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ABSTRACT

Surrogate-assisted unified optimization framework for investigating marine
structural design under information uncertainty

by

Yan Liu

Chair: Matthew Collette

Structural decisions made in the early stages of marine systems design can have

a large impact on future acquisition, maintenance and life-cycle costs. However, ow-

ing to the unique nature of early stage marine system design, these critical structure

decisions are often made on the basis of incomplete information or knowledge about

the design. When coupled with design optimization analysis, the complex, uncer-

tain early stage design environment makes it very difficult to deliver a quantified

trade-off analysis for decision making. This work presents a novel decision support

method that integrates design optimization, high-fidelity analysis, and modeling of

information uncertainty for early stage design and analysis. To support this method

this dissertation improves the design optimization methods for marine structures by

proposing several novel surrogate modeling techniques and strategies.

The proposed work treats the uncertainties that are sourced from limited informa-

tion in a non-statistical interval uncertainty form. This interval uncertainty is treated

as an objective function in an optimization framework in order to explore the impact

xii



of information uncertainty on structural design performance. In this examination, the

potential structural weight penalty regarding information uncertainty can be quickly

identified in early stage, avoiding costly redesign later in the design. This disserta-

tion then continues to explore a balanced computational structure between fidelity

and efficiency. A proposed novel variable fidelity approach can be applied to wisely

allocate expensive high-fidelity computational simulations. In achieving the proposed

capabilities for design optimization, several surrogate modeling methods are devel-

oped concerning worst-case estimation, clustered multiple meta-modeling, and mixed

variable modeling techniques. These surrogate methods have been demonstrated to

significantly improve the efficiency of optimizer in dealing with the challenges of early

stage marine structure design.
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CHAPTER I

Introduction

1.1 Research Background

Early stage structural design has a disproportionally large impact on the success

of a ship acquisition, as major decisions regarding construction and total ownership

costs are often made in early design stage. Despite the development and growth of

the design theories for marine systems, recent unconventional vessel design programs,

especially naval vessels, are still struggling to make a robust and reliable preliminary

design decision that support later stage design and production. A large part of this

struggle is due to the fact that complete information is not available in early stage

design for decision makings. The aim of this dissertation is to propose advanced

design tools that address the information uncertainty issues regarding early stage

marine structural design optimization.

Structural system design is particularly challenging in early stage design. The

structural system consists the majority of a ship’s lightship weight (Keane, 2012). A

correct structural weight estimation has a substantial impact over future design cycles.

Additionally, a reliable structure is a key component for the marine system to safely

fulfill its missions. Therefore, the initial structural decisions regarding materials,

configurations and safety margins are critical for the success of a marine system

design project.
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While conventional structural designs like cargo ships are often similar and rely

heavily on prior designs, unconventional marine designs are often first of their types

and thus have no access to successful prototypes for design guidance. Innovative ma-

rine designs can not use prior design practice and knowledge to guide the early stage

design process. Complete information and understanding about the system is rarely

available in the early stage. Reversing incorrect decisions made under incomplete

information can easily disrupt the design and planning, result in expensive design

modifications and cost growth beyond budget. Moreover, designing under incomplete

information could bring risk into the structural design. In the early stage, design

loads are likely to be an approximate, structural responses are often from simplified

model due to the lack of physical model test data. This can lead to inadequate struc-

tural designs that are problematic when put into services. Such design issue have

manifested in vessels such as the FFG7, CG47, and DDG51 classes, where struc-

tures under-performs in extreme operational conditions and structural problems such

as cracking are experienced in-service (Keane, 2012). These structural problems are

costly to repair, more importantly they could significantly impair the missions of navy

ships.

Traditional structural design tools are incapable of dealing with this complex

early stage design situation. Much of the design failures are due to the inability to

handle uncertainties that are related to lack of information in the early design stage.

Early stage design requires an effective method to describe this unique information

uncertainty, and then achieve robust baseline design that is least sensitive to this

information uncertainty. A desired early stage design needs to be stable and at the

same time flexible enough to design changes made in the future.

Designing against uncertainty is never a one-dimensional endeavor. Designers need

a well-balanced technical solution that is both robust to information uncertainty, and

avoid unnecessary conservatism in the design. Moreover, design tools need to help the

2



designers identify consequences of potential information uncertainty, thus prioritize

how to address the technical uncertainties in later design stage. To achieve these

goals, it is essential to couple information uncertainty analysis into multi-objective

design optimization.

Meanwhile, a more challenging part of early stage analysis is to complete these

analyses within a short time frame. Reducing the time-to-solution cycle time has

always been an urgent need in early stage structural design. It requires advanced

design tools and strategy to allocate the limited high-fidelity simulations available

and deliver satisfactory solutions. Addressing the challenging task of early stage

design can only be achieved with a combined information uncertainty-aware optimizer

and efficient implementation technique. The aim of this thesis is to deliver both

collectively, and present a scalable early stage design optimization tool for decision

making purposes.

1.2 Research Overview

As discussed, design uncertainty in early stage design can degrade the performance

of marine system if not handled properly. Normally uncertainty is treated in stochas-

tic form and optimization techniques are available to consider it in both objective and

constraint functions (Jin and Branke, 2005). However, sufficient information is usu-

ally not available to build a stochastic definition of all sources of uncertainty in early

stage design, especially for unconventional innovative design projects. An example

from ship structure design is the determination of key hull dimensions. Normally an

educated guess of initial dimensions is proposed in early stage design. However, it is

subject to change later on in the design when better information becomes available

(Gale, 2003). The potential variability for such a parameter is very difficult to quan-

tify through stochastic distributions. Therefore applying existing stochastic based

design tools may not be sufficient.
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Unlike stochastic uncertainty, the specific type of uncertainty in early stage design

is epistemic uncertainty, or uncertainty due to lack of information. Such uncertainty

can only be reduced by gaining relevant information. Here the underlying relation

between uncertainty and information is illustrated in Figure 1.1. The amount of in-

formation gained by taking actions such as conducting experiments, collecting data

etc., is measured by the difference between a prior uncertainty and a posteriori un-

certainty (Klir , 2005). The direct impact of information-related uncertainty on the

design project can be very valuable in terms of early stage planning in the design

project.

Figure 1.1: Uncertainty-based information theory (Klir , 2005)

This dissertation proposed an interval uncertainty formulation to define the un-

certainty that arises due to a lack of information. Interval uncertainty provides an

appropriate formulation when there is insufficient basis to infer a probabilistic dis-

tribution, considering that incorrect assumptions about stochastic information may

bring additional risk into the design and result in costly redesign. An interval uncer-

tainty reduction metric is used to represent the information gaining process in Fig-

ure 1.1. Feasible structural configurations with different uncertainty intervals need

to be defined in order to understand whether gaining information is worthwhile for

the design project. To this end, a systematic study of various ranges of uncertainty

intervals involved in design optimization is conducted via optimization, aiming to

4



unveil the overall impact of lack of information in early stage design on the design

performance.

Uncertainty analysis and optimization are both computational expensive analy-

ses, where frequent function evaluations are needed. Sometimes these computational

expenses may prevent the designers from exploring the trade space in the early stage

design. Surrogate modeling is often suggested as an alternative method to improve

computational efficiency. Despite rapid growth on surrogate modeling, it still strug-

gles in certain critical modeling problems such as large sampling size models and

model updating. This dissertation presents the development of novel surrogate model

methods and construction strategies that can be used in early stage design optimiza-

tion given significant information uncertainty.

Chapter II contains the background techniques that the proposed optimization

frameworks are built upon. It reviews the single and multi-objective optimization

process, epistemic uncertainty models, surrogate modeling theories and correspond-

ingly the off-line and on-line surrogate construction methods within optimization run.

Chapter II concludes with a discussion of the drawbacks of current state-of-art meth-

ods in terms of dealing unique early stage design problems.

Chapter III initially explores the robust design optimization against interval uncer-

tainty with a surrogate-assisted optimization framework. The parametric uncertainty

in the vessel’s early stage compartmentalization layout has been examined through

an interval uncertainty metric. The achieved robust baseline structural design is com-

pared with a deterministic design to show its superiority in dealing with a changing

design definitions. Interval uncertainty with reliability-constraint is then explored,

and a trade-off study on various ranges of interval uncertainties in both structural

geometry and reliability simulation is delivered. This trade study is achieved through

a surrogate-assisted multi-objective optimization framework.

Chapter IV explores novel surrogate modeling technique to strengthen the capa-

5



bility for efficient multi-objective optimizations. It considers the existence of various

fidelity models in structural simulation and presents a unique solution to better ad-

dress this issue for early stage multi-objective optimization studies. A variable-fidelity

multi-objective optimizer is proposed to efficiently deliver the trade-off analysis. The

presented method builds multiple surrogate models on-line as the optimizer runs and

successfully addresses large sampling size modeling problem in surrogate-assisted op-

timization research area.

Chapter V investigates interval uncertainty applied in novel composite structural

design via a reliability-based design optimization scheme, to account for incomplete

loading and structural response information in early stage structural design. An adap-

tive surrogate modeling method is developed to accurately estimate reliability analysis

in the optimization. The resulting Pareto front indicates how information uncertainty

reduces design performance while maintaining a constant structural adequacy.

Chapter VI presents the contributions of dissertation work summarized as follows:

• This work examined the early stage design uncertainty in a new form. It pro-

posed a reducible interval uncertainty form to represent the changeable nature

of uncertainty in the design process. The impact of interval uncertainty on

design performance is quantified to gain a higher level design information for

early stage decision making.

• This work presented a numerically efficient surrogate modeling method to solve

the interval analysis problems. It enables the implementation of interval uncer-

tainty modeling within multi-objective evolutionary optimizations with moder-

ate computational resources.

• This work developed clustered multiple surrogate modeling technique to address

the variable fidelity problems in structural response models. This method en-

ables multi-objective optimization with limited high-fidelity simulations in early

6



stage design.

Chapter VI ends with a discussion of the outlook for future applications and

extensions of the current research portfolio.

When facing challenging design problems for marine structural systems, this dis-

sertation models the design uncertainty with the awareness of unique nature of early

stage design, and merges design optimization with uncertainty analysis through ef-

ficient surrogate modeling methods. Overall, this dissertation successfully demon-

strated that developed advanced computational analysis tools addressed critical early

stage structural design problems.
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CHAPTER II

Background

2.1 Introduction

This chapter will cover the fundamental theories that this dissertation work is built

upon. The general design optimization problem will be discussed, including proposed

design optimization formulations which deal with uncertain environments. The evo-

lutionary algorithm that is used to solve the single and multi-objective optimization

problems will be reviewed. Then, the discussion of epistemic uncertainty, the type of

uncertainty that is of interest to this research work is presented. Afterwards, surro-

gate modeling techniques are introduced as a solution to efficient implementation of

the type of optimization proposed in this research. This chapter surveys some pop-

ular surrogate theories and the common construction methods to implement these

surrogate models within optimization. It concludes with a brief discussion on the

special needs of surrogate modeling methods for structural design and optimization

in early stage design.
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2.2 Overview of design optimization problem

2.2.1 Deterministic design optimization

Engineering designs are expected to meet certain demands or performance re-

quirements from customers. One technique for synthesizing designs which will attain

these goals is optimization. In design optimization, the mathematical formulation for

an optimization problem can be stated as:

minimize : f(x)

with respect to : x ∈ Rn

subject to : ci(x) = 0, i = 1, 2, ...,m

ĉj(x) ≥ 0, j = 1, 2, ...., m̂

(2.1)

In Equation 2.1 f(x) is the objective function to be minimized, representing the pro-

cess to achieve the optimal design performance. A maximization problem can be

solved by minimizing the inverse or negative of the function. The design domain is

defined with a vector of design variables x = (x1, x2, ..., xn)T that are often bounded.

The optimization search is normally subjected to several constraint functions includ-

ing a vector of m equality constraints ci(x), and a vector of m̂ inequality constraints

ĉj(x). These constraint functions ensure that the optimal design xopt is in the fea-

sible design domain. Though there are variations of the form in the optimization

formulation, or there might be implicit objective functions that are not expressed in

mathematical form, the general concept of design optimization is broadly applied in

engineering design community to improve the quality and performance of engineering

products.

In the marine structure design community, design optimization tool is very appeal-

ing for designers. Using various design requirements or rules as constraint functions,

designers can utilize optimization process to pursue clearly definable objectives such
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as minimized structural weight (Sekulski , 2009). Other criteria can also be stated as

objectives such as cost effectiveness, durability, etc.

However, in the concurrent demanding and competitive environment, a single

objective-oriented optimal design is not likely to be adequate for complex projects.

Designers are constantly facing multiple criteria in decision making. To put multiple

criteria into the single objective design optimization frame in Equation 2.1, one has

to subjectively determine weighting factors for various criteria. Apart from weighted

sum method, other classical formulations in transforming multi-objective problem into

single-objective problem are ε-constraint method, and goal programming method,

etc. An alternative approach in dealing with multiple criteria is for optimization

tools to capture the trade-off between multiple priorities or objectives. Then decision

makers are more aware of the design choices at hand. Multi-objective optimization

frameworks have been developed to meet this need in multi-criteria decision making.

A typical multi-objective optimization problem can be stated as:

minimize : f(x) = [f1(x), f2(x), ..., fk(x)]

with respect to : x ∈ Rn

subject to : ci(x) = 0, i = 1, 2, ...,m

ĉj(x) ≥ 0, j = 1, 2, ...., m̂

(2.2)

In Equation 2.2 the objective is to minimize a vector of k functions that are all

depend on the design variables x, while satisfying all the equality constraint functions

ci(x), and inequality constraint functions ĉj(x). The multiple objective functions are

often in conflict with each other, therefore, in multi-objective design optimization

there is not a single design solution that is optimal in every objective function. The

outcome of a multi-objective optimization is defined as a set of Pareto optimal solu-

tions. The notion of Pareto optimality was first introduced by Stadler (1984) to the

field of engineering and science. A Pareto optimal solution is a solution that cannot
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be improved in any objective without degrading the performances of at least one of

the other objectives. The entire set of the Pareto optimal solutions comprises the

Pareto optimal front. For a more detailed definition of Pareto optimality readers can

refer to the multi-objective optimization literature (Miettinen, 2012). An example of

Pareto front from Deb et al. (2002) is shown in Figure 2.1.

Figure 2.1: Example of a Pareto optimal front (Deb et al., 2002).

In Figure 2.1, two objective functions are being minimized. The Pareto-optimal

points in the front are called non-dominated points, in a sense that each point is only

better than other points in one objective value. The Pareto-optimal front indicates the

trade-off between different objective functions, and it shows the fundamental trade

space of the problem to the designer. Therefore, in multi-objective optimization

process has to accomplish two goals: search towards the Pareto-optimal front and

find a diverse set of Pareto-optimal points.

Multi-objective design optimization allows for simultaneously optimization of all

design objectives. The designer can choose a well-balanced decision from the Pareto

optimal solutions. Once the designers have the higher level information regarding
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the preference among those objectives, or compromises among different objectives

have been made, it will be easy to arrive one single optimal design solution using

the Pareto-optimal front information. The techniques to solve such optimization

problems will be discussed in Section 2.3.

2.2.2 Design optimization considering uncertainty

The deterministic design optimization stated in Equation 2.1 and Equation 2.2

are effective in achieving design targets such as reduced structural weight or cost.

However, in the optimization process, deterministic optimization reduces the design

margin to the minimum level. Hence, the capability of the design solution to deal with

design variability is significantly impaired. In other words, the deterministic optimal

design solution can be very sensitive to design uncertainties. A small variation in

design variable or environmental conditions may degrade the design performance

and make the selected point sub-optimal. Hence, design optimization need to take

uncertainty into consideration. This section briefly discuss the general concepts of two

main philosophies in dealing with uncertainty in design optimization, namely Robust

Design Optimization (RDO) and Reliability Based Design Optimization (RBDO).

The concept of Robust design is first proposed by Taguchi (1986) to improve

product quality. Robust design optimization is to achieve a optimal design perfor-

mance that is minimally sensitive to design uncertainties. A typical Robust design

formulation can be stated as:

minimize : f(x+ δ)

with respect to : x ∈ Rn

subject to : ci(x) = 0, i = 1, 2, ...,m

ĉj(x) ≥ 0, j = 1, 2, ...., m̂

(2.3)

Robust design is focused on the outcome of the design performance when the de-
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sign variables are perturbed from nominal condition. In the formulation stated in

Equation 2.3, design variables x are considered as controllable, in a sense that they

are chosen by the designer in the design optimization process; δ are non-controllable

noise in the design vector, represent the variation in the design system. The noise

information may not be exactly known to the designer but is often described by a

probabilistic density distribution.

In robust design optimization, the mean and variance of objective function f

are both desired design criteria. By establishing weighting parameters for these two

criteria, the designer can formulate the robustness objective for design optimization.

A comprehensive review of Robust design optimization formulations can be found in

Beyer and Sendhoff (2007).

Reliability-based design treats uncertainty in a different perspective, it focuses

more on the feasibility of design when faced with uncertainty. The optimal solution

for traditional deterministic design usually lies against one or more of the constraint

boundaries. Any variation may perturb the design into the infeasible domain and

lead to design failure. Reliability-based design optimization (RBDO) (Enevoldsen and

Sørensen, 1994; Frangopol and Corotis , 1996; Tu et al., 1999) is aimed at improving

the probability constraints will be satisfied with random design variables. RBDO

introduces a concept of probabilistic constraints in an optimization framework. A

general Reliability-based design optimization can be formulated as:

minimize : f(d)

subject to : P (gi(X) ≤ 0) ≤ Pt,i, i = 1, 2, ..., m̂

dL ≤ d ≤ dU ,d ∈ Rn

(2.4)

In RBDO formulation design variable perturbed by uncertainty is defined as ran-

dom variable in probabilistic form. d is the vector of mean values of random variables

X; [dL,dU ] is the design domain for the optimization problem. The probabilistic con-
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straints are defined in the probability of constraint function violations (gi ≤ 0). Pt,i

is the maximum probability of failure for each of the reliability constraints.

The reliability of a system against failure is define as:

R = Pr{g(X) ≥ 0} (2.5)

where X = [x1, x2, ..., xn] represents the random variables such as loading, material

strength, and geometry properties, etc. g(X) is the limit state function defined as

the boundary separating the two states of safety:

g(X) > 0 : the safe state

g(X) = 0 : the limit state

g(X) < 0 : the failure state

(2.6)

Once the limit state function has been defined, the next step is to evaluate the

probability of failure, hence the reliability. The most direct way to compute Pf

is by taking the integral of the joint probability density distribution of the random

variables over the failure region:

Pf = Pr(g(X) ≤ 0) =

∫
g(X)≤0

fX(X)dX (2.7)

However, the direct integral method is limited by the fact that it is difficult to

obtain the joint probability density function, and the integration is not straightfor-

ward to apply. Analytical approximation methods such as the First Order Relia-

bility Method (FORM) (Hasofer and Lind , 1974), Second Order Reliability Method

(SORM) (Breitung , 1994), and numerical simulations such as Monte Carlo simula-

tion (Rubinstein and Kroese, 2011) and directional sampling (Ditlevsen and Bjerager ,

1989) are normally used to solve reliability problems.
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The first-order reliability method is briefly introduced here as reliability calcula-

tion. More details on other methods can be found in reliability literature (Melchers ,

1999; Mahadevan and Haldar , 2000). The FORM method is developed from the sim-

ple safety index concept. Based on the definition of limit state function above, the

safety margin can be expresses as:

M = g(X) (2.8)

The reliability index, (or safety index) is defined as the inverse of the coefficient of

variation of the safety margin:

β =
µM
σM

(2.9)

This safety index method (Cornell , 1969) is a second-moment reliability method

and is often used in some reliability calculations as well as code calibrations (Madsen

et al., 2006). However, the safety index method is dependent on the formulation of

limit state equation, and the safety index may not reflect the true reliability if the

random variables are not normally distributed. In addition, the safety index method

may not solve the problem well if the limit state function is nonlinear. The FORM

method (Hasofer and Lind , 1974) has been developed to address these shortcomings.

In the FORM procedure, the random variables X are first mapped into reduced

standardized form of variables:

φ(Ui) = FXi(Xi),i = 1, 2, .., n

ui = φ−1(Fxi(xi))

g(X) =g(U)

(2.10)

where FXi stands for the cumulative distribution function of Xi, and φ is the standard

normal distribution function. Using the transform function, the reliability problem is
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changed into the following term:

Pf = Pr(g(X) ≤ 0) =

∫
g(U)≤0

fU(U)dU (2.11)

The Hasofer and Lind’s reliability index is defined as the shortest distance from the

mean to the limit state surface in the reduced space, as illustrated in Figure 2.2.

This point on the limit state surface is known as design point or most probable point

(MPP), as it has the largest probability in the failure state space among other points

at the limit state surface. The Hasofer and Linds reliability index can be solved by

the following optimization problem:

βHL = min
g(U)=0

‖U‖ (2.12)

Figure 2.2: Definition of safety index (Hasofer and Lind , 1974).

The reliability index computed can be converted to the probability of failure in

standard normal distribution function : Pf = Φ(−β). This probability of failure
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Pf is then used in the RBDO framework expressed in Equation 2.4 to meet certain

target probabilistic constraint: Pf ≤ Pt. This RBDO formulation in Equation 2.4 is a

typical double-loop approach, as the candidate design is evaluated in both reliability

level and objective function level. Other formulations of RBDO such as sequential

RBDO, single-loop RBDO can be found in Du and Chen (2004) and Liang et al.

(2008). These alternative formulations are generally considered to be more efficient

than the double-loop RBDO framework.

2.3 Optimization methods

For most optimization problems stated in Equation 2.1, if the objective functions

and constraint functions are sufficiently smooth with regard to variables x, gradient

based methods are commonly used to solve the optimization problem. Gradient-based

approaches can determine the most promising search direction for finding the function

minimum, thus are more efficient in locating the optimal design point. The search

direction is generally determined with gradient information, the more advanced meth-

ods will refine the search direction with second order information by approximating

Hessian matrix.

In addressing many practical problems in engineering design, the assumption of

gradient-based optimizers are changed. For example, in practical engineering prob-

lems the objective function or constraint function can be non-differentiable because

of a discrete feasible design space. Besides, when there are multi-modal objective

functions, gradient-based optimizer can be easily trapped into local minima and fail

to converge to the globally optimal solution.

Gradient-free optimization methods arise to deal with these problems. The strength

of gradient-free optimizer is that they do not rely on derivative information of ob-

jective function or constraint functions. This makes them suitable to address chal-

lenging problems that are difficult for gradient-based optimizer to solve. There are
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various gradient-free optimizer developed based on different concepts, most of them

are heuristic, stochastic, or population-based approaches. Prominent among them

are Nelder-Mead Simplex (Nelder and Mead , 1965), simulated annealing (Kirkpatrick

et al., 1983), Particle Swarm Optimization (PSO) (Eberhart et al., 1995), and evolu-

tionary algorithm (Goldberg , 1989).

These methods each have their own advantage in solving optimization problems.

The applicability of optimization algorithm depends on the type of the problem

domain. In the marine structural domain, optimization algorithm choice is often

adapted to structural problems with different focus (Klanac et al., 2009; Klanac and

Jelovica, 2009). This dissertation work mainly focuses on the evolutionary algorithms,

they are employed as the global optimizer in addressing the marine structure design

optimization problem. The rational behind this choice and the detailed description

of evolutionary algorithm will be explained in the next section.

2.3.1 Evolutionary algorithm

Evolutionary algorithms (EA) are inspired by natural evolution. EAs are distin-

guished by the use of natural selection and a population of candidate designs to evolve

optimal solutions. Evolutionary algorithms have been widely applied in recent years

due to their performance in optimization. Evolutionary algorithms are different from

traditional optimization methods in many aspects (Goldberg , 1989), EAs are adopted

and applied for the research study in this dissertation for the following reasons:

1. As previously introduced, Evolutionary algorithms are gradient-free method,

meaning that Evolutionary algorithms do not use gradient information in the

search process. Thus, getting accurate derivatives of the fitness function is not

necessary in EA optimizations. In the optimization design of marine structures,

there can be non-continuous variables and complex function spaces where it is

hard to get derivative information (Temple, 2015). Evolutionary algorithm
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allows the designer to explore these challenging design spaces.

2. Evolutionary algorithms are population-based method. While traditional opti-

mization methods use one solution at each iteration, evolutionary algorithms

analyze a group of candidate solutions at one time. This strategy may look

redundant in single-objective optimization, but it is advantageous in address-

ing multi-objective optimization problems. Because multi-objective optimiza-

tion needs to find a set of Pareto optimal points as shown in the example in

Figure 2.1, population-based optimizers are more powerful when searching for

multiple optimal solutions simultaneously. When multiple design solutions are

equally important for decision makers to evaluate trade-offs between different

objectives, evolutionary algorithms provide an intuitive optimizer solution in

finding these multiple optimal solutions. This dissertation is focused on discov-

ering the impact of early stage uncertainty in design through multi-objective

optimization, Evolutionary algorithms are thus well suited to achieve this task.

3. Evolutionary algorithms use stochastic operators in optimization searches. Tra-

ditional optimizers are sensitive to the choice of the starting point. In other

words, they are easily trapped into local minimums. The stochastic operators

give evolutionary algorithms a global functional perspective in locate the true

optimal point. These evolutionary operators increase the probability in moving

the population to the optimal point or Pareto optimal front. Evolutionary algo-

rithms have proven to be very robust for engineering designs including marine

structural optimizations in recent years.

Every evolutionary algorithm follows a basic procedure described in Figure 2.3. An

Evolutionary algorithm is usually initialized with a random population of solutions.

Then the algorithm starts the iteration process that evaluates and updates the current

population to create a new population of solutions. The creation of new population
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relies on three operators: selection, crossover, and mutation. The generation counter

represents one iteration of the EA being completed.

Begin

Initialize population 

Fitness Evaluation 

Selection Converge?

Crossover 

Mutation 

Stop

gen = 0

No

gen = gen+1

Yes

Figure 2.3: Typical evolutionary algorithm procedure.

The initialization randomly creates a population of individuals within the spec-

ified lower and upper bound on each design variable. Each individual stands for a

possible solution for the optimization problem. It is represented by a chromosome

in the EA scheme, where is chromosome is defined with genes for different variables,

{x1, x2, ..., xn}. The chromosome can be coded in either binary or real coding form.

Every individual solution in the population is evaluated with objective and constraint

function. Then a fitness value is assigned to this individual. For feasible solutions,

the fitness values are normally the objective function values, while for infeasible so-

lutions the fitness are objective function plus a penalty term that is proportional to

constraint violations (Deb, 2001).

Three evolutionary operators are used to mimic the natural selection in the op-

timization procedure. The purpose of selection is to identify individuals for repro-
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Table 2.1: Example of single-point crossover

Parents Offspring

Chromosome 1: 1 1 | 1 1 1 → 1 1 | 0 0 0
Chromosome 2: 0 0 | 0 0 0 0 0 | 1 1 1

duction that have good fitness values and eliminate individuals that have less fitness

values, and keep the population size constant. There are many selection operators

to achieve this goal. In the popularly used tournament selection, tournaments are

played between two individuals and the better one is selected and placed into the

mating pool. Selection emphasis the better solutions in the population and ensures

non-decreasing of the overall fitness in the evolutionary algorithm process.

The crossover operator is used next for the mating pool. As the selection process

is operating within the existing solutions, the evolutionary algorithm needs to explore

other locations in the design domain. Crossover creates new individuals in a popula-

tion. In a crossover operation, two individuals are randomly picked from the mating

pool to create two new individuals. In the binary coded algorithms, commonly used

crossover method is single-point crossover.

An example of single-point crossover is illustrated in Table 2.1. Single-point

crossover is done by selecting a point in the binary coded variables for exchange.

It can be seen that some portion of the Chromosome from two parent individuals

are exchanged to formulate two offspring individuals. In this case the exchange is

conducted in point 2. This idea can be extended to Multi-point crossover operations

in binary coded chromosomes where information is exchanged in multiple positions

of the parent chromosomes.

In real-parameter coded Evolutionary algorithm, crossover is directly implemented

to real parameter values. An overview of many real-parameter crossover operators

can be seen in Herrera et al. (1998). Here, the Simulated Binary Crossover (SBX)

operator developed by Deb and Agrawal (1995) is introduced to illustrate the crossover

21



process in real-parameter chromosome.

SBX operator is proposed to simulate the power of single-point crossover operation

in binary strings. In SBX two offspring x
(1,t+1)
i and x

(2,t+1)
i are created from parents

x
(1,t)
i and x

(2,t)
i through Equation 2.13 below:

x
(1,t+1)
i = 0.5[(1 + βqi)x

(1,t)
i + (1− βqi)x

(2,t)
i ]

x
(2,t+1)
i = 0.5[(1− βqi)x

(1,t)
i + (1 + βqi)x

(2,t)
i ]

(2.13)

βqi is the spread factor calculated as follows:

βqi =


(2ui)

1
ηc+1 if ui ≤ 0.5;(

1
2(1−ui)

) 1
ηc+1

otherwise.

(2.14)

where ui is a random number between 0 and 1; ηc is a non-negative distribution index

given by user choice. A larger value of ηc gives a higher probability of creating ‘near

parent’ offspring and a small value of ηc creates distant solutions in the offspring

(Deb, 2001). SBX operates in a way that blends parents chromosome in generating

offspring chromosome in a real coded Evolutionary Algorithm (EA).

In addition to the crossover operation, the mutation operator adds more search

power to the EA. In the binary coded cases, the mutation operator is simple and

straightforward. Mutation is normally conducted by selecting a random bit in the

chromosome and changing a 1 to 0, and vice versa, with a mutation probability of

pm. The location of next mutation bit can be used with a mutation clock opera-

tor proposed in Goldberg (1989). In the real-parameter coded EA, the overview of

good mutation operator can also be referred to Herrera et al. (1998). A polynomial

mutation method (Deb, 2001) is introduced here for illustration.
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In the polynomial mutation operation, the mutated new individual y
(1,t+1)
i is ob-

tained from the operation on individual x
(1,t+1)
i expressed as follows:

y
(1,t+1)
i = x

(1,t+1)
i + (x

(U)
i − x

(L)
i )δ̄i (2.15)

where x
(L)
i and x

(U)
i are lower bound and upper bound of design variable; the param-

eter δ̄i is computed from a polynomial probability distribution:

δ̄i =


(2ri)

1/(ηm+1) − 1 if ri < 0.5,

1− [2(1− ri)]1/(ηm+1) if ri ≥ 0.5.

(2.16)

where ri is a random number chosen in [0, 1); ηm is mutation distribution parameter

chosen by the user.

Crossover and mutation operations are processed with a probability in the mating

pool. Crossover aims to combine two good solutions to form a better chromosome;

mutation tries to alter a good solution for a better one. While both operations are

not guaranteed to achieve the goal, the selection operator can make sure that if a bad

solutions are created they will be eliminated, and if good solutions are created they

will be kept. These three evolutionary operators constitute a powerful search for the

fittest solution, when the evolutionary algorithm is terminated, the best solution in

the current population is considered to be the optimal solution for the optimization

problem.

2.3.2 Elitist non-dominated sorting genetic algorithm

The single-objective EA preserves elitism in a simple way: better solution among

two individuals is selected for a slot in the next generation. In multi-objective op-

timization it is more complicated to identify and preserve elite solutions. An Elitist

multi-objective evolutionary algorithm - NSGA-II proposed by Deb et al. (2002) is
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briefly introduced to explain the implementation of an EA in multi-objective opti-

mization problems.

In the multi-objective optimization, the concept of dominance is used in deter-

mining the better solutions. A solution x(1) is considered to dominate the solution

x(2) is two conditions listed below are both true (Deb, 2001):

1. The solution x(1) is no worse than x(2) in all objectives;

2. The solution x(1) is strictly better than x(2) in at least one objective.

Using this criteria, any two solutions in the population can be categorized into

one of the following categories:

• x(1) is dominated by x(2)

• x(1) dominates x(2)

• x(1) is non-dominated by x(2)

Dominance provides a way to compare solutions in multi-objective optimization.

With the dominance criteria the population of individuals can be classified into various

non-dominated sets. There are usually multiple solutions in the same non-dominated

set. When there is a need to identify the relative importance within the set of non-

dominated solution, the crowding distance metric used in NSGA-II is introduced.

Crowding distant sorting is mainly used to avoid achieving a group of solutions that

are clustered together in a non-dominated set. The crowding distance metric measures

perimeter of the cuboid formed with the nearest neighbors of a solution, as seen in

Figure 2.4. The metric dImj is computed by Equation 2.17 as follows:

dImj = dImj +
f
(Imj+1)
m − f (Imj−1)

m

fmaxm − fminm

(2.17)
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Figure 2.4: Example of crowding distance metric calculation

In Equation 2.17, Ij is the solution index of the j-th member; fmaxm and fminm are

the maximum and minimum values of the m-th objective function; f
(Imj+1)
m and f

(Imj−1)
m

are the objective function values. The endpoints of the front are assigned with a

crowding distance value of ∞. Solutions that have large crowding distance metrics

are favored when they are non-dominated with respect to each other. This help to

preserve diversity in the population.

The selection process in evolutionary multi-objective optimization is different than

that of in single-objective optimization ones. Take NSGA-II as an example, in the

selection process illustrated in Figure 2.5, the offspring individuals Qt is first created

from parents Pt. These two population combined to form Rt of size 2N . Rt is then

sorted into various non-dominated sets (F1, F2, ...). In formulate the new population

for next generation of EA, the best non-dominated front is filled into Pt+1 first,

followed by the second best and so on. When the last allowed front is taken into

account, the individuals are sorted with their crowding metrics, the better solutions

are chosen to fill the space in Pt+1.

This selection process ensures that the fittest solutions are selected to survive in

the next iteration of the EA. In addition, the diversity along the non-dominated front
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Figure 2.5: Schematic of NSGA-II procedure (Deb et al., 2002)

is also preserved with the crowding metric in the selection process, ensuring that the

optimal solutions is a good representation of the entire Pareto optimal front. NSGA-

II is used in this dissertation work for multi-objective optimization studies on early

stage design uncertainty.

2.4 Early stage design uncertainty: Epistemic uncertainty

Depending on the sources of uncertainty, uncertainty can generally be categorized

into two major types: aleatory uncertainty and epistemic uncertainty. Aleatory un-

certainty is due to the inherent randomness or variations associated with the system.

The often mentioned stochastic uncertainty belongs to this type. Due to random-

ness, this uncertainty type is irreducible, meaning that aleatory uncertainty can not

be removed from the system. In ship designs, the uncertainties in structural mate-

rial properties and sea loads are considered as aleatory type uncertainties. Aleatory

uncertainty is normally modeled with probabilistic distributions. Involving aleatory

uncertainty in design optimization has been briefly discussed in Section 2.2.2 with

robust design optimization and reliability-based design optimization.

To apply aleatory uncertainty, the probabilistic models and parameters must be

specified. However, most of the time the specified models and parameters can not
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adequately model the uncertainty without complete understanding of the system

simulated. The discussion on the model assumptions give rise to the second type of

uncertainty: Epistemic uncertainty. Epistemic uncertainty is the type of uncertainty

that is due to a lack of knowledge in the system. Epistemic uncertainty describes a

series of situations that are prevalent in engineering analysis where available informa-

tion is incomplete, ambiguous, or available knowledge is subjective, vague, or deficient

in some other way. There are two distinct differences between epistemic and aleatory

uncertainty. First, epistemic uncertainty is a reducible type of uncertainty. With

more knowledge and information, the epistemic uncertainty level can be reduced or

removed completely. Second, epistemic uncertainty can not be described in proba-

bilistic form, rather it must be treated in a non-probabilistic way. For a more detailed

distinction between aleatory uncertainty and epistemic uncertainty refer to the works

of Helton and Burmaster (1996), Oberkampf et al. (2004), and Der Kiureghian and

Ditlevsen (2009).

This dissertation is focused on the epistemic uncertainty type in early stage struc-

tural design, optimization, and analysis. Early stage marine design is considered to

be subject to lack of adequate information for key decision making. For example, the

specifications of design parameters and design margins in the marine design prob-

lems has great impact in successful acquisition of the design, but they are made at

the outset under incomplete knowledge of the design problem. Epistemic uncertainty

suits well in this situation when there is a large design risk at stake for the lack of

design knowledge. Thus, critical research need is to improve the capability to quantify

the effect of epistemic uncertainty in early stage design. In addition, assuming the

amount of epistemic uncertainty can be reduced through gathering relevant informa-

tion, it is interesting to see how much design performance will improve from reducing

epistemic uncertainty.
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2.4.1 Epistemic uncertainty models

Three non-probabilistic uncertainty models are briefly introduced in this section

as a survey of the overall theories in dealing with epistemic uncertainty. They are

interval uncertainty, fuzzy sets theory, and evidence theory. They are all suited for

designing robust structures under epistemic uncertainty.

2.4.1.1 Interval uncertainty

Interval uncertainty is a non-probabilistic uncertainty model. In interval uncer-

tainty modeling, the uncertainty model is generally expressed in a closed form as

shown below:

X = [xl, xu] = {x ∈ R|xl ≤ x ≤ xu} (2.18)

As seen in Equation 2.18, interval uncertainty model describes the uncertainty

that ranges between crisp lower bound xl and upper bound xu, without additional

information regarding variations or value frequencies, etc. In the interval uncertainty

model only the interval is known, there is no assumption on the probability within

this interval. Interval uncertainty is distinctly different from uniform probabilistic

distributions in this regard. Interval uncertainty modeling is especially suitable for

applications where there is a lack of information, or there is not enough knowledge

to specify the parameters within interval.

The mathematical theory dealing with interval valued computation is shown in

works of Moore (1966) and Alefeld and Herzberger (1983). Generally, interval uncer-

tainty modeling analysis studies the mapping of interval input Xi to interval output

Zi:

{X1, ..., Xn} → {Z1, ..., Zm} (2.19)

where the input values xi ∈ Xi and output values zj ∈ Zj is linked through a deter-
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ministic analysis model, f .

f : x→ z, x = (x1,..., xi, ..., xn), z = (z1, ..., zj, ..., zm)

xi ∈ Xi, zj ∈ Zj
(2.20)

The important thing in interval analysis is to search for the bounds zlj and zuj of

the interval output Zj. In the mapping, zlj and zuj are associated with the optimal

input xl,optj and xu,optj . As the mapping model f may not be monotonic, locating xl,optj

and xu,optj within Xi often involves an optimization process.

Interval uncertainty models are applicable in engineering design and analysis, and

also provides additional insight into the design problems. For example, evaluating the

widths of interval input and interval output with respect to each other, one can gain

valuable insight into sensitivities and robustness of design (Moens and Vandepitte,

2007).

2.4.1.2 Fuzzy set

Fuzzy set theory provides an alternative in the boundary treatment for uncertainty

models. Fuzzy logic has been used to model ambiguity and subjective knowledge

to make decisions. Fuzzy logic is introduced in Zadeh (1965) to handle inherently

imprecise phenomena. The detailed description of the theory can be referred to Kosko

(1992) and Mendel (2001). Compared to the crisp bound in interval uncertainty

model, boundaries in fuzzy theory are imprecise and linguistic. Fuzzy set defines a

fuzzy membership values µ(x). A normalized fuzzy set is described as:

X = {(x, µ(x))|x ∈ R, 0 ≤ µ(x) ≤ 1} (2.21)

where µ(x) is the membership function, it describes the degree that a member belongs

to a set between 0 and 1, this allows multiple sets for memberships. An example of
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Figure 2.6: Example of Fuzzy logic (Li et al., 1996)

using fuzzy logic from Li et al. (1996) is shown in Figure 2.6. The traditional sets

theory and fuzzy sets are compared in this figure to describe male height. Traditional

sets use crisp boundary of 5′11′′ in defining tall man, so any man above this height is

designated as ‘tall’, and those below this height is ‘not tall’. However, in fuzzy sets a

man can be categorized into both ‘not tall’ and ‘tall’ sets at around 5′11′′.

It can be seen that this membership function is utilized to define uncertainty

resulting from vagueness and ambiguity. In addition, fuzzy logic provides a way model

uncertainty that can integrate experts judgments and subjective opinions through

membership function arrangement. Fuzzy sets provide a good complementary tool

for interval model when reference points or boundaries can not defined precisely.

Fuzzy logic has found wide applications in engineering design and analysis. Ap-

plications in the marine design domain can be seen in Li et al. (1996), Parsons and

Singer (2000), Gray et al. (2010), and Cuneo et al. (2011).

2.4.1.3 Evidence theory

The Dempster-Shafer theory of evidence is first described by Dempster (1967)

and further extended by Shafer (1976) into more general framework to model epis-

temic uncertainty. Evidence theory is a well-suited framework that can represent

both epistemic uncertainty and aleatory uncertainty. It relaxes the assumption of

probability when there is limited information, or when the information is ambiguous
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and conflicting. Here, a very brief introduction of evidence theory is presented.

Differing from classical probability calculus, the probability mass function does

not map R→ [0, 1]. Instead the probability masses are assigned into sets therefore it

is a mapping from 2R → [0, 1].

In evidence theory, the user must assign a Basic Probability Assignment (BPA)

to each interval, indicating the possibility that the value falls into that interval. The

BPA is defined as:

m(B) ≥ 0 for B ⊂ R∑
B⊆R

m(B) = 1
(2.22)

Then a focal element A is defined as:

{A : A ⊂ R,m(A) ≥ 0} (2.23)

Most of the time, the focal elements are defined as intervals rather than complicated

sets.

Evidence theory is based on two dual measures: Bel and Pl, which are belief and

plausibility of an event. The belief and plausibility of an event is given by:

Bel(B) =
∑
A⊆B

m(A)

Pl(B) =
∑

A∩B 6=∅

m(A)

(2.24)

The belief and plausibility have the following properties:


Bel(B) ≤ Pl(B)

Pl(B) = 1−Bel(B̄)

(2.25)

where B̄ is the complementary hypothesis of B: B ∩ B̂ = ∅. Bel(B) and Pl(B) can
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also be seen as the bounds of probability p(X ∈ B), where belief is considered as

lower bound probability value, and plausibility, which is the “un-belief” value of the

complementary hypothesis B̂, can be seen as the upper bound probability value that

are consistent with given evidence. In this way, the epistemic uncertain inputs can

be represented by the interval values [Bel(B), P l(B)]. This belief interval and the

length of the belief interval gives a way to measure the epistemic uncertainty value.

Evidence theory provides a mixture of probability and non-probability in the treat-

ment of uncertainty, and is considered reasonable when incorporating evidence into

uncertainty analysis. Evidence theory is in its early stage of development in complex

engineering designs. Oberkampf and Helton (2005) gave an overall discussion about

the engineering applications of evidence theory. An example of applying evidence

theory in design optimization can be seen in Mourelatos and Zhou (2006).

2.5 Surrogate modeling

An important research focus of this dissertation is on the aspect of numerical effi-

ciency while conducting the early stage structural design and analysis. The need for

efficient implementation of optimization is critical in handling the epistemic uncer-

tainty in early stage design. Optimization and uncertainty analysis both require many

structural function analysis calls. Thus, combing optimization with uncertainty anal-

ysis can easily become a computationally expensive problem. Considering the need

for reduced design cycle time in early stage ship design, a computationally expensive

framework will not be practical to use.

In this dissertation work, the solution to alleviate the computational burden prob-

lem is to use approximation models, known as surrogate models. The concept of

surrogate model was originally proposed in “design and analysis of computational

experiments” from Sacks et al. (1989), where a statistical approach was proposed to

build a surrogate model to approximate an unknown, deterministic computational
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model. Building a surrogate model of an expensive computational simulation is very

promising in today’s engineering designs. The development of the surrogate mod-

eling in simulations can be seen in a review papers (Simpson et al., 2001; Kleijnen

et al., 2005). Surrogate modeling shows special promise in the area of optimization

(Forrester and Keane, 2009). The discussion of applying surrogate models in approx-

imating fitness functions in evolutionary optimization algorithms can be seen in Jin

(2005).

In this section, description of two main surrogate methods that this dissertation

relies upon will be first presented. The Radial Basis Function (RBF) approximation

and Kriging method are introduced in sequence. Afterwards, the construction method

of a surrogate model within optimization is discussed.

2.5.1 RBF

The RBF method (Buhmann, 2000) is a very popular technique for use in inter-

polating function response. This technique is typically used to approximate functions

or data only known at finite number of points (Powell , 1981).

With a set of training points {xi|i = 1, · · · , N} and corresponding functional

responses {f(xi)|i = 1, · · · , N}, RBF method is aimed to train a function ŷ that pass

through all training points. RBF has the following form:

ŷ(x) =
N∑
i=1

wiφ(‖x− xi‖) (2.26)

where φi are radial basis function, wi represents the weights, and xi are training

points. From this formulation it can be seen that RBF approximation relies on the

radial distance between input point x and training points xi. ‖.‖ represents a norm to

calculate the distances. Usually, a Euclidean norm is used. Each basis function mainly

represents the response to a small region of the input space where the respective
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training point is centered. Commonly used basis functions include inverse quadratic,

linear splines, thin plate splines, gaussian, and multiquadrics (Bishop, 1995). They

are listed in Table 2.2.

Table 2.2: Common basis functions in RBF
Basis function type φ(r) (r ≥ 0)

Gaussian e−(εr)
2

Inverse quadratic 1
1+(εr)2

Inverse multi-quadric 1√
1+(εr)2

Multi-quadric
√

1 + (εr)2

Thin plate spline r2 ln r
Linear r
Cubic r3

In this table the notation r is defined as:

r = ‖xi − xj‖ (2.27)

The scale parameter ε controls the influence domain of the basis function.

The RBF model is trained by solving the linear system of equations:

f = Φw (2.28)

where f = [f(x1), ..., f(xn)]. The N × N matrix Φ is denoted as the interpolation

matrix:

Φ =



φ(x1,x1) φ(x1,x2) · · · φ(x1,xn)

φ(x2,x1) φ(x2,x2) · · · φ(x2,xn)

...
...

. . .
...

φ(xn,x1) φ(xn,x2) · · · φ(xn,xn)


(2.29)

The weights w can be calculated in Equation 2.30 or using least square estimation.

w = Φ−1f (2.30)
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After calculating the weight w, the prediction of function response at any given

input vector is straightforward using Equation 2.26.

RBF can be regarded as a simple type of artificial neural networks, where the

radial basis functions act as the activation function in the network.

2.5.2 Kriging

Kriging is a powerful surrogate model that has been widely used to approximate

computationally expensive simulations. An in-depth Kriging theory can be found in

works of Sacks et al. (1989) and Simpson et al. (2001), a more recent review can be

seen in Kleijnen (2009). As a brief explanation, Kriging predicts the function value

ŷ at an unobserved point based on a set of sampling points through a realization of

a regression model and a stochastic process:

ŷ(x) = fTβ + z(x) (2.31)

where f is regression basis function selected by the user and β are regressional co-

efficients. In the ordinary Kriging, f is a vector of all 1.0 with length ns, while in

universal Kriging regression models like linear and quadratic models are used. How-

ever, ordinary Kriging is sufficient in most practices (Sacks et al., 1989).

The stochastic process z is assumed to have zero means and a covariance of:

E[z(xi)z(xj)] = σ2R(θ, xi, xj) (2.32)

where σ is the process variance and R(θ, xi, xj) is the correlation model. R normally

has the form:

R(θ,xi,xj) =
n∏
k=1

Rk(θk, x
i
k, x

j
k) (2.33)

for stationary, one-dimensional correlations. Commonly used correlation functions
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are listed in Table 2.3, where dk denotes |xik − x
j
k|.

Table 2.3: Correlation functions for Kriging
Correlation form Rk(θ, dk)
Linear max{0, 1− θkdk}
Exponent exp(−θkdk)
Gaussian exp(−θkd2k)
Cubic 1− 3ξ2k + 2ξ3k, ξk = min{1, ξkdk}
Spherical 1− 1.5ξk + 0.5ξ3k, ξk = min{1, ξkdk}

Assuming a Gaussian correlation model is adopted, the correlation function is

expressed as:

R(θ,xi,xj) = exp(−
nv∑
k=1

θk(|xik − x
j
k|

2) (2.34)

where θ is a correlation parameter vector that is found by optimizing a maximum

likelihood function. After that, the Kriging predictor for an unobserved point x can

be expressed as the following:

ŷ(x) = fTβ + rT (x)R−1(Y − Fβ) (2.35)

where β is computed by least square regression, the vector r measures the correlation

between the prediction point x and the sampled points [x1...xm].

r(x) = [R(θ,x,x1), R(θ,x,x2), ..., R(θ,x,xm)]T (2.36)

F is function responses at sampled points:

F = [f(x1), · · · , f(xm)]T (2.37)

The least squared estimated β and estimated variance σ2 are computed as:

β =
(
F TR−1F

)−1
F TR−1Y (2.38)
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σ2 =
1

m
(Y − Fβ)TR−1(Y − Fβ) (2.39)

The mean square error s2 of the predictor can also be provided:

s2(x) = σ2
(

1 + uT
(
F TR−1F

)−1
u− rTR−1r

)
(2.40)

where u = F TR−1r−f . One advantage of Kriging is that the estimate of prediction

variance s2 can be derived without much additional computational effort. This term

s2 give a confidence interval of prediction along with the predicted function response.

2.5.3 Sampling for surrogate modeling

Fitting a surrogate model requires sampled data points from the simulation mod-

els. Thus sampling plans are needed to generate input training data for surrogate

modeling. Classical sampling methods include fractional factorial design and central

composite design (Myers et al., 2016) that spread sample points around boundaries

and center of a design space. An improved type of sampling methodology is space

filling sampling. Typical methods that have space filling properties are orthogonal

arrays (Hedayat et al., 1999), uniform designs (Fang et al., 2000), and the Latin

Hypercube Sampling (LHS) (McKay et al., 1979) method. This section introduces

the Latin Hypercube Sampling as an illustration. For further discussion on selecting

input sampling points, readers can be referred to Müller (2007).

2.5.3.1 Latin hypercube sampling

In practice, LHS methods are often used to generate sampling points for fitting

surrogate models. The main steps of latin hypercube sampling strategy is summarized

in the following:

1. Dividing the interval of each dimension of the design domain into N non-

overlapping intervals based on an assigned distribution;
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2. Sample randomly a point in each dimension;

3. Pair randomly the point from each dimension.

Assuming that the variables of X are independent, the cumulative distribution

function of Xk is denoted as Fk. Let Xjk stands for the kth component of Xj, the

jth sampled value. Supposed a sample size of N points are required for simulation, a

N ×K matrix P = {pjk} is built where each column of P is an random permutation

of {1, 2, ..., N}. Afterwards use ξjk (j = 1, ..., N ; k = 1, .., K) as uniformly distributed

random variables on [0,1], then the sampling plan Xjk is given as:

Xjk = F−1k ((pjk − 1 + ξjk)/N) (2.41)

An example of a latin hypercube sample of uniformly distributed X is shown in

Figure 2.7. It can be seen that the metric pjk decides which cell Xj is located, and

ξjk determine the location in cell of Xj.

Figure 2.7: A Latin Hypercube Sample with N=6, K=2 (Stein, 1987)
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Latin hypercube sampling method ensures that all portions of the design space are

sampled. The good space-filling properties of LHS generates a diverse set of design

points in fitting a surrogate model. Given a fixed sample size, LHS selects sampling

points that are representative to help explore the function relationship between input

and output.

2.5.3.2 Off-line sampling method

If surrogate modeling is used in optimization, the model fitting process can be

classified into two types: the off-line method and the on-line method (Jin, 2005).

The off-line construction of surrogate model can be generalized in Figure 2.8. Using

the introduced sampling methods, a number of sampled points are generated and

simulated with objective functions. Then, the surrogate model is trained with the

sample points to approximate the input-output functional relation. After the opti-

mizer is initialized, the trained surrogate model is used to estimate the fitness values

for the optimization run.

Figure 2.8: General off-line surrogate construction

The off-line sampling method fixes the number of sample points, and hence the

computational cost of building the surrogate model. Off-line methods are easy to

implement, but the surrogate model’s quality is fixed in the sampling stage. Thus,

in order to ensure the accuracy of surrogate predictions, generally large number of

sampling points are needed to fill all the regions of the design space.

2.5.3.3 On-line sampling method

In contrast with the off-line method, the on-line method samples and refines the

surrogate model during the optimization process. The on-line sampling strategy in-
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volves selecting data as more is known about the problem for a more efficient sampling

in the design space. A general process of on-line sampling is illustrated in Figure 2.9.

In the on-line strategy, the correctness of the surrogate model is utilized to refine the

surrogate, thus the prediction ability and quality of surrogate can be improved.

Figure 2.9: General on-line surrogate construction

On-line strategy normally involves model validation of the surrogate models. The

accuracy of surrogate model can be validated via comparing the true fitness function

values in the validation dataset. In Gaussian process based surrogate models, the

estimated prediction errors derived in Equation 2.40 can also be used to indicate the

correctness of the surrogate model. The learning and refinement are important as

the initial surrogate model can be coarse and may not provide accurate prediction

in every domain in the design space. Therefore, on-line strategy must be formulated

to increase the accuracy of the surrogate model as the optimization runs. However,

such refinement can cause a tractability problem. For example, repeatedly building

Kriging construction can be very costly as discussed in Gano et al. (2006)

2.6 Summary

This chapter reviews some basic concepts and theories that are applied in the

dissertation. As discussed in Chapter I, the main focus of the research is to explore

the impact of the early stage design uncertainty on structural designs. Though de-

sign optimization in uncertain environments has undergone enormous development,

there is little research study in systematically investigating marine structural design
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optimization in with early stage design uncertainty. This section briefly discuss the

research needs in achieving this goal.

2.6.1 Design optimization considering epistemic uncertainty

Compared to design optimization with aleatory uncertainty, less has been studied

on design optimization involving epistemic uncertainty. Thus it is desirable to dis-

cover the impact of epistemic uncertainty on design decision making and performance.

To this end, this dissertation aims to build an optimization framework that can show

different feasible configuration designs associated with different epistemic uncertainty

levels. In order to quantify the various uncertainty levels, an interval uncertainty

model is chosen for treatment of epistemic uncertainty. The initial study of struc-

tural design with interval uncertainty is presented in Chapter III. After investigation

of advanced surrogate modeling techniques, the overall optimization framework in

dealing with various ranges of interval uncertainty is presented in Chapter V, where

the trade-off of various range of uncertain intervals and corresponding feasible struc-

tural configurations is shown.

2.6.2 Surrogate-assisted evolutionary optimization

The desired study on design optimization with interval uncertainty is very de-

manding in terms of computational resources. The problem becomes more critical

given that evolutionary algorithms are used for trade-off analysis. This desired re-

search goal puts special challenges on computational efficiency, requiring further sur-

rogate modeling development.

Surrogate modeling techniques have to be adapted to structural design optimiza-

tion in several areas. First, structural simulations often have high-fidelity and low-

fidelity numerical models. High-fidelity models are generally more accurate, but more

demanding in computational effort, whereas low-fidelity models are simplified meth-
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ods that are less accurate but are easier to evaluate. In order to utilize limited high-

fidelity simulations in early stage structural design, a surrogate modeling management

strategy that can interact with high-fidelity and low-fidelity models are needed.

Second, surrogate modeling for large problems size is also currently a challenge.

A single surrogate model is not likely to be capable of handling a large design domain

and complex functional space required for structural analysis. The problem is further

complicated by the presence of integer or discrete decision variables in structural de-

signs. A multiple surrogate modeling strategy is needed in this situation to ensure the

prediction accuracy of surrogate. Multiple surrogate modeling is a research direction

that is promising in reducing the risk of over fitting surrogate model and is explored

in this dissertation work.

Last, dealing with interval uncertainty in design also needs an advanced surrogate

modeling technique. Introducing interval analysis in evolutionary computation brings

additional computational costs. This motivates the traditional surrogate modeling

method to adapt to more efficient prediction of interval analysis results. Constructing

surrogate models for interval analysis in the context of on-line sampling method is an

open research area. This dissertation work presents a unique solution in addressing

this issue.

In Chapter III, the off-line surrogate modeling is presented to initially study in-

terval uncertainty in marine structural design. This initial study is followed with

the research development addressing the mentioned challenges with on-line surrogate

modeling. Chapter IV presents a multiple surrogate model management strategy for

variable fidelity structural design optimization. Surrogate methods for worst-case

performance estimation is proposed in Chapter V to efficiently investigate interval

uncertainty in design optimization.
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CHAPTER III

Robust and reliable design optimization

considering interval uncertainty

3.1 Introduction

Engineering designs are invariably confronted with design uncertainties. The vari-

ability of uncertainty in design variables and parameters can affect engineering design

performance. In the worst cases, the physical prototype of the design can be infeasible

and failed due to the effect of uncertainty. The ship design process is particularly

sensitive to the design uncertainties. Ship design faces various sources of uncertainty

that are inherent from the complex nature of ship design process. In ship structural

design, some key parameters are determined based on subjective experience in prelim-

inary design stage, while not guaranteeing that the design is immune to rework later

in the design stage. The general ship design process can be described in the spiral de-

sign diagram (Evans , 1959) illustrated in Figure 3.1. The structural decisions directly

influence the weight estimation, and then the arrangement of compartment such as

engine and auxiliary configurations. There is a need to examine the structural designs

responding to this type of uncertainties in the early stage. This chapter presents de-

sign optimization studies that are intended to remove the epistemic uncertainty early

in marine structural design.
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Figure 3.1: Evans’s general design diagram (Evans , 1959).

As discussed in Chapter II, design optimization under uncertainty has various

forms with regards to different types of uncertainties. While stochastic uncertainty

is the common form in dealing with uncertainty, this dissertation mainly focus on

another form of uncertainty. The uncertainty that is of interest here is defined as

epistemic uncertainty, or uncertainty due to lack of knowledge (Oberkampf et al.,

2002). Aleatory uncertainty, or stochastic uncertainty, is appropriate to describe un-

certainty in material properties or sea environment in ship design. Meanwhile, other

uncertainties are more epistemic in nature, such as model uncertainties and config-

uration uncertainties, and thus require epistemic uncertainty models to study them.

Here, the interval uncertainty measure is examined, representing the epistemic uncer-

tainty in structural design. In the context of the ship design process, what is needed

in the early stage is a robust baseline structural design that is least affected by design

changes arising from other disciplines while the design evolves. Additionally, the de-

signer would be interested to understand the decision making under various interval
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uncertainties in different disciplines in the ship design. Thus an overall perspective

concerning the epistemic uncertainty can be gained in early stage.

The section will initially demonstrate the surrogate-assisted optimization formu-

lation in addressing the interval uncertainty in structural design. First, a surrogate-

assisted robust design optimization is presented to show the difference between robust

optimal design compared to deterministic optimal design. It follows with a further

study on interval uncertainty in both configuration uncertainty and model uncer-

tainty. A multi-objective optimization is presented to show the trade-off between

interval uncertainty width and design performance. A surrogate method is imple-

mented for efficient optimization in both interval uncertainty studies. The content

presented in this chapter was first published in Liu and Collette (2014b) and Liu and

Collette (2015). The text that follows is an extended version of that manuscript.

3.2 Surrogate-assisted robust design optimization framework

3.2.1 Evolutionary optimization with interval uncertainty

Evolutionary optimization has long been proposed to address design uncertainty

problems, a detailed overview can be referred to Jin and Branke (2005). This section

discusses the general optimization problem considering interval uncertainty, and the

algorithmic scheme in an evolutionary optimization frame.

Considering interval uncertainty in the design, the optimization problem can be

formulated as follows:

minimize f(x+ ϕ, c+ δ)

w.r.t. x ∈ R

subject to g(x+ ϕ, c+ δ) ≥ 0

(3.1)

where x and c are vectors of design variables and design parameters respectively. ϕ
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and δ are vector of deviations in the design variable and design parameters respec-

tively, they are both treated with interval uncertainty terms:

ϕLi ≤ ϕi ≤ ϕUi

δLi ≤ δi ≤ δUi

(3.2)

Achieving the robust optimal solution with consideration of interval uncertainty

normally requires additional effort than traditional optimization. The robust solu-

tion needs to perform well even if the design variables or parameters are perturbed

by interval uncertainties. Therefore, every design solution needs to be examined by

its robustness in presence of uncertainty as part of the fitness evaluation in the opti-

mizer. Depending on the different definitions of robustness, the evaluation in face of

uncertainty varies in different problem formulations. Here the worst-case performance

is used for design against interval uncertainty. As the interval uncertainty model in-

volves no probabilistic distribution or value density, it is necessary to account for the

full range of possible values within the interval.

The basic principle for the optimization problem in Equation 3.1 is to search for

the design solution that has the best worst-case performance. Worst-case performance

stands for the minimum of a maximization optimization problem, or the maximum

in a minimization problem. Thus the design optimization with interval uncertainty

becomes a double-loop search process, where the inner loop searches for the worst-

case performance in the interval uncertainty domain. The outer loop searches for the

solution that has the best worst-case performance. This approach is often referred to

as Maxmin optimization (Ong et al., 2006).

Applying the robust scheme in an evolutionary optimization algorithm has been

discussed in many precious works such as Tsutsui and Ghosh (1997); Tsutsui (1999);

Arnold and Beyer (2002). In this design optimization with interval uncertainty, the

robust scheme is defined with the worst-case performance. The general search scheme
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is outlined in Algorithm 1.

For each individual xi evaluated in the evolutionary optimizer, the worse-case de-

sign xl needs to be found within the interval uncertainty domain. Then the fitness

value of this individual is set with the worst-case function performance f(xl) rather

then the function value f(xi) at the nominal design point. In this setting of evolu-

tionary optimization scheme, the individuals that has better worst-case performance

in the presence of uncertainty are more likely to survive in the EA operations.

Algorithm 1 Pseudo code for double loop search within evolutionary optimizer.
BEGIN
Create a population of candidate designs.
while Termination criteria is not met do

for Each individual xi in population do
Locate the point xl with the worst case fitness value within interval bounds;
Set f(xi) = f(xl), i.e., the fitness of individual is set to the worst case value;

end for
Apply EA operators to create the next generation.

end while
END

3.2.2 Surrogate-assisted robust design optimization

Evolutionary algorithms such as genetic algorithms are very robust in solving op-

timization problems, particularly they are suited to deal with marine structure design

problems when there is a mixed continuous and discrete variables. However, EA have

been criticized for its large demand of fitness function evaluations. With the worst-

case performance search scheme added in the evolutionary optimization framework,

the number of the objective functions calls will grow even larger. This section presents

a computationally efficient surrogate model to reduce the computational burden in-

curred by the double-loop approach.

Coupling surrogate models into evolutionary algorithms has been addressed in

many previous works, a discussion of this overall methodology can be referred to

some review literatures (Jin, 2005, 2011). Surrogate models are also widely used for
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robust design optimization in evolutionary algorithms. An example can be seen in

Ray and Smith (2006), where Neural networks are implemented to reduce computa-

tional efforts in robust design. Ong et al. (2006) have proposed Radial Basis Function

surrogate method to address the previously mentioned double-loop maxmin optimiza-

tion problem. The presented surrogate method is adapted from that in Ong et al.

(2006), with a different surrogate construction and management strategy in place of

the trust region framework used by Ong et al. (2006).

The basic procedure of the surrogate-assisted optimization is outlined in the flow

chart in Figure 3.2. A Single Objective Genetic Algorithm (SOGA) is used as the

global optimizer in searching for the robust solution. RBF (Buhmann, 2000) is em-

ployed for constructing surrogate models. The theoretical introduction of RBF can

be found in the previous chapter.

RBF has the advantage of fast training and only requires small sample size for a

realistic model. However, RBF is based on the continuous assumption, and it may

not work well with discrete variables. The strategy applied here is to separate discrete

variables when building the RBF surrogate model. The sampling points observed for

surrogate modeling are first divided into separate clusters based on different combi-

nation of discrete variable value set.

The training and use of RBF surrogates in Figure 3.2 is on the basis of individual

evaluation. The individual to be evaluated consists of a continuous part xC and

a discrete part xD. The cluster that is labeled with the same discrete part xD is

identified and chosen for surrogate training. Afterwards, the Euclidean distances of

the continuous part xC to each member of the chosen cluster are computed, and a

certain number of the closest points are sorted out to build a local RBF surrogate

model. In the presented work, 8,000 points are sampled, while local RBF surrogate

model has a size of 100 data points.

When a local RBF surrogate model f̂ is constructed, it can then be used for
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Figure 3.2: Flow chart of surrogate assisted robust optimization.
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computing the worst-case performance for this individual. In the inner loop of the

double-loop optimization approach, the following subproblem, expressed in Equa-

tion 3.3, is solved to get the worst-case performance from the RBF surrogate model,

assuming the outer loop is a minimization problem.

Maximize f̂(x+ ϕ, e+ δ)

w.r.t. ϕ, δ

Subject to ‖ϕ− ϕ0‖ ≤ ∆1

‖δ − δ0‖ ≤ ∆2

(3.3)

where f̂ is the local RBF constructed, and ∆1, ∆2 are the bounded interval uncer-

tainty domains. ϕ0, δ0 are nominal values of the uncertainty, and are set as zero

in this case. In the inner loop optimization search, the Nelder-Mead optimization

method is employed to search for the worst-case uncertainty perturbations [ϕ∗, δ∗].

They are then added to the individual candidate design, and the worst-case func-

tional performance is set as the fitness value for this individual. This is sent to the

evolutionary algorithm.

3.2.3 Robust compartmentalization case study

As the early stage structure decisions have a large impact on later stage design, this

section attempts to establish a robust baseline structural weight estimation while the

ship subdivision and hence the structural support arrangements within compartments

are evolving. Thus the desired robust structural design can withstand certain design

changes without disrupting the entire design scheme. This motivates a robust design

optimization to find a compartment’s structural configuration that keeps the design

feasible over a range of potential compartment lengths.

In the illustration of the structural design example, a simple box girder structure

is adopted as it is broadly representative of a single-hull ship hull girder. This box
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Figure 3.3: Sketch of two compartments.

Table 3.1: Standard T-stiffener dimensions
Description Value
tw: Web thickness 6.6 mm
hw: Web height 313.0 mm
tf : Flange thickness 11.0 mm
bf : Flange breadth 166.0 mm

structure is composed of two compartments with a fixed total length L of 16 m. The

depth, D, is fixed at 4 m; the breadth, B, at 4 m for simplicity. All four sides of

the box girder have the identical structures. The sketch of the structure is shown in

Figure 3.3. The length of the first compartment, L1, has a nominal value of 8 m.

This design parameter is treated with interval uncertainty form bounded by [−2, 2].

As the total length of the two compartments is fixed at 16 m, the length of the second

compartment L2 also varies within a 4 m interval uncertainty band. The schematic

cross section of the structure is shown in Figure 3.4.

In the box structure, the longitudinal stiffener configuration is chosen from the

library of Navy steel t-stiffeners, its dimensions are listed in Table 3.1. The number

of longitudinal stiffeners is fixed at eight per side of this structural design problem.

This leaves the number of design variables to six defining transverse structures. The

design variables description is shown in Table 3.2.
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Figure 3.4: Cross section view.

Table 3.2: Design variables
Design variables Description Type Min value Max value
tp Thickness of plate Continuous 3 mm 15 mm
hwt Transverse web height Continuous 100 mm 800 mm
twt Transverse web thickness Continuous 3 mm 30 mm
bft Web flange breadth Continuous 5 mm 50 mm
tft Web flange thickness Continuous 4 mm 20 mm
ntrans Number of transverse webs Discrete 1 8
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In this structural design, the weight of structure is the single objective to minimize.

The structural weight is calculated by determining the volume of the material and

then multiplying the density of steel, which is taken as 7.85 g/cm3. The weight of

structure is computed following the formula in Equation 3.4.

W = 7.85
g

cm3
(As ∗ Length+ Aw ∗ ntrans)

As = nstiff ∗ (hw ∗ tw + tf ∗ bf ) + tp ∗ (2B + 2D)

Aw = (hwt ∗ twt + bft ∗ tft) ∗ (2B + 2D)

(3.4)

In order to keep the design realistic, several requirements adopted from American

Bureau of Shipping (ABS) High Speed Navy Craft rules are set as design constraints

for this early stage structural design example. The six constraints are listed in Equa-

tion 3.5. Constraint g1 puts a requirement on section modulus at amidship; g2 is

minimum plate thickness requirement; g3 sets the buckling criteria for the plate; g4

gives te minimum section modulus requirement for transverse web; g5 is the buckling

criteria for longitudinal stiffener; and g6 makes sure that the web thickness meets the

rules.

g1 : SM ≥ SMrequired

g2 : tp ≥ s

√
pk

1000σa

g3 : σE ≥ 0.9m1E(
tb
s

)2

g4 : SMweb ≥
83.3× psl2

σa

g5 : σe ≥
EIa
C1Al2

g6 : tw ≥ dw/1.54(
E

τy
)2

(3.5)
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Table 3.3: SOGA parameters
GA parameter Value
Population 400
Real crossover operator Simulated binary
Binary crossover operator Single point
Crossover percent 0.99
Mutation percent 0.01

These constraint functions are evaluated for every candidate design. Any violation

of constraint function will be treated as penalty added to objective function. There-

fore, any violation of the constraints would make the candidate design less desirable

in evolutionary optimization. The robust design optimization problem is formulated

in Equation 3.6.

min φ = W (x, e) + βk
∑

Gi(x, e) (i = 1, 2, ..., 6)

w.r.t. x = [tp, hwt, twt, bft, tft, ntrans]
T

where Gi = [min(0, gi)]
2

Ul ≤ e ≤ Uu

(3.6)

βk is penalty coefficient set as 1000; e is design parameter representing compart-

ment length, which is treated with bounded interval uncertainty. The optimal design

outcome from this optimization is a design solution that has the best worst-case

performance, and also satisfies all the design constraints while the design parameter

varies.

The parameters used for the SOGA to solve the optimization problem in Equa-

tion 3.6 are listed in Table 3.3. In order to have an overall view of the performance of

surrogate methodology, two additional optimization runs are conducted for references.

First, the deterministic approach is used for the structural optimization, where the

compartment length parameter is fixed without consideration of interval uncertainty.

Second, the robust optimization problem formulated in Equation 3.6 is optimiza-
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Table 3.4: Optimization results
Design variable Deterministic optimum Robust optimum Surrogate optimum
tp (mm) 8.26 8.26 8.26
hwt (mm) 537.78 620.05 619.42
twt (mm) 9.29 10.68 10.73
bft (mm) 50.00 50.00 50.00
tft (mm) 20.00 20.00 20.00
ntrans 7 8 8
φ 35.53 40.31 40.44

tion with no surrogate mechanism turned on. Last, the introduced surrogate-assisted

robust design optimization framework is applied here to solve the same robust struc-

tural design problem in Equation 3.6. The results from these three optimization runs

are listed in Table 3.4 in terms of optimal design variables and penalized objective

function values.

It can be observed from the results comparison in Table 3.4 that the robust design

is more conservative design with approximately 15% more weight than the determin-

istic design. Consider that the length uncertainty band of 4 m is 50 % of the nominal

compartment length for the case problem, this weight penalty for robust design is

relatively small. Using the robust weight estimate would assure that the early stage

structural weight estimates and configurations would remain feasible, if not optimal,

throughout the subsequent design process as long as the compartment length did not

vary outside the uncertainty band. Also this result is assured in a sense that with the

interval uncertainty treatment, there is no corresponding probability that a constraint

may be violated.

In comparison, the deterministic design is very sensitive to uncertainty in com-

partment length. In Figure 3.5 it is found that the deterministic design can easily

violate constraints as the design parameter varies, causing the penalty function change

dramatically. Clearly the deterministic design is not desirable, because any change in

the design parameter L will make the design unfeasible. The robust design solution
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provides a better solution considering the changing compartment length. It can be

seen in Figure 3.5 that the robust solution is very stable in the interval range, this

means future changes in compartment arrangement will not disrupt the performance

of the robust design. In this regard, the robust solution trade a small amount of

weight performance to achieve flexibility for later design stages.

Figure 3.5: Design performance under interval uncertainty.

The surrogate solution is very satisfactory as it closely captures the robust so-

lution, while greatly reducing the computational cost. Direct robust optimization

requires 1,798,419 objective function evaluations, which means approximately 38 func-

tion calls are used per individual evaluation. This suggests that the inner loop search

consumed a large amount of function evaluations to locate the worst-case perfor-

mance. Surrogate method only used 8,000 function evaluations - the size of sampling

dataset. The closely converged solutions in Table 3.4 indicate the surrogate model
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performed well in approximating the original function with only a fraction of the

function evaluations. This proves that proposed surrogate framework is a viable al-

ternative to conduct robust optimization study in early stage design.

3.3 Robust and reliable structural design considering inter-

val uncertainty

The interval uncertainty is assumed to be present in the parameters of a reliability-

based design constraint as well as in the geometric configuration of the structure in

various uncertain levels. This chapter continues to extend the robust design opti-

mization framework in two ways.

First, in addition to compartment geometry uncertainty, interval uncertainty is

also considered inside the formulation of a reliability-based structural constraint in

the optimization process. This better represents early-stage marine design, where

probabilistic models often employed, but the true value of their parameters remains

uncertain. The probabilistic characteristic of the uncertainty encountered in early

stage design may not be known precisely due to lack of adequate knowledge. A

motivating example is the model uncertainty for loads computation models. Model

uncertainty arises due to the scarce test results of the loads model, especially in

cases of novel vessel design. Ben-Haim and Elishakoff (2013) have indicated that any

error in the subjective assumption of distribution of the uncertainty in the reliability

analysis can be harmful later on in the design. Interval uncertainty is used in this work

to quantify the model uncertainties in the limit state function, as in most cases the

non-deterministic parameters are only known within intervals (Ferson et al., 2004).

The worst case reliability (Jiang et al., 2011) from interval analysis is examined to

meet the target reliability requirement. Hence, the design is guaranteed to be also

reliable against the uncertainty due to lack of knowledge.
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Second, the optimization is now multi-objective with the width of the uncertainty

interval treated as both a design variable and a component of one of the objec-

tive functions. This allows the trade space between structural performance and the

amount of uncertainty to be quantified. The interval width reflects the confidence in

the parameter choice and computation models. By performing additional measure-

ments and collecting more information about the design, it is possible to improve the

accuracy of the model and hence reduce the interval width. This design space reduc-

ing concept is similar to the set-based design concept (Singer et al., 2009; Hannapel

and Vlahopoulos , 2014) in naval design. However, such actions require time and the

investment or resources. In order to show the payoff of reducing interval uncertainty

in terms of structural performance improvement, a Multi Objective Genetic Algo-

rithm (MOGA) optimizer - NSGA-II (Deb et al., 2002) is employed to resolve the

trade-off information between structural design performance and interval uncertainty

measures.

3.3.1 Reliability analysis with interval parameters

In traditional reliability methods where only random variables are involved, the

reliability can be calculated using the following equation:

Pr{g(x) ≥ 0} =

∫
g(X)≥0

fX(X)dx (3.7)

To avoid the complex direct integration in Equation 3.7, an approximation method

FORM (Hasofer and Lind , 1974) is normally used for computation. As introduced in

Chapter II, the FORM method can be formulated as a minimization of the distance

problem expressed as:

β = min
g(U)=0

‖U‖ (3.8)

This distance is termed as reliability index to assess the safety of structures. In
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a typical reliability based design problem, the calculated reliability index is required

to be larger than a threshold value βt, termed as target reliability index. Considers

interval uncertainty parameter Y ∈ [Yl, Yh] in the limit state function, the transformed

limit state function g(U, Y ) is bounded due to interval uncertainty Y , resulting in a

bounded reliability index β ∈ [βL, βH ]. Reliability analysis with interval parameter

(Jiang et al., 2011) focuses on finding the worst-case reliability index βL using the

following equations:

βL = min
U
‖U‖

s.t. min
Y

g(U, Y ) = 0

(3.9)

Locating of the worst case reliability index requires a nested optimization process.

The inner loop finds the lower bound limit surface corresponding to a Y value in the

interval. Then the outer loop follows the traditional FORM method as a distance

minimization to find βL.

The feasibility robustness introduced in Equation 3.6 is adopted here to consider

interval uncertainty in structural geometry. To satisfy the feasibility robustness re-

quirement, a candidate design must meet the following criteria:

gj(x, c) ≤ 0, j = 1, 2, ..., J

∀c ∈[cl, ch]

(3.10)

x and c are vectors of design variables and design parameters respectively and J is to-

tal number of rule-based constraints. In the present work, only the design parameters

are considered to be impacted by interval uncertainty.

With both feasibility robustness and worst-case reliability in the optimization

process to account for interval uncertainties, the optimization formula incorporating
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two schemes is presented as:

min f(x)

s.t. gj(x, c) ≤ 0, j = 1, 2, . . . , J

∀c ∈ [c0 −∆1, c0 + ∆1]

βL = minU‖U‖ ≥ βt

g(U, Y ∗) = minY g(U, Y )

∀Y ∈ [Y0 −∆2, Y0 + ∆2]

(3.11)

The optimal solution from the above procedure will be both robust and reliable

against the interval uncertainties involved. The objective of this section is to disclose

the impact of various interval ranges on the optimal design. Thus, interval width is

treated as one of the design variables in the optimization framework. Doing so will

modify Equation 3.11 into a multi-objective optimization approach.

3.3.2 Multi-objective optimization with surrogate model

The research focus is to determine the importance of interval uncertainty param-

eter on the design. Therefore, it is desirable to show how much reducing the interval

uncertainty would improve design performance. This trade-off study is developed

through a surrogate-assisted multi-objective optimization framework.

Some interval reduction measures can be found in Li et al. (2009). In this paper,

a simple inverse of interval width is used as an indication of the investment needed to

reduce the interval uncertainty. The investments to reduce both interval uncertainty

in Equation 3.11 and a performance function are set as objective functions to minimize

in the multi-objective optimizer.

The off-line RBF surrogate modeling is employed here to approximate the relia-

bility simulations. The basic procedure of the surrogate-assisted reliability analysis
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is outlined in the flow chart in Figure 3.6. To begin, a sampling plan using Latin

Hypercube Sampling is made, and then the sampled dataset is collected using FORM

analysis. In the optimization process, when the reliability analysis is required to eval-

uate a candidate design, a sorting algorithm is used to collect a number of sample

points in the database. These points are used to train a local RBF surrogate model

to replace the FORM method for reliability analysis. Afterwards, the worst-case re-

liability index will be located using Nelder-Mead method to search RBF surrogate in

the interval uncertainty space.

Figure 3.6: Reliability analysis using RBF surrogate model.

After introducing the multi-objective optimization problem and surrogate model-
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ing strategy, the overall optimization framework is presented in the follows:

min [W, I1, I2]

where I1 = 1/∆1, I2 = 1/∆2

s.t. gj(x, c) ≤ 0, j = 1, 2, . . . , J

∀c ∈ [c0 −∆1, c0 + ∆1]

βL = minf̂(x, Y ) ≥ βt

∀Y ∈ [Y0 −∆2, Y0 + ∆2]

(3.12)

In this formulation, W stands for a performance metric of the design, I1 and

I2 represent the investment to reduce interval uncertainty in the uncertain design

parameter and in the uncertain limit state function parameter respectively. f̂ means

that the RBF surrogate model is used as replacement of FORM method in reliability

analysis.

3.3.3 Box girder structure case study

The simple box girder problem presented in the compartmentalization study is

used here for the expanded investigation on interval uncertainty. The sketch of the

structure is shown in Figure 3.3, the schematic cross section of the structure is shown

in Figure 3.4. Independent design variables for this problem are listed in Table 3.5.

Two interval uncertainty terms are included. First, the length between bulkheads

is assumed to have interval uncertainty. This represents a common situation where

a structural configuration and weight estimate must be made before the final sub-

division of the hull is established. The second interval uncertainty term is related

to a first-yield reliability criteria for the girder under combined stillwater and wave

bending moments. The second uncertainty term modifies the wave model uncertainty

in the limit state. This case study attempts to minimize three objective functions.
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Table 3.5: Design variables description for interval uncertainty MOGA
Design variables Description Min value Max value
tp Thickness of plate 3 mm 15 mm
hwt Transverse web height 100 mm 800 mm
twt Transverse web thickness 3 mm 30 mm
bft Web flange breadth 5 mm 50 mm
tft Web flange thickness 4 mm 20 mm
∆1 Geometry uncertainty interval range 0.1 1.0
∆2 Model uncertainty interval range 0.01 0.1

One is a performance metric defined as the structural weight, the other two are the

investment in reduction of interval width in each domain respectively.

The six deterministic design constraint functions stated in Equation 3.5 are also

used in this case study for feasibility robustness analysis against the geometric interval

uncertainty bounded by [−∆1,∆1].

In the reliability constraint function, a first-yield limit state function is used for the

box girder design as a simple formula that is broadly representative of more complex

ultimate limit states. It is expressed as follows:

G(x) =SM ∗ σy −Msw − xw ∗Mw

where SM = section modulus

σy = yielding stress

Msw = still-water bending moment

Mw = wave-induced bending moment

xw = model uncertainty with interval parameter ∆2

(3.13)

The description of each of the component in the limit state function is shown in

Table 3.6. SM , σy, Msw, and Mw are assumed to be independent random variables.

Their distribution type and parameters are chosen from Mansour (1993).

A hybrid uncertainty model xw is used to represent the limited understanding

of loads and load combinations on the structure. xw takes the form of a normal
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Table 3.6: Description of variables in limit sate function
Variable Term Distribution Mean C.O.V.

SM Lognormal SM(x) 0.04
σy Lognormal 235Mpa 0.07
Msw Normal µsw 0.40
Mw Gumbel µw 0.09
xw Hybrid model 0.9 [0.15−∆2, 0.15 + ∆2]

distribution but its key parameter - coefficient of variance - is treated with interval

uncertainty. The mean value of xw is taken as 0.9, the coefficient of variance has a

nominal value of 0.15, but bounded by [−∆2,∆2].

The reliability analysis with interval uncertain parameter described previously can

be applied to compute a worst case reliability index βL. A target reliability index of

3.0 is set as the reliability constraint:

g7 : βL − 3.0 ≥ 0 (3.14)

The multi-objective optimization problem is stated as:

min [W (x), I1(x), I2(x)]

w.r.t. x = [tp, hwt, twt, bft, tft,∆1,∆2]
T

where I1 = 1/∆1, I2 = 1/∆2

s.t. gj(x, c) ≤ 0, j = 1, 2, . . . , 6

∀c ∈ [c0 −∆1, c0 + ∆1]

g7 : βL − 3.0 ≥ 0

(3.15)

W is the structural weight function to be minimized along with two interval reduc-

tion objective functions. The optimization problem is solved in NSGA-II optimizer.

The simulated binary crossover is adopted here for crossover with an exponent of 4.0.

Random mutation rate is set at a low probability of occurrence of 0.1%. The pop-
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ulation size is set as 600 with generation number of 100 as the NSGA-II parameter

choice.

3.3.3.1 Direct optimization results

First, the optimization problem was run without the surrogate modeling method

to provide a reference solution. In this case, FORM method was used in computing

the worst-case reliability. The direct optimization results are shown in the Figure 3.7.

In order to better interpret the optimal solutions achieved, the objectives of interval

width function I1, I2, are inverted to become the interval width ∆1 and ∆2.

Figure 3.7: Pareto front of direct optimization.

Clearly the trade information is shown in the Pareto front. As seen, when interval

uncertainty range becomes large (less investment effort was made to reduce the inter-

val), an increase in weight is observed in order to keep the structure feasibility robust

and reliable against larger interval uncertainties. It is also noticed that the Pareto op-

timal front followed a near hyperplane shape, indicating that the increase of interval

range in either ∆1 or ∆2 can cause linearly penalty on design performance measured

by the structure weight, though a more in depth analysis is needed to disclose the

65



relative importance between the two uncertainty parameters involved. The trade-off

information from the Pareto front demonstrates that the information availability in

the early stage can cause a possible monetary burden on the design in the worst case

scenario.

3.3.3.2 Surrogate optimization results

The optimization process was repeated with the surrogate-assisted method intro-

duced in Figure 3.6. A sampling size of 9,000 points and a local RBF modeling size

of 150 points are used. The Pareto-optimal front generated from the multi-objective

optimizer is shown in Figure 3.8 below.

Figure 3.8: Pareto front of surrogate method.

On visual inspection, the Pareto front with the surrogate method is broadly simi-

lar to the direct optimal solutions. However, it is not exactly converged to the overall

high-fidelity front. The number of reliability simulations spent for these two opti-

mization run is presented in Table 3.7 below. It is obvious that the surrogate method

significantly improved the efficiency of the optimization, as it used only 1.2% of the
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Table 3.7: Computational cost comparison in two optimizations
Method Number of reliability analy-

sis used
Average number of reliabil-
ity calls to locate βL per in-
dividual

Direct FORM method 754,690 12.57
RBF approximation 9,000 0.15

reliability analysis calls of the direct optimization with the full FORM method.

3.4 Summary

This chapter has presented efficient design optimization frameworks to address

epistemic uncertainties in early stage design. The presented frameworks are novel in

the naval field to first examine interval uncertainty in marine structural designs. A

robust design optimization framework is presented to consider interval uncertainty in

compartment configuration. Afterwards, a multi-objective optimization framework

further investigates interval uncertainty in both configuration and reliability con-

straint function. The overall impact of interval uncertainty is shown in trade study

result. A RBF surrogate modeling method is implemented within the evolutionary

algorithm for the efficient implementation of both uncertainty studies.

The presented robust design optimization framework is shown to successfully ap-

plied in investigating the compartmentalization problem in marine structural design.

The case study indicated a 15% weight penalty to cover a 4 m uncertainty band in

the compartment length. Using a fixed databased of 8,000 functional evaluations, the

surrogate method can resolve a virtually identical robust design with less than 1%

of the function evaluations used by a direct double-loop method. This demonstrated

that such efficient robust design optimization strategy can be applicable to convert

epistemic uncertainties in early stage into static weight penalties that can allow robust

design convergence.

In the multi-objective optimization study, the method was shown to successfully
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resolve the trade-off information between epistemic availability represented by various

ranges of interval uncertainty and structural design performance. This provides a

better perspective for decision makers to explore structural design options in early

stage design. Also, the RBF surrogate modeling strategy proved to be capable in

addressing the computational tractability problem associated with interval analysis.

The surrogate method was demonstrated to deliver a closely converged Pareto front

when compared to the front found by direct optimization, while used only a fraction

of the exact solutions.

Nevertheless, improvements in the surrogate construction can still be expected.

The presented surrogate modeling method is an off-line method, meaning the accuracy

of surrogate model is fixed after the sampling procedure. In the multi-objective

optimization study, the surrogate result does not converge exactly to high-fidelity

FORM results. In the following chapters, the dissertation will discuss more on efficient

surrogate-assisted multi-objective optimization methods, in particularly investigating

advanced on-line surrogate modeling techniques that are capable in flexibly distribute

computational resources, while delivering more converged Pareto optimal solutions.

68



CHAPTER IV

Surrogate-assisted variable fidelity multi-objective

optimization

4.1 Introduction

In the last chapter, surrogate-assisted evolutionary optimization initially demon-

strated its ability to address interval uncertainty design problems efficiently through

an off-line construction methodology. However the off-line construction method of

surrogate modeling is limited to applications in problem scope and complexity. In

dealing with more challenging problems such as multi-objective optimization, or high

dimensional function modeling, the off-line methodology may not be capable enough

in providing accurate predictions for all the function space to be explored. The on-

line surrogate construction method provides solution to continuously refine surrogate

models within optimization process. This chapter will discuss the on-line surrogate

modeling method, and a proposed novel surrogate method that can improve on-line

surrogate modeling. The contents in this chapter was published by the author in Liu

and Collette (2014a).

On-line surrogate method is aimed to adaptively improve the accuracy of the

surrogate model throughout optimization runs. Various on-line surrogate modeling

methods have been proposed to accomplish this task. Here, a Variable Fidelity Op-

69



timization (VFO) framework is used to illustrate the concept of on-line surrogate

modeling strategy (Zhu et al., 2014). In a typical VFO method, a Kriging surrogate

model is constructed on-line to scale a low fidelity version of objective function to a

high fidelity version of the same function. The VFO approach schedules high fidelity

simulation in given generations within evolutionary optimization, so that the com-

putational budget of VFO is fixed in achieving the true Pareto front. This method

proved to work in simple multi-objective optimization problems. However, the pre-

vious VFO method became inefficient and struggled to converge when the number

of objective functions increased beyond two. The key reason for this struggle is that

Kriging surrogate model cannot deal with increasingly larger modeling problems.

In the VFO approach, the Kriging surrogate model is constructed around the

evolving Pareto front in the optimization run. As the optimization problem moves

to a higher number of objectives, the location of non-dominated solutions in the

independent design variable space becomes more diverse. To maintain accuracy, more

sampling points are needed, consequently causing the surrogate model size to increase.

During the Kriging modeling process, an N×N matrix will be inverted. Thus Kriging

surrogate model construction can be very time-consuming for large sample sizes (Jin

et al., 2001). Solving an extremely large Kriging model can be numerically unstable

as the matrix becomes nearly singular, in which case, the Kriging predictions are

unlikely reliable.

Multiple surrogates modeling (Viana, 2011) has been suggested to improve the

prediction quality in surrogate-assisted evolutionary algorithms. Jin and Sendhoff

(2004) have proposed using neural network ensembles for surrogate modeling, the

center points in each ensemble was chosen for original fitness simulations. Hamza

and Saitou (2005) have used polynomial surrogate ensembles in genetic algorithm for

vehicle crash-worthiness design, where the ensemble of surrogate models effectively

compensated the errors associated with individual surrogate model. The benefits of
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using multiple surrogates have also been reported in Goel et al. (2007) and Sanchez

et al. (2008). Isaacs et al. (2007) constructed spatially distributed multiple radius

basis functions for multi-objective optimization.

This chapter presents a novel multiple surrogates management strategy to im-

prove the performance of VFO method. A k -means clustering algorithm is employed

to partition model data into local surrogate models. The comparison between single

surrogate model strategy and multiple surrogates strategy through VFO is presented

through benchmark multi-objective optimization test problems, and stiffener panel

structural design problem. Performance metrics show that the proposed multiple sur-

rogate handling strategy clearly outperforms the single surrogate strategy as surrogate

size increase.

4.2 Variable fidelity optimization

In the real-world design optimization problems, usually there are various simula-

tion functions for fitness evaluation with different levels of fidelity. As high-fidelity

evaluations are generally more time-consuming, there is a need to balance fidelity

with computational cost in optimization design. Zhu et al. (2014) proposed the VFO

framework based on a variant of global-local approach (Haftka, 1991). In Zhu et al.

(2014), the VFO was shown to work well in approximating the Pareto optimal front

with fewer high-fidelity fitness function calls. In VFO approach, the high-fidelity

function fh(x) can be approximated by a global simplified low-fidelity function fg(x)

and a Kriging correction surrogate model ff (x), as shown in Equation 4.1.

fh(x) = fg(x)× ff (x) (4.1)

In this formulation, the global approximation mathematical model fg is a simpli-

fied function that runs rapidly with a relatively high coefficient of variation (COV)
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in its prediction. The bias of the prediction is defined as:

bias =
predicted

actual
(4.2)

This leads to a bias of 1.0 for perfect approximation, and a bias below or above 1.0

for less accurate prediction methods. The VFO formulation take advantage of the fact

that the genetic algorithm starts off with random population, so lower fidelity can be

used to evolve a rough Pareto front. During this process, an interpolation surrogate

model can be constructed on-line. Afterwards, the surrogate model can be used

through VFO formulation to transition the rough Pareto front to an approximated

true Pareto front.

The central component in the variable fidelity scheme is the Kriging surrogate

model ff , which acts as a bridge function between the low-fidelity function and the

high-fidelity function. The detailed description of Kriging derivation can be seen in

Chapter 2.5.2. Here the ordinary Kriging method is used to approximate ff through

Equation 4.3.

ff (x) ≈ f̂f (x) = F + Z(x) (4.3)

where F is the constant global error between the simplified and high-fidelity method,

and Z is the local error term. A Gaussian correlation model is used here for the ran-

dom process. Kriging prediction will provide both a predictor value for an unknown

point to be evaluated as well as the Mean Square Error (MSE) s2 for the prediction

at this point to be returned. The prediction error provides key information in devel-

oping updating criteria to refine the Kriging model within variable fidelity framework

(Gano et al., 2006).

Training a Kriging surrogate model requires finding of the correlation parameter

θ. The approach used here is to solve the following maximum likelihood optimization
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problem in Equation 4.4.

Max(−nsIn(σ2) + In(|R|)
2

), 0 < θk ≤ ∞ (4.4)

The computational cost for solving the Kriging model becomes non-trivial when

the sampling size is large. The determination of θ vector in Equation 4.4 via opti-

mization becomes much more difficult as the size of the model grows, owing to both

numerical difficulties in matrix inversion and the fact that this inversion must be

repeated within the VFO framework. Though VFO provides good computational

strategy in building Kriging model on-line, a single Kriging model is not capable

enough for VFO to tackle larger problems in higher dimensional space.

4.3 Clustered multiple surrogate modeling for VFO

Multiple surrogate modeling strategy is developed to address the challenge in VFO

framework. The means to determine how to split a single large Kriging model into

multiple Kriging models is needed. Clustering provides an attractive technique for this

purpose. In clustering, a large dataset is separated into subsets that are more closely

related to each other than the other members of the overall data set. The advantage

of clustering is that the algorithm can carry out this separation without external

guidance, making it ideal for inclusion in an automated optimization procedure. A

clustering algorithm is employed to partition the Kriging sample dataset into several

local subsets, where a single, smaller Kriging model is trained in each one of these

local subsets.

The rational of proposing clustering embedded Kriging construction strategy is

twofold:

First, from the viewpoint of computational cost, solving several small Kriging

models is much faster than solving a Kriging model of large sample size. The com-
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putational complexity of Kriging is O(N3), where N is the sample size. If the sample

size is divided into k small Kriging samples, then the computational complexity of

all those Kriging constructions becomes k × O((N/k)3), the computational cost of

k-means algorithm is roughly O(N) (Wu et al., 2008). Therefore, a large amount of

computational cost reduction is possible if N is large.

Second, using multiple Kriging models can improve the prediction quality when

the number of sample points is large. The optimization of the Kriging parameter

indicated in Equation 4.4 requires solving a linear system. When the number of

Kriging sample points becomes large, it can cause numerical difficulties as the matrix

inversion becomes ill-conditioned. Solving several small Kriging models rather than

one large model can substantially reduce the ill-conditioning matrix encountered in

calculation. As less numerical round-off occurs, the overall predictor accuracy is

improved.

The k-means clustering algorithm (MacQueen et al., 1967) is employed here to

improve the efficiency of surrogate modeling in VFO. k-means clustering is a common

method in partition a data set into k clusters. The k-means clustering procedure

follows the steps described in Algorithm 2.

Algorithm 2 General procedure for k-means clustering algorithm.
BEGIN
1: Initialize the clustering algorithm by randomly generating k cluster centers;
2: Assign each point in the dataset to the nearest cluster center;
3: Re-compute the cluster centers based on the points assigned to each cluster;
4: Step 2 and Step 3 are repeated until convergence.
END

With the proposed new Kriging construction strategy, the variable fidelity updat-

ing scheme proposed in Zhu et al. (2014) is reformulated to incorporate the clustering

embedded Kriging surrogate models. The new variable fidelity scheme is implemented

in the standard NSGA-II multi-objective genetic algorithm (Deb et al., 2002). The

major difference compared to previous standard VFO method is in the on-line Kriging
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model construction, where multiple Kriging surrogates are built and refined with the

help of k-means clustering algorithm. Figure 4.1 shows the flowchart of the method.

The detailed process of each step in the proposed VFO updating strategy using

clustered multiple Kriging models is described as follows:

1. To initialize the optimization, a random population is selected. The first few

generations only use the low-fidelity model for fitness evaluation. A rough

Pareto front is evolved based on the low fidelity model.

2. After a given number of generations, termed the offset, a number of individuals

are chosen from the current non-dominated Pareto front and sent for high-

fidelity analysis. The individuals are selected based on a simple inter-individual

distance metric in objective function space. The number of individuals is termed

the density in the update scheme. Also worth noting is that the number selected

could be set equal to an integer that is a multiple of the available processing

cores of the computer being used. This ensures that full capacity of available

processing power is always used when updating the surrogate model. Based

on the number of high- fidelity evaluations processed, the clustering algorithm

partitions all sample points into several cluster point sets. Afterwards, multiple

Kriging models are formed in each of these clusters. The centers of all these

clusters are stored in the database. The number of clusters is set to dynamically

increase with increasing data set size.

3. Subsequently in the optimization process, when a candidate point is to be eval-

uated, the distances of this point to all the cluster centers are calculated and

compared. The closest Kriging model is then selected. After, the fitness eval-

uation of this point uses either the low-fidelity solution scaled by the Kriging

model, or just the low-fidelity solution, if the prediction error of the Kriging

model does not pass the accuracy criteria discussed below.
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Store sampled points into 
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means algorithm

Build Kriging surrogate 
model in each of these 

clusters

In the following generations 
(spacing), evaluate individuals in 

NSGA-II including Kriging 
correction from nearest model if 

Equation 4.5 is satisfied

Stopping CriteriaTerminate
Yes No

Figure 4.1: Flow chart of the clustering embedded VFO method.
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4. After a fixed number of generations have passed, where the number is termed

spacing, another set of individuals equal to the density is selected from the cur-

rent non-dominated front and sent for high-fidelity analysis. These individuals

are selected by computing the prediction error from their respective Kriging

models for all the points in the current best non-dominated front. The individ-

uals with the highest error are sent for high- fidelity analysis. In this updating,

the clustering algorithm is applied again to help form a new set of Kriging mod-

els. The number of clusters dynamically increases as more high-fidelity analyzed

points are added. Generally, the number of Kriging models increases in every

update generation.

By updating multiple Kriging models in this way, a variable fidelity optimization

scheme is built to interleave the high-fidelity fitness prediction model with a rapid

low-fidelity model corrected by a computationally cheap surrogate model. As the best

non-dominated front converges to the true global Pareto front for the given problem,

each of the constructed Kriging models performs better in its region of the Pareto

front. The Kriging models work together to provide a very accurate approximation

in the complex multi-dimensional design space occupied by the Pareto front.

In the variable fidelity optimization process, the Kriging models are refined in

every high-fidelity analysis update. It is expected that the Kriging models may not be

accurate enough for all the objective function calls made by the optimizer, especially

in the early part of the optimization process. To address this concern, the prediction

error of the Kriging model is used to examine the surrogate model error, and then

the optimizer will determine whether to use the uncorrected or the corrected form of

the low-fidelity model, based on the following criteria (Zhu et al., 2014):

√
ε2K + ε2H < εL (4.5)
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where εK is the estimated non-dimensional error of the chosen local Kriging model at

the design point being evaluated, the value of εK can be expressed as:

εK =

√
S2(xs)

f̂f (xs)
(4.6)

where f̂f (xs) is the standard Kriging predictor from Equation 4.3 and S2(xs) is the

mean square error of the predictor. In Equation 4.5, εH and εL are prior estimates

of the Coefficient of Variation (COV) of the bias of the high and low-fidelity models,

respectively.

The variable fidelity criterion in Equation 4.5 compares the relative error of the

Kriging model used plus the high-fidelity model to the error of only using the low-

fidelity model. If the criterion in Equation 4.5 is not satisfied, ff (x) is taken as 1.0,

which means that the optimizer uses the uncorrected low-fidelity model for fitness

objective function evaluations without Kriging correction. This ensures that Kriging

prediction, if accepted, will not degrade the accuracy of the fitness evaluation.

For stability of the method, two additional conditions are added. If the update

density is greater than the number of points in the current best non-dominated front,

the process continues on down through the current fronts in domination order. Ad-

ditionally, as high-fidelity analyzed points are added to the Kriging models, they are

required to fall a certain distance away from the existing points in the Kriging mod-

els. This prevents a group of very similar design points from being added during an

update.

The NSGA-II multi-objective genetic algorithm optimizer proposed by Deb et al.

(2002) was used in this work to solve the optimization problem. The detailed de-

scription of NSGA-II can be seen in Chapter 2.3.2. The simulated binary crossover

algorithm (Deb, 2001) is adopted here for crossover with an exponent of 4. Random

mutation rate is set at a low probability of occurrence of 0.1%.
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4.4 Numerical benchmark problem tests

To verify the applicability of the proposed variable fidelity optimization scheme

using clustering implemented Kriging models, a series of benchmarking test problems

from past significant multi-objective optimization studies were used to conduct the

examination. First,three test problems from Fonseca and Fleming (1998)’s study

(QV),Poloni (1995)’s study (POL) and Quagliarella (1998)’s study (QV) were chosen

for initial tests. Afterwards, the same Zitzler-Deb-Thiele (ZDT) tests from Zitzler

et al. (2000) that was conducted in the standard VFO method (Zhu et al., 2014) is

used again to present a comparison between the proposed clustered multiple Kriging

models approach and the original single Kriging surrogate model approach.

The test problems are described in Table 4.1. All of them are minimization prob-

lems with two objective functions, covering different level of difficulties. None of the

test problems were structured with a low and high fidelity version of the objective

functions, therefore, a low-fidelity version of the second objective function was devel-

oped for each test problem. These are listed in the rightmost column of Table 4.1.

4.4.1 Results for FON, POL and QV with clustered surrogates VFO

The first three problems were run using the VFO parameters given in Table 4.2.

The optimization solutions are visualized in Figure 4.2. The true Pareto fronts of

these three problems are visualized in the figures in the left hand column, plotted

as a heavy solid line. As seen, FON has a nonconvex front, POL has a nonconvex

and disconnected front, and QV has an extreme concave front. The low-fidelity front

solutions are shown in a dashed line on the same plots, as can be seen the low-

fidelity solutions reflect the overall trend of the true Pareto front, but with some

significant differences in detail and magnitude. The NSGA-II algorithm is able to

robustly converge to each front as shown by the circular and downward-facing triangle

solutions.
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Table 4.2: VFO parameters for FON, POL and QV tests

Parameter FON POL QV

Population Size 200
Generation number 300

Offset 30
Spacing 20
Density 10

For each problem, the proposed VFO method from Chapter 4.3 was applied,

and the result are shown in the right-hand column of Figure 4.2. All the three

VFO solutions have managed to converge to the true or high-fidelity Pareto fronts,

showing that the mechanism of VFO is working effectively. In general, the solutions

along the resolved Pareto fronts are well-distributed, though the results for the QV

test case are not quite as smooth as the other two test cases. According to the VFO

schedule defined in Table 4.2, each case used 140 high-fidelity function calls in total.

That means for each found point along the Pareto front in the proposed VFO method,

only 0.7 high-fidelity analysis was needed. These 140 sampled points were partitioned

and trained in 4 clustered Kriging models at the end of the optimization run for each

case.

4.4.2 Comparison test using ZDT problems

The popular ZDT test problems ZDT1, ZDT2, and ZDT3 were previously explored

with the early version of the VFO algorithm, with strong results presented for 5-

variable version of the problem (Zhu et al., 2014). Here, we expand the size of the

problem to 30 variables, and compare the clustered Kriging model algorithm with the

original single Kriging model algorithm proposed by Zhu et al. (2014). The problem

sets contain features that are very representative of real world optimization problems.

ZDT1 has a convex, continuous Pareto-optimal front, while ZDT2 has a non-convex,

continuous Pareto-optimal front. In ZDT3 problem, a sine function is introduced to
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Figure 4.2: Optimization results from FON, POL, and QV test problems

82



the objective function, which leads to several discrete non-continuous convex parts

in the Pareto front. This discrete feature causes additional difficulty in converging to

the true Pareto front.

These ZDT test problems are simple mathematical functions with no correspond-

ingly low-fidelity functions. Here, the same approach as that which was presented

in Zhu et al. (2014)’s work is applied. Within this approach, the original ZDT func-

tion was used as the high-fidelity function, and a Taylor series expansion with the

function value and first derivative terms was used as the low-fidelity function. The

VFO approach was applied in the second objective function for each ZDT problem.

For problem ZDT1 and ZDT2, the Taylor expansion was taken at the midpoint of

the design variable space. As for ZDT3, the expansion has to be shifted to the point

xn = 0.6, otherwise the two objectives do not compete in the low-fidelity model. The

high-fidelity and proposed low-fidelity functions for each ZDT problem are shown in

Table 4.1.

As previously stated, building an approximation model in higher number of in-

dependent variable space is difficult and requires a large number of sampling points.

It is often referred to as the curse of dimensionality in literature (Forrester et al.,

2008). Here the proposed VFO method with multiple Kriging models and Zhu et al.

(2014)’s VFO method with a single Kriging model were both tested in the same ZDT

problem set with an increased 30 variables. The optimization parameters are defined

in Table 4.3, and were kept the same for both the single Kriging model and clustered

multiple Kriging model versions of the problem. A visualization of the optimization

results are shown in Figure 4.3.

In Figure 4.3 the analytical Pareto fronts are plotted in solid and dashed lines for

the high and low fidelity versions of each ZDT problem. Found solutions by the VFO

method are plotted on top as markers, with the revised cluster Kriging model ap-

proach shown in the left-hand column and the original single Kriging model approach
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Figure 4.3: Comparison of Zhu’s single surrogate with proposed clustering approach
on 30 variable ZDT problems
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Table 4.3: Optimization Parameters for Comparison Test

Parameter ZDT1 ZDT2 ZDT3

Population Size 140
Number of Variables 30
Generation Number 160

Offset 30
Spacing 10
Density 40

shown in the right-hand column. It is clear that the VFO results all converged to the

true Pareto fronts, indicating that the proposed method works well in solving each of

the ZDT benchmarking problems with different levels of difficulties.

Additionally, it is evident that the proposed clustering implemented VFO works

better than the original VFO method as the number of variables increases to 30.

As can be seen in the subfigure (b) in Figure 4.3, errant solutions emerge at the

left side of Pareto front, and in the subfigure (f) in Figure 4.3, the VFO solutions

failed to converge to right part of Pareto front. Meanwhile, the proposed multiple

Kriging models successfully assisted the VFO converging to the high-fidelity Pareto

fronts in these ZDT test problems. Additionally, the proposed method took less wall-

clock time to complete the optimization run. This potential speed advantage was

more rigorously quantified in the example of Section 4.5. Based on these results, the

clustering VFO approach appears promising for further study on structure design

problems.

4.5 Stiffened panel design study

4.5.1 Design problem statements

The proposed method was applied to a structure optimization of a tee-stiffened

panel, which is a typical deck structure. Zhu et al. (2014) conducted a two-objective

optimization, regarding the weight and strength of this structure. Here, the design
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Table 4.4: Chromosome for Panel Design

Variable Minimum Value Maximum Value

nstiff 1 16
tp 3 mm 12 mm
tw 3 mm 12 mm
hw 30 mm 180 mm
tf 3 mm 20 mm
bf 30 mm 90 mm

problem was further explored in the weight, strength, and cost three-dimensional

trade space. The added cost objective function increases the complexity of trade space

as the distribution of non-dominated solutions extends to include cheap but heavy

panels. A complete comparison of the proposed method and original VFO method

can be shown by studying this multi-objective optimization problem. The objective

functions are defined by six independent variables. Five of the variables relate to the

plate thickness and stiffener dimensions, and one concerning the number of stiffeners

used. The independent variables are defined in Table 4.4. The panel breadth was fixed

at 3000 mm, the panel length was fixed at 1500 mm, and the remaining variables

are depicted in Figure 4.4. In this work, only the strength objective function was

investigated by the variable fidelity approach. Material was assumed to be mild steel

with a 250 MPa yield stress and an elastic modulus of 207,000 MPa.

4.5.1.1 Panel weight

The panel weight was calculated by multiplying the volume of the material and

the density of standard carbon structural steel, which was taken as 7.85 g/cm3. The

panel weight objective function was expressed as follow:

W = 7.85
g

cm3
a(tpB + nstiffAs)As = hwtw + bf tf (4.7)
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4.5.1.2 Panel cost

The cost of the panel was computed using standard cost estimating approaches

which account for cost of materials and labor cost for panel fabrication. In this work,

the formula proposed by Rahman and Caldwell (1995) was simplified for a panel

stiffened in a single direction and used to predict the total cost, C.

C = Cplate + Cstiff + Cweld + Cintersect + Celectric (4.8)

The components in this formula are presented in Table 4.5. A detailed description

of the cost formulas in this table can be found in the paper presented by Rigterink

et al. (2013).

4.5.1.3 Panel strength

In Zhu et al. (2014) two different strength calculation methods were selected to

illustrate the variable fidelity optimization scheme. Here, the same strength regression

models were used to verify the proposed revised VFO scheme. The two compressive

strength models both idealized a single tee-stiffener and attached plate as a beam-

column, ignoring supports from the longitudinal girders at the panel edge.

Figure 4.4: Sketch of independent variables.
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Table 4.5: Components of the cost model.

Coefficient Description Formula

Cplate Cost of materials for plating WpPa
Cstiff Cost of materials for longitudinal stiff-

eners
WlsClmPa

Cweld Cost of welding for longitudinal stiffen-
ers

nstiffaClsPs

Cintersect Cost of intersections between longitudi-
nal stiffeners and transverse frames and
preparation of brackets and joints

nstiffNw(Cbj + Cis)Ps

Celectric Cost of electricity, electrodes and fab-
rication cost of longitudinal stiffeners

nstiffa(Cee + Cfb)Ps

Low fidelity function

The regression model from Paik and Thayamballi (2003) was used here as the low-

fidelity function to compute strength function. Paik’s method is usually employed as a

rapid strength formula in the early design stage. The ultimate compressive strength

σu is based on the yield stress, σy , and the plate and column elastic slenderness

parameters:

σu =
σy√
q
≤ σy
λ2

q = 0.995 + 0.936λ2 + 0.17β2 + 0.188λ2β2 − 0.067λ4
(4.9)

The elastic slenderness parameters are related to the plate thickness,tp, span of the

plate between stiffeners, b, the transverse frame spacing, a, the material properties

σy and E. The column slenderness parameter, λ, depends on the area, A, and the

moment of inertia of one tee-stiffener and attached plate, I, as shown in Equation 4.10.

β =
b

tp

√
σy
E

λ =
a

πr

√
σy
E

r =

√
I

A

(4.10)
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High fidelity function

The high-fidelity function is the Faulkner et al. (1973) panel formulation, extended to

include the revised tripping formulation proposed by Faulkner (1987). This approx-

imation function has been extensively compared to experimental data and has been

found to be very accurate. A description of Faulkner’s method in Zhu et al. (2014)

is adapted here. The elastic column slenderness parameter is modified to account

the impact of plate buckling on both the effective width of the plate and the overall

column stiffness. Thus, it becomes a function of edge stress, σe:

λ(σe) =
a

π

√
σy (AS + betp)

EI ′
(4.11)

βe(σe) =
b

tp

√
σE
E

(4.12)

be
b

=


2.0
βe
− 1.0

β2
e

βe ≥ 1

1.0 βe < 1

(4.13)

b′e
b

=


1.0
βe

βe ≥ 1

1.0 βe < 1

(4.14)

where be is estimate of effective breadth accounting for plate buckling, and b′e is the

tangent effective breadth, I ′ is the tangent moment of inertia computed by replacing

b with b′e. The average stress at failure is determined with consideration of reduced

effective plate area in cases where the plate buckles:

σC
σy

=


1.0− 0.25λ2e λe ≤ 1.41

1.0
λ2e

λe > 1.41

(4.15)

σu
σy

=
σe
σy

√
AS + betp
AS + btp

(4.16)
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An iterative process is required to find the edge stress that cause column failure,

σe = σC . Here, the stiffener tripping stress is also calculated by the method proposed

in Faulkner (1987), the lower of the panel buckling and tripping stresses is taken as

the governing stress.

4.5.1.4 Enumeration

In order to examine the performance of the variable fidelity optimization result,

an independent approximation of the true Pareto front was needed. The enumeration

simulation conducted by Yi-Jen Wang was used here for reference of Pareto fronts. In

Yi-Jen Wang’s simulation procedure, each variable range was divided into 21 evenly

spaced values for the variable ranges showed in Table 4.4, except for the integer

variable of stiffener number, which varies from 1 to 16 at integers only. There are

about 4 million design points to be evaluated per stiffener number, and 65 million

design points overall. The NyX cluster computer at the University of Michigan was

used to conduct the enumeration run. The non-dominated points that consists the

true Pareto front of this three-dimensional optimization problem were saved in a

database for use in the performance metrics introduced next.

4.5.2 Performance metric for evaluating VFO results

To evaluate the performance of the revised VFO strategy, statistical metrics that

can determine the Kriging prediction accuracy and the quality of the Pareto front

are needed. Here four measures of the found Pareto front originally proposed in Zhu

et al. (2014) are employed. The following description summarizes the description in

Zhu et al. (2014).
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4.5.2.1 Distance metric

A metric that measures the normalized Euclidean distances between the Pareto

front produced by the optimizer and the true Pareto front generated from enumeration

is presented. The metric is the expected value of the normalized distance between

each point, fi , in the optimizer-produced Pareto front and the closest point in the

enumeration Pareto front, dk , calculated as follows:

Score = E(dmini)

dmini = mink

√√√√ J∑
j=1

a2j

aj =
dk,j − fi,j
dk,j

(4.17)

where J is the number of objectives, there are i points in the surrogate produced

Pareto front and k points in the exact Pareto front.

4.5.2.2 Error metric

The second metric is to evaluate the quality of the Kriging models in terms of

prediction accuracy. The error metric calculates the mean-square error between the

VFO-scaled low-fidelity objective function value and the high-fidelity function value.

The metric is computed as:

MSEV FO =
1

N

∑√
fh(x)2 − (fg(x)ff (x)2 (4.18)

All the N points in the final Pareto front are calculated regardless of the relative error

returned by the Kriging models.
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4.5.2.3 Crowding distance

The crowding distance metric is a density estimation described in Deb et al. (2002).

The average crowding distance of all the points in the Pareto front is used to track

whether the Pareto-optimal solutions are evenly distributed. The metric would indi-

cate whether the new algorithm causes undesirable clumping Pareto points.

4.5.2.4 Span of Pareto front

The last metric shows the span of the Pareto front. It originates from a comparison

metric proposed by Lee et al. (2005), and is adapted for the present work where a

reference Pareto front is available. The metric is expressed as follow:

span =
J∏
j=1

∣∣∣∣fjMAX
− fjMIN

djMAX
− djMIN

∣∣∣∣ (4.19)

Within this expression, f is the maximum or minimum function evaluation for jth ob-

jective function in the Pareto front, and d is the corresponding maximum or minimum

function evaluation from the enumeration solutions.

4.5.2.5 Enumeration results

Following the enumeration procedures described before, the optimizer generates

two Pareto fronts with respect to the Paik strength method and Faulkner strength

method. The total number of individuals that compose the approximated Pareto

front with Paik strength method is 18,459, while about half as many points remain

for the Faulkner front, totaling 8,852. The three-objective enumeration results are

generally similar for both objective functions, and are shown in Figure 4.5 and 4.6.

The results do not form a true surface; instead, a single line through the weight,

cost, and strength space is formed for each integral number of stiffeners. The space

between these lines appears unreachable. The shapes between these lines are similar
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Figure 4.5: Enumeration results using high-fidelity Faulkner strength function.
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Figure 4.6: Enumeration results using low-fidelity Paik strength function.
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between the methods, with slightly a little more complexity and roughness in the

Faulkner front, probably owing to the more complex objective function formulation

with more discrete failure modes than the Paik formulation. The enumeration results

were saved and used as a reference for the distance metric described in the previous

section.

4.5.3 Variable fidelity optimization results

In this section, the stiffener panel design problem was optimized using both Zhu

et al. (2014)’s VFO approach with single Kriging model, and the proposed VFO using

clustered multiple Kriging models respectively. To establish a more reasonable refer-

ence, the optimizer parameters were set at 130 individuals and 140 generations. The

three different updating strategies which had been proved to be the most successful

strategies in the standard VFO work (Zhu et al., 2014) were used to examine the

three-objective optimization problem.

Due to the stochastic nature of the genetic algorithm, every case was run for

25 replicates using different pseudo-random number generator seeds. It was expected

that the influence of the probabilistic selection, crossover, and mutation in the genetic

algorithm could be smoothed out using this approach. The four comparison metrics

presented in previous section were calculated for each replicate. Then, the average

and standard deviation of these metrics were computed for the 25 replicates. The

average value was used to estimate the performance of the VFO approach in each

case.

4.5.3.1 Single Kriging based VFO method

Zhu et al. (2014)’s VFO approach using one single Kriging surrogate model was

studied first as a baseline. Three cases were chosen to represent each of the updating

strategies. In addition to these three cases, the optimization results using only high-
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Table 4.6: VFO updates schedules

Case Offset Spacing Density No.HFC

1. All high fidelity - - - 18,200
2. Standard update 30 10 60 660
3. Dense update 30 20 120 660
4. Late update 50 5 60 1080
5. All low fidelity - - - 0

Table 4.7: VFO Updating Metrics from standard VFO method

Case
Distance Obj. error Span Crowding dist.

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 0.033 0.007 1.00 0 0.988 0.031 0.047 0
2 0.079 0.017 1.03 0.023 0.577 0.047 0.047 0
3 0.087 0.018 1.15 0.107 0.571 0.055 0.046 0
4 0.077 0.012 1.02 0.109 0.547 0.046 0.047 0
5 0.112 0.010 1.36 0.065 1.097 0.002 0.047 0

fidelity functions and only low-fidelity functions are listed for reference. All the cases

are shown in Table 4.6, along with the associate number of high-fidelity function calls

required.

The results are shown in Table 4.7. It can be seen that the distance metrics

have moved only slightly from low-fidelity results. This shows in a three-objective

optimization problem, the high-fidelity and low-fidelity strength objective functions

differ strongly in the Pareto front. This could be seen in the objective function

error for the all low-fidelity method, which has a relatively larger bias value of 1.36

compared to the two-objective low-fidelity result in Zhu et al. (2014). Based on the

crowding distance metric results, the VFO results maintain a diverse solutions set in

the Pareto front; however, the span metrics were all reduced in VFO solutions. This

reduction in the VFO approach is due to the VFO fronts excluding the high-weight,

high-strength panels.
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Table 4.8: VFO updating metrics from proposed method

Case
Distance Obj. error Span Crowding dist.

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

1 0.033 0.007 1.00 0 0.988 0.031 0.047 0
2 0.077 0.014 1.02 0.016 0.585 0.065 0.047 0
3 0.086 0.018 1.15 0.107 0.571 0.056 0.047 0
4 0.066 0.011 1.01 0.006 0.574 0.051 0.047 0
5 0.112 0.010 1.36 0.065 1.097 0.002 0.047 0

4.5.3.2 Clustered multiple Kriging based VFO method

All of the cases in Table 4.6 were also optimized in the proposed VFO scheme

using clustered multiple Kriging models. The results are shown in Table 4.8 below.

There are several noticeable differences compared to results in the previous section.

With the application of the multiple Kriging surrogates strategy, some improvements

in the prediction error metrics are seen, particularly for Case 4. This means that the

proposed VFO scheme performed better in approximating the high-fidelity function,

using low-fidelity function combined with multiple Kriging models. The span and

crowding distance metrics show similar results to the original method.

Even though it has been shown that the amount of VFO updating effort used was

insufficient in converging closely to the high-fidelity Pareto front, the new method

has improved the distance metric and pushed the VFO results towards the high-

fidelity Pareto front. The most obvious improvement occurred in Case 4, which has

the largest number of high-fidelity function calls, where the distance metric improves

15% with the same amount of high fidelity simulations. This is supportive of the idea

that the multiple surrogates are advantageous for large surrogate data set sizes.

4.5.3.3 Statistical test on distance metric

By comparing the four metrics in Table 4.7 and Table 4.8, the most obvious

improvement happens in the distance metric, the other three metrics do not show
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Table 4.9: Case statistics of distance metric

Case
Single Kriging Multiple Kriging

N t
Mean St.Dev. Mean St.Dev.

2 0.079 0.017 0.077 0.014 25 0.45
3 0.087 0.018 0.086 0.018 25 0.19
4 0.077 0.012 0.066 0.011 25 3.38

significant changes. In order to examine the impact of proposed multiple kriging

method on the improvement of convergence, a one-tail statistical test was conducted

to compare the distance metric value obtained in Single Kriging based VFO method

and Clustered multiple Kriging based VFO method. In this case, the null hypothesis

is the difference between the two algorithms on the convergence of Pareto front is 0,

while the alternative hypothesis is that the proposed method did have a statistically

significant improvement effect on the distance metric. The formula for T-test is listed

as follows:

t =
X1 −X2√

var1/n+ var2/n
(4.20)

By substituting the values from Table 4.7 and Table 4.8, the calculated t values

are shown in the Table 4.9.

As we conducted 25 replicates for each VFO updating case, the total group size

is 50, so the degree of freedom is sample size minus 2, which is 48. By looking up a t

table with 48 degrees of freedom, the threshold value for alpha = 0.005 is 2.682, and

for alpha = 0.01 the table value is 2.407.

Therefore it is obvious that for Case 4 the t-statistic reached beyond the threshold

of statistical significance, and we can reject the null hypothesis and conclude that the

new algorithm improved the distance metric and helped converging more closely to

the true Pareto front than previous method. As for Case 2 and Case 3, it is likely that

the high fidelity function calls in these two VFO updating schedule were insufficient

to reveal the difference between the two algorithms. This indicates that the new
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Table 4.10: Average wall clock time for one complete run of algorithm over 25 repli-
cates (sec)

Case Offset spacing density VFO using single Kriging VFO using multiple Kriging

2 30/10/60 2677 826
3 30/20/120 3483 852
4 50/5/60 5138 1106

clustering Kriging model method performs at least as well, if not better, than the

previous single Kriging model method in terms of convergence to the Pareto front.

In the following, the VFO updating effort will be increased to further study its effect

on convergence.

4.5.3.4 Computational efficiency study

In achieving more converged Pareto optimal solutions, the multiple surrogate man-

agement strategy performed significantly better than single surrogate method. A

quantitative comparison of the wall-clock time taken by each method was completed.

In comparison of these two different VFO strategies applied in NSGA-II, it is clear

that the proposed method outperformed the original method regarding optimization

efficiency.

In this work, a profiler code was employed to record the run time of the entire

optimization program. The project was sent to the University of Michigans Flux

cluster which provided a high performance computing environment. The VFO cases

listed in Table 4.6 were analyzed in computational wall time consumption using both

methods. The results are shown in Table 4.10. The wall time for one seed listed in

the Table 4.10 was based on the average time for 25 replicates in each case.

Due to the new Kriging surrogate model construction approach, the proposed VFO

method showed a significant amount of computational time saving, as compared to

the original method. It is because of the newly introduced clustering strategy, the new

VFO method is capable to manage multiple surrogates in the design space and avoid
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Table 4.11: Extended VFO run of case o50s5d60 using multiple surrogates

Case Generations High fidelity runs Distance Obj. error Wall time used (s)

50/5/60 140 1080 0.066 1.009 1140
50/5/60 280 2760 0.050 1.007 4905
50/5/60 350 3600 0.048 1.006 8112

solving large Kriging models. These merits helped to result in a large computational

efficiency improvement for multiple objective design optimizations. The tractability

of the large sampling size surrogate modeling problem is successfully addressed with

the clustered VFO method. Now the VFO methodology is equipped with better

surrogate capability to converting the Pareto front to the high-fidelity front.

4.5.3.5 Increase the Kriging sample size

As noticed in Table 4.7 and Table 4.8, the VFO results stayed in the middle of

high-fidelity result and low-fidelity result. More effort is required to help the VFO

converge to the high-fidelity solutions; however, in doing so, the original single Kriging

model strategy becomes a limiting factor. As the number of Kriging sample points

increases, the single Kriging model becomes time-consuming and difficult to reliably

solve. In this investigation, the number of generations was increased in the optimizer

runs. The specific Case 4 (o50s5d60) was chosen with generations extended from 140

to 280 and 350. The test runs are summarized in Table 4.11.

The test results verified that the single Kriging struggles in large surrogate size

situations. For the single Kriging model, the VFO takes too much computational time

and is deemed not practical. The single Kriging model takes more time to complete

140 generations than the multiple does to complete 280 generations. In contrast, the

proposed multiple Kriging strategy functioned well in these large problems, including

cases with up to 350 generations as shown in Table 4.11.

Table 4.11 demonstrates that the clustering Kriging model can significantly further
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reduce the distance metric. This indicates that the problem can be addressed by the

VFO method using the new Kriging construction method. In the 280 generations

case, the number of surrogate models used increases to 28 in the end, and about

37 surrogate models are used in the 350 generation case. The multiple surrogate

strategy works well as better convergence is observed. The prediction error metrics

using the new method also show promising improvement, indicating that the Kriging

predictions are accurate enough to correct the low-fidelity model to high-fidelity model

in the Pareto front region. Most importantly, the distance metric shows significant

improvement. As can be seen in Table 11, the VFO is converging from the all low-

fidelity Pareto front with a distance metric of 0.112 to 0.048, which is close to the all

high-fidelity Pareto front with a distance metric of 0.033. These results are obtained

using only 20% of total HFC effort of a non-VFO multi-objective genetic algorithm

run, which is described as Case 1 in Table 4.6. For each point found along the Pareto

front, only 27.7 high-fidelity calls are needed, while Case 1 needs 140 high-fidelity

calls per point to generate the Pareto front.

4.6 Summary

This chapter explored further on surrogate-assisted multi-objective evolutionary

optimization algorithm development. Surrogate modeling is developed in response

to the various fidelity tools in structural simulations. A novel variable fidelity opti-

mization (VFO) is presented where multiple surrogate models are built and managed

on-line to improve the efficiency of the computational expensive multi-objective evo-

lutionary optimizations.

A challenge of existing VFO approaches using a single surrogate is that as the

optimization proceeds and the surrogate model size increases, the difficulty in solving

the Kriging surrogate also increases. This significantly impacts the speed and numer-

ical stability of the VFO method. A novel variable fidelity optimization scheme using
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multiple local Kriging surrogate models are developed to elevate the performance of

VFO. A clustering algorithm is employed to partition the Kriging sample points set

into local, small sub-surrogates. In this way, the numerical difficulties in building

large Kriging models can be avoided. Its applicability was tested on six standard

two-objective test problems and a three-objective stiffened panel deisgn problem.

The clustered Kriging model VFO method proposed performed strongly on all

problem types. On the FON, POL, and QV test problems it was able to success-

fully resolve complex Pareto fronts guided by approximate, low-fidelity versions of

the Pareto front. On the ZDT1, ZDT2, and ZDT3 problems the method again found

complex Pareto fronts. Additionally, the method was shown to be superior to the

earlier single Kriging model version of the VFO algorithm in terms of accuracy and

distribution of points on the Pareto font. For the complex three-objective stiffened

panel problem, this improved performance was quantified. The method proposed was

shown statistically to equal or exceed the single-Kriging model in terms of distance

of found points from the Pareto front, error in objective function evaluations, span

of the retuned Pareto front, and crowding distance along the Pareto front. This was

achieved via Welchs T-Test over 25 replicates of each algorithm. Additionally, the re-

vised method took only 21%-31% of the runtime of the single Kriging model method.

Finally, the clustered Kriging model was computationally efficient and numerically

stable enough to be run longer than the previous single Kriging model method, allow-

ing a more accurate Pareto front to be evolved. It is believed that the proposed mul-

tiple Kriging modeling strategy enriched the on-line surrogate modeling techniques

to better addresss structural design problems in multi-objective optimizations.
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CHAPTER V

Efficient reliability-constrained structural design

optimization including interval uncertainty

5.1 Introduction

Managing uncertainty, especially in the early stages of structural design, is crit-

ical to many novel designs and materials. While robust design and reliability-based

optimization frameworks have been successfully developed (see e.g. Richardson et al.

(2015); Wang et al. (2015); Hardin et al. (2015); Meng et al. (2015)) for recent work

in this field), most of these formulations require a precise stochastic definition of the

uncertainty involved. However, early stage structural design with novel materials or

applications is marked by comparatively limited and vague information about the

design and associated uncertainties. Uncertainty associated with limited knowledge

is epistemic in nature and is normally reducible by investment in engineering in-

vestigation. Consequently, traditional reliability-based design tools may not be well

suited to model the design situation as the epistemic uncertainty normally cannot be

stochastically defined. This chapter presents the research work that enables interval

uncertainty analysis to unveil the impact of epistemic uncertainty in Reliability based

marine structural design optimization. The contents presented within this chapter

are under consideration for publication in Liu et al. (2016). Dr. Hankoo Jeong pro-
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vided the composite structural analysis tool for a case demonstration of the proposed

framework.

Reliability analysis with non-probabilistic interval uncertainty (Du, 2007; Jiang

et al., 2011) has been studied as an approach to modeling epistemic uncertainty. While

this removes the need to define a precise stochastic distribution, reasonable uncer-

tainty bounds still must be developed. The present approach combines reliability-

based design optimization and interval uncertainty. Then, the width of the uncer-

tainty intervals are treated as an objective in a multi-objective optimization approach

while maintaining consistent reliability levels. The resulting Pareto fronts show the

impact of lack of knowledge on design performance and allow engineering design teams

to prioritize where to invest time in reducing epistemic uncertainty. The core con-

tribution required to make such an approach practical is a novel adaptive surrogate

modeling technique for efficient interval reliability analysis. This surrogate approach

allows the combination of reliability models, interval uncertainty, and multi-objective

optimization to remain computationally feasible.

The central concept of the proposed framework is that interval uncertainty is a

useful representation of uncertainty in early-stage design knowledge. Conventional

structural optimization approaches (Jin and Branke, 2005) often use stochastic form

to account for uncertainty in the design. However, in the field of marine structures,

such models are difficult to apply early in the design process as precise stochastic

uncertainty information does not yet exist. Any error in the assumption of the distri-

bution can be harmful later in the design (Ben-Haim and Elishakoff , 2013). This is

especially true for marine structures, where too low early structural weight estimates

can cause extensive design re-work or in-service structural failures (Keane, 2012). It is

argued that interval uncertainty can be used to address this concern where no assump-

tion of distribution is needed (Liu and Collette, 2015). Among other non-traditional

uncertainty models (Möller and Beer , 2008), interval uncertainty was selected as in
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most cases the non-deterministic parameters and variables are only known within

intervals (Ferson et al., 2004). This work is the first to explore adaptive surrogate

modeling to reveal the coupling between structural optimization with interval un-

certainty while meeting reliability-based constraints. The interval uncertainty range

will be treated as design variables, and the optimizer will determine feasible design

configurations with respect to various uncertainty intervals. The aim is to resolve

the trade-off between interval uncertainties and design performance through the op-

timization, thus unveiling the overall impact of early stage design uncertainty on the

design.

A complication in selecting interval uncertainty is that working with intervals in

optimization can be computationally expensive. In design optimization involving in-

terval uncertainty, a max-min optimization (Ong et al., 2006) is often needed. In

min-max approaches, the optimizer searches for a solution that has the best worst-

case performance in the uncertainty interval. In terms of reliability analysis involving

interval uncertainty, the worst case of interval analysis needs to satisfy the speci-

fied reliability constraint. As reliability simulation itself normally involves a search

for most probable point of failure (Hasofer and Lind , 1974), reliability analysis with

interval uncertainty becomes a nested optimization in which the worst case perfor-

mance needs to be located. Considering that such analysis is repeatedly requested in

population-based metaheuristic design optimization approaches, the computation can

soon become intractable. This chapter presents a method that is capable of locating

the worst case reliability result while remaining computationally efficient.

Many previous authors have studied how to efficiently solve reliability-based design

optimization (RBDO) problems. One way is focused on reliability problem formula-

tion, where the performance measure approach (Tu et al., 1999; Youn et al., 2003),

sequential RBDO (Du and Chen, 2004) and single-loop RBDO (Liang et al., 2008)

have been proposed. However, they are not ideal as solutions to interval uncertainty
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problems where worst case reliability needs to be computed. A more direct way to

reduce computational cost is to use surrogate models (Kim and Choi , 2008; Kucz-

era and Mourelatos , 2009; Sudret , 2012). Among the surrogate methods proposed,

Kriging (Sacks et al., 1989) shows promise as an approximation tool in reliability

simulation. Kriging was first proposed for structural reliability problem by Kaymaz

(2005), and recent development can be found in Bichon et al. (2008), Echard et al.

(2011), and Dubourg et al. (2011). These studies on Kriging methods for reliability

mainly focused on the approximation of the limit state function, and then applying

Monte Carlo Simulation (MCS) method for reliability analysis. Such methodology

has also been applied in solving reliability analysis with interval uncertainty problems

(Yang et al., 2014). While Kriging-assisted MCS methods may be a viable strategy for

a single reliability analysis, adopting this methodology in population-based optimiza-

tion algorithms, such as evolutionary algorithms, can be problematic, as the large

number of reliability analyses required can quickly render MCS method extremely

costly even with the help of Kriging.

This study introduced two new refinements to the interval uncertainty problem

with reliability constraints first presented at the MARSTRUCT 2015 conference (Liu

and Collette, 2015). First, a new online surrogate model construction technique is pro-

posed, where the optimizer can dynamically refine an initial coarse surrogate model

over the course of the investigation. Second, a quadratic approximation strategy is

used to remove the innermost search on the surrogate model - that for worst-case reli-

ability value in an interval. By coupling these strategies together, the computational

burden of the proposed method is significantly reduced. Less time is spent building

the surrogate model upfront. The quadratic approximation, when coupled with se-

quential refinement of the surrogate has proven reasonable in practice for cases where

the worst-case performance is located in the interior of the interval search range, or at

the boundary of the interval search range. The method proposed here can accurately
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estimate worst-case reliability performance for multi-objective evolutionary algorithm

with a high level of efficiency.

This chapter is organized as follows. Section 5.2 reviews the interval uncertainty

and interval reliability analysis. Subsequently, Section 5.3 introduces the proposed

surrogate modeling method and the multi-objective optimization framework for trade-

off study. Next, the developed method is examined in an interval reliability bench-

mark problem (Du, 2007), and then the validated method is applied to CFRP top-hat

stiffened panel design (Maneepan et al., 2005). Discussion and concluding remarks

are given in the end of the chapter.

5.2 Reliability analysis with interval uncertainty

This work treats uncertainties that are due to lack of information via an interval

formulation. There are two critical components to such an approach: the definition

of the interval model and the application of this model in reliability analysis. Each

of these components is reviewed in turn in this section.

5.2.1 Interval uncertainty

Interval uncertainty provides an appropriate alternative from stochastic uncer-

tainty, as no information regarding stochastic distribution is required. Interval mod-

eling (Moens and Vandepitte, 2007) is usually applied in a simple closed form:

Y = [Yl, Yh] = {Y ∈ I|Yl ≤ Y ≤ Yh} (5.1)

Interval uncertainty model is concerned with investigating the whole range of the po-

tential values bounded by a higher bound and a lower bound. There is no assumption

of probabilistic distribution within these bounds; specifically, a uniform distribution
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is not assumed. The interval definition can also be interpreted in another form:

∀Y ∈ [Y0 −∆, Y0 + ∆] (5.2)

where ∆ is defined as the maximum deviation of uncertainty from nominal value,

representing the range of the interval uncertainty. In this form, it is clear that interval

uncertainty can reflect the tolerance for error in the design (Jiang et al., 2015). The

impact of interval ranges on the design performance is the aim of this work. This

trade space can be studied by making a version of ∆ one for the objectives of the

optimization problem, as reviewed in Chapter III.

5.2.2 Worst-case reliability index with interval uncertainty

Without interval uncertainty, reliability analysis is concerned with calculating the

probability of failure in a limit state function:

Pf = Pr(g(X) ≤ 0) =

∫
g(X)≤0

fX(X)dX (5.3)

where g denotes the limit state at which the system is safe if g(X) ≥ 0. X is a vector

of random variables accounting for stochastic uncertainties, and fX(X) is the joint

probability density function. Required and achieved values of Pf are normally given

in terms of the safety index, β, with a standard normal distribution Φ:

Pf = Φ(−β) (5.4)

As direct integration of the expression given in Equation 5.3 is difficult, many ap-

proximate methods of estimating β have been proposed. Here, for simplicity, the first

order reliability method (FORM) Hasofer and Lind (1974) is used. In FORM, the
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reliability index can be computed in the following procedure:

β = min
U
‖U‖

s.t. g(U) = 0

(5.5)

where U is the vector of transformed standard normal variables from random vari-

ables: ui = Φ−1(Fxi(xi)). The reliability index can also be interpreted as the minimum

distance from origin to limit state in U space.

Given that the information about stochastic uncertainty models are usually incom-

plete in the early stage of innovative marine structure design, the calculated reliability

index may not be accurate enough to ensure sufficient safety in design (Ben-Haim and

Elishakoff , 2013). Interval uncertainty can be introduced into reliability analysis to

model the epistemic contribution to uncertainty and address this concern (Du et al.,

2005). Generally, when interval uncertainty parameter is involved in the limit state

function, the interval reliability index output becomes an interval: β ∈ [βL, βH ]. In

this reliability index interval, the minimum and hence the worst-case reliability index

βL is used for safety examination.

Here, interval parameter Y is used to illustrate the process in computing βL.

After the transformation of random variables X to U space, the limit state function

g(U, Y ) = 0 is defined with both normal variables U and interval parameter Y .

Though there is proposed work (Jiang et al., 2012) conducting monotonicity analysis

for reliability with interval parameter, most of the time an optimization search is

needed to locate βL in the interval reliability output. The procedure is defined with

the equations below:

inner loop :


β(Y ) = min

U
‖U‖

s.t. g(U, Y ) = 0

outer loop :


βL = min

Y
β(Y )

s.t. YL ≤ Y ≤ YH

(5.6)
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The above procedure is a nested optimization process where the outer loop mini-

mizes the reliability index by locating the worst-case combination of interval variables

Y ∗, while the inner loop is a reliability determination via any standard reliability eval-

uation method. In this work, the FORM procedure defined in Equation 5.5, is used

for the reliability index evaluation.

5.2.3 Impacts of interval reliability analysis

A reliability-based design optimization that accounts for worst-case reliability us-

ing FORM analysis can be expressed as follows:

min f(µ(X))

s.t. βL = min
Y

fFORM(X,Y ) ≥ βt

Y ∈ [Y 0 −∆,Y 0 + ∆]

(5.7)

where f is a performance function associated with design variables and βt is the target

reliability index constraint. fFORM denotes the process by which the reliability index

is evaluated. Additional constraints that do not involve Y or may be deterministic

could also be added.

While most studies on interval reliability assumed fixed interval domain, this dis-

sertation work argues that various range values ∆ of interval uncertainty need to be

examined. The range ∆ reflects the epistemic uncertainty present. However, epis-

temic uncertainty is normally reducible by investing engineering time and expense to

generate and analyze additional data. From the project management perspective, it

is interesting to explore what the impact of epistemic uncertainty is on design perfor-

mance and what performance gain could be achieved by reducing it. It is proposed

that the width of ∆ can be set as an objective in multi-objective optimization along

with conventional objectives such as weight, cost etc. The resulting Pareto trade

space will show the engineers the impact of epistemic uncertainty on the performance
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of multi-objective optimization.

Computational efficiency is the primary issue that needs to be addressed in order

for the proposed interval study. Due to the optimization search for worst-case combi-

nation of interval variables Y ∗, the number of reliability analyses needed can increase

significantly and makes the computation intractable for design optimization. This

chapter proposes an advanced surrogate modeling technique that is capable of con-

ducting the worst case search in interval domain and clearing the obstacle in proposed

trade study on interval uncertainty.

5.3 Trade-off analysis with adaptive surrogate modeling

5.3.1 Overview

In this section, an efficient implementation of the interval reliability analysis is put

forward in a multi-objective optimization framework. Since the design optimization

cycle time is closely related to the number of reliability simulations in Equation 5.7,

in this study, FORM reliability simulation is approximated by a proposed Kriging

surrogate model in the optimization. Moreover, the surrogate method proposed here

specifically address the problems where the worst-case search is needed in interval

variable domain. In each surrogate prediction for the reliability performance of the

individual, an estimated worst-case reliability index can also be provided simulta-

neously in the proposed method. Thus, a higher level of efficiency is achieved by

removing the inner-loop search. The surrogate-assisted RBDO that accounts for

worst-case reliability can be expressed as the following:

min f(µ(X))

s.t. β̂L(X,Y ) = ŷ(X,Y ∗) ≥ βt

(5.8)
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where [X,Y ∗] is the estimated worst-case scenario of design point [X,Y ] from the

surrogate model. ŷ means that the surrogate model is used to approximate FORM

simulation. The Kriging theory and the derivation of worst-case estimator are pre-

sented in sequence. Afterwards, the multi-objective optimization for interval uncer-

tainty trade study is introduced.

5.3.2 Kriging modeling

Kriging is a powerful surrogate model that has been widely used to approximate

computationally expensive simulations. An in-depth Kriging theory can be found in

works of Sacks Sacks et al. (1989) and Simpson Simpson et al. (2001). As a brief

explanation, Kriging predicts the function value ŷ at an unobserved point based on

a set of sampled points through a realization of a regression model and a stochastic

process:

ŷ(x) = fTβ + z(x) (5.9)

where f is regression basis functions by user’s choice and β are regressional coeffi-

cients. In this work, ordinary Kriging is used; thus, f is a vector of all 1.0 with length

ns, ns is the number of initial sampled points. The stochastic process z is assumed

to have zero mean and a covariance of:

E[z(xi)z(xj)] = σ2R(θ, xi, xj) (5.10)

where σ is the process variance and R(θ, xi, xj) is the correlation model. A commonly

used Gaussian correlation model is adopted here:

R(θ,xi,xj) = exp(−
nv∑
k=1

θk(|xik − x
j
k|

2) (5.11)
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where θ is a correlation parameter vector that is found by optimizing a maximum

likelihood function, nv is the number of design variables. After that, the Kriging

predictor for an unobserved point x can be expressed as the following:

ŷ(x) = fTβ + rT (x)R−1(Y − Fβ) (5.12)

where β is computed by least square regression, the vector r measures the correlation

between the prediction point x and the sampled points [x1...xm].

The mean square error s2 of the predictor can also be provided:

s2(x) = σ2
(

1 + uT
(
F TR−1F

)−1
u− rTR−1r

)
(5.13)

where u = F TR−1r− f . As an indication of prediction quality, s2 will be used later

for adaptively improving the modeling.

From Equation 5.12 it follows that the gradient of the Kriging predictor can be

derived as follows:

Jŷ = Jf (x)Tβ + Jr(x)R−1(Y − Fβ) (5.14)

where Jf and Jr are the Jacobian of f and r, respectively. Jf is [On×1] as f is a

vector of constants in ordinary Kriging.

The ith row of the Hessian matrix of the Kriging predictor,

Hi,: = [
∂2ŷ

∂xi∂x1
,
∂2ŷ

∂xi∂x2
, ...,

∂2ŷ

∂xi∂xnv
] (5.15)

can also be derived as follows:

Hi,: =
∂Jr(x)T

∂xi
R−1(Y − Fβ) (5.16)
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where: (
∂Jr(x)

∂xi

)
mn

=
∂2R(θ,x,xm)

∂xi∂xn
,m = 1, ..., ns, n = 1, ..., nv (5.17)

These properties will be used to accelerate the worst-case performance prediction

search, as explained in next section.

5.3.3 Worst-case prediction and adaptive refinement

In this study, the Kriging surrogate model is used as a worst-case estimator to

replace the optimization search that is conventionally required in locating the worst

case Y ∗. Y ∗ is expressed as follows:

Y ∗ = arg min
Y ∈I

f(X,Y ) (5.18)

where I = [Y L,Y U ] is the bounded interval variables domain. In the proposed

surrogate method, Y ∗ is estimated in a single Kriging evaluation and therefore avoids

an additional nested optimization search.

For every candidate point D that has n design variables and m interval vari-

ables D = [X1, ..., Xn, Y1, ..., Ym], the predicted response ŷD, Jacobian matrix JD,

and Hessian matrix HD, can be provided by the surrogate. Within JD and HD, the

components associated with interval variables Y will be sorted out and assembled to

form local Jacobian and Hessian matrices for interval domain:

JY = [
∂ŷ

∂Y1
, ...,

∂ŷ

∂Ym
]T

HY =


∂2ŷ
∂Y 2

1
· · · ∂2ŷ

∂Y1∂Ym

...
. . .

...

∂2ŷ
∂Ym∂Y1

· · · ∂2ŷ
∂Y 2

m


(5.19)

Afterwards, a quadratic model for the interval domain can be established using
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JY , HY and ŷD:

ŷ(Y + sY ) ≈ 1

2
sY

THY sY + JY sY + ŷD (5.20)

where sY is called the Newton step to the minimum of the quadratic, which is the

estimate of worst-case performance. sY can be obtained by:

sY = −H−1Y JY (5.21)

In many engineering applications, performance may degrade as uncertainty increases.

In this case, the worse case performance will locate the maximum possible uncertainty.

However, in the quadratic approximation proposed, this will result in the Hessian be-

ing negative, and the Newton step approach will not function. In implementing the

algorithm, this particular situation is caught by program logic, and the Jacobian used

to determine which interval boundary should be returned as the worse-case perfor-

mance. The algorithm has been tested on problems where the worse performance falls

in the middle and at the boundary of the interval, and in both cases the algorithm

has proven robust.

Assuming the quadratic approximation implied by this approach matches the

underlying Kriging model, the worst case can be directly determined as Y ∗ = Y +sY .

This method is much more efficient for the worst-case search as it eliminates the inner

optimization run originally required in Equation 5.18.

However, there are two levels of nested assumptions in this approach. First, it

is assumed that the quadratic approximation of the Kriging surface is accurate, and

the Hessian is positive. Second, it is assumed that the Kriging model is a faithful

model of the underlying reliability simulations. To ensure that these assumptions are

both reasonable, two online refinement criteria are used. These criteria are evaluated

every time a worst-case performance prediction is made, and if either is violated,

an updated prediction is generated. This scheme will ensure that an accurate worst
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case performance prediction is provided for optimization while refining the Kriging

model to increase the quality of the surrogate model as the optimization runs. The

refinement criteria are as follows:

1. Based on the initial predicted worst-case design D
(1)
worst, a repeated worst-case

prediction D
(2)
worst is made reestablishing the quadratic approximation at the

previous worst-case point D
(1)
worst. The two outcomes of these two searches need

to be sufficiently close;

2. The U metric proposed in Echard et al. (2011) for Kriging model accuracy is

used here:

U =
ŷ(Dworst)− βt
s(Dworst)

(5.22)

where s is the Kriging variation derived in Equation 5.13. This metric compares

the distance from the reliability constraint boundary to the predicted error in the

Kriging model. Points close to a constraint boundary or with large prediction

errors would be highlighted for refinement. A minimum value of 3.0 is required

for U metric in this study.

The first criterion ensures that the worst-case prediction is stable by an iterated

prediction check. The second criterion establishes a lower confidence bound (Cox

and John, 1997) regarding the target value βt. The U metric utilizes the Kriging

variation information to ensure the accuracy of prediction. A minimum value of 3.0

suggests that the probability of making a mistake on ŷ ≥ βt is Φ(−3) = 0.135%. In

each worst-case estimation, these two criteria will be examined, and any violation

will be used as a guidance to update the surrogate model. The procedure is outlined

in Algorithm 3.
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Algorithm 3 Worst case prediction and updating scheme.
BEGIN
Initialize: Train an initial Kriging model
for Candidate design Di = [X,Y ] do

Predict the worst case performance D
(1)
worst = [X,Y ∗]of Di;

Repeat the process by predicting D
(2)
worst of D

(1)
worst;

Compute the U metric, and compare two predicted worst cases;
if |ŷ(D

(2)
worst)− ŷ(D

(1)
worst)| ≤ 10−3 and U ≥ 3.0 then

Do not update Kriging
else

Evaluate β(Di) using exact reliability analysis
Update Kriging model
Estimate Dworst again

end if
end for
Set reliability index of Di as ŷ(Dworst)
END

5.3.4 Multi-objective optimization with interval variables

The goal of the proposed method is to explore the impact of reducing the width ∆

of interval uncertainties on design performance. The resulting trade space will help

prioritize areas for engineering investment to reduce epistemic uncertainty. With the

developed worst-case estimation technique, this trade-off study of interval uncertainty

can be resolved in a multi-objective optimization framework. This work proposes to

couple interval uncertainty into structural design optimization by treating interval

widths ∆ as design variables, and an interval reduction metric as objective function.

Some interval reduction measures can be found in the work of Li et al. (2009). Here,

a simple inverse metric of interval variable ranges production is used as an indication

of the cost needed to gain relevant information and reduce the interval uncertainty:

Cost =
1∏I

i=1 ∆i

(5.23)

The interval reduction cost function and structural performance function will be

optimized within NSGA-II - a multi-objective genetic algorithm optimizer proposed
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by Deb et al. (2002). The NSGA-II algorithm is an elitist non-dominated sorting

genetic algorithm that has proven to be powerful in capturing a set of diversified

Pareto optimal solutions. In NSGA-II, children population is created from parent

chromosomes by both crossover and mutation. The SBX method is adopted here for

crossover with an exponent of 4.0. The probability of crossover operation is 0.8. The

random mutation rate is set at a low probability of occurrence of 0.1%, exponent

rate of mutation operator is 4.0. These genetic algorithm operators have proved to

be robust in finding the Pareto front in the previous investigation of multi-objective

optimization.

Relying on the proposed adaptive surrogate modeling strategy to estimate worst-

case reliability, the optimizer can quickly evaluate the adequacy of structural design

with different uncertainty interval widths, and thus keeps the interval computation

tractable. The surrogate-assisted optimization process is summarized in Algorithm 4

below.

Algorithm 4 Adaptive surrogate-assisted MOGA with interval variables.
BEGIN
Initialize: Latin Hypercube Sampling method to collect initial sample points,
evaluate sampled points using FORM and construct a Kriging surrogate model;
Initialize NSGA-II.
while Termination criteria of GA is not met do

for Individual Di in population do
Evaluate fitness values of Di using objective functions [f, Cost];
Estimate the worst case reliability index β̂L of Di by surrogate
Check updating criteria described in Algorithm 3
if Status is updating Kriging then

Evaluate β(Di) using exact reliability analysis
Updating sampling database
Refine Kriging model and estimate β̂L again

end if
Set constraint violation as max[0, βt − β̂L]

end for
Apply GA operators to create the next generation of population

end while
END
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Figure 5.1: Cantilever tube problem (Du, 2007).

5.4 Interval reliability benchmark design problem

A cantilever tube problem proposed in Du (2007) for interval reliability study

is revised here to test the framework. The cantilever tube shown in Figure 5.1 is

subjected to external forces F1, F2, P and torsion T . The limit state function is

expressed as follows:

g(X,Y ) = Sy − σmax + w (5.24)

where Sy is the yield strength, and σmax is the maximum von Mises stress given by:

σmax =
√
σ2
x + 3τ 2xy (5.25)

While w is added Gaussian noise (w ∼ N (0, 0.001)) to simulate a more complex

simulation-based (e.g. implicit) limit state function than the simple equations used

here. Such noise contamination was added to assess if the method would be robust if

extended to more complex limit states.
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Table 5.1: Random variables of the cantilever tube problem
Variables Parameter 1 Parameter 2 Distribution
X1(t) 5mm 0.1mm Normal
X2(d) 42mm 0.5mm Normal
X3(L1) 119.75mm 120.25mm Uniform
X4(L2) 59.75mm 60.25mm Uniform
X5(F1) 3.0kN 0.3kN Normal
X6(F2) 3.0kN 0.3kN Normal
X7(P ) 12.0kN 1.2kN Gumbel
X8(T ) 90.0Nm 9.0Nm Normal
X9(Sy) 220.0Nm 22.0Nm Normal

*:For uniform distributions, Parameter 1 is the low
bound, Parameter 2 is the upper bound. For other dis-
tributions, Parameter 1 is the mean value, Parameter 2
is standard deviation.

Table 5.2: Interval variables of the cantilever tube problem
Variables Intervals
Y1(θ1) [0◦, 10◦]
Y2(θ2) [5◦, 15◦]

The calculation of stress is determined from classical structural mechanics:

σx =
P + F1 sin θ1 + F2 sin θ2

A
+
Mc

I

M = F1L1 cos θ1 + F2L2 cos θ2

A =
π

4
[d2 − (d− 2t)2], c = d/2,

I =
π

64
[d4 − (d− 2t)4], τxy =

Td

4I
.

(5.26)

In the computation of the reliability index, the random variables settings are

given in Table 5.1, and interval variables settings are given in Table 5.2. Note that

the interval variable ranges are fixed in the original problem (Du, 2007) for a single

analysis. In this work, the test multi-objective optimization problem with varying
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Table 5.3: Design variables of the cantilever tube problem
Design variables Description Lower bound Upper bound
t Mean value of thickness X1 3mm 6mm
d Mean value of diameter X2 38mm 44mm
∆1 Interval variable range of Y1 0 10
∆2 Interval variable range of Y2 0 10

interval ranges is formulated as follows:

min V olume(t, d) = π(d− t)tL1

min Cost(∆1,∆2)

s.t. β̂L(X,Y ) = ŷ(X,Y ∗) ≥ βt

where [t, d] = [µ(X1), µ(X2)]

Y0 ≤ Y ≤ Y0 + ∆

(5.27)

In this optimization, the mean value of thickness and diameter are set as design

variables along with two interval variable ranges. The design variable domain is

defined in Table 5.3. The interval uncertainty lengths ∆1,∆2 range from 0 to 10,

where zero ranges means the interval variables are reduced to the deterministic values:

[Y1, Y2] = [0◦, 5◦], and the largest ranges mean the interval variables cover the same

range shown in Table 5.2. In conducting the analysis, the initial surrogate model

is constructed from 150 points sampled by the Latin Hyper-square Method evenly

in the design space. Reliability simulations are conducted using the PyRe (python

Reliability) module version 5.0.2 (Hackl , 2013).

To validate the proposed method, initial, the worst reliability in the interval range

is located by Algorithm 3 directly (e.g. no optimization). This computation is also

performed by Du (2007) which allows for comparison with the current method. The

design point [t, d,∆1,∆2] = [5.0, 42.0, 10, 10] is chosen as the prediction point, which

means the random variables X and interval variables Y are the same as Tables 5.1

and 5.2 in the literature. The predicted worst-case interval variable combination is
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Table 5.4: Determination of worst-case reliability for the cantilever tube problem
Worst case reliability Proposed surrogate prediction Du Du (2007)
pmaxf (= Φ−1(−βL)) 1.63× 10−4 1.63× 10−4

function evaluations of g 1092* 147

*:Note this surrogate was built for optimization, hence it contains more
function calls than Du’s single-value computation.

Y ∗ = [3.9203, 7.8132] and the associated reliability index is 3.5964. A comparison

of the result with Du’s method is shown in Table 5.4. It is clear that the worst-

case prediction successfully estimated the worst-case design compared to nonlinear

optimization results from Du’s study. The computational efficiency of the surrogate

model is also promising, the 1092 limit state function evaluations are made for 150

reliability analyses during the sampling stage. Though this is higher than the 147

function calls used by Du, the surrogate is now ready for optimization while Du’s

work only finds a single value.

Next, the test problem stated in Equation 5.27 is solved using the proposed multi-

objective optimization framework in Algorithm 4. As a reference, the test problem is

also optimized within NSGA-II with all the reliability analysis conducted directly via

FORM simulation. The two optimizations both used 100 generations and a population

size of 100, and a target reliability index constraint of 3.0, these parameters were

chosen for experimental study here.

Due to the stochastic nature of the NSGA-II algorithm, the optimization problem

was run 10 replicates using different pseudo-random number generator seeds. All the

Pareto fronts generated from the optimizations are compared with the Pareto front

from exact reliability analysis.

On visual inspection, all the 10 Pareto fronts generated from the proposed method

fall very close to the exact solution. In some cases, the optimization process struggled

to resolve the entire span of the front, however, the portion of the front found was

always accurate. One of the worse-case independent run results in terms of the
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Table 5.5: Score metrics from 10 independent optimization runs
Cases Score Cases Score

1 0.1364 6 0.0648
2 0.0033 7 0.0122
3 0.1091 8 0.0851
4 0.0913 9 0.1521
5 0.1388 10 0.1148

Mean 0.0907 Std 0.0512

distance metric is shown in Figure 5.2. Here the Pareto front is compared with the

Pareto front from exact FORM reliability analysis. Note that the product of the

interval width is plotted directly in Figure 5.2. This is the inverse of the objective

space the problem was solved in via Equation 5.23. The approximation in this case

is still reasonable in terms of both the magnitude of the values and spacing along the

Pareto front.

Both the approximated Pareto front and exact Pareto front show a clear trade-

off between interval uncertainty range and design performance, though the absolute

impact on structural material volume is small. The increase of interval range multiples

∆1∗∆2 causes penalty on design performance measured by volume of cantilever tube.

The penalty stops after reaching a certain value of interval range. This is due to the

nonlinearity of interval uncertainties in the original problem: if a local minimum of

performance is already contained in the interval, expanding the interval does not

further reduce performance unless a new minimum is included.

To quantify the convergence of the 10 independent runs, the Distance Score metric

described in Equation 4.17 that measures the average normalized Euclidean distances

between two Pareto fronts is employed here. The score metric is calculated for each

of the 10 independent runs, the results are listed in Table 5.5.

The metrics indicate that even though the Pareto front found by the surrogate

closely follows the front found by exact FORM simulation, the diversity of the ap-

proximated front is still affected by the stochastic nature of genetic algorithm.
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Figure 5.2: Cantilever tube problem: comparison of Pareto fronts for exact and ap-
proximate reliability analysis (Case 5).

Figure 5.3: Cantilever tube problem: effect of interval range on the performance of
multi-objective optimization.

To disclose the relative importance between the two interval uncertainties involved,

a detailed comparison is illustrated in Figure 5.3. It can be seen that Pareto optimal

points favor large ∆1 values and small ∆2 values, which indicates that reducing in-

terval uncertainty Y2 is more worthwhile in improving design performance compared
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to Y1. It also indicates that there is a critical value of ∆2 at which point the design

performance worsens rapidly.

This study reveals the necessity of the proposed multi-objective optimization

framework for interval uncertainty problems. The closely converged Pareto front

from surrogate method in Figure 5.2 suggests that the proposed surrogate model

is capable in locating the worst-case performance in an efficient way for the multi-

objective optimization, also it can provide accurate worst-case estimations in a noisy

limit state function environment. Overall, the quadratic approximation to locate the

worst performing point directly from the Kriging surrogate, and the coupling of this

technique with the NSGA-II appears to successfully solve this two-interval problem.

5.5 Composite top-hat stiffened panel structural design

Marine composite structures are often used for high-speed, innovative vessels.

Compared to conventional steel vessels, there is larger uncertainty in both the load-

ing of the structure and the material variability of the composites for such vessels.

Marine composite structural design then requires significantly larger loading and ma-

terial uncertainty factors than steel structures. In this case study, it is attempted to

apply interval uncertainties to represent large variabilities in loading component and

composite material, while using conventional reliability methods to capture the con-

figuration variability of the structure. Through the proposed method, a trade study

between interval uncertainty ranges and design performance of a hollow rectangular,

or top-hat, stiffened panel structure is performed. Such an analysis is similar to an

early-stage vessel design problem, in which a robust estimation of structural weight

is needed while loading remains uncertain.

A simplified grillage structure with Carbon Fiber-Reinforced Plastic (CFRP) ma-

terials (Maneepan et al., 2005) is adopted here to demonstrate an application of

proposed method. The typical configuration of this type of structure used in marine
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(a) Picture of a FRP top-hat stiffened grillage.

(b) Picture of a FRP top-hat stiffened plate.

Figure 5.4: Composite FRP top-hat stiffened grillage plate.
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Figure 5.5: Schematic of a multi-stiffener grillage.
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Figure 5.6: A sectional view of the CFRP single skin with top-hat stiffeners.

structures is shown in Figure 5.4. The size of this top-hat stiffened grillage plate is 4.2

m in length and 3.2 m in width, and spacing values for longitudinal and transverse

frames are 800 mm and 700 mm, respectively. This gives the grillage plate three

longitudinal and five transverse top-hat stiffeners.

A cross-section view of a top-hat shape stiffener with the attached plating is shown

in Figure 5.6. This top-hat stiffener including base plate is consisted of crown, web,

non-structural former. It is assumed that CFRP laminates are monolithic; hence no

attempt is made to ascribe thickness of ply details, make-up, fiber volume fractions,

etc. Such decisions would be taken up at a later stage after gross decisions about the

choice of particular structural topology and material are made.

Under lateral pressure, both the strength and the deflection of such panels are

important to structural design. For this work, the maximum panel deflection is

considered as the limit state equation for the structure. The deflection limit state

function is defined as follows:

g(X,Y ) = wmax − w(X,Y ) (5.28)
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where wmax is the allowed maximum deflection, taken as L/150 in this study. The

deflection w of the grillage is estimated by using Navier’s energy method Bedair

(1997), where the deflection is determined by equating total strain energy to the

work done by the load. The equation is given below:

w =
∞∑
m=1

∞∑
n=1

16Pl4b/EIr

π6mn[m4(r + 1) + Is
Ir
l3

b3
n4(s+ 1)]

sin
mπx

l
sin

nπy

b
(5.29)

where Ir and Is are moments of inertia for the longitudinal stiffeners and transverse

stiffeners, respectively; m and n are wave numbers; E is equivalent Young’s moduli; a

reasonable pressure load P is estimated by the ABS High Speed Craft rules American

Bureau of Shipping (2015)

The distribution descriptions for each components in Equation 5.28 are presented

in Table 5.6. In this work, the geometric design variables are treated as random

variables X, while the interval variables Y are used to change the COVs of the

loading estimate and Young’s modulus in the limit state equation. The mean value

of equivalent Young’s modulus µE is taken as 140GPa.

Table 5.6: Distributions of variables in CFRP problem
Variables Description Mean COV Distribution
tlw Longitudinal Web thickness µ1 0.03 Normal
tlcr Longitudinal Crown thickness µ2 0.03 Normal
tp Plate thickness µ3 0.03 Normal
trw Transverse Web thickness µ4 0.03 Normal
trcr Transverse Crown thickness µ5 0.03 Normal
Depthl Longitudinal Depth µ6 0.03 Normal
Depthr Transverse Depth µ7 0.03 Normal
E Equivalent Young’s modulus µE 0.15±∆1 Normal
P Pressure Load µP 0.15±∆2 Normal

The multi-objective optimization problem for interval trade-off study is formu-

lated in Equation 5.30, within which the independent design variables are defined in
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Table 5.7.

min Weight(X)

min Cost(∆)

s.t. β̂L(X,Y ) = ŷ(X,Y ∗) ≥ βt

where X = [µ1, µ2, µ3, µ4, µ5, µ6, µ7,∆1,∆2]
T

Y0 −∆ ≤ Y ≤ Y0 + ∆

(5.30)

Table 5.7: Design variables of CFRP problem
Design variables Description Lower bound Upper bound
µ1 Mean value of tlw 1.0mm 15mm
µ2 Mean value of tlcr 1.8mm 15mm
µ3 Mean value of tp 5mm 45mm
µ4 Mean value of trw 1.0mm 15mm
µ5 Mean value of trcr 1.8mm 15mm
µ6 Mean value of Depthl 150mm 180mm
µ7 Mean value of Depthr 150mm 180mm
∆1 Interval variable ∆1 range 0.01 0.1
∆2 Interval variable ∆2 range 0.01 0.1

The above problem is optimized in both the proposed surrogate method presented

in Algorithm 4, and the all FORM analysis in terms of different ways in computing βL.

The initial surrogate model is constructed using 200 sampling points. The NSGA-

II parameters are set as 100 generations and a population size of 100. The target

reliability criteria βt are investigated at 3.0 as in the cantilever tube problem. The

corresponding optimized results are shown in Figure 5.7. The Cost objective (Equa-

tion 5.23) is normalized and inverted to interval range for a better trade space view.

From the Pareto fronts in Figure 5.7, we can observe that for this composite struc-

ture case study, the absolute value of the penalty for information uncertainty is higher

than in the cantilever tube case. The increased interval uncertainty range causes ap-

proximately a 40% weight increase on the design in the worst case scenario. The

potential weight penalty is critical for composite material application in naval ship
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Figure 5.7: CFRP panel problem: comparison of Pareto fronts for exact and approx-
imate reliability analysis.

designs where weight requirement is stringent. Therefore, this trade-off information

can be highly valuable in early stage structural weight estimation.

However, in this more complex study the proposed method does not converge

as closely to the high-fidelity results as it did in the simpler tube example. The

approximation is more effective for lower value interval ranges on the left-hand side

of the figure. In the region of larger interval range values, the surrogate predicts

slightly worse (heavier) solutions, though it still resolves the shape and extent of the

front accurately. A likely limit here is the suitability of a single Kriging model (in this

case approximately 300 points at completion of the algorithm) to capture the entire

design space of the more complex problem. The capacity of Kriging is limited by
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the number of infill sampling points. The previous chapter has suggested that such

problems can be overcome by adapting a surrogate model management framework,

where clustering is used to build multiple surrogates in local regions of the design

space. These results do suggest that absent such techniques, the scale of the problems

solvable by the method may be limited. However, the scale of panel design problem

here, with nine design variables and two uncertainty intervals is certainly relevant for

industrial applications.

The proposed methodology was also computationally efficient for a problem of

this size. The total number of reliability evaluations for this problem with the pro-

posed algorithm was 298 - 200 for the initial surrogate, and 98 additional samples

via refinement. This number is reasonable even if the simple reliability formula-

tion used here is replaced with a more complex simulation-based method. However,

when directly evaluating the reliability without a surrogate (e.g. performing a second

nested optimization to determine the worse performance for each individual) over

106 reliability evaluations are needed. While some improvement in efficiency could

undoubtedly be gained by tuning this inner search more than was done in the present

study, the proposed method reduces the need for reliability evaluations by several

orders of magnitude. Most importantly, this large reduction in reliability evaluations

would allow uncertainty trade-off information to be generated with a computational

burden compatible with the time scale of early-stage design.

5.6 Summary

This chapter presented and demonstrated a novel interval-uncertainty optimiza-

tion approach to reduce epistemic uncertainty in design. Initially, a combined interval-

reliability model was presented. In this approach, the limit state equation can contain

both stochastic (aleatory) variables and interval-uncertainty variables. Then, a surro-

gate modeling approach was demonstrated that extended existing Kriging modeling

132



approaches by directly locating minima on the Kriging surface via the Jacobian and

Hessian of the model. This approach was used to remove the innermost loop in the

optimization - the location of the worst reliability performance within a given interval.

Adaptive refinement criteria to ensure the accuracy of this approximation were also

presented. Next, the approach was coupled to a conventional NSGA-II optimizer, and

an information cost function defined in terms of the product of interval uncertainty

widths. By including this information cost function as an objective, the impact of

epistemic uncertainty on the design performance was revealed in the Pareto trade-

spaces that resulted from the NSGA-II. The proposed approach was demonstrated on

a cantilever tube and composite panel design problem. The results from the bench-

mark cantilever tube problem showed that the proposed approach was accurate and

efficient in obtaining the Pareto fronts similar to those found from exact reliability

simulations. Also in the composite panel design problem, the proposed surrogate

method showed promising in capturing a good overview of the Pareto front.

With the help of the presented method, the decision makers are better equipped

to explore novel structural designs in early-stage design. As shown in the composite

panel case study result, the interval uncertainty study can fully prepare the designer

to design against the worst-case scenario and make structural weight estimations un-

der incomplete information. Additionally, this interval uncertainty trade study can

quickly inform the designer regarding whether engineering improvement is critically

needed for the design project. Further improvements on this surrogate method strat-

egy is under investigation. The application of multiple Kriging surrogate models is

envisioned to improve the performance of worst-case prediction for more practical

applications.
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CHAPTER VI

Summary

6.1 Conclusions

The objective of this research is to incorporate early stage design uncertainty into

structural design optimization using a novel surrogate modeling strategy for rapid

trade-off analysis. Structural decision making in early stage design is subject to in-

adequate information and knowledge about the design. The existence of early stage

epistemic uncertainty complicates the decision maker’s judgment in early stage struc-

tural decisions. In the worst case, the design under epistemic uncertainty can fail after

the physical prototype is built and put into service. It was proposed in this disserta-

tion to tackle this design challenge early in the design stage planning through a trade

study between performance and the epistemic uncertainty. This dissertation work ex-

plored the interval-type epistemic uncertainty in structural design optimization, and

gradually carry out a numerical efficient surrogate-assisted optimization framework

to reveal the overall impact of epistemic uncertainty on the structural configuration

designs.

Interval uncertainty is proposed to study information-based epistemic uncertainty

in the early stage design. Interval uncertainty model well represents the non-probabilistic,

reducible characteristic of epistemic uncertainty in the early stage. This dissertation

introduced a new way of treating uncertainty in optimization problem by defining
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uncertainty intervals as design variables. The presented optimization framework de-

livered a quantified multi-objective optimization analysis regarding both interval un-

certainties and design performance objectives. The developed trade space indicated

how interval uncertainty influenced the structural design performance. Interval un-

certainty model is adaptable to other epistemic uncertainty forms. As introduced in

Chapter II, the other epistemic uncertainty models all involve the concept of uncertain

interval to some degree. Therefore, this research work laid a foundation for further

study on early stage epistemic design uncertainty by first investigating interval-type

uncertainty.

Introducing interval uncertainty into structural design optimization poses chal-

lenges in the numerical efficiency on the optimization implementations. Despite the

promising insights gained through the interval uncertainty analysis in structural de-

sign optimization, the higher computational effort prevents the wide application of

the interval uncertainty analysis. This dissertation presented a surrogate-assisted op-

timization strategy to develop efficient solutions for the proposed uncertainty analysis

and optimization problems. The structural design case studies discussed in this dis-

sertation validated the necessities of applying presented surrogate models for a rapid

and reliable analysis. Moreover, the developed surrogate modeling techniques apply

to more types of optimization problems, they can find far more widely applications

for structural design and optimizations beyond the uncertainty in this dissertation.

Surrogate modeling techniques are studied both in terms of efficiency and updating

strategy throughout the interval uncertainty studies presented.

A robust design optimization framework considering interval uncertainty was first

proposed to show the difference between robust optimal solution and deterministic

optimal design solution. The robust optimal solution was designed to consider a

interval uncertainty parameter in the ship’s compartment length. By doing so, the

robust solution had designed out the epistemic uncertainty early in the design stage,
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and established a robust baseline structural weight estimation for later stage design

process. The robust solution was inferior to the deterministic solution as it had

15% more structural weight. However, the design solution that is feasible over a

range of interval length values provides flexibility for the designer considering later

stage design changes. The robust design optimization was carried out in a surrogate-

assisted evolutionary optimization framework. A RBF surrogate was build off-line

to significantly reduce the number of fitness evaluations in the optimization process.

The surrogate method proved efficient and accurate for the compartmentalization

structural design study. The off-line construction methodology was sufficient for

this single-objective design optimization considering fixed interval uncertainty length.

This dissertation continued to explore advanced surrogate techniques in allocating

limited computational simulations for structural design optimization.

Early stage design is marked by the limited time to generate high-fidelity exper-

imental data or simulation results. Considering this situation, a surrogate modeling

approach was investigated that enables interaction of high-fidelity and low-fidelity

numerical models for early stage structural design optimization. The presented mul-

tiple surrogate based variable fidelity optimization framework was an extension of the

VFO framework proposed by Zhu et al. (2014). This novel VFO surrogate structure

manages multiple surrogates in an on-line construction scheme. A clustering algo-

rithm was implemented to dynamically partition large sampling size data to local

regions for Kriging surrogate modelings. These multiple surrogates worked effectively

in scaling the low-fidelity Pareto front to the high-fidelity Pareto optimal front. The

proposed surrogate algorithm was vigorously tested through benchmark numerical

multi-objective optimization problems and a stiffened panel marine structural de-

sign problem. These case studies all demonstrated the superior performance of the

proposed surrogate modeling approach. The on-line model of surrogate construction

revealed itself as a more efficient computational scheme in allocating a limited number
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of expensive simulations.

Following this strategy of building on-line surrogate models to enable efficient

multi-objective optimization runs, this research continue to investigate the implica-

tion of interval uncertainty in marine structural designs. This research presented

a means to quantify the trade-off analysis between structural designs with various

levels of interval uncertainty. In this proposed framework, the epistemic uncertainty

interval was treated as a design variable. Accordingly, an information cost function

was defined to represent the effort needed in reducing the interval uncertainty. The

uncertainty cost function is optimized along with performance function, thus making

the uncertainty study a multi-objective optimization problem. The previous study

showed that computation problems with interval uncertainty analysis is complicated

as they normally involve an additional computation loop. This research presented a

unique surrogate modeling solution that allows the extensive interval analysis in the

MOGA while remains tractable. The proposed surrogate model extended the existing

Kriging modeling approaches by directly locating the minima on the Kriging surface

via utilizing higher order information of the surrogate. In other words, this surro-

gate approach is novel in that it can directly predict the extreme case in the interval

domain, therefore, the innermost loop associated with interval analysis is removed.

Adaptive refinement of the surrogate ensured the quality of the prediction and also

gradually updated the surrogate on-line in the optimization process.

The proposed surrogate approach was tested in a novel composite panel structural

design study. Its ability to predict the correct worst-case performance in various in-

terval uncertainty domains was proved throughout the study. The optimization was

able to quickly resolve the Pareto optimal front with the help of the developed surro-

gate model. The presented efficient optimization framework was shown to be effective

for the early stage structural decision making process. By seeing the impact of var-

ious levels of interval uncertainty on the design performance, the designers are fully
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prepared to make structural weight estimations under incomplete information at the

early stage. The interval uncertainty trade-off study can also quickly inform the de-

cision makers regarding where data is critically needed to increase the understanding

in the early stage design. In these regards, the reported surrogate developments in

this dissertation contributed to improve our capability for dealing with marine design

under complex, uncertain early stage design environments.

6.2 Recommendations for future work

The research findings throughout this dissertation work motivate future research

work in expanding the current framework. The multiple surrogate variable fidelity

framework proposed in this dissertation can be used to refine the on-line surrogate

modeling in the interval uncertainty trade-off study. The multiple Kriging construc-

tion methodology can significantly expand the applicability of surrogate modeling for

larger design spaces. This could allow the interval uncertainty study applied in a

larger problem domain such as an entire vessel structural design problem.

In the interval uncertainty study presented in Chapter V, the reliability simula-

tion was considered as the computational-intensive part of the design problem. The

proposed surrogate modeling technique can deal with simulation problems involving

interval uncertainty analysis. In principle, the methodology can be used with other

computationally-intensive simulations, such as Underwater Explosion (UNDEX) anal-

ysis or manufacturing analysis. This can broaden up the influence of the proposed

uncertainty study in the structural settings considering other design priorities.

To achieve an overall understanding of epistemic uncertainty impact in marine

design, some other epistemic uncertainty models are also worth investigations. The

interval uncertainty study presented in this dissertation demonstrated valuable re-

search findings for early stage design study. A comparison of interval-type uncer-

tainty trade-off study to that of fuzzy logic, or evidence theory would help to gain
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more insight into how to treat uncertainty in early stage design.

Apart from the uncertainty problem domain, surrogate modeling also needs in-

creased capability to deal with common structural design challenges. The Kriging

and Radial Basis Function models currently used in this technique assume smooth,

continuous variables. Many early-stage structural design decisions are categorical,

e.g. aluminum, titanium, or discrete in nature. Extension of the modeling techniques

to include such discrete variables without simply repeating the analysis for each dis-

crete value would allow the designer to better explore design options, and further

broaden the applicability of the research.
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