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ABSTRACT

Nonholonomic Virtual Constraints and Gait Optimization for Robust Robot
Walking Control

by

Brent Griffin

Chair: Jessy W. Grizzle

Bipedal locomotion is well suited for mobile robotics because it promises to allow

robots to traverse difficult terrain and work effectively in man-made environments.

Despite this inherent advantage, however, no existing bipedal robot achieves human-

level performance in multiple environments. A key challenge in robotic bipedal lo-

comotion is the design of feedback controllers that function well in the presence of

uncertainty, in both the robot and its environment. This dissertation addresses the

design of feedback controllers and periodic gaits that function well in the presence

of modest terrain variation, without reliance on perception or a priori knowledge of

the environment. Model-based design methods are introduced and subsequently vali-

dated in simulation and experiment on MARLO, an underactuated three-dimensional

bipedal robot that is roughly human size and has six actuators and thirteen degrees

of freedom. Innovations include virtual nonholonomic constraints that enable con-

tinuous velocity-based posture regulation and an optimization method that accounts

for multiple types of disturbances and more heavily penalizes deviations that persist

xii



during critical stages of walking. Using a single continuously-defined controller taken

directly from optimization, MARLO traverses sloped sidewalks and parking lots, ter-

rain covered with randomly thrown boards, and grass fields, all while maintaining

average walking speeds between 0.9-0.98 m/s and setting a new precedent for walking

efficiency in realistic environments.
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CHAPTER I

Introduction

1.1 Motivation

Robots have been used successfully in manufacturing for decades [26]; however,

most of these applications are restricted to structured environments with fixed oper-

ation. Current robotics research aims to extend these applications to include locomo-

tion through unstructured environments where the terrain varies unexpectedly. This

extension presents a challenge because a robot that can move perfectly in a controlled

environment might fall after its first encounter with a terrain disturbance. In this dis-

sertation, our primary motivation is to achieve bipedal locomotion (i.e., locomotion

in which the robot is upright and makes forward progress with support on alternating

legs) through unstructured environments without over reliance on perception or a pri-

ori knowledge of the terrain. Legged robots, in general, can traverse difficult terrain

inaccessible to wheeled vehicles [111]; bipedal robots, more specifically, can also ef-

fectively traverse man-made environments intended for human use [109]. To improve

the performance of bipedal robots in unstructured environments, we develop control

methods for sustaining bipedal locomotion despite unknown terrain variations.

1



1.2 Objective

The objective of this research is to develop control methods for dynamic bipedal

locomotion over a variety of terrains without perception or a priori knowledge of

the environment. To this end, we derive a novel optimization procedure for the de-

sign of feedback controllers that are robust to a family of unknown disturbances.

We introduce a new class of virtual nonholonomic constraints that depend on veloc-

ity through generalized conjugate momenta while maintaining the property of being

relative degree two. Using nonholonomic virtual constraints, we implement velocity-

based posture regulation that accounts for the full dynamics of the biped, as well

as a range of terrain variation. To substantiate these control methods and complete

our objective, we demonstrate that MARLO, an underactuated bipedal robot that

is roughly human size and is equipped with an IMU and joint encoders, can walk

through a variety of environments with unknown terrain.

1.3 Summary

The remainder of this dissertation is organized into six chapters.

Chapter II provides a brief review of relevant literature and clarifies how work

in the dissertation contributes to that literature. Specifically, the literature review

addresses bipedal locomotion, robust walking, simplified walking models, virtual con-

straints, and three-dimensional walking.

Chapter III describes the general concepts used in the dissertation. We use a

hybrid walking model that consists of a continuous single support phase and a discrete

impact map for double support. The ATRIAS 2.1 model robot, MARLO, is the basis

of our simulation models and is used for experiments. We use virtual constraints

and hybrid zero dynamics to control trajectories to a lower dimensional submanifold

where actuated coordinates evolve as a function of unactuated coordinates.

2



Chapter IV introduces the Optimization for Accommodation of Unknown Distur-

bances method. This optimization method minimizes costs that account for pertur-

bations arising from a finite set of disturbances. Trajectory and control deviations

are related to a nominal periodic orbit using a gait phasing variable. The gait phas-

ing variable is also used to more heavily penalize deviations that persist late into

the gait. This focused penalization method is compared with alternative methods

through simulations and experiments using planar MARLO.

Chapter V introduces nonholonomic virtual constraints. These constraints are

used to design controllers that modify optimized walking gaits to reject velocity per-

turbations. By adding this perturbation response, control solutions are shown to

handle a wider range of terrain variations and exogenous forces. Additionally, includ-

ing nonholonomic virtual constraints allows foot placement control to be rigorously

designed on the basis of the full dynamic model of the biped, instead of on the basis

of an inverted pendulum approximation of its center of mass, as is commonly done in

the bipedal robotics literature.

Chapter VI focuses on three-dimensional (3D) walking. A substantial portion of

our 3D approach coincides with planar control implementations; however, in order

to handle additional challenges that arise in 3D walking, significant modifications

are made. First, we introduce an additional set of velocity perturbations to the

robust control optimization, which is shown to improve performance for repeated

disturbances. Second, novel nonholonomic outputs are designed to handle coupled

sagittal and frontal plane dynamics. Finally, for the robot implementation, a phase

estimator and reduced-order Luenberger observer are designed for estimating the gait

phasing variable and angular momentum. Using the resulting continuously-defined

controller taken directly from optimization, MARLO is able to traverse a variety of

unstructured environments without perception or a priori knowledge of the terrain.

Finally, Chapter VII provides concluding remarks.

3



1.4 Contributions

This section summarizes the primary contributions of this dissertation. These

contributions are organized with respect to prior work on bipedal robot walking with

terrain variations, swing foot placement methods, embedding simplified model behav-

ior in higher dimensional control systems, virtual constraints, and feedback control

of three-dimensional bipedal robots. These contributions are revisited within the

context of related literature in Chapter II.

Contributions to prior work on bipedal robot walking with terrain variations in-

clude: allow a family of nonlinear controllers to be searched over with respect to

disturbance attenuation; introduce a finite set of perturbations to velocity during

control optimization and demonstrating efficacy; synchronize the calculation of tra-

jectory and control deviations of a biped’s gait via a gait phasing variable; more

heavily penalize trajectory deviations that persist late into a step, when ground con-

tact is likely to occur; and demonstrate in experiment the potential utility of trading

off deviations early in the step for improved attenuation of the disturbance toward

the end of the step.

Many bipedal robot researchers use swing foot placement, namely some policy for

choosing the relative step position for the foot approaching the ground. Researchers in

[110] derived an event-based swing foot placement policy based on the center of mass

velocity of a linear inverted pendulum. Contributions of the dissertation to the swing

foot placement policy implemented in [110] include: control foot placement based on

velocity throughout the step rather than just the horizontal velocity of the center of

mass at mid-step; include the dynamics of the full model (e.g., impact losses, varying

center of mass height); and include a pre-specified range of terrain disturbances in

the controller design process.

Contributions to prior work on embedding simplified model behavior in higher

dimensional control systems include: embed a velocity-dependent simple model-based
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behavior into a full-order control model using nonholonomic virtual constraints, and

include a specified range of disturbances in the embedding process to ensure adherence

to the desired control behavior over a range of conditions.

Contributions to prior work on virtual constraints include: introduce a new class

of virtual constraints that include velocity, but maintain control outputs that are

relative degree two for ease of implementation, and demonstrate superior ability to

attenuate terrain and velocity perturbations.

Contributions to prior work on feedback control of three-dimensional bipedal

robots include: introduce a model-based design framework that is able to achieve

dynamic three-dimensional walking without hand-tuning of the optimized walking

gait; demonstrate robustness by traversing sloped sidewalks and parking lots, terrain

covered with randomly thrown boards, and grass fields without a priori knowledge of

the environment or external sensing (the robot uses only an IMU and joint encoders);

and set a new precedent by evaluating walking efficiency for a variety of realistic

terrains.
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CHAPTER II

Literature Review

2.1 Bipedal Locomotion

Bipedal locomotion is a type of locomotion in which an upright two-legged system

makes forward progress with support on alternating legs. When applied to robots,

bipedal locomotion can be characterized by the degree to which the walking gait

is controlled or actuated, whether the walking gait is static or dynamic, and how

the robot senses its environment while walking. Each decision offers a unique set of

advantages and disadvantages.

Bipedal locomotion can be realized with varying degrees of actuation. In the 1980s,

the MIT Leg Lab used actuated robots capable of running, jumping up stairs, and

even doing flips [58, 106, 112]. However, they were actuated by tethered hydraulics

that had a high energy cost and only performed these feats when the terrain profile

was known in advance. Shortly thereafter, Tad McGeer demonstrated the alternative

use of passive walking [89]. In contrast to the actuated walkers of the MIT lab, passive

walkers are mechanically simpler, more energy efficient, and capable of walking down

slopes without any actuation. Passive walkers, however, cannot climb stairs or handle

rough terrain. As seen in [20] and citations therein, recent research has blurred

the distinction between these two frameworks by demonstrating the use of partially

actuated walking.
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Bipedal locomotion can be static or dynamic. Static walkers can maintain equi-

librium throughout a walking gait by controlling the Zero-Moment Point (ZMP) [132]

of a robot to stay within the polygon of ground contact [110, 115]. More specifically,

the ZMP is the point on the ground where the total horizontal inertia and gravity

forces with respect to the robot equals zero. If this point is kept within the poly-

gon of ground contact points, the robot will not “tip over the edge” and fall over1.

While this approach works well for balancing in place, fully actuated control results

in unnatural and inefficient walking gaits. Dynamic limit cycle walkers, on the other

hand, do not require local controllability during their entire gait [55], and thus have

more natural, more energy efficient, and potentially faster walking gaits than do static

walkers [20, 89].

Bipedal locomotion control methods require varying degrees of terrain sensing.

Sensing requirements have a significant impact on how generalizable a control method

is to other robots. For example, Atlas, a Boston Dynamics robot, depends on stereo

cameras and a laser rangefinder to traverse rough outdoor terrain [2]. In contrast,

University of Michigan robot MABEL, predecessor to MARLO (see Figure 2.1), per-

forms planar walking with terrain drops of up to 20 cm using only shin and foot

contact switches [98]. Because the position of a biped’s links and ground contact

can indirectly provide an estimate of the terrain, blind walking, like that used by

MARLO, becomes possible [19, 107]. One advantage of blind walking control meth-

ods over terrain sensing dependent methods is that blind methods can be applied to

almost all bipeds. When terrain information is available, the robustness of control

designed for unexpected terrain variations can instead alleviate complications arising

from sensing errors.

Of particular interest to the current research is bipedal locomotion that is partially

actuated, dynamic, and does not require terrain sensing. This locomotion is achieved

1An alternative approach is to keep the center of mass within the polygon of ground contact,
which maintains static equilibrium.
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Figure 2.1: MARLO and MABEL. MABEL (back) is the predecessor of MARLO
(front). MABEL requires a boom for lateral stability when planar walking, while
MARLO is able to walk in three dimensions due to laterally actuated hips (right,
photo: Joseph Xu). Both bipedal robots are underactuated and require no a priori
knowledge of the environment to walk.

using virtual constraints and hybrid zero dynamics [46, 134, 135, 136]. Unlike physi-

cal constraints defined by mechanical properties of a system, virtual constraints are

enforced through actions of actuators as controlled outputs. Virtual constraints have

the advantage of being re-programmable without any physical modification. Hybrid

zero dynamics signify the lower dimensional sub manifold of bipedal dynamics that

occurs when control outputs are zeroed and evolve as a function of the remaining

unactuated states. When virtual constraints and hybrid zero dynamics are applied

to bipedal locomotion, they permit dynamic walking energy efficiency, are more ro-

bust to velocity perturbations compared to many time-based techniques, and can be

modifiable for varied impact conditions [94]. See Chapter III for the derivation of this

bipedal locomotion control approach.
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2.1.1 Optimization for Bipedal Locomotion

Optimization is commonly used to identify a control policy for bipedal locomotion.

An effective way to make policy search computationally feasible is to parameterize

control variables [72, 78, 122]. In this dissertation, control trajectories are parame-

terized using Bézier polynomials [136, pp. 138]. For optimization of control variables,

many robotics researchers use policy gradient methods [72, 75, 103, 116, 129]. Because

the gradient can be difficult to solve analytically, researchers often use approxima-

tions of gradients for policy search, using finite policy differences [72, 129] or even

just a signed derivative [74]. Other interesting policy search methods include genetic

algorithms that avoid local optimality [141, 143], or evolving policy parameteriza-

tions that initiate with fewer parameters and then increase in complexity [78]. More

recently, multiple shooting optimization methods have been used for fast and reliable

designing of walking gaits [52]. In this dissertation, optimizations are performed using

a direct shooting, policy gradient approach by means of fmincon in MATLAB [88].

2.2 Robust Walking

For bipedal locomotion to be useful in unstructured environments, bipeds must

be able to traverse uneven terrain with imperfect knowledge of the ground profile. In

such conditions, failures often result from differences between ideal models and actual

conditions. Sources of error in bipedal robot locomotion include unknown terrain

disturbances, parametric errors, friction in joints and motors, and sensor errors, which

compound to cause unexpected ground impact times and conditions. If the resulting

perturbations are severe enough, a biped’s nominal gait will not be able to reject the

disturbance and the biped will fall.

We consider many methodologies to quantify and improve the capacity of a bipedal

robot to walk over uneven terrain. The terrain variations can be deterministic or
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random, and the control policy may or may not involve switching. Various ways

of quantifying stability and robustness are outlined in Section 2.2.1; robust control

methods are discussed in Section 2.2.2.

2.2.1 Stability and Robustness Measures

Stability and robustness measures are useful for determining if a walking gait is

feasible for bipedal locomotion. An unstable gait can cause a robot to fall, even if

no disturbances are present, and the ability to reject disturbances determines a gait’s

robustness. Stability of periodic gaits can be determined using Poincaré maps. The

domain of states from which a robot converges on a stable gait is called the region of

attraction. Extended definitions of stability for aperiodic walking gaits are not used

in this dissertation [140]. Robustness measures include the Gait Sensitivity Norm,

the N-Step Capture Stability Margin, and the Mean Time To Failure.

2.2.1.1 Stability Measures

Poincaré maps are commonly used to measure the stability of bipedal locomotion.

Poincaré maps apply to periodic walking gaits and provide a discrete map to future

states on the Poincaré section. An example Poincaré section for a biped is the hy-

persurface for all states where the progressing swing foot initiates ground contact.

A state that maps back to itself through the Poincaré map is called a fixed point

and corresponds to a periodic walking gait. If points near the fixed point converge

to the fixed point via the Poincaré map, the fixed point is considered attractive and

corresponds to a stable periodic gait.

Poincaré maps of bipedal systems often cannot be found using a closed-form rep-

resentation [25], but can be approximated by linearizing about a fixed point. The

resulting state Jacobian matrix can act as a discrete map for approximating future

states from points near the fixed point [136]. The eigenvalues of this Jacobian matrix
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(also called Floquet multipliers) can then be used to determine if the fixed point is

locally exponentially stable or not [70]. If eigenvalues are outside the unit circle, the

fixed point is determined to be unstable. If eigenvalues are inside the unit circle,

the fixed point is locally exponentially stable. The closer eigenvalues are to zero, the

faster the convergence to the fixed point [136].

In addition to determining stability of bipedal locomotion, Poincaré maps are

useful for control design. In [18], two control design approaches use Poincaré maps

in two distinct ways. For the first approach, Poincaré maps are used as the basis

of an event-based discrete linear quadratic regulator (DLQR) controller. Essentially,

an additional Jacobian matrix that maps control inputs is used for the step to step

DLQR controller for quicker convergence on a specific gait. For the second approach,

Poincaré maps are used during optimization to keep Floquet multipliers within the

unit circle and guarantee local exponential stability. Other work in [6] translates

a Poincaré map-based sensitivity analysis into a set of bilinear matrix inequalities

(BMIs). A BMI optimization is then used to find control parameters that achieve

exponential stability of a periodic gait.

Poincaré maps can also demonstrate dimension reduction of hybrid bipedal sys-

tems. Work in [13] shows that when Poincaré maps of a hybrid system have constant-

rank iterates (a fairly common condition) there exists an invariant subsystem that

attracts all trajectories near the fixed point. This result shows that even complicated

bipedal systems can be governed by simpler dynamics, as is done in this dissertation

using hybrid zero dynamics.

While Poincaré maps do have many uses, they also have limitations. First, the

eigenvalues do not necessarily correspond to specific failure modes. Second, if a

Poincaré map is linearly approximated, it is less valid for large perturbations from

the fixed point. Third, because Poincaré maps are constructed around a periodic

gait, they do not directly apply to locomotion on varying terrain under non-periodic
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impact conditions [84]. Finally, Poincaré maps are evaluated once per step, miss-

ing opportunities for continuous measurement throughout the walking gait. Despite

these limitations, Poincaré maps are useful for guaranteeing stability of the holonomic

control solution in Chapter VI. As done in [18], we impose stability conditions using

eigenvalues of a linearized Poincaré map during optimization.

Another metric for measuring stability is the Region of Attraction (ROA). The

ROA is the domain of states from which a system asymptotically converges to an

equilibrium point. For bipedal walking, the ROA determines the range of initial states

that converge on a periodic walking gait. Unfortunately, literature for computing the

ROA of a periodic orbit (applicable to bipedal locomotion) is more limited than that

of asymptotically stable equilibrium points [47].

Developing feasible methods for calculating the ROA is an open problem in re-

search. For systems with two or three states, the ROA can be approximated by start-

ing from initial points and recording points that converge on the stable equilibrium.

Quadratic Lyapunov functions are commonly used to estimate the ROA. However,

because estimates change with choice of Lyapunov function, finding a function that

accurately represents the ROA can be challenging [70].

Lyapunov conditions of stability can be verified using polynomial functions that

are sum of squares (SOS). SOS optimization methods have been used to iteratively

improve an inner estimate of the ROA [97]. For computational reasons, applications of

these ROA methods have been restricted to systems with a limited number of states,

inputs, and polynomial vector complexity. Progress has recently been made in [83] for

estimating the ROA by including the dual problem of finding points that cannot reach

the target set. These points form an outer approximation of the backwards reachable

set (BRS), which simplifies ROA estimation by removing the nonconvexity required

of bilinear decision variables corresponding to Lyapunov functions and control inputs.

Applying the algorithm from [83] to higher dimensional systems is still restricted by
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the semidefinite programs (SDPs) used to determine whether polynomials are SOS.

However, researchers in [83] are currently extending their work to include higher

dimensional hybrid systems applicable to bipedal locomotion.

2.2.1.2 Robustness Measures

We consider several techniques for measuring robustness, including the Gait Sen-

sitivity Norm, the N-Step Capture Stability Margin, and the Mean Time To Failure.

The Gait Sensitivity Norm is a robustness measure that attempts to make up for

some of the weaknesses of using the eigenvalues of the linearized Poincaré map alone

[55]. The Gait Sensitivity Norm uses disturbance parameters to measure particular

disturbances (e.g., terrain slope variation) and gait indicators to measure perturba-

tions (e.g., step time). Mathematically, the Gait Sensitivity Norm is the H2 norm of

the change in gait indicators per change in disturbance parameters. More specifically,

the Gait Sensitivity Norm is the result of adding all of the squared changes in gait

indicators for a perturbed step, rooting their sum, and then normalizing this quantity

to account for the magnitude of the disturbance.

The Gait Sensitivity Norm requires prudent selection of disturbance parameters

and gait indicators to be a useful robustness measure. An effective gait indicator

must measure a behavior that, if perturbed with a large enough magnitude, will

result in a fall. The effect of the disturbance parameters on gait indicators must

be directly measurable and reveal how robust the walking gait is to disturbances.

In [55, 57, 138], the Gait Sensitivity Norm measures deviations in state trajectories

arising from unknown step decreases in ground height.

Another measure of robustness, the N-Step Capture Stability Margin [110], cal-

culates the number of steps it takes for a biped to reach a Capture Point. A Capture

Point is defined as the point at which a biped’s center of mass can come to rest over

its foot (i.e., come to a complete stop). If a biped is already at a Capture Point, the
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system is considered very stable. Even if a biped requires one step to get to the Cap-

ture Point, the system is still fairly robust. This one step requirement is reasonable

because people, who are expert bipedal walkers, often have to take another step to

prevent a fall while in the middle of a stable walking gait. Because the goal of the

current research is to maintain steady dynamic walking (i.e., not come to rest at a

Capture Point), the N-Step Capture Stability Margin will not be used as a robustness

measure.

Robustness Measures in this Dissertation

In this dissertation, we assess robustness in a number of ways. First, during con-

trol optimization, simulations of perturbed steps determine how well controllers reject

terrain disturbances by their relative proximity to their nominal periodic gait. Next,

to evaluate robustness during simulated walking experiments, an optimized control

solution walks over various kinds of random terrain until falling. This is similar to the

work of Byl and Tedrake [17], who use the Mean Time To Failure to assess walking

performance in the presence of stochastic ground height variations. In Chapter IV, our

optimizations, simulated walking experiments, and additional robot walking experi-

ments are discussed in detail. In Chapter V, another method for evaluating robustness

is introduced. Specifically, controllers are subjected to gradually increasing magni-

tudes of disturbances until failure. This escalating disturbance method is ideal for

determining the performance limits of a control solution for repeated disturbances,

such as different types of terrain profiles and exogenous forces.

2.2.2 Robustness Methods

Using robustness measures, it is possible to assess various robustness methods.

We consider many methods for robust bipedal locomotion, including swing leg retrac-

tion, control that leverages advance knowledge of terrain, adaptive state machines for
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switching controllers, and optimizations that by design generate robust walking gaits.

Swing leg retraction is when the swing leg has a negative velocity prior to impact.

Swing leg retraction occurs naturally in bipedal and four-legged animals [124], and

has been observed to be helpful for robust bipedal walking and running [15, 50, 57].

One of the primary stabilizing properties of swing leg retraction is that when a gait

moves too quickly, the swing leg impacts early and results in a larger step. Large

steps take more energy to complete and slow the walking gait until it converges back

to the nominal walking gait. If a walking gait is moving too slowly, the swing leg has

more time to retract, resulting in a smaller step. Small steps require less energy to

complete and quicken the walking gait until the nominal periodic gait is reached.

It should also be noted that in time-based control systems, too much swing leg

retraction results in an under-damped oscillatory behavior called the “totter” mode

[57], which is an oscillatory attempt to match step length with speed that results in

multiple alternating large, slow and small, fast steps. Absence of swing leg retraction

can lead to an unstable speed mode in which faster steps lead to shorter steps that,

in turn, become even faster. Ultimately, selecting the correct amount of swing leg

retraction is important for maintaining a nominal gait that is robust to changes in

velocity and self regulates in a critically damped fashion.

Many researchers leverage advance knowledge of terrain to achieve robust walking.

Step length adjustments control forward velocity and achieve planned foot positions

over uneven terrain in [58]. Likewise, in [85], control decisions are made with advance

knowledge of terrain to generate desirable conditions when traversing each individual

obstacle. A more restricted approach is developed in [119] where control selection

is based on terrain that is only one step ahead. While [58, 85, 119] are all valid

robustness methods, the current research aims to develop control methods that do

not require a priori knowledge of the environment to broaden applicability.

Another approach for dealing with terrain variation is an adaptive control archi-
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tecture that switches among a finite-set of controllers [85, 98, 119, 140]. Individual

controllers are designed to handle specific conditions and then collectively form a

set that handles many walking conditions. Using this approach, Park successfully

demonstrated robust walking with MABEL for up to 20 cm terrain disturbances

without a priori knowledge of the terrain [98]. The current work develops a single

(non-switching) controller and nominal periodic gait that are insensitive to a prede-

termined and finite set of terrain variations and velocity perturbations. This choice of

a non-switching controller is motivated, in part, by ease of implementation. However,

even in the context of a switching controller, it would be desirable that one of the

controllers be insensitive to a pre-determined range of disturbances.

Robust bipedal locomotion can also be achieved using walking gaits from opti-

mizations specifically designed for robustness. The simultaneous design of a periodic

walking gait and a linear time-varying controller that minimizes deviations induced

by ground height changes is addressed by Dai and Tedrake in [24, 25]. The results are

illustrated through simulation on the compass gait biped and on Rabbit, a five-link

biped with knees. Their work is motivated by Differential Dynamic Programming,

employed by Morimoto to iteratively apply optimization to produce a robust controller

[93], and partially motivated by the work of Ernst, who showed that an infinite num-

ber of control strategies exist to maintain constant running on unknown terrain [29].

In [24, 25], Dai and Tedrake present a quantitative measure to observe robustness

throughout a walking gait, and then use this measure to pose a cost function for

optimizing a walking gait. They define an L2 gain from terrain perturbations to de-

viations from the nominal limit cycle and then use iterative optimization to minimize

this gain.

The effect of Dai and Tedrake’s optimization on gait design can be understood

as follows. When a biped steps onto an uneven surface, the resulting state and

torque trajectory of the perturbed step is compared to its nominal gait and errors are

16



continuously integrated. Gaits in which terrain disturbances result in large deviations

from the nominal gait will have a large associated error cost. By optimizing with this

error as a cost, perturbed trajectories are squeezed toward the nominal gait during

perturbed steps, thus keeping perturbed steps closer to the nominal walking gait.

Because the disturbances do not cause as large of a deviation from the nominal

periodic gait, the optimized gait is more robust to disturbances.

A few additional robustness methods have realized bipedal robot walking over ter-

rain variations. A time-invariant linear controller using transverse linearization and

a receding-horizon control framework is developed in [84]; experiments are performed

on a compass gait walker with 2 cm step down heights. Another robustness method

in [73], uses an event-based controller that updates parameters in a fixed controller

to achieve a dead-beat control response. Control is dead-beat in the sense that, fol-

lowing a terrain disturbance, it steers the robot’s state back to its value at the end

of the nominal periodic gait. Experiments are performed using AMBER on a sloped

treadmill oscillating between ±1.5 degrees.

Robustness Methods in this Dissertation

Motivated by the approach of [24, 25], we seek a periodic walking gait that can ac-

commodate a finite set of perturbations in ground height. Additionally, we introduce

a finite set of perturbations to velocity, which is shown to improve performance for

repeated disturbances. Trajectory and control deviations induced by the perturba-

tions are defined with respect to a nominal periodic orbit via a gait phasing variable.

As in [136], a parameterized family of nonlinear controllers is assumed to be known,

and constrained parameter optimization is used to select a periodic solution of the

closed-loop system that satisfies limits on torque, ground reaction forces, and other

physical quantities. We also ensure swing leg retraction via optimization constraints.

Similar to [24, 25], the cost function is augmented with terms that penalize devia-

17



Figure 2.2: Five-link model and planar MARLO walking over uneven terrain.

tions in the state and control trajectories arising from the terrain perturbations. Two

choices of cost function are studied. In the first cost function, the gait phasing vari-

able is used to penalize more heavily those deviations that persist late into the gait.

Conversely, in the second cost function, no distinction is made for where deviations

occur. Focusing on deviations late in the gait is shown to improve the ability of the

robot to handle terrain deviations. The method is illustrated both in simulation and

in experiments using planar MARLO, as seen in Figure 2.2, and for three-dimensional

walking in Chapter VI.

Contributions of this dissertation with respect to prior work on bipedal robot

walking with terrain variations include: allow a family of nonlinear controllers to

be searched over with respect to disturbance attenuation; introduce a finite set of

perturbations to velocity during control optimization and demonstrating efficacy;

synchronize the calculation of trajectory and control deviations of a biped’s gait via

a gait phasing variable; more heavily penalize trajectory deviations that persist late

into a step, when ground contact is likely to occur; and demonstrate in experiment the

potential utility of trading off deviations early in the step for improved attenuation
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Figure 2.3: Different models of walking. From left to right: Linear Inverted Pendulum,
Compass Gait Walker, Three-Link Walker, and Five-Link Walker.

of the disturbance toward the end of the step.

2.3 Simplified Walking Models

Given the complexity of many bipedal robots, simplified walking models are often

a useful starting point for understanding bipedal locomotion. Simple models provide

insight into the principal behaviors of walking and can motivate intuitive, and often

mathematically precise, control laws. Prevailing models in biped research include the

Linear Inverted Pendulum Model (LIPM) [68], the Spring Loaded Inverted Pendulum

(SLIP) [11], the Compass Gait Walker [34], the Five-Link Walker [134], and variations

of these [32] (Figure 2.3). These simplified models are generally computationally

quicker to simulate than higher dimensional models yet reveal many of the effects of

physical and control parameter variation. Understanding the physical parameters for

underactuated bipeds is especially important because the dynamics are not entirely

controlled.
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New simplified models of bipedal systems can be created using the formal frame-

work introduced in [31], which models high-dimensional biological systems using tem-

plates and anchors. Templates are the simplest models that exhibit a targeted be-

havior (e.g., an inverted pendulum), and anchors are more elaborate representations

grounded in the morphology and physiology of an animal being studied (e.g., multiple

legs, joints, and muscles). The general idea is that animals throw their motion into

‘the hand of the mechanical template’ while ‘tuning up’ redundant degrees of freedom

around the behavior that supports the template motion.

Simplified models have been used to develop various methods for handling im-

pact effects. In [80], idealized and anthropomorphic models of a compass gait walker

demonstrate how collision losses at impact affect walking efficiency. Efficiency is im-

proved by using impulsive energy input at toe-off instead of hip actuation, which can

be four times less costly. Other work in [21] uses a one-legged hopper to demon-

strate how switching conditions at impact can determine the majority of dynamics.

By controlling the hopper in a feedforward manner to accommodate the impact that

would occur at that particular instant, the hopper rejects terrain disturbances in a

dead-beat manner. It is also shown in [21] that accurate sensing of uneven terrain is

not a requirement for guaranteed stability. In [29], a SLIP model shows how spring-

legged systems can maintain constant running speed despite uneven terrain and varied

impact conditions.

Methods for controlling forward walking speed have also been developed using

simplified models. To control forward walking speed in [110], researchers plan the

desired placement of a biped’s swing foot as a function of the center of mass velocity

in the horizontal direction. The control law for foot placement is based on the LIPM

proposed in [69], which approximates the robot’s dynamics as an inverted pendulum

with constant vertical height and massless legs. The pendulum’s dynamic model

is linear, the reset map associated with leg impact is linear and energy conserving,
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and the overall hybrid model can be solved in closed form. Using the closed-form

solution of this LIPM model, Pratt et al. [77, 110] propose a foot placement policy to

regulate forward walking speed. They have used this policy on complex robots such

as a simulation model of the M2V2 biped undergoing “shoves” of up to 15 Ns [108].

Similar adjustments are made heuristically to step length and torso pitch in [104] to

improve velocity stabilization of the planar biped ERNIE.

Simplified models are also often used for control optimization and simulation prior

to testing on a real system. In the early design stages of a controller, such a process can

improve control while avoiding unnecessary wear or damage to hardware [73, 84, 92].

2.3.1 Embedding Simplified Model Behavior in Higher Dimensional Con-

trol Systems

Among the many challenges associated with implementing a simplified model-

based controller on an actual robot, one of the most significant challenges arises from

incompatible model dynamics. Even when a more complete model is used, parametric

differences and sensing errors cause a gap between a simulation model and an actual

robot. Researchers in [99] address this gap using robust control and parameter iden-

tification. Other researchers in [30] use supervised learning algorithms to iteratively

update simulation models to match robot experiment data.

Simplified models can also be applied by making revisions that are realistic with-

out compromising the primary desired behaviors. In [105], a formal connection is

established between SLIP models and higher dimensional models using the revised

Asymmetric Spring Loaded Inverted Pendulum (ASLIP). Researchers in [105] propose

a framework that combines SLIP controllers with nonlinear control tools to induce

exponentially stable running motions in ASLIP. In addition, by imposing a virtual

constraint on torso posture, the dynamics of the closed-loop higher dimensional sys-

tem is diffeomorphic to the center of mass dynamics of a SLIP model. In [62], a
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SLIP model with impact compensation (SLIPec) is introduced to bring theoretical

foundations closer to applications in real robots. They also increase the applicability

of simplified models to their robot by explicitly designing limbs to reflect the SLIP

model template.

Multiple researchers have embedded simplified model behavior into planar bipedal

control. In [33], the center of mass dynamics of a SLIP model are embedded in a

feedback control law for a fully actuated planar biped. For the additional degrees

of freedom of the full model, torso orientation and virtual constraints for the swing

foot trajectory are also controlled. In [53], researchers embed the center of mass

trajectory of a SLIP model into a controller for a planar ATRIAS robot. First,

they find a symmetric center of mass trajectory based on a SLIP model that is a

rough approximation of ATRIAS. Next, they add the least squares fit between the

center of mass trajectory of the SLIP model and the full ATRIAS model as a cost

with additional constraints during full model optimization. Whereas speeds and step

lengths differ, the center of mass trajectories for the SLIP model and resulting full

model ATRIAS gait are similar in simulation.

Embedding Simplified Model Behavior in Higher Dimensional Control Sys-

tems in this Dissertation

In this dissertation, we develop a new framework for embedding control laws based

on simple models into higher dimensional systems. Similar to [53], we embed simple

model behavior using optimization costs on the full dynamic model. However, in our

framework the embedded behavior is not limited to a single instance of a periodic

orbit (e.g., a single center of mass trajectory). Using a parameter optimization process

developed in Chapter IV, a pre-specified range of disturbances are included in the

embedding process to maintain adherence to the desired control behavior over a range

of conditions. We also utilize a new class of nonholonomic virtual constraints derived
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Figure 2.4: Swing foot placement on the full model. Velocity-based swing foot place-
ment has been designed on the basis of the linear inverted pendulum model in [110].
Using velocity-dependent nonholonomic virtual constraints, it is possible to imple-
ment a swing foot placement policy that accounts for the full dynamics of the biped,
as well as a range of terrain disturbances.

in Chapter V, which enable us to embed velocity-dependent behavior. Although this

framework does not provide a formal diffeomorphism between models as in [105], it

does not limit the complexity of the final control system.

In Chapter V, we demonstrate this framework by embedding a LIPM-based swing

foot placement policy into a full dynamic model of MARLO. Using nonholonomic vir-

tual constraints that depend on velocity through angular momentum about the stance

leg end, a velocity-dependent foot-placement strategy is designed and implemented

without relying on an inverted pendulum approximation of the robot. In particular,

the distributed mass, multi-link nature of the robot can be fully taken into account,

including energy losses upon impact. In addition, the control design process takes

terrain variations into account (Figure 2.4).

Contributions of this dissertation with respect to the swing foot placement policy

implemented in [110] include: control foot placement based on velocity throughout

the step rather than just the horizontal velocity of the center of mass at mid-step;
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include the dynamics of the full model (e.g., impact losses, varying center of mass

height); and include a pre-specified range of terrain disturbances in the controller

design process.

Contributions of this dissertation with respect to prior work on embedding simpli-

fied model behavior in higher dimensional control systems include: embed a velocity-

dependent simple model-based behavior into a full-order control model using non-

holonomic virtual constraints, and include a specified range of disturbances in the

embedding process to ensure adherence to the desired control behavior over a range

of conditions.

2.4 Virtual Constraints

Virtual holonomic constraints are functional relations among the configuration

variables of a robot that are dynamically imposed through feedback control. Their

purpose is to synchronize the evolution of the various links to an internal gait phas-

ing or gait timing variable, such as the position of the robot’s hip with respect to

the stance leg end. The gait timing variable is selected to be monotonically increas-

ing along a walking motion so that it can replace time as a means to parameterize

command “trajectories.” From a theoretical perspective, virtual constraints turn the

Isidori-Byrnes theory of nonlinear zero dynamics from [64] into a formal gait and

feedback design tool, while the experiments reported in [15, 35, 86, 101, 135, 142]

attest to the applicability of the approach to realize dynamic locomotion that meets

a range of design objectives, from speed of locomotion, to limits on actuator torque,

and available friction cone, to name only a few.

Virtual Constraints in this Dissertation

In Chapter V we introduce a more general class of nonholonomic virtual con-

straints that depend on velocity through generalized conjugate momenta while main-
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taining the property of being relative degree two. Nonholonomic virtual constraints

allow foot placement control to be rigorously designed on the basis of the full dynamic

model of the biped, instead of on the basis of an inverted pendulum approximation of

its center of mass, as is commonly done in the bipedal robotics literature. The foot

placement control implementation in Chapter V uses virtual constraints that depend

on velocity through angular momentum about the stance leg end (in addition to the

robot’s configuration variables). A set of parameterized splines appearing in the vir-

tual constraints are designed using the Optimization for Accommodation of Unknown

Disturbances method introduced in Chapter IV. The robustness of the resulting con-

trol law to terrain and velocity perturbations is evaluated through simulation and

compared to other control laws. The control law based on nonholonomic constraints

is able to accommodate a wider range of perturbations than a control law based on

holonomic constraints.

We use nonholonomic virtual constraints again in Chapter VI, where a second

velocity-dependent posture-regulating strategy is designed and implemented on MARLO

for three-dimensional walking. In this second control implementation, we find again

that all control solutions based on nonholonomic constraints accommodate a wider

range of perturbations than those based on holonomic constraints.

Contributions of this dissertation with respect to prior work on virtual constraints

include: introduce a new class of virtual constraints that include velocity, but main-

tain control outputs that are relative degree two for ease of implementation, and

demonstrate superior ability to attenuate terrain and velocity perturbations.

2.5 Three-Dimensional Walking

As motivated in Section 2.1, this dissertation focuses on underactuated dynamic

walking control. However, three-dimensional (3D) walking control is commonly real-

ized using zero-moment point (ZMP) methods for static stability [47]. Examples of
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ZMP 3D walking robots include Atlas [2], KHR-3 HUBO [102], ASIMO [121], and

previous Honda robots [54]. Following their inception, ZMP methods have been aug-

mented by underactuated control methods [65]. Likewise, the control methods pre-

sented in this dissertation that are motivated by challenges of underactuated walking

can be extended to fully actuated bipedal robots. Some conditions that motivate

this extension include cases where fully actuated robots seek to relax restrictions on

ground contact conditions, conserve a limited energy supply through dynamic walk-

ing, and continue operation despite motor failure using underactuated methods.

2.5.1 Simplified 3D Models

One of the most intuitive ways to understand the auxiliary roll and yaw behaviors

of 3D walking is to study simplified 3D models. Roll and yaw instability of simple

unactuated 3D models are studied in [90] and then compared with systems that are

inherently stable. McGeer finds that foot design has a significant effect on trading

off lateral and yaw stability. He also discusses how people eliminate rolling torques

in the lateral plane by limiting lateral leg separation. These results are extended

in [79], where a simple passive walker is augmented with various minimal actuator

techniques to provide roll and yaw stability. Specifically, they consider three direct

and two indirect stabilization methods. The three direct stabilization methods in-

volve adding ankle torques, reaction wheels, and roll torso motions; the two indirect

stabilization methods involve adjusting step width and adding a torsional spring at

the hip. It is found that direct stabilization methods are most effective when applied

immediately and require energy input at least equal in magnitude to the perturba-

tion. Conversely, indirect stabilization methods can be performed over an entire step

without penalty and are more energy efficient, as they essentially adjust foot contact

conditions to reject a perturbation by the end of the following step. The benefits

of indirect stabilization methods found in [79] motivate extensions of the swing foot
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placement strategies implemented in Chapter V to 3D for roll and yaw stabilization

as opposed to any direct stabilization methods (e.g., ankle torque).

Another simplified 3D model, the Three-Dimension Linear Inverted Pendulum

Mode (3D-LIPM), is introduced in [66]. In this work, researchers derive analyti-

cal solutions for foot placement that achieve a desired walking speed and direction

given current conditions. This model is used in [114] to formalize the notion of

self-synchronization, which refers to the periods of pendular motion converging on

a common period for the sagittal and frontal planes for a given level of kinetic en-

ergy. Using the 3D-LIPM in [114], researchers are able to prove the existence of a

self-synchronized walking gait, and then extend a generalization of their work to a 9

degree of freedom (DOF) 3D model of ATRIAS that is asymptotically stable.

2.5.2 Yaw Restriction Models

3D walking models can have varying levels of yaw restriction in the traverse plane.

For example, walking models in [18, 79] are completely yaw restricted. Bipeds are

free to pivot in the roll and pitch directions, but are unable to rotate in the yaw

direction. In contrast, the walking model in [125] is unrestricted and allows the biped

to rotate freely about the stance foot. To deal with this additional freedom, a yaw

controller is implemented to follow desired headings. Finally, the walking models in

[8, 113] use moderate yaw-restriction. Yaw motion about the stance foot is limited

by viscous friction, which increases yaw damping forces with rotation velocity. As

an aside, in addition to the single support models, there are also different modeling

assumptions for yaw restriction at impact or during double support. For a physical

robot, different levels of yaw restriction can be implemented by varying the ground

contact conditions through foot design.
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2.5.3 Foot Design

A significant factor for 3D walking is foot design, which heavily influences roll and

yaw stability [90]. Unfortunately, as shown in the survey article [47], while much work

has studied the effect of foot geometry in the planar case, the explicit study of 3D foot

geometry is limited. In [86], researchers formally extend the use of virtual constraints

and hybrid zero dynamics from point feet to curved feet for planar control. They

later study the trade-offs of foot radius and ankle offset in [87], and find that foot

design based on simulation data works well for experiments. An alternative study of

foot shape in [5] finds that foot length has a greater effect on gait mechanics than

foot radius. Energy losses at impact are caused by changes in the center of mass

velocity. Rolling onto the toe of a longer foot reduces velocity change by redirecting

the center of mass velocity upward prior to impact. In this way, some push off can

be achieved with passive feet with an unactuated ankle. Other researchers in [8] test

3D foot geometries by developing a compliant ground model with passive prosthetic

feet to ensure the stability of a 3D controller originally designed using point feet.

We have explored the pros and cons of different ground contact models, and we have

used multiple types of feet for 3D walking experiments. Hardware options available

for MARLO’s feet are presented in Figure 6.3 and Appendix A, Figure A.11.

2.5.4 3D Hybrid Zero Dynamics and Virtual Constraints

The work most relevant to this dissertation is that of underactuated 3D walking

using hybrid zero dynamics and virtual constraints. As shown in [47] and citations

therein, this research is still in its early stages and much work remains to be done.

Fundamental 3D-specific principals of these methods are provided in [18], where re-

searchers achieve asymptotic stability of a 3D biped with point feet in simulation

using three different and informative feedback control methods. The first method en-

forces stability by limiting the maximum eigenvalues of the linearized Poincaré map
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during gait optimization. The second method uses a stabilizing event-based controller

designed to adjust step-to-step continuous feedback control parameters. The gain ma-

trix used for modifying the control parameters is calculated using a discrete linear

quadratic regulator (DLQR) and brings the eigenvalues of the linearized Poincaré

map within the unit circle. The final method involves making a judicious choice of

virtual constraints for control outputs, which stabilizes a previously unstable peri-

odic gait. This initial work is yaw constrained, but an unconstrained implementation

of this work that achieves asymptotically stable walking and steering is provided in

[125].

Hybrid zero dynamics and virtual constraints are used in [8] to achieve 3D walking

with a 13-DOF simulation model of MARLO. Researchers in [8] use an event-based

control scheme with the added objective of robustness to external disturbances and

model uncertainty. They simplify control by assuming a symmetric model about the

yz plane of the torso frame. External shoves of 70 N applied to the robot’s center of

mass for over 50% of a gait are rejected. The walking gait is also robust to changes

in the yaw friction coefficient and spring parameters. Because these parameters are

difficult to accurately define on the robot, these results are encouraging.

Recently, a bilinear matrix inequalities (BMI) optimization has been posed in

[6] to achieve stable walking with MARLO without an event-based controller. This

BMI method applies to periodic orbits that are invariant under the choice of control

parameters. The problem of stabilization of periodic orbits is then converted into a

set of bilinear matrix inequalities. A BMI optimization is used to tune parameters

of the feedback controller to stabilize the 3D gait. One goal of the implementation

is to replace the physical intuition required for selecting virtual constraints with a

systematic approach to achieve stability or other control objectives.
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2.5.5 3D Walking Over Rough Terrain

Bipedal robots have achieved outdoor walking but often with control techniques

that result in slow locomotion. One example implementation in [67] achieves out-

door walking on uneven pavement using a 42 DOF HRP-4C robot. To reduce the

complexity of walking control design, the system is approximated as a linear inverted

pendulum with ZMP delay. The ZMP delay is approximated to account for the real

robot ZMP lagging behind the idealized ZMP reference trajectory due to mechani-

cal compliance and control. The HRP-4C robot traverses pavement outdoors with a

3-degree slope at approximately 0.17 m/s. Recently, the DARPA Robotics Challenge

Trials featured a number of teams working to complete a set of tasks that mimic

a disaster response using an Atlas robot. One of these tasks was navigating rough

terrain outdoors [3]. Unfortunately, no detailed quantitative data from these trials is

currently available. However, some quantitative results on Atlas can be found in [27].

Researchers in [27] achieve simulated and experimental 3D bipedal walking control

using a variant of capture point walking they call the divergent component of motion

(DCM). In simulation, they control bipedal robot TORO to traverse stairs with height

changes varying between 12 cm and -18 cm at approximately 0.15 m/s. In experi-

ments, they control an Atlas robot to achieve flat ground walking at approximately

0.09 m/s.

3D Walking in this Dissertation

This dissertation addresses the design of feedback controllers and periodic gaits

that function well in the presence of modest terrain variation, without reliance on per-

ception and a priori knowledge of the environment. We introduce model-based design

methods that are theoretically grounded, systematic, and generalizable. These meth-

ods include a feedback control design that enables continuous velocity-based posture

regulation and an optimization method that accounts for multiple types of distur-

30



bances. For optimization, we use a simulation model that is unrestricted in the yaw

direction. Thus, the resulting walking gait is not heavily dependent on yaw damping,

which is beneficial for uncertain physical ground contact conditions. These methods

are validated in simulation and experiment on an underactuated three-dimensional

bipedal robot that has only an IMU and joint encoders for sensors, as shown in

Figure 2.5. Using a single continuously-defined controller taken directly from op-

timization, MARLO traverses a variety of terrains while maintaining a mechanical

cost of transport (MCOT) between 0.67-0.69 and average walking speeds between

0.9-0.98 m/s.

Contributions of this dissertation with respect to prior work on feedback control of

three-dimensional bipedal robots include: introduce a model-based design framework

that is able to achieve dynamic three-dimensional walking without hand-tuning of the

optimized walking gait; demonstrate robustness by traversing sloped sidewalks and

parking lots, terrain covered with randomly thrown boards, and grass fields without a

priori knowledge of the environment or external sensing (the robot uses only an IMU

and joint encoders); and set a new precedent by evaluating walking efficiency for a

variety of realistic terrains.
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Figure 2.5: MARLO walking on various outdoor terrains. MARLO is able to traverse
man-made (top) and natural (bottom) terrain using a single continuously-defined
controller based on the mathematical model of the robot. The mobile gantry does
not provide any stabilization or support during walking.
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CHAPTER III

Background

Chapter III describes the general concepts used in this dissertation. Section 3.1

outlines fundamental assumptions and derivation of our walking model. Section 3.2

describes the ATRIAS 2.1 model robot, MARLO, which is the basis of our simu-

lation models and is used for experiments. Section 3.3 shows the feedforward and

feedback control derivation used in this work. Finally, Section 3.4 introduces hybrid

zero dynamics, which uses virtual constraints to redefine a hybrid system on a lower

dimensional submanifold.

3.1 Walking Model

3.1.1 Overview

Almost all models of bipedal locomotion are based on a two-phase hybrid model, as

seen in Figure 3.1. This hybrid model consists of a single support or swing phase and

a double support or impact phase. The single support phase involves the continuous

dynamics and control that occur when the stance leg is grounded and the swing leg

swings past the stance foot to contact the ground and complete a step. Once the

swing leg has come into contact with the ground, an impact occurs, as shown in

Figure 3.2. The impact phase uses a different model than that in the single support

phase. Specifically, the impact model uses the final states of the previous step to
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𝐴 = 𝜋𝑟2  𝑥

Figure 3.1: Hybrid model for walking. The single support phase exhibits continuous
dynamics until the point of impact. Impact occurs when the position of the swing
foot reaches the ground height, d, with a negative velocity. The start of the next
walking step is initialized by the impact map, which inputs the pre-impact states and
outputs the post-impact states for the next step’s initial dynamics.

generate the initial states for the next step. The initial states then lead into the

continuous single support phase of the next step after the control for the stance and

swing legs are swapped. The model of each phase is derived using the Lagrange

Method discussed in Section 3.1.3. Important factors for bipedal locomotion using

this model include the physical parameters that affect the hybrid dynamics of the

system and the method of control used to advance the swing leg ahead of the stance

leg during each step.

3.1.2 Walking Model Assumptions

We make four assumptions for our walking model. First, we assume that the

stance leg stays pinned to the ground and does not move during the swing phase.

This is a fair assumption for two reasons: (1) our biped model has point feet, and (2)

our optimization has constraints that ensure that the dynamics of the robot maintain

necessary forces to preserve ground contact and avoid slipping for a given coefficient

of friction.
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Figure 3.2: Single and double support phase. The single support phase exhibits con-
tinuous dynamics governed by (3.7) (left). Double support begins after the swing leg
impacts the ground (right), and maps pre-impact conditions to post-impact condi-
tions for the next step using (3.20).

Second, we assume that impact happens instantaneously, which implies an instan-

taneous change in velocities at impact. This assumption means that the biped is in

double support for only an instant before impulsive contact forces cause the previous

stance leg to lift off the ground and become the swing leg in the next continuous

phase.

Third, we assume a no-slip condition, which guarantees no changes in position

during impact. That means that the point of impact is guaranteed to be the point of

the pinned stance leg during the next single support phase.

Last, we assume that the biped is able to detect impact. This assumption allows

swapping stance and swing leg control after impact, which leads into a new step and

re-initializes the continuous control portion of our hybrid model.
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3.1.3 Mathematical Model

The basis of our simulation dynamics calculations for both the single support and

impact phases is the Lagrangian (L). The Lagrangian is a function of the total kinetic

(K) and potential (V ) energy of a system. The Lagrangian is defined as

L(q, q̇) := K(q, q̇)− V (q), (3.1)

where V is a function of link positions and their mass being acted upon by gravity,

K is a function of velocities and the mass-inertia matrix (see (3.3)), and q is a vector

of the position coordinates of the system. This energy-based approach serves as an

alternative to the Newton-Euler force balance methods for calculating dynamics of a

rigid body [22]. Lagrange’s equation, which provides the equations of motion, is

d

dt

∂L
∂q̇

− ∂L
∂q

= Γ, (3.2)

where Γ is a vector of the resulting forces and torques. We can put (3.2) in a more

useful form by defining D, B, C, and G as matrices satisfying

1

2
q̇′D(q)q̇ = K(q, q̇) (3.3)

Bu = Γ (3.4)

C(q, q̇) =

(
∂

∂q
(D(q)q̇)

)
− 1

2

(
∂

∂q
(D(q)q̇)

)′

(3.5)

G(q) =
∂V (q)

∂q
. (3.6)

D is the mass-inertia matrix, which is a function of the link positions, B is a matrix

matching motor input torques to link torques, C is the Coriolis matrix, and G is a
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vector of gravity terms. Substituting (3.3)-(3.6) into (3.1) and (3.2) we find

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (3.7)

which allows us to solve for acceleration of the system as

q̈ = D−1(Bu− Cq̇ −G). (3.8)

Equation (3.8) will be used for control derivation in Section 3.3. Equation (3.7)

provides the state-space equations we use for simulating continuous phase dynamics.

The state-space equations are [46, 136]

ẋ :=
d

dt

q
q̇

 =

 q̇

D−1(q)(Bu− C(q, q̇)q̇ −G(q))


= f(x) + g(x)u, (3.9)

where x ∈ X is the state of the system and u ∈ Rm are the control inputs. For later

use, a parameterized family of continuous-time feedbacks is assumed to be given

u = Γ(x, β), (3.10)

where β ∈ B are control parameters from an admissible set. The input u can be

determined using various control methods; the general control methods used in this

dissertation are discussed in Sections 3.3 and 3.4. The resulting closed-loop system is

ẋ = f cl(x, β) := f(x) + g(x)Γ(x, β). (3.11)

The closed-loop system is assumed to be continuously differentiable in x and β,

thereby guaranteeing local existence and the uniqueness of solutions.
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Next, we derive our impact model, which is the second half of the hybrid model

we use for simulation. The impact is modeled as a collision of rigid bodies using the

model of [59]. Pre-impact states are used to calculate post-impact velocities of the

biped. The pre-impact states are calculated assuming that the stance leg is pinned.

The post-impact states assume that the previously pinned stance leg is free to move

as the new swing leg and that the previous swing leg is now pinned as the new stance

leg. We calculate reaction forces and velocities of both leg ends with an extended

model that has two more degrees of freedom. These two degrees of freedom arise from

p2, the position of the swing foot, defined as

p2 :=

ph
pv

 , (3.12)

where ph and pv are the respective horizontal and vertical positions of the swing foot.

The double support phase begins when the swing foot strikes the ground. This

occurs when

pv2(x)− d = 0, (3.13)

for d ∈ D, a finite collection of ground heights used to account for varying terrain.

It will be assumed at impact that the transversality condition ṗv2(x) < 0 is met.

Physically, it corresponds to the impact occurring at a point in the gait where the

swing foot is moving down toward the ground, as opposed to the impact occurring

early in the gait which would lead to tripping [98].

Once in double support, we begin calculating reaction forces and velocities changes

using the extended model, qe, defined as

qe :=

 q

p2

 , (3.14)
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where q is the position vector used for continuous dynamics. By using qe, we can

include impulsive external forces from ground impact. Using the extended model

with the method of Lagrange we find

De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = Beue + δFext. (3.15)

Fext is equivalent to the total change in momentum during impact. Fext is found

using the differences in velocity of the pre- and post-impact states and the mass

inertia matrix with

De(qe)(q̇e
+ − q̇e

−) = Fext (3.16)

Fext = E2(q
−
e )

′F2, (3.17)

where E2(qe) =
∂
∂qe

p2(qe) and F2 = (F T
2 ;F

N
2 ) is the vector of forces acting on the swing

foot at impact. Note: q+e = q−e since position is assumed constant during impact,

allowing De(qe) to be general in place of De(q
+
e ) and De(q

−
e ) in (3.16). Because we

assume the swing foot does not slip (i.e., maintains contact with the ground after

impact to become the next stance foot), we find

E2(q
−
e )q̇e

+ = 0. (3.18)

Using (3.16)-(3.18) we can construct [136]

De(q
−
e ) −E2(q

−
e )

′

E2(q
−
e ) 02×2


q̇e+
F2

 =

De(q
−
e )q̇e

−

02×1

 . (3.19)

Since the leftmost matrix is invertible and all the right-hand-side terms of the equation

are known, we can now solve for q̇e
+, our post-impact velocities, and F2, our ground

reaction forces at impact.
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Our impact model is complete with the post-impact velocities from (3.19). A

simplified expression of the impact model is the continuously differentiable reset map

x+ = ∆(x−), (3.20)

which does not depend on the ground height since the vector of pre-impact states,

x− := (q−e ; q̇e
−), provides foot height at impact. Here, x+ is a vector of the post-impact

states. So that only one continuous-phase mechanical model is needed, the impact

map is assumed to include leg swapping, as in [136, pp. 57]. Moreover, for reasons

that will become clear in Chapter IV, the impact map is allowed to depend on β.

The overall hybrid model is written as

Σ :


ẋ = f cl(x, β) x− /∈ Sd

x+ = ∆(x−, β) x− ∈ Sd

(3.21)

where

d ∈ D := {d0, d1, · · · , dN} (3.22)

is the set of ground height variations and

Sd := {x ∈ X | pv2(x)− d = 0, ṗv2(x) < 0} (3.23)

is the hypersurface in the state space where the swing leg impact occurs at ground

height d ∈ D. A diagram of the hybrid model cycle is provided in Figure 3.1.

Remark: The reference [136, pp. 109] shows how to augment the state variables with

control parameters in order to accommodate event-based control, as used in [73]. This

extension is employed later in (4.21).
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3.1.4 Model Solutions

For a given value of β ∈ B, a solution of the hybrid model (3.21) is defined by

piecing together solutions of the differential equation (3.11) and the reset map (3.20);

see [136, pp. 56],[60]. We are interested in periodic orbits and their perturbations and

exclude Zeno and other complex behavior from our notion of a solution.

In the following, for compactness of notation, explicit dependence on β is dropped.

A step of the robot starts at time t0 with x0 ∈ S d̄0 for a given value of d̄0 ∈ D. The

reset map is applied, giving an initial condition ∆(x0) for the ODE (3.11), with

solution ϕ(t, t0,∆(x0)). The step is completed if the solution of the ODE can be

continued until a (first) time t1 > t0 when x1 = ϕ(t1, t0,∆(x0)) ∈ S d̄1 for a given

value of d̄1 ∈ D. Not all steps can be completed, but when one is completed, the

next step begins by solving the ODE with initial condition ∆(x1) at time t1, etc. The

solution (or step) is periodic if ϕ(t1, t0,∆(x0)) = x0, and T = t1 − t0 is the period.

Because the model is time invariant, wherever convenient, the initial time is taken as

t0 = 0 and the solution denoted as ϕ(t,∆(x0)).

3.2 Bipedal Robot MARLO

The model parameters we use in simulation are based on MARLO, the Univer-

sity of Michigan copy of the ATRIAS 2.1-series of robots built by Jonathan Hurst

(see Figure 3.3) [45]. The robot’s mass is approximately 55 kg and its legs are one

meter long. MARLO is a biped with six actuators. Two motors are used for lateral

hip movement and four motors control the links in the legs. MARLO is similar to

MABEL in that it is intended to be able to walk over difficult terrain [49]. However,

unlike MABEL, MARLO is able to walk in 3D without assistance due to lateral hip

actuation.

The robot can be planarized through attachment to a boom. MARLO’s planar
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Figure 3.3: Robot MARLO and state description for model of MARLO used in planar
simulations. qT is the absolute angle of the torso with respect to the world vertical
frame; the remaining coordinates define the relative link positions.

actuation is applied to four-bar linkages in each leg. Four-bar linkages allow the knee

angles to be actuated from the hip, thereby keeping the legs relatively light. However,

control of a four-bar linkage in its native coordinate system is not intuitive. We use

coordinate transformations to redefine actuated coordinates in terms of more intuitive

outputs, as described in Section 3.3.

The motors inside MARLO’s hips are attached to the links in the legs through

springs to absorb shock and a harmonic drive for a 50:1 gear ratio and mechanical

advantage. Furthermore, while the robot has series elastic actuators, the springs are

stiff and in this study are removed from the model. With this simplification, the

planar robot has 5-DOF when in single support and four actuators and the 3D robot

with unconstrained yaw has 9-DOF when in single support and six actuators.

MARLO’s motors have torque limits and the legs cannot be fully extended. Lim-

itations such as these are applied as constraints in optimization and torques are

saturated in simulated walking. Using the original ATRIAS configuration in Chap-

ter IV, motors are limited to 3 Nm of torque. Following amplifier upgrades, sagittal
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motors are limited to 5 Nm of torque in Chapter VI.

3.3 Control Derivation

Control of a hybrid model can be discrete, continuous, or some combination of

the two. Discrete control decisions can take place from step to step, whereas contin-

uous control operates during the continuous dynamics of the single support phase.

Continuous control may consist of feedback control and/or feedforward control.

Feedforward control uses the derived model to calculate necessary torques for a

desired trajectory. The greater the parametric errors between the simulated model

and the actual robot, the less accurate feedforward control will be for real experiments.

For this reason, feedback control is practical for real experiments in the presence of

significant parametric errors. As an aside, results for an alternative reinforcement

learning-based feedforward (RLFF) control policy are provided in Appendix B. RLFF

works independently of the control model, so it is not effected by modeling errors,

and is shown to improve performance for specific terrain conditions.

Feedback control provides input torques to the system to correct for output errors.

To begin feedback control design, control outputs must be chosen. Outputs are the

basis of what is controlled by the actuators in a simulation model and on the robot

during operation. Once a set of outputs has been chosen, desired values to follow must

also be defined for outputs. Any differences between the actual and desired control

trajectories generate output errors that serve as a platform for feedback control.

Our feedback controller is designed using the method of virtual constraints. A

holonomic constraint that is expressed as an output and zeroed through the action

of an actuator rather than the internal forces of a physical constraint is said to be

virtual. Virtual constraints can be used to synchronize the links of a robot in order to

achieve common objectives of walking, such as supporting the torso, advancing the

swing leg in relation to the stance leg, and specifying foot clearance.
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Figure 3.4: Control outputs and unactuated coordinates. For control outputs, h0(q),
LA and KA are abbreviations of leg angle and knee angle, respectively, and ST
and SW designate the stance and swing legs. θ defines the remaining degree of
underactuation. h0(q) with θ provides a complete state description.

Our control derivation begins with the output error, y ∈ Rm, defined as

y := h(x, β) = h0(q)− hd(x, β), (3.24)

where h0(q) represents the current state of the outputs, hd(x, β) represents the desired

output, and y represents the output error, h(x, β). If h(x, β) is controlled to be zero,

our virtual constraints are satisfied. For compactness of notation, explicit dependence

on β is dropped.

It is not intuitive to directly control MARLO’s link positions, q, so we design our

control outputs, h0(q), to be more meaningful. The control outputs for the five-link

walking model used in Chapter IV are depicted in Figure 3.4. In this case, h0(q) can

be calculated using linear transformation matrices, but other choices of outputs, such

as those based on Cartesian coordinates in Chapter V, require nonlinear calculations.

It is also possible to redefine our absolute world frame coordinates. In Figure 3.4, qT

is replaced by θ, the absolute angle of the stance leg clockwise from the horizontal
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plane at ground contact, which will be useful for defining our gait phasing variable

and desired trajectories.

The desired trajectory, hd from (3.24), can be chosen in several ways. For example,

one simple control method for swing leg angle is to keep the angle of the swing leg

a mirror of the stance leg. In this case, hd = hd(q) is a function of q alone. An

even simpler hd is to use a constant; for example, a constant stance knee angle. The

research in this dissertation uses desired trajectories that evolve as a function of the

a gait phasing variable τ . One common choice of τ based on θ is defined as

τ(q) =
θ(q)− θmin

θmax − θmin

, (3.25)

where θmin and θmax are the beginning and ending values of θ(q) for a given periodic

walking gait. For undisturbed walking, τ monotonically increases from 0 to 1. When

the stance leg is at θmin, τ = 0, and when the stance leg is at θmax, τ = 1. τ can be

used as a monotonically increasing gait phasing variable because θ is always increasing

during the single support phase of walking. τ acts a single measure of how far along a

step is in its progression. With holonomic virtual constraints and hd(τ) a function of

gait phase, desired link positions are consistent at each phases of walking, even when

the walking speed changes. Such is not the case for time-based control.

In this work, the function hd(τ) ∈ Rm is a vector of splines that specifies the

desired evolution of h0(q) in terms of the gait phasing variable τ(q). Here, the splines

are Bézier polynomials, with the ith polynomial given by

hd,i(τ) :=
M∑
k=0

αi,k
M !

k !(M − k) !
τ k(1− τ)M−k, (3.26)

where the m degree-(M + 1) Bézier polynomials are defined by α ∈ Rm×(M+1) [136,
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pp. 138]. In Chapter IV, we use sixth order Bézier polynomials for four outputs:

hd(τ) =


α1,0(1− τ)5 + α1,15τ(1− τ)4 + · · ·+ α1,5τ

5

...

α4,0(1− τ)5 + α4,15τ(1− τ)4 + · · ·+ α4,5τ
5

 , (3.27)

where α ∈ R4×6 is defined by control parameters β. One important result from (3.26)

is that hd,i(0) = αi,0 and hd,i(1) = αi,M . This result means that our first column of

(3.27) should be the nominal desired output values at the beginning of our periodic

walking gait, and the last column should be the desired output values at the end of

our periodic walking gait. The columns in between determine how this transition

occurs. Swing knee angle, for instance, may have higher Bézier parameter values in

the middle columns to avoid scuffing the ground with the swing foot for 0 < τ < 1.

Bézier polynomials are also useful for calculating velocity by taking the derivative

of hd(τ) from (3.26) with respect to τ :

∂hd,i(τ)

∂τ
=

M−1∑
k=0

(αi,k+1 − αi,k)
M !

k !(M − 1− k) !
τ k(1− τ)M−1−k (3.28)

Similarly, taking the derivative of (3.27) with respect to τ we find

∂hd(τ)

∂τ
=

(α1,1 − α1,0)5(1− τ)4 + (α1,2 − α1,1)20τ(1− τ)3 + · · ·+ (α1,5 − α1,4)5τ
4

...

(α4,1 − α4,0)5(1− τ)4 + (α4,2 − α4,1)20τ(1− τ)3 + · · ·+ (α4,5 − α4,4)5τ
4

 . (3.29)

One result from (3.28) is that
∂hd,i(0)

∂τ
= (αi,1 − αi,0)5 and

∂hd,i(1)

∂τ
= (αi,5 − αi,4)5.

For nominal periodic walking, this result means that the desired velocity of each ith

actuated state just before and after impact are a function of only two Bézier param-
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eters each. We have shown that Bézier parameter values change the desired walking

trajectory with respect to position and velocity. This behavior makes hand-tuning or

optimizing a desired walking gait relatively straight-forward using Bézier parameters.

With control outputs and desired trajectories defined, we find our new output

equation using (3.24)-(3.29) to be

y = h0(q)− hd(τ), (3.30)

which is differentiated as

dy

dt
= ẏ =

∂h0(q)

∂q
q̇ − ∂hd(τ)

∂τ
τ̇ (3.31)

ÿ =
∂h0(q)

∂q
q̈ +

∂

∂q

(
∂h0(q)

∂q
q̇

)
q̇ − ∂hd(τ)

∂τ
τ̈ − ∂2hd(τ)

∂2τ
τ̇ 2. (3.32)

Recognizing from (3.25) that τ̈ is a function of q̈ via the chain rule,

τ̈ =
∂τ(q)

∂q
q̈, (3.33)

and then taking the partial derivative of h(x, β) from (3.24),

∂h

∂q
=

∂h0(q)

∂q
− ∂hd(τ)

∂τ

∂τ(q)

∂q
, (3.34)

we simplify (3.32) to

ÿ =
∂h

∂q
q̈ +

∂

∂q

(
∂h0(q)

∂q
q̇

)
q̇ − ∂2hd(τ)

∂2τ
τ̇ 2, (3.35)

where ∂h
∂q

is called the decoupling matrix.

We now derive our feedforward and feedback control using the previous result.

Substituting (3.8) in (3.35) for q̈, we use the relationship between the inverse dynamics
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and our control outputs to find the feedforward component of our control scheme as

ÿ =
∂h

∂q
D−1(Bu− Cq̇ −G) +

∂

∂q

(
∂h0(q)

∂q
q̇

)
q̇ − ∂2hd(τ)

∂2τ
τ̇ 2. (3.36)

Our feedback control requires that y is relative degree two, which is confirmed in

(3.36), since ÿ is the first derivative of y with any dependence on u. Our feedback

control is designed to drive y to 0 and identically satisfy ẏ = ÿ = 0. Using derivative

and proportional gains, kd and kp respectively, we relate the feedback component of

our control scheme to our control outputs as

ÿ + kdẏ + kpy = 0 → ÿ = −kdẏ − kpy. (3.37)

Combining (3.36) and (3.37) we find

∂h

∂q
D−1(Bu− Cq̇ −G) +

∂

∂q

(
∂h0(q)

∂q
q̇

)
q̇ − ∂2hd(τ)

∂2τ
τ̇ 2 = −kdẏ − kpy,

which leads to a precise solution for our control input u,

u =

(
∂h

∂q
D−1B

)−1(
∂h

∂q
D−1(Cq̇ +G)− ∂

∂q

(
∂h0(q)

∂q
q̇

)
q̇ +

∂2hd(τ)

∂2τ
τ̇ 2 − kdẏ − kpy

)
.

(3.38)

u in (3.38) uses a combination of feedforward control based on inverse dynamics

and feedback control for driving outputs to zero. The feedback-only solution that is

implemented in some full dynamic simulations and experiments is

u =

(
∂h

∂q
D−1B

)−1

(−kdẏ − kpy). (3.39)

This form of feedback-only control is not as sensitive to parametric modeling errors

because it relies less on C andD, which are approximated from the modeled dynamics.
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3.4 Hybrid Zero Dynamics

Hybrid zero dynamics (HZD) enables us to redefine our hybrid model on a lower

dimensional submanifold [46, 134, 135, 136]. Using a lower dimensional model with

less complicated simulation calculations allows us to optimize our control design from

Section 3.3 more quickly. The primary assumption behind HZD is that we are able

to control all of our outputs to be identically zero, thus reducing our modeled degrees

of freedom and simplifying the complexity of the system. The simplified system is

said to be contained to the zero dynamics manifold and the simplified dynamics of

the system are called the zero dynamics, which consists of any remaining degrees

of freedom given all outputs are zeroed. If a hybrid system is invariant to the zero

dynamics manifold, hybrid zero dynamics are achieved.

A key concept in the HZD derivation is the distinction between actuated and

unactuated coordinates. We define an alternate coordinate system

q̄ :=

qu
qa

 , (3.40)

with unactuated coordinates qu and actuated coordinates qa. Using the five-link

example in Figure 3.5, qu = θ and qa consists of the leg and knee angles. The linear

map between q and q̄ is

q =T0q̄ + T1

→ q̄ =T−1
0 (q − T1) =

 θ

qa

 , (3.41)
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Figure 3.5: Change of coordinates from q to q̄.

where

T0 =



−1 −1 0 0 0

0 1 0 −1
2

0

0 1 0 1
2

0

0 0 1 0 −1
2

0 0 1 0 1
2


, T1 =



3π
2

0

0

0

0


.

The HZD model derivation starts by solving for the dynamics of the actuated

coordinates, qa. First, use (3.25) to redefine τ̇ in terms of θ̇

τ̇ =
θ̇

θmax − θmin

=
θ̇

∆θ
. (3.42)

Next, we assume all outputs are controlled to zero,

ÿ +Kdẏ +Kpy ≡ 0, (3.43)
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and recognize qa can be substituted for h0(q) in (3.24) to find

y = 0 = h0(q)− hd(τ) = qa − hd(τ) → qa = hd(τ). (3.44)

Equation (3.44) shows that because outputs are zeroed, all virtual constraints are

satisfied and actuated coordinates are exactly equal to their desired trajectories. To

find the velocities and accelerations of the actuated states, (3.42)-(3.44) are applied

to derivatives (3.31)-(3.32) to find

ẏ = 0 → q̇a =
∂hd(τ)

∂τ
τ̇ =

∂hd(τ)

∂τ

θ̇

∆θ
(3.45)

ÿ = 0 → q̈a =
∂hd(τ)

∂τ
τ̈ +

∂2hd(τ)

∂2τ
τ̇ 2 =

∂hd(τ)

∂τ

θ̈

∆θ
+

∂2hd(τ)

∂2τ

( θ̇

∆θ

)2
. (3.46)

Equations (3.44)-(3.46) express the dynamics of the actuated coordinates when virtual

constraints are satisfied and a system is invariant to the zero dynamics manifold. Since

τ is a function of θ, which is the only unactuated state in q̄, the entire system can be

described by τ . The entire five-link walking model, for example, reduces to a single

degree of freedom. Since τ monotonically increases with each step, the system can

simply be thought of as a periodic orbit of a single variable. From step to step, all

link positions of the biped are the same during each orbit for the same corresponding

τ values. This synchronization also makes the dynamics of the system easier to

calculate.

With the actuated coordinate dynamics solved, we turn our attention to the dy-

namics of the full system. First, define H(q, q̇) as

H(q, q̇) := C(q, q̇)q̇ +G(q),
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and then simplify the dynamics equation (3.7) to

D(q)q̈ +H(q, q̇) = Bu. (3.47)

After transforming coordinates to q̄ as shown in (3.41), we need to perform similar

transformations to D(q), H(q, q̇), and B to match the transformed coordinate system

D̄(q̄) =T ′
0D(q)T0 (3.48)

H̄(q̄, ˙̄q) =T ′
0H(q, q̇) (3.49)

B̄ =T ′
0B, (3.50)

and then transform the simplified dynamics equation (3.47) to the new coordinate

system as

D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄u. (3.51)

Two interesting properties of the newly derived B̄ and D̄(q̄) are: (1) B̄ contains all

zeros in the first row, since this row corresponds to the unactuated coordinate θ in q̄;

and (2) that D̄(q̄) is a function of only the actuated coordinates, qa. These properties

are shown as

B̄ =

 0

B̄a

 , D̄(q̄) = D̄a(qa), (3.52)

where B̄a ∈ R4×4.

The unactuated dynamics are separated from the full dynamics to make their

solution simpler. To separate actuated and unactuated dynamics, we rewrite the
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transformed dynamics equation (3.51) as

D̄11(qa) D̄12(qa)

D̄21(qa) D̄22(qa)


 θ̈

q̈a

+

H̄1(q̄, ˙̄q)

H̄2(q̄, ˙̄q)

 =

 0

B̄a

u, (3.53)

where

D̄a =

D̄11(qa) D̄12(qa)

D̄21(qa) D̄22(qa)

 , (3.54)

H̄(q̄, ˙̄q) =

H̄1(q̄, ˙̄q)

H̄2(q̄, ˙̄q)

 . (3.55)

The unactuated dynamics of the system correspond to the top row of the separated

dynamics equation (3.53),

D̄11(qa)θ̈ + D̄12(qa)q̈a + H̄1(q̄, ˙̄q) = 0, (3.56)

which can be revised with the solution of q̈a from (3.46) to find

D̄11(qa)θ̈ + D̄12(qa)

(
∂hd(τ)

∂τ

θ̈

∆θ
+

∂2hd(τ)

∂2τ

( θ̇

∆θ

)2)
+ H̄1(q̄, ˙̄q) = 0. (3.57)

Finally, we use the unactuated dynamics equation (3.57) to define the lower di-

mensional zero dynamic model of the system,

Dzero(θ)θ̈ +Hzero(θ, θ̇) = 0, (3.58)
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where

Dzero(θ) =D̄11(qa) + D̄12(qa)
∂hd(τ)

∂τ

1

∆θ
, (3.59)

Hzero(θ, θ̇) =D̄12(qa)
∂2hd(τ)

∂2τ

( θ̇

∆θ

)2
+ H̄1(q̄, ˙̄q), (3.60)

and qa is considered a function of θ since qa = hd(τ(θ)). UsingDzero(θ) andHzero(θ, θ̇),

the zero dynamics are solved from (3.58) as

θ̈ = −Dzero(θ)
−1Hzero(θ, θ̇). (3.61)

Once the zero dynamics are solved, we find the necessary control torques, u, to

maintain zero output error and contain the full system within the zero dynamics

manifold. The dynamics of the full system corresponding to u appear on the bottom

row of the separated dynamics equation (3.53),

D̄21(qa)θ̈ + D̄22(qa)q̈a + H̄2(q̄, ˙̄q) = B̄au. (3.62)

Using θ̈ and inverse kinematics, we solve (3.62) for u as

u = B̄−1
a

(
D̄21(qa)θ̈ + D̄22(qa)q̈a + H̄2(q̄, ˙̄q)

)
. (3.63)

Hybrid zero dynamics are achieved for bipeds if the zero dynamics manifold is

invariant under the impact map. This condition occurs for periodic walking and is

achieved with perturbed impacts in this dissertation using the control parameter reset

map introduced in Section 4.2.3. Compared to a higher dimensional model, the lower

dimensional hybrid zero dynamic model is computationally less expensive and results

in quicker convergence for control optimizations.
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CHAPTER IV

Optimization for Accommodation of Unknown

Disturbances

In this chapter, the design of periodic gaits that will also function well in the

presence of modestly uneven terrain is investigated. The gait design problem is for-

mulated in terms of parameter optimization, with a cost function that accounts for

periodicity under nominal walking conditions, and additional terms that specifically

account for trajectory and control-effort perturbations arising from a finite set of

ground height changes. Trajectory and control deviations are related to a nominal

periodic orbit via a gait phasing variable, which is more natural than comparing so-

lutions on the basis of time. The gait phasing variable is also used to penalize more

heavily deviations that persist “late” into the gait. When the method is evaluated

on planar MARLO, for modest terrain height variations typical of sidewalks, parking

lots, and maintained grass fields, it is observed that a cost function that favors quasi

dead-beat rejection of terrain disturbances results in the best performing gaits of the

three tested approaches, both in simulation and in experiments.

Parts of this work can be found in [42]. Videos of experiments are available at

[39].
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4.1 Optimization for Accommodation of Unknown Distur-

bances

Let the nominal change in ground height step to step be represented by d0 ∈ D =

{d0, · · · , dN} from (3.22). Using the notation introduced in Section 3.1.4, we seek

control parameters β ∈ B and initial conditions x0 ∈ X giving rise to a periodic

solution of the closed-loop system (3.21); that is, for which there exists T0 > 0 such

that

x0 = ϕ(T0,∆(x0)). (4.1)

Moreover, for the same value of β ∈ B, we desire that the periodic orbit ensures the

existence of the following additional solutions of the closed-loop system: ∀ 1 ≤ j ≤ N ,

dj ∈ D, ∃ 0 < tj < ∞, and 0 < Tj < ∞ such that

xj := ϕ(tj,∆(x0)) ∈ Sdj , (4.2)

and

ϕ(Tj,∆(xj)) ∈ Sd0 . (4.3)

In plain words, there exist steps that begin on the periodic orbit, end at ground height

dj, and continue for at least one more step at nominal ground height d0.

In the following, we set up a parameter optimization problem in (β, x0) for finding

a periodic solution that meets these conditions. Moreover, we will pose a cost function

on the steps following the change in ground height that favors solutions that “return

closely” to the nominal periodic solution, that is, the closed-loop system attenuates

the effects of the set of ground height variations.

Remark: This optimization framework is not exclusive to terrain disturbances. The

nominal periodic solution can be perturbed using alternative disturbance types or a

combination thereof. This extension is introduced in Chapter VI.
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4.1.1 Gait Phase and Trajectory Deviations

Compared to time-based methods, phase-based synchronization of walking trajec-

tories is shown to be more natural to humans in [36] and advantageous for control in

[76]. For this optimization method, we have found that computing deviations of the

perturbed solutions from the nominal periodic solution does not work well when the

trajectories are parameterized by time. This is because terrain disturbances cause

varying initial conditions, which cause perturbed trajectories to be unsynchronized

with respect to time. We use instead a gait phasing variable, τ̄ : X → R, that is

strictly increasing along walking steps. Examples include the horizontal position of

the center of mass, the horizontal position of the hips, or the angle of the line con-

necting the hip and the ground contact point of the stance leg, which will be used in

Section 4.2. The gait phase can be thought of as a measure of progress through each

step. We further assume that the units are normalized on the periodic orbit so that

it takes values in [0, 1], namely

τ̄(∆(x0)) = 0 (4.4)

τ̄(x0) = 1, (4.5)

and that Lg τ̄(x) :=
∂τ̄
∂x
(x)g(x) = 0.

Let τ̄j(t) := τ̄(ϕ(t,∆(xj)), for 0 ≤ t ≤ Tj, and as in [24], denote by τ+j and τ−j

the initial and final values of τ̄ along the trajectory. Due to the strictly increasing

assumption, the inverse map τ̄−1
j : [τ+j , τ

−
j ] → [0, Tj] exists. Define

x̃j(τ) := ϕ(τ̄−1
j (τ),∆(xj)) (4.6)

ũj(τ) := Γ(ϕ(τ̄−1
j (τ),∆(xj)), β). (4.7)
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For 1 ≤ j ≤ N , deviations in the state and control trajectories are defined as

δxj(τ) :=


x̃j(τ)− x̃0(0) if τ < 0

x̃j(τ)− x̃0(τ) if τ ∈ [0, 1]

x̃j(τ)− x̃0(1) if τ > 1

(4.8)

δuj(τ) :=


ũj(τ)− ũ0(0) if τ < 0

ũj(τ)− ũ0(τ) if τ ∈ [0, 1]

ũj(τ)− ũ0(1) if τ > 1

(4.9)

for τ+j ≤ τ ≤ τ−j
1.

Using (4.8) and (4.9), the weighted square error is defined as

||δxj(τ)||2 :=< Qδxj(τ), δxj(τ) > (4.10)

||δuj(τ)||2 :=< Rδuj(τ), δuj(τ) >, (4.11)

for Q and R positive semi-definite (constant) matrices.

4.1.2 Robust Control Cost Function

The problem of defining a cost function J0 and appropriate equality and inequality

constraints for determining a nominal periodic solution of (3.11) has been addressed in

[136, pp. 151-155], [127, 135] using parameter optimization. Here we define additional

terms that penalize deviations induced by the disturbances in D.

1A more comprehensive approach for calculating errors of perturbed trajectories is available in
[118].
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For 1 ≤ j ≤ N , we define

Jj =
1

(τ−j − τ+j )

τ−j∫
τ+j

(
||δxj(τ)||2 + ||δuj(τ)||2)

(τ − τ+j )

(τ−j − τ+j )
dτ.

(4.12)

The term
(τ−τ+j )

(τ−j −τ+j )
under the integral scales the errors so that initial deviations

from the nominal periodic trajectory are discounted with respect to errors toward

the end of the step. The rationale for this is that if the closed-loop system were

to rejoin the nominal periodic orbit by the end of the step, the disturbance would

have been rejected and a next step would be guaranteed. The scale factor allows the

optimization to focus on approximately achieving this objective. The term 1
(τ−j −τ+j )

outside the integral is included so that perturbed step costs are normalized w.r.t. the

varying ranges of τj resulting from higher and lower terrain disturbances. The benefit

of the scalings introduced in (4.12) will be illustrated by comparing control solutions

that include them against those that do not.

The overall cost function is

J = J0 +
N∑
j=1

wjJj, (4.13)

where wj determines the relative weight of each perturbation.

Parameter optimization problem: Find (β;x0) that (locally) minimize J sub-

ject to the existence of a periodic solution of (3.21) that respects ground contact

conditions, torque limits, and other relevant physical properties, as illustrated in

Section 4.2.4.

Remark: Jj in (4.13) can account for costs arising from multiple perturbed steps

following a single disturbance. This is applied in Section 5.2.5.
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4.2 Optimization Implementation

We now provide an implementation of the optimization approach for rejecting

terrain disturbances presented in Section 4.1.

4.2.1 Configuration Variables

Control is based on the rigid five-link model of MARLO presented in Section 3.2,

which has five DOF when in single support and four actuators. The configuration

variables we use are depicted in Figure 3.4. Specifically,

q = [θ, qa]
′, (4.14)

where θ is the absolute angle of the stance leg clockwise from the horizontal plane at

ground contact and

qa =



qLA,ST

qLA,SW

qKA,ST

qKA,SW


(4.15)

is a vector of the actuated configuration variables. In (4.15), LA and KA are abbrevi-

ations of leg angle and knee angle, respectively, and ST and SW designate the stance

and swing legs. The Lagrangian model for single support and the impact model, (3.9)

and (3.20), use x = (q; q̇) ∈ X an open subset of R10 and u ∈ R4 for one degree of

underactuation during single support.

4.2.2 Family of Feedback Controllers

The feedback controller is designed using the method of virtual constraints and

hybrid zero dynamics (see Sections 3.3 and 3.4, [46, 134]). For planar MARLO, four

virtual constraints are defined, one for each available actuator. The output vector y
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is defined in terms of the configuration variables and a set of parameters κ and β,

y = h(q, κ, β), (4.16)

in such a way that the output has vector relative degree 2 [64, pp. 220] on a subset of

interest, X ×K×B. Specifically, κ is used to maintain hybrid zero dynamics following

impacts with terrain disturbances. The feedback controller is based on input-output

linearization, namely

uff (q, q̇, κ, β) := −
[
LgLfh(q, κ, β)

]−1
L2
fh(q, q̇, κ, β), (4.17)

ufb(q, q̇, κ, β) := −
[
LgLfh(q, κ, β)

]−1(
Kpy +Kdẏ

)
, (4.18)

with

u = Γ(q, q̇, κ, β) := uff (q, q̇, κ, β) + ufb(q, q̇, κ, β), (4.19)

where (4.19) is the simplified Lie derivative form of (3.38). Along solutions of the

closed-loop system, ÿ +Kdẏ +Kpy ≡ 0 (3.43).

Section 4.2.3 gives an explicit construction of h(q, κ, β) in terms of the actuated

variables qa and a set of degree-(M + 1) Bézier polynomials. Moreover, with this

output choice, it is straightforward to construct a function Ψ : Sd×B → K such that

for all

β ∈ B and

q+
q̇+

 = ∆(q−, q̇−)

the initial values of the outputs are zeroed, that is,

0
0

 =

y+
ẏ+

 =

 h(q+, κ+, β)

∂
∂q
h(q+, κ+, β)q̇+

 (4.20)

for κ+ = Ψ(q−, q̇−, β).
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The parameters κ are constant within each step and are reset at the end of each

step. They are thus formally states and are included in the dynamics with

xe := [q, q̇, κ]′ (4.21)

and κ̇ = 0. The closed-loop model used in the optimization is then

Σ :


ẋe = f cl(xe, β) x−

e /∈ Sd
e

x+
e = ∆e(x

−
e ) x−

e ∈ Sd
e ,

(4.22)

where

f cl(xe, β) = f cl(x, κ, β) :=

f(x) + g(x)Γ(x, κ, β)

0

 , (4.23)

∆e(x
−
e , β) :=

 ∆(q−, q̇−)

Ψ(q−, q̇−, β)

 , (4.24)

and

Sd
e := Sd ×K. (4.25)

Remarks: (a) The reset map is independent of the current value of κ. (b) Because of

the second-order system (3.43) and the reset map in (4.20), solutions of (4.23) that are

initialized in Sd
e satisfy y(t) ≡ 0. This has two consequences: (i) The solutions evolve

on the zero dynamics manifold, a 2-dimensional invariant surface and can thus be

computed from a 2-dimensional vector field [134], [94]. This fact is used to accelerate

the parameter optimization process. (ii) The feedback term ufb in (4.18) is identically

zero, and thus Γ in (4.19) is independent of the gains Kp and Kd.

62



4.2.3 Bézier Parameter Reset Derivation

In Section 4.2.2, we discuss how control parameters κ must be reset such that we

satisfy (4.20). First, we define our output

y = h(q, κ, β) = qa(q)− hd(q, κ, β), (4.26)

where hd ∈ R4 are desired trajectories defined by Bézier polynomials. Each ith

polynomial is defined as

hd,i(q, κ, β) :=
M∑
k=0

αi,k
M !

k !(M − k) !
τ k(1− τ)M−k. (4.27)

A set of four degree-(M+1) Bézier polynomials can be defined by α ∈ R4×(M+1) [136,

pp. 138]. We designate the first two columns of parameters, α0 and α1, as κ,

κ = [α0, α1]. (4.28)

α0 and α1 have the most effect on trajectories immediately after impact during low

τ values. The remaining fixed columns, β, determine trajectories toward the end of

the gait. Hence, perturbed trajectories return to the nominal gait as τ increases.

Let y+ = ẏ+ = 0 as in (4.20). Using (4.26), this implies that

hd(q
+, κ+, β) = q+a . (4.29)

Note, to match hd to q+a , we must reset at least one column of Bézier parameters. To

guarantee desired trajectories match post-impact velocities, we reset a second column

to satisfy

∂hd(q
+, κ+, β)

∂τ
τ̇+ = q̇+a . (4.30)
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Solving (4.29) and (4.30) using α0 and α1 we find

α0 =

q+a −
M∑
k=1

αk
M !(τ+)k(1−τ+)M−k

k !(M−k) !

(1− τ+)M
(4.31)

α1 =
q̇+a
τ̇+

− α2M(M − 1)τ+(1− τ+)M−2 − a+ b

M((1− τ+)M−1 + τ+(1− τ+)M−2)
, (4.32)

where

a =
M−1∑
k=2

(αk+1 − αk)
M !(τ+)k(1− τ+)M−1−k

k !(M − 1− k) !
, (4.33)

b =
M

1− τ+

(
q+a −

M∑
k=2

αk
M !(τ+)k(1− τ+)M−k

k !(M − k) !

)
. (4.34)

Reseting control parameters α0 to (4.31) and α1 to (4.32) forms a solution for κ+ that

always satisfies (4.20).

4.2.4 Gait Phase and Three Periodic Orbits

Along periodic walking gaits, the coordinate θ shown in Figure 3.4 is monotonic

and cycles between a minimum value θmin and a maximum value θmax. The gait

phasing variable is τ(q) = θ(q)−θmin

θmax−θmin
as defined in (3.25).

The cost function for the nominal periodic orbit is taken as

J0 =
1

step length

T0∫
0

4∑
i=1

|uiq̇motor,i|dt, (4.35)

where T0 is the period, u is the 4-vector of motor torques, and q̇motor is the corre-

sponding 4-vector of motor angular velocities, obtained from the link velocities and

gear ratios [113]. The product of ui and q̇motor,i is the instantaneous mechanical power

from each motor.

The nominal periodic orbit was computed for walking on level ground, that is d0 =
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0, by optimizing (4.35) subject to (4.22), and the following additional constraints:

peak motor torque less than 2.5 Nm; vertical ground reaction force positive and

friction coefficient less than 0.6; minimum foot clearance at mid-stance of 0.05 m;

minimum knee bend of 22o to avoid hyperextension; average walking speed of at least

0.75 m/s; minimum swing-leg retraction of 7o; dimensionless swing-leg retraction less

than -0.5 [57]. The computations were performed offline with fmincon in MATLAB.

The set of terrain variations was taken as D = {0,±2 cm,±4 cm}. A second

periodic gait was found that minimized the cost function (4.13), with wj = 100

for 1 ≤ j ≤ 4. Taking the weights all equal is analogous to assuming a uniform

distribution of terrain variations [25].

To investigate the utility of discounting trajectory deviations that occur early in

the perturbed steps, a third periodic orbit was found with the term
(τ−τ+j )

(τ−j −τ+j )
removed

from (4.12), resulting in

Jj =
1

(τ−j − τ+j )

τ−j∫
τ+j

(
||δxj(τ)||2 + ||δuj(τ)||2)dτ. (4.36)

In total, three gaits have been computed: a periodic gait that does not account

for terrain variation and two that do. These will be denoted as Nominal, NS4cm and

S4cm, where the NS (not scaled) refers to the cost function (4.36) and S (scaled)

refers to the cost function (4.12). In the next section, these gaits are evaluated both

in simulation and experimentally.

4.3 Results

The “raw” simulation and experimental results are given here, with discussion

given in Section 4.4. Videos of the experiments are available at [39].
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4.3.1 Simulation Results

4.3.1.1 Control Law

The simulations are conducted with the same controller that will be used in the

experiments. Because the model of the robot is imperfect, even with the initialization

(4.20), the outputs (4.16) (see also (4.26)) will not remain zero. Hence, the feedback

term (4.18) is used with Kp =
(

1
0.03

)2
and Kd = 60. Due to the 50:1 gear ratio of

the harmonic drives, the feedforward term (4.17) is not essential and is dropped, as

in [135].

The parameter update portion of the reset map (4.20) is pre-computed and in-

terpolated using τ(x+) of each step. The motivation for this is that τ(x+) can be

calculated using MARLO’s link positions alone, which is helpful for actual experi-

ments with non-instantaneous impacts and potentially noisy velocity measurements.

When generating the Bézier table for a given controller, disturbance height has a

one-to-one correspondence with τ+j . This bijection exists because the Bézier table

is generated using a hybrid zero dynamic model that assumes no output errors. An

example Bézier table is provided in Table 4.1. Bézier parameter columns αi,2-αi,5 ∈ β

remain constant for all disturbances.

4.3.1.2 Terrain and Results

Two types of terrain profiles were generated, stepped and sloped, as shown in

Figure 4.1. Step-terrain profiles consist of one vertical displacement per step, modeled

as an i.i.d. uniform random variables with −4 cm ≤ d ≤ 4 cm. Fifty such terrains

were generated, each with a length of 10,000 steps. The sloped terrain is meant to

more closely approximate real ground variation. It uses an additional i.i.d. uniform

random variables to determine the horizontal intervals between vertical displacements.

Because the average step length of the three periodic gaits was approximately 0.5 m,
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Table 4.1: Bézier table for S4cm with 4 cm disturbance maximum.

Bézier Table
Disturbance
dj (cm) τ+j i αi,0 αi,1 αi,2 αi,3 αi,4 αi,5

4 -0.1127

1 3.5755 3.4642 3.3935 3.3794 3.2324 3.0915
2 3.0467 2.8714 2.8780 4.0221 3.7405 3.5699
3 0.6345 0.6990 0.5961 0.4828 0.3911 0.5510
4 0.5853 0.7724 1.0444 0.8554 0.6969 0.4877

2 -0.0565

1 3.5697 3.4478 3.3935 3.3794 3.2324 3.0915
2 3.0730 2.9106 2.8780 4.0221 3.7405 3.5699
3 0.5707 0.6882 0.5961 0.4828 0.3911 0.5510
4 0.5691 0.7528 1.0444 0.8554 0.6969 0.4877

0 0

1 3.5699 3.4319 3.3935 3.3794 3.2324 3.0915
2 3.0915 2.9141 2.8780 4.0221 3.7405 3.5699
3 0.4877 0.6756 0.5961 0.4828 0.3911 0.5510
4 0.5510 0.7568 1.0444 0.8554 0.6969 0.4877

-2 0.0485

1 3.5701 3.4253 3.3935 3.3794 3.2324 3.0915
2 3.1175 2.8604 2.8780 4.0221 3.7405 3.5699
3 0.3819 0.6681 0.5961 0.4828 0.3911 0.5510
4 0.5133 0.8366 1.0444 0.8554 0.6969 0.4877

-4 0.0755

1 3.5455 3.4658 3.3935 3.3794 3.2324 3.0915
2 3.1542 2.7483 2.8780 4.0221 3.7405 3.5699
3 0.2547 0.7027 0.5961 0.4828 0.3911 0.5510
4 0.4149 1.1169 1.0444 0.8554 0.6969 0.4877

∆y

∆x

∆y

Figure 4.1: Sloped (bottom left) and step (top right) terrain.
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Table 4.2: Simulation results for all control solutions.

Number of Steps
Variation Finished

Control Meana Med. Min. Max. Coef. Trials
4 cm Step Terrain

Nominal 192 112 6 1157 1.22 0
NS4cm 85 67 5 404 0.96 0
S4cm 4616 4499 165 104 0.73 4

4 cm Sloped Terrain
Nominal 481 331 17 2224 0.93 0
NS4cm 218 178 15 740 0.79 0
S4cm 4543 3335 40 104 0.71 8

aS4cm mean could be higher, but trials were limited to 10,000 steps.

the horizontal intervals are chosen uniformly between 0.25 m and 0.75 m. Because

the intervals between height changes are random, it is possible to have more than

one vertical displacement in the span of a single walking step. As a result, the

sloped-terrain profile admits disturbances that exceed 4 cm over a single step. The

4 cm sloped terrain is representative of potential disturbances found on sidewalks,

driveways, and parking lots. Fifty sloped terrains were generated, each long enough

that at least 10,000 steps would be possible.

Each of the three gaits was evaluated over each of the 100 terrain profiles, 50

stepped and 50 sloped. A simulation over a given terrain profile was initiated at the

gait’s fixed-point and terminated when the robot reached 10,000 steps or fell. A fall

could occur from losing momentum and falling backward or slipping after violating

ground contact constraints. The results of these simulations are summarized in Ta-

ble 4.2. An additional set of simulations over terrain with periodic, constant stepped

height changes was performed and the cost function J0 in (4.35) was evaluated. The

results are in Table 4.3.
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Table 4.3: Cost function J0 evaluated on periodic terrain with constant step height
changes.

Constant Step Periodic Efficiency (J/m) a

Disturbance Nominal NS4cm S4cm

3 cm Unstable Unstable 58.5
2 cm 41.2 42.4 55.7
0 cm 35.6 39.6 52.5
-2 cm 35.2 37.8 48.4
-4 cm 42.3 36.0 39.7

aPeriodic efficiency is calculated using (4.35).

4.3.2 Robot Experiments

4.3.2.1 Experiment Setup

The robot MARLO with point feet is attached to a 2.4 m boom to impose a planar

gait. The center of the boom is mounted near a wall of the laboratory, and hence

the maximum distance of an experiment is 7.5 m. Because the robot is walking in

a circle, the outside leg travels a longer distance than the inside leg. To partially

compensate for this, in the last 25% of a gait, the lateral hip angles are commanded

to move the feet toward the center of the robot; to avoid leg collisions, the legs are

moved outward toward the middle of the gait.

A terrain of variable height is constructed by stacking sections of plywood that

are approximately 61 cm long [99, Fig. 25]. The plywood terrain is then overlaid with

rubber mats to increase friction. Each experiment is initiated from a static pose with

the robot’s center of mass a few millimeters in front of the stance leg. Each terrain

begins with a few steps downward so that the transfer of potential energy to kinetic

energy will cause the robot to quickly transition from zero velocity to approximately

its velocity on the periodic orbit.
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Figure 4.2: Planar view of experimental terrain used for comparing control. Stair
heights are accurate (brown), while the rubber mat heights are approximate (black).

Table 4.4: Experimental results for all control solutions. Three consecutive trials are
performed for each controller on the Uphill Terrain depicted in Figure 4.2. S4cm is
the only controller to complete the terrain on all three trials.

Number of Steps Finished
Control Trial 1 Trial 2 Trial 3 Stalls Falls Trials

Uphill Terrain
S4cm 12 12 12 0 0 3

Nominal 12 12 7 1 0 2
NS4cm 7 6 7 2 1 0

4.3.2.2 Experiment Results

When a fall occurred in the simulations, it was only after consecutive uphill steps.

We thus set up an uphill terrain, shown in Figure 4.2, to compare the Nominal,

NS4cm, and S4cm gaits. Each of the three gaits was executed over the uphill terrain

three times for nine total trials, as shown in Table 4.4. The S4cm controller was able

to complete all three trials with a consistent walking speed, as shown in Figure 4.3.

The Nominal controller was able to complete the terrain course twice, but stalled2

during one trial. The NS4cm controller was not able to complete the terrain on any

trials due to stalling on two trials and falling on one.

In the next set of experiments, the S4cm gait was further evaluated over the terrains

illustrated in Figure 4.4. These trials demonstrate successful walking over a variety

of modest terrain disturbances. Each terrain was completed for two consecutive

2A stall occurs when the robot lacks adequate momentum to complete a step, and thus settles
backward onto the previous stance leg rather than transition to the next step.
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Figure 4.3: Walking speed vs. step number for Uphill Terrain experiments. Lines
connect data for each controller from maximum to minimum speeds. Data points for
incomplete steps are set at zero.

Table 4.5: Height changes between wood steps for experimental terrains. Distance
between steps is approximately 61 cm.

Terrain Height Changes (cm)
Uphill -1.1, -1.25, -1.25, 0, 0, 3.8, 3.1, 2.2, 2.3, 2.6, 3, 2.5

Hill -2.4, -2.9, -4.1, 4.1, 3.6, 4.2, -4, -2.1, -2.8, -1.5, -2.5, -2.5
Valley -4.3, -3.4, -4.3, -2.5, -2.5, 0, 0, 3.7, 4.1, 3.6, 2.5, 3.8
Mogul -2.5, -2.9, -4.1, 4, 3.6, -2.4, -3.9, -2.3, 4, 3.9, 2.5

trials. The results are documented in the video [39]. Height changes for experimental

terrains are given in Table 4.5.

4.4 Discussion

Table 4.6 presents the minimum angular momentum about the stance leg over the

step following a terrain disturbance of height di ∈ D as well as the corresponding

impact losses. Each controller stabilizes forward walking speed in part with lower im-

pact losses for increasing terrain height and much greater impact losses when stepping

to lower terrain. This helps to offset the velocity changes attendant with increasing

or decreasing potential energy when walking uphill or downhill. The S4cm gait main-

tains on average greater angular momentum at peak potential energy than the other

gaits. Furthermore, with a single 4 cm disturbance the minimum angular momentum
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Figure 4.4: Additional experimental terrain for S4cm.

Table 4.6: Minimum angular momentum about the stance foot and impact losses for
perturbed steps in optimization.

Minimum Angular
Momentum (Nms) Impact Losses (J)

Control -4 cm 0 cm 4 cm Rng. -4 cm 0 cm 4 cm Rng.
Nominal 53.0 54.4 40.5 13.9 50.4 17.8 8.3 42.1
NS4cm 52.3 54.7 38.3 16.4 47.4 18.8 10.1 37.3
S4cm 54.6 53.5 43.8 10.8 39.2 24.6 13.9 25.3

of the Nominal and NS4cm gaits decreases 26% and 30% respectively, while the S4cm

gait decreases 18%. In simulation, we found falling backward after losing momen-

tum from repeated uphill disturbances to be the only failure mode. Having a more

reliable reserve of angular momentum explains in part why the S4cm gait was able to

outperform the other gaits in simulation and experiments (see Tables 4.2 and 4.4).

Because consecutive uphill steps led to every fall in the simulations, the initial

experiments focused on comparing all controllers on the uphill terrain of Figure 4.2.

The Nominal and NS4cm gaits were unreliable. The lower and less consistent swing

foot trajectories in Figure 4.5 are prone to scuffing and premature impacts, both of

which inhibit a consistent forward velocity (see Figure 4.3). The S4cm gait exhibited
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Figure 4.5: Actual (red) and desired (green) swing foot trajectories relative to stance
foot. Top black bar on each plot indicates 4 cm above the stance foot position for each
trajectory. Plots generated using all data from Uphill Terrain experiments, hence,
the swing foot can start below the stance foot for some trajectories.

much better disturbance attenuation in terms of swing foot trajectory and speed.

However, a consequence of the S4cm gait’s higher swing foot clearance is a higher

impact loss on flat ground (see Table 4.6).

Table 4.3 shows that the Nominal gait is the most energy efficient for flat terrain.

However, with some disturbances the other two gaits are more energy efficient than

the Nominal gait. Hence, the energy advantages of the Nominal gait are dependent

on avoiding terrain disturbances, which may be inconsistent with outdoor operation.

As emphasized in [120], efficiency may be out-weighed by robustness.

Given that the NS4cm gait is optimized explicitly for terrain disturbances, it may

seem surprising that the Nominal gait is more reliable on uneven terrain than the

NS4cm gait. We postulate that this is not a general phenomenon.
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Overall, the S4cm gait outperformed the NS4cm gait. We believe that allowing

the optimizer to accept actions in the beginning of the step that result in smaller

errors later in the step, near the moment of impact, is the main reason for this. The

difference between the S4cm and NS4cm optimizations was the use of scaling variables

in the S4cm to emphasize end-of-step errors. This gait was shown to work well in a

variety of environments.
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CHAPTER V

Nonholonomic Virtual Constraints

Virtual constraints are functional relations (i.e., constraints) on the state variables

of a robot’s model that are achieved through the action of actuators and feedback

control instead of physical contact forces. They are called virtual because they can

be re-programmed on the fly without modifying any physical connections among the

links of the robot or its environment. Previous analytical and experimental work has

established that vector relative degree two virtual holonomic (i.e., only configuration

dependent) constraints are a powerful means to synchronize the links of a bipedal

robot so as to achieve walking and running motions over a variety of terrain profiles.

This chapter introduces a class of virtual nonholonomic constraints that depend on

velocity through (generalized) angular momentum, while maintaining the property of

being relative degree two. This additional freedom is shown to yield control solutions

that handle a wider range of gait perturbations arising from terrain variations and

exogenous forces. Moreover, including angular momentum in the virtual constraints

allows foot placement control to be rigorously designed on the basis of the full dynamic

model of the biped, instead of on the basis of an inverted pendulum approximation

of its center of mass, as is commonly done in the bipedal robotics literature.

This new class of control laws is shown in simulation to be robust to a variety

of common gait disturbances. Two feedback controllers are studied that use non-
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holonomic virtual constraints. The first is an application of the Optimization for

Accommodation of Unknown Terrain Disturbances method presented in Chapter IV

applied to nonholonomic constraints. The second is an implementation of swing foot

placement [110] that accounts for the full dynamics of the biped, as well as a range

of terrain disturbances.

Parts of this work can be found in [40]. A video demonstration of this work is

available at [41].

5.1 Relative Degree Two Nonholonomic Outputs

Assume an n-degree of freedom mechanical model

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (5.1)

with m actuators and Lagrangian

L(q, q̇) := 1

2
q̇>D(q)q̇ − V (q). (5.2)

Assume moreover that the configuration variables q = (qu, qa)
′ have been selected such

that qu = (q1, · · · , q(n−m))
′ are unactuated and qa = (q(n−m+1), · · · , qn)′ are actuated,

so that, by Lagrange’s equation,

d

dt

∂L
∂q̇u

− ∂L
∂qu

= 0. (5.3)

The quantity

σ :=
∂L
∂q̇u

(q, q̇) (5.4)
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is the momenta conjugate to qu, and for 1 ≤ i ≤ (n−m), is equal to

σi = Di(q)q̇, (5.5)

where Di(q) is the i-th row of the mass-inertia matrix. From (5.3) and (5.4),

d

dt
σ =

∂L
∂qu

(q, q̇), (5.6)

and thus if σ has a relative degree, it is two or greater. Indeed, differentiating σ a

second time gives terms that depend on acceleration, which, via (5.1), may in turn

depend on the input torque.

Functional relations involving momenta are classic examples of nonholonomic con-

straints [12]. Consider now a nonholonomic output function of the form

y = h(q, σ) (5.7)

=: h̃(q, q̇). (5.8)

Then from the chain rule, its derivative along trajectories of the model is

ẏ =
∂h(q, σ)

∂q
q̇ +

∂h(q, σ)

∂σ
σ̇

=
∂h(q, σ)

∂q
q̇ +

∂h(q, σ)

∂σ

∂L
∂qu

(q, q̇) (5.9)

and thus the relative degree cannot be less than two.

Remark: Equation (5.9) holds for one or more degrees of underactuation. Thus,

it can be applied to both planar and 3D biped models, as well as models with or

without compliant elements.
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Figure 5.1: Robot MARLO and state description for planar model of MARLO used
for simulation and control design.

5.2 Control Design

This section details the controller’s design using the nonholonomic virtual con-

straints presented in Section 5.1.

5.2.1 Configuration Variables

Control is based on the rigid five-link model of MARLO presented in Section 3.2,

which has 5-DOF when in single support and four actuators. The configuration

variables we use are depicted in Figure 5.1. Specifically,

qu = phcm, (5.10)
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where phcm is the horizontal position of the center of mass relative to the stance foot

and

qa =



qLA,ST

qKA,ST

ph2 − phcm

pv2


. (5.11)

LA and KA are abbreviations of leg angle and knee angle, ST designates the stance leg,

and ph2 and pv2 are the horizontal and vertical positions of the swing foot relative to the

stance foot. With this choice of configuration variables, σ is the angular momentum

about the stance foot end. The Lagrangian model for single support and the impact

model, (3.9) and (3.20), use q = (qu; qa), x = (q; q̇) ∈ X an open subset of R10, and

u ∈ R4 for one degree of underactuation during single support.

5.2.2 Family of Feedback Controllers

The feedback controller is designed using the method of virtual constraints and

hybrid zero dynamics (see Sections 3.3 and 3.4, [46, 134]). For planar MARLO, four

virtual constraints are defined, one for each available actuator. The output vector

y is defined in terms of the configuration variables, q, angular momentum, σ, and a

set of parameters κ and β,

y = h(q, σ, κ, β), (5.12)

in such a way that the output has vector relative degree 2 [64, pp. 220] on a subset

of interest, X × K × B. The parameters κ are used to achieve invariance of the zero

dynamics manifold induced by (5.12), while the parameters β will be tuned through

optimization to achieve a desirable periodic orbit. Section 5.2.2.1 provides details for

calculating κ.
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The feedback controller is based on input-output linearization, namely

uff (q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1
L2
fh(q, q̇, κ, β), (5.13)

ufb(q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1(
Kpy +Kdẏ

)
, (5.14)

and1 u = Γ(q, q̇, κ, β) := uff (q, q̇, κ, β) + ufb(q, q̇, κ, β) (4.19). Along solutions of the

closed-loop system ÿ +Kdẏ +Kpy ≡ 0 (3.43).

An explicit choice of h(q, σ, κ, β) is now made,

h(q, σ, κ, β) = h0(q)− hd(τ(q), σ, κ, β), (5.15)

= h0(q)− [hd,σ(σ, β) + hd,τ (τ(q), κ, β)] , (5.16)

where hd(τ(q), σ, κ, β) specifies the desired evolution of h0(q) and

h0(q) = qa, (5.17)

hd,σ(σ, β) = [0, 0, k1(β)σ + k2(β)σ
2, 0]′. (5.18)

The inclusion of angular momentum in the third component of hd,σ allows step length

to vary with velocity. The function hd,τ (τ(q), κ, β) ∈ R4 is a vector of splines that

specifies the desired evolution of defined h0(q)−hd,σ(σ, β) in terms of the gait phasing

variable τ(q). Here, the splines are Bézier polynomials, with the ith polynomial given

by

hd,τ,i(τ, κ, β) :=
M∑
k=0

αi,k
M !

k !(M − k) !
τ k(1− τ)M−k, (5.19)

where the four degree-(M + 1) Bézier polynomials are defined by α(κ, β) ∈ R4×(M+1)

[136, pp. 138]. The gait phasing variable τ(q) is selected to be an affine function of

1A procedure for transforming a Lagrangian system with feedback control into a control-free
Lagrangian system with a new class of trajectories is available in [126].
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Figure 5.2: Nonholonomic virtual constraint control schematic.

phcm and is normalized on the periodic orbit to take values in [0, 1].

The complete output equation using (5.12) and (5.16)-(5.19) is

y =



qLA,ST

qKA,ST

ph2 − phcm

pv2


−



0

0

k1σ + k2σ
2

0


− hd,τ (τ(q), κ, β). (5.20)

In the optimization phase, values for k1 and k2 will be chosen such that a perturbation

in velocity, and attendant deviation of σ, results in a corrective change in swing foot

placement. Specifically, this will adjust the amount of time the center of mass spends

behind the stance foot, versus in front of the stance foot, and will enable quicker

convergence to the periodic orbit [69, 77, 110]. The complete output control schematic

is shown in Figure 5.2.

5.2.2.1 Extended Model for Invariant Hybrid Zero Dynamics

Parameters κ are used to maintain hybrid zero dynamics following impact devia-

tions. With output (5.20), it is straightforward to construct an equivalent function
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Ψ : Sd × B → K such that for all

β ∈ B and

q+
q̇+

 = ∆(q−, q̇−)

the initial values of the outputs are zeroed, that is,

0
0

 =

y+
ẏ+

 =

 h(q+, σ+, κ+, β)

∂
∂q
h(q+, σ+, κ+, β)q̇+ + ∂

∂σ
h(q+, σ+, κ+, β)σ̇+

 (5.21)

for κ+ = Ψ(q−, q̇−, β). The current implementation of κ+ is derived in Section 5.2.3.

Parameters κ are constant within each step and are reset at the end of each step,

hence, they are included as states in the dynamics as derived in Section 4.2.2.

5.2.3 Bézier Parameter Reset Derivation for Nonholonomic Virtual Con-

straints

Control parameters κ must be reset such that post-impact outputs are zeroed in

(5.21). Using (5.12), (5.15), (5.16), and (5.19), output terms dependent on κ are

defined as

hκ(τ(q), α(κ, β)) := hd,τ (τ(q), κ, β) (5.22)

and output terms independent of κ are defined as

hβ(q, σ, β) := h0(q)− hd,σ(σ, β). (5.23)

Next, hκ and hβ substitute into (5.12) as

y = hβ(q, σ, β)− hκ(τ(q), α(κ, β)). (5.24)
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From (5.24) and (5.19), we find that the desired trajectory of hβ along τ is specified

by Bézier parameters

α(κ, β) ∈ R6×(M+1), which are defined as

α(κ, β) :=

[
α0(κ), α1(κ), α2(β), . . . , αM(β)

]
. (5.25)

It is evident from (5.19) that α0(κ) and α1(κ) have the most effect on trajectories

during low τ values immediately after impact. The remaining columns of α(κ, β),

defined by fixed parameters β, determine trajectories toward the end of the gait.

Hence, perturbed trajectories return to the nominal gait as τ increases.

Let y+ = ẏ+ = 0 as in (5.21). Using (5.24), this implies that

hκ(τ(q
+), α(κ+, β)) = hβ(q

+, σ+, β), (5.26)

or simply hκ(τ
+, κ+, β) = h+

β . To satisfy (5.26), we must reset at least one column

of Bézier parameters, α0(κ
+). To guarantee desired trajectories match post-impact

velocities, we reset a second column, α1(κ
+), to satisfy

∂hκ(τ
+, κ+, β)

∂τ
τ̇+ = ḣ+

β . (5.27)

Using (5.22), (5.19), and (5.25), we solve for α0(κ
+) and α1(κ

+) in (5.26) and (5.27)

as

α0(κ
+) =

h+
β −

M∑
k=1

αk
M !(τ+)k(1−τ+)M−k

k !(M−k) !

(1− τ+)M
(5.28)

α1(κ
+) =

ḣ+
β

τ̇+
− α2M(M − 1)τ+(1− τ+)M−2 − a+ b

M((1− τ+)M−1 + τ+(1− τ+)M−2)
, (5.29)

where a =
M−1∑
k=2

(αk+1 − αk)
M !(τ+)k(1−τ+)M−1−k

k !(M−1−k) !
and
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b = M
1−τ+

(
h+
β −

M∑
k=2

αk
M !(τ+)k(1−τ+)M−k

k !(M−k) !

)
.

(5.28) and (5.29) are a solution for κ+ = Ψ(q−, q̇−, β) that always satisfies (5.21).

5.2.4 Extended Gait Phasing Variable and Bézier Polynomials

A gait phasing variable τ : X → R that is strictly increasing along walking steps

is used. The gait phase can be thought of as a measure of progress through each step.

Along periodic walking gaits, the coordinate phcm shown in Figure 5.1 is monotonic

and cycles between a minimum value phcm,min and a maximum value phcm,max. The

nominal gait phasing variable is defined as

τnom(q) =
phcm(q)− phcm,min

phcm,max − phcm,min

, (5.30)

which is a variant of (3.25). Let x0 = (q0; q̇0) be the initial condition for a periodic

orbit with ground height d0. It follows that τnom(∆(x0)) = 0, τnom(x0) = 1, and

x0 ∈ Sd0 using (3.23).

The periodic orbit is departed, however, when x0 /∈ Sd for some d < d0. When

this occurs, τnom(x) > 1 and the desired trajectory as defined by the nominal gait

phasing variable and Bézier polynomials can become counterproductive. To avoid

this, an alternative trajectory is defined using an extended gait phasing variable,

τext(q) =
phcm(q)− phcm,max

phcm,max − phcm,min

, (5.31)

and a second set of Bézier polynomials, αext.

The complete τ and α used in (5.19) are defined using their nominal values and
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equivalent extensions as

τ(q) :=


τnom(q) if p

h
cm(q) ≤ phcm,max

τext(q) if p
h
cm(q) > phcm,max

(5.32)

α(κ, β) :=


αnom(κ, β) if p

h
cm(q) ≤ phcm,max

αext(β) if p
h
cm(q) > phcm,max

. (5.33)

τnom(q), τext(q), αnom(κ, β), and αext(β) should be defined such that (5.19) is contin-

uous. One way of achieving this is by defining τext such that {(q, q̇)′ ∈ X | τ(q) = 1}

τext(q) = 0 (5.34)

τ̇ext(q, q̇) = τ̇(q, q̇), (5.35)

and αext such that

αext,0 = αnom,M (5.36)

αext,1 = αext,0 +
(
αnom,M − αnom,(M−1)

) M

Mext

, (5.37)

where αext,i is the (i+ 1) column of αext and (M + 1) and (Mext + 1) are the degree

of Bézier polynomials associated with αext and αnom respectively. If M 6= Mext, the

order of the polynomials used in (5.19) must be updated when transitioning to the

extended controller.

5.2.5 Optimization for Three Control Solutions

Three controllers are designed and subsequently tuned via parameter optimiza-

tion: a controller that does not include nonholonomic virtual constraints and two

controllers that do. These will be denoted as HVC, NHVC, and NHVC-SFP, where
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HVC and NHVC refer to the use of holonomic and nonholonomic virtual constraints,

respectively, and SFP refers to an additional objective of swing foot placement sug-

gested by the LIPM model. The controller based on HVC serves as a comparison

to work in Chapter IV. The swing foot placement policy used for the NHVC-SFP

optimization is derived in Section 5.3.

To account for uneven terrain, the Optimization for Accommodation of Unknown

Disturbances method presented in Chapter IV is used. This is a parameter optimiza-

tion problem in (β, x0), the parameters in hd and the initial state of the robot, such

that the resulting closed-loop system has a periodic solution and can also accommo-

date (i.e., take valid steps following) a given set of terrain disturbances. The cost

function is chosen so that it favors perturbed solutions that “return closely” to the

nominal periodic solution; in other words, the cost function is designed so that the

closed-loop system attenuates the potentially deleterious effects of the given set of

ground height variations. A key feature is that the gait phasing variable is used to

penalize more heavily deviations that persist “late” into the gait.

Two primary changes have been made with respect to the implementation in

Chapter IV. First, nonholonomic virtual constraints are incorporated into the outputs

using (5.18). Second, two steps following a terrain disturbance are included in the

cost so that the effect of swing foot placement at the end of the first step after the

perturbation is captured during the second step.

Our optimization cost to penalize deviations is induced by 4 terrain height dis-

turbances in D = {±4 cm,±8 cm}. The nominal periodic solution corresponds to a

terrain height of 0 cm. For perturbed steps 1 ≤ j ≤ 8, the deviation costs are defined

as Jj =
1

(τ−j −τ+j )

∫ τ−j

τ+j

(
||δxj(τ)||2 + ||δuj(τ)||2)

(τ−τ+j )

(τ−j −τ+j )
dτ (4.12). δxj(τ) and δuj(τ) are

the differences in perturbed state and control trajectories from the closest existing

periodic trajectories characterized by τ (see (4.8) and (4.9)). The term
(τ−τ+j )

(τ−j −τ+j )
un-

der the integral scales the errors so that initial deviations from the nominal periodic
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trajectory are discounted with respect to errors toward the end of the step. The term

1
(τ−j −τ+j )

outside the integral is included so that perturbed step costs are normalized

w.r.t. the varying ranges of τj resulting from higher and lower terrain disturbances.

The overall cost function is

J = J0 +
8∑

j=1

wjJj, (5.38)

where wj determines the relative weight of each perturbation and the energy efficiency

J0. J0 is calculated using step distance and mechanical actuator work of the nominal

solution as in (4.35).

Parameter optimization problem: Find (β;x0) that (locally) minimize J subject

to the existence of a periodic solution that respects the following constraints: motor

torque is saturated at 6 Nm; vertical ground reaction force greater than 100 N and

friction coefficient less than 0.6; minimum swing foot clearance of 0.1 m over stance

foot; minimum knee bend of 10o to avoid hyperextension; average walking speed

between 0.6-0.8 m/s. The computations were performed offline with fmincon in

MATLAB.

5.3 Swing Foot Placement using Nonholonomic Virtual Con-

straints

Figure 5.3 shows the Linear Inverted Pendulum model used to derive the foot

placement strategy of [110]

v2k+1 = v2k −
g

`
(r2accel,k − r2step,k), (5.39)

where k is the step number, vk is the center of mass velocity when the pendulum is

vertical, and rstep,k and raccel,k are the horizontal distances the center of mass travels
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Figure 5.3: Linear Inverted Pendulum model. Horizontal force F results from the
ground reaction forces caused by gravity.

from behind the stance foot to in front of the stance foot during step k, resulting in

the velocity vk+1 in the next step.

For implementation on the full dynamic model of MARLO, adjustments are made

to (5.39). First, the height of the center of mass, `, is calculated in this work as the

average center of mass height during the periodic orbit of the full model. Second,

(5.39) does not take impact losses into account and will generally require raccel > rstep

to compensate for this. Finally, because swing foot height relative to the stance foot

is included in (5.20), raccel does not change when walking on flat ground.

In (5.39), let v∗, r∗step, and r∗accel denote nominal values on a periodic orbit, so that

v∗2 = v∗2 − g

`
(r∗accel

2 − r∗step
2). (5.40)

In (5.39), setting raccel,k = r∗accel and vk+1 = v∗ from (5.40) gives step length to return

to the nominal velocity, namely

rstep,k =

√
`

g
(v2k − v∗2) + r∗step

2. (5.41)
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Figure 5.4: rerror vs. velocity perturbation. Perturbations occur during the two steps
following a single terrain height disturbance d ∈ [−8, 8] (cm).

The step-length policy (5.41) is implemented using the full model and nonholo-

nomic virtual constraints. The variable rstep is equivalent to the configuration variable

ph2 − phcm at the end of a step. Since ph2 − phcm is paired with an angular momentum-

based virtual constraint in (5.20), the horizontal position of the swing foot can vary

with velocity.

Define rerror,k as the difference between the actual swing foot placement and rstep,k

from (5.41). The NHVC-SFP control solution is optimized with an additional cost,

JSFP , based on rerror,k

J = JSFP + J0 +
8∑

j=1

wjJj. (5.42)

A comparison of the error in rstep for the three control solutions is shown in Figure 5.4.

The NHVC-SFP controller stays within 4 mm of the theoretical swing foot placement

policy for the terrain disturbances used during optimization.

5.4 Results

Simulation results are presented here with discussion given in Section 5.5. The

nominal periodic orbits resulting from the three control solutions are very similar as

shown in Table 5.1.
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Table 5.1: Periodic step velocity, impact losses, and energy efficiency on flat ground.
Efficiency is calculated using J0 from (5.38) and (5.42).

Control
Metric HVC NHVC NHVC-SFP

Step Velocity (m/s) 0.63 0.65 0.66
Impact Losses (J) 19.9 20.1 19.6

Energy Efficiency (J/m) 347 346 365

𝜃𝑑

𝐹

Figure 5.5: Step terrain disturbance (left), change in terrain slope (middle), and
horizontal force to center of mass (right).

5.4.1 Disturbance Types

Figure 5.5 shows the three types of disturbances used to evaluate each of the

control solutions. Step changes in terrain height consist of a vertical displacement

of d (m) per step, as was done during optimization. A change in terrain slope of θ

(deg) causes a similar disturbance as a step change in terrain height, but accounts for

variations in terrain elevation with longer and shorter steps. A sloped terrain may

be more representative of natural outdoor terrain. A third type of disturbance is a

horizontal force F (N) applied to the center of mass over the entire duration of a step.

This induces a velocity perturbation to the robot without the complication of early

or late impacts that may occur with terrain disturbances.
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Table 5.2: Simulation results for all control solutions.

Step Terrain Slope Horizontal
Disturbance (cm) (degrees) Force (N)

Control Min. Max. Rng. Min. Max. Rng. Min. Max. Rng.
HVC -8.9 12.5 21.4 -12.0 28.1 40.1 -14.2 11.2 25.4

NHVC -15.4 12.8 28.2 -17.8 35.0 52.8 -37.5 19.9 57.4
NHVC-SFP -14.8 13.1 27.9 -16.9 37.0 53.9 -89.6 26.5 116.1
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Figure 5.6: Velocity vs. step terrain disturbances (top left), changes in terrain slope
(top right), and external forces on flat ground (bottom).
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Figure 5.7: Velocity stabilization after a 25 N horizontal force applied over entire
second step and a -25 N force applied over the entire fifteenth step.

5.4.2 Repeated Disturbance Limits

The three control solutions are first compared under the action of a persistent

disturbance whose magnitude is gradually increased each step until the robot falls2.

For example, with step changes in terrain, each controller is initialized on the periodic

orbit, and then the terrain height change is varied as dk+1 = dk +0.5 mm, where k is

step number. Once a fall occurs, the simulation is reset from the periodic orbit, and

a decrease of 0.5 mm is applied to dk until failure. The same procedure is applied to

terrain slopes with 0.1o increments and to horizontal force with 0.1 N increments. The

results of these simulations are summarized in Table 5.2 and the resulting perturbed

velocities for each step are plotted in Figure 5.6.

5.4.3 Transient Response to Velocity Perturbations

An additional simulation is performed to evaluate the response of each controller

to a velocity perturbation. The velocity perturbation is applied through a ±25 N

horizontal force acting throughout an entire step, starting from the periodic orbit. The

2A fall can occur from losing momentum and tumbling backward, or violating ground contact
constraints.
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Table 5.3: Minimum angular momentum about the stance foot and impact losses for
perturbed steps in optimization.

Minimum Angular Impact
Momentum (Nms) Losses (J)

Control -8 cm 0 cm 8 cm Rng. -8 cm 0 cm 8 cm Rng.
HVC 47.4 40.5 40.1 7.3 42.2 19.9 16.9 25.3

NHVC 46.8 41.7 39.1 7.7 46.7 20.1 15.1 31.6
NHVC-SFP 43.8 42.5 39.8 4.0 54.7 19.6 13.8 40.9

response is monitored through the resulting average velocity over the steps following

the perturbation. Figure 5.7 shows the results.

5.5 Discussion

Table 5.3 presents the minimum angular momentum about the stance leg dur-

ing the step following a terrain disturbance, as well as the impact losses associated

with each terrain disturbance. Each controller is able to maintain a stable walking

gait in part with lower impact losses for increasing terrain height and much greater

impact losses when stepping to lower terrain. This helps to offset velocity changes

that normally occur when increasing or decreasing potential energy walking uphill

or downhill. However, NHVC-SFP is able to maintain the most consistent minimum

angular momentum. This is explained in part by the larger range of impact losses,

but also by a more principled swing foot placement to remove velocity perturbations.

While Table 5.1 showed that the nominal periodic gait for each controller was

similar, differences emerge when testing the limits of performance as seen in Table 5.2

and Figure 5.6. The two controllers using nonholonomic constraints have a similar

range on uneven terrain, but both outperform the controller based on holonomic

constraints. For all three controllers, velocity initially decreases as expected on uphill

disturbances, but then increases as the height change exceeds the limits used in the

optimization. The speed up occurs because limited swing foot clearance leads to

an early impact, which in turn results in the center of mass initializing the step in
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rstep

ratio (middle), and rstep (bottom) vs. step terrain

disturbances.
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a more forward position; this limits the deceleration period and causes an increase

in velocity3. Figure 5.8 shows this effect to be most prominent for HVC as rstep

values, the distance the center of mass must travel to be over the stance foot, are cut

nearly in half when moving from 8 cm to 12 cm disturbances. The two controllers

using nonholonomic constraints exhibit less variation because rstep naturally increases

as velocity increases. raccel is consistent between control solutions, increases with

downhill walking due to late impacts, and is nominally greater than rstep to offset

impact losses. NHVC-SFP has the greatest increase in rstep for negative disturbances,

which leads to tighter velocity regulation in Figure 5.6 when walking downhill.

When testing the three control solutions for external forces, the NHVC-SFP con-

troller was able to outperform the two other controllers by a fair margin, especially for

negative horizontal forces. In fact, the NHVC-SFP controller can maintain a periodic

gait despite negative impulses as high as 180 Ns per step. Additionally, in Figure 5.7

the NHVC-SFP controller exhibits nearly dead-beat behavior for velocity regulation

following external forces.

The swing foot placement policy (5.39) is designed to reject velocity changes

when walking on flat ground, and by “embedding this event-based controller” into

the NHVC-SFP control solution, the resulting continuous-time swing foot placement

policy is able to accommodate a wide range of disturbances. This is especially evident

when the external disturbance corresponds to an extreme loss in velocity and changing

rstep can reduce deceleration from gravity.

In this chapter, a speed control law suggested by the linear inverted pendulum

[110] was embedded into the controller for a planar biped, while accounting for the

full ten-dimensional hybrid model of the robot, and also accounting for unexpected

terrain height changes. A key factor in the controller design was the use of nonholo-

nomic virtual constraints. Leveraging knowledge from low-dimensional models, as

3Eventually the speed increases to a point where ground reaction forces are violated.
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illustrated with swing foot placement, the optimization process was guided toward

more successful outcomes.
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CHAPTER VI

Three-Dimensional Walking in Realistic

Environments

This chapter addresses the problem of designing feedback controllers that allow a

three-dimensional (3D) bipedal robot to walk outdoors over sloped sidewalks, park-

ing lots, and lawns and indoors over randomly placed planks, all without a priori

knowledge of the environment or external sensing. Model-based design methods are

introduced and subsequently validated in simulation and experiment on MARLO. A

substantial portion of our 3D approach coincides with planar control implementations

introduced in Chapters IV and V, which were, in fact, originally motivated by chal-

lenges observed during 3D walking experiments. Using a single continuously-defined

controller taken directly from optimization, MARLO traverses a variety of outdoor

environments while maintaining average walking speeds between 0.9-0.98 m/s and

setting a new precedent for walking efficiency in realistic environments.

The remainder of this chapter is organized as follows. Section 6.1 presents an

extended definition of the Optimization for Accommodation of Unknown Disturbances

method that explicitly accounts for multiple types of disturbances. Section 6.2 details

a specific 3D control implementation of the general concepts introduced throughout

this dissertation. To demonstrate the efficacy of new concepts and establish best

practices, Section 6.3 compares simulation results for many different control solutions.
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Each control solution results from a unique design configuration selected explicitly for

this purpose. Section 6.4 gives the results of robot experiments using control solutions

designed for outdoor environments, with corresponding discussion given at the end

of the section.

Parts of this work have been submitted for publication in [43]. Videos of outdoor

experiments are available at [44]. Code used for 3D control design and simulation

is available at [37]. For the convenience of the reader, an introductory guide to 3D

walking concepts is given in Appendix A.

6.1 Optimization for the Accommodation of Unknown Dis-

turbances

This section provides an extended definition of the Optimization for Accommoda-

tion of Unknown Disturbances method from Chapter IV that explicitly accounts for

multiple types of disturbances.

6.1.1 Terrain Disturbances

Let d0 ∈ D represent the nominal change in ground height step to step. We seek

β ∈ B and x0 ∈ X giving rise to a periodic solution of the closed-loop system (3.21);

that is, for which there exists T0 > 0 such that

x0 = ϕ(T0,∆(x0)). (6.1)

Moreover, for the same value of β ∈ B, we desire that the periodic orbit ensures the

existence of the following additional solutions of the closed-loop system: ∀ 1 ≤ i ≤ Nd,
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Figure 6.1: Terrain (top) and velocity (bottom) disturbances for optimization. Data
are collected for Ns steps following a perturbation caused by di or vi.

di ∈ D, 1 ≤ j ≤ Ns, ∃ 0 < ti < ∞ and 0 < Tij < ∞ such that

xi1 = ϕ(ti,∆(x0)) ∈ Sdi (6.2)

xi(j+1) = ϕ(Tij,∆(xij)) ∈ Sd0 . (6.3)

In plain words, there exist steps that begin on the periodic orbit, end at ground height

di, and continue for at least Ns more steps at nominal ground height d0, as shown in

Figure 6.1.

In the following, we set up a parameter optimization problem in (β, x0) for finding

a periodic solution that meets these conditions. Moreover, we will pose a cost function

on the steps following the change in ground height that favors solutions that “return

closely” to the nominal periodic solution, that is, the closed-loop system attenuates

the effects of the set of ground height variations.
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6.1.2 Velocity Disturbances

The method of Section 6.1.1 can accommodate a variety of disturbances. Here,

velocity disturbances are addressed. Let xv0 ∈ X represent the values of the state in

the periodic orbit when the position of the center of mass is directly above the stance

foot in the sagittal plane. Given a set of Cartesian velocity variations for the center

of mass,

v ∈ V := {v1, v2, · · · , vNv}, (6.4)

where v ∈ R3, define the ith velocity perturbation as

xvi := xv0 + δxvi , (6.5)

such that pcm(xvi) = pcm(xv0) and

vi =
∂pcm(xv0)

∂x
δxvi , (6.6)

where pcm(x) gives the Cartesian position of the center of mass corresponding to x.

For the purpose of attenuating the effects of velocity variations, we desire that the

periodic orbit ensures the existence of the following additional solutions of the closed

loop system: ∀ 1 ≤ i ≤ Nv, vi ∈ V , 1 ≤ j ≤ Ns, ∃ 0 < ti < ∞ and 0 < Tij < ∞ such

that

xi1 = ϕ(ti, xvi) ∈ Sd0 (6.7)

and xi(j+1) = ϕ(Tij,∆(xij)) ∈ Sd0 , as in (6.3). In plain words, there exist steps

that begin on the periodic orbit, end at nominal ground height d0 after a velocity

disturbance vi is applied mid-step, and continue for at least Ns more steps at nominal

100



ground height d0, as shown in Figure 6.1.

Remarks: (a) When applying multiple disturbance types, the index i in (6.3) must

be offset for each type of disturbance for calculations in Section 6.1.3. (b) We found

that applying a velocity perturbation in the middle of a step is beneficial for finding

solutions that satisfy the conditions in (6.7), while allowing time for the controller

to make adjustments before the end of the step. It is possible, however, to apply a

velocity disturbance at any point along the periodic orbit.

6.1.3 Gait Phase and Trajectory Deviations

The gait phase can be thought of as a measure of progress through each step. We

further assume that the units are normalized on the periodic orbit so that the gait

phasing variable takes values in [0, 1], namely

τ̄(∆(x0)) = 0 (6.8)

τ̄(x0) = 1, (6.9)

and that Lg τ̄(x) :=
∂τ̄
∂x
(x)g(x) = 0.

Let τ̄ij(t) := τ̄(ϕ(t,∆(xij)), for 0 ≤ t ≤ Tij, and as in [24], denote by τ+ij and τ−ij

the initial and final values of τ̄ along the trajectory. Due to the assumption that τ̄ij

is strictly increasing, the inverse map τ̄−1
ij : [τ+ij , τ

−
ij ] → [0, Tij] exists. Define

x̃ij(τ) := ϕ(τ̄−1
ij (τ),∆(xij)) (6.10)

ũij(τ) := Γ(ϕ(τ̄−1
ij (τ),∆(xij)), β). (6.11)

For 1 ≤ i ≤ (Nd + Nv) and 1 ≤ j ≤ Ns, deviations in the state and control
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trajectories are defined as

δxij(τ) :=


x̃ij(τ)− x̃0(0) if τ < 0

x̃ij(τ)− x̃0(τ) if τ ∈ [0, 1]

x̃ij(τ)− x̃0,ext(τ) if τ > 1

(6.12)

δuij(τ) :=


ũij(τ)− ũ0(0) if τ < 0

ũij(τ)− ũ0(τ) if τ ∈ [0, 1]

ũij(τ)− ũ0,ext(τ) if τ > 1

(6.13)

for τ+ij ≤ τ ≤ τ−ij , where x̃0,ext(τ) and ũ0,ext(τ) are forward extensions of the nominal

periodic trajectories1.

Using (6.12) and (6.13), the weighted square error is defined as

||δxij(τ)||2 := < Qδxij(τ), δxij(τ) > (6.14)

||δuij(τ)||2 := < Rδuij(τ), δuij(τ) > (6.15)

for Q and R positive semi-definite (constant) matrices.

6.1.4 Robust Control Cost Function

The problem of defining a cost function J0 and appropriate equality and inequality

constraints for determining a nominal periodic solution of (3.11) has been addressed in

[136, pp. 151-155]; [135, 127] using parameter optimization. Here, we define additional

terms that penalize deviations induced by the terrain-height disturbances in D and

velocity disturbances in V .

1A more comprehensive approach for calculating errors of perturbed trajectories that includes
backward extensions of nominal trajectories is available in [118].
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For 1 ≤ i ≤ (Nd +Nv) and 1 ≤ j ≤ Ns, we define

Jij :=
1

(τ−ij − τ+ij )
2

τ−ij∫
τ+ij

(τ − τ+ij )
(
||δxij(τ)||2 + ||δuij(τ)||2)dτ. (6.16)

The term
(τ−τ+ij )

(τ−ij−τ+ij )
scales the errors so that initial deviations from the nominal periodic

trajectory are discounted with respect to errors toward the end of the step. The

rationale for this is that if the closed-loop system were to rejoin the nominal periodic

orbit by the end of the step, the disturbance would have been rejected and a next

step would be guaranteed. The scale factor allows the optimization to focus on

approximately achieving this objective. The benefit of the scale factor in (6.16) is

demonstrated in Chapter IV by comparing optimization solutions that include the

scale factor against those that do not. The additional term outside the integral,

1
(τ−ij−τ+ij )

, is included so that perturbed step costs are normalized w.r.t. the varying

ranges of τij that result from disturbances (e.g., higher and lower terrain).

The overall cost function is

J = J0 +

Nd+Nv∑
i=1

Ns∑
j=1

wijJij, (6.17)

where wij determines the relative weight of each step.

Parameter optimization problem: Find (β;x0) that (locally) minimize J sub-

ject to the existence of a periodic solution of (3.21) that respects ground contact

conditions, torque limits, and other relevant physical properties, as illustrated in

Section 6.2.4.
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6.2 Control Design

This section provides an example implementation of the gait optimization method

from Section 6.1 and the nonholonomic outputs from Section 5.1. Section 6.2.1 de-

scribes the bipedal robot and corresponding model. Section 6.2.2 defines the feedback

control used for walking. Section 6.2.4 describes the optimization configuration for

finding walking control solutions.

6.2.1 Bipedal Robot Model

The robot MARLO is the Michigan copy of the ATRIAS-series of robots built by

Jonathan Hurst and is described in detail in [45, 113]. The robot’s mass is approxi-

mately 55 kg and its legs are one meter long. Furthermore, while the robot has series

elastic actuators, the springs used in this study are sufficiently stiff that they are

ignored. Excluding the global Cartesian position, the resulting rigid model has nine

DOF in single support and six actuators. Four sagittal-plane leg motors use harmonic

drives with a 50:1 gear ratio, and two hip-abduction motors use a belt transmission

with a 26.7:1 gear ratio. The power amplifiers for the leg and hip motors generate up

to 5 Nm and 3 Nm of torque respectively.

The configuration variables q = (qu, qa)
′ are shown in Figure 6.2. Specifically, the

unactuated components are

qu = [qzT , qyT , qxT ]
′, (6.18)

and the actuated components are

qa = [q1R, q2R, q3R, q1L, q2L, q3L]
′. (6.19)

With this choice of configuration variables, σ has three components corresponding to
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Figure 6.2: Rigid model of MARLO for control design and simulation. L and R
designate left and right legs. qzT , qyT , and qxT are the respective torso yaw, roll, and
pitch Euler angles w.r.t. the world frame.

the angular momenta about the stance foot end in the yz-, xz-, and xy-planes (i.e.,

the sagittal, frontal, and transverse planes respectively). Because the model is 3D,

the σ components can also be defined using x-, y-, and z-axes.

The complete hybrid model of the robot is derived as in [113], including the

dynamic model for the single support phase and the reset map at leg impact. Using

the natural state variables x = (q, q̇)′, the Lagrange model (3.7) is expressed in state

variable form as in (3.9), with x ∈ X an open subset of R18 and u ∈ R6 for three

degrees of underactuation during single support. Full details of the impact surface

(3.23) and the reset map (3.20) are in Section 3.1.

The 3D robot model is assumed to be symmetric as in [8]. Hence, the control

definition assumes right stance. During left stance, a coordinate transform on x

maps the state of the robot to “right stance,” and the resulting “right-stance” control

inputs are then mapped back to the actual left-stance control inputs.

For control calculation, the y-axis is attached to the forward direction of the torso

and control is yaw independent. Given sufficient vertical ground reaction forces, yaw

motion is limited on MARLO by the two-contact-point feet shown in Figure 6.3. With

these feet, MARLO pivots freely in the roll and pitch directions, which is consistent

with the control model. Some outdoor experiments use the prosthetic feet shown in
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Figure 6.3: Two-contact-point feet (left) and prosthetic feet (right).

Figure 6.3. Although prosthetic feet do not pivot as easily for roll and pitch, they

provide a larger surface area for walking on compliant terrain, such as un-mowed

grass.

6.2.2 Family of Feedback Controllers

The feedback controller is designed using the method of virtual constraints and

hybrid zero dynamics as in [46, 134]. For MARLO, six virtual constraints are defined,

one for each available actuator.

The output vector y is defined in terms of the configuration variables, q, angular

momentum, σ, and a set of parameters κ and β,

y = h(q, σ, κ, β), (6.20)

in such a way that the output has vector relative degree 2 [64, pp. 220] on a subset of

interest, X×K×B. The parameters κ, as shown in Section 6.2.2.1, are used to achieve

invariance of the zero dynamics manifold induced by (6.20), while the parameters β

will be tuned through optimization to achieve a desirable periodic orbit.

106



The feedback controller is based on input-output linearization, namely

uff (q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1
L2
fh(q, q̇, κ, β), (6.21)

ufb(q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1(
Kpy +Kdẏ

)
, (6.22)

with

u = Γ(q, q̇, κ, β) := uff (q, q̇, κ, β) + ufb(q, q̇, κ, β). (6.23)

Along solutions of the closed-loop system, ÿ +Kdẏ +Kpy ≡ 0 (3.43).

An explicit choice of h(q, σ, κ, β) is now made,

h(q, σ, κ, β) = h0(q, β)− hd(τ(q), σ, κ, β), (6.24)

where hd(τ(q), σ, κ, β) specifies the desired evolution of the control variables

h0(q, β) =



qLA,ST

qLA,SW

qKA,ST

qKA,SW

qyT − ξ(β)qHA,ST

qHA,SW,ABS


, (6.25)

where LA, KA, and HA are abbreviations of leg angle, knee angle, and hip angle

respectively, and ST and SW designate the stance and swing legs, as shown in Fig-

ure 6.4. For the lateral controller, a combination of torso roll, qyT , and stance hip,

qHA,ST , are used2. As in [7], ξ(β) is a free optimization parameter that changes the

2Because of limited actuation, selecting only the torso roll or the stance hip as a control variable
causes the uncontrolled joint to drift during perturbations. However, a control variable defined by
a combination of torso roll and stance hip causes the controller to respond to either component
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Figure 6.4: Control variables and gait phasing variable. Control trajectories are
synchronized with the motion of pHIP,y.

exact output configuration. Finally, qHA,SW,ABS represents the absolute swing-hip

angle w.r.t. the global vertical axis.

The desired evolution of the control variables, h0(q, β), is chosen as

hd(τ(q), σ, κ, β) = hd,τ (τ(q), κ, β) + hd,σ(σ, β), (6.26)

where hd,τ (τ(q), κ, β) and hd,σ(σ, β) specify holonomic and nonholonomic virtual con-

straints respectively.

The function hd,τ (τ(q), κ, β) ∈ R6 is a vector of splines that specifies the desired

evolution of defined h0(q, β) − hd,σ(σ, β) in terms of the gait phasing variable τ(q).

Here, the splines are Bézier polynomials, with the ith polynomial given by

hd,τ,i(τ, κ, β) :=
M∑
k=0

αi,k
M !

k !(M − k) !
τ k(1− τ)M−k, (6.27)

where, as in [136, pp. 138], the six degree-(M + 1) Bézier polynomials are defined by

α(κ, β) ∈ R6×(M+1), which is derived in Appendix B. The gait phasing variable, τ(q),

drifting, even if the exact behavior of each individual joint is no longer guaranteed in perturbed
conditions. For the combined control variable in (6.25), the sign convention of the stance hip is
selected such that an input from the hip actuator causes consistent directional output changes for
both components.
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is selected to be an affine function of the y position of the center of the hips, pHIP,y,

and is normalized on the periodic orbit to take values in [0, 1]. If τ(q) > 1 outside of

the periodic orbit, extended Bézier polynomials defined in Section 6.2.3 are used in

(6.27).

The nonholonomic virtual constraints are chosen as

hd,σ(σ, β) =



0

kσ(k1(β), σyz)

0

0

0

kσ(k2(β), σ̄xz)


, (6.28)

where σyz and σ̄xz are angular momentum in the sagittal and frontal planes and the

nonholonomic function is defined as

kσ(ki, σj) := ki,1σj + ki,2σ
2
j + ki,3σ

3
j . (6.29)

The complete output equation using (6.20) and (6.24)-(6.28) is

y =



qLA,ST

qLA,SW

qKA,ST

qKA,SW

qyT − ξqHA,ST

qHA,SW,ABS


−



0

kσ(k1, σyz)

0

0

0

kσ(k2, σ̄xz)


− hd,τ (τ). (6.30)

The inclusion of angular momentum in the third and sixth components of hd,σ allows

step length and width to vary with velocity. In the optimization phase, values for
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Figure 6.5: Posture changes in response to velocity perturbations from pushes in the
sagittal (top) and frontal (bottom) planes. Changes in swing foot placement adapt the
gravity moment between the stance foot and the center of mass during the following
step. A detailed description of gravity effects on 3D walking dynamics is provided in
Appendix A.

k1(β) and k2(β) will be chosen such that a perturbation in velocity, and attendant

deviation of σ, results in a corrective change in swing foot placement. For the sagittal

plane, this will adjust the amount of time the center of mass spends behind the

stance foot, versus in front of the stance foot. For the frontal plane, this will adjust

the magnitude of the lateral gravity moment proportional to the width between the

stance foot and the center of mass. Both changes, shown in Figure 6.5, enable quicker

convergence to the periodic orbit. Additionally, lateral stabilization through step

width adjustments is shown to be more efficient than direct actuation in [79]. For

more details, see [69, 77, 110].

Remarks on σ̄xz: During a nominal step, the robot rotates laterally both toward
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and away from the stance foot, and hence σxz is negative and positive within the same

step. In practice, we found it beneficial to use only the portion of σxz associated with

rolling away from the stance leg during the later part of each step. To keep (6.23)

continuous and smooth, we define σ̄xz as

σ̄xz :=


0 if σxz < 0

σxze
(−30

σ2
xz

)
if σxz ≥ 0

. (6.31)

6.2.2.1 Extended Model for Invariant Hybrid Zero Dynamics

Parameters κ are used to maintain hybrid zero dynamics following impact devia-

tions. With output (6.30), it is straightforward to construct an equivalent function

Ψ : Sd × B → K such that for all

β ∈ B and

q+
q̇+

 = ∆(q−, q̇−)

the initial values of the outputs are zeroed, that is,

0
0

 =

y+
ẏ+

 =

 h(q+, σ+, κ+, β)

∂
∂q
h(q+, σ+, κ+, β)q̇+ + ∂

∂σ
h(q+, σ+, κ+, β)σ̇+

 (6.32)

for κ+ = Ψ(q−, q̇−, β). The current implementation of κ+ is derived in Section 5.2.3.

Parameters κ are constant within each step and are reset at the end of each step,

hence, they are included as states in the dynamics as derived in Section 4.2.2.

6.2.3 Extended Gait Phasing Variable and Bézier Polynomials

Along periodic walking gaits, the y position of the center of the hips, pHIP,y

shown in Figure 6.4, is monotonic and cycles between a minimum value, pmin
HIP,y, and
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a maximum value, pmax
HIP,y. The nominal gait phasing variable is defined as

τ(q) :=
pHIP,y − pmin

HIP,y

pmax
HIP,y − pmin

HIP,y

, (6.33)

where pmin
HIP,y is the initial value of pHIP,y each step, and pmax

HIP,y is the final value of

pHIP,y on the periodic orbit.

If the periodic orbit is exited and τ(q) > 1, the desired trajectory defined by the

nominal gait phasing variable and Bézier polynomials can become counterproductive.

To avoid this, an alternative trajectory is defined using an extended gait phasing

variable,

τext(q) :=
pHIP,y − pmax

HIP,y

pmax
HIP,y − pmin

HIP,y

, (6.34)

and a second set of Bézier polynomials, αext(β). Thus, the complete τ̄(q) and ᾱ(κ, β)

used in (6.27) are defined using their nominal definitions and equivalent extensions

as

τ̄(q) :=


τ(q) if pHIP,y(q) ≤ pmax

HIP,y

τext(q) if pHIP,y(q) > pmax
HIP,y

(6.35)

ᾱ(κ, β) :=


α(κ, β) if pHIP,y(q) ≤ pmax

HIP,y

αext(β) if pHIP,y(q) > pmax
HIP,y

. (6.36)

τ(q), τext(q), α(κ, β), and αext(β) should be defined such that (6.27) is continuous.

One way of achieving continuity is by defining τext such that {(q, q̇)′ ∈ X | τ(q) = 1}

τext(q) = 0 (6.37)

τ̇ext(q, q̇) = τ̇(q, q̇), (6.38)
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and defining αext such that

αext,0 = αM (6.39)

αext,1 = αext,0 +
(
αM − α(M−1)

) M

Mext

, (6.40)

where αi and αext,i are the (i+1) columns of α and αext, and (M +1) and (Mext +1)

are the degree of Bézier polynomials associated with α and αext. If M 6= Mext, Mext

replaces M in (6.27) when using the extended parameters.

Remark: Defining τ(q), τext(q), α(κ, β), and αext(β) such that control trajectories

defined by (6.27) are continuous does not guarantee continuity of control inputs u in

(6.23). This is evident later in Figure 6.15 where, when τ > 1 (i.e., during downhill

walking), the extended controller causes a jump in u that immediately requires a

greater friction coefficient.

6.2.4 Robust Control Optimization Configuration and Control Solutions

The cost function for the nominal periodic orbit is based on energetic efficiency

and is defined as

J0 :=
1

step length

T0∫
0

6∑
i=1

|uiq̇m,i| dt, (6.41)

where step length is the distance between the stance and swing feet at impact3, T0 is

the period, u is the 6-vector of motor torques, and q̇m is the corresponding 6-vector

of motor angular velocities, which is obtained from the link velocities and gear ratios

as in [113]. The product of ui and q̇m,i is the instantaneous mechanical power from

each motor.

The nominal periodic orbit was computed for walking on level ground (i.e., d0 = 0)

by optimizing (6.17), with nominal cost (6.41), subject to the hybrid dynamic model

3In (6.41), we use the absolute Cartesian distance between the stance and swing feet at impact
as the step length. Alternatively, step length can be defined as the y distance between the feet in
the sagittal plane.
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(4.22) given in Section 4.2.2 and the following constraints: leg and hip motor torques

saturate at 4 Nm and 2 Nm respectively, minimum vertical ground reaction forces of

250 N and maximum required friction coefficient of 0.5, minimum knee bend of 20o

to avoid hyperextension, maximum combined hip angles of 190o to avoid leg collision,

maximum link velocities of 200 deg/s for (q1, q2) and 60 deg/s for q3, average walking

speed between 0.5-1 m/s, minimum swing foot clearance of 0.1 m over stance foot,

and backward swing-foot velocity at impact. Constraints based on ground reaction

forces and physical limitations of MARLO also apply to perturbed steps.

The weight matrix Q in (6.14) is selected such that torso roll and pitch squared

errors are multiplied by 4, hip squared errors are multiplied by 2, and velocity squared

errors are divided by four. The weight matrix R in (6.15) is selected such that it has

one fifth the base weighting of Q. The variables Ns and wij from (6.17) are selected

such that costs are generated for two steps following a disturbance (i.e., Ns = 2),

and the second perturbed step is multiplied by 3 (i.e., wi2 = 3). The rationale for

this is to enable the optimizer to choose actions that may deviate more from the

nominal trajectory directly following a disturbance, but result in quicker convergence

to nominal conditions in subsequent steps.

The control solutions are found offline with fmincon in MATLAB, using the

nonholonomic-virtual-constraints (NHVC) given in Section 6.2.2. For comparison

purposes, a nominal control solution, NHVC0, is defined for terrain-height distur-

bances D = {±2 cm,±4 cm} and center of mass velocity disturbances in the x and y

directions Vx = {±7.5 cm/s,±15 cm/s} and Vy = {±15 cm/s,±30 cm/s} for a total

of twelve disturbances.

Additional control solutions are found using various configurations to test the

efficacy of new concepts and establish best practices for selecting optimization dis-

turbances. The control solutions are computed with fmincon initialized at the values

obtained with NHVC0, using the disturbance profiles indicated in Table 6.1. First, to
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Table 6.1: Periodic-walking behavior of control solutions for different optimization
configurations.

Ratio of
Disturb- Max.

Optimization ance/Ef- Forward Poin-
Disturbance Profile ficiency Impact Walking caré

D Vx Vy Cost MCOT Losses Speed Map ξ(β)
Control (cm) (cm/s) (cm/s) (6.17) (6.42) (J) (m/s) λ (6.25)

Moderate Disturbances

NHVC0 ±2,±4 ±7.5,±15 ±15,±30 2.1 0.240 6.7 0.736 0.61 0.276

NHVCD ±2,±4 Ø Ø 0.7 0.237 7.1 0.744 0.67 0.266

NHVCV Ø ±7.5,±15 ±15,±30 1.3 0.235 7.2 0.741 0.75 0.291

Decreased Disturbances

NHVCDV − ±1,±2 ±3.75,±7.5 ±7.5,±15 1.0 0.242 7.0 0.764 0.69 0.246

NHVCD− ±1,±2 Ø Ø 0.5 0.241 6.9 0.765 0.72 0.287

NHVCV − Ø ±3.75,±7.5 ±7.5,±15 0.4 0.237 6.9 0.749 0.72 0.314

Increased Disturbances

NHVCDV + ±4,±8 ±15,±30 ±25,±50 7.2 0.254 7.3 0.778 0.70 0.341

NHVCD+ ±4,±8 Ø Ø 1.1 0.246 7.0 0.769 0.79 0.345

NHVCV + Ø ±15,±30 ±25,±50 4.9 0.248 7.2 0.788 0.70 0.291

Varied Nonholonomic Function (6.29)

HVC ±2,±4 ±7.5,±15 ±15,±30 7.9 0.231 7.5 0.780 0.92 0.284

NHVCDeg.1 ±2,±4 ±7.5,±15 ±15,±30 2.8 0.239 7.5 0.770 0.74 0.299

NHVCDeg.2 ±2,±4 ±7.5,±15 ±15,±30 1.8 0.239 7.1 0.729 0.69 0.239

investigate the utility of using nonholonomic outputs, a holonomic control solution,

HVC, is optimized with k1, k2 = 0 in (6.28), using the same disturbance profile as

NHVC0. In order to find a stable solution for HVC, it is necessary to include opti-

mization costs associated with the highest eigenvalue of the linearized Poincaré map,

as done in [18]. Additionally, different nonholonoic functions are tested by using a

linear (Deg.1) or quadratic (Deg.2) polynomial in place of (6.29). Finally, the remain-

ing control solutions evaluate the effect of different disturbance configurations, such

as incorporating only terrain (D) or velocity (V ) disturbances or a decreased (−) or

increased (+) range of disturbances. In the next section, these control solutions are

evaluated in simulation. Additional control solutions for experiments are introduced

in Section 6.4.1.
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Figure 6.6: Sagittal view of NHVC0 control solution walking downhill with repeated
-10 cm changes in terrain height.

6.3 Simulation Results

Control solutions are compared in simulation to evaluate concepts introduced in

this paper and to test the relative benefit of various disturbances for the robust con-

trol optimization. The gait designs of Table 6.1 are simulated under the influence

of external forces and over terrain with varying height. Section 6.3.1 provides an

initial evaluation of periodic flat-ground walking behavior. Section 6.3.2 evaluates

the performance under persistent, repeated disturbances, which is a means to assess

“steady-state” behavior under disturbances, whereas Section 6.3.3 focuses on tran-

sient aspects by giving results for recovery after a single disturbances. Discussion and

interpretation of the simulation results are given in Section 6.3.4. A video illustrating

the results is available at [44].

6.3.1 Walking on Flat Ground without External Perturbations

Each of the controllers in Table 6.1 is initially simulated over flat ground with no

external perturbations. To evaluate the energetic efficiency of a control solution, the

116



mechanical cost of transport (MCOT) is calculated as

MCOT :=
1

Mgdy

T0∫
0

6∑
i=1

max(uiq̇m,i, 0)dt, (6.42)

where M is the total mass of the biped, g is the acceleration due to gravity, dy is the

forward travel distance, and only the positive work of each actuator is considered.

The reader is referred to [20] for a review of MCOT for various walking robots.

To evaluate the stability of a control solution’s fixed point (i.e., periodic orbit),

the eigenvalues of the linearized Poincaré map are computed, with the maximum

magnitude of the eigenvalues, λ, given in Table 6.1. For the current control imple-

mentation, yaw is not regulated. Consequently, the eigenvalue associated with yaw is

1, as proved in [125, Propositions 3 and 4], and is not included in the comparison.

6.3.2 Repeated Disturbance Limits

Terrain and push disturbances are used to evaluate each control solution. For

terrain disturbances, changes in terrain height consist of a vertical displacement of d

(cm) per step. Figure 6.1 shows an example of a single vertical displacement, di, and

Figure 6.6 shows walking with repeated -10 cm displacements in simulation. For push

disturbances, horizontal forces of F (N) are applied to the center of mass over the

duration of an entire step. This induces a velocity perturbation to the robot without

the complication of terrain variation. Assuming left-right symmetry of a robot, push

direction (forward or backward) in the sagittal plane determines the control response.

In the frontal plane, however, whether a push is away from or toward the stance leg

affects the appropriate control response, as illustrated in Figure 6.5.

Here, control solutions are compared under the action of a persistent disturbance

whose magnitude is gradually increased each step until the robot falls. A fall occurs

when requiring a friction coefficient greater than 0.6 or losing momentum and tum-
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Figure 6.7: Walking speed vs. sustained terrain disturbances.
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Table 6.2: Disturbance limits of control solutions. Bold text indicates best and worst
result for each column.

Step Sagittal-Plane Frontal-Plane
Disturbance (cm) Force (N) Force (N)

Control Min. Max. Range Min. Max. Range Min. Max. Range
NHVC0 -11.35 7.40 18.75 -22.2 17.1 39.3 -20.2 20.2 40.4
NHVCD -10.90 7.35 18.25 -20.2 15.4 35.6 -18.8 18.8 37.6
NHVCV -12.00 7.30 19.30 -24.2 18.0 42.2 -18.5 18.5 37.0

NHVCDV − -7.00 7.25 14.25 -22.3 12.6 34.9 -16.1 16.1 32.2
NHVCD− -6.10 7.25 13.35 -27.5 13.9 41.4 -12.8 12.8 25.6
NHVCV − -10.65 7.45 18.10 -21.5 16.2 37.7 -15.8 15.8 31.6
NHVCDV + -10.75 7.60 18.35 -21.8 17.4 39.2 -18.5 18.5 37.0
NHVCD+ -9.95 8.50 18.45 -22.6 13.4 36.0 -8.5 8.5 17.0
NHVCV + -10.10 6.80 16.90 -22.4 18.4 40.8 -20.4 20.4 40.8
HVC -1.25 1.35 2.60 -8.4 13.0 21.4 -2.4 2.4 4.8

NHVCDeg.1 -1.15 7.45 8.60 -11.6 8.0 19.6 -29.5 29.5 59.0
NHVCDeg.2 -11.70 7.20 18.90 -21.1 22.0 43.1 -19.7 19.6 39.3

bling sideways or backward. For disturbance limits with changes in terrain height,

each control solution is initialized on the periodic orbit, and then terrain height in-

creases each step as dk+1 = dk + 0.5 mm, where k is the step number. Once a fall

occurs, the simulation is reset from the periodic orbit, and a decrease of 0.5 mm is

applied to dk until failure. The same procedure is applied through sagittal and frontal

plane forces with 0.1 N increments. The results of repeated disturbance simulations

are summarized in Tables 6.2 and 6.3, and, for illustrative control solutions, the per-

turbed velocities for each step are plotted in Figures 6.7-6.9. The lateral velocity in

plots is the average velocity each step in the frontal plane.

6.3.3 Transient Response to Perturbations

Additional simulations are performed to evaluate the transient response of each

control solution to individual terrain and push disturbances. Velocity deviations after

terrain disturbances of ±2 cm, ±4 cm, and ±8 cm are shown in Figure 6.10. For push

disturbances, 50 N forces are applied over the length of an entire step in either the
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Table 6.3: Disturbance-limit averages based on optimization configuration. Bold text
indicates greatest range for each category.

Optimization Step Sagittal-Plane Frontal-Plane
Disturbance Disturbance (cm) Force (N) Force (N)
Configuration Min. Max. Range Min. Max. Range Min. Max. Range

Disturbance Magnitude
Moderate -11.4 7.4 18.8 -22.2 16.8 39.0 -19.2 19.2 38.3
Decreased -7.9 7.3 15.2 -23.8 14.2 38.0 -14.9 14.9 29.8
Increased -10.3 7.6 17.9 -22.3 16.4 38.7 -15.8 15.8 31.6

Disturbance Type
Terrain and Velocity -9.7 7.4 17.1 -22.1 15.7 37.8 -18.3 18.3 36.5

Terrain Only -9.0 7.7 16.7 -23.4 14.2 37.7 -13.4 13.4 26.7
Velocity Only -10.9 7.2 18.1 -22.7 17.5 40.2 -18.2 18.2 36.5
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Figure 6.10: Sagittal-plane velocity deviations after ±2 cm (left), ±4 cm (center), and
±8 cm (right) terrain disturbances. Step-up and step-down disturbances occur on the
first and seventeenth steps respectively. When converging back to the periodic orbit,
sagittal-plane velocity is not necessarily monotonic due to the coupled dynamics of
the sagittal and frontal planes. Following step-up disturbances outside of the ±2 cm
range used for optimization, NHVCD− is more destabilized than the other control
solutions.
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Figure 6.11: Sagittal-plane velocity deviations after pushes in sagittal plane. For-
ward and backward 50 N pushes occur over the entire first and seventeenth steps
respectively. Figure 6.12 shows the simultaneous frontal-plane velocity deviations.
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Figure 6.13: Frontal-plane velocity deviations after pushes in frontal plane. Lateral
50 N pushes away from and toward the stance leg occur over the entire fourth and
twenty-fifth steps respectively.

sagittal or frontal planes. The HVC control solution is unable to recover from the

disturbances used here and is not included in the analysis.

Sagittal-plane pushes are applied in the forward and backward directions, as shown

in Figure 6.11. For 3D walking, the sagittal and frontal plane dynamics are coupled,

as demonstrated by the simultaneous frontal-plane velocity deviations occurring with

sagittal-plane pushes shown in Figure 6.12. Lateral perturbations caused by changes

in forward walking speed are just one example of coupled dynamics. A loss in forward

walking speed results in more time spent on a single stance leg, which subsequently

causes a longer lateral gravity moment and increased lateral velocity by the end of the

step. Likewise, a gain in forward walking speed results in less time spent on a single

stance leg and a decreased lateral velocity. These coupled behaviors are evident in

Figures 6.11 and 6.12. The role of synchronization of pendular motion in the sagittal

and frontal planes to gait stability is studied in [114].

Frontal-plane pushes are applied in a single direction, as shown in Figure 6.13, but

are timed such that the first lateral push is away from the stance leg and the second

push is toward the stance leg. Both lateral-push behaviors are depicted in Figure 6.5
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Table 6.4: Single-step pushes and corresponding impulses for NHVC0.

Force Step Impulse
(N) Time (Ns)

Push Disturbance x y (s) x y
None, Periodic Orbit 0 0 0.412 0 0

Forward 0 50 0.347 0 17.4
Backward 0 -50 0.609 0 -30.4

Away from Stance 50 0 0.410 20.5 0
Toward Stance 50 0 0.422 21.1 0

(bottom) for clarification.

Impulses corresponding to single-step pushes for the NHVC0 control solution are

provided in Table 6.4. A backward push results in the longest step time and greatest

corresponding impulse.

6.3.4 Discussion of Simulation Results

Each of the control solutions in Table 6.1 have similar nominal periodic orbits

with respect to forward walking speed, step length, and foot clearance at mid-step;

nevertheless, as documented above, their responses to disturbances vary greatly.

Notably, the control solutions using nonholonomic outputs (NHVC) outperform

the holonomic control solution (HVC). First, as shown in Table 6.2, HVC has the

smallest range of admissible repeated disturbances. Although HVC handles greater

forward forces than NHVCDeg.1, it performs the worst for all other tested disturbances.

Second, HVC exhibits the greatest deviations in velocity within its operating range,

as shown in Figures 6.7-6.9. Finally, as shown in Table 6.1, the NHVC solutions have

a smaller spectral radius (i.e., maximum magnitude of the Poincaré map eigenval-

ues) than HVC, suggesting quicker convergence to the periodic orbit after a (small)

disturbance. Differences in the performance of the HVC and NHVC solutions are

attributed to the ability of NHVC solutions to regulate walking posture with veloc-

ity (e.g., adjusting sagittal step distance with forward walking speed, as shown in
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Figure 6.14: Sagittal step distance vs. forward walking speed. Details on how sagittal
step distance regulates sagittal velocity are available in Chapter V.

Figure 6.14).

A comparison of NHVC solutions reveals that there are clear benefits to includ-

ing velocity disturbances in the robust control optimization. First, NHVCV , which

incorporates only velocity disturbances during optimization, handles a wider range

of repeated terrain disturbances than the other NHVC solutions (see Table 6.2). In

contrast, NHVCD+ and NHVCD− , which incorporate only terrain disturbances during

optimization, handle the smallest ranges of frontal-plane forces and have the slowest

recoveries following lateral pushes (see Figure 6.13). Finally, with respect to repeated

disturbances, solutions incorporating only terrain disturbances perform worse than

solutions incorporating velocity disturbances (see Table 6.3). This difference in per-

formance likely occurs because applying individual terrain disturbances during the

robust control optimization does not perturb velocity to the same extent as repeated

terrain disturbances. We propose that by including velocity disturbances in the ro-

bust control optimization, nonholonomic outputs are obliged to make constructive

posture adjustments over a wider range of walking speeds, including speed changes

that occur when walking uphill or downhill. Our analysis has considered only two

types of disturbances. Investigating additional classes of disturbances to be included
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friction coefficient. Essentially, the stance knee quickly bends to lower the biped.

in the control design process should be a fruitful endeavor.

The size of disturbances used for the robust control optimization is also significant.

NHVCD− , which incorporates smaller disturbances during optimization than NHVCD

or NHVCD+ , exhibits greater deviations in velocity following the terrain disturbances

illustrated in Figure 6.10. As the size of terrain disturbances incorporated during

optimization increases, control solutions handle steeper uphill terrain (see Table 6.2)

and require a lower friction coefficient for the majority of the repeated terrain dis-

turbances illustrated in Figure 6.15. Incorporating larger disturbances for the robust

control optimization does not, however, indiscriminately improve performance. As

shown in Table 6.3, solutions incorporating only moderate disturbances handle the

widest range of repeated terrain and force disturbances. For the current control im-

plementation, we propose that incorporating larger disturbances during optimization

results in the adherence to performance criteria (e.g., required friction coefficient) for

a broader range of disturbances; however, this generalization comes at a cost in other

aspects. This tradeoff could be avoided with a control implementation that enables

tailoring for specific conditions (e.g., switching among a library of control solutions).
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Many of the NHVC solutions have a similar recovery from velocity perturbations,

as shown in Figures 6.11 and 6.12. This is, in part, due to using local optimiza-

tion with repeated initial values. Consistent solutions for k1(β) and k2(β) in the

nonholonomic function, (6.28), determine how posture adapts with velocity. There

is more variability when changing the underlying nonholonomic function (i.e., HVC,

NHVCDeg.1, and NHVCDeg.2) than when changing optimization disturbances, as shown

in Figure 6.14. Implementing nonholonomic functions other than simple polynomials

would likely enable additional variability. As an aside, additional nonholonomic out-

puts for posture regulation could enhance recovery from velocity perturbations (e.g.,

changing stance and swing knee angles to regulate lateral velocity through modified

ground reaction forces and step duration).

Walking efficiency should be evaluated for a variety of terrain conditions and,

as emphasized by [120], within the context of robustness. Although HVC exhibits

the lowest periodic MCOT (see Table 6.1), when considering the limited range of

traversable terrain for this control solution (see Table 6.2), the flat-ground walking

efficiency is less relevant. Additionally, just as [87, 139] consider gait efficiency for

a range of velocities, for practical walking applications, we propose that efficiency

should be evaluated for a variety of terrain conditions. MCOT is plotted for a range

of repeated terrain disturbances in Figure 6.16. For the NHVC solutions, MCOT

increases with uphill terrain because of the additional work required to raise the center

of mass. For downhill terrain, MCOT decreases with moderate declines, but increases

with more severe declines. This eventual increase arises from the larger impact losses

associated with downhill walking. The effects of impact losses on MCOT are well

illustrated by HVC, because it makes no velocity-dependent posture adjustments.

Uphill walking decreases HVC’s impact losses and MCOT, whereas downhill walking

increases HVC’s impact losses and MCOT.

Overall, the control solutions using nonholonomic outputs are able to handle a
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Figure 6.16: MCOT vs. sustained terrain disturbances.

wide range of disturbances and terrain conditions. NHVC0 recovers from backward

shoves of -30.4 Ns, handles about a 40 N range of sustained forces in the sagittal

and frontal planes, and handles an 18.8 cm range of repeated terrain disturbances.

Such robustness is desirable because it allows the robot to handle disturbances and

difficulties associated with the robot hardware.

6.4 Experimental Results

Experiments are conducted on MARLO both indoors and outdoors. Section 6.4.1

introduces the control solutions implemented on the robot. Section 6.4.2 describes

the setup for the experiments. Sections 6.4.5 and 6.4.6 present the results of the

indoor and outdoor experiments respectively, with discussion given in Section 6.4.7.

Videos of indoor and outdoor experiments are available at [44].

6.4.1 Control Solutions

The control solutions used on the robot are designed for outdoor terrain. Opti-

mization terrain disturbances (D) are based on outdoor measurements and previous

planar experiments with uneven terrain in [42]. Optimization velocity disturbances
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Table 6.5: Periodic-walking behavior of control solutions used on the robot.

Ratio of
Disturb- Max.

Optimization ance/Ef- Forward Poin-
Disturbance Profile ficiency Impact Walking caré

D Vx Vy Cost MCOT Losses Speed Map ξ(β)
Control (cm) (cm/s) (cm/s) (6.17) (6.42) (J) (m/s) λ (6.25)

Optimized Prior to Robot Experiments

NHVC0 ±2,±4 ±7.5,±15 ±15,±30 2.1 0.240 6.7 0.736 0.61 0.276

NHVCPoincaré
0 ±2,±4 ±7.5,±15 ±15,±30 1.8 0.234 7.3 0.732 0.58 0.273

NHVC1 ±3,±6 ±15,±30 ±20,±40 4.7 0.219 8.0 0.751 0.75 0.258

NHVC2 ±3,±6 ±20 ±30 2.4 0.217 7.5 0.732 0.66 0.232

Optimized After Initiating Robot Experiments

NHVC3 ±3,±6 ±30 ±30 3.0 0.267 7.3 0.811 0.74 0.246

(V ) are based on forward walking speed and velocity changes attendant with re-

peated terrain disturbances. The nominal control solution based on nonholonomic

virtual constraints, NHVC0, is carried forward to the experiments. Prior to begin-

ning the experimental phase of the work, additional controller designs similar to

NHVC0 are performed, as indicated in Table 6.5. The NHVCPoincaré
0 control solution

has the same disturbance profile as NHVC0 with an additional penalty included on

the spectral radius of the linearized Poincaré map (i.e., on the peak magnitude of the

eigenvalues).

One additional control solution is performed after initiating the experiments. After

the first day of outdoor walking, laterally-sloped terrain is identified as a significant

perturbation to the gait of the robot. To account for this, an additional controller,

NHVC3, is designed with equal emphasis on velocity disturbances in the frontal and

sagittal planes.

6.4.2 Experimental Setup

Virtual constraints resulting from the optimization process are implemented on the

robot without modification. The feedback controller (6.23) is simplified as follows.

In place of uff , constant 0.5 Nm torques are added to the stance leg and hips to
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provide some friction and gravity compensation. In place of the decoupling matrix

LgLfh(q, q̇, κ, β), a constant matrix is used to relate y to ufb. Constant decoupling

matrices are also used in [15, 14]. Additionally, commanded motor torque, u, is

bounded at 5 Nm for the legs and 3 Nm for the hips. These bounds are greater than

those used in optimization to compensate for unmodeled friction and other drivetrain

inefficiencies on the actual robot.

Impact is detected by a rapid deflection in the springs when the swing foot contacts

the ground. After swapping stance legs, α0 from Appendix B updates such that y = 0.

On the robot, there are no instantaneous jumps in the post-impact velocities, so, in

place of updating α1 such that ẏ = 0, α1 updates to maintain its nominal difference

with respect to α0 on the periodic orbit. After control updates, torque bounds are

initialized at 0 Nm and linearly scaled back to nominal values while 0 < τ < 0.1,

which limits any counterproductive control inputs during the brief period of double

support.

Joint angular velocities are estimated from encoder readings through numerical

differentiation. It is a standard problem that such estimates appear “quite noisy”

in comparison to the clean signals available in simulation. On MARLO, a low-pass

Butterworth filter based on [16] attenuates only high-frequency “noise”, because the

cutoff frequency is necessarily high to limit phase delay in the feedback controller.

Angular velocity estimates are particularly “noisy” following impacts and on the hip

joint angles, which are measured on the motor side of a belt transmission. Conse-

quently, the derivative term of the controller at the hip-angle only considers the h0

component of (6.24) when calculating ẏ.

The gait phasing variable, τ , determines the progression of control trajectories,

and angular momentum, σ, determines the velocity-based changes of control trajec-

tories. Both τ and σ are critical for implementing nonholonomic virtual constraints.

First-order filters for their estimation from measured quantities are specifically de-
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signed. Section 6.4.3 defines the phase estimator for τ , and Section 6.4.4 defines a

reduced-order Luenberger observer for σ. Comparisons of original signals and their

estimated counterparts are provided in Section 6.4.4.1.

Finally, in the walking experiments, the robot is initialized from a standing po-

sition. The use of nonholonomic virtual constraints makes initialization straightfor-

ward, because the controller automatically adjusts step length with forward velocity.

Under the evaluated controllers, initializing the robot from a static pose and hand-

guiding it forward through a few steps is sufficient to enter the basin of attraction.

The initialization process is illustrated in [44].

6.4.3 Phase Estimator

An estimator is used in place of direct measurement of the gait phasing vari-

able. This is done because when τ̇ is determined through numerical differentiation, it

presents unacceptable oscillations after impacts, which transfer to the torque signals

determined by the controller.

The phase estimator is defined as

˙̂τ :=
1

T
+ L(τ̂)(τ − τ̂), (6.43)

where τ̂ is the estimated gait phasing variable, T is the duration of the previous step,

and L(τ̂) is the observer gain. The term 1
T
is interpreted as a model for the evolution

of the normalized phase variable τ , and L(τ̂)(τ − τ̂) is the correction term based on

observation of τ . Hence, L(τ̂) determines the relative dependence of the estimated

phase on the time-based model and the measured gait-phasing variable. Because

the numerical estimates of joint velocities appear to be most inaccurate immediately

following an impact, L(τ̂) is chosen such that (6.43) emphasizes the time-based model

immediately following impact and then smoothly returns to accurately tracking τ by
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the end of the step. Specifically, L(τ̂) is defined as

L(τ̂) :=


20τ̂ if τ̂ < 1

20 if τ̂ ≥ 1

. (6.44)

Remarks: (a) During the first step of an experiment, previous step duration, T , is

undefined. Therefore, (6.43) is modified such that 1
T

= 0 and L(τ̂) = 20. (b) In

simulation, the estimated phase variable, τ̂ , tracks well with τ and provides a reliable

estimate of τ̇ , as shown in Figure 6.18.

6.4.4 Reduced-Order Luenberger Observer for Estimating Angular Mo-

mentum

When σi is estimated on the robot through

σ̂i = Di(q)̂̇q,
the resulting signal presents non-physical behavior as detailed in Appendix D. Conse-

quently, reduced-order Luenberger observers based on [82] are developed to estimate

angular momentum in the frontal and sagittal planes.

Here, the reduced-order observer is derived for angular momentum in the frontal

plane. We use a process similar to [48], which was inspired by [91]. A novel aspect here

is that the reduced-order design is not carried out on the complete model of the robot,

but instead on a simplified inverted pendulum model. The simplified model is based

on the center of mass position of the full model, as shown in Figure 6.17, but does

not include “flywheel-like” dynamics from individual-link velocities and momenta.

To start our reduced-order observer derivation, the dummy state ηxz and its deriva-
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Figure 6.17: Simplified model for the reduced-order Luenberger observer. Two sepa-
rate observers estimate σ for the frontal (left) and sagittal (right) planes.

tive are defined as

ηxz := θ̇xz − Lxzθxz (6.45)

η̇xz = θ̈xz − Lxz θ̇xz, (6.46)

where Lxz > 0 is a scalar to be chosen. From the inverted pendulum model, θ̈xz in

(6.46) is calculated as

θ̈xz =
g

`xz
sin(θxz), (6.47)

while (6.45) provides a substitution for θ̇xz in (6.46). Thus,

η̇xz =
g

`xz
sin(θxz)− Lxz(ηxz + Lxzθxz). (6.48)

Using (6.48), the reduced-order observer for ηxz is defined as

˙̂ηxz :=
g

`xz
sin(θxz)− Lxz(η̂xz + Lxzθxz). (6.49)
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At each impact, η̂xz is updated to account for impact losses, which are calculated using

the simplified model and [136, Eqn. (3.35)]. Using (6.45) with (6.49), a subsequent

observer for θ̇xz is defined as

ˆ̇θxz := η̂xz + Lxzθxz. (6.50)

Using (6.50) and the simplified model, σxz and its derivatives are estimated as

σxz,L = M`xz
ˆ̇θxz (6.51)

σ̇xz,L = Mg`xzsin(θxz) = σ̇xz (6.52)

σ̈xz,L = Mg`xz
ˆ̇θxzcos(θxz), (6.53)

where σxz,L is the Luenberger-observer estimate of σxz, and an equivalent process

yields σyz,L to estimate σyz.

Remarks: (a) Because σ̇xz is only dependent on the center of mass position and

gravity, σ̇xz,L = σ̇xz in (6.52). (b) As with σ̄xz, σ̄xz,L for the robot implementation

is found using (6.31). (c) In simulation, there is little difference between the esti-

mated angular momentum, σL, and the actual angular momentum, σ, as shown in

Figure 6.19.

6.4.4.1 Comparison of Original and Processed Signals

The phase estimator, τ̂ in Figure 6.18, and Luenberger-observer angular momen-

tum, σL in Figure 6.19, are compared with their corresponding original signals. Signal

data are collected from simulation and the robot implementation. Simulation data

corresponds to two steps from the periodic orbit of NHVC0. Robot experiment data

are taken from two steps using the NHVC0 control solution. Angular momentum and

other velocity-based quantities generally decrease at step transition due to impact
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Figure 6.18: Comparison of τ and τ̂ using data from simulation (left) and the robot
implementation (right).

losses.

6.4.5 Indoor Experiments

The first set of experiments with MARLO are performed indoors. As an initial

robustness test of each control solution, terrain disturbances are created by either

stacking sections of plywood boards in an organized fashion, as shown in Figure 6.20,

or by throwing the boards randomly on the floor of the laboratory, as shown in

Figure 6.21. Organized stacks of boards are immobile, quantifiable, and easily repro-
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control.
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Figure 6.20: MARLO walks over stacks of boards. Sections of 61 cm-wide plywood
boards are stacked to construct variable-height terrain disturbances.

Figure 6.21: MARLO walks over randomly thrown boards.
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Table 6.6: Indoor walking results from the first day of robot experiments. Terrain-
disturbance profiles are created using the plywood boards shown in Figure 6.20. A
“Success” indicates a successful crossing of the terrain on the first attempt, and a
blank space indicates that the control solution was not tested with that terrain pro-
file.

Terrain
Disturbance Control Solution

Profile NHVC0 NHVCPoincaré
0 NHVC1 NHVC2

Flat Ground Success Lateral Fall Success Success
0-1.2-0 Success Success
0-1.2-2.6-1.2-0 Success Success
0-2.6-2.6-0 Success Success Success
0-3.8-3.8-0 Success Success
0-5.0-5.0-0 Success Foot Slip
0-1.2-2.6-3.8-6.7-7.9 Success

ducible for each experiment. Randomly thrown boards, on the other hand, present

the additional challenge of shifting under applied weight.

On the first attempt, MARLO traverses the length of the lab using the NHVC0

control solution, and, subsequently, walks across various terrain obstacle courses.

From the point where MARLO is started to the opposite wall is approximately 11 m.

Each of the control solutions listed in Table 6.6 is tested in turn on the same day.

With the exception of NHVCPoincaré
0 , each of them results in MARLO traversing the

lab. Videos of experiments listed in Table 6.6 and random board experiments are

available at [44].

6.4.6 Outdoor Experiments

For experiments outdoors, a mobile gantry is used to transport MARLO to loca-

tions within a 1 km radius of the laboratory and to catch MARLO in case of a fall

or when experiments are terminated. As shown in Figure 6.22, the gantry does not

provide external support of the robot during walking experiments. Power is supplied

by a set of batteries carried by the gantry, which enables MARLO to execute mul-

tiple experiments without returning to the lab for recharging. An Ethernet cable is
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Figure 6.22: MARLO walks gradually uphill with a MCOT of 0.69 and an average
walking speed of 0.91 m/s.

sometimes used to download data after experiments; it is partially visible in the same

figure.

MARLO under the control laws developed in this paper is able to traverse sloped

sidewalks, parking lots, and grass fields. Outdoors, experiments are no longer limited

by the 11 m indoor lab space. Table 6.7 examines results for a few of the outdoor

experiments. Data for walking over a grass area are collected from 50 consecutive

steps, whereas data for all other experiments are collected from 100 consecutive steps.

Grass-field experiments last until the gantry is obstructed by outdoor terrain. Other

experiments are manually shut down prior to MARLO encountering an obstacle, with

the exception of the downhill experiment, which ends due to an electrical-hardware

malfunction. Figure 6.23 shows the the step-to-step behavior of the robot induced by

walking over naturally varying outdoor terrain. Videos of the outdoor experiments

listed in Table 6.7 are available at [44].
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Table 6.7: Outdoor walking results for various terrains.

M COT
Forward C Liberal Conservative Pbase

Walking O Estimate Estimate Compo-
Speed T COTregen COTabs. nent of

Control Terrain Description (m/s) (6.42) (C.5) (C.4) COT
Concrete street, fairly flat
with a slight lateral slope

NHVC0 and some potholes. 0.92 0.65 0.64 1.13 0.23
Parking lot, fairly flat

NHVC3 with a slight lateral slope. 0.90 0.67 0.62 1.19 0.24
NHVC3 Grass field, fairly flat. 0.95 0.68 0.65 1.16 0.22

Grass field using
prosthetic feet, varying

NHVC3 slope. 0.78 0.67 0.73 1.15 0.27
Gradual downhill with
some lateral slope in

NHVC3 parking lot. 0.98 0.68 0.57 1.22 0.22
Gradual uphill with
consistent lateral slope

NHVC3 on sidewalk. 0.91 0.69 0.69 1.16 0.23

The cost of transport (COT) is an alternative metric to MCOT when evaluating

locomotion efficiency. The methods used in the literature to estimate COT vary

with hardware configuration of the robot being studied. In the strictest sense, COT

should be assessed on the basis of the energy required to recharge batteries after

traveling a known distance. When performing outdoor experiments with MARLO,

the battery pack on the mobile-gantry is not configured to measure the supplied

power. However, based on experiments in the lab with supply-power measurements,

conservative and liberal estimates for COT, COTabs. and COTregen respectively, can

be calculated using data that are also available during outdoor experiments. Both

of these quantities are derived in Appendix C and included in Table 6.7. The Pbase

components of COTabs. and COTregen account for power used for MARLO’s on-board

sensing and computation.
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6.4.7 Discussion of Experimental Results

The robot successfully traverses the lab, both with and without obstacles, using

the same control algorithms tested in simulation and applied directly out of the op-

timization procedure described in Section 6.2.4. With the exception of NHVCPoincaré
0 ,

each of the control solutions yield successful robot walking without any hand tuning.

It is important to note that the actual robot differs significantly from the idealized

control model. For example, the robot has estimated velocity signals for feedback con-

trol; varying levels of stiction and friction in each of the harmonic drives; series elastic

actuators (springs in series with the motors in the sagittal plane and a timing belt

in series with the motors in the frontal plane); a combination of manufactured and

fatigued differences in individual physical components; and, due to on-going changes

in hardware, an asymmetric mass distribution of 63 kg compared with the symmetric

55 kg simulation model. Despite these differences, the control solutions are sufficiently

robust to handle the disturbances listed in Table 6.6 and randomly thrown piles of

boards, as shown in Figure 6.21. On its first attempt, NHVC0 traverses up and down

5 cm terrain disturbances–disturbances greater than those used during optimization.

After concluding indoor experiments, the NHVC0 control solution is evaluated on

the robot outdoors. MARLO walked for more than 100 steps across a slightly sloped

paved area with potholes; the experiment was manually stopped to prevent the robot

from colliding with a building. The MCOT was 0.65 and the average walking speed

was 0.92 m/s, as reported in Table 6.7. These values differ from the simulation values

reported in Table 6.5 for at least two reasons: (1) because of differences between

the simulation model and the physical robot mentioned previously and (2) because

outdoor terrain injects additional step-to-step variability, as shown in Figure 6.23.

After observing how the NHVC0 control solution performed outdoors, it became

apparent that laterally-sloped terrain caused the most significant perturbation to

the robot. A new control solution, NHVC3, was optimized to address this type
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of disturbance and subsequently evaluated over a variety of terrains outdoors (see

Table 6.7 for results).

Implementing NHVC3 in multiple environments revealed many informative behav-

iors. First, the experiments with NHVC3 show how COTabs. and COTregen vary with

terrain. For example, COTregen is lower for downhill walking than for uphill walking.

This is expected because walking downhill reduces the height of the robot’s cen-

ter of mass–a decrease in potential energy that may be recovered. Next, as shown in

Table 6.7, the cost associated with Pbase decreases with decreasing walking speed, con-

sistent with the simulation work of [139]. Finally, the walking behavior of MARLO

varies more with changes in hardware than with changes in terrain. Switching to

prosthetic feet in the grass field causes a greater change in walking speed than when

traversing any other terrain with the normal hardware configuration.

Outdoor experiments with MARLO set a new precedent for walking efficiency in

realistic environments. Table 6.8 provides context for the outdoor walking exper-

iments within the broader legged robotics literature. To the best of the authors’

knowledge, MARLO under the NHVC0 and NHVC3 control solutions has achieved

the lowest MCOT of any unsupported bipedal robot tested over rough terrain. Based

on the conservative and liberal estimates of the COT in Table 6.7, it seems likely that

this is also the case for the actual COT. Furthermore, whereas previous benchmarks

have only been reported for treadmills and flat terrain, the NHVC3 control solution

provides a MCOT benchmark for walking over various realistic terrains.
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Table 6.8: Mechanical cost of transport and cost of transport for various legged robots.
Blank spaces indicate that information is not currently available.

Configuration for Cost of Transport Calculation
M L Includes
C C e Abduc- On- Rough
O O Speed Mass g Lateral tion board Test Terrain

Robot T T (m/s) (kg) s Support Motors Power Terrain Tested

Ranger [10] Linoleum
(COT record) 0.04 0.19 9.9 4 No N/A Yes Floor No

Human [20]
(estimated) 0.05 0.2 2 No Yes

Ranger [10] Indoor
(distance record) 0.28 0.59 9.9 4 No N/A Yes Track No

Denise [20, 137] 0.08 0.47 8 2 No N/A Yes No

Meta 0.09a 0.4 12.3 4 No N/A Yes Yes

MIT Cheetah
[63, 123] 0.5 6 33 4 Yes No No Treadmill Nob

MABEL
[101, 127] 0.14 0.8 58 2 Yes N/A No Flat Yes

ERNIE 0.31c 0.60 19.6 2 Yes N/A No Flat No

MARLO Concrete
(NHVC0) 0.65 0.92 63 2 No Yes Nod Street Yes

MARLO Grass
(NHVC3) 0.68 0.95 63 2 No Yes No Field Yes

MARLO Gradual
(NHVC3) 0.69 0.91 63 2 No Yes No Uphill Yes

ATRIAS [61]
(OSU) 1.0 2 No Yes Yes Yes

DURUS [4, 51]
(DRC) 1.33 0.23 80 2 No Yes Yes Treadmill No

Asimo [20]
(estimated) 1.6 3.2 0.44 52 2 No Yes Yes Yes

ATLAS [4]
(estimated) 20 157 2 No Yes Yes Yes

aCalculated using the absolute mechanical power (see [56, Eqn. (4)]).
bThe MIT Cheetah II has performed jumps over obstacles and outdoor running, but no COT

information is available (see [100]).
cCalculated using the absolute mechanical power (see [104, Eqn. (12)]).
dMARLO can be configured to use an on-board 3 kg battery for power (see [96]).
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CHAPTER VII

Concluding Remarks

One of the most significant technological advances our society can achieve dur-

ing my lifetime is the closure of the gap between the potential of robotics and its

actualization. To achieve this goal, however, we must overcome many technical chal-

lenges. In the specific context of robotic bipedal locomotion, one key challenge is

the design of feedback controllers that function well in the presence of uncertainty,

in both the robot and its environment. To that end, this dissertation addresses the

design of feedback controllers and periodic gaits that function well in the presence of

modest terrain variation, without reliance on perception and a priori knowledge of

the environment.

A model-based control design methodology was developed for a class of under-

actuated 3D bipedal robots and evaluated both in simulations and in experiments.

The first key aspect of the control design methodology was the computation of peri-

odic orbits for walking that were robust to a finite set of perturbations. The second

key aspect was the extension of the method of virtual constraints to include terms

that depend on the robot’s generalized velocity coordinates. Some distinguishing

characteristics of the methods introduced are that they are theoretically grounded,

systematic, and generalizable.

The viability of the design methodology was illustrated on MARLO, a 3D bipedal
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robot with thirteen DOF in single support and six actuators. During indoor exper-

iments, the robot walked on flat ground and over obstacles across a relatively short

(i.e., 11 m) section of a laboratory. The controllers were designed on the basis of

the full-order model of the robot and were implemented on the robot without hand

tuning. Using the same design method during outdoor experiments, the robot tra-

versed sloped sidewalks and parking lots and grassy areas, while maintaining average

walking speeds between 0.9-0.98 m/s without perception or a priori knowledge of the

terrain.

The mechanical cost of transport was evaluated for a variety of terrain conditions.

To the authors’ knowledge, there is no precedent for this in the robotics literature,

either in simulation or in actual experiments. This is important because, for practical

applications, robots must be able to traverse a variety of environments in a reliable and

efficient manner. It is hoped that other robotics researchers will consider environments

other than flat ground when evaluating walking efficiency of their robots.

7.1 Perspectives on Future Work

Direct extensions of this work include applying nonholonomic outputs to different

applications, speeding up the optimization process, and incorporating a controller

for starting and stopping. First, it would be interesting to implement nonholonomic

outputs for different applications, such as prosthetics or bipedal robots with ankle

actuation. Ankle torque would allow the controller to shape angular momentum

about the stance foot while simultaneously making other velocity-based posture ad-

justments. Second, the Optimization for Accommodation of Unknown Disturbances

method could be implemented using a faster optimization process, such as direct col-

location [51]. This would make the process of designing an entire library of control

solutions, each tailored for specific walking conditions, much more practical. Finally,

the walking controller developed in this dissertation would ideally operate in con-
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junction with a controller for walking in place [23] or standing. Ultimately, legged

locomotion is not a means in itself and incorporating a controller for starting and

stopping is important for practical applications.

More general extensions of this work include yaw control and perception to enable

navigation and obstacle avoidance. Results for an underactuated yaw control method

are described in Appendix A.6; however, a more practical solution is using additional

actuation designed for turning the robot [1]. Using perception and computer vision

to reason about the environment is an area of active research in its own right, and

incorporating this work in real time with a walking controller is by no means an easy

process. Still, even rudimentary information about the environment could dramati-

cally improve performance by selecting terrain paths conducive for walking, avoiding

large obstacles, and recognizing consistent uphill and downhill terrain prior to changes

in velocity.

Finally, in the broadest sense, a significant barrier for the practical application of

robotics is determining how to account for dynamic environments and varying tasks

required of robots over their lifetimes. Once robots reach a certain level of competency,

they will be expected to perform new and increasingly complicated tasks. Control

methods that adapt to and learn from new environments, conditions, and tasks must

be developed. This can be accomplished when a robot leverages the knowledge it has

gathered over its lifetime while recognizing which experiences are no longer relevant to

current circumstances [131]. Although this is a challenging research problem, lifelong

robot learning and similar methods bring us closer to realizing more advanced robot

autonomy at a faster rate than can be achieved when research addresses a single task

that a robot performs (e.g., an entire dissertation on bipedal walking).
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APPENDIX A

Three-Dimensional Walking Concepts

This appendix provides a brief introduction to some of the fundamental concepts

and challenges of three-dimensional (3D) walking. Challenges that are unique to 3D

walking over planar walking include: the additional freedom and failure modes of the

frontal and transverse planes; the asymmetric step-to-step roll behavior of the frontal

plane; and the coupling of dynamics in the frontal, saggital, and transverse planes.

The discussion assumes an underactuated model, however, when designing any 3D

walking controller, the subject matter of the following sections is likely to be helpful.

A.1 Gravity as an Actuator

The importance of gravity during walking cannot be overstated. Every fall occurs

because of gravity, but walking (as we know it) is not possible without it. Further-

more, gravity can act on behalf of a walking controller based on indirect stabilization

methods [79, 110] to regulate velocity in the frontal and sagittal planes and reject

disturbances with minimal energy costs.

The gravity-based change in sagittal-plane angular momentum, σyz, each step is

∆σyz =

T∫
0

σ̇yz(q)dt = Mg

T∫
0

pcmy(q)dt, (A.1)
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Figure A.1: Typical posture changes in response to velocity perturbations from pushes
in the sagittal (top) and frontal (bottom) planes. Changes in swing foot placement
adapt the gravity moment between the stance foot and the center of mass during the
following step.

where T is the step time, pcmy(q) is the y position of the center of mass w.r.t. the

stance foot, and we assume sufficient ground reaction forces such that the biped does

not yaw. For periodic walking on flat-ground, ∆σyz > 0 to account for kinetic energy

lost at impact. The equivalent change in frontal-plane angular momentum is

∆σxz =

T∫
0

σ̇xz(q)dt = Mg

T∫
0

pcmx(q)dt. (A.2)

Adjustments in step length and width change the trajectory of pcmy and pcmx and

thus change ∆σyz and ∆σxz.

For velocity perturbations, and attendant deviations of σ, corrective changes in

step length and width can enable quicker convergence to the periodic orbit. Exam-

ple corrective changes in swing foot placement are depicted in Figure A.1. For the

sagittal plane, this will adjust the amount of time the center of mass spends behind

the stance foot, versus in front of the stance foot (i.e., adjust
∫
pcmy in (A.1)). For

the frontal plane, this will adjust the magnitude of the lateral gravity moment pro-
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Figure A.2: Single-step gravity-moment progression for sagittal-plane angular mo-
mentum. Gravity causes σyz to decrease (maize) or increase (green) depending on if
the center of mass is behind or in front of the stance foot (i.e., pcmy < 0 or pcmy > 0).

portional to the width between the stance foot and the center of mass (i.e., adjust∫
pcmx in (A.2)). Even when direct actuation of σ is available (e.g., ankle actuation),

disturbance attenuation through step width adjustments is shown to be more efficient

than direct actuation in [79].

For bipedal walking, there is a fundamental difference in how gravity changes

angular momentum in the sagittal and frontal planes. In the sagittal plane, the sign

of pcmy changes within each step, as shown in Figure A.2, whereas in the frontal plane,

the sign of pcmx only changes between right and left stance, as shown in Figure A.3.

From a walking control standpoint, this means the opportunity to use step length

adjustments to increase and decrease σyz occurs every step, whereas the primary

opportunity to use step width adjustments to increase or decrease σxz occurs every

other step. This makes sustaining frontal-plane stability quite a bit more challenging

than sagittal-plane stability. One advantage of a walking gait with quicker steps is

that there is less of a time delay between right and left stance for adjusting σxz.
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Figure A.3: Alternating step-to-step gravity moment for frontal-plane angular mo-
mentum. The direction of σ̇xz alternates between left (blue) and right (maize) stance,
which causes lateral oscillations during walking (middle).

A.2 Directing the Center of Mass via Ground Reaction Forces

Ground reaction forces (GRF) are another fundamental component of walking.

First, the center of mass is ultimately guided by GRF. Any periodic orbit expresses a

balanced sequence of GRF, even if GRF are not explicitly considered when designing

the walking gait. Second, any practical robot implementation must maintain suffi-

cient GRF such that it does not slip from requiring an unrealistic friction coefficient.

Finally, with a clear understanding of GRF, it is possible to achieve improved control

responses to perturbations.

The GRF-based change each step in the y-direction velocity of the center of mass,

vy, is

∆vy =

T∫
0

v̇y(q, q̇, q̈)dt =
1

M

T∫
0

Fy(q, q̇, q̈)dt, (A.3)

where Fy(q, q̇, q̈) is the y-direction GRF, which determines the y-direction center of

mass acceleration, v̇y, and we assume sufficient GRF such that the biped does not
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Figure A.4: Actuated horizontal forces in the sagittal (left) and frontal (right) planes.
Actuation direction (maize or blue) determines the changes to v̇.

yaw. The equivalent change in x-direction center of mass velocity is

∆vx =

T∫
0

v̇x(q, q̇, q̈)dt =
1

M

T∫
0

Fx(q, q̇, q̈)dt. (A.4)

Horizontal forces, Fy and Fx, can result from any actuation that would cause

horizontal motion of a frictionless stance foot, as shown in Figure A.4, or from reaction

forces that support the center of mass, as shown in Figure A.5 and Figure A.6.

Actuated horizontal forces require additional energy and must be regulated to avoid

slipping given the friction coefficient and vertical GRF. However, actuated horizontal

forces have a focused effect on v̇y in (A.3) and v̇x in (A.4), whereas reaction forces

primarily effect vertical acceleration, v̇z.

Horizontal reaction forces are shaped by the position of the center of mass relative

to the stance foot. However, these forces change when the distance between the center

of mass and the stance foot are in transition. Let `yz represent this distance in the

sagittal plane. If the center of mass is in front of the stance foot and the biped is

accelerating, increasing or decreasing `yz causes a respective increase or decrease in

acceleration, as shown in Figure A.5. However, if the center of mass is behind the

stance foot and the biped is decelerating, increasing or decreasing `yz instead causes
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Figure A.5: Sagittal-plane reaction forces. When the center of mass is forward of the
stance leg, nominal reaction forces (center) cause forward acceleration of the biped,
v̇y. Decreasing (maize) or increasing (green) the nominal sagittal distance between
the center of mass and the stance foot, `yz, causes a relative decrease or increase in
GRF and v̇y.

Figure A.6: Frontal-plane rection forces. Nominal reaction forces (center) cause lat-
eral acceleration of the biped away from the stance leg, v̇x. Decreasing (maize) or
increasing (green) the nominal `xz causes a relative decrease or increase in v̇x.
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a respective increase or decrease in the deceleration. Changing `yz to adjust the

acceleration profile is one method of regulating velocity. Similar adjustments can be

made to `xz in the frontal-plane to adjust lateral acceleration, however, the direction

of the nominal lateral acceleration is determined by right or left stance.

Varying ` in response to a velocity perturbation can have at least three benefits.

To illustrate this, we use the example of increasing `xz in response to a frontal-plane

push toward the stance leg. First, the increase in GRF attendant with ῭
xz > 0

redirects the center of mass back toward its original trajectory. Second, the increased

leg length causes a greater potential energy requirement to roll the center of mass

over the stance leg, which decreases the likelihood of falling laterally past the stance

leg. Finally, extending the stance leg length will generally increase the step time, T ,

since this lifts the swing foot farther from the ground. Increasing T gives the lateral

gravity moment in (A.2) and nominal GRF in (A.4) a longer time to redirect the

perturbed momentum back to nominal values. One way to implement this control

response in `xz is to use nonholonomic virtual constraints to change stance knee angle

with front-plane angular momentum.

A.3 Coupled Sagittal-Plane and Frontal-Plane Dynamics

For 3D walking, the sagittal-plane and frontal-plane dynamics are coupled. One

reason for this coupling is because step times and dynamics are directly linked, as

demonstrated in (A.1)-(A.4). Perturbations to sagittal-plane dynamics change the

step time, and perturbations to the step time change the frontal-plane dynamics.

More specifically, a loss in forward walking speed results in more time spent on a

single stance leg, which subsequently causes a longer lateral gravity moment and

increased lateral velocity by the end of the step (i.e., T and ∆σxz increase in (A.2)).

Likewise, a gain in forward walking speed results in less time spent on a single stance

leg and a decreased lateral velocity. Such perturbations in velocity are common when
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Figure A.7: Comparison of roll offset and geometrically-equivalent perturbations from
terrain in the frontal and sagittal planes.

transitioning to a higher or lower level terrain in a single step. Additionally, when

T varies step-to-step, there is an imbalance because more time is spent on a single

stance leg, which causes greater lateral acceleration in a single direction. However,

it is also possible to control lateral acceleration by purposefully varying T between

right and left stance.

Frontal-plane behvaior also has a significant effect on the sagittal plane. An illus-

trative example of this occurs from a roll offset in the frontal plane, which is common

for underactuated walking. It is clear that rolling the biped in Figure A.7 about the

stance foot toward the terrain and adding “terrain roll” toward the biped are geo-

metrically equivalent. However, the “terrain pitch” required to cause an equivalent

impact to the planar version of the biped is less obvious. Thus, when a 3D biped

experiences roll offsets in the frontal plane, the planar version of the biped experi-

ences “uneven terrain,” even if the 3D biped is walking on flat ground. This behavior

illustrates why it is important to consider multiple types of disturbances to the biped

during the control design process, as done in Chapter VI.
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Figure A.8: Yaw-based transfer of momentum. Yaw motion, q̇zT , transfers forward-
walking angular momentum, σyz, into problematic lateral angular momentum, σxz.

A.4 Consequences of Yaw Motion in the Transverse Plane

One obvious consequence of unintended yaw is turning away from a desired head-

ing. A not so obvious consequence is that yaw motion in the transverse plane can

cause a devastating perturbation to the nominal sagittal-plane and frontal-plane dy-

namics. Assume that the sagittal and frontal planes rotate with the biped, as in

Section 6.2.1. If the biped yaws during a step, kinetic energy that was associated

with forward motion in the sagittal plane transfers into lateral motion in the frontal

plane of the biped. This is problematic because the magnitude of the angular mo-

mentum in the sagittal plane is normally much greater than in the frontal plane.

Thus, yaw motion can greatly increase the kinetic energy in the frontal plane, which

is a significant deviation from the nominal walking dynamics. This deviation is in-

tensified by the loss of momentum in the forward walking direction, which enables

more time for roll motion to occur before the step ends. In some cases, the additional

angular momentum transferred to the frontal plane is sufficient to tip the biped over

the stance leg, as shown in Figure A.8.
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Figure A.9: Impulse-based yaw moments at impact. Impulses occur in the sagittal
(left) and frontal (right) planes at impact. This causes yaw moments that are deter-
mined by the kinetic energy dissipated when the previous swing foot suddenly stops,
ṗ2 = 0, and the offset distance of the dissipated energy (e.g. p2x − pcmx).

A.5 Causes of Yaw Motion

Yaw motion occurs when a biped experiences a transverse-plane moment with

ground contact conditions that enable rotation. Bipeds can easily yaw if using point

feet, if the stance foot is high centered on an uneven surface, or if walking on unstable

terrain. During these conditions, a motion as simple as accelerating the swing leg

forward can trigger flywheel-like dynamics that rotate the biped. However, if a bipeds

legs are relatively light, its walking gait is designed with sufficient vertical GRF, and

its stance foot has multiple contact points with the ground, it is unlikely that yaw

will occur throughout the majority of the walking gait. However, even well-designed

bipeds can be susceptible to yaw at or around impact, when the weight of the biped

is transitioning between feet and sudden opposing forces can result in a significant

yaw moment.

Impulses at impact can cause yaw motion, as depicted in Figure A.9. Rapid

changes in velocity occur when the swing foot strikes the ground, which can cause

impulsive forces that overwhelm the frictional forces that normally keep the biped

from rotating. This effect can be intensified because the stance foot is in the process

of transferring weight to the previous swing foot, which means sufficient normal forces

to prevent yaw motion are not necessarily guaranteed.
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Figure A.10: Double-support GRF for 3D walking. Without swing leg retraction,
the x-offset y-direction GRF of each foot are opposed at impact, which causes a yaw
moment (left). Swing leg retraction can limit this effect (right).

Opposing GRF during double support can also cause yaw motion, as shown in Fig-

ure A.10 left. Opposing GRF can be difficult to avoid during double support because

the control inputs for each leg change as they transition between steps. One way to

minimize opposing y-direction GRF in double support is to use swing leg retraction,

which occurs naturally in bipedal and four-legged animals [124]. When using swing

leg retraction, the y-direction control inputs for the swing leg are consistent before

and after impact. The swing leg will also generate GRF that are consistent with the

previous stance leg during double support, as shown in Figure A.10 right. Additional

strategies for managing yaw are discussed in Section A.6.

A.6 Unactuated Yaw Control Strategies

Yaw control enables a biped to follow specific headings and reject asymmetric dis-

turbances that cause the biped to turn. Asymmetric disturbances include: consistent

lateral ground height differences between right and left stance; constant directional

forces on the center of mass; and, for a physical robot, asymmetric physical compo-

nents caused by manufacturing errors and fatigue and an asymmetric mass distribu-

tion. The ideal method of turning a biped is using actuators intended for yaw control
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Figure A.11: Foot designs for various levels of yaw restriction. Toroidal feet approx-
imate point feet and provide negligible yaw friction (top right), prosthetic feet add
sporadic yaw friction and toe roll (left), and the flexible two-contact-point feet restrict
yaw rotation but enable pitch and roll (bottom right).

(e.g., hip or foot rotation). However, even if explicit yaw actuation is unavailable,

it is still possible to manage or even control yaw through other means. Unactuated

yaw control strategies include: using a foot design that restricts yaw motion through

friction, as shown in Figure A.11; adding intentional yaw moments by adjusting GRF

during double support; and making adjustments to the swing foot position to change

impulses and yaw moments at impact.

One example underactuated yaw control method varies impact conditions and

step length to follow a desired heading. When there is a change in desired heading

or external disturbances turn the biped, errors between the average heading over

two steps and the desired heading are used as an output error for a discrete PID

controller. The yaw control input consists of step-to-step feedforward torques on both

hips, which vary the impact yaw moments and step length of each leg. Because yaw is

unconstrained, the yaw controller is able to turn the walking trajectory and converge

on the desired heading. This yaw control method has been applied in simulation to a

rigid point-foot model and a compliant ground model with toroidal feet. The turning

radius of the yaw controller and an example navigation path are shown in Figure A.12.
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Figure A.12: Yaw control walking trajectories. The biped walks in a controlled turn
radius (left) and returns on its outgoing path after following a set trajectory (right).

Figure A.13: Yaw control for attenuating disturbances. A constant lateral force is
applied at 45 degrees relative to the initial trajectory. This disturbance causes the
nominal controller to converge to the force direction (left), but adding yaw control
allows the biped to stay on the initial trajectory despite the disturbance (right).
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The added yaw controller enables a consistent heading despite asymmetric terrain

disturbances and directional forces applied to the biped, as shown in Figure A.13.

161



APPENDIX B

Reinforcement Learning-Based Feedforward

Control

After developing a bipedal walking control policy that rejects a range of terrain

disturbances, we seek to augment our control approach using reinforcement learning

to navigate terrains previously unnavigable. Control can consist of a combination of

feedback and feedforward control. Feedback control is based on generating actuation

to correct for errors between desired and actual walking trajectories. Conversely, one

method of feedforward control results from the inverse dynamics of the desired walking

trajectory for a robot. Although feedforward control based on inverse dynamics is

quite accurate in simulation, it is less reliable in implementation due to the difficulty of

exactly modeling an experimental robot, such as MARLO. Because of this limitation,

actual experiments are often performed using only feedback control. In this work, we

implement a reinforcement learning approach to find a successful feedforward control

policy that works independently of any physical robot model, and works with the

initial control policy to successfully traverse previously unreachable terrains. A video

demonstration of this work is available at [38].
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B.1 Machine Learning and Bipedal Locomotion

Reinforcement learning has been used by many researchers for the development

and improvement of robot control policies, as shown in [71] and citations therein.

Many of these studies specifically address bipedal walking [9, 133]. In this work

we use reinforcement learning to find a feedforward control policy that improves

upon an initial feedback control policy to navigate uphill terrain that was previously

unreachable.

Factors that separate this work from other reinforcement learning-based walking

research include our dynamic form of locomotion, the magnitude of terrain distur-

bances we consider, and the combination of feedback and feedforward control we use

during policy search. Many researchers maintain static stability while walking with

either the use of more than two legs (e.g., [72, 74, 75, 81]) or the use of Zero Mo-

ment Point calculations to maintain the center of mass within the polygon of foot

contact [28, 78]. Our robot uses dynamic walking on point feet. Dynamic walking

allows a more human-like, energy efficient walking gait that is less dependent on flat

terrain surfaces; however, having point feet also make static walking impractical, if

not impossible. Many reinforcement learning researchers that have used the dynamic

walking approach have done so for either flat terrain or terrain with lower levels of

terrain disturbances [92, 122]. In this work, our biped traverses through terrain with

up to 7 cm disturbances (i.e., more than 9 degrees of slope) between adjacent steps.

One of the challenges of applying machine learning to robotics is the curse of di-

mensionality, as discussed in [71]. Parameterization of control variables is an effective

way to make policy search computationally feasible [72, 78, 122]. Cublic splines, in

particular, can be useful for completing trajectory planning in real time [75, 116]. In

this work, we use Bézier parameters in a polynomial function that evolves with the

absolute stance leg angle of the robot and maps a discrete set of parameters to a

continuous trajectory of feedforward actuator profiles, as shown in Section B.2.
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We perform reinforcement learning through a policy search algorithm using Bézier

parameters. Many policy gradient approaches have been used successfully in robotics

[72, 75, 103, 116, 129]. Because the gradient can be difficult to solve analytically,

robotics researchers often use approximations of gradients for policy search using fi-

nite policy differences, as in [72, 129], or even just a signed derivative, as in [74].

Other interesting policy search methods include genetic algorithms that avoid local

optimality in [141, 143] and methods in [78] that use an evolving policy parame-

terization that starts simple and then increases in complexity. Although all of these

approaches are feasible options, for ease of implementation in the current work, policy

search is performed using fmincon in MATLAB [88].

The idea of initializing a new component of control at zero and then performing

a policy search on top of a functioning controller was originally motivated by [130].

Using reinforcement learning, Tedrake augments a control policy developed for a

simulated one legged hopper. Starting from zero augmented control, he performs

gradient descent using the Downhill Simplex method to reach his final control policy.

Although his final policy behaved in an unexpected way, it was more robust than the

initial control policy alone.

We extend this work to a higher dimensional bipedal walker and implement the

new control policy strictly as feedforward control that operates independently of the

physical robot model. This approach has many advantages. First, initializing at the

nominal feedback control policy means learning starts from a meaningful solution and

can only improve with policy changes to the feedforward control from the starting

point. Second, because the feedback controller commands to desired trajectories pro-

portionally with deviations, initially, the feedforward control will be unable to have

the effect of removing the robot so far from a desired trajectory that there is no longer

meaningful walking. However, as the feedforward control learns policies that operate

better than the initial control policy alone, it will grow in magnitude and develop new
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gaits that work better for the terrains it traverses. This is somewhat how the supervi-

sory control in [117] works, although in our case, the feedback controller initially acts

like a supervisor by design and the feedforward controller receives validation from the

overall reward function alone.

The reward function we use is distance the robot is able to traverse through

randomly built terrains. We use the average reward setting from step to step to

avoid greedy behavior for a good transient and encourage overall stable behavior.

The simplicity of this reward function is similar to [72], where overall trial velocity

was used as a single measure of reward. Because reinforcement learning does not

need an exact model [128], it can guide policy search through complicated control

spaces without requirements of how the controller improves; it only requires that

the policy does improve. Although our current improvements derive from a single

measure of walking distance, the mechanism we derive in Section B.2 can incorporate

more rewards from step to step in the future.

B.2 Reinforcement Learning-Based Feedforward Control

While the initial feedback control policy, S4cm from Chapter IV, is robust for a

bounded range of terrain disturbances, there are still terrains that this controller is

unable to traverse. We augment the feedback controller for planar walking with a

reinforcement learning-based feedforward control policy. The complete control policy

is

π(s) = πnominal(s) + πRLFF (s) = u, (B.1)

where πnominal(s) is the initial feedback control policy shown in Figure B.1, πRLFF (s)

is the reinforcement learning-based feedforward (RLFF) control policy, and u ∈ R4 is

the resulting actions or command torques. The complete state description is defined
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Figure B.1: Desired (green) and actual (red) trajectories of swing foot for nominal
feedback control. The initial feedback control policy, πnominal, is dependent on errors
from the desired trajectory to generate actions.

𝑞𝑠𝑤𝑖𝑛𝑔 𝑙𝑒𝑔 𝑎𝑛𝑔𝑙𝑒

𝑞𝑠𝑤𝑖𝑛𝑔 𝑘𝑛𝑒𝑒 𝑎𝑛𝑔𝑙𝑒
𝜃

𝑞𝑠𝑡𝑎𝑛𝑐𝑒 𝑙𝑒𝑔 𝑎𝑛𝑔𝑙𝑒

𝑝𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑜𝑡

Figure B.2: Robot MARLO and model MARLO. Left, University of Michigan bipedal
robots MARLO (front) and MABEL (back). Right, state description for planar model
of MARLO used in this work.
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as

s :=

[
θ, qstance leg angle, qswing leg angle, qstance knee angle, qswing knee angle, pstance foot

]′
,

(B.2)

where θ is the angle between the global horizontal axis and the stance leg, pstance foot

is the global horizontal position of the stance foot, and the remaining q coordinates

describe the internal controlled states of the walking robot shown in Figure B.2.

We parameterize the feedforward control policy with sixth order Bézier polyno-

mials as

πRLFF,i(sphase) :=
5∑

k=0

αi,k
5 !

k !(5− k) !
skphase(1− sphase)

5−k (B.3)

πRLFF (sphase) =


α1,0(1− sphase)

5 + α1,15sphase(1− sphase)
4 + · · ·+ α1,5s

5
phase

...

α4,0(1− sphase)
5 + α4,15sphase(1− sphase)

4 + · · ·+ α4,5s
5
phase

 ,

(B.4)

where sphase(s) =
θ−θmin

θmax−θmin
, hence πRLFF (sphase) =: π̃RLFF (s). sphase and α ∈ R4×6

completely define the feedforward torque values used to augment the initial controller

at each stage of walking. One advantage of using Bézier polynomials, in addition to

those discussed in Section B.1, are that the resulting feedforward torques are smooth

during each step. We apply the bound αi,j ∈ [−6, 6] ∀i, j to account for physical

limitations of MARLO’s motors.

The reward function is defined as

R(s) := pswing foot − pstance foot, (B.5)

and can best be understood as the forward progress made from the previous step to-

ward the next step. To avoid any local minimum around a policy of simply extending
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the swing foot out as far as possible while not actually walking, R(s) is set to zero

if the biped falls. A fall results from violating frictional constraints in the simulator

dependent on ground reaction forces and the coefficient of friction. A fall can also

result from losing momentum and falling backward. The value function we seek to

maximize, V (s), is defined as

V (s) :=
N∑

n=0

R(sn), (B.6)

where N is the total number of completed steps over a terrain and R(sn) is the reward

from each successful step n. Note that V will change with the control policy being

implemented.

We initialize the Bézier parameters as zero and apply a gradient descent method

to maximize the distance the control policy is able to walk across a given terrain. We

do this using the interior-point algorithm built into the MATLAB function, fmincon

[88]. This algorithm computes a numerical approximation of the Hessian, or matrix

of second-order derivatives, in order to find the minimum of the function provided.

Other algorithms such as fminsearch and fminunc were tried with less success.

B.3 Results

The initial results of the reinforcement learning-based feedforward control policy

are promising. The control policy that uses RLFF, π, is able to outperform the

initial feedback only controller, πnominal, on 4/5 of the training terrains. Using the

RLFF augmented policy, the previously unnavigable portions of the terrain are much

easier for the biped to walk through, as shown in Figure B.3. This is reflected by

the almost order of magnitude difference in policy values between the initial and final

control policies in Tables B.1 and B.2. However, the final control policy does have

some shortcomings. In the remainder of this section, we explain how we generate
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Figure B.3: Comparison of initial control and final control on Training Terrain 1.
The initial control solution falls at 18.0 m while the control policy using RLFF keeps
walking to 153.6 m on the same terrain.

the different terrains and then provide analysis on how the final RLFF control policy

changes the initial policy.

For the training and test terrain, we built terrain that is at first navigable by

the initial feedback controller, but has gradually increasing disturbance levels, thus

causing the robot to fail. By using this progressive task framework, the inability

to navigate the same terrain as the initial controller results in a smaller reward and

outperforming the initial controller results in a greater reward. With multiple random

terrain profiles, we have both training data for finding the policy and test data for

evaluation. Using multiple terrain profiles for the value function during policy search

also helps to avoid over-fitting.

The terrain built for policy search and testing are constructed in the following way.

Terrain is a series of i connected slopes with horizontal intervals of hi between vertical

displacements of vi. The random training and test terrains are built to be flat for the

first horizontal 5 m, have uniformly random ±4 cm range displacements the next 5 m

(i.e., vi ∈ [−4, 4] cm), random ±6 cm range displacements the next 5 m, and finally

have random 6 cm range displacements for the remainder of the 1000 step trial, but

all uphill (i.e., vi ∈ [0, 6] cm). The horizontal intervals between vertical displacements

are also uniformly random, but between 0.25 and 0.75 m. With hi ∈ [0.25, 0.75] m and
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Table B.1: Initial and final control policy values on training and test terrains.

Policy Value Comparison
Disturbance Height (cm) a πnominal π

Terrain Mean Std. Dev. Max. Failure Value Failure Value
Training Terrain 1 2.32 1.68 6.80 Fall 18.0 Slip 153.6
Training Terrain 2 2.06 1.97 7.41 Fall 19.4 Slip 73.7
Training Terrain 3 0.18 2.44 4.64 Fall 18.4 Slip 8.7
Training Terrain 4 2.29 1.69 7.25 Fall 19.4 Slip 172.0
Training Terrain 5 2.38 1.47 7.02 Fall 22.3 None 425.0 b

Test Terrain 1 2.11 1.88 8.12 Fall 17.5 Slip 111.1
Test Terrain 2 0.18 2.14 4.59 Fall 18.0 Slip 11.6
Test Terrain 3 2.27 1.66 6.95 Fall 14.7 Slip 192.1
Test Terrain 4 0.41 2.23 5.77 Fall 19.9 Slip 13.7
Test Terrain 5 2.34 1.58 7.52 Fall 22.7 Slip 299.4

aTerrain Disturbance Height statistics based on longest policy travel distance.
bValue could be higher, but trial reached 1000 step limit.

Table B.2: Initial and final control policy values from reinforcement learning. Values
are calculated using the average control policy value of all terrains for a particular
set. Alternative terrains are generated to analyze conditions other than those used
during policy search.

Reinforcement Learning Policy Values
Terrain πnominal π
Training 19.5 166.6
Test 18.6 125.6
Alternative Terrain Policy Values

Non-Uphill 49.1 17.6
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an average step distance of about 0.43 m, the resulting single-step terrain disturbance

heights experienced by the robot during simulation can be greater than vi, as shown

in Table B.1.

When evaluating the margins between the two policies in Table B.1, it is apparent

that when πnominal does outperform π, it is because π failed on the initial non-uphill

terrain with disturbances. To verify this behavior, we built another set of 100 terrains

that are random±6 cm range displacements without the uphill constraint. The results

in Table B.2 indicate that πnominal does indeed outperform π on this type of terrain.

After evaluating the changes in walking trajectory, work input, and velocity data

of the two policies, the cause of their different behavior becomes apparent. When

looking at the differences in trajectories, it is evident that π learned to lift the swing

leg higher and take shorter steps compared with the nominal trajectory, as shown in

Figure B.4.

When looking at the differences in work input, it is evident that π injects more

energy into the robot while walking than πnominal. As shown in Figure B.5, this also

results in a higher velocity walking gait. This explains why π was able to continue on

the random terrain that had an uphill bias whereas πnominal would lose momentum

after a period of time and fall backwards.

The downside of this higher velocity gait is that it more often violates the frictional

constraints of the simulator, causing a slip failure. If the robot makes it to the uphill

portion of the terrain, this is not as much of a concern. However, when walking on

the non-uphill terrain, it is evident that πnominal is a better controller, because it

maintains a lower velocity that is less likely to violate the frictional constraints of the

simulator when walking on the random downhill portions of the terrain.
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Figure B.4: Desired (green) and actual swing foot trajectories for the nominal feed-
back control (red) and the final control policy (blue). The final control policy learned
to take higher and shorter steps than the nominal desired trajectory. This type of
trajectory is better suited for walking uphill.
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Figure B.5: Initial control policy (red) and final control policy (blue) actuator work
input (top) and resulting center of mass velocity (bottom) on Training Terrain 1.
The result of the learned feedforward control policy is to inject more energy into
the system, resulting in a higher velocity walking gait. This gait is more robust to
navigating uphill terrain, but is more prone to slipping when not traveling uphill.

173



B.4 Discussion

Our implementation of reinforcement learning was successful at improving the task

it was assigned to learn. From a framework design standpoint, some improvements

can be made to ensure that the learned policy will perform better than the nominal

policy in more settings. One way to avoid a learned policy that violates frictional

constraints is to change the training terrain. The new terrain could have a longer

stretch of non-uphill terrain before the uphill portion of the task or even include

stretches of downhill terrain in some of the terrain profiles to emphasize more general

walking stability. Another approach would be to incorporate a step to step reward

proportional to the margin from the frictional constraints of the simulation to include

an incentive during policy search for a low slipping probability. A final proposed

solution would be to use the final control policy only when the robot is slowing down,

and then switch back to the nominal policy afterward. This hybrid control would be

easy to develop and test in simulation and then could be evaluated against the two

control policies compared in this current work.

We are also interested in seeing how the learned control policy performs during

actual experiments. With experiments, it would be possible to remove some simula-

tion inaccuracies with supervised learning for more meaningful simulations thereafter

[30]. It may also be possible to perform learning with an alternative framework dur-

ing experiments directly, as has been done by other researchers [72, 75, 95, 116, 129],

thereby negating the necessity for an accurate simulation model.

This initial work has been a success. The policy search was given the task of

improving walking on a given terrain type, and the controller using reinforcement

learning-based feedforward performed with an 854% and 675% increase in value over

the initial controller on the training and test terrains, respectively. We are excited

to validate these results in experiments, and, using this developed framework, extend

this work to incorporate a new policy search that works for more general sets of
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unknown terrain.
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APPENDIX C

Cost of Transport Derivation

The cost of transport (COT) is an alternative metric to the mechanical cost of

transport (MCOT) for evaluating locomotion efficiency. Here, we make the distinction

between COT calculated instantaneously as

COTP :=
P

Mgvy
, (C.1)

where P is power consumption at forward velocity vy, and COT calculated over a

period of time as

COT :=
E

Mgdy
, (C.2)

where E is the energy used to travel distance dy. (C.2) is more useful to the current

work than (C.1), because it accounts for local changes that occur for non-periodic

conditions, such as when traversing almost any outdoor environment.

Based on experiments in the lab with supply-power measurements, a conservative

estimate for COT can be calculated using data that is also available during outdoor
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experiments. The conservative estimate uses the absolute MCOT, calculated as

MCOTabs. :=
1

Mgdy

T0∫
0

6∑
i=1

|uiq̇m,i|dt, (C.3)

which includes negative actuator work, as in [56, Eqn. (4)]. As in [139, Eqn. (23)],

a fixed power cost, Pbase, is added to account for ancillary electronics. Based on the

highest measurement for power consumption of on-board sensing and computation

on MARLO, Pbase = 131.7 W. The resulting conservative estimate for COT is defined

as

COTabs. :=
1

Mgdy

T0∫
0

Pbase +
6∑

i=1

|uiq̇m,i|dt, (C.4)

which is consistently higher than the actual measured power consumption, because

it does not consider any negative-work regenerative capabilities of the amplifiers and

batteries.

For comparison, a liberal estimate based on the regenerative COT is defined as

COTregen :=
1

Mgdy

T0∫
0

Pbase +
6∑

i=1

uiq̇m,idt, (C.5)

which is consistently lower than the actual measured power consumption due to re-

generative losses in hardware. Based on power experiments with nominal periodic

motion, the average power consumption based on (C.4) is about 14% higher than

the actual measured values, while the average power consumption based on (C.5) is

about 30% lower.
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APPENDIX D

Virtual Spring

Following outdoor experiments that had severe impacts on concrete, a virtual

spring was implemented on MARLO to maintain more uniform ground reaction forces.

The virtual spring functions in place of the virtual constraint for stance knee angle,

and is derived as

qvs = 2`cos(
qKA,ST

2
) (D.1)

q̇vs = − q̇KA,ST `sin(
qKA,ST

2
) (D.2)

Fvs(q, q̇, β) = kvs(β)(qvs,Rest(τ, β)− qvs) + bvs(β)q̇vs (D.3)

uvs(q, q̇, β) = Fvs(q, q̇, β)`sin(
qKA,ST

2
), (D.4)

𝐹𝑣𝑠

𝑢𝑣𝑠 𝑢𝑣𝑠

𝐹𝑣𝑠

𝑞𝐾𝐴,𝑆𝑇

𝑞𝑣𝑠
𝑞𝑣𝑠,𝑅𝑒𝑠𝑡

Figure D.1: Kinematic model for virtual spring.
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Figure D.2: Virtual spring implementation for planar MARLO on uneven terrain.
When using the virtual spring, MARLO is able to traverse up (top left) and down
(right) 9 cm changes in terrain height, as well as random terrain (bottom left).

where qvs is the virtual spring length, ` is the average link length, qKA,ST is the

stance knee angle, Fvs is the effective force of the virtual spring, kvs is the virtual

spring constant, qvs,Rest is the “rest length” of the virtual spring, bvs is the virtual-

spring damping term, and uvs is the torque required to generate Fvs, as depicted in

Figure D.1. In practice, if qvs,Rest − qvs < 0, kvs is set to 0 in (D.3) to eliminate any

tensile virtual-spring forces. This virtual-spring implementation is similar to [98],

but with the following improvements: (1) all parameters dependent on β are deter-

mined using the robust control optimization introduced in Chapter IV and (2) the

rest length of the virtual spring, qvs,Rest, evolves with the gait phasing variable, τ .

The planar implementation of the virtual spring enables excellent shock absorption
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following large downhill changes in terrain height, as found in [98]. In addition, we

found the virtual spring to be effective for walking uphill and traversing the uneven,

unstable terrain shown in Figure D.2.

Although the virtual spring worked well for three-dimensional (3D) walking in

simulation, this success did not translate to the physical 3D robot. Hardware dif-

ferences between the two legs (e.g., differences in friction and motor performance)

caused uneven forces between right and left stance, which destabilized the frontal-

plane dynamics. Essentially, when using the virtual spring, 3D MARLO experiences

unbalanced ground reaction forces and eventually deviates to one side, whereas planar

MABEL are MARLO were not effected by this lateral instability.
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