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CHAPTER 1: Introduction 

The gut microbiota and colorectal cancer 

The human microbiota is the collection of microorganisms that live in and on the human 

body. Only recently has the scientific community begun to appreciate the important 

roles that these bacteria, archaea, viruses, and fungi and other eukaryotes play in 

regulating human health. The gastrointestinal tract is the most densely populated part of 

the human body, and one of the highest densities of microbial life on the planet [1]. This 

diverse collection of organisms harbors an even more diverse catalog of genes that 

encode for roughly 100 times more unique genes than the human genome. This 

functional diversity allows the gut microbiota to compliment its host in a number of ways, 

including synthesis of vitamins, degradation of resistant starches, immune system 

maturation, and resistance to pathogens [2–5]. Due to its important role in human 

health, disruptions to the microbiota have been associated with a variety of diseases, 

such as Crohn’s disease, ulcerative colitis, enteric infections, diabetes, obesity, 

malnutrition, and of particular interest to this dissertation, colorectal cancer (CRC) [5–9]. 

A growing body of evidence has demonstrated that the gut microbiota plays an 

important role in CRC. The gut microbiota is known to influence cancer-related functions 

like cell proliferation, angiogenesis, and apoptosis [10–12]. It is also linked to diet, 

obesity and inflammatory bowel disease, which are known risk factors of CRC [6, 8, 13–
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15]. Moreover, at least thirty studies in the past decade have identified alterations in the 

microbiota associated with CRC [16]. Animal models have shown that cancer-

associated changes in the microbiota can promote tumorigenesis, and that several 

bacterial species are capable of promoting colon tumorigenesis on their own [9, 17–19]. 

Microbiota composition influences tumorigenesis 

To better understand the role of the microbiota in CRC, our lab turned to a chemically 

induced mouse model of colitis-associated CRC. In this model, mice are given a single 

intraperitoneal injection of the carcinogen azoxymethane (AOM), followed by three five-

day rounds of 2% dextran sulfate sodium (DSS) administered ad libitum in the drinking 

water. This model works well because it is quick and the mutations and tumor 

progression mirror those of human CRC [20, 21]. Our lab hypothesized that the 

community as a whole, more so than any one species, is responsible for modulating 

colon tumorigenesis. Using the AOM/DSS mouse model, we observed shifts in the 

composition of the microbiota during tumorigenesis [9]. To test whether such shifts 

influenced tumorigenesis, tumor-associated or normal stool was transferred to germ-

free mice that were then subjected to AOM/DSS treatment. Mice inoculated with the 

tumor-associated microbiota developed significantly more tumors than those inoculated 

with a healthy microbiota [9]. This phenotype occurred in the absence of any known 

tumorigenic pathogens and suggested that the microbiota could modulate 

tumorigenesis. More recently, we showed that manipulation of the microbiota using 

different combinations of antibiotics could vary the number of tumors mice developed, 

and a three-antibiotic cocktail of vancomycin, streptomycin, and metronidazole could all 

but block tumorigenesis entirely [22]. Furthermore, we could predict the number of 
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tumors mice would develop based on the composition of the microbiota during antibiotic 

treatment. These findings suggested that the composition of the microbiota influences 

susceptibility to tumorigenesis. 

Using antibiotics to manipulate the microbiota is limited in two important ways. First, 

treating mice with antibiotics primarily alters the abundance of populations already 

present in the community. Membership should be less affected, especially for mice 

living in an isolated environment in which they are exposed to a limited number of 

species. Second, antibiotics can directly impact the immune system of the host, 

independent of the microbiota [23]. This could in turn influence tumorigenesis. To 

address these concerns while further investigating how the composition of the 

microbiota influences tumorigenesis, we turned to a germ-free mouse model. Chapter 2 

of this dissertation describes an experiment in which germ-free mice were inoculated 

with stool from one of six human donors and then subjected to the AOM/DSS model of 

CRC [24]. This method allowed us to study highly distinct microbiota structures without 

the confounding effects of antibiotics. Furthermore, it allowed us to investigate microbial 

populations of human origin, which are likely of greater clinical relevance. The findings 

from that study demonstrated that the initial composition of the microbiota may influence 

an individual’s susceptibility to CRC. 

CRC Screening 

The observation that microbiota composition differs in patients with CRC opens up the 

possibility of using shifts in the microbiota as a biomarker of tumor development. Early 

detection of tumors is key for CRC prevention and treatment. Patient’s in whom CRC is 

detected at stage I, have greater than 90% of survival, whereas patients in whom 
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tumors are detect at stage IV have less than 13% chance of survival [25]. Great 

progress has been made in reducing CRC incidence and mortality through increased 

surveillance, yet CRC remains the second leading cause of death among cancers in the 

United States [26]. This is due in part to a continued lack of adherence to screening 

guidelines, as a third of individuals fail to receive appropriate screening [27]. Screening 

adherence is drastically lower among those who are uninsured, suggesting that cost is 

one barrier to screening [27, 28]. Patients also commonly cite fear and/or discomfort as 

deterrents to undergo structural exams like colonoscopy and sigmoidoscopy [29]. 

Therefore, there is a need for screening alternatives that are inexpensive and 

noninvasive. 

For many years the most common noninvasive screening method for CRC was the 

guaiac-based fecal occult blood test (gFOBT), which detects blood in stool. The gFOBT 

is largely being replaced by the newer more accurate fecal immunochemical test (FIT), 

which also detects blood, but is specific to the human globin protein [30]. Both gFOBT 

and FIT are inexpensive and noninvasive, however neither is able to reliably detect 

early stage tumors, particularly precancerous adenomas. The relatively new multitarget 

DNA test (MT-sDNA) combines FIT with host-associated DNA markers (i.e. KRAS 

mutations, aberrant methylation patterns, β-actin) and has improved sensitivity 

compared to FIT or gFOBT [31]. Unfortunately MT-sDNA is much more expensive than 

FIT or gFOBT, costing as much as $649 in out-of-pocket expenses 

(http://www.cologuardtest.com/what-to-expect-with-cologuard/faq/cologuard-cost-how-

much-is-cologuard). Thus, there remains a need for inexpensive, noninvasive tests that 
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can reliably detect early stage tumors. The microbiota could potentially be source of 

biomarkers for such a test. 

Individual species as biomarkers of CRC 

Many bacteria have been associated with CRC, but only a few have been shown to be 

potential drivers of tumorigenesis. One such bacterium is enterotoxigenic Bacteroides 

fragilis (ETBF). ETBF differs from other B. fragilis strains by the secretion of a toxin, 

called fragilysin. ETBF is capable of promting Wnt/β-catenin signaling by cleaving E-

cadherin, inducing NF-κB signaling, and initiating a Th17 immune response, all of which 

enhance colon tumorigenesis [17, 32]. Inoculation of APCMin/+ mice with ETBF results in 

accelerated tumorigenesis and shifts the location of tumors from the small intestine to 

the distal colon [17]. Evidence for ETBF as a biomarker for CRC is limited, but one 

study detected the fragilysin gene in Bacteroides isolates from the stool of 38% of CRC 

patients compared to 12% of controls [33]. Another study isolated Bacteroides from 

mucosal samples and found that fragilysin positive isolates were more common in CRC 

patients compared to controls [34]. However, both studies were limited by having a 

small numbers of patients and by relying on culturing isolates for detection. 

Similar to ETBF, certain strains of E. coli may have the potential to promote colon 

tumorigenesis. Some E. coli harbor a polyketide synthase (pks) genotoxic pathogenicity 

island, which is capable of causing DNA double-stranded breaks in eukaryotic cells. 

Arthur et al. showed that pks+ E. coli increased DNA damage and increased tumor 

multiplicity in Il10-/- mice treated with AOM [18]. Deletion of the pks island reduced DNA 

damage and tumor multiplicity, but not inflammation. In the same study, they isolated 

the pks+ E. coli in 14 of 21 CRC patients and 14 of 35 IBD patients, compared to 5 of 24 
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controls, suggesting pks+ E. coli could be a marker of CRC or colonic inflammation in 

general. 

In the many studies comparing the microbiota of healthy individuals to those with CRC, 

Fusobacterium nucleatum is the most commonly enriched species in CRC patients. 

Kostic et al. found multiple Fusobacterium species enriched in colorectal carcinoma 

tissue biopsies relative to adjacent healthy tissue [35] and an enrichment of F. 

nucleatum in the stool of patients with colorectal adenomas relative to healthy controls 

[19]. They went on to show that F. nucleatum can accelerate small intestinal 

tumorigenesis in APCMin/+ mice via recruitment of myeloid cells and activation of NF-κB. 

Concurrently Rubinstein et al. found that binding of the F. nucleatum adhesion FadA to 

E-cadherin activates β-catenin signaling and downstream activation of NF-κB [36]. 

Together these studies demonstrate that F. nucleatum is capable of promoting intestinal 

tumorigenesis. F. nucleatum also shows promise as a biomarker for CRC. Using qPCR, 

Kostic et al. detected F. nucleatum in the stool of 27 out of 27 cancer patients with 

carcinomas, 24 of 28 patients with adenomas, and 15 out of 31 healthy individuals. 

Many other studies have observed an enrichment of F. nucleatum in CRC patients 

relative to controls, making it arguably the best single-species biomarker for CRC [37–

40]. 

Multi-species models for detecting CRC 

Attempts to use individual species as biomarkers for CRC have had limited success, as 

none of the strains mentioned above is present in the majority of CRC cases. To 

address this problem, several groups have attempted to use a combination of bacterial 

species to differentiate healthy individuals from those with CRC. Zackular et al. 
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demonstrated that logit models using 5 or 6 bacterial species could detect carcinomas 

just as well as a model using traditional risk factors (age, race, and BMI) and could 

detect adenomas better than those risk factors [40]. They also showed that combining 

bacterial species with patient risk factors and/or gFOBT could improve the detection of 

CRC over any one method by itself. Among the most predictive populations were ones 

associated with Fusobacterium and Porphyromonas. Limitations of this study were that 

it included only 90 patients (30 normal, 30 adenoma, 30 carcinoma) and did not perform 

any validation of the models. 

Shortly thereafter, Zeller et al., with a larger patient cohort, developed a model using the 

relative abundance of 22 bacterial species that could detect CRC better than gFOBT 

[39]. Again, they found that combining a microbiota-based model with gFOBT improved 

detection of CRC over either method alone. Importantly, they validated their model by 

applying it to two external datasets. The bacterial species that were most predictive of 

CRC were Porphyromonas asaccharolytica, Petpostreptococcus stomatis, and two 

strains of F. nucleatum. Also of interest, was the observation that models based on 

metagenomic markers were no better than models based on 16S rRNA gene 

abundances. 

In 2015 Yu et al. developed a model based on 20 microbial gene markers [37]. Genes 

associated with F. nucleatum, Peptostreptococcus stomatis, and Parvimonas micra, 

were among the most predictive biomarkers. Building from these findings, Chapter 3 of 

this dissertation describes microbiota-based models we developed for detecting CRC 

based on the microbiota [41]. We showed that combining bacterial abundances with 

fecal hemoglobin concentrations from FIT could further improve the sensitivity for CRC, 
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especially early stage lesions. Like the aforementioned studies, we found that oral 

species, including F. nucleatum, P. asaccharolytica, P. micra, and P. stomatis, were the 

most overrepresented in CRC samples. 

Combining FIT with other biomarkers is not a new idea. The multitarget stool DNA test 

combines FIT with several other host-associated biomarkers into a model for 

determining whether an individuals has CRC. One barrier to combining microbiota-

based screening with other tests is the need to collect and store an additional stool 

sample for microbiota characterization. Patients who perceive stool collection as 

inconvenient or indelicate may be dissuaded from adhering to screening guidelines. 

Furthermore, stool collection could have added financial costs from collection materials, 

processing, and storage. Thus, an alternative source of material for microbiota analyses 

is needed. 

Sinha et al. compared several sampling methods, including used gFOBT cards and 

rectal swabs. Despite some biases between methods, they found that gFOBT cards 

offered a high level of stability and reproducibility as source of fecal material for 16S 

rRNA gene sequencing [42]. This showed that microbiota analyses and blood detection 

could be carried out from a single convenient sample. However, gFOBT is largely being 

replaced by the more accurate FIT method. Therefore an alternative would be to utilize 

the residual fecal material contained within the FIT sampling cartridges after they have 

been used for hemoglobin quantification. In Chapter 4 of this dissertation, we tested 

whether the residual buffer from FIT cartridges could be used for microbiota 

characterization. We found that, indeed, bacterial DNA isolated from FIT cartridges 
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recapitulated the composition of the fecal microbiota and could be used to identify 

patients with CRC with the same accuracy as DNA isolated directly from stool. 

Regardless of whether the shifts in the microbiota are the cause or effect of 

tumorigenesis, such shifts show potential as biomarkers for CRC. As we continue to 

better understand the role of the microbiota in CRC, we may be able to develop 

improved methods for screening, accelerating the downward trend in CRC incidence 

and mortality. Chapters 2, 3, and 4 of this dissertation advance the field through three 

important findings: 1.) An individual’s baseline microbiota may influence their 

susceptibility to tumorigenesis. 2.) Changes in an individual’s microbiota can be used in 

conjunction with FIT to more accurately detect lesions. 3.) DNA from FIT cartridges are 

an alternative source of material for microbiota-based screening. Chapter 5 will discuss 

the implications of these findings and the future of microbiota-based screening for CRC. 
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CHAPTER 2:  

Structure Of The Gut Microbiome Following Colonization 

With Human Feces Determines Colonic Tumor Burden 

  

The contents of this chapter have been published as: 

Baxter NT*, Zackular JP*, Chen GY, Schloss PD. (2014).  Structure of the gut 
microbiome following colonization with human feces determines colonic tumor burden.  
Microbiome 2(1):20. *Equal Contributon 

 
 
 
Abstract 

A growing body of evidence indicates that the gut microbiome plays a role in the 

development of colorectal cancer (CRC). CRC patients harbor gut microbiomes that are 

structurally distinct from those of healthy individuals; however without the ability to track 

individuals during disease progression, it has not been possible to observe changes in 

the microbiome over the course of tumorigenesis. Mouse models have demonstrated 

that these changes can further promote colonic tumorigenesis. However, these models 

have relied upon mouse-adapted bacterial populations and so it remains unclear which 

human-adapted bacterial populations are responsible for modulating tumorigenesis. We 

transplanted fecal microbiota from three CRC patients and three healthy individuals into 

germ-free mice, resulting in six structurally distinct microbial communities. Subjecting 
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these mice to a chemically induced model of CRC resulted in different levels of 

tumorigenesis between mice. Differences in the number of tumors were strongly 

associated with the baseline microbiome structure in mice, but not with the cancer-

status of the human donors. Partitioning of baseline communities into enterotypes by 

Dirichlet multinomial mixture modeling resulted in 3 enterotypes that corresponded with 

tumor burden. The taxa most strongly positively correlated with increased tumor burden 

were members of the Bacteroides, Parabacteroides, Alistipes, and Akkermansia, all of 

which are Gram-negative. Members of the Gram-positive Clostridiales, including 

multiple members of Clostridium Group XIVa were strongly negatively correlated with 

tumors. Analysis of the inferred metagenome of each community revealed a negative 

correlation between tumor counts and the potential for butyrate production, and a 

positive correlation between tumor counts and the capacity for host glycan degradation. 

Despite harboring distinct gut communities, all mice underwent conserved structural 

changes over the course of the model. The extent of these changes was also correlated 

with tumor incidence. Our results suggest that the initial structure of the microbiome 

determines the susceptibility to colonic tumorigenesis. There appear to be opposing 

roles for certain Gram-negative (Bacteroidales and Verrucomicrobia) and Gram-positive 

(Clostridiales) bacteria in tumor susceptibility. Thus, the impact of community structure 

is potentially mediated by the balance between protective, butyrate producing 

populations and inflammatory, mucin degrading populations. 
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Background 

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the 

United States each year [1]. Recent evidence suggests that the community of microbes 

inhabiting the gastrointestinal tract plays an important role in the development and 

progression of CRC [2-4]. This community, termed the gut microbiome, is known to 

influence cancer-related functions including cell proliferation, angiogenesis, and 

apoptosis, and it is strongly linked to diet, obesity and inflammation, which are known 

risk factors of CRC [5-9]. Using a mouse model of CRC, we have shown that structural 

changes to the microbiome occur during tumorigenesis and result in a gut microbiome 

with an increased tumorigenic capacity [10]. These findings demonstrate that the gut 

microbiome has a causal role in the development and progression of CRC. 

 

Several survey-based studies have shown that CRC patients harbor microbial 

communities that are structurally distinct from those of healthy individuals [11-15]. 

However, there has been no consensus among these studies as to which bacterial 

populations are important. In mouse models several gut commensals have been shown 

to promote tumorigenesis in the colon. Both enterotoxigenic Bacteroides fragilis (ETBF) 

and strains of Escherichia coli that carry the pks pathogenicity island can promote 

tumorigenesis by the production of toxins [3, 4].  Fusobacterium nucleatum has also 

been shown to potentiate tumorigenesis in mouse models and cell culture experiments 

by stimulating inflammation via myeloid cell recruitment and/or activation of β-catenin 

signaling [2, 16]. Fusobacterium was also found to be enriched in a subset of human 

colon adenomas [15]. Although there is increasing evidence that Fusobacterium is 
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involved in CRC cases, it was detected in less than half of adenomas, which suggests 

that other bacterial populations are capable of potentiating tumorigenesis [2]. In fact, it 

may be that CRC is a polymicrobial disease requiring combinations of these or other 

populations to influence tumorigenesis. 

 

While individual bacterial species have been associated with some human CRC cases, 

in other cases the capacity of the microbiome to modulate tumorigenesis could be 

determined by the structure of the community as a whole rather than the presence or 

absence of individual populations [4, 17]. The potentially polymicrobial influence of the 

gut microbiome on this disease necessitates the disentangling of the complex 

interactions between bacterial populations in the gut. Understanding these interactions 

requires investigation of the relationship between the microbiome and tumorigenesis 

under a diverse set of community structures. Unfortunately, mechanistic studies 

typically rely on experiments with conventionally reared inbred mouse living in 

homogenous, controlled environments, leading to relatively little variation in microbiome 

structure between individual animals. Although, experiments in conventional mice are 

useful for understanding the mechanisms by which the microbiome modulates 

tumorigenesis, they are limited by investigating only those bacterial strains found in 

laboratory mice, many of which are absent in humans. It is reasonable to expect that 

incorporating human-associated microbial populations into these experiments would 

increase the ability to translate results to humans. 
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To investigate the role of microbiome structure in tumorigenesis, we combined the 

advantages of the high interpersonal variation among humans and the convenience of a 

mouse model. We inoculated germ-free mice with microbiota from human subjects 

harboring distinct microbiomes. This technique enabled us to test the effect of different 

baseline microbiome communities with variation beyond what is seen in conventionally 

reared mice. The transfer of human microbiota to germ-free mice, sometimes referred to 

as “humanization”, has been employed to study the microbiome in the context of several 

other diseases. In studies of diabetes, obesity, and malnutrition, colonization with 

human feces has been reported to recapitulate the phenotype of the human donors in 

the recipient mice [18-21]. Thus, in addition to searching for tumor-modulating 

community structures, we sought to determine whether this strategy could be used to 

recapitulate the tumor-promoting capacity of CRC patients’ microbiota in mice. 

 

 

Methods 

Mouse experiments 

Fecal samples from three healthy individuals and three patients found to harbor 

carcinomas were obtained through the Early Detection Research Network (Table 2.1). 

Diagnoses were determined based on colonoscopy and histology.  All six samples were 

PCR-negative for the ETBF toxin and  the E. coli pks island [4, 22].  Inocula were 

prepared by mixing 200 mg of each sample in 5ml of PBS. Age-matched (6-10 weeks), 

male, germ-free C57BL/6 mice were inoculated by oral gavage with 100 µl of inoculum 

(n=10 for groups H1 and C1, n=5 for others). Mice were housed 5 mice per cage. Three 
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weeks after inoculation mice received a single intra-peritoneal injection of 

azoxymethane (AOM) (10 mg/kg of body weight). Five days later mice were subjected 

to the first of three five-day rounds of 2% dextran sulfate sodium (DSS) administered ad 

libitum in the drinking water (Figure 2.1). Sixteen days of recovery separated each 

round of DSS. Three weeks after the third and final round of DSS mice were euthanized 

and colonic tumors were enumerated. With this model mice consistently develop 

noninvasive adenomas with dysplastic changes [23, 24]. Throughout the experiment the 

mice were housed in germ-free isolators at the University of Michigan Germ-free 

Facility. This animal experiment was approved by the University Committee on Use and 

Care of Animals at the University of Michigan. 

 

DNA extraction and 16S rRNA gene sequencing 

Mouse fecal samples were collected throughout the experiment and frozen at -20˚C. 

Genomic DNA from samples collected on days 0 and 73 and the human inocular were 

isolated using the PowerSoil-htp 96 Well Soil DNA isolation kit (Mo Bio) using an 

EpMotion 5075 automated pipetting system. The V4 region of the 16S rRNA gene was 

amplified using custom barcoded primers and sequenced as described previously using 

an Illumina MiSeq sequencer [25]. All fastq files and the MIMARKS spreadsheet are 

available at http://www.mothur.org/human_mouse_aomdss. 

 

Sequence curation and analysis 

16S rRNA gene sequences were curated using the mothur software package as 

described previously [25, 26]. Briefly, paired end reads were assembled into contigs and 
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aligned to the SILVA 16S rRNA sequence database [27]. Sequences that failed to align 

or were flagged as possible chimeras by UCHIME were removed [28]. Each sequence 

was classified using a Naïve Bayesian classifier trained against a 16S rRNA gene 

training set provided by the Ribosomal Database Project (http: 

//sourceforge.net/projects/rdp-classifier/) [29]. Finally, sequences were grouped based 

on their taxonomic classification or clustered into operational taxonomic units (OTUs) 

based on a 97% similarity cutoff. The number of sequences in each sample was 

rarefied to 3,306 sequences per sample to minimize the effects of uneven sampling. 

Parallel sequencing and processing of a mock community indicated that the error rate of 

the curated sequences was 0.085%. 

 

The dissimilarity in community structure between samples was calculated using the ΘYC 

metric [30]. The ΘYC distances between samples were used for ordination analysis by 

non-metric dimensional scaling (NMDS) in two dimensions. Ten iterations were 

performed and the resulting ordination that had the lowest stress was used for data 

visualizations. Dirichlet multinomial mixture models were generated to group samples 

into enterotypes based on the abundance of bacterial genera in each sample [31]. To 

identify conserved changes that occurred over the course of the AOM/DSS model, the 

samples from each mouse on day 0, and the samples collected at the end of the model 

were grouped into “baseline” and “endpoint” categories respectively. The R 

randomForest package was used to identify the OTUs that best distinguished between 

the two categories based on their importance for the classification model [32, 33]. 
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The Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States (PICRUSt) software package was used to infer the metagenomic content of each 

sample, based on the taxonomy and abundance of each OTU [34]. Although this 

method is limited by the number of available genomes, it has been shown to replicate 

metagenomes to a high degree of accuracy, especially for human-adapted bacterial 

communities. The weighted Nearest Sequenced Taxon Index (NSTI) for our samples 

was 0.056 +/- 0.01. In general, NSTI values below 0.06, suggest that closely related 

reference genomes were available the dataset 

(http://picrust.github.io/picrust/tutorials/quality_control.html). From the inferred 

metagenomes, we identified KEGG orthologs that could be used as markers for 

butyrate production or host-glycan degradation. Because either butyrate kinase or 

butyryl CoA:acetate CoA transferase is required for butyrate production in the gut, the 

KEGG orthologs chosen as markers for butyrate production were K00929 (butyrate 

kinase [EC:2.7.2.7]), K01034 (acetate CoA-transferase alpha subunit [EC:2.8.3.8]), 

K01035 (acetate CoA-transferase beta subunit [EC:2.8.3.8]) [35]. To choose markers 

for glycan degradation, we found all of the KEGG orthologs annotated as sialidases, 

fucosidases, sulfatases, or members of the glycoside hydrolase family 18, as these 

classes of enzymes are necessary, and moderately specific for host glycan degradation 

[36, 37]. Ten such KEGG orthologs were found in the metagenomes, and used as 

markers;  K01138 (uncharacterized sulfatase [EC:3.1.6.-]), K01130 (arylsufatase 

[EC:3.1.6.1]), K01135 (arylsufatase B [EC:3.1.6.12]), K01137 (N-acetylglucosamine-6-

sulfatases [EC:3.1.6.14]), K01134 (arylsufatase A [EC:3.1.6.8]), K01186 (sialidase-1 

[EC:3.2.1.18]), K01206 (alpha-L-fucosidase [EC:3.2.151]), K01183 (1,4-beta-poly-N-
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acetylglucosaminidase [EC:3.2.1.14]), K01205 (alpha-N-acetylglucosaminidase 

[EC:3.2.1.50]), and K05970 (sialate O-acetylesterase [EC:3.1.1.53]). Finally, we 

calculated the Spearman correlation coefficients between tumor counts and these 

KEGG orthologs. 

 

Statistical Analyses 

Differences in tumor counts between DMM partitions were examined using a Wilcoxon 

rank-sum test. To test whether there was a significant difference in tumor counts 

between groups that received healthy or cancer-associated inocula, we rank 

transformed the tumor counts to correct for heteroscedasticity and performed a nested 

ANOVA.  Differences in community structure were examined using Analysis of 

Molecular Variance (AMOVA) in mothur. 
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Figure 2.1. Experimental Design. Germ-free mice were inoculated by oral gavage with 

one of six human inocula. Twenty-one days later (day 0) they received a single intra-

peritoneal injection of AOM (10 mg/kg). Mice were subsequently administered three 

five-day rounds of 2% DSS in the drinking water, with sixteen days of rest in between. 

Mice were euthanized seventy-three days after the AOM injection for enumeration of 

colonic tumors. The inocula and samples collected on day 0 and day 73 were used for 

16S rRNA sequencing. 

 

 

 

Table 2.1. Metadata for the six inoculum donors. 

−20 −10 0 10 20 30 40 50 60 70
Day

Inoculation AOM
DSS1 DSS2 DSS3

Necropsy

Patient Age)) Gender Race
Height)
(cm)

weight)
(kg)

FOBT)
result Medications Diagnosis Stage) Location

Min)tumor)
size(cm)

Max)tumor)
size))(cm)

C1 74%% f%% white 157 79 . Exelon,%Furosemide,Trazodone Cancer IIIc%% rectal 9.5 9.5

C2 63%% m%% asian 167 86 + nexium,%metformin Cancer I%% rectal% 1.2 2.1

C3 60%% m%% white 182 109 + Claritan Cancer IIIb%% rectal 2 3.1

H1 52%% f%% white 162 84 . requip Normal n/a n/a n/a n/a

H2 69%% f%% white 157 46 . none Normal n/a n/a n/a n/a

H3 55%% f%% asian 157 73 . cyclobenzaprine%HCL Normal n/a n/a n/a n/a
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Results 

Colonization of germ-free mice with human microbiota 

We colonized germ-free mice with human feces from six individuals to determine 

whether different initial community structures would yield different numbers of tumors 

after going through the AOM/DSS model. Three of the donors had healthy colons (H1, 

H2, H3) and three had colonic carcinomas (C1, C2, C3). Samples were chosen 

because they represented broad variation in community structure (Figure 2.2A). 

Following gavage and a 21-day colonization period, groups showed varying levels of 

similarity to their inocula based on phylum level relative abundances and the Θ YC 

distances calculated from OTU abundances (Figure 2.2B). Low Θ YC distances between 

mice within groups suggested that individual communities were consistent within each 

group, while large ΘYC distances between groups suggest that each group harbored a 

gut microbiome that was structurally distinct from the others. Pairwise AMOVA between 

groups revealed that colonization with different inocula resulted in significantly different 

community structures (p<0.01, Benjamini-Hochberg correction). These results suggest 

that although mice do not closely resemble their inoculum, all sets of mice developed 

stable, structurally distinct communities. 
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Figure 2.2. Taxonomic composition and beta diversity across treatment groups 

and time. (A) Phylum level relative abundance of the fecal microbiome of each group 

and in its inoculum. (B) Average ΘYC distances(+/- SEM) within and between groups at 

various time points; between each group and its inoculum, within each group at day 0, 

each group compared to others at day 0, between day 0 and day 73 for each group, and 

each group compared to others at day 73.  
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Figure 2.3.  Temporal changes in community structure.  NMDS ordination based 

OTU abundances between samples on day 0 and day 73.  Distances were calculated 

with ΘYC.  
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Tumor incidence is linked to initial community structure 

Once colonized, mice were subjected to the AOM/DSS model of CRC. We observed 

significant variation in the number of tumors between mice (Figure 2.4A). These 

differences were associated with the inoculum they received, but not the cancer status 

of the human donor (Nested ANOVA p<0.0005). Thus the phenotype of the human 

subject was not transferred to their mouse counterparts. Ordination of the communities 

revealed an association between the community structure of each group at the 

beginning of the AOM/DSS model and their median tumor counts (Figure 2.4B).  To test 

for cage effects groups H1 and C1 were each inoculated into duplicate cages of 5 mice 

each (n=10 per inoculum).  There was no significant difference in microbiome structure 

(p>0.05, AMOVA) or tumor counts (p>0.05, Wilcoxon test) between cages within each 

group. 

 

To determine which OTUs were driving this trend, we generated a biplot using the 

NMDS axes generated from the Θ YC distances between samples collected at the time 

of AOM injection (day 0) (Figure 2.4B). Among the OTUs most strongly correlated with 

high tumor counts were two OTUs from the genus Bacteroides (OTUs 1 and OTU 4). 

More detailed characterization of these OTUs indicated that OTU 1 was closely affiliated 

with B. uniformis and OTU 4 was affiliated with a mixture of a mixture of Bacteroides 

spp. including B. fragilis, B. ovatus, B. xylanisolvens and B. thetaiotaomicron. Both of 

these OTUs were found in all six cohorts of mice and their initial abundances were 

positively correlated with tumor counts (ρ=0.47 and 0.49, respectively; both p<0.005; 

Spearman correlation). Interestingly, all samples were PCR-negative for the ETBF toxin 
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gene, suggesting that OTU 4 was not ETBF. Other OTUs associated with high tumor 

counts were affiliated with the genera Parabacteroides (OTU 18), Alistipes (OTU 19), 

and Bacteroides as well as an OTU affiliated with the species Akkermansia muciniphila 

(OTU 11). In addition, several OTUs associated with the Clostridium Group XIVa (OTUs 

7, 9, 15, and 17), Clostridium Group IV (OTU 49), and unclassified members of the 

Lachnospiraceae (OTUs 67 and 13) were correlated with lower tumor counts. These 

results indicate that the relative abundance of specific OTUs in the starting community 

could be associated with tumor counts. 
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Figure 2.4. Correlation of tumor incidence with initial gut community structure. 

(A) Stripchart of tumor counts (with line at median) for each group. (B) NMDS plot 

based on ΘYC distances between samples at day 0 with biplot of the 15 OTUs most 

strongly correlated with the NMDS axes (stress = 0.21). Median tumor counts for each 

group are adjacent to their corresponding dots. 
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To further test the association between the starting community structure and tumor 

incidence we clustered samples into community types using Dirichlet multinomial 

mixture (DMM) models based on the abundance of bacterial genera found in the mice. 

This approach allowed us to quantify the association between the starting community 

structure and tumor burden in an unbiased manner. The DMM model with the highest 

likelihood partitioned the samples into three enterotypes (Figure 2.5A). Enterotype 1 

was composed exclusively of samples from the three treatment groups with the highest 

tumor counts (H2, C3, H1). Enterotype 2 was composed of samples from C1, which had 

the third lowest tumor counts. Enterotype 3 was composed entirely of samples from the 

two groups with the lowest tumor counts (C2, H3). As a result, mice in Enterotype 1 had 

significantly more tumors than the other two partitions (p<0.05, Wilcoxon test; Figure 

2.5B). Consistent with the OTU analysis, the DMM partition with the highest tumor 

counts was enriched for the genus Bacteroides (Figure 2.5C). In addition, other genera 

within the order Bacteroidales (Parabacteroides and Alistipes), as well as Akkermansia 

were enriched in Enterotype 1. An unclassified member of the Porphrymonodaceae, 

was enriched in Enterotype 2, which had significantly fewer tumors than Enterotype 1. 

Enterotype 3, which had the fewest tumors, was enriched for several genera within the 

order Clostridiales (Clostridim Group XIVa, Clostridium Group XI, Clostridium Group 

XVIII, Flavonifractor, and unclassified Lachnospiraceae). These data suggest a 

potentially tumorigenic role for certain members of Bacteroidales and a protective role 

for certain members of Clostridiales. 
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Figure 2.5. Correlation of enterotypes with tumor incidence. (A) NMDS plot based 

on genus level abundances with median tumor counts for each group (stress = 0.13) . 

Samples are circled based on their DMM enterotype. (B) Tumor counts for the mice in 

each DMM enterotype (* p<0.05, **p<0.01, Wilcoxon rank-sum test)  (C) Relative 

abundance of the genera with the largest differences between enterotypes. 
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Changes in the microbiome during the AOM/DSS model 

To determine the extent to which the microbiomes of each group changed over the 

course of the AOM/DSS model we calculated the ΘYC distances between the 

communities in mice at the time of AOM injection and at the end of the experiment. 

Interestingly, the two groups with the highest tumor counts (H2, C3) changed very little 

over time (ΘYC=0.12 and 0.14), while the microbiomes of the three groups with the 

lowest tumor counts (C2, H3, C1) changed substantially (ΘYC = 0.73, 0.76, 0.83) (Figure 

2.2A). Thus the closer the initial community of each group was to the tumor-associated 

endpoint community, the more tumors those mice developed. 

 

To identify which OTUs changed over time, we combined samples from all six treatment 

groups and used the Random Forest machine-learning algorithm to identify the OTUs 

that allowed us to differentiate between the samples from the beginning and end of the 

model, regardless of the inoculum. The resulting model was able to distinguish between 

the baseline and endpoint samples with 98.6% accuracy. The OTUs that provided the 

greatest mean decrease in accuracy when removed from the analysis were affiliated 

with Turicibacter (OTU 36), Bacteroides (OTU 4), Porphyromonadaceae (OTU 59), and 

several genera within the Clostridiales (OTUs 113, 25, 28, 127, 144, 42, and 17; Figure 

2.6).  Despite harboring drastically different community structures, all treatment groups 

underwent conserved changes in microbiome structure over the course of the model. 



	 36	

  

Figure 2.6. Temporal changes in the microbiome are conserved between groups. 

Strip chart showing the relative abundances of the 10 OTUs with the highest importance 

for distinguishing between baseline (day 0) and endpoint (day 73) communities by 

random forest as measured by the mean decrease accuracy (MDA) when the OTU was 

removed from the model.  Each dot represents a single mouse.  The black lines 

represent the mean relative abundance for all mice.   
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Figure 2.7. Samples remain in same enterotypes over the course of the model.  

NMDS ordination showing DMM enterotypes generated based on genus level 

abundances on day 73.  Distances were calculated with ΘYC.  Despite changes in OTU 

abundance over the course of the model, all mice cluster into the same enterotypes on 

day 73 as they did on day 0.   
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Tumor incidence is linked to butyrate production and host glycan degradation. 

Our experiments suggested that Clostridiales, Bacteroidales and Akkermansia played a 

role in modulating tumorigenesis. Members of the Clostridiales, especially Clostridium 

Group XIVa, are the predominate producers of intestinal butyrate, an important anti-

inflammatory and anti-tumorigenic metabolite in the gut [35, 38, 39] Bacteroides and 

Akkermansia, on the other hand, are known to breakdown host-derived glycans, 

especially mucin. Mucin degradation has been linked to intestinal inflammation and can 

facilitate colonization of intestinal pathogens [40-42]. To test whether the genomic 

potential for these metabolic activities is linked to tumor incidence, we used the 

PICRUSt software package to predict the metagenomic content for each sample at the 

time of AOM injection. Butyrate production in the gut requires either butyryl-

CoA:acetate-CoA transferase or butyrate kinase [30]. KEGG Orthologs (KOs) of the 

alpha and beta subunits of butyryl-CoA:acetate-CoA transferase were negatively 

correlated with tumor incidence (r<-0.35, p<0.05,). Butyrate kinase had the same trend, 

but the correlation was not statistically significant (r=-0.30, p=0.08). Next, we identified 

KOs for sialidases, fucosidases, sulfatases, and N-acetylglucosaminidases, which are 

indicative of host glycan degradation [36, 37]. Of the 10 such KOs found in our 

metagenomes, 7 (two arylsulfatases, an uncharacterized sulfatase, alpha-L-fucosidase, 

sialate O-acetylesterase, alpha-N-acetylglucosaminidase, 1,4-beta-poly-N-

acetylglucosaminidase) were positively correlated with tumor count (r>0.47, p <0.01). 

None of the 3 remaining KOs were correlated with tumors. Together, these data 

suggest that the correlation between tumor incidence and the microbiome may be 

dependent on metabolic activity rather than bacterial phylogeny. 
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Discussion 

The results of this study demonstrate that the structure of the gut microbiome is 

important for determining susceptibility to inflammation-associated tumorigenesis. We 

observed strong correlations between initial community structure of the gut microbiome 

and tumor multiplicity. This relationship is driven primarily by two distinct groups of 

bacteria. In general we found that members of the Bacteroidales (Bacteroides, 

Parabacteroides, Alistipes, and Porphrymonodaceae) were associated with a higher 

rate of tumorigenesis, while members of the Clostridiales, especially Clostridium Group 

XIVa, were associated with a decreased rate of tumorigenesis. There were exceptions 

to this pattern however, as a few OTUs associated with Clostridiales (OTUs associated 

with Roseburia, Blautia, and Subdoligranulum) were enriched in the groups with higher 

tumor counts (Figure 2.4B). However, these OTUs were less abundant (<0.7% mean 

abundance) than those Clostridales that were negatively correlated with tumors (~2% 

mean abundance). Therefore the data generally support a model in which susceptibility 

to colonic tumorigenesis is determined by the balance between the abundance of 

members of Bacteroidales and Clostridiales.  One limitation of this study is that we only 

assayed the fecal communities. While this was necessary for correlating baseline 

community structure with the numbers of tumors that developed, characterization of the 

mucosal microbiota could potentially yield additional associations with tumor burden. It 

is also important to note that, although we observed variation in the number of tumors 

within inoculum groups, we were unable to correlated these differences with any 

differences in their microbiomes. 
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Based on our predicted metagenomic analysis, the roles of Clostridiales and 

Bacteroidales could be dependent on specific metabolic activities. Members of 

Clostridium Group XIVa are the predominant producers of butyrate in the gut [35]. Given 

the anti-inflammatory and anti-tumorigenic properties of intestinal butyrate, its 

production by members of Clostridium Group XIVa could explain the association with 

lower susceptibility to colon tumorigenesis [38, 39]. This hypothesis is supported by our 

predicted metagenomic data, which correlated the increased potential for butyrate 

production with decreased tumorigenesis. Bacteroides and Akkermansia were the two 

genera most strongly correlated with higher rates of tumorigenesis. Both are known 

mucin degraders, and several genes linked to mucin degradation were positively 

correlated with tumor incidence. Additionally, previous studies have linked mucin 

degradation by Bacteroides and Akkermansia with intestinal inflammation [40-42]. It is 

possible that an overabundance of these or other mucin degraders could undermine the 

integrity of the mucosal barrier, leading to increased inflammation. Such a mechanism 

could be an alternative to the ETBF-based model of tumorigenesis as we were unable 

to detect the gene for the ETBF toxin in any of our samples. While we cannot exclude 

the possibility of a novel toxin in the Bacteroides populations in our experiment, the 

additional correlation with Akkermansia muciniphila supports a model in which 

inflammation is induced by mucin degradation. If further experiments confirm this model, 

blocking mucin degradation could be a used as a therapeutic for preventing or slowing 

the progression of tumorigenesis.  
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In this study we observed a relationship between tumor multiplicity and the extent to 

which the microbiome shifted over the course of the model. The gut community of mice 

with high tumor counts changed very little over the course of the model, while the 

microbiome of groups with low tumor counts changed drastically. Thus the more similar 

the baseline community was to the endpoint community, the more tumors the host 

developed. We hypothesize that the microbiome of these mice was not significantly 

altered by the AOM/DSS model since it was already in a state of dysbiosis. Therefore, 

there was a greater exposure to a tumorigenic microbiome. Similarly, in a previous 

study we colonized germ-free mice with the feces of conventional mice that had already 

gone through the model [10]. These mice developed more tumors than germ-free mice 

colonized with feces from normal mice. Thus, in addition to needing a dysbiotic 

community to exacerbate tumorigenesis, the length of exposure to that community is 

important to tumor formation. 

 

In contrast to earlier studies where human feces were used to colonize germ-free mice, 

we were unable to recapitulate the structures of the human microbiota donors, as 

numerous members of the donor community failed to colonize the recipients and others 

colonized in different abundances. For example, one of the donor communities (C1) 

was dominated by Fusobacterium spp (58% relative abundance).  Another inoculum 

(C3), contained F. nucleatum at 2% relative abundance [2]. However we did not recover 

any sequences from the Fusobacteria phylum in the recipient mice. We were also 

unable to culture it from the original human stool sample, suggesting it may not have 

survived the freezing and thawing of the sample or was never alive in the stool. While 
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we did not fully recapitulate the community structure or phenotype of the human donors, 

colonizing mice with human fecal communities did serve as a useful tool for generating 

novel community structures to test the influence of specific bacterial populations on 

tumorigenesis. This strategy also allowed us to investigate the role of human 

microbiota, which should be more clinically relevant, while maintaining the tractability of 

a mouse model. 

 

 

Conclusions 

In this study we found that the process of colonizing germ-free mice with human fecal 

communities did not recapitulate the phenotype of the human donors in this particular 

mouse model of CRC. Nonetheless, our findings demonstrate the importance of the 

initial microbiome structure in determining the rate of tumorigenesis. Furthermore, we 

identified several bacterial populations correlated with tumor incidence in the context of 

six distinct gut communities. Multiple OTUs associated with the order Bacteroidales and 

the species Akkermansia muciniphila were correlated with exacerbated tumorigenesis, 

while several OTUs associated with Clostridium Group XIVa and other Clostridiales 

were correlated with protection. Based on inferred metagenomes of the baseline 

communities, we provided evidence that the positive correlations between Akkermansia 

and Bacteroidales and tumor incidence could be a result of their ability to degrade 

mucin, and the negative correlation between the Clostridiales and tumor incidence could 

be due to the production of butyrate. The results are consistent with a model in which 

susceptibility is determined by the balance between mucin degradation and short chain 
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fatty acid production. More studies are needed to confirm theses results and to test the 

mechanisms by which these or other bacterial populations influence colon 

tumorigenesis. A better understanding of microbiome structures with a propensity to 

promote or inhibit tumorigenesis could lead to the development of prebiotic or probiotic 

therapies to prevent or slow the development and progression of CRC. 
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CHAPTER 3:  

Microbiota-based model improves the sensitivity of fecal 

immunochemical test for detecting colonic lesions 

 
The contents of this chapter have been published as: 

Baxter NT, Ruffin MT IV, Rogers MAM, Schloss PD. (2016).  Microbiota-based model 
improves the sensitivity of fecal immunochemical test for detecting colonic lesions.  
Genome Medicine 8(1):37. 

 

Abstract 

Colorectal cancer is the second leading cause of death among cancers in the United 

States. Although individuals diagnosed early have a greater than 90% chance of 

survival, more than one-third of individuals do not adhere to screening 

recommendations partly because the standard diagnostics, colonoscopy and 

sigmoidoscopy, are expensive and invasive. Thus, there is a great need to improve the 

sensitivity of non-invasive tests to detect early stage cancers and adenomas. Numerous 

studies have identified shifts in the composition of the gut microbiota associated with the 

progression of colorectal cancer, suggesting that the gut microbiota may represent a 

reservoir of biomarkers that would complement existing non-invasive methods such as 
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the widely used fecal immunochemical test (FIT). We sequenced the 16S rRNA genes 

from the stool samples of 490 patients. We used the relative abundances of the 

bacterial populations within each sample to develop a random forest classification 

model that detects colonic lesions using the relative abundance of gut microbiota and 

the concentration of hemoglobin in stool. The microbiota-based random forest model 

detected 91.7% of cancers and 45.5% of adenomas while FIT alone detected 75.0% 

and 15.7%, respectively. Of the colonic lesions missed by FIT, the model detected 

70.0% of cancers and 37.7% of adenomas. We confirmed known associations of 

Porphyromonas assaccharolytica, Peptostreptococcus stomatis, Parvimonas micra, and 

Fusobacterium nucleatum with CRC. Yet, we found that the loss of potentially beneficial 

organisms, such as members of the Lachnospiraceae, was more predictive for 

identifying patients with adenomas when used in combination with FIT. These findings 

demonstrate the potential for microbiota analysis to complement existing screening 

methods to improve detection of colonic lesions. 

Background 

Colorectal cancer mortality has steadily declined in recent decades, due in large part to 

increased screening [1]. Yet current screening tests, the fecal immunochemical test 

(FIT) and the multitarget DNA test, have a sensitivity of 7.6% and 17.2%, respectively, 

for detecting non-advanced adenoma – just the type of early lesion that screening is 

meant to identify [2]. Although structural exams including colonoscopy and 

sigmoidoscopy are able to detect both adenomas and carcinomas, the high cost and 

invasive nature are barriers for many people. Fear, discomfort, and embarrassment are 
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among the most cited reasons patients choose to forego CRC screening [3]. Likewise 

the large disparity in screening rates between those with and without health insurance 

highlights the need for inexpensive screening methods [1, 4, 5]. Unfortunately cheaper, 

less invasive stool-based tests like guaic fecal occult blood test and FIT are unable to 

reliably detect adenomas [6]. The newly introduced stool DNA panel has improved 

accuracy compared to FIT, but is still limited in its ability to accurately detect adenomas 

[2]. Thus there is need for novel screening methods that are inexpensive and capable of 

detecting both cancer and adenomas. 

The gut microbiota, the collection of microorganisms that inhabit the gastrointestinal 

tract, are one potential source of biomarkers for detecting colonic lesions. Numerous 

studies have observed alterations in the gut bacterial communities of patients with CRC 

[7–12]. Experiments in animal models have demonstrated that such alterations have the 

potential to accelerate tumorigenesis [13]. Furthermore, several members of the gut 

microbiota have been shown to potentiate both the development and progression of 

CRC by a variety of mechanisms [14–16]. Although each of these organisms may play a 

role in certain cases of CRC, none of them is present in every case. Therefore we 

postulate that no one organism is an effective biomarker on its own and that focusing on 

a single bacterial population excludes the potential that the microbial etiology of the 

disease is actually polymicrobial. 

Two recent studies used statistical models that take into account the abundances of 

multiple bacterial species and the results of guaic fecal occult blood test (gFOBT) to 

distinguish healthy individuals from those with CRC [17, 18]. The analysis by Zackular 

et al. [17] used samples from a limited number of subjects (N=30 normal, 30 adenoma, 
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and 30 carcinoma), while that of Zeller et al [18] had a larger cohort from multiple 

clinical sites (N=156 and N=335). A shortcoming of the Zeller study was the pooling of 

subjects with non-advanced adenomas with control subjects as well as the exclusion of 

subjects with advanced adenomas. A limitation of both studies was that they relied on 

gFOBT rather than FIT to detect hemoglobin in stool. FIT provides a quantitatve 

measure of hemoglobin concentrations and has largely replaced gFOBT clinically 

because of its improved sensitivity. Regardless of their weaknesses, these studies 

demonstrated the feasibility of using microbiome data identify subjects with colonic 

lesions. 

In the present study, we demonstrate the potential for microbiota analysis to 

complement FIT for improved detection of colonic lesions, especially adenomas. We 

utilized the random forest algorithm, which is a decision tree-based machine learning 

algorithm for classification that accounts for non-linear data and interactions among 

features and includes an internal cross-validation to prevent overfitting [19]. With this 

method we identified bacterial populations that could distinguish healthy individuals from 

those with adenomas or carcinomas. In doing so, we confirmed previously observed 

associations of certain bacterial taxa with CRC. Many lesions detected using the 

microbiota were distinct from those detected by FIT, suggesting the microbiota could 

complement FIT to improve sensitivity. By incorporating data on hemoglobin and 

bacterial abundances into a single model (labeled the Multitarget Microbiota Test or 

MMT), we were able to improve the sensitivity for adenomas and cancer compared to 

FIT alone. 
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Methods 

Study Design/Patient sampling. Eligible patients for this study were at least 18 years 

old, willing to sign informed consent, able to tolerate removal of 58 mL of blood, and 

willing to collect a stool sample. Patient age at the time of enrollment ranged from 29 to 

89 with a median of 60. All patients were asymptomatic and were excluded if they had 

undergone surgery, radiation, or chemotherapy for current CRC prior to baseline 

samples or had inflammatory bowel disease, known hereditary non-polyposis CRC, or 

familial adenomatous polyposis. Colonoscopies were performed and fecal samples 

were collected from subjects in 4 locations: Toronto (Ontario, Canada), Boston 

(Massachusetts, USA), Houston (Texas, USA), and Ann Arbor (Michigan, USA). Patient 

diagnoses were determined by colonoscopic examination and histopathological review 

of any biopsies taken. Patients with an adenoma greater than 1cm, more than three 

adenomas of any size, or an adenoma with villous histology were classified as 

advanced adenoma. Whole evacuated stool was collected from each patient either prior 

to colonoscopy preparation or 1-2 weeks after colonoscopy. This has been shown to be 

sufficient time for the microbiota to recover from colonoscopy preparation [20]. Stool 

samples were packed in ice, shipped to a processing center via next day delivery and 

stored at -80˚C. The University of Michigan Institutional Review Board approved this 

study, and all subjects provided informed consent. This study conformed to the 

guidelines of the Helsinki Declaration. 

Fecal Immunochemical Tests. Fecal material for FIT was collected from frozen stool 

aliquots using OC FIT-CHEK sampling bottles (Polymedco Inc.) and processed using an 
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OC-Auto Micro 80 automated system (Polymedco Inc.). Hemoglobin concentrations 

were used for generating ROC curves for FIT and for building the MMT. 

16S rRNA Gene Sequencing. DNA was extracted from approximately 50 mg of fecal 

material from each subject using the PowerSoil-htp 96 Well Soil DNA isolation kit (MO 

BIO Laboratories) and an epMotion 5075 automated pipetting system (Eppendorf). The 

V4 region of the bacterial 16S rRNA gene was amplified using custom barcoded primers 

and sequenced as described previously using an Illumina MiSeq sequencer [21]. The 

490 samples were divided into three sequencing runs to increase the per sample 

sequencing depth. Although the same percentage of samples from the three groups 

were represented on each sequencing run, samples were randomly assigned to the 

sequencing runs to avoid confounding our analysis based on diagnosis or 

demographics. 

Sequence Curation. The 16S rRNA gene sequences were curated using the mothur 

software package (v1.36), as described previously [21, 22]. Briefly, paired-end reads 

were merged into contigs, screened for quality, aligned to SILVA 16S rRNA sequence 

database, and screened for chimeras. Sequences were classified using a naive 

Bayesian classifier trained against a 16S rRNA gene training set provided by the 

Ribosomal Database Project (RDP) [23]. Curated sequences were clustered into 

operational taxonomic units (OTUs) using a 97% similarity cutoff with the average 

neighbor clustering algorithm. Species-level classifications for OTUs of interest were 

determined by blasting the predominant sequences within each OTU to the NCBI 16S 

rRNA database. The putative species was only reported for OTUs with greater than 

99% sequence identity to a single species in the database; otherwise the consensus 
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RDP classification was used. The number of sequences in each sample was rarefied to 

10,000 per sample to minimize the effects of uneven sampling. Only the 335 OTUs 

present in at least 5% of samples were included in the feature selection for the random 

forest models. 

Statistical Methods. All statistical analyses were performed using R (v.3.2.0). Random 

Forest models were generated using the AUCRF package [24]. All ROC curves 

presented for random forest models are based on the out-of-bag (OOB) error rates. For 

each model, leave-one-out and 10-fold cross-validations were performed to further 

estimate the generalization error of the model. The AUC of ROC curves were compared 

using the method described by DeLong et al. [25]. The optimal cutoff for the MMT was 

determined using Youden's J statistic [26]. This cutoff was determined using the ROC 

curve for differentiating cancer from normal. Comparisons of sensitivities of FIT and the 

MMT at the same specificity were performed using the method developed by Pepe et al. 

with 1000 bootsrap replicates [27]. All of the aforementioned statistics for analyzing 

ROC curves were performed using the pROC package in R [28]. To control for 

diagnosis while testing the effects of sex on the microbiome we used PERMANOVA as 

implemented in the adonis function in the vegan R package [29]. 

Results 

Complementary detection of lesions by FIT and the microbiota. We characterized 

the bacterial communities of stool samples from 490 patients using 16S rRNA gene 

sequencing. Among these patients, 120 had CRC, 198 had adenomas, and 172 had no 

colonic lesions. In addition to characterizing the bacterial community, we tested each 
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sample for the concentration of hemoglobin using FIT. With these data we compared 

the ability to detect lesions using FIT to using a microbiota-based model. First we 

developed a random forest classification model for differentiating healthy individuals 

from those with adenomas based on the relative abundance of bacterial populations in 

stool. We determined the optimal model using the AUC-RF algorithm for maximizing the 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve for a 

random forest model [24]. The optimal model utilized 22 bacterial populations (Fig. 

3.2A). The vast majority of OTUs in the model (17 out of 22) belonged to the order 

Clostridales, 4 were associated with the genus Bacteroides, and one OTU was 

unclassified at the phylum level (Fig. 3.2B). The AUC for this and subsequent random 

forest models were generated based on the out-of-bag (OOB) probabilities for each 

sample. Additional leave-one-out and 10-fold cross validations showed no significant 

difference in AUC compared to the OOB AUC (Fig. 3.3A). The AUC for the microbiota 

model (0.673) was significantly different from a random assignment (p<0.001), but not 

significantly different from that of FIT (FIT AUC:0.639, p>0.05, Fig. 3.1A). At the 100 

ng/ml cutoff FIT detected 15.7% of adenomas with a specificity of 97.1%. Setting the 

microbiota model to the same 97.1% specificity resulted in 18.2% sensitivity for 

adenomas. When comparing the results of the tests for each sample, only 2.5% of 

adenomas were detected by both tests, while 28.8% were detected by only one of the 

two tests (Fig. 3.1B). Thus, the two tests detected small but distinct subsets of 

adenomas. 

Next we generated a random forest model for differentiating normal individuals from 

those with cancer using the relative abundance of 34 bacterial populations (Fig. 3.4A, 
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Fig. 3.4B). Consistent with previous observations, the bacteria most strongly associated 

with CRC belonged to taxa commonly associated with periodontal disease [18, 30, 31]. 

These include OTUs associated Pophyromonas assaccharolytica (OTU105), 

Fusobacterium nucleatum (OTU264), Parvimonas micra (OTU281), Peptostreptococcus 

stomatis (OTU310), Gemella spp. (OTU356), and an unclassified Prevotella (OTU57) 

(Fig. 3.4C). The ROC curve for the model had an AUC of 0.847, which was similar to 

AUCs reported for other microbiota-based models for CRC [17, 18]. The AUC of this 

model was significantly better than a random assignment (p<0.001), but was 

significantly lower than that of FIT (FIT AUC:0.929, p=0.005, Fig. 3.1C). As with the 

adenoma versus normal model, we confirmed the OOB AUC with leave-one-out cross 

validation and 100 iterations of 10-fold cross validation (Fig. 3.3B). At the manufacturer 

recommended cutoff of 100 ng/ml FIT detected 75.0% of cancers with a specificity of 

97.1%. At the same specificity the microbiota model detected 51.7% of cancers. 

Although more cancers were detected by FIT, the microbiota model was able to detect 

33.3% of cancers missed by FIT (Fig. 3.1D). 
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Figure 3.1. Microbiota-based models can complement FIT. (A,C) ROC curves for 

distinguishing healthy patients from those with adenoma (A) or cancer (C) based on FIT 

or a microbiota-based random forest model. Open circles show the sensitivity and 

specifity of FIT with a 100 ng/ml cutoff. Black points show the sensitivity and specificity 

of the microbiota-based models at the chosen cutoffs. (B,D) Results of FIT and a 

microbiota-based model for each adenoma (B) or cancer (D) sample. Dotted lines 

represent the cutoffs for each test. Points are shaded based on whether the lesion was 

detected by both tests (black), one of the two tests (grey), or neither test (white). 
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Figure 3.2. Random forest feature selection for detecting adenomas. (A) Change in 

AUC with varying number of variables in the random forest model. The model with the 

highest AUC contained 22 OTUs. (B) Importance of each OTU in the model as 

measured by mean decrease accuracy when the OTU is removed from the model. (C) 

Relative abundance of the most discriminatory OTUs in adenoma and normal samples. 
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Figure 3.3. Cross validation of OTU random forest models. ROC curves for the (A) 

adenoma versus normal OTU model and (B) cancer versus normal OTU model based 

on OOB estimates, leave-one-out cross validation, and ten-fold cross validation. 
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Figure 3.4. Random forest feature selection for detecting cancers. (A) Change in 

AUC with varying number of variables in the random forest model. The model with the 

highest AUC contained 34 OTUs. (B) Importance of each OTU in the model as 

measured by mean decrease accuracy when the OTU is removed from the model. (C) 

Relative abundance of the most discriminatory OTUs in cancer and normal samples. 
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Multitarget Microbiota Test for colonic lesions. Many of the adenomas and some of 

the carcinomas were detected by the microbiota models, but not FIT, suggesting that 

the two screening methods could complement each other if combined into a single test. 

Based on these observations, we developed a random forest model using both the 

microbiota and FIT that would differentiate normal individuals from those with any type 

of colonic lesion (i.e. adenoma or carcinoma). The optimal model, referred to as the 

Multitarget Microbiota Test (MMT), used the relative abundances of 23 OTUs and the 

concentration of hemoglobin as determined by FIT. Of those OTUs, 16 were members 

of the Firmicutes phylum, including 3 from the Ruminococcaceae family and 10 from the 

Lachnospiraceae family (Fig. 3.5). Three OTUs were associated with the genus 

Bacteroides. The remaining OTUs were associated with Porphyromonas, 

Parabacteroides, Collinsella, and Enterobacteriaceae. The OTU associated with 

Porphyromonas was most closely related to Porphyromonas asaccharolytica, which has 

been previously shown to be predictive of CRC [17, 18, 32]. Interestingly the majority of 

OTUs used in the model, especially the Lachnospiraceae, were enriched in normal 

patients (Fig. 3.5), suggesting that a loss of beneficial organisms in addition to the 

emergence of pathogens may be indicative of CRC development. As with the previous 

random forest models we performed leave-one-out cross validation and 100 iterations of 

10-fold cross validation and found no difference in AUC compared to the OOB 

estimates (Fig. 3.6). 
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Figure 3.5. Bacterial OTUs in MMT. (left) Importance of each OTU used in the MMT 

as measured by the mean decrease in the Gini index when the OTU is removed from 

the model. (right) Stripchart of the relative abundances of each OTU in the MMT with 

black lines at the medians. 
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Figure 3.6. Cross validation of MMT. ROC curves for the MMT model based on OOB 

estimates, leave-one-out cross validation, and ten-fold cross validation. 
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Comparing MMT to FIT. To determine whether microbiota sequence data could be 

used to complement FIT, we compared the performance of the MMT to FIT. For 

differentiating any lesions from normal, the AUC for the MMT was significantly higher 

than FIT (MMT AUC:0.829, FIT AUC:0.749, p<0.001, Fig. 3.7A). Subdividing the 

lesions, detecting adenomas by the MMT (AUC:0.755) was significantly better than FIT 

(AUC:0.639, p<0.001), but not for differentiating cancer from normal (MMT AUC:0.952, 

FIT AUC:0.929, p=0.09). To generate a categorical prediction from the MMT, we 

determined the model's optimal threshold for detecting cancer (0.57 probability of a 

lesion) using Youden's J statisitc [26]. Samples scoring above this cutoff were classified 

as lesions, and those below the cutoff were classified as normal. We then compared the 

sensitivity and specificity of the MMT to those of FIT using a threshold of 100 ng/ml of 

hemoglobin. At these cutoffs the MMT detected 91.7% of cancers and 45.5% of 

adenomas compared to 75.0% and 15.7% for FIT (Table 1, Fig. 3.7B, Fig. 3.7C). When 

adenomas and cancers were pooled together, the MMT detected 62.9% of lesions, 

while FIT only detected 38.1%. However, the increased sensitivity of the MMT was 

accompanied by a decrease in specificity (90.1%) compared to FIT (97.1%). 
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Figure 3.7. Comparing MMT to FIT. (A) ROC Curves for the MMT (solid lines) or FIT 

(dashed lines) for distinguishing normal from any lesion (dark red), normal from cancer 

(red) and normal from adenoma (orange). Filled dots show the sensitivity and specificity 

of the MMT at the optimal cutoff (0.622). Open dots show the sensitivity and specificity 

of FIT at the 100 ng/ml cutoff. (B,C) Stripcharts showing the results for FIT (B) and the 

MMT (C). Dashed lines show the cutoff for each test. Points with a FIT result of 0 are 

jittered to improve visibility. 
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Diagnosis Fecal Immunochemical Test Multitarget Microbiota Test 
    True 

Positives 
Sensitivity 
(95% CI) 

True 
Positives 

Sensitivity 
(95% CI) 

Cancer n=120 90 75.0 (67.5-82.5) 110 91.7 (86.7-958) 
Adenoma n=198 31 15.7 (10.6-20.7) 90 45.5  (38.4-52.5) 

Any Lesions n=318 121 38.1 (32.7-43.4) 200 62.9 (57.2-67.9) 
            

    True 
Negatives 

Specificity 
(95% CI) 

True 
Negatives 

Specificity 
(95% CI) 

Normal n=172 167 97.1 (94.2-99.4) 155 90.1 (85.5-94.2) 
 

Table 3.1. Sensitivities and specificities for FIT and MMT. The 95% confidence 

intervals were computed with 2000 stratified bootstrap replicates. 
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To better understand the relationship between the MMT and FIT, we compared the 

results of the two tests for each sample (Fig. 3.8A). All but one of the samples that 

tested positive by FIT also tested positive by the MMT. However the MMT was able to 

detect 70.0% of cancers and 37.7% of adenomas that FIT had failed to detect, while 

maintaining a specificity of 92.8% (Fig. 3.8B). This result demonstrated that 

incorporation of data from a subject's microbiota could complement FIT to improve its 

sensitivity. 

To make a fairer comparison of the sensitivities of these two tests, we reduced the 

cutoff for FIT to 7 ng/ml to match the 90.1% specificity of the MMT. At the lower cutoff 

for FIT there was no significant difference in sensitivity for cancer between the two tests 

(p=0.2), but the MMT remained significantly more sensitive for detecting adenomas 

(p=0.02) and all lesions grouped together (p=0.04, Fig. 3.9). 

The purpose of screening is to identify asymptomatic individuals with early stage 

disease (i.e., true positives). Therefore, we estimated the number of true positives 

captured through FIT and MMT in the recommended screening population in the United 

States (adults ages 50-75 years). The prevalence of lesions in an average-risk 

population was obtained through a previously published meta-analysis [33]. Based on 

sensitivities of FIT and MMT in our dataset, we estimate that MMT would detect 

approximately 40 thousand additional cancers, 1.3 million additional advanced 

adenomas, and 5.1 million additional non-advanced adenomas compared to using FIT 

(Table 2). Thus the improved sensitivity of the MMT would increase the total number of 

true positives identified in the recommended screening population of the United States 

by approximately 6.5 million. However, due to the lower specificity of MMT, it would also 
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result in an estimated 4.3 million additional false positives compared to FIT. Further 

studies would be needed to determine whether detection of 6.5 million additional lesions 

(mostly non-advanced adenomas) would outweigh the added cost of 4.3 million 

additional false positives. 
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Figure 3.8. Relationship between FIT and MMT for each sample. (A) Scatterplot of 

MMT and FIT results for each sample. Dashed lines show the cutoff for each test. 

Points with a FIT result of 0 are jittered to improve visibility. (B) Stripchart of MMT 

results for samples separated by binary FIT result. 
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Figure 3.9. Sensitivities for FIT and MMT for each stage of tumor development 

with matching specificities. The cutoff for FIT was reduced to 7 ng/ml to match the 

specificity of the MMT. Sensitivities were compared using the method proposed by 

Pepe et al. (* = p<0.05, 1000 bootstrap replicates). 
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Condition Prevalence 
Number of Persons, 
ages 50-75 years, 

with Condition 

True Positives 
identified by FIT 

True Positives 
identified by 

MMT 

     
Cancer 0.3% 241,483 181,112 221,359 

Advanced 
Adenoma 5.7% 4,588,174 883,960 2,188,854 

Non-advanced 
Adenoma 17.7% 14,247,488 1,600,841 6,723,534 

*Number of persons in the United States in 2010, 50-75 years of age, was 80,494,283. 

 

Table 3.2. Estimated number of true positives detected in average risk population. 

Number of true positives identified through FIT and MMT in the United States in adults 

50-75 years of age, based on published estimates of CRC prevalence. The sensitivities 

for FIT (100 ng/ml cutoff) on advanced and non-advanced adenomas were 19.3% and 

11.2%, respectively. 



	

	 75	

Effect of patient characteristics on model performance. Previous studies have 

identified differences in diagnostic test performance for certain demographic groups or 

for people taking certain medications [34–36]. Therefore we tested whether the MMT 

performance differed between patient populations. We found no difference in model 

performance according to age, BMI, NSAID usage, diabetes, smoking, or previous 

history of polyps (all p>0.05). However the model was significantly better at 

differentiating normal from lesion for females than for males (p=0.02; Fig. 3.10). For 

females the model detected 63.6% of lesions with a specificity of 94.6%. For males the 

model detected 64.5% of lesions with a much lower specificity of 82%. The MMT 

detected 51.2% of adenomas in females and 44.9% in males. Consistent with the lower 

specificity for males, the MMT had a higher sensitivity for cancer among males (98.5%) 

than females (82.7%). The discrepancy appeared to be due to differences in FIT results 

rather than differences in the microbiome. After correcting for diagnosis, there was a 

significant effect of sex on FIT result (p=0.006, two-way ANOVA), but not on the overall 

structure of the microbiome (PERMANOVA: p=0.07). The lower specificity and higher 

sensitivity for cancer among males is consistent with previous observations that males 

have a higher positive rate for FIT [34, 35]. 

We have previously shown that incorporating patient metadata into microbiome-based 

diagnostic models can improve screening accuracy [17]. To test whether the same was 

true for the MMT we generated a random forest model that combined patients' age, 

BMI, sex, and smoking status with the OTUs and FIT result from the MMT. The AUC of 

the ROC curve for this model (0.869) was not significantly different from that of the MMT 

(AUC: 0.829, p=0.11, Fig. 3.11). When the model with patient metadata was set to the 
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same specificity as the MMT (90.1%), it did not improve the sensitivity for lesions 

(63.4%) compared to MMT (62.9%, p=0.9). Thus, contrary to our previous findings, 

incorporation of patient metadata did not significantly improve the MMT. 
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Figure 3.10. MMT performance by sex. ROC curves (left) and stripchart (right) of 

MMT results separated by sex. 
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Figure 3.11. MMT with patient metadata. ROC curves for distinguishing normal from 

lesion using FIT, the MMT, or the MMT with metadata. 
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Discussion 

We confirmed previous findings that the gut microbiota can be used to differentiate 

healthy individuals from those with colonic lesions. Although FIT was better at detecting 

cancers than a model using only the microbiota, microbiota-based models detected a 

subset of lesions that were not detected by FIT. This suggested that the two methods 

could complement each other. Based on this observation we developed a cross-

validated random forest model that combined both FIT and the microbiota to detect 

colonic lesions. The resulting MMT had higher sensitivity than FIT for detecting lesions, 

especially adenomas. The MMT was also able to detect the majority of cancers missed 

by FIT. However, the increased sensitivity of MMT was accompanied by a decrease in 

specificity compared to FIT. With a false positive rate more than three times higher than 

FIT (9.9% versus 2.9%), an annual MMT would result in more colonoscopies than using 

FIT as the primary screening test. However, the higher sensitivity of the MMT might 

make it possible to reduce the frequency of screening, thereby offsetting the difference 

in the number of colonoscopies. Additional studies would be needed identify the 

appropriate screening inverval and to determine whether the increased number of true 

positives identified by MMT justify the increased number of false positives. 

It was recently shown that when FIT was combined with host-associated DNA 

biomarkers, the ability to detect adenomas and carcinomas was significantly improved 

over FIT alone [2]. The sensitivity of the host-associated DNA screen was 92.3% for 

cancer and 42.4% for adenomas with a specificity of 89.8%, all very similar to what we 

observed with our MMT. Such results support the assertion that because of the large 
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interpersonal variation in markers for adenomas and carcinomas, it is necessary to 

employ a panel of biomarkers and to use a model that integrates the biomarkers. The 

accuracy of our model may be further improved by incorporating additional indicators 

such as host-associated biomarkers or those targeting specific genes involved in the 

underlying mechanism of tumorigenesis such as bacterial toxins [15, 16, 18]. More 

generally, predictive and diagnostic models for other diseases with a microbial etiology 

may benefit from a similar approach. For example, we recently demonstrated the ability 

to detect Clostridium difficile infection based on the composition of the microbiota [37]. 

Such models are likely to be useful as microbiota sequencing gains traction as a tool for 

characterizing health. 

Surprisingly most of the OTUs that work well for identifying cancers, including 

Fusobacterium nucleatum (OTU264), Peptostroptococcus stomatis (OTU310), and 

Parvimonas micra (OTU281), were excluded from the MMT. This is likely due to these 

OTUs being positively correlated with FIT (all p<0.001, Spearman correlation), meaning 

they add little information when used in combination with FIT. Instead the MMT is 

enriched for OTUs that help detect adenomas. Thus the MMT model relies primarily on 

FIT for detecting cancer, and uses the microbiota to help identify adenomas 

undetectable by FIT alone. It is also interesting that most of the OTUs used in the MMT 

were enriched in normal individuals, suggesting that a loss of beneficial organisms in 

addition to the emergence of pathogens may be important for colorectal cancer 

development. Many of the OTUs that were depleted in patients with lesions belonged to 

the Ruminococcoaceae and Lachnospiraceae families, which contain the predominant 

producers of butyrate, a short-chain fatty acid with anti-inflammatory and anti-



	

	 81	

tumorigenic properties [38–41]. Likewise Zeller et al. observed a depletion of a potential 

butyrate-producing Eubacterium spp. in patients with CRC [18]. Loss of butyrate or 

other anti-inflammatory microbial metabolites may contribute to CRC development. 

These possibilities highlight the need for longitudinal studies to better understand how 

changes to an individual's microbiome or the metabolic profile of the gut might 

predispose them to CRC. 

Like other groups, we noticed that the microbiota of CRC patients contained higher 

levels of bacterial taxa traditionally thought of as oral pathogens, including 

Fusobacterium, Porphyromonas, Peptostreptococus, Gemella, Parvimonas, and 

Prevotella. Periodontal pathogens have been shown to promote the progression of oral 

cancer [42]. Therefore it is possible that these taxa could influence the progression of 

CRC by a similar mechanism. These observation may warrant further investigation into 

a potential link between periodontal disease and CRC. Furthermore, since the structure 

of an individual's oral microbiome is correlated with that of the gut [43], alterations in the 

oral community could potentially be a proxy for ongoing or future changes to the gut 

community. 

Although it is exciting that the addition of the microbiota can improve the sensitivity of 

FIT, further validation is needed prior to clinical adoption. This represents the largest 

cohort to date, but still only consists of 490 patients. In contrast, the cohort used to 

validate the Multitarget stool DNA test included 9,989 subjects. Development of a larger 

cohort will allow us to apply the MMT to a separate validation set. It is also unclear how 

sensitive the MMT is to variation in sample preparation and processing. Many of the 

samples included in the current study were collected 1-2 weeks after the subjects’ 
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colonoscopy. A previous study showed that the microbiome quickly returns to normal 

following colonoscopy [20]. Likewise we found no difference in the microbiome between 

samples collected prior to or after colonoscopy (PERMANOVA: p=0.45). Regardless, 

we would have greater confidence in the predictive potential of the microbiota if all 

samples were collected prior to colonoscopy. Despite these shortcomings, the ability to 

improve the sensitivity of detecting adenomas suggests that further methods 

development and validation are warranted. 

Conclusions 

Our findings demonstrate the potential for combining the analysis of a patient's 

microbiota with conventional stool-based tests to improve CRC detection. Using the 

random forest algorithm it was possible to interpret FIT results in the context of the 

microbiota. The MMT had higher sensitivity for lesions, especially at early stages of 

tumorigenesis. Moreover the model detected the majority of cancers that FIT was 

unable to detect. The shortcoming of the MMT is its lower specificity. However, the 

potential value of the MMT is its higher sensitivity, which is the purpose of preventive 

screening – finding lesions earlier so that cancer would be avoided. 
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CHAPTER 4: 

DNA from fecal immunochemical test can replace stool for 

microbiota-based colorectal cancer screening 

The contents of this chapter have been submitted for publication as: 

Baxter NT, Koumpouras CC, Ruffin MT IV, Rogers MAM, Schloss PD. (2016).  DNA 
from fecal immunochemical test can replace stool for microbiota-based colorectal cancer 
screening.  BMC Cancer (under review). 
 
 

Abstract 
There is a significant demand for colorectal cancer (CRC) screening methods that are 

noninvasive, inexpensive, and capable of accurately detecting early stage tumors. It has 

been shown that models based on the gut microbiota can complement the fecal occult 

blood test and fecal immunochemical test (FIT). However, a barrier to microbiota-based 

screening is the need to collect and store a patient's stool sample. Using stool samples 

collected from 404 patients we tested whether the residual buffer containing 

resuspended feces in FIT cartridges could be used in place of intact stool samples. We 

found that the bacterial DNA isolated from FIT cartridges largely recapitulated the 

community structure and membership of patients' stool microbiota and that the 

abundance of bacteria associated with CRC were conserved. We also found that 
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models for detecting CRC that were generated using bacterial abundances from FIT 

cartridges were equally predictive as models generated using bacterial abundances 

from stool. These findings demonstrate the potential for using residual buffer from FIT 

cartridges in place of stool for microbiota-based screening for CRC. This may reduce 

the need to collect and process separate stool samples and may facilitate combining 

FIT and microbiota-based biomarkers into a single test. Additionally, FIT cartridges 

could constitute a novel data source for studying the role of the microbiome in cancer 

and other diseases. 

Background 
Although colorectal cancer (CRC) mortality has declined in recent decades, it remains 

the second leading cause of death among cancers in the United States [1]. Early 

detection of CRC is critical since patients whose tumors are detected at an early stage 

have a greater than 90% chance of survival [1]. However more than a third of 

individuals for whom screening is recommended do not adhere to screening guidelines 

[2]. The high cost and invasive nature of procedures, such as colonoscopy and 

sigmoidoscopy are barriers for many people [3, 4]. Unfortunately non-invasive tests, 

such as the guaiac fecal occult blood test (gFOBT), fecal immunochemical test (FIT), 

and the multitarget DNA test fail to reliably detect adenomas [5, 6] (e.g., sensitivity for 

nonadvanced adenomas is 7.6% for FIT and 17.2% for the DNA test). Thus, there is a 

need for novel non-invasive screening methods with improved sensitivity for early stage 

colonic lesions. 

Several studies have demonstrated the potential for the gut microbiota to be used to 

detect CRC [7–10]. Moreover, we and others have shown that combining microbiota-
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analysis with conventional diagnostics, like gFOBT and FIT, can significantly improve 

the detection of colonic lesions over either method by itself [7, 8, 10]. One limitation of 

microbiota-based CRC screening is the need to collect and process separate stool 

samples for microbiota characterization. Given the widespread use of FIT to collect 

specimens for screening, the ability to use the same sample for microbiota 

characterization could make processing more efficient and less expensive. We 

hypothesized that the small amount of fecal material contained in FIT sampling 

cartridges was sufficient to perform both hemoglobin quantification and microbiota 

characterization. To test this hypothesis, we isolated bacterial DNA from the residual 

buffer of OC-Auto® FIT cartridges (Polymedco Inc.) that had already been used for 

quantifying fecal hemoglobin concentrations. We then compared the bacterial 

composition of the FIT cartridge to that of DNA isolated directly from a patient's stool 

sample and assessed the ability of FIT cartridge-derived DNA to be used for microbiota-

based CRC screening. 

Methods 
Study Design / Diagnoses / Stool Collection. Stool samples were obtained through 

the Great Lakes-New England Early Detection Research Network. Patients were 

asymptomatic, at least 18 years old, willing to sign informed consent, able to tolerate 

removal of 58 mL of blood, and willing to collect a stool sample. Patient age at the time 

of enrollment ranged from 29 to 89 with a median of 60 years. Patients were excluded if 

they had undergone surgery, radiation, or chemotherapy for current CRC prior to 

baseline samples or had inflammatory bowel disease, known hereditary non-polyposis 

CRC, or familial adenomatous polyposis. Patient diagnoses were determined by 
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colonoscopic examination and histopathological review of any biopsies taken. 

Colonoscopies were performed and fecal samples were collected in four locations: 

Toronto (Ontario, Canada), Boston (Massachusetts, USA), Houston (Texas, USA), and 

Ann Arbor (Michigan, USA). Stool samples were packed in ice, shipped to a processing 

center via next day delivery and stored at -80˚C. Fecal material for FIT was collected 

from frozen stool aliquots using OC-Auto® FIT sampling bottles (Polymedco Inc.), 

processed using an OC-Auto Micro 80 automated system (Polymedco Inc.), and stored 

at -20C. The University of Michigan Institutional Review Board approved this study, and 

all subjects provided informed consent. 

16S rRNA gene sequencing. Processed FIT samples were thawed, and 100 µl of 

buffer were withdrawn by pipette for DNA extraction. DNA was isolated from FIT 

samples or matching stool samples using the PowerSoil-htp 96 Well Soil DNA isolation 

kit (MO BIO Laboratories) and an epMotion 5075 automated pipetting system 

(Eppendorf). The V4 region of the bacterial 16S rRNA gene was amplified using custom 

barcoded primers and sequenced as described previously using an Illumina MiSeq 

sequencer [11]. The 16S rRNA gene sequences were curated using the mothur 

software package, as described previously [11, 12]. Curated sequences were clustered 

into operational taxonomic units (OTUs) using a 97% similarity cutoff with the average 

neighbor clustering algorithm. Sequences were classified using a naive Bayesian 

classifier trained against a 16S rRNA gene training set provided by the Ribosomal 

Database Project (RDP) [13]. Species-level classifications for OTUs of interest were 

determined by using blastn to compare the predominant sequence within each OTU to 

the NCBI 16S rRNA database. The putative species was only reported for OTUs with 
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greater than 99% sequence identity to a single species in the database; otherwise the 

consensus RDP classification was used. 

Statistical Methods. All statistical analyses were performed using R (v.3.2.0). Random 

forest models were generated using the AUC-RF algorithm for feature reduction and 

maximizing model performance [14]. The most predictive OTUs were determined based 

on mean decrease in accuracy when removed from the model. The area under the 

curve (AUC) of receiver operator characteristic (ROC) curves were compared using the 

method described by DeLong et al. [15] as implemented in the pROC R package [16]. 

Results 
DNA was isolated and 16S rRNA gene sequencing was performed on stool aliquots and 

the residual buffer of paired OC-Auto® FIT sampling cartridges from 404 patients. 

Among these patients, 101 had CRC, 162 had adenomas, and 141 had no colonic 

lesions. First, we tested whether the bacterial community profiles from FIT cartridges 

recapitulated their stool counterparts. First, we compared the number of OTUs shared 

within FIT/stool pairs from the same patient to the number of OTUs shared between 

patients (Fig. 4.1A). FIT cartridges and stool from the same patient (red line) had 

significantly more bacterial populations in common than those taken from different 

patients (p<0.001, two-sample Kolmogorov-Smirnov test), indicating that community 

membership was conserved within patients across stool and FIT cartridges. Second, we 

calculated the similarity in community structure between samples using 1-thetaYC index 

[17]. This metric compares the presence or absence of bacterial populations and their 

relative abundance. The bacterial community structure of stool and FIT samples from 

the same patient (red line) were significantly more similar to each other than to stool or 
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FIT from other patients (Fig. 4.1B, p<0.001). Finally, we used a Mantel test to determine 

whether the patient-to-patient thetaYC distances among stool samples were correlated 

with the patient-to-patient thetaYC distances among FIT cartridges. We found that there 

was a significant correlation (Mantel test r=0.525, p<0.001), suggesting that the inter-

patient variation in community structure between the stool samples of patients was 

conserved in samples from FIT cartridges. 
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Figure 4.1. Bacterial community structure from FIT cartridge recapitulates stool. 

Density plots showing distribution of the number of shared OTUs (A) and community 

similarity (B) between groups of samples (* p<0.001 two-sample Kolmogorov-Smirnov 

Test). 
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Next, we observed a significant correlation between the abundance of each genus in 

the paired FIT cartridge and stool samples (Fig. 4.2A, Spearman rho: 0.699, p<0.001). 

This suggested that the abundance of bacterial genera was conserved. This correlation 

was especially strong when comparing only the 100 most abundant genera from stool 

(Spearman rho: 0.886, p<0.001). Several bacterial species have been repeatedly 

associated with CRC, including Fusobacterium nucleatum, Porphyromonas 

asaccharolytica, Peptostreptococcus stomatis, and Parvimonas micra [8–10, 18]. As 

expected, the abundance of these species in stool was significantly correlated with their 

abundance in matched FIT cartridges (all p<0.001, Spearman rho ≥0.352)(Fig. 4.2B). 

We observed some biases in the abundance of certain taxa. In particular, the genus 

Pantoea was detected in 399 of the 404 FIT cartridges with an average abundance of 

2.4%, but was only detected in 1 stool sample. The genus Helicobacter was detected in 

172 FIT cartridges, but only 10 stool samples. Likewise several genera of Actinobacteria 

were more abundant in stool samples compared to FIT. Notwithstanding these few 

exceptions, the abundance of the vast majority of genera were well conserved between 

stool and FIT cartridges. Overall, these findings suggested that that the overall bacterial 

community structure and the abundance of specific taxa in FIT cartridges and stool 

were similar. 
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Figure 4.2. Bacterial populations conserved between stool and FIT cartridge. (A) 

Scatterplot of the average relative abundance of each bacterial genus in stool and FIT 

cartridges colored by phylum. (B) Scatterplots of the relative abundances of 4 species 

frequently associated with CRC. All correlations were greater than 0.35 (all p<0.001). 
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We tested whether the bacterial relative abundances we observed from FIT cartridges 

could be used to differentiate healthy patients from those with carcinomas using random 

forest models as we did previously using intact stool samples [10]. Using DNA from the 

FIT cartridge, the optimal model utilized 28 OTUs and had an AUC of 0.831 (Fig. 4.3A). 

There was not a significant difference in the AUC for this model and the model based on 

DNA isolated directly from stool, which used 32 OTUs and had an AUC of 0.853 

(p=0.41). Furthermore, the probabilities of individuals having lesions was correlated 

between the models generated using DNA isolated from the FIT cartridges and stool 

samples (Spearman rho: 0.633, p<0.001, Fig. 4.3B). We also generated random forest 

models for differentiating healthy patients from those with any type of lesions (i.e. 

adenoma or carcinoma). There was not a significant difference in AUC between the 

stool-based model with 41 OTUs (AUC=0.700) and the FIT cartridge-based model with 

41 OTUs (AUC=0.686, p=0.65, Fig. 4.3C). Again, the probabilities of individuals having 

lesions according to the two models were significantly correlated (Spearman rho: 0.389, 

p<0.001 Fig. 4.3D). These findings demonstrated that models based on bacterial DNA 

from FIT cartridges were as predictive as models based on DNA isolated directly from 

stool.
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Figure 4.3. Microbiota-based models from FIT cartridge DNA are as predictive as 

models from stool. (A) ROC curves for distinguishing healthy patients from those with 

cancer using using microbiota-based random forest models using DNA from FIT 

cartridges or stool. (B) Probability of having cancer for each patient according to 

microbiota-based models from A. (C) ROC curves for distinguishing patients with 

adenomas or carcinomas from healthy patients using microbiota-based random forest 

models using DNA from FIT cartridges or stool. (D) Probability of having a lesion for 

each patient based on the models from C. 
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Discussion 
Bacterial DNA isolated from the residual buffer of FIT cartridges recapitulated the 

community structure and membership of patients' stool microbiota. FIT/stool pairs 

collected from the same patient were significantly more similar to each other than 

samples from different patients and the inter-patient differences in stool microbiota 

structure were conserved in FIT cartridge-derived microbiota. More importantly, random 

forest models generated using bacterial abundances from FIT cartridge-derived and 

stool-derived DNA were equally predictive for differentiating healthy patients from those 

with adenomas and carcinomas. 

Sinha et al. compared a variety of sampling and storage methods for fecal samples to 

be used for microbiome analyses [19]. They found reproducible biases according to 

sampling method and time at ambient temperature. Likewise, we observed biases in the 

abundance certain bacterial populations in FIT cartridges compared stool. For example, 

an OTU associated with Pantoea was found in 98.8% of FIT cartridge samples and only 

0.2% of stool samples. There are several possible explanations for this result. It is 

possible that because the biomass contained in the FIT cartridges is considerably lower 

than that in stool, the analysis was more sensitive to contaminants in our reagents or 

the FIT cartridge [20]. Alternatively, storage conditions could have played a role in 

biasing the relative abundances of certain genera. The feces in the FIT cartridges spent 

more time exposed to ambient temperatures in order to be analyzed for hemoglobin 

concentration. Therefore it is possible that certain bacterial populations, especially 

aerobes, were able to grow. Considering Pantoea is rarely found in human feces and is 

more commonly found in soil, plant surfaces, and air we suspect that it was a 
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contaminant. Regardless of the source of this and the other suspicious populations, any 

biases were limited since the random forest feature selection process did not select 

these populations and did not affect the ability to detect CRC from FIT cartridge-derived 

DNA. 

Conclusions 
This could reduce the need to collect and process separate stool samples, decreasing 

the cost of screening. It may be possible to use FIT cartridges rather than separate stool 

samples for future studies on the role of the gut microbiota and cancer. Samples 

collected from patients who undergo annual FIT screening could be used to monitor 

temporal changes in a patient's microbiota, making it possible to detect shifts toward a 

disease-associated microbiota. Since FIT cartridges are currently used for CRC 

screening, our findings may facilitate large-scale validations of microbiota-based 

screening methods. 
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CHAPTER 5: Discussion 

The preceding chapters demonstrate the potential for using the gut microbiota for 

detecting CRC. In them we showed that the composition of the gut microbiota can 

potentially influence an individual’s susceptibility to CRC, that shifts in microbiota 

composition can be used to predict the presence of lesions, and that microbiota-based 

screening can be combined with fecal immunochemical test into a single test with 

improved sensitivity for colonic lesions. This chapter includes a summary of the findings 

from the preceding chapters, discussion on the implications of those findings, and the 

next steps for microbiota-based CRC screening. 

Summary and implications of Chapter 2 

In Chapter 2, we used a germ-free mouse model to test the influence of microbiota 

structure on colon tumorigenesis. We initially hypothesized that mice inoculated with 

human cancer-associated microbiota would develop more tumors than mice who 

received microbiota from healthy human donors. There was evidence supporting this 

hypothesis. We had already shown that germ-free mice that received cancer-associated 

microbiota from other mice developed more tumors than mice inoculated with healthy 

mouse microbiota [1]. Other groups had reportedly transferred other disease 

phenotypes from humans to mice through microbiota transfer [2–4]. However, the same 

did not hold true in our experiment, as there was no difference in tumor burden between 
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mice who received a healthy or cancer-associated microbiota. There were several 

potential explanations for the lack of phenotype transfer. Chief among them is the 

inability to fully recapitulate the microbiota structure of the human donor. In an extreme 

example, one human donor’s microbiota was composed of 70% Fusobacteria, however 

the mice who received that microbiota had no detectable Fusobacteria in their stool. 

Even if there had been completely transfer of the donor’s microbiota structure, there 

was no guarantee that the species associated with CRC in humans would be able to 

accelerate tumorigenesis in mice. 

Nonetheless, the study provided valuable insights into the microbiota’s role in CRC and 

potential use as screening tool. The most striking observation from this study was that 

the amount of tumors mice developed was strongly associated with the structure of the 

microbiota prior to undergoing the chemically induced model. This was a new finding, as 

previously we had only associated the endpoint microbiota with the severity of disease 

[1]. This suggested that the structure of the microbiota may influence an individual’s 

susceptibility to tumorigenesis, which opens the possibility of using the microbiota, not 

only to detect CRC, but to predict an individual’s risk of developing tumors. 

The predicted metagenomes from this study showed a negative correlation between 

butyrate producing genes and the number of tumors mice developed. This supports 

epidemiological data in which a high fiber diet and high butyrate levels are associated 

with lower risk of CRC [5, 6] and studies showing that butyrate protects against colon 

tumorigenesis [7–10]. On the other hand, genes potentially involved in mucin 

degradation were positively correlated with the number of tumors mice developed. 

These findings are consistent with a model in which the balance of pro- and anti-
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inflammatory activities of the microbiota influence and individual’s risk of developing 

CRC. 

Summary and implications of Chapter 3 

In Chapter 3, we confirmed previous studies, showing that the microbiota can be used 

to differentiate individual’s with CRC from those with healthy colons. We expanded upon 

those findings by showing that the microbiota could be used to detect a subset of 

lesions that was distinct from those detected by FIT. Then, we combined microbial 

biomarkers and FIT into a single model that had improved sensitivity for colonic lesions, 

especially at the earliest stages of tumor development, where current noninvasive tests 

are least effective. 

These findings demonstrated the advantage of combining multiple biomarkers into a 

single test. This concept is part of what makes the MT-sDNA test a relatively effective 

screening tool. Our MMT model and the MT-sDNA test have remarkably similar 

specificity and sensitivities for each type of lesion [11]. It is likely that combining the 

host-associated markers in the MT-sDNA with the microbial markers in the MMT would 

further improve screening accuracy. It is also likely that incorporating patient 

characteristics into the model would also improve their accuracy. That was true for our 

models in an earlier study [12], but not for the MMT model. 

Summary and implications of Chapter 4 

In Chapter 4, we took the findings from Chapter 3 one step further. Not only could the 

results from FIT and the microbiota analysis be combined into a single model, but the 

two tests could be physically linked by using the same sampling cartridge for both tests. 

Although the results of this study were not surprising, they could have a profound 
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impact on the way we study the microbiota and colorectal cancer. Thousands of FIT 

cartridges are analyzed in the U.S. every day [13]. If those could be repurposed for 

microbiota research, it could drastically increase the number of samples available for 

studying the microbiota’s role in CRC and many other diseases. Furthermore, FIT 

cartridges are typically performed annually, which means an individual’s microbiota can 

be monitored over time. This could allow for large-scale longitudinal study of the 

microbiota. It would even be possible to study changes in the microbiota that occur 

leading up to the development of tumors. 

The next step for CRC screening 

Monitoring changes to an individual’s microbiota over time may be the most effective 

way to detect disease-associated alterations in the microbiota. The most predictive 

species for adenomas were not the potentially pathogenic species typically associated 

with carcinomas. Instead, patients with adenomas were identified by a lack of potentially 

beneficial organisms, especially the often butyrogenic Lachnospiraceae family. Based 

on the findings from Chapter 2 and other studies, a decrease in butyrate producers 

could lead to an increase in susceptibility to tumorigenesis [7, 8, 10]. However, many 

different bacterial populations were needed even to be weakly predictive for detecting 

adenomas. One potential explanation is that the loss of beneficial organisms is highly 

individual-specific. An underlying theme of human microbiota research is the high level 

of inter-individual variability. If no two individuals have the exactly the same “healthy” 

microbiota, then we cannot expect every individual to have the same deviation from that 

healthy state. 
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With that in mind, the best approach to microbiota-based screening may be to monitor a 

patient’s microbiota over a long period of time, making it easier to detect individual-

specific shifts in the structure of their microbiota. These idiosyncratic changes may be 

the best way to detect subtle, but important shifts that might be indicative of early tumor 

development. Only later in tumor development are there consistent blooms in potential 

pathogens in most individuals. Like many other fields of medicine, microbiota-related 

diseases may require a highly personalized approach to both screening and treatment. 

Potential mechanism for microbiota-mediated tumorigenesis 

Like several other groups, we found that bacteria typically associated with oral cavity 

were among the most enriched in the stool of patients with carcinomas [14–16]. F. 

nucleatum has received the most attention due to its ability to potentiate tumors in a 

mouse model, however P. asaccharolytica was even more enriched in patients with 

CRC in our study. Interestingly another Porphyromonas species, P. gingivalis is capable 

of synergizing with F. nucleatum to promote oral cancer [17]. It is possible that a similar 

mechanism can happen in the gut. Even if no causal link exists, P. asaccharolytica 

shows potential as an effective biomarker for CRC. Likewise Parvimonas micra and 

Peptostreptoccus stomatis have been repeatedly associated with carcinomas as well 

[14, 15, 18]. 

We propose the following as one potential mechanism for the microbiota’s role in CRC. 

First there are perturbations to an individual’s gut microbiota, involving the loss of 

mutualistic species, including a decrease in butyrate production and/or other beneficial 

metabolic activity. These changes could predispose the colon to adenoma formation. 

The altered environment of the adenomatous tissue could allow for F. nucleatum to 
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colonize the distal gastrointestinal tract, binding epithelial cells via its adhesion FadA. 

Then, as it does in the periodontal cavity, F. nucleatum can mediate the binding of other 

oral pathogens, forming a multispecies biofilm [19, 20]. These oral pathogens could 

promote inflammation and the secretion of peptides to sustain their asaccharolytic 

metabolism, as they do in periodontitis [21]. This would lead to cycle in which the oral 

pathogens promote and benefit from an inflamed microenvironment that accelerates the 

progression of tumorigenesis. This mechanisms, though highly speculative, is 

consistent with the changes in microbiota structure that occur over the course of tumor 

development and the known pro-inflammatory and tumorigeneic activity of these 

species in the mouth [22]. 
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