when the samples are generated

from the estimates for their true covariance structure, i.e. Kronecker sum or product.
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Figure 4.7: Histogram of the statistic S∗off for 500 bootstrap samples generated from

Kronecker sum and product estimates. The left and right figures are

when the observed data X follows Kronecker sum and product models,

respectively. The black vertical line indicates one observed value of Soff

from a Kronecker sum (left) product model (right).

Next we apply the goodness of fit test to the hawkmoth torque data. In Table 4.2,

we record the observed statistics Soff for each moth. We also simulate the reference
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distribution of Soff using the parametric Bootstrap. The table shows that the mean of

the simulated S∗off for the Kronecker sum estimate has a closer value to the observed

statistic than that of the Kronecker product estimate. This demonstrates that the

Kronecker sum model may be more appropriately explain the movement data than

the Kronecker product model.

Table 4.2: The simulated statistic S∗off
Moth Sum Product Observed

Mean(×10−3) SD (×10−3) Mean (×10−3) SD (×10−3)

J 0.5 2.3 14.1 24.0 2.1

K 0.3 2.4 11.7 18.3 2.7

L 0.2 2.5 16.3 25.8 2.6

M 0.1 2.8 15.0 21.7 2.6

N 0.3 2.4 18.3 25.3 2.4

P 0.1 2.5 16.8 27.1 2.3

Q 0.1 2.9 11.7 19.0 3.1

In Figure 4.8, we draw histograms of S∗off obtained from 200 random samples

generated from the Kronecker sum and product fits for moth J and moth L. As

the figure demonstrates, the simulated statistics from the Kronecker sum estimate

tend to concentrate more around the observed statistic compared to the Kronecker

product estimate.
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Figure 4.8: The histogram of S∗off calculated from 200 generated random samples

using estimates of A and B from the Kronecker sum and product models.

The blue bar indicates the observed statistic from the moth torque data

X, and right bars and blue bars are from sum and product based samples.

The two histograms are from moth J and moth L, respectively.

4.5.2 Estimating the Trace Parameter

In this subsection, we propose a method to estimate tr(A) by comparing the

estimates Â = Θ̂−1 and B̂ = Ω̂−1 obtained by using the different values of t̂r(A).

We note that tr(A)/m reflects the overall contribution of A to the data variance,

and hence is very important in understanding the two-way dependence of X. While

the decomposition Σ = A⊕B is not unique, in general if A and B are not diagonal

Σ = (A+ cIm)⊕ (B− cIn) = Ã⊕ B̃ will not has the property that Ã−1 and B̃−1 are

sparse. Therefore, the decomposition is identifiable via its sparsity.

To estimate Θ and Ω for the Kronecker sum covariance model using the procedure

described in Section 4.2, the trace of A or B must be fixed. We propose to estimate

tr(A) by comparing the Kronecker sum estimates Â and B̂ obtained by using the

different values of t̂r(A) in the estimation. Without loss of generality, we normalize

the data X such that ‖X‖2
F = 2mn, which in turn we can assume that τA + τB = 2.
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Now let Â(C) and B̂(C) be the estimates using τA = C ∈ (0, 2). Let

C∗ = argminC∈(0,2)‖vec(X)vec(X)T − Â(C)⊕ B̂(C)‖F , (4.14)

which minimizes the Frobenius distance between the rank-one sample covariance

matrix vec(X)vec(X)T and the Kronecker sum covariance estimate Â(C) ⊕ B̂(C).

We estimate A and B using τA = τ̂A := C∗. The intuitive idea of the minimizer C∗

defined in (4.14) is that Â(C) and B̂(C) estimate Ã and B̃ such that Ã ⊕ B̃ = Σ

and τÃ = C. Since vec(X)vec(X)T is an unbiased estimate of Σ, the minimizing

problem (4.14) may find the C such that Â(C) and B̂(C) more accurately estimate

corresponding pair A and B satisfying A ⊕ B = Σ and tr(A) = C than that of

other C ∈ (0, 2). We note that the estimates Â(C) and B̂(C) may be closer to the

corresponding A and B when A−1 and B−1 are sparse. This roughly implies that

Â(C∗) and B̂(C∗) may estimate A and B satisfying A ⊕ B = Σ and A−1 and B−1

are the most sparsest pair among other pairs A and B.

Figure 4.9 displays simulation results for accuracy of τ̂A for the three cases when

τA ∈ {0.4, 1, 1.8}. It is seen that τ̂A tends not to concentrate around the true τA,

although the mode seems to be close to the truth (with 0.1 distance).
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Figure 4.9: Normalized error paths for 50 samples (left) and the histogram of

tr(A)/m (right) for 200 samples when τA = 0.4 (top), τA = 1 (mid-

dle) and τA = 1.8 (below). The dimension (m,n) = (400, 100). For

the top plots, we use A = 0.4A∗, where A∗ follows AR(1) model, and

B = 1.6B∗, where B∗ follows random model. For the middle and below

plots, we use A = A∗ and B = B∗, and A = 1.8A∗ and B = 0.2B∗,

respectively.



90

Figure 4.10 displays the average of error paths for 200 samples when A and B are

diagonal matrices. We also consider the situation in which A and B are diagonal, in

which case tr(A) is not identifiable, even through sparsity. The proposed procedure

for estimating tr(A) is seen to converge to a degenerate Kronecker sum with only

one term, which is sufficient for capturing the structure of Σ.
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Figure 4.10: Average of normalized error paths for 200 samples when A and B are

diagonal matrices. The left and right plots are when τA = 1 and τA =

1.5, respectively.

We apply this method to estimate the trace parameter for moth data. Figure

4.11 shows that τ̂A = 1 and τ̂A = 1.3 are the optimal values for the Moth J and L,

respectively.
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Figure 4.11: Moth J and L(spike): Frobenius distance of the Kronekcer sum covari-

ance estimate obtained by using τ̂A = d, relative to rank-one sample

covariance matrix.
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4.5.3 Graphical Structures

In this subsection, we estimate the graphical structures among the time points

and among the wingstrokes, respectively. Based on the analysis of the statistic Soff in

Subsection 4.5.1, the Kronecker sum covariance model seems to be more appropriate

than the Kronecker product model for explaining the two-way dependency in the

movement data X.

Figure 4.12 displays the graphical structure of the estimates Θ̂ for the optimal

trace of A from the Kronecker sum model. Here Â is the estimated covariance

matrix between time points. It is observed that all the connections in the graphical

structure of Θ̂ concentrate near the diagonal, which is expected as it is a temporal

autocovariance matrix.
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Figure 4.12: The graphical structure of Θ̂ from Kronecker sum model using nodewise

regression method
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Moth J (spike): correlation matrix
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Figure 4.13: The estimated correlation matrix calculated from the Kronecker sum

estimate Â = Θ̂−1. The nodewise method is used for the estimates.

The left and the right plots correspond to moth J and L, respectively.

Figure 4.13 displays the estimated correlation matrix plots for moths J and L. It

is observed that the correlation structure have the clear periodic patterns, where the

signals are decreasing as their time distances are increasing.

Figure 4.14 shows the component plots of the estimated inverse covariance matrix

Θ̂. The diagonal components dominate the off-diagonal components, and the off-

diagonal components corresponding to the times whose distance are greater than 7

have the value zero. We can see that the diagonal and the off-diagonal components

are stable except a first and last few components. This is consistent with the rows

of X following an approximately stationary process with short memory.
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Figure 4.14: The diagonal components and the off-diagonal components of Θ̂ from

Kronecker sum model. Here off(k) records the off-diagonal components

having the form (Θ̂)i,i−k for i = 1, · · · , 500.

Figure 4.15 displays the estimated graphical structure of Ω̂ for the Kronecker sum

model. The number of wingstrokes varies by moth having values between 300 and

1020. For the moth J, let cluster 1 be the cluster that consists of five wingstrokes

(wingstroke with numbers 235,411,436,453, and 503), cluster 2 be the cluster that

consists of seven wingstrokes (wingstroke with numbers 215,253,257,260,339,420, and

486), and cluster 3 be the cluster that consists of eighteen wingstrokes (wingstroke

with numbers 17,29,36,53,55,70,75,88,132, etc). Figure 4.16 shows torque ensembles

for the three clusters. The average of pairwise correlations within the cluster are

greater than those between clusters, which implies that wingstrokes within cluster

have more similar pattern than that of wingstrokes from other clusters. Moreover,

the average of the torque mean within clusters are obviously different; the average

and standard deviation of the torque mean within clusters are (0.3288, 0.2481),

(0.1318, 0.2394) and (-0.3678, 0.2680), respectively. This implies that the cluster1

and cluster3 may consist of wingstrokes with right and left turn, respectively. Cluster

2, however, seems to consist of wingstrokes with straight flights.



94

-5 0 5 10 15 20 25

-5

0

5

10

15

20

  14

  17

  18

  24  29
  36

  37

  53

  55

  56

  70

  73

  75

  83

  85

  88

  95

  105

  111

  131

  132

  134

  139

  147

  157

  160

  161

  166
  171

  174

  187

  204

  208

  210

  212

  215

  217

  218

  219

  235

  239

  241

  248

  249

  251

  254

  257

  259

  260

  261   263

  279

  282

  289

  302

  304  316

  317

  318

  332
  336

  338

  339

  348

  356

  383

  384

  400

  405

  411

  412

  415

  420

  430

  432

  436

  446

  453

  465
  486

  489

  493

  503

  508

  516

  518

  525

  528   531

  532

-5 0 5 10 15 20

-2

0

2

4

6

8

10

12

14

16

18

  1
  2

  3

  4
  5

  6

  10

  23

  24

  28

  31

  33

  36

  42

  44

  49

  51

  52

  56

  59
  60

  63

  64

  65

  70

  71

  78

  79

  80

  89

  90

  91

  95

  96

  99

  104

  105

  108

  109  113

  114

  116

  124

  128

  139

  141

  143

  148

  152

  153

  160

  164

  165

  166

  167

  170

  175

  177

  185

  188

  194

  201

  208

  221

  228
  234

  245

  262

  271

  272

  278

  283

  288  289

  290

  291
  296

  297

  301

Figure 4.15: The estimated graphical structure of Ω from Kronecker sum model. The

left and the right plots for Moth J and L, respectively.
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Figure 4.16: Torque ensembles for three clusters of Moth J. The average of pairwise

correlations within the cluster 1, cluster 2 and cluster 3 are 0.6876,

0.7120, and 0.7322, respectively. The average of pairwise correlations

between clusters 1&2, 1&3, and 2&3 are 0.3572, 0.1144, and 0.2125, re-

spectively. The average and standard deviation of the torque mean

within clusters are (0.3288, 0.2481), (0.1318, 0.2394) and (-0.3678,

0.2680), respectively.

Figure 4.17 displays a few wingstrokes plots whose estimated correlations are

very high or low. For example, as can be seen in the left plot (moth J), the three

wingstrokes are displayed, where the estimated correlation between w498 and w379

calculated from B̂ is 0.82. These two wingstroke show very similar patterns over the

500 time points. The estimated correlation between wingstrokes w498 and w432 is
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−0.35, and they show quite different pattern over the times.
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Figure 4.17: The left plot shows three wingstroke paths for moth J. For the

wingstrokes w498 and w379, the correlation obtained from the data and

the correlation calculated from B̂ are 0.972 and 0.82, respectively. Those

values for the wingstrokes w498 and w432 are −0.47 and −0.35, respec-

tively. The right plot includes the three wingstrokes paths for moth L.

For the wingstrokes w289 and w272, the correlation from the data and

the correlation calculated from B̂ are 0.946 and 0.85, respectively. The

values for the wingstrokes w289 and w99 are −0.79 and −0.71, respec-

tively.

4.5.4 Mean-Variance Analysis

In this subsection, we analyze the relationship between the mean torque of a

wingstroke and its turning direction.

Figure 4.18 shows the scatter plots for the mean differences of wingstrokes and

the corresponding entries in Ω̂ and B̂. The red line shows the mean value of the

entries. Wingstroke pairs are grouped by subsets of size 100 based on their mean dif-

ferences, and the mean is calculated for each group. It is shown that the entries of Ω̂

tend to have values near zero as the mean difference of the corresponding wingstrokes

grows. This demonstrates that wingstrokes with different turning directions seem to

be conditional independent, as the mean torque is known to be related to the turing
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direction of wingstroke (Sponberg et al., 2015). Based on the estimated covariance,

for moth J, the wingstrokes from the same turning direction seems to be more pos-

itively correlated than those of different turning direction. For moth L, as turning

directions of wingstrokes are different, they tends to be negatively correlated. This

may be explained by a phase shift of the wingstrokes for moth L, as pointed out by

Sponberg et al. (2015).
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Figure 4.18: Scatter plots for the mean torque differences of wingstrokes and the

corresponding entries in B̂ (top) and Ω̂ (below).
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4.5.5 Regression Analysis

In this subsection, we analyze a relationship of neural firing and torque by using

linear regression and errors-in-variables regression. Note that a baseline assumption

in our errors-in-variables regression is that the movement data (design matrix in

the regression) follows a Kronecker sum covariance model. We will apply regular

regression and errors-in-variables regression to the hawkmoth neural encoding data

and compare the results.

Note that the motor signals data Y ∈ Rn×2 consists of the two spike timing

variables (tL, tR), where tL and tR is the left and right DLM spike times of wingstroke,

respectively, and n = Ni and m = 500. The number of wingstrokes Ni depends on

the moth, and has the value between 300 and 1020 for each moth i. Sponberg et al.

(2015) performed partial least squares (PLS) using these two data sets X and Y

to find the relevant features encoded in the movement data X that are related to

variations of the motor signal data Y . Let Y1 and Y2 be the first and the second

columns of Y .

We perform the regression of Yc = Y1 − Y2 on the torque measurement data X.

We first extract the effect of mean torque from Yc by using the simple regression of

Yc on the mean of X, and let Ỹc be the residual vector after the regression. Then

we apply both errors-in-variables regression (Rudelson and Zhou, 2015) and regular

penalized regression with `2/`1 penalties such as ridge regression (Hoerl and Kennard,

1970) and Scaled Lasso (Sun and Zhang, 2012) to compute each of the coefficients
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as follows:

Ỹc = Xβ + ε, X and Ỹc are observable,

Ỹc = X0β + ε, X = X0 +W, X and Ỹc are observable.

Scaled Lasso (Sun and Zhang, 2012) involves an alternating minimization algorithm

for the penalized joint loss function:

[β̂, σ̂] = arg min
β∈Rm,σ>0

|Ỹc −Xβ|22
2nσ

+
σ

2
+ λ0|β|1.

Ridge regression (Hoerl and Kennard, 1970) estimates β such that

β̂ = arg min
β∈Rm

|Ỹc −Xβ|22
2nσ

+ λ‖β‖2
2.

Let β̂R and β̂ be the coefficients obtained from the regular regression and the

errors-in-variables regression, respectively. For the estimate β̂R, we use the linear re-

gression with Lasso penalty. We first calculate the explanatory power of X = X0+W

for Ỹc using the proportion of explained variance as follows: R2
X = corr

(
Xβ̂R, Ỹc

)2

.

Similarly, we estimate the explanatory power of X0 for Ỹc using the estimates β̂ and

the Â: R2
X0

= cor
(
X0β

o, Ỹc

)2

, where we substitute XT
0 X0/n with Â.

Table 4.3: Explanatory power (R-squared)
Moth (Phase data) R2

X(R) R2
X(S) R2

X0
Moth (Spike data) R2

X(R) R2
X(S) R2

X0

J 0.10 0.11 0.21 J 0.21 0.31 0.38

K 0.09 0.14 0.24 K 0.53 0.53 0.57

L 0.34 0.32 0.40 L 0.51 0.51 0.59

M 0.06 0.01 0.24 M 0.06 0.01 0.30

N 0.26 0.27 0.37 N 0.41 0.43 0.55

P 0.38 0.41 0.50 P 0.55 0.52 0.69

Q 0.35 0.30 0.46 Q 0.24 0.53 0.67

Table 4.3 shows the explanatory power of X and the estimated lower bound of

the explanatory power of X0 in terms of R-squared. The R2
X(R), R2

X(S), and R2
X0
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are the R2 estimate of using Ridge regression, Scaled Lasso and errors-in-variables

regression, respectively. It is shown that the explanatory power of the X is mostly

less than that of X0, which implies that movement features relevant to the difference

of motor signal vectors Yc are mostly encoded in X0. This shows that the Kronecker

sum decomposition provides two random parts, where one part is mainly related

to the difference of the motor signals. In particular, there seems to be significant

improvements in R2 for moth M. To see if this improvement is due to the upward

bias in the estimation of the R2, we consider the errors-in-variables model with β = 0

and the same covariance matrices estimated for moth M. Figure 4.19 displays the

estimate of R-squared, which shows that the improvement on R2 for moth M is not

due to upward bias.
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Figure 4.19: Histogram of R-squared estimates when β = 0 and X follows Kro-

necker sum covariance model, where the estimated covariance matrices

for moth M (phase) and moth M (spike) are used for left and right plots,

respectively.

Figures 4.20 and 4.21 display the estimated regression coefficients for the regular

regression and the errors-in-variable regression (EIV). It is shown that the errors-

in-variables regression coefficients have more stable and stronger components than
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regular regression and have positive components over the all time points. To the ex-

tent that the coefficient patterns found when using measurement error regression are

interpreted as being constant, this is consistent with the simple 1-dimensional neuro-

encoding hypothesis, and suggests that any evidence for complementary neural-

encoding pathways may be an artifact resulting from not fully accounting for the

presence of measurement errors. Figures 4.22 and 4.23 display more sparse esti-

mates whose sparsity is less than n/ logm) for errors-in-variables regression (EIV).

Although coefficients are not stable, they have positive components over the all time

points.
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Figure 4.20: The estimated regression coefficients from the regular regression (ridge

regression and Scaled Lasso) and the errors-in-variables regression (EIV)

for phase data set.
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Figure 4.21: The estimated regression coefficients from the regular regression (ridge

regression and Scaled Lasso) and the errors-in-variables regression (EIV)

for spike data set.
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Figure 4.22: The estimated regression coefficients from the regular regression (ridge

regression and Scaled Lasso) and the errors-in-variables regression (EIV)

for phase data set.
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Figure 4.23: The estimated regression coefficients from the regular regression (ridge

regression and Scaled Lasso) and the errors-in-variables regression (EIV)

for spike data set.



CHAPTER 5

Future Work

5.1 Hypothesis Testing for Multiple Quantiles

In future research, I will extend my study of multiple quantile regression esti-

mation in two ways. First, I will study the model selection consistency without

imposing a strong beta-min condition on the quantile coefficients. Our current anal-

ysis relies on this beta-min condition, which is restrictive and non-checkable. Second,

I will study hypothesis testing for multiple quantiles with high-dimensional covari-

ates. We test the impact of a given covariate on the conditional quantile functions

across a quantile interval ∆ as follows: H0 : βj(τ) = 0q for all τ ∈ ∆, H1 : βj(τ) 6=

0q for some τ ∈ ∆. The interval ∆ may be chosen as [0.45, 0.55] if it is desirable to

test variables that impact the center of the conditional distributions, or [0.8, 09] if one

is interested in the upper tails. To approximate the quantile functions over quantile

levels in the interval, we may use B-splines and consider composite quantile regres-

sion to estimate the B-spline coefficients. By using the estimated coefficients, the

score-type test statistic (Gutenbrunner and Jurečková, 1992; Gutenbrunner et al.,

1993) is constructed based on the asymptotic normality of the statistic under the

null hypothesis H0. In numerical examples, we have observed that the proposed

103
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score-type test for multiple quantiles provides higher power than other tests based

on a single quantile level. This indicates that this multiple quantile test is beneficial

under certain cases.

5.2 Theory and Methods for EIV Regression

In ongoing research, we are developing theory and methods for errors-in-variables

regression and graphical model selection using a single copy of the data as well

as replicated data, extending the work in Chapters 3 and 4. Replicated data are

available in many modern application areas. For example, in neuroscience studies,

data often involve multiple trials and subjects. With the replicated data, the strong

assumption, tr(A) is known, is not necessary.
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Städler, N., Stekhoven, D.J., and Bühlmann, P. (2014). Pattern Alternating Max-

imization Algorithm for Missing Data in High-dimensional Problems. Journal of

Machine Learning Research, 15, 1903-1928.

Stefanski, L. A. (1985). The Effects of Measurement Error on Parameter Estimation.

Biometrika, 73, 583–592.



115

Stefanski, L. A. (1990). Rates of Convergence of Some Estimators in a Class of

Deconvolution Problems. Statistics and Probability Letters, 9, 229–235.

Stefanski, L. A. and Cook, J. R. (1995). Simulation-extrapolation: The Measurement

Error Jackknife. Journal of the American Statistical Association, 90, 1247–1256.

Sun, T. and Zhang, C.-H. (2012). Scaled Sparse Linear Regression. Biometrika, 102,

246–270.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of

the Royal Statistical Society, Series B, 58, 267–288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity

and Smoothness via the Fused Lasso. Journal of the Royal Statistical Society,

Series B, 67, 91–108.

Tsiligkaridis, T. and Hero, A. O. (2013). Covariance Estimation in High Dimensions

Via Kronecker Product Expansions. Annals of Statistics, 61, 5347–5360.

Tsiligkaridis, T., Hero, A., and Zhou, S. (2013). On Convergence of Kronecker

Graphical Lasso Algorithms. IEEE Transactions on Signal Processing, 61, 1743–

1755.
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