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ABSTRACT 

 

Tumor recurrence and loco-regional metastases are the major clinical challenges in the 

management of patients with head and neck squamous cell carcinoma (HNSCC). A 

subpopulation of cells, called cancer stem cells, has been identified in HNSCC and characterized 

as cells with uniquely high tumor-forming ability and resistance to conventional chemotherapies. 

Multiple reports have shown that head and neck cancer stem cells drive the metastatic process. 

How tumorigenic cells are displaced from the tumor “island”, travel through connective tissues, 

and get into blood vessels is still not well understood. We hypothesized that endothelial cell-

secreted factors generate a chemotactic gradient that attracts head and neck cancer stem cells 

towards blood vessels. Head and neck cancer stem cells reside in perivascular niches. Close 

proximity between cancer stem cells and blood vessels may facilitate cancer stem cells to invade 

into the bloodstream and initiate metastasis. Our group previously has shown that endothelial 

cell-secreted factors, specifically interleukin-6 (IL-6), potentiate the self-renewal and 

tumorigenicity of head and neck cancer stem cells. Here, we assessed the role of endothelial cell-

initiated IL-6 pathway activation in head and neck cancer stem cell motility. Endothelial cell-

secreted IL-6 induced the expression of the mesenchymal marker Vimentin and epithelial-

mesenchymal transition-activating transcription factor Snail in head and neck cancer stem cells. 

When endothelial cell-secreted IL-6 was inhibited, we observed decreased motility in head and 

neck cancer stem cells. Xenograft HNSCC tumors vascularized with IL-6 knockout human 

endothelial cells grew slower than tumors vascularized with control endothelial cells. Notably, 



 x 

tumors grown with IL-6 knockout endothelial cells had smaller fraction of cancer stem cells than 

those with control endothelial cells. In addition, anti-IL-6 receptor (IL-6R) antibody, 

tocilizumab, also decreased cancer stem cell population. Tissue microarray analysis of 80 

HNSCC patient samples revealed that high IL-6R or its co-receptor gp130 expressions correlated 

with low patient survival. Taken together, these results highlight the contribution of endothelial 

cell secreted factors on the migratory behavior of head and neck cancer stem cell that ultimately 

result in dissemination of tumor cells. Further, we show the therapeutic potential of tocilizumab 

targeting cancer stem cells in head and neck cancer. 



 1 

CHAPTER I 

 

INTRODUCTION 

 

Head and neck cancer is the sixth most common cancer worldwide with more than half a million 

new cases diagnosed every year. Tobacco, alcohol and human papillomavirus infection are the 

common risks of head and neck cancer. Approximately 90% of head and neck cancer is 

squamous cell carcinoma (HNSCC). Standard of care for head and neck cancer includes surgery, 

chemotherapy and radiation. Cetuximab, anti-EGFR inhibitor, is the only targeted therapy that is 

approved for head and neck cancer. Approximately 60% of the head and neck cancer patients 

present locally advanced disease (stage III/IV) (Bhave et al., 2011). These patients often develop 

distant metastasis or tumor relapse after receiving initial treatments. When the tumor relapses or 

metastasizes, the median overall survival drops down to 3 to 4 months (Gold et al., 2009). 

However, our understanding of mechanisms related to tumor metastasis and recurrence is still 

limited. 

 A tumor consists of heterogeneous population of tumor cells. Heterogeneity within a 

tumor was well recognized by earlier studies dating back to 1970s. For example, clonally 

expanded metastatic tumor cells had varied rate of generating metastasis, suggesting different 

population of cells has varied tumor forming ability (Fidler and Kripke, 1977). Seminal work by 

Bonnet and Dick showed that CD34+CD38- cells from acute myeloid leukemia exhibited robust 

tumor forming ability in immunocompromised mouse (1997). This initial discovery led to 
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identification of a subpopulation of cells, called cancer stem cells, from various cancer types. 

Cancer stem cells have high tumorigenicity, resistance to chemotherapy and self-renewal ability. 

Our group has previously reported that HNSCC cells with high aldehyde dehydrogenase 

(ALDH) activity and high CD44 expression (ALDHhighCD44high cells) have self-renewal and 

superior tumor-forming ability (Krishnamurthy et al., 2010). Recent studies revealed that cancer 

stem cells are the key players of metastasis in head and neck cancers (Davis et al., 2010; Chinn et 

al., 2015). However, the molecular mechanism that enhances cancer stem cells metastatic ability 

is still unclear. 

 Both normal and cancer stem cells need to be protected to retain their survival and self-

renewal abilities. Like normal stem cells, cancer stem cells reside in a protective environment. 

Brain tumor stem cells reside in the perivascular niche to self-renew and initiate rapid tumor 

growth (Calebrese et al., 2007). Head and neck cancer stem cells also reside close by the blood 

vessels, and endothelial cell-secreted factors enhance the self-renewal and survival of head and 

neck cancer stem cells (Krishnamurthy et al., 2010). Our group showed that endothelial cell-

secreted factors induce migration and epithelial-mesenchymal transition in HNSCC cells (Neiva 

et al., 2008; Zhang et al., 2014). Specifically, we found that endothelial cell-secreted interleukin-

6 (IL-6) enhances survival and tumorigenic potential of head and neck cancer stem cells 

(Krishnamurthy et al., 2014). Such observations suggest that the endothelial cell-secreted factors, 

such as IL-6, may induce migratory behavior of cancer stem cells to initiate metastasis. 

 Identification of cancer stem cells opened up the possibility of developing targeted 

therapies against cancer stem cells. Cancer stem cell hypothesis explains the current failure of 

cancer treatment is due to inability to ablate cancer stem cells that are resistant to conventional 
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chemotherapies. Therefore, the combination of existing drug and cancer stem cell-targeting agent 

may result in complete remission of tumor. 

In this Ph.D. dissertation, we gave an overview of cancer stem cells as potential therapy 

target in Chapter II and described the method to isolate cancer stem cells and grow orospheres to 

assess cancer stem cell targeting agents in Chapter III. In Chapter IV, we hypothesized that 

endothelial cell secreted factors enhance the aggressiveness of head and neck cancer stem cells. 

Specifically we addressed the role of endothelial cell-secreted IL-6 on the head and neck cancer 

stem cell motility and epithelial-mesenchymal transition induction. Finally, we tested the 

therapeutic potential of IL-6 pathway inhibiting agent to target head and neck cancer stem cells. 
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CHAPTER II 

 

Cancer Stem Cells in the Biology and Treatment 
of Head and Neck Squamous Cell Carcinoma 

 

Abstract 

Emerging evidence has demonstrated that the pathobiology of head and neck squamous cell 

carcinomas (HNSCC) is defined by the function of cancer stem cells. These cancer stem cells 

constitute a small fraction of the overall tumor cells, typically ranging between 1-5% of the 

overall tumor mass. They share the properties of multipotency and self-renewal with 

physiological stem cells. However, cancer stem cells are endowed with high tumorigenic 

potential, which makes these cells an integral part of tumor initiation and progression towards 

metastasis. These findings have provided strong rationale for targeted elimination of cancer stem 

cells in the treatment of patients with head and neck cancer. Recent studies demonstrated that the 

cancer stem cells are highly resistant to conventional chemotherapy, which may explain why so 

many head and neck cancer patients experience tumor recurrence. Therefore, the elimination of 

these cancer stem cells will likely require the development of therapies specifically targeted to 

these cells. In this chapter, we will review the evidence on head and neck cancer stem cells and 

the perivascular niche where these cells typically reside and will also discuss initial attempts to 

overcome resistance to treatment by combining debulking therapies with cancer stem cell-

targeted therapies. 
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Introduction 

Head and neck cancer stem cells are characterized by multipotency, self-renewal and high 

tumorigenic potential. These cells are typically found in close proximity to blood vessels, in a 

dynamic and protective microenvironment named the perivascular niche. It is believed that the 

crosstalk of cancer stem cells with stromal cells (e.g. endothelial cells, cancer-associated 

fibroblasts) provides molecular cues that maintain the stem cell pool, and the crosstalk with other 

tumor cells regulates the processes that eventually lead to their differentiation into rapidly 

proliferative tumor cells. Emerging knowledge of the biology of cancer stem cells has provided 

the scientific rationale for the targeted elimination of these cells in the treatment of patients with 

head and neck cancer.  

Cancer stem cells in head and neck squamous cell carcinoma 

The experimental identification of cancer stem cells is typically done by the use of markers that 

enable the identification of cells with enhanced ability to self-renew, differentiate into other cell 

types and generate new tumors. In vitro characterization of the stem cell phenotype is performed 

by culturing the cells in serum-free, ultra-low attachment conditions. This assay exploits the fact 

that stem cells are capable of anchorage-independent growth, whereas normal differentiated cells 

cannot grow under these conditions (Dontu and Wicha, 2005; Reynolds et al., 1992). Growth and 

passaging of these spheres is an indication of the cells ability to self-renew. In vivo 

characterization of the cancer stem cell phenotype is performed by serially transplanting 

fluorescence-activated cell sorting (FACS)-sorted cell populations into immunodeficient mice 

(Fig. 2.1). Differences in tumorigenic potential correlate with the level of cancer stem cell 

enrichment within the sorted populations. Further passaging of these FACS-sorted cells is a 

measure of the cells ability to self-renew. Generation of cells with different marker 
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subpopulations indicates that the original cell subpopulation that generated the tumor is 

multipotent and able to give rise to a diversity of cells types that make up the complexity and 

heterogeneity typically observed in tumors.  

Using these experiments, cancer stem cells were first isolated in HNSCC by Prince and 

collaborators (2007). In this groundbreaking work, Prince and colleagues sorted varying 

dilutions of lineage-negative CD44+ or CD44- primary HNSCC cells and implanted them 

subcutaneously in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice or 

Rag2/cytokine receptor common γ-chain double knockout (Rag2γDKO) mice. They found that 

Figure 2.1. Experimental strategies for mechanistic and developmental therapeutic studies of head and 
neck cancer stem cells. The HNSCC from a patient is digested immediately after surgery and sorted 
for cancer stem cellS. Following sorting, the cells are transplanted subcutaneously in immunodeficient 
mice to generate patient-derived xenograft (PDX) tumors. Sorted cells can also be plated in low-
attachment culture conditions to generate orospheres and maintain the cancer stem cell phenotype. 
Both, the orospheres as well as the PDX tumors can be passaged for studies of self-renewal properties 
of the cancer stem cells. 
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20 of the 31 transplantations of the CD44+ cells yielded tumors where as only 1 of the 40 CD44- 

transplantations formed tumors suggesting that the CD44+ are more tumorigenic than the CD44- 

cells. As few as 5,000 CD44+ primary tumor cells were able to generate tumors. In contrast, a 

minimum of 500,000 CD44- primary cells was necessary for tumor growth. Tumors generated 

from CD44+ tumor cells were serially passaged, showing that these cells are capable of self-

renewal. When the tumors were digested and analyzed by FACS, both CD44+ and CD44- cells 

were present, suggesting that the CD44+ cells are capable of differentiation. Primary CD44+ 

cells showed a significant upregulation of Bmi-1 expression. Sections taken from primary human 

tumors showed significant co-staining of CD44 with the squamous epithelial stem cells markers 

Cytokeratin 5/14 further suggesting that these cells do indeed display a stem cell-like phenotype 

(Prince et al., 2007). Collectively, this work unveiled the presence and function of a 

subpopulation of tumor cells with uniquely high tumorigenic potential, self-renewal and 

multipotency in HNSCC. 

 In another important study, Clay and colleagues showed that cells isolated based on high 

aldehyde dehydrogenase (ALDH) activity also can be used to enrich for cancer stem cells in 

HNSCC. In this study, Clay and colleagues (2010) found that FACS-sorted ALDHhigh primary 

HNSCC cells were significantly more tumorigenic when compared to the ALDHlow primary 

HNSCC cells when transplanted into NOD/SCID mice. Primary HNSCC cells sorted for 

ALDHhigh cells were able to form tumors in 24 of the 45 transplantations, while the cells sorted 

for ALDHlow cells activity formed only 3 tumors out of 37 transplantations. Importantly, as few 

as 50-100 ALDHhigh cells were able to form tumors. Notably, ALDHhigh cells were able to 

generate tumors that showed a similar histology when compared to the original unsorted tumors 
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and were able to replicated the original tumor heterogeneity for ALDH activity suggesting that 

ALDHhigh cells are have both self-renewal and multipotency (Clay et al., 2010). 

 As both CD44 expression and ALDH activity have been described to enrich for cancer 

stem cells in HNSCC, Krishnamurthy and colleagues combined the two markers to determine if 

they could further enrich for this cell population. In these studies, it was found that 

ALDH+CD44+ cells were capable of forming colonies in soft agar more efficiently than ALDH-

CD44+ and ALDH-CD44- cells, suggesting that ALDH+CD44+ cells are predominately stem-

like compared to the other subpopulations. These results led them to perform further in vivo 

experiments where they FACS-sorted 1,000 ALDH+CD44+ cells and 10,000 ALDH-CD44- 

cells and co-transplanted them subcutaneously in immunodeficient mice together with human 

endothelial cells in biodegradable scaffolds (Krishnamurthy et al., 2010). They found that the 

ALDH+CD44+ cells were able to generate tumors in 13 of the 15 total transplants, while the 

ALDH-CD44-Lin- cells were only able to for tumors in 2 out of the 15 transplants. To 

investigate whether these cells were capable of self-renewal, they digested the tumors into single 

cell suspensions and serially transplanted into immunodeficient mice. ALDH+CD44+ cells were 

able to generate secondary tumors whereas the ALDH-CD44- cells were unable to form 

secondary tumors again suggesting that these cells are capable of self-renewal. The fraction of 

ALDH+CD44+ cells remained low in both the primary and secondary tumors suggesting once 

again that these cells are multipotent (Krishnamurthy et al., 2010).  

 In addition to ALDH and CD44, HNSCC cancer stem cells can also be isolated using a 

DNA binding dye called Hoechst 33342. When taken up by the cell, this dye binds the DNA and 

can be seen in FACS analysis. However, cells that up-regulate drug resistant cell transporter 

proteins, such as ABCG2, exclude the dye and can be sorted out by FACS. These cells are 



 10 

termed side population (SP) cells. In a study by Song and colleagues (2010), they found that SP 

cells were able to form significantly more spheres in clonogenic soft agar assays when compared 

to non-SP cells. When SP and non-SP cells were transplanted in vivo, the SP cells were able to 

form tumors using as few as 100 cells, while 10,000 non-SP cells were required to initiate tumor 

growth (Song et al., 2010). Tabor and colleagues (2011) also found this SP cells in HNSCC cells 

lines. When they sorted the SP cells and re-plated the sorted cells into new tissue culture flasks, 

the SP cells were able to differentiate and generate non-SP cells suggesting that SP cells are 

multipotent. In addition to multipotency, they also saw that SP cells showed an increased ability 

to formed spheres under non-adherent conditions suggesting that SP cells are also capable of 

self-renewal. When SP cells were transplanted into mice, they were able to generate tumors 

using 5,000 SP cells. In contrast, no tumors were observed using 5,000 non-SP cells suggesting 

that SP cells are uniquely tumorigenic (Tabor et al., 2011). 

Several studies have also proposed the use of other cancer stem cell markers in HNSCC. 

One study suggested that cells containing low levels of reactive oxygen species are uniquely 

tumorigenic (Chang et al., 2014). Other markers that have been suggested include CD10 and 

CD271 (Fukusumi et al., 2014; Murillo-Sauca et al., 2014). In their studies, Fukusumi and 

colleagues found that CD10+ HNSCC cells were significantly more sphere forming in vitro and 

tumorigenic in vivo (2014). Using HNSCC cell line Detroit562, they were able to generate 

tumors in all of the six CD10+ transplants, whereas only 2 of 6 CD10- transplants developed 

tumors. However, this difference in tumorigenicity was not seen in the FaDu HNSCC cell line, 

suggesting that CD10 maybe a cell line-specific cancer stem cell marker. Murillo-Sauca and 

colleagues sorted CD271+ cells alone or in combination with CD44+ cells and transplanted these 

cells subcutaneously into Rag-/-γc-/- mice. When 10,000 CD271+ and 10,000 CD271- cells were 
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transplanted, they were able to generate tumors in 3 of 5 CD271+ implants, whereas no tumors 

were generated in the CD271- cells. When CD271+CD44+ cells were transplanted, they were 

able to generate tumors using as few as 100 cells. The CD44-CD271- cells were only able to 

generate tumors when 1,000 cells were transplanted. 

The search for the ideal marker(s) for head and neck cancer stem cells is far from being 

complete. Ideally, a specific marker or marker combination would select for highly tumorigenic 

cancer cells, and absence of these markers would identify cancer cells that have not tumorigenic 

potential at all. Such specificity has not been achieved yet. Further, it will be critical to 

understand if cancer stem cell markers have only the ability to identify stem cells, or if these 

markers actually play a functional role in the making of a cancer stem cell. This is perhaps 

relatively clear when one thinks about SP cells, where the function of a key drug resistant cell 

transporter protein is up-regulated. This might explain, at least in part, the observation that 

cancer stem cells are highly resistant to chemotherapeutic drugs such as cisplatin (Nör et al., 

2014). On the other hand, a possible functional role for other cancer stem cell markers (e.g. 

CD10, CD44) appears less clear. Nevertheless, this is an area of intense research that should 

yield more conclusive results in the upcoming years.  

Signaling pathways in head and neck cancer stem cells 

Much research has been done to characterize the pathways that regulate the cancer stem cell 

phenotype in HNSCC. For example, a recent study showed that the Wnt/β-catenin signaling axis 

is critical for the maintenance of the stem cell phenotype (Lee et al., 2014). Wnt signaling plays 

an important role in normal stem cell function during embryonic development by modulating 

differentiation, migration and proliferation. In their investigations, Lee and colleagues found that 

both cytoplasmic and nuclear β-catenin were seen in a small subpopulation of HNSCC cells. 
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This staining overlapped with ALDH1 and CD44 staining, suggesting that the β-catenin activity 

is active and primarily restricted to the cancer stem cells. Indeed, when β-catenin was 

overexpressed in HNSCC cell lines, they saw an increased sphere formation as well as an 

increase in expression of stem cells markers Oct4, Sox2 and CD44. Importantly, overexpression 

of β-catenin caused an increased in expression of ABC transporters as well as significantly 

increased chemoresistance to cisplatin treatment. In contrast, when β-catenin was knocked down, 

they saw a significant reduction in sphere growth and a decreased expression of Oct4, Sox2, 

CD44 and the ABC transporters. Importantly, knockdown of β-catenin significantly reduced the 

tumorigenic potential of HNSCC cells in vivo. Interestingly, overexpression of Oct4 restored the 

tumorigenic potential in vivo upon knockdown of β-catenin, suggesting that β-catenin regulation 

of the cancer stem cell phenotype happens in part through Oct4 (Lee et al., 2014). In agreement 

with this study, work by Song and colleagues found that SP cells have significantly higher 

Wnt/β-catenin signaling than non-SP cells. In their studies, they used a TOPFLASH luciferase 

reporter with wild-type β-catenin binding sites and found an increased activity of β-catenin-

dependent transcription in SP cells. They also found that DKK1 and AXIN2, two critical Wnt/β-

catenin target genes, were up-regulated using PCR analysis (Song et al., 2010). Collectively, this 

work provides strong support for the functional role of the Wnt/β-catenin signaling pathway in 

the pathobiology of head and neck cancer stem cells.  

Several other studies have elucidated the importance of Oct4 in HNSCC cancer stem 

cells function. Ventelä and colleagues (2014) found that cells expressing Oct4 possess a less 

differentiated phenotype and are more resistant to chemotherapy. Indeed, patients with high Oct4 

expression have lower survival than those patients who do not express Oct4 (Ventelä et al., 

2014). In agreement with this study, Koo and colleagues found that overexpression of Oct4 in 
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several HNSCC cells lines significantly increased cell proliferation and sphere formation. 

Notably, cells overexpressing Oct4 were more resistant to cisplatin treatment. These cells 

showed a greater expression of the stem cell markers Sox2 and Nanog, as well as the ABC 

transporter protein. Oct4 overexpression also increased the invasive potential of these cells and 

elevated the levels of Slug, an important epithelial to mesenchymal transition (EMT) 

transcriptional factor. Notably, Oct4high cells showed increased tumorigenic potential in vivo, 

when compared to Oct4low cells (Koo et al., 2014).  

Another important signaling pathway in cancer stem cell biology is mediated by 

interleukin-6 (IL-6), an important inflammatory cytokine. This pathway was first characterized 

in breast cancer stem cells by a study from Sansone and colleagues (2007). In their investigations 

they found that antibody blockage of the IL-6 binding to the IL-6 receptor (IL-6R) significantly 

decreased secondary mammosphere formation in low-attachment conditions, suggesting that this 

ligand to receptor interaction is important in the self-renewal of breast cancer cells. Conversely, 

when IL-6 was added to primary sphere cultures, these investigators observed an increase in 

secondary mammosphere production further supporting their hypothesis. Interestingly, the MCF-

7 cell line-derived mammospheres showed an increased expression of IL-6 mRNA when 

compared to the normal attachment MCF-7 cells suggesting that the breast cancer stem cells 

significantly up-regulate IL-6 when compared to the bulk tumor cells. Further experiments 

suggested that IL-6 binding activates the Notch-3 pathway, an important signaling axis in the 

regulation of stem cell function (Sansone et al., 2007). The Poliak laboratory further elucidated 

the role IL-6 plays in the function of breast cancer stem cells (Marotta et al., 2011). In their study 

they found that IL6 is important in many stem cell self-renewal pathways. In particular, IL-6 
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reduction lead to a reduction in phosphorylated STAT3, which has been shown to be important 

for maintaining stemness in murine embryonic stem cells.  

 IL-6 was also found to be important in HNSCC specifically in predicting the recurrence 

and survival rates among HNSCC patients. In an epidemiological study by Duffy and colleagues 

(2008), they compared pretreatment IL-6 serum levels and correlated these data to the post-

treatment clinical outcomes of the patient. They found that patients with high IL-6 pretreatment 

serum levels had lower survival and a higher rate of disease recurrence, suggesting that IL-6 may 

be an important biomarker for HNSCC aggressiveness and risk for recurrence (Duffy et al., 

2008). IL-6 signaling was also found to be important in HNSCC cancer stem cells. 

Krishnamurthy and colleagues found that IL-6R was significantly up-regulated in the 

ALDHhighCD44high cancer stem cell population, when compared with controls (Krishnamurthy et 

al., 2014). Importantly, tumors in IL-6 wild-type mice grew significantly faster than tumors 

grown in IL-6 knockout mice. Notably, HNSCC xenograft tumors generated in the IL-6 wild-

type mice showed higher fraction of ALDHhighCD44high cells, suggesting that stromal IL-6 plays 

an important role in the maintenance and self-renewal of head and neck cancer stem cells in vivo. 

This effect was in part mediated by activation of STAT3 signaling. Interestingly, studies from 

Islam and colleagues (2014) suggested that inhibition of RhoC expression down-regulates the 

STAT3 pathway, indicating that this protein may also be involved in IL-6-driven maintenance of 

the cancer stem cell phenotype. In these studies, knockdown of RhoC suppressed sphere 

formation, decreased the percentage of ALDHhigh cells and decreased the level of phospho-

STAT3. Addition of IL-6 to the RhoC knockdown cells restored levels of phospho-STAT3 in 

HNSCC cell lines. They concluded that RhoC activates downstream pathways (possibly NF-κB) 
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that induce transcription of IL-6, which then goes on to activate downstream STAT3 signaling 

and maintenance of the cancer stem cell phenotype (Islam et al., 2014).  

   Bmi-1, a member of the polycomb-repressor 1 complex, is another protein that plays an 

important role in normal stem cells function (Park et al., 2003). It was also found to be important 

for the maintenance of cancer stem cells in HNSCC, particularly upon treatment with a 

chemotherapeutic drug (cisplatin) (Nör et al., 2014). Treatment of HNSCC with cisplatin 

significantly increased the population of ALDHhighCD44high cells in a dose-dependent manner 

and increased their ability to form spheres in vitro. Interestingly, this increase in the cancer stem 

cell fraction correlated with an increase in Bmi-1 expression. A study by Giudice and colleagues 

(2013) further elucidated the role of Bmi-1 in HNSCC. They showed that HNSCC cells are 

typically hypoacetylated. Chemical inhibition of histone-deacetylase significantly decreased 

sphere formation and the fraction of ALDHhighCD44high cancer stem cells. Paradoxically, 

chromatin hyperacetylation induced Bmi-1 expression and EMT, suggesting that the regulation 

of Bmi-1 through histone acetylation in HNSCC tumor cells may be important for transitioning 

from a more stem-like state to a more motile and invasive state (Giudice et al., 2013). 

Cancer stem cell niche 

Stem cell niche is the specific microenvironment that allows stem cells to retain their stemness 

and give rise to progenitor cells. Like normal stem cells, cancer stem cells are known to reside in 

niches (Fig. 2.2). Stem cell niches consist of endothelial cells, fibroblasts, immune cells, 

signaling molecules secreted from different types of cells and extracellular matrix (Korkaya et 

al., 2011). Cancer stem cell niches allow cancer stem cells to maintain its population and act as 

protective environment against cancer therapies (Hovinga et al., 2010; Folkins et al., 2007). 
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Here, we discuss the role of fibroblasts and endothelial cells within head and neck cancer stem 

cell niches.  

 

Cancer-associated fibroblasts 

Emerging knowledge supports the concept that stromal cells are important components of most 

tumor microenvironments and play a key role in the pathobiology of cancer. Factors secreted by 

tumor cells result in cancer-associated fibroblasts (CAFs) that are phenotypically distinct from 

normal fibroblasts (reviewed in Kalluri and Zeisberg, 2006). CAFs, along with other cells within 

the cancer stem cell niche, activate stemness-related pathways. Vermeulen and colleagues found 

that stromal myofibroblasts activated canonical Wnt pathway to regulate the stemness of cancer 

Figure 2.2. Cancer stem cell niche. The cancer stem cell niche is a protective environment including 
multiple cell types where cancer stem cells reside. The interaction between cancer cells and the 
stromal cells allows the cancer stem cell population to retain stemness. Such interactions might also 
enhance invasiveness of cancer stem cells enabling them to enter into the blood stream and 
disseminate through the process of metastases. It has been hypothesized that environmental cues might 
enable the de-differentiation of more differentiated tumor cells back to a cancer stem cell state.  
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cells (Vermeulen et al., 2010). In lung cancer, CAFs activated IGF-II/IGFR signaling pathway 

enhances the stemness of cancer cells (Chen et al., 2014). Stromal contribution in head and neck 

cancer has also recently been proposed to play a role in tumor cell invasion (Markwell and 

Weed, 2015). Stromal cell-derived factor (SDF-1) secreted by fibroblasts induces migration of 

head and neck cancer stem cells to supportive niche. SDF-1 is also involved in podia formation, 

which is needed for cell interaction with the microenvironment (Faber et al., 2014). SDF-1 is a 

strong chemoattractant that plays an important role in tumor metastasis (Geminder et al., 2001; 

Taichman et al., 2002; Phillips et al., 2003). Collectively, these findings suggest that cancer stem 

cells acquire enhanced stemness and motility through CAF-induced molecular signaling. Such 

stromal cell-tumor cell interactions may ultimately contribute to tumor progression and 

dissemination.  

Perivascular niche 

Existing knowledge that normal neural stem cells reside near blood vessels inspired the existence 

of a cancer stem cell niche. Endothelial cells secrete factors that allow neural stem cells to 

maintain self-renewal ability (Jin et al., 2002; Ramirez-Castillejo et al., 2006). As it is observed 

in normal neural stem cells, brain cancer stem cells in glioblastoma multiforme are in close 

proximity with endothelial cells (Calabrese et al., 2007). When patient derived brain cancer stem 

cells were injected with vascular endothelial cells to immunodeficient mice, the cancer stem cells 

were able to maintain their stemness and tumorigenicity (Calabrese et al., 2007). 

In HNSCC, cancer stem cells reside in perivascular niche (Krishnamurthy et al., 2010). 

Close proximity between cancer stem cells and blood vessels enables active crosstalk between 

the two cell types. Factors secreted by endothelial cells potentiate self-renewal ability and 

survival of cancer stem cells (Krishnamurthy et al., 2010). Specifically, endothelial cell-secreted 
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IL-6 is important in maintaining tumor-initiating ability of cancer stem cells as well as in 

maintenance of cancer stem cell population within the tumor (Krishnamurthy et al., 2014). In 

addition to IL-6, endothelial cells also secrete high levels of epithelial growth factor (EGF). EGF 

enhances orosphere formation and increases motility of HNSCC in vitro (Zhang et al., 2013). In 

addition, specific silencing of EGF expression in tumor-associated endothelial cells decreases the 

fraction of cancer stem cells and the tumorigenic potential in preclinical models of HNSCC. 

Collectively, these findings suggest that factors secreted by the perivascular niche contribute to 

the maintenance of cancer stem cell population and the acquisition of a more aggressive 

phenotype by HNSCC cells. 

Epithelial-mesenchymal transition and cancer stem cells 

Epithelial-mesenchymal transition (EMT) happens when cell of epithelial-origin acquires 

phenotypes resembling mesenchymal cells. Cells that have undergone EMT present enhanced 

migratory and invasive ability as well as resistance to apoptosis (Kalluri and Neilson, 2003). 

EMT is involved in cancer initiation and progression in many different cancer types (reviewed in 

Thiery, 2002; De Craene and Berx, 2013). Several studies linked EMT with conversion of non-

cancer stem cells into cancer stem cells. Mani and colleagues (2008) were the first to report that 

induction of EMT results in increased proportion of cancer stem cells, sphere forming ability and 

tumorigenicity in preclinical models of breast cancer. Head and neck cancer stem cells are 

reported to express more EMT related genes  (La Fleur et al., 2012). Moreover, EGF induces 

EMT in HNSCC and increases the proportion of cancer stem cells in vitro (Zhang et al., 2013). 

IL-6 is also shown to induce EMT in HNSCC and transform non-metastatic tumors into 

metastatic tumors in vivo (Yadav et al., 2011). Collectively, these studies suggest that non-cancer 

stem cells might be capable of converting to cancer stem cells by undergoing EMT mediated by 
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molecular crosstalk with other cells from the tumor environment. However, this is an area of 

much investigation and the relative contribution of EMT to the tumorigenic process is likely 

tumor-specific. 

Cancer stem cells as therapy target 

A continuing challenge in the management of patients with cancer treatment is tumor relapse and 

metastasis resulting from therapy resistance. Potential cause of tumor recurrence is that 

conventional therapies target highly proliferative cells, but miss slow growing cancer stem cells 

that can repopulate the tumor and result in tumor relapse (Schatton et al., 2009; Kaiser et al., 

2015). It is also found in HNSCC that cisplatin treatment, most commonly used chemotherapy 

for head and neck cancer, results in enhanced fraction of cancer stem cells (Nör et al., 2014). 

Therefore, growing understanding of cancer stem cell contribution in tumor progression sparked 

much interest in developing ways to use cancer stem cells as anticancer therapy target.  

The Notch signaling pathway is important in maintenance of cancer stem cell population. 

Preclinical study showed that inhibition of Notch pathway resulted in reduced number of breast 

cancer stem cells and tumor growth (Schott et al., 2013). When the inhibition of Notch pathway 

was combined with docetaxel, the tumor growth inhibition was much more effective (Schott et 

al., 2013), suggesting that targeting both bulk tumor cells and cancer stem cells might lead to a 

more pronounced and long lasting anticancer effect. 

Cancer stem cell markers themselves can serve as potential targets for cancer therapy. 

CD133 is one of the well-studied cancer stem cell markers in many tumor types, including 

glioblastoma, colon cancer, ovarian cancer, and head and neck cancer. Wang and colleagues 

targeted CD133-positive glioblastoma cells by designing CD133 antibody combined with 

nanomaterial that results in photothermolysis (Wang et al., 2011). The antibody was able to 



 20 

selectively target CD133-positive cancer stem cells in vitro and inhibit the tumor growth ability 

of glioblastoma cells by targeting CD133-positive cells in vivo (Wang et al., 2011). 

Cancer stem cells can also be targeted with immunologic approaches. Ning and 

colleagues reported that pulsing dendritic cells with cancer stem cell population from murine 

melanoma and squamous cell carcinoma model results in antitumor immunity (Ning et al., 2012). 

A recent phase I clinical trial was performed with nasopharyngeal cancer stem cell vaccine to 

evaluate its safety and efficacy (Lin et al., 2015). As it was reported in the animal study, the sera 

from vaccinated patients had cytotoxic effects on target cancer stem cells in vitro, and the 

vaccination had very little side effects. Clinical trials on cancer stem cell vaccines are ongoing 

for many other cancers including pancreatic, hepatocellular, colon, breast, and ovarian cancer. 

Considering the prominent immune suppressive effect observed in head and neck cancer, 

strategies to boost the patients’ immune system have recently become a subject of much interest 

and investigation. 

Despite tremendous progress on the understanding of the biology of cancer stem cells, the 

direct therapeutic targeting of these cells remains challenging. This is largely due to the fact that 

cancer stem cells share many characteristics with normal stem cells. Therefore, cancer stem cell-

targeted therapies result in the elimination of normal stem cells and significant toxicities. In 

recent years, it has been proposed that cancer stem cells could be targeted indirectly, by 

disrupting the cancer stem cell niche (Calabrese et al., 2007; Yang and Wechsler-Reya, 2007; 

Ritchie and Nör, 2013). In HNSCC, when perivascular niche was disrupted by inducing 

apoptosis in endothelial cells, the fraction of cancer stem cells decreased (Krishnamurthy et al., 

2010). Therefore, anti-angiogenic modalities, such as VEGF inhibitors, can be used to destroy 

the tumor-associated blood vessels and indirectly target cancer stem cells. Preclinical data 
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showed that combination of anti-angiogenic agent with conventional chemotherapy reduces the 

proportion of glioma cancer stem cells (Folkins et al., 2007).  

An alternative way to target cancer stem cell is to block key molecular pathways that are 

involved in the crosstalk between cancer stem cells and the microenvironment. Endothelial cell 

secreted IL-6, EGF, and IL-8 are important factors that induce migratory phenotype of HNSCC 

and make cancer cells resistant to anoikis (Neiva et al., 2009). Targeting inhibition of IL-6 

signaling with tocilizumab, a humanized anti-IL-6R antibody, also resulted in a sharp decrease in 

the fraction of cancer stem cells in preclinical models of HNSCC (Krishnamurthy et al., 2014). 

IL-6 is primarily secreted by endothelial cells, while cancer stem cells express higher levels of 

IL-6R as compared to non-cancer stem cells. Collectively, these studies suggest at least two 

distinct strategies to target indirectly cancer stem cells: A) With a blood vessel-disrupting 

approach with an anti-angiogenic drug, which leads to a decrease in tumor microvessel density. 

Or B) With a crosstalk-targeting drug, which may maintain tumor angiogenesis but block critical 

signaling pathways between endothelial and cancer stem cells. Preclinical evidence suggests that 

both strategies might be effective in reducing the fraction of cancer stem cells. However, clinical 

trials will be needed to determine the impact of either strategy, particularly when used in 

combination with a tumor-debulking strategy (e.g. chemotherapy, radiation therapy) on the long-

term survival of patients with head and neck cancer. 

Cancer stem cell targeting agent alone may not be able to eradicate the tumors due to 

possible conversion of non-cancer stem cells into cancer stem cells. In addition, since cancer 

stem cells constitute a small fraction of the overall tumor mass, the responses to a pure cancer 

stem cell-targeted therapy would most likely be slow and not be measurable in short-term. 

Therefore, the field is rapidly moving towards combination therapies involving a cancer stem 
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cell-targeting agent and conventional therapy (e.g. chemotherapy, radiation therapy) that targets 

the bulk tumor cells (Kaiser, 2015). Much work ahead is warranted in the search of the 

appropriate combination of therapies that are able to effectively target bulk and cancer stem cells 

in different tumor types. 

 

Conclusions 

Over the last decade, independent investigators have demonstrated rather unequivocally the 

heterogeneity of cancer cells within each tumor. Not only these cells are heterogeneous, but also 

Figure 2.3. Hypothetical impact of the cancer stem cell model in cancer therapy. Conventional cancer 
therapies target fast-growing bulk tumor cells and leave behind cancer stem cells. In this case, the 
tumor shrinks, but cancer stem cells can repopulate the tumor and enabling tumor recurrence. Another 
therapeutic strategy is to use a cancer stem cell-targeting agent to eradicate these stem cells. In this 
case, the tumor undergoes modest short-term response, since the cancer stem cells constitute a very 
small fraction of the tumor mass. However, cancer stem cells can be repopulated with time by 
conversion of non-cancer stem cells to cancer stem cells and tumor recurrence might be observed. On 
the other hand, targeting both cancer stem cells and the bulk tumor cells might effectively eradicate the 
entire tumor, leading to a long lasting response or cure. Adapted from Schatton et al., (2009) and 
Kaiser et al., (2015).	
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exhibit significant plasticity, being able to change phenotypic characteristics from time-to-time 

depending on the tumor microenvironment changes and tumor cell needs. Strong evidence 

demonstrates that certain tumors, including breast cancer and HNSCC, contain a subpopulation 

of uniquely tumorigenic cells that can be therapeutically targeted. It has been proposed that while 

chemoradiotherapy debulk the tumor, it does not eliminate the cancer stem cells and the tumor 

recurs (Fig. 2.3). On the other hand, cancer stem cell-targeted therapies might eliminate 

temporarily cancer stem cells, but the inherent plasticity of tumor cells enables the repopulation 

of cancer stem cells, eventually leading to tumor recurrence. A more long-lasting response might 

be obtainable if a debulking therapy is combined with a cancer stem cell-targeted therapy, 

enabling more long-lasting response and perhaps even cancer cure. We predict that future work 

will be focused on how to best target the cancer stem cells in combination with therapies that 

debulk the more differentiated tumor cells. Head and neck cancer patients might one day benefit 

from such combination therapies and experience better quality of life and extended survival. 
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CHAPTER III 

 

Isolation and Characterization of Cancer Stem Cells 
from Primary Head and Neck Squamous Cell Carcinoma Tumors 

 

Abstract 

Drug resistance remains a significant problem in the treatment of patients with head and neck 

squamous cell carcinoma (HNSCC). Recent reports showed that a subpopulation of highly 

tumorigenic cells, called cancer stem cells, is uniquely resistant to chemotherapy, suggesting that 

these cells play an important role in the relapse of HNSCC. The development of methods for the 

isolation and culture of cancer stem cells is a key step to enable studies exploring the 

mechanisms underlying the role of these cells in chemoresistance. Here, we describe a method to 

isolate cancer stem cells from primary head and neck tumors and for the generation of 

orospheres. 
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Introduction 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, 

with approximately 500,000 cases diagnosed annually (Kamangar et al., 2006). In the past, 

treatment of HNSCC was primarily limited to upfront surgical resection when technically 

feasible. Owing to the high morbidity often associated with radical surgery, most patients today 

receive radiation combined with chemotherapy as front line treatment for locally advanced 

HNSCC. Chemotherapy alone is implemented for the treatment of distant metastatic disease, but 

most patients do not exhibit substantial response. A major difficulty in treating HNSCC is the 

frequency of recurrent disease, with 20-40% of patients developing loco-regional recurrence and 

5-20% developing distant metastatic disease at 2 years (Forastiere et al., 2003). Chemotherapy 

for HNSCC typically involves the use of platinum, taxane, or pyrimidine analog agents (Pfister 

et al., 2011). While these agents are effective at indiscriminately debulking tumor cells, recent 

data report that a subpopulation of cells, called cancer stem cells, is resistant and survive these 

therapies (Okamoto et al., 2009; Zhang et al., 2010; Nör et al., 2014). Indeed, mounting evidence 

suggests that chemotherapy enriches the cancer stem cell population (Nör et al., 2014; Reers et 

al., 2014). Notably, the mechanisms exploited by cancer stem cells to resist chemotherapy are 

largely unknown. Therefore, the development of methods for the isolation and characterization 

of cancer stem cells from primary tumors is a critical enabling step to improve the mechanistic 

understanding of the processes mediating chemoresistance, and for the development of 

therapeutic strategies to overcome this resistance. 

The most widely used method to study cancer stem cell is the sphere assay. The sphere 

assays were originally used for culturing normal neuronal stem cells (Reynold and Weiss, 1992). 

Since the initial discovery that culturing cells in ultra-low attachment plates and serum-free (or 
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low serum) conditions enhance maintains their undifferentiated state, the assay evolved as an 

important tool to study not only normal stem cells but also cancer stem cells. Multiple reports 

show that cancer stem cells are anoikis-resistant and able to grow in suspension as spheres, as for 

example the breast cancer stem cells (Dontu et al., 2003). Spheres from head and neck tumors 

are called orospheres (Krishnamurthy et al., 2010; Krishnamurthy et al., 2013). The orosphere 

assay is useful to evaluate the stemness, self-renewal and tumorigenicity of cancer stem cells, but 

also to study processes involved in the chemoresistance of these cells to drugs (Nör et al., 2014).  

This chapter will describe in detail the method for isolation of cancer stem cells from 

HNSCC and for their culture in suspension as orospheres. There is ongoing discussion about the 

ideal markers to identify head and neck cancer stem cells. Here, we have used the combination of 

ALDH activity and CD44 expression to sort these cells from primary tumors (Clay et al., 2007; 

Prince et al., 2007). The selection of markers can certainly be adapted to the specific tumor of 

interest. Nevertheless, the overall principles of the assay described here might be germane to 

other tumor types. 
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Materials 

2.1 Tumor digestion 

1. Supplemented media (see NOTE 1). 

2. Sterile petri dish. 

3. Sterile razor. 

4. Tumor digestion reagents:  

1. Collagenase/hyaluronidase solution (STEMCELL Technologies, Vancouver, BC, 

Canada). 

2. Miltenyi Biotech human tumor dissociation kit (Miltenyi Biotech, San Diego, CA, 

USA). 

5. 40 µm nylon cell strainer for 50 mL conical tube. 

6. Serum: serum neutralizes the digestion process. 

7. Ammonium-Chloride-Potassium (ACK) lysing buffer (Gibco Life Technologies, Grand 

Island, NY, USA) (see NOTE 2). 

2.2 Fluorescence activated cell sorting 

1. 1xPBS or 1xPBS with 2% fetal bovine serum (staining buffer). 

2. 5 mL round bottom flow cytometry tubes. 

3. 4-Diethylaminobenzaldehyde (DEAB) (STEMCELL Technologies, Vancouver, BC, 

Canada). 

4. Activated ALDEFLUORTM (STEMCELL Technologies, Vancouver, BC, Canada). 

5. APC CD44 and APC isotype IgG (BD Pharmingen, Franklin Lakes, NJ, USA). 

6. Lineage markers: PE-Cy5 CD2, CD3, CD10, CD16, CD18 (BD Pharmingen, Franklin 

Lakes, NJ, USA). 
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7. 7-aminoactinomycin (7-AAD) (BD Pharmingen). 

8. Aluminum foil. 

2.3 Orosphere culture 

1. Sphere media: DMEM/F12 medium (500 mL) (Gibco Life Technologies, Grand Island, 

NY, USA), fibroblast growth factor (FGF) (20 ng/mL), epithelial growth factor (EGF) (20 

ng/mL), N2 supplement (Gibco Life Technologies, Grand Island, NY, USA) (see NOTE 3). 

2. 6-well low-attachment plate (Corning, Corning, NY, USA). 

3. 0.05% trypsin/ethylenediaminetetraacetic acid (EDTA) (Gibco Life Technologies, Grand 

Island, NY, USA). 

4. Trypsin neutralizing solution (Lonza, Walkersville, MD, USA). 
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Methods 

3.1 Preparation for digestion 

1. Place tumor in supplemented media. 

2. Pour off the media and add fresh supplemented media. Centrifuge at 130 g-force for 5 

minutes at 4°C. Wash the tumor 3-4 times (see NOTE 4). 

3. Place tumor with 5 mL of supplemented media on a petri dish. 

4. Cut the tumor into small pieces (approximately 4 mm x 4 mm in size) with sterile razor 

blade (see NOTE 5). 

5. Collect minced tumor fragments into a 50 mL conical tube. Add 25-30 mL base media 

without supplements. Centrifuge at 130 g-force for 5 minutes at 4°C. 

3.2 Tumor digestion 

1. Collagenase/hyaluronidase method 

1. Decant media and place the tumor fragments on a new sterile petri dish. Add 6-10 mL 

of 1x collagenase/hyaluronidase solution. 

2. Mix the tumor fragments and digestion solution by pipetting several times with 25 mL 

pipette. Incubate in 37°C for 15 min. 

3. Take out the petri dish from the incubator. Pipet the mixture 2-3 times to mechanically 

digest the tumor. Repeat step 2 and 3 2 more times (see NOTE 6). 

4. Prepare a 50 mL tube with 5 mL serum and place 40 µm nylon mesh on top of the 

tube. Filter the tumor digestion mix and collect cell suspension. Collect and filter 

remaining cell/fragment mixture with 5 mL of supplemented media (see NOTE 7). 

Centrifuge at 130 g-force for 5 minutes at 4°C. 
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5. Decant media. Add 1-5 mL of ACK lysing buffer. Incubate in room temperature for 1 

minute. Centrifuge at 130 g-force for 5 minutes at 4°C. 

6. Decant ACK lysing buffer and resuspend the cell pellet in PBS (see NOTE 8). 

2. GentleMACS method 

1. Prepare enzyme cocktail mix with RPMI in the appropriate tube for GentleMACS. 

2. Transfer minced tissue fragments into the enzyme cocktail mix. Close the tube tightly 

(see Fig. 3.1). 

3. Mechanically dissociate tumors using GentleMACS homogenizer. Select appropriate 

tumor dissociation program. 

4. Incubate in 37°C for 30 min on a shaker or rotator. 

5. Repeat step 3 and 4. 

6. Repeat step 3. 

7. Transfer the digested tumor to 50 mL tube with 40 µm cell strainer placed on top. Use 

equal volume of supplemented medium to collect residual tumor cells and undigested 

tissues. Collect digested cell suspension by filtering with the cell strainer. 

8. Centrifuge at 130 g-force for 5 minutes at 4°C. 

Figure 3.1. Tumor digestion steps. A. Cut tumors into small fragments. B. Before tumor digestion.  
C. After tumor digestion. Notice the digestion media turned opaque after the digestion process.	
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9. Decant media. Add 1-5 mL of ACK lysing buffer. Incubate in room temperature for 1 

minute. Centrifuge at 130 g-force for 5 minutes at 4°C. 

10. Decant ACK lysing buffer and resuspend the cell pellet in PBS (see NOTE 8). 

3.3 Isolation of cancer stem cells 

1. Prepare and label tubes. 

Unstained 

7-AAD 

Lineage 

APC IgG 

APC CD44 

DEAB 

ALDH 

Sample: T1, T2, T3, etc. 

2. Count the cells recovered from tumor digestion. Add 1x105 cells to each control tube 

except DEAB tube. Add ≤ 1x106 cells to the sample tube. 

3. Resuspend cells in 1 mL PBS or staining buffer. 

4. Add 1 µL of DEAB reagent to the control DEAB tube (see NOTE 9). Add 1 µL of 

ALDEFLUORTM reagent control ALDH tube. Mix by pipetting once and transfer 500 µL of 

cells to control DEAB tube (see NOTE 10). Mix well. 

5. Add 5 µL of ALDEFLUORTM reagent to each sample tube. Mix well. Protect from light 

by covering the tubes with aluminum foil. Incubate in 37°C for 30-45 minutes. 

6. Centrifuge at 130 g-force for 5 minutes at 4°C. Remove PBS or staining buffer from all the 

tubes. Resuspend cells in 1 mL PBS or staining buffer. 
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7. Add 1 µL of APC isotype IgG to control IgG APC tube. Add 1 µL of APC CD44 antibody 

to control APC tube. Add 5 µL APC CD44 to all the sample tubes. 

8. Add 1 µL of CD2, CD3, CD10, CD16 and CD18 to control Lineage tube. Add 5 µL of the 

same antibodies to the sample tubes. 

9. Protect from light by covering the tubes with aluminum foil. Incubate in 4°C for 30 

minutes. 

10. Add 1 mL of PBS to all of the tubes. Centrifuge at 130 g-force for 5 minutes at 4°C. 

11. Aspirate PBS and resuspend cells with 1 mL PBS. Centrifuge at 130 g-force for 5 

minutes at 4°C. 

12. Aspirate PBS. Add 200 µL PBS to all the control tubes except control 7AAD tube. 

13. Prepare 7-AAD solution by adding 5 µL 7-AAD for each 1 mL of PBS. Add 200 µL 7-

AAD solution to control 7-AAD tube. Resuspend sample tubes with 500 µL 7-AAD solution. 

14. Sort cancer stem cells by fluorescence activated cell sorting (FACS) (see Fig. 3.2) (see 

NOTE 11). 

 

Figure 3.2. Representative 
fluorescence activated cell sorting 
scheme from a primary head and 
neck squamous cell cancer stem cell. 
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3.4 Orosphere assay 

1. Seed sorted cancer stem cells in 6-well low-attachment plate. 5,000 sorted cells are plated 

in each well of low-attachment plate (see NOTE 12). Add 1.5 mL of sphere media in each 

well (see NOTE 13). 

2. Feed spheres every 3-4 days by adding 300 µL of sphere media to each well. 

3. Count spheres on day 3 and 7 (see NOTE 14) (see Fig. 3.3). 

 

4. On day 7, collect spheres in 15 mL tube. Centrifuge at 130 g-force for 5 minutes at 4°C. 

5. Wash with PBS. Centrifuge at 130 g-force for 5 minutes at 4°C. Remove supernatant. 

6. Add 1 mL 0.05% trypsin/EDTA. Incubate for 5-10 minutes in room temperature. 

Mechanically dissociate the spheres by pipetting up and down every 2 minutes until spheres 

are invisible. 

7. Add 1 mL trypsin neutralizing solution and mix. Centrifuge at 130 g-force for 5 minutes at 

4°C. 

8. Count the cells. 

9. Seed sorted cells in low-attachment plate. 5,000 sorted cells are plated in each well of low-

attachment plate. Add 1.5 mL of sphere media in each well (see NOTE 13). 

Figure 3.3. Example of orospheres. 
Scale bar = 100 µm. 
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10. Feed spheres every 3-4 days by adding 300 µL of sphere media to each well. Count 

spheres on day 10 and 14. 
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Notes 

1. Depending on the tumor type, add necessary supplements and growth factors to keep tumor 

fragment. The media should include antibiotics (e.g. amphotericin B, AAA, nystatin, etc.) to 

prevent bacterial/fungal contamination. 

2. ACK lysis buffer eliminates red blood cells from the digested cell pellet. 

3. Cancer stem cells from different tumor type require different supplements needed for sphere 

formation. Here, we describe the supplements needed for orosphere assay. 

4. Washing the tumor prevents potential contamination during cancer stem cell culture 

following isolation of cancer stem cells. 

5. Mincing the tumor into smaller pieces is important for good cell recovery from digestion. 

Too much cutting results in unhealthy cells after digestion, and too little cutting results in 

poor tumor digestion. 

6. As the tumor fragments are digested, the solution will become opaque, and the tumor 

fragments will be able to pass through 10 mL pipette. 

7. Incompletely digested tumor fragments can be stored for future use. Re-suspend the chunks 

in freeze media that contains 5% DMSO and 5% serum and move gradually to liquid 

nitrogen for storage. 

8. Serum containing staining buffer will enhance the cell viability during the staining 

procedure. 

9. After adding DEAB to the tube, close the lid so the solution will not evaporate. 

10. Transfer the cell suspension as soon as possible to minimize the background 

ALDEFLUORTM signal. 
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11. Cancer stem cells are 7-AAD negative, Lineage negative, ALDEFLUORTM positive, CD44 

positive cells. 

12. Cell density can affect the number and the quality of orosphere. Optimize the number of cells 

plated in each well. 

13. Add chemotherapeutic reagents to the sphere media to study the chemoresistance of cancer 

stem cells. 

14. Orospheres are considered as non-adherent colony with at least 25 cells. 
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CHAPTER IV 

 

Endothelial Cell-Initiated IL-6/STAT3 Pathway Induces Mesenchymal Cell Marker 

Expressions to Enable Motility in Head and Neck Cancer Stem Cell 

 

Abstract 

High incidence of locoregional recurrence and distant metastases are the key clinical challenges 

in the management of patients with head and neck squamous cell carcinoma (HNSCC). A rare 

population of cells, called cancer stem cells, has been characterized as cells with high aldehyde 

dehydrogenase (ALDH) activity and high CD44 expression (ALDHhighCD44high) in HNSCC. 

HNSCC cancer stem cells reside in the perivascular niche, and endothelial cell-secreted 

interleukin-6 (IL-6) enhances the tumorigenic potential and self-renewal of head and neck cancer 

stem cells. Tissue microarray (TMA) of 80 oral squamous cell carcinomas revealed that high IL-

6 receptor (IL-6R) (p=0.0217) or its co-receptor gp130 (p=0.0422) expression correlated with 

low patient survival. Here, we assessed the role of endothelial cell-secreted IL-6 on the migratory 

behavior of head and neck cancer stem cells. We observed that endothelial-cell secreted factors 

increased vimentin and snail in ALDHhighCD44high cells. Upon blockade of the IL-6 pathway, 

endothelial cell-induced vimentin and snail expression were inhibited in these cells. 

ALDHhighCD44high cells were more migratory in the presence of endothelial cell-secreted factors, 

and again IL-6 signaling blockage inhibited the migration of these cells. Notably, humanized 

anti-IL-6R antibody tocilizumab decreased the fraction of ALDHhighCD44high cells in vivo. Taken 
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together, these findings demonstrate that endothelial cell-secreted IL-6 enhances the aggressive 

behavior of head and neck cancer stem cells, suggesting that patients with HNSCC may benefit 

from therapeutic inhibition of IL-6 signaling. 
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Introduction 

Head and neck cancer is the sixth most common cancer worldwide (SEER Cancer Statistics 

Factsheets, 2014; Curado and Hashibe, 2009). Squamous cell carcinoma (HNSCC) comprises 

90% of head and neck cancer. The overall 5-year survival rate is 80% in patients with early stage 

disease, but the rate drops to 20-50% in late stage patients (Gold et al., 2009). Approximately 

half of the late stage patients develop locoregional or distant metastasis, which significantly 

lowers the survival rates of head and neck cancer patients (León et al., 2005). The understanding 

of mechanisms driving the invasive behavior of tumorigenic HNSCC cells is critical for the 

development of a mechanism-based therapy that prevents tumor dissemination. 

HNSCC contains a subpopulation of cells, called cancer stem cells, that is uniquely 

tumorigenic, endowed with self-renewal and multipotency. Cancer stem cells are known to be 

resistant to radiotherapy and chemotherapeutic agents and contribute to metastasis and relapse 

(Dean et al. 2005). Prince et al. first identified head and neck cancer stem cells using CD44 

expression alone (Prince et al., 2007). Subsequent report showed that aldehyde dehydrogenase 

(ALDH) activity-based cell isolation selects for cancer stem cells in HNSCC (Chen et al., 2009). 

High ALDH1 expression in the HNSCC in the patient tumor correlates with tumor size and 

lymph node metastasis (Hildebrand et al., 2014; Michifuri et al., 2012). Our group used the two 

markers together and observed that the ALDHhighCD44high marker combination is highly 

effective at distinguishing uniquely tumorigenic cancer stem cells from the remaining tumor cells 

in HNSCC (Krishnamurthy et al., 2010). 

Like normal stem cells, cancer stem cells reside in a niche microenvironment to survive 

and protect their self-renewal ability (Calabrese et al., 2007). Our group has shown that head and 

neck cancer stem cells reside in perivascular niche (Krishnamurthy et al., 2010). In theory, close 
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proximity between cancer stem cells and blood vessels makes it easy for the cancer stem cells to 

migrate and invade into blood vessels to initiate metastasis. Endothelial cells secrete multiple 

cytokines that affect the behavior of tumor cells. For example, we have shown that endothelial 

cell-secreted CXCL8 in creases the frequency of local recurrence in preclinical models of 

HNSCC (Warner et al., 2008). In addition, we observed that endothelial cell-secreted epidermal 

growth factor induces epithelial-mesenchymal transition (EMT) and migration in HNSCC 

(Zhang et al., 2014), suggesting the endothelial cell-tumor cell interaction plays a critical role in 

cancer progression. However, the effect of endothelial cell-secreted factors on the invasive 

behavior of the highly tumorigenic cancer stem cells remains to be determined. 

Interleukin-6 (IL-6) is pro-inflammatory cytokine that activates JAK/STAT3 pathway. 

IL-6 level has been correlated with tumor progressions in multiple cancer types (Nachbaur et al., 

1991; Plante et al., 1994; Zhang et al., 1999; Chung et al., 2003). A prospective cohort study 

found that serum IL-6 level was predictive marker for recurrence rate and overall survival of 

HNSCC patients (Duffy et al., 2008). Independent research groups showed that tumor cells 

acquire metastatic potential through IL-6/STAT3 pathway (Yadav et al., 2011; Xie et al., 2006). 

IL-6 is secreted by many different cells, including T cells, B cells, monocytes, endothelial cells, 

fibroblasts and some tumor cells (Kishimoto et al., 1995). Upon inflammatory stimulation, 

endothelial cells secrete high levels of IL-6 (Makó et al., 2010). We previously have reported 

that tumor-associated endothelial cells lining tumor blood vessels express more IL-6 than the 

tumor cells themselves (Krishnamurthy et al., 2014). However, the role of endothelial cell-

secreted IL-6 on migratory behavior of head and neck cancer stem cells has not been 

investigated. Notably, humanized anti-IL-6 receptor (IL-6R) antibody, tocilizumab, has been 
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approved by the FDA for rheumatoid arthritis since 2010 (Thompson, 2010). However, the effect 

of tocilizumab in the pathobiology of head and neck cancer has not been evaluated. 

Here, we evaluated the significance of endothelial cell-secreted IL-6 on head and neck 

cancer stem cell motility and the therapeutic potential of targeting IL-6 pathway in HNSCC. We 

observed that expression of IL-6 receptor or its co-receptor gp130 in the invasive front of 

primary HNSCC tumors correlated with poor overall patient survival. Endothelial cell-secreted 

IL-6 induced EMT and enhanced migration in head and neck cancer stem cells. Collectively, 

these results demonstrate that endothelial cell-secreted IL-6 induces a migratory phenotype in 

head and neck cancer stem cells, and suggest that the progression of HNSCC towards metastasis 

or recurrence might be delayed by therapeutic blockage of the IL-6 pathway. 
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Materials and Methods 

Cell culture and reagents 

HNSCC cell lines UM-SCC-1 and UM-SCC-22B (Tissue Biorepository, University of Michigan 

Head and Neck SPORE) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; 

Invitrogen, Carlsbad, CA, USA) with 10% FBS, 100 U/mL penicillin, and 100 U/mL 

streptomycin (Invitrogen). Primary human dermal microvascular endothelial cells (HDMECs; 

Lonza, Walkersville, MD, USA) were cultured in endothelial growth medium-2 for 

microvascular cells (EGM2-MV; Lonza). Endothelial cell conditioned medium (CM) was 

prepared by collecting supernatant from 24-hour culture in serum-free endothelial basal medium 

(EBM2; Lonza). IL-6 signaling pathway was inhibited by treating cells with 2 ug/mL 

tocilizumab (Genetech, South San Francisco, CA, USA) or with 1 ug/mL anti-IL-6 neutralizing 

antibody (R&D Systems, Minneapolis, MN, USA). 

Tissue microarray, immunohistochemistry and immunofluorescence 

The preparation of the tissue microarray (TMA) slides is described elsewhere (Fonseca et al., 

2014). Tissue sections were deparafinzed in xylene, washed with 100% ethanol and rehydrated 

with graded ethanol. Antigen retrieval was performed by boiling the slides in 1X citrate buffer 

(Thermo Scientific, Fremont, CA, USA) for 20 minutes. After slides were cooled down to room 

temperature, tissue section was permeabilized for 10 minutes at room temperature, and 

endogenous peroxidase activity was inhibited by 10-minute incubation with 3% hydrogen 

peroxide (Fisher, Waltham, MA, USA). Mouse monoclonal anti-human gp130 (1:100 dilution; 

Santa Cruz) and rabbit polyclonal anti-human IL-6Rα (1:100 dilution; Abcam) were incubated 

overnight at 4°C. Chromogenic development was achieved by incubating DAB peroxidase 

substrate (Biocare Medical, Concord, CA, USA) for 1-5 minutes at room temperature. Two 



 48 

pathologists blind to patient information scored the stained sections based on the staining 

intensity (1=no staining, 2=moderate staining, 3=intense staining) and percent positive (0= 

<10%, 1=10-50%, 2= >50%). Final score was calculated by multiplying the intensity and 

positive scores. Patients were divided to low (score ≤4) and high (score >4) groups. 

Same deparafinization and antigen retrieval steps were performed for immunofluorescence 

assay. Primary antibodies, ALDH1A1 (1:100 dilution; BD Biosciences) and IL-6Rα (1:100 

dilution; Santa Cruz), were incubated in 4°C overnight. Sections were washed with PBS 

(Invitrogen) and incubated in fluorochrome-conjugated secondary antibodies for 20 minutes at 

room temperature. After another PBS wash, the slide was mounted with DAPI mounting solution 

and covered with coverslip. 

In vivo tumor growth experiment 

1-2 X 105 UM-SCC-22B cells and 8-9 x 105 HDMEC were seeded in a biodegradable scaffold, 

as we described (Nör et al., 2001). Loaded scaffold was implanted bilaterally in subcutaneous 

space of the dorsal region of severe combined immunodeficient mouse (CB.17.SCID; Charles 

River, Wilmington, MA, USA). Tumors were measured weekly and tumor volume was 

calculated by (width x width x length)/2. 5 mg/kg of tocilizumab or control IgG was given via 

intraperitoneal (IP) injection. Mouse weight was measured weekly to observe any adverse effect 

from the treatment. 

Fluorescence Activated Cell Sorting (FACS) analysis 

Head and neck cancer stem cells were isolated as described previously (Krishnamurthy et al., 

2010). Briefly, single cell suspension was prepared from cell culture and resuspended at 1x106 

cells/mL. 5 uL activated aldefluor (BODIPY-aminoacetate) (Aldefluor kit; Stem Cell 

Technologies, Vancouver, BC, Canada) or negative control (DEAB; diethylaminobenzaldehyde) 
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was added and incubated at 37°C for 35 minutes. Then the cells were washed and incubated with 

5 uL anti-human CD44 (BD Pharmingen, Pharmingen, NJ, USA) at 4°C for 30 minutes. 5 uL 7-

aminoactinomycin (BD Pharmingen) was used to select out dead cells. Head and neck cancer 

stem cells were defined as ALDHhighCD44high and non-cancer stem cells as ALDHlowCD44low. 

Migration assay 

Transwell migration assay was performed on HTS transwell 96 well permeable support 

(Corning, Corning, NY, USA). Inserts were coated with 0.2% gelatin (Sigma-Aldrich, St. Louis, 

MO, USA) for 15 minutes prior to cell loading. 5x104 sorted ALDHhighCD44high or 

ALDHlowCD44low cells resuspended in 50 uL DMEM were loaded to each insert. 200 uL of 

endothelial cell CM was loaded at the bottom well. Transwell plate was incubated in cell culture 

incubator for 24 hours. Cells that did not migrate were scrapped off from the top of the insert. 

Migrated cells were stained with 0.5% crystal violet (Sigma-Aldrich) solution in 25% methanol 

(Fisher Scientific, Fair Lawn, NJ, USA) for 20 minutes at room temperature. Migration was 

quantified by dissolving the crystal violet staining in 10% acetic acid (Fisher Scientific) and 

reading absorbance at 560 nm. 

The cell migration assay with microfluidics device was performed using the previously 

published microfluidic migration platform (Chen et al., 2015; Burgos-Ojeda et al., 2015). 

Diagram of the device layout is shown in Fig. 4E.  Prior to cell loading, the devices were coated 

with collagen solution in 0.2% acetic acid (rat tail collagen type 1; BD Biosciences) for 1 hour to 

enhance cell adhesion and viability. The devices were rinsed with PBS (Invitrogen) for 1 hour to 

remove the residual collagen. Sorted ALDHhighCD44high or ALDHlowCD44low cells were re-

suspended to 3x105 cell/mL concentration for loading. After cell loading, the cell suspension in 

the left inlet was replaced with serum-free DMEM, and HDMEC CM was applied to the other 
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inlet to induce migration. Migration frontier was measured by taking the average of distances the 

cells migrated after 24 hours of incubation without media replenishment. 

Generation of IL-6 knockout endothelial cells 

IL-6 knockout (sgRNA-IL-6) endothelial cells (HDMEC) were generated using CRISPR/Cas9 

system (29). lentiCRISPR v2 was a gift from Feng Zhang (Addgene plasmid # 52961). 

HEK293T cells were transfected with cocktail of pMD2G, psPAX2, and lentiCRISPR v2 with 

IL-6 guide sequences (5’-GGTCCAGTTGCCTTCTCCCT-3’ and 5’-

GTTCCTGCAGTCCAGCCTGA-3’) using calcium phosphate method. HDMEC were incubated 

in HEK293T supernatant with 4 ug/mL polybrene (Sigma-Aldrich) overnight and maintained in 

1 ug/mL puromycin (InvivoGen, San Diego, CA, USA) EGM2-MV for 2 weeks. IL-6 knockout 

efficiency was evaluated by performing ELISA (R&D Systems) assay with sgRNA-IL-6 

HDMEC CM. 

Generation of STAT3 knockdown HNSCC cells 

The calcium phosphate method was used to transfect shRNA-control (scramble control) or 

shRNA-STAT3 constructs (University of Michigan Vector Core) with pMD2G and psPAX2 

package vectors into HEK 293T cells. HNSCC cells were infected with transfected HEK293T 

supernatant overnight with 4 ug/mL polybrene (Sigma-Aldrich). Infected tumor cells were 

cultured in 1 ug/mL puromycin (InvivoGen) added DMEM medium for 2 weeks. 

Western blot 

Sorted ALDHhighCD44high and ALDHlowCD44low cells were plated in 6-well ultra-low attachment 

plate (Corning) and incubated for 24 hours. Protein lysates were prepared using 1% nonidet P-40 

(NP-40) buffer. 10-20 ug protein was loaded in 9-11% SDS-PAGE gel. Primary antibodies 

include: phosphorylated-STAT3 (1:1000 dilution), STAT3 (1:10,000 dilution), Vimentin (1:500 
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dilution) and Snail (1:1000 dilution) from Cell Signaling (Danvers, MA, USA); E-cadherin 

(1:1000 dilution) antibody from Santa Cruz. 

Sprouting assay 

5X104 HDMECs per well were plated in 12 well plates (BD Falcon, NJ, USA) coated with 

growth factor-reduced Matrigel (Corning). After 24 hour incubation in 37°C 5% CO2, the 

number of capillary-like sprouts was counted to determine the impact of IL-6 knockout on in 

vitro angiogenic potential. 

Statistical analysis 

Tumor microarray survival time data was analyzed using log-rank test or multivariate Cox 

proportional hazards models. Tumor volume growth rate was assessed using linear mixed effect 

models to account for repeated measurements with an auto-regressive correlation structure 

assuming more correlation among temporally proximate observations. The tumor size was log 

transformed to account for exponential tumor volume growth. Model fixed effects included time 

and IL-6 knockout status, and model random effects included tumor. Survival analysis was 

performed using the “survival” package and mixed effect regression was performed using the 

“nlme” package, both in the statistical software program R version 3.1.0. Unpaired t test was 

used to determine significance. P ≤ 0.05 was considered significant (n.s., not significant; *, P ≤ 

0.05; **, P ≤ 0.01; ***, P ≤ 0.001). Comparisons in means were performed using Prism software 

(GraphPad Software, La Jolla, CA, USA). 
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Results 

Expression of IL-6R or its co-receptor gp130 correlates with HNSCC patient outcome 

Tumor specimens (n=80) were divided into low (score ≤4) and high (score >4) IL-6R or gp130 

expression groups based on IHC staining (Fig. 4.1A). 40% of the tumor specimens expressed 

high levels of IL-6R and gp130. We found that high IL-6R expression in the invasive front of the 

tumor correlated with poor survival (log rank test, p=0.0217; Fig. 4.1B). To control for other 

known prognostic variables, we performed multivariate regression analysis, and IL-6R 

maintained significant discriminating ability for overall survival (Cox PH model, p=0.0128) in a 

model including age, tobacco use, advanced stage at diagnosis, race, sex, and alcohol. gp130 

expression also had strong correlation with the patient overall survival (log rank test, p=0.0422; 

Cox PH model, p=0.0243) (Fig. 4.1C). Immunofluorescence staining of ALDH1A1 and IL-6R in 

the invasive front of tumors showed that ALDH1-positive cancer stem cells strongly expressed 

IL-6R in human HNSCC tumors (Fig. 4.1D). 

Therapeutic inhibition of the IL-6 pathway decreases the fraction of cancer stem cells 

Informed by the TMA results, we assessed the therapeutic potential of IL-6R inhibition with 

tocilizumab in preclinical models of HNSCC. Unsorted UM-SCC-22B cells were co-transplanted 

with HDMECs in biodegradable scaffolds to generate xenograft tumors with human vasculature 

(Nör et al., 2001), which is amenable to the testing of tocilizumab that does not cross-react with 

mouse cells (Okazaki et al., 2002). Two doses of tocilizumab (5 kg/mg, IP) were administered 

within a week period before the tumors were surgically removed. Tocilizumab treatment had no 

effect on overall tumor volume when compared to IgG treated tumors (Fig. 4.2A). 
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Figure 4.1. Expression of IL-6R or its co-receptor gp130 correlates with HNSCC patient outcome. A, 
representative immunohistochemistry staining of low and high expression IL-6R and gp130 and 
corresponding hematoxylin and eosin (H&E) staining. Scale bars=100 um. B and C, Kaplan-Meier 
curves of oral squamous cell carcinoma patients over IL-6R and gp130 expression. D, 
immunofluorescence staining of ALDH1A1, IL-6R and DAPI in invasive fronts of two primary 
patient tumors used in TMA. . Scale bars=100 um.  
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There was no change in mouse weight, indicating that tocilizumab was well tolerated in mice 

(Fig. 4.2B). FACS analysis of single cell suspensions prepared from the tumor tissues showed a 

significant decrease in ALDHhighCD44high cell population in tocilizumab-treated tumors 

compared to tumors treated with IgG (Fig. 4.2C). In accordance with the in vivo data, 

tocilizumab treatment reduced the ALDHhighCD44high cell population in UM-SCC-22B cells 

(Fig. 4.2D). Concentration of tocilizumab used for in vitro experiment did not have cytotoxic 

effect on the tumor cells (Supplementary Fig. 4.1A).  

 

 

Figure 4.2. Therapeutic inhibition of the IL-6 pathway decreases the fraction of cancer stem cells. A, 
tumor volume during the course of study. Arrows indicate the two doses of tocilizumab given before 
tumor resection. B, mouse weight during the in vivo study. Arrows indicate the two doses of 
tocilizumab given before tumors were removed. C, proportion of ALDHhighCD44high cells in UM-SCC-
22B xenograft tumors after tocilizumab treatment detected by FACS analysis. D, FACS analysis result 
showing the proportion of ALDHhighCD44high cells in UM-SCC-22B cells after tocilizumab treatment 
for 24 hours in vitro. n.s., not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.	
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Endothelial cell-secreted IL-6 supports cancer stem cells and tumor growth 

Our group previously reported that head and neck cancer stem cells reside in close proximity 

with blood vessels, suggesting functional crosstalk between the two cell types (Krishnamurthy et 

al., 2010). To test the effect of endothelial cell-secreted IL-6 on the fraction of cancer stem cells 

in vivo, we generated IL-6 knockout endothelial cells (sgRNA-IL-6 HDMEC) using 

CRISPR/Cas9 system. ELISA assay showed a significant reduction in IL-6 production in 

sgRNA-IL-6 HDMEC as compared to vector control cells (Fig. 4.3A). The IL-6 knockout did 

not affect the vessel forming ability of the endothelial cells, as demonstrated in a Matrigel-based 

capillary sprouting assay (Fig. 4.3B). sgRNA-IL-6 HDMEC were co-implanted with UM-SCC-

22B cells to generate xenograft tumors with humanized vasculature. Compared to tumor cells 

generated with sgRNA-control HDMEC, tumor cells grown with sgRNA-IL-6 HDMEC 

generated smaller tumors (Fig. 4.3C). Regression analysis of the tumor growth rates showed that 

IL-6 knockout in the endothelial cells is sufficient to slow down xenograft tumor growth (Fig. 

4.3D). FACS analysis revealed that tumors vascularized with sgRNA-IL-6 HDMEC had a lower 

fraction of ALDHhighCD44high cell population than those vascularized with sgRNA-control 

HDMEC (Fig. 4.3E). 

Endothelial cell-secreted IL-6 induces cancer stem cell migration 

We tested if cancer stem cells had enhanced motility compared to non-cancer stem cells in the 

presence of endothelial cell conditioned medium (CM) using transwell migration assay. In the 

presence of endothelial cell CM, more ALDHhighCD44high cells migrated than ALDHlowCD44low 

cells (Fig. 4.4A and 4.4B). In order to evaluate the role of endothelial-cell secreted IL-6 on 

migration of cancer stem cells, we treated sorted ALDHhighCD44high cells with tocilizumab and 

allowed the cells migrate in the presence of endothelial cell CM. After 24 hours, we found that 
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tocilizumab reduced the migration of ALDHhighCD44high cells (Fig. 4.4C and 4.4D; 

Supplementary Fig. 4.2A). We repeated the migration experiments using a different approach to 

verify the reproducibility of the data. Here, we used microfluidics device (Fig. 4.4E and 4F) that 

was previously described (Chen et al., 2015; Burgos-Ojeda et al., 2015). Endothelial cell CM 

induced strong migration of ALDHhighCD44high cells (Fig. 4.4G; Supplementary Fig. 4.2C). We 

observed a reduction in cancer stem cell migration when the IL-6 pathway was inhibited either 

Figure 4.3. Endothelial cell-secreted IL-6 supports cancer stem cells and tumor growth. A, 
concentration of IL-6 secreted by sgRNA-control or sgRNA-IL-6 HDMEC quantified by ELISA. B 
representative pictures of sprouts formed by sgRNA-control and sgRNA-IL-6 HDMECs on matrigel. 
Average number of sprouts per well is shown as bar graph. C, graph depicting the average tumor 
volumes. D, repeated measures linear regression estimated mean tumor size prediction line sgRNA-
control and sgRNA-IL-6, respectively, overlayed with individual tumor volume. E, FACS analysis of 
ALDHhighCD44high cell proportion in tumors grown with sgRNA-control or sgRNA-IL-6 HDMECs. 
n.s., not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.	
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Figure 4.4. Endothelial cell-secreted IL-6 induces cancer stem cell migration. A, representative 
pictures of migrated UM-SCC-22B ALDHlowCD44low or ALDHhighCD44high cells stained with crystal 
violet in transwell insert after 24 hours of incubation in EBM or HDMEC CM. B, bar graph depicting 
migrated ALDHlowCD44low or ALDHhighCD44high cells over 24 hour-period in transwell system. C, 
representative pictures of ALDHhighCD44high cells migrated after tocilizumab treatment (2 ug/mL) for 
24 hours. D, quantification of cells migrated after tocilizumab treatment.	
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with an IL-6 neutralizing antibody or with tocilizumab (Fig. 4.4H). To validate the data obtained 

with antibodies target to the IL-6 pathway, we performed migration studies using as chemotactic 

stimulus the CM from sgRNA-IL-6 HDMEC. Again, migration of ALDHhighCD44high cells was 

reduced (Fig. 4.4H; Supplementary Fig. 4.2D), suggesting the chemotactic effect of endothelial 

cell-secreted IL-6 on migratory behavior of cancer stem cells. 

Endothelial cell-secreted IL-6 induces EMT marker expression in head and neck cancer 

stem cells 

The results from migration experiments led to our speculation that the enhanced migratory 

phenotype of cancer stem cells might be associated with induction of EMT. Western blot showed 

that ALDHhighCD44high marker combination successfully isolated cells expressing higher levels 

of stemness-related proteins, Nanog, Notch 3 and Notch 4 (Fig. 4.5A; Supplementary Fig. 4.3A). 

In addition, ALDHhighCD44high cells expressed higher levels of mesenchymal cell-related 

proteins, Vimentin and Snail, as compared with ALDHlowCD44low cells (Fig. 4.5B). 

Interestingly, we found that ALDHhighCD44high cells expressed higher levels of IL-6R and its co-

receptor gp130 than ALDHlowCD44low cells (Fig. 4.5C). Then, we tested whether the enhanced 

migratory ability of ALDHhighCD44high cells in the presence of endothelial cell CM correlates 

with differential EMT level. We observed that HDMEC CM induced Vimentin and Snail 

expression in ALDHhighCD44high cells but not in ALDHlowCD44low cells (Fig. 4.5D; 

Supplementary Fig. 4.3B). Similar results were reproduced in ALDHhighCD44high cells treated 

with recombinant IL-6 (Fig. 4.5E). Notably, IL-6R blockade with tocilizumab inhibited 

E, microfluidics migration device layout. F, representative pictures of cells migrated after 24 hours in 
the presence of HDMEC CM in the microfluidics chip. Tumor cells were marked with mOrange 
fluorescence protein. G, endothelial cell-secreted factors induce migration of ALDHhighCD44high cells 
in microfluidics device. H, the effect of IL-6 inhibition on ALDHhighCD44high cells motility. IL-6 
signaling was inhibited by neutralizing IL-6 in HDMEC CM, treating tumor cells with tocilizumab or 
using CM from sgRNA-IL-6 HDMEC. n.s., not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.	
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endothelial cell-induced Snail and Vimentin expressions in ALDHhighCD44high cells (Fig. 4.5F; 

Supplementary Fig. 4.3C). Collectively, these results demonstrate that endothelial cell-secreted 

IL-6 induces key mediators of EMT specifically in cancer stem cells.  

 

STAT3 regulates EMT markers in head and neck cancer stem cells 

It is well known that STAT3 is a key downstream effector of IL-6 signaling through IL-6R 

(Zhong et al., 1994). We observed that STAT3 was phosphorylated in ALDHhighCD44high cells 

treated with HDMEC CM or recombinant human IL-6, and that tocilizumab inhibited STAT3 

Figure 4.5. Endothelial cell-secreted IL-6 induces EMT marker expression in head and neck cancer 
stem cells. A, stemness-related markers, Nanog, Notch 3, Notch 4, were detected in 
ALDHhighCD44high  and ALDHlowCD44low cells. B, IL-6R and gp130 levels in UM-SCC-22B 
ALDHhighCD44high cells compared to ALDHlowCD44low cells. C, EMT state of ALDHhighCD44high 
cells. D, E, F, effect of HDMEC CM, IL-6 and tocilizumab on EMT markers in ALDHhighCD44high 
cells and ALDHlowCD44low cells.	
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phosphorylation (Fig. 4.5D, E and F). Here, we silenced STAT3 in tumor cells using shRNA 

constructs (Fig. 4.6A; Supplementary Fig. 4.4A). STAT3 knockdown resulted in decreased 

orosphere-forming ability of HNSCC cells in ultralow attachment plates, suggesting the 

importance of STAT3 signaling to the survival and self-renewal of head and neck cancer stem 

cells (Fig. 4.6B; Supplementary Fig. 4.4B). STAT3 silencing of unsorted HNSCC cells was 

associated with lower Vimentin and Snail expression (Fig. 4.6C). Further, STAT3 silencing 

resulted in a significant decrease in the ALDHhighCD44high cell population (Fig. 4.6D; 

Supplementary Fig. 4.4C). Notably, STAT3 silencing inhibited expression of the EMT markers, 

Snail and Vimentin, in ALDHhighCD44high cells (Fig. 4.6E). 

 

Figure 4.6. STAT3 regulates EMT markers in head and neck cancer stem cells. A, Western blot 
showing STAT3 knockdown efficiencies of different constructs. B, bar graph depicts average 
number of orospheres generated from shRNA-control or shRNA-STAT3 UM-SCC-22B. C, Western 
blot of STAT3 knockdown cells probing for STAT3, pSTAT3, E-cadherin, vimentin, snail and 
GAPDH. D, FACS analysis of ALDHhighCD44high cell percentage in STAT3 knockdown UM-SCC-
22B cells. E, EMT marker detection in ALDHhighCD44high cells with STAT3 knockdown. n.s., not 
significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.	
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Supplementary Figure 4.1. Tocilizumab concentration used for the experiment did not affect the cell 
viability. A, sulfarhodamine assay result of UM-SCC-22B and UM-SCC-1 after 24 and 48 hour 
tocilizumab treatment. B, Western blot of UM-SCC-22B and UM-SCC-1 cells treated with different 
concentrations of tocilizumab to inhibit phosphorylation of STAT3. We used 2 ug/mL tocilizumab for 
all in vitro assays.	
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Supplementary Figure 4.2. Blockage of endothelial cell-initiated IL-6 pathway reduces migration of 
UM-SCC-1 cancer stem cells.  A, representative pictures of migrated cells in transwell 24 hours after 
tocilizumab treatment. Bar graph depicts the OD560 level of crystal violet stained migrated cells. B, 
time-lapse images of tumor cells migrating through the migration channel of microfluidics device over 
24 hour period in the presence of endothelial cell CM. C,D, migration frontiers of ALDHhighCD44high 
cells in the presence of endothelial cell CM (C) or sgRNA-IL-6 HDMEC CM (D). n.s., not significant; 
*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 
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Supplementary Figure 4.3. Endothelial cell-secreted IL-6 induces EMT in UM-SCC-1 cancer stem 
cells. A, ALDHhighCD44high cells from UM-SCC-1 express more stemness related markers, Nanog and 
Notch 3, than ALDHlowCD44low cells. B, C, EMT protein markers expressed in UM-SCC-1 
ALDHhighCD44high and ALDHlowCD44low cells with endothelial cell CM (B) and tocilizumab treatment 
(C) for 24 hours. 
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Supplementary Figure 4.4. Effect of STAT3 knockdown in UM-SCC-1 cancer stem cells. A, STAT3 
knockdown efficiency of three shRNA-STAT3 constructs in UM-SCC-1. shRNA-STAT3 construct 3 
was used for further study. B, bar graph depicts number of orospheres generated from shRNA-STAT3 
UM-SCC-1. C, FACS analysis of the ALDHhighCD44high cell population between shRNA-control and 
shRNA-STAT3 UM-SCC-1. n.s., not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 
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Discussion 

Tumor dissemination is the major problem in the management of patients with advanced head 

and neck cancer. Majority of patients with locally advanced head and neck cancer develop tumor 

metastasis/relapse, and the survival rate for patients with metastasis/relapse is between 5 to 9 

months  (Bhave et al., 2011). However, our understanding of the mechanisms leading to 

metastatic spread is still very limited. It has been recently proposed that cancer stem cells play a 

critical role in metastasis development in several cancer types (Hermann et al., 2007; O’Brien et 

al., 2007; Balic et al., 2006). Chinn et al. highlighted enhanced potential of cancer stem cells to 

generate lymph node metastasis in HNSCC (2015). Although the importance of cancer stem cells 

in the metastatic process is well recognized, it is still unclear how cancer stem cells move away 

from the tumor nests towards blood vessels. Here, we demonstrated endothelial cell-secreted IL-

6 induces cancer stem cell motility and also unveiled the therapeutic potential of IL-6 signaling 

blockage in HNSCC. 

The importance of IL-6 on cancer pathobiology has been well recognized from different 

types of tumors. Serum level IL-6 has been identified as prognostic marker in many types of 

cancer, including ovarian cancer (Berek et al., 1991), prostate cancer (Nakashima et al., 2000), 

breast cancer (Zhang et al., 1999), colon cancer (Galizia et al., 2002), melanoma (Tartour et al., 

1994) and HNSCC (Duffy et al., 2008). Here, we observed that high IL-6R or gp130 level in the 

invasive front of tumors correlated with poor outcome in HNSCC patients. IL-6 signaling 

through IL-6R/gp130 induces robust activation of STAT3 signaling. It has been shown that 

STAT3 activation enhances invasion and motility of tumor cells (Kamran et al., 2013), 

contributing to the aggressiveness of the tumor. To our knowledge, this work is likely the first to 



 66 

demonstrate that high IL-6R or gp130 in the invasive front of the tumor are predictive markers of 

HNSCC patient overall survival.   

With mounting evidence showing the importance of IL-6 in tumor biology, IL-6 pathway 

targeting drugs that either block the receptor or binding the ligand have been tested. Tocilizumab 

is a humanized anti-IL-6R antibody that inhibits both soluble and membrane-bound IL-6R to 

prevent IL-6 pathway activation. The half-life of the antibody is long enough (11-13 days 

depending on the concentration) to allow for monthly intravenous injections (Jones and Ding 

2010). The drug is well tolerated by the patients with minimal side effects (Jones and Ding 

2010). In this study, we tested the effect of tocilizumab on HNSCC tumors and found that two 

doses of tocilizumab are sufficient to reduce the cancer stem cell fraction. Such result highlights 

the importance of IL-6 pathway in the survival of head and neck cancer stem cells and the 

therapeutic potential of IL-6 inhibition in HNSCC. Our result showed that tocilizumab in itself 

was not toxic to the tumor cells. There are two possible explanations to how tocilizumab 

decreases cancer stem cell fraction. First, IL-6 pathway induces STAT3 pathway, which is 

known to be an important regulator of self-renewal (Niwa et al., 1998). With the loss of STAT3 

pathway, the cancer stem cells may lose the self-renewal potential to maintain their population 

pool and result in differentiation. Another explanation could be due to decrease in the 

microvassel density of the tumor by tocilizumab treatment (Shinriki et al., 2009). Since cancer 

stem cells reside in perivascular niche, loss of the protective niche environment may result in 

differentiation of the cancer stem cells to the rest of the tumor population. We have previously 

shown that cisplatin increases the cancer stem cell fraction in pre-clinical model of HNSCC (Nör 

et al., 2014), suggesting a possible explanation for why conventional therapies fail to prevent 

metastasis and recurrence of head and neck cancer. These studies suggest that the combination of 
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chemotherapy and tocilizumab may reduce the tumor size (i.e. debulk the tumor) while at the 

same time ablate the cancer stem cells, and therefore reducing the chances of tumors to 

metastasize or relapse. 

Our group recently reported that treatment of tocilizumab alone slowed the growth rate of 

xenograft model of mucoepidermoid carcinoma tumors, another subtype of head and neck cancer 

(Mochizuki et al., 2015). Importantly, the tumor growth rate and the fraction of cancer stem cells 

significantly decreased when the tumors were treated with tocilizumab and cisplatin together, 

suggesting that combination of existing chemotherapy and IL-6 pathway blocking agent may 

also be beneficial for other head and neck cancer patients. 

Here, we observed that IL-6 knockout endothelial cells resulted in slow tumor growth 

with smaller fraction of cancer stem cells. These results suggest that endothelial cells are a key 

source of the IL-6 that is required to maintain the cancer stem cell population in the perivascular 

niche, which perhaps modulates the aggressiveness of the tumor. It has been shown that IL-6 

induces EMT in breast cancer models (Sullivan et al., 2009), and that it promotes metastasis to 

lymph node and lungs in HNSCC (Yadav et al., 2011). Indeed, we and others reported that 

inhibition of the IL-6 pathway inhibits migration of HNSCC (Yadav et al., 2011; Neiva et al., 

2009). Further, we showed that head and neck cancer stem cells express more mesenchymal cell-

related proteins and are more motile than non-cancer stem cells in response to endothelial cell-

secreted factors. We demonstrated that inhibition of endothelial cell-activated IL-6 pathway 

prevented EMT in cancer stem cells and inhibited their migration, unveiling the role of IL-6 on 

cancer stem cell motility. Interestingly, we did not observe induction of migration upon 

recombinant human IL-6 treatment alone (data not shown). By itself, IL-6 might endow cancer 

stem cells with migratory phenotype via EMT without necessarily acting as chemokine to induce 
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cell movement. In contrast, the full endothelial cell-secreted milieu is efficient at inducing cancer 

stem cells migration, and within this milieu IL-6 plays a critical role as demonstrated in several 

blocking experiments (Figure 4.4). We conclude that tumor cell migration towards blood vessels 

might be the result of endothelial cell-secreted factors working together, and that IL-6 primes the 

cancer stem cells to respond to these factors. We postulate that tumor cells may acquire 

migratory phenotype through the IL-6/IL-6R/STAT3 axis, and potent chemokines, such as 

CXCL8, initiate the actual cellular movement to a specific direction. 

A major challenge in studying cancer stem cells is the rarity of this cell population. Head 

and neck cancer stem cell proportion ranges between 0.6-4.5% in primary tumors (Clay et al., 

2010) and 1-10% in cell lines (Zhang et al., 2014). Working with such small population of cells 

makes it difficult to do in-depth analysis with most common research tools, as the unique 

responses of cancer stem cells may not be reflected in studies with bulk cells. Recent advances in 

microfluidics technologies enabled cancer biologists to answer questions that were once thought 

not possible to answer. For example, microfluidics devices allowed isolating circulating tumor 

cells from blood samples (Nagrath et al., 2007) and looking at RNA levels of single cells after 

different treatment (Spurgeon et al., 2008). Our group used a novel microfluidics migration 

platform to assess the migration ability of cancer stem cells in the presence of endothelial cell 

CM and showed the impact of IL-6 pathway in cancer stem cell motility. Indeed, we showed that 

the results seen from microfluidics devices were in parallel with transwell migration assays 

performed with sorted cancer stem cells. In comparison to transwell system, microfluidics 

platform creates gradient of endothelial cell CM within the migration channel, thus emulating the 

biological environment more accurately. In addition, the microfluidics devices allow analysis of 

the movement of single cells during migration process. Further studies with cells that are highly 
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motile in the presence of endothelial cell CM with single cell capture technology may give us 

better understanding of cellular mechanisms that lead to metastatic dissemination in HNSCC. 

We used lentiviral CRISPR/Cas9 system to generate stable IL-6 knockout endothelial 

cells. Using this system, we were able to generate endothelial cells that secreted IL-6 80-90% 

less and still have intact vessel-forming ability. However, integration of lentiviral construct in 

cell genome can cause genome instability and disrupt normal gene expression (Xiao et al., 2013).  

For future experiments, integrase-defective CRISPR/Cas9 lentiviral vector should be used to 

reduce the off-target effect (Wang et al., 2015). 

In conclusion, we demonstrated here the impact of endothelial cell-initiated IL-6 

signaling to the migratory phenotype of head and neck cancer stem cells, which are the primary 

mediators of HNSCC tumor dissemination. These results suggest the possibility that a 

combination therapy involving conventional chemotherapy to debulk the majority of the more 

differentiated tumor cells together with an IL-6 pathway-inhibiting agent to ablate cancer stem 

cells might be beneficial for patients with HNSCC. 
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CHAPTER V 

 

DISCUSSION AND CONCLUSIONS 

 

Discussion 

The idea that stem cells initiate tumor growth first arose 150 years ago. Virchow (1858) first 

argued that immature cells could give rise to tumors. Approximately 20 years later, Durante 

(1874) and Cohnhein (1875) suggested that the dormant embryonic stem cells remaining in adult 

tissue could become tumor cells. The term “tumor stem cells” was first used by Makino with 

definition of “a small subpopulation of cells that were insensitive to chemotherapy and had 

chromosomal features different from the bulk of cells” (1959). Twenty years later, Bonnet and 

Dick first showed that CD34+CD38- cells from acute myeloid leukemia had enhanced tumor-

forming ability (Bonnet and Dick, 1997). More importantly, these cells were able to self-renew 

and give rise to the rest of the tumor population that was similar to that of the original tumor 

(Bonnet and Dick, 1997). Since these seminal discoveries, cancer stem cells were identified and 

characterized in multiple solid tumors (Hermann et al., 2007; Beier et al., 2007; Bapat et al., 

2005; Dalerba et al., 2007; Prince et al., 2007; Ma et al., 2007). 

In this Ph.D. dissertation, we showed that head and neck cancer stem cells highly express 

several stemness-related proteins, e.g. Nanog, Notch3 and Notch4 (Figure 4.5.A). Such 

observation is in accordance with the previous reports by other groups (Ponti et al., 2005; Yang 

et al., 2008). However, it is not yet known how stemness-related gene and protein are highly 



 75 

expressed in cancer stem cells. One possible explanation would be that these cancer stem cells 

originate from normal stem cells. Stem cells are long-lived, allowing mutations to accumulate 

with time and resulting in transformation of these cells. Transformed stem cells exhibit 

deregulated proliferation as a consequence of mutations, as well as the stem cell features of self-

renewal ability and multipotency. There is also a possibility that differentiated cells acquire 

mutations that allow them to have stem-like traits. Nanog, Oct4 and Sox2 are transcription 

factors that are important in embryonic stem cells. In 2007, Thomson group demonstrated that 

expression of genes, including NANOG, OCT4, and SOX2, in human somatic cells generated 

induced-pluripotent stem cells with embryonic stem cell characteristics (Yu et al., 2007). 

Notably, these three transcription factors are often overexpressed in head and neck squamous cell 

carcinomas (Reers et al., 2014; Koo et al., 2015; Habu et al., 2015; Lee et al., 2014). 

Another potential contributing factor that enhances stemness of cancer stem cells is the 

tumor microenvironment. In head and neck squamous cell carcinoma, cancer stem cells reside in 

perivascular niche (Krishnamurthy et al., 2010). Endothelial cell-secreted factors increase cancer 

stem cell fraction in vitro (Zhang et al., 2014; Krishnamurthy et al., 2014) and the number of 

orosphere formation from cancer stem cells (Krishnamurthy et al., 2010). Endothelial cell 

conditioned medium increases Bmi-1, protein representing self-renewal potential, expression in 

head and neck squamous cell carcinoma cells (Zhang et al., 2014). Brain cancer stem cells have 

also been shown to be located in perivascular niche (Calabrese et al., 2007). Recent studies 

revealed that endothelial cell-secreted factors induce differentiated CD133- glioblastoma 

multiforme cells to give rise to CD133+ cancer stem cells (Fessler et al., 2015). In colon cancer, 

cancer stem cells express high Wnt expression, which is important in stemness. Interestingly, 

myofibroblast-secreted factors activate Wnt signaling pathway in colon cancer stem cells 
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(Vermeulen et al., 2010). The same authors reported that cells expressing high levels of Wnt 

were located in close proximity to the stromal myofibroblasts (Vermeulen et al., 2010), 

supporting the idea that microenvironment-initiated signaling induces tumor cells to exhibit 

stem-like characteristics. Collectively, cancer stem cells may acquire stem-like phenotype by 

combination of “internal” genetic mutation events and “extrinsic” microenvironment-initiated 

pathway activations.  

The importance of cancer stem cell in tumor growth, recurrence and metastasis 

emphasizes the need for therapeutic agents targeting cancer stem cells. Recent advances in tumor 

immunotherapy have made a significant impact on cancer treatment. Several studies have 

suggested that cancer stem cells can be targeted using immunotherapeutic approach. Tseng and 

colleagues reported that natural killer cells selectively eradicated undifferentiated head and neck 

cancer stem cells but not the differentiated cells (2010). Visus and colleagues also showed that 

ALDH1A1 specific CD8+ T cells were able to kill ALDHbright cells and inhibit tumor growth and 

metastasis (2011). Ning et al. pulsed dendritic cells with either unsorted tumor cells or cancer 

stem cells to generate vaccine (Ning et al., 2012). In this study, the authors observed that vaccine 

against ALDEFLUOR+ cells resulted in significant tumor growth inhibition compared to control 

vaccine (Ning et al., 2012). Vaccines against cancer stem cells are currently in clinical trials. 

Initial findings from nasopharyngeal cancer stem cell vaccine showed that sera isolated from 

patients who received cancer stem cell vaccine contained high level of IgG against cancer stem 

cells, which in turn resulted in killing of cancer stem cells (Lin et al., 2015). 

We showed in this Ph.D. thesis that inhibition of the IL-6 signaling pathway reduces the 

cancer stem cell fraction in vitro and in vivo (Figure 4.2.B, C) and highlighted the potential of a 

monoclonal anti-IL-6R antibody, tocilizumab, as cancer stem cell-targeting agent. Blocking the 
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IL-6 pathway may be a counterintuitive approach to achieve anti-tumor effect since IL-6 is 

originally known to be a pro-inflammatory cytokine. It has been shown that head and neck 

squamous cell carcinomas secrete IL-6 (St John et al., 2004; Thomas et al., 2004), and that high 

serum IL-6 levels correlate with poor outcome of head and neck cancer patients (Duffy et al., 

2008). Constitutive secretion of IL-6 results in high activation of downstream signal transducer, 

STAT3. When STAT3 activity is inhibited, the head and neck squamous cell carcinoma cells 

lose proliferation ability and survival potential (Sriuranpong et al., 2003). STAT3 is also known 

to be a negative regulator of immune response. In tumors with high levels of STAT3 activation, 

the immune system does not respond to the established tumors due to lack of dendritic cell 

activity (Fuchs and Matzinger 1996; Pardoll 1998; Steinman and Nussenzweig 2002; 

Banchereau and Steinman 1998). However, when STAT3 activity is blocked, pro-inflammatory 

cytokines are secreted and innate and adaptive immunities are activated (Wang et al., 2004). In 

other words, blocking the STAT3 pathway by inhibiting IL-6 pathway activation can potentially 

reduce cancer stem cells and the bulk tumor cells by activating the immune system. Further 

studies need to be carried out to confirm and assess the efficacy of using IL-6 pathway blocking 

agents, like tocilizumab, in targeting cancer stem cells and re-activating the immune response 

against head and neck cancer. 

 

Conclusions 

Despite the advances in our knowledge on head and neck cancer, the 5-year survival rate has not 

improved much for last three decades. The cancer stem cell hypothesis postulates that a 

subpopulation of cells that have self-renewal ability, therapy resistance and high tumorigenic 

potential plays a critical role in tumor metastasis and recurrence. Indeed, this unique population 
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of cells has been identified from multiple solid tumors and hematopoietic malignancies. 

Although different markers/methods are now available to isolate cancer stem cells, our 

knowledge of the biology of cancer stem cells and the mechanism allowing cancer stem cells to 

actively contribute to the progression of the disease is still rather limited. 

The cancer stem cell hypothesis proposes that current failure in cancer treatment is due to 

inability of conventional therapies to clear out the uniquely tumorigenic cell population (i.e. 

cancer stem cells). According to this theory, complete remission of tumor can only be achieved if 

both cancer stem cells and the bulk tumor cells are ablated. Today, intensive efforts directed at 

the understanding of the molecular pathways that are critical to cancer stem cell survival or 

function are ongoing with the ultimate goal of developing therapeutic strategies that target and 

eliminate cancer stem cells. Chapter II is an overview of the progress that has been made in 

cancer stem cell field and potential drugs that can target head and neck cancer stem cells (Kim et 

al., 2016a). In head and neck cancer, cells with high aldehyde dehydrogenase (ALDH) activity 

and high CD44 expression have superior tumor-forming ability and enhanced orosphere-forming 

ability (Krishnamurthy et al., 2010). Recent work in head and neck cancer showed that increase 

in stemness-related markers, such as β-catenin, Oct4, and Bmi-1, enhances the self-renewal 

ability and the cancer stem cell fraction (Koo et al., 2014; Nör et al., 2014; Giudice et al., 2013). 

In addition, molecules originated in the tumor stroma appear to regulate the cancer stem cell pool 

and survival (Krishnamurthy et al., 2010).  

In order to study the cancer stem cell population, it is critical to establish techniques and 

tools to successfully isolate and culture cancer stem cells for further analysis. Due to its 

multipotency, cancer stem cell can repopulate the entire population after it is plated in standard 

attachment setting within 24 hours (Gupta et al., 2011). Therefore, it is critical to prevent 
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differentiation of cancer stem cells when assessing the cancer stem cell-targeting agent. Chapter 

III described the methods we use to isolate cancer stem cells from the primary or xenograft 

tumors and culture as orospheres (Kim et al., 2016b). The therapeutic potential of anti-tumor 

drugs can be tested on the sorted cancer stem cells grown as orospheres, as described in this 

chapter. 

In Chapter IV, we studied the role of endothelial cell-activated signaling, specifically IL-

6 signaling, in cancer stem cell motility and the therapeutic potential of an IL-6 receptor (IL-6R) 

inhibitor, tocilzumab. We observed that endothelial cell-secreted factors induced expression of 

mesenchymal cell-related markers (Vimentin ad Snail) and enhanced the motility of head and 

neck cancer stem cells. Recombinant human IL-6 alone also had similar effect on cancer stem 

cells. Upon IL-6 pathway blockage, endothelial cell-induced expression of Vimentin and Snail, 

and the cancer stem cell motility was decreased. High serum level IL-6 has been associated with 

high tumor recurrence rate and poor overall survival of head and neck cancer patients (Duffy et 

al., 2008). Here, we showed that high levels of IL-6R and co-receptor gp130 in the invasive front 

of head and neck tumors correlated with poor overall survival in a study with up to 12 years of 

follow-up. Tocilizumab treatment significantly reduced the cancer stem cell fraction in pre-

clinical trials in head and neck squamous cell carcinoma xenografts. This work unveiled the 

impact of endothelial cell-secreted IL-6 on cancer stem cell motility and epithelial-mesenchymal 

transition. Furthermore, it provided scientific rationalte for the testing of tocilizumab as a novel 

therapeutic option for head and neck cancer. 

 In summary, tumor metastasis and recurrence in head and neck cancer may be due to 

cancer stem cell’s ability to survive conventional therapies and invade surrounding tissues. 

Cancer stem cells acquire migratory phenotype by the interaction they have with the surrounding 
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environment, such as blood vessels. We demonstrated that endothelial cell-secreted IL-6 

enhances the migratory phenotype of cancer stem cells and resulting in tumor dissemination. 

Collectively, this work suggests the potential benefit of combining an anti-cancer stem cell 

therapy (e.g. tocilizumab) with an anti-tumor differentiated cells agent (e.g. cisplatin) for the 

treatment of patients with head and neck squamous cell carcinoma. 

 

The main conclusions of this dissertation are: 

• Expression levels of IL-6R and gp130 in the tumor invasive front correlate with the 

overall survival of head and neck squamous cell carcinoma patients. 

• Cancer stem cells acquire a highly motile phenotype in the presence of endothelial cell-

secreted factors. 

• Endothelial cell-secreted IL-6 induces mesenchymal cell-related protein expression and 

enhances cancer stem cell motility. 

• IL-6 pathway blocking agent, such as tocilizumab, targets the cancer stem cell population 

but its effect on tumor metastasis and recurrence remains to be determined. 

• Collectively, this work suggests that patients with head and neck squamous cell 

carcinoma might benefit from an IL-6 targeted therapy.
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Figure 5.1. Proposed schematic model of the endothelial cell-secreted IL-6 and cancer stem cell 
mesenchymal cell-related protein expression. A, Endothelial cells secrete multiple factors, including IL-6. 
IL-6 pathway is activated by either binding to membrane-bound IL-6R and soluble IL-6R (sIL-6R). 
Downstream signaling pathway, STAT3, is activated and induces transcription of downstream genes. Such 
activation results in increase in Snail and Vimentin expression, allowing the cancer stem cells to acquire 
mesenchymal phenotype with increased motility. B, IL-6 pathway inhibition, such as tocilizumab, can 
prevent IL-6 pathway activation, resulting in cancer stem cells with inactivation of STAT3 and decrease in 
migration. 
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