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ABSTRACT

Unbounded Scalable Hardware Verification

by

Suho Lee

Model checking is a formal verification method that has been successfully applied

to real-world hardware and software designs. Model checking tools, however, en-

counter the so-called state-explosion problem, since the size of the state spaces of

such designs is exponential in the number of their state elements. In this thesis, we

address this problem by exploiting the power of two complementary approaches: (a)

counterexample-guided abstraction and refinement (CEGAR) of the design’s datap-

ath; and (b) the recently-introduced incremental induction algorithms for approxi-

mate reachability. These approaches are well-suited for the verification of control-

centric properties in hardware designs consisting of wide datapaths and complex

control logic. They also handle most complex design errors in typical hardware de-

signs. Datapath abstraction prunes irrelevant bit-level details of datapath elements,

thus greatly reducing the size of the state space that must be analyzed and allow-

ing the verification to be focused on the control logic, where most errors originate.

The induction-based approximate reachability algorithms offer the potential of signif-

icantly reducing the number of iterations needed to prove/disprove given properties

by avoiding the implicit or explicit enumeration of reachable states. Our implemen-
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tation of this verification framework, which we call the Averroes system, extends the

approximate reachability algorithms at the bit level to first-order logic with equality

and uninterpreted functions. To facilitate this extension, we formally define the so-

lution space and state space of the abstract transition system produced by datapath

abstraction. In addition, we develop an efficient way to represent sets of abstract solu-

tions involving present- and next-states and a systematic way to project such solutions

onto the space of just the present-state variables. To further increase the scalability

of the Averroes verification system, we introduce the notion of structural abstraction,

which extends datapath abstraction with two optimizations for better classification

of state variables as either datapath or control, and with efficient memory abstraction

techniques. We demonstrate the scalability of this approach by showing that Averroes

significantly outperforms bit-level verification on a number of industrial benchmarks.
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CHAPTER I

Introduction

The goal of our research is to explore a scalable formal verification methodol-

ogy for complex hardware systems. To achieve this goal, we exploit the power

of two complementary approaches: counterexample-guided abstraction and refine-

ment (CEGAR) [1] and the IC3 [2] and PDR [3] approximate reachability algorithms1.

This framework is suitable for the verification of control-centric properties in hardware

designs that contain wide datapath elements and complex control logic. This covers

a wide range of hardware designs from general-purpose microprocessors to special-

purpose embedded controllers and accelerators. In addition, most complicated prop-

erties in hardware designs are control-centric because design errors typically reside in

control logic. In fact, the correctness of datapath components can usually be verified

independently.

Datapath abstraction is especially effective for the verification of control-centric

properties in hardware designs including relatively small amounts of control state

variables and orders-of-magnitude larger numbers of datapath state variables. It

prunes irrelevant bit-level details in the large state space of datapath elements and

focuses on the much smaller state space of control logic. Our framework applies

the approximate reachability algorithms to this much smaller state space and can be

1IC3 stands for incremental construction of inductive clauses for indubitable correctness, and
PDR stands for property-directed reachability
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significantly more scalable than verification at the bit level.

Our implementation of this verification framework, which we call the Averroes

system2 for sequential verification [4], is premised on the conjecture that the com-

plexity of sequential verification can be reduced significantly by a) abstracting away

irrelevant datapath “state” that basically clutters reachability computation without

providing any useful guidance for its convergence, and b) performing approximate

reachability on this abstracted state space. The approach can be viewed as a “lay-

ering” of two CEGAR loops: an inner loop that performs approximate reachability

on the datapath-abstracted state space, and an outer datapath refinement loop that

tightens the abstraction based on the spurious counterexamples generated by the

inner loop. The empirical evaluation of this approach shows that it significantly out-

performs bit-level verification on a set of industrial RTL benchmarks and suggests

that the combination of datapath abstraction and approximate reachability makes it

possible to perform automatic unbounded scalable verification on real-world industrial

benchmarks.

1.1 Preliminaries

In this section, we provide some necessary definitions and notations. We follow

common definitions and notations that are widely used in the literature with one

exception: we define the notions of abstract state and abstract state space for the

transition system model obtained by abstracting away datapath components and

signals.

1.1.1 Partition

A set A = {a1, a2, · · · , an} is a collection of distinct elements a1, a2, · · · , an, and

a set A is a subset of a set B if and only if every element in A is also an element of

2Averroes stands for abstract verification of reachability of electronic systems.
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B. A partition of a set A is a grouping of the elements in A into non-empty disjoint

subsets so that every element in A is in one of the subsets. The subsets of a partition

are called the cells or blocks of the partition. A partition is represented by a set of its

cells like {{a1}, {a2, a3}, · · · , {an}}. The nth Bell number [5], Bn, is the total number

of partitions we can create from a set of n elements.

1.1.2 Directed Graph

A directed graph is a tuple < V,E > where V is a set of vertices or nodes and E is

a set of ordered pairs of vertices, called edges or arrows. For each edge (u, v) ∈ E, u

is a direct predecessor of v, and v is a direct successor of u. If there exists a path from

x to y for any x, y ∈ V , x is a predecessor of y, and y is a successor of x. A source is

a vertex that has no predecessors, and a sink is a vertex that has no successors. A

directed graph that has no directed cycles is called a directed acyclic graph (DAG).

1.1.3 SAT and SMT

A Boolean domain B is a set that consists of exactly two elements, true and false.

A Boolean function with m inputs is a function of the form f : Bm → B. A literal is

the input variable of a Boolean function or its negation. A cube is a conjunction of

literals, and a clause is a disjunction of literals. The conjunctive normal form (CNF)

formula is a conjunction of clauses, and it represents a Boolean function. A Boolean

function is satisfiable if and only if there exists a solution, a Boolean assignment to its

inputs, that makes the formula evaluate to true. The Boolean satisfiability problem,

often abbreviated as SAT, is the problem of determining whether or not a Boolean

formula is satisfiable. A SAT solver, such as GRASP [6], Chaff [7], or MiniSat [8],

solves the problem and returns a solution if the Boolean formula is satisfiable. If

the formula is unsatisfiable, a minimal unsatisfiable subset (MUS) can be derived.

An MUS is a subset of the clauses of a CNF formula such that (1) a conjunction of

3



 
 

	
formula ::= ١ | ٣ | literal 
 | ¬ formula 
 | propositional-connective (formula+) 
 
propositional-connective ::= ∧ | ∨ | → | ↔ 
 
literal ::= propositional-variable | ¬ propositional-variable 
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Abstract Syntax of Propositional Logic

the MUS is still unsatisfiable, and (2) it becomes satisfiable if any of the clauses are

eliminated.

A proposition is a declarative sentence that is either true or false. Propositional

logic is a mathematical model for reasoning about the truth or falsehood of proposi-

tions, and a propositional logic formula is defined by the abstract syntax in Fig. 1.1.

First-order logic (FOL) extends propositional logic with quantifiers and non-logical

symbols such as function and predicate symbols for more expressiveness (a more

detailed description can be found in [9]). A satisfiability modulo theories (SMT) for-

mula [10] is a logical formula in first-order logic where the interpretation of some

function and predicate symbols is constrained by background theories such as Linear

Arithmetic, bit vectors, and so on. An SMT formula is satisfiable if there exists a

solution, which is an interpretation for the variables, function symbols, and predi-

cate symbols that makes the formula evaluate to true. Analogous to SAT, an SMT

problem is the problem of determining whether or not an SMT formula is satisfiable,

and an SMT solver, such as Z3 [11] or Yices [12], solves the problem and returns a

solution if the formula is satisfiable.

1.1.4 Sequential Circuits

The combinational circuit is a circuit whose output depends on only the present

values of its inputs. The circuit is used to implement a Boolean function. A sequen-
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Figure 1.2: Block Diagram of a Sequential Circuit

tial circuit is a circuit whose output depends on the present values of its inputs as

well as the history of the inputs. The history of the inputs is captured by memory

elements storing binary information that defines the current state of the system. As

shown in Fig. 1.2, a sequential circuit consists of a combinational circuit and memory

elements. The inputs and outputs of the circuit are called primary inputs and pri-

mary outputs, and the inputs and outputs of the memory element are called next-state

inputs (or secondary outputs) and state outputs (or secondary inputs) respectively.

A combinational circuit computing the input of a memory element from the primary

and secondary inputs is called the next-state circuit of that memory element. The

next-state circuit basically computes next state as a function of current state and

inputs. We assume that a sequential circuit is described at the register transfer level

(RTL). The RTL description describes a circuit in terms of the flow of data from

inputs or registers to outputs or registers through combinational logic blocks, and it

can be written in hardware description languages (HDLs) such as Verilog-HDL [13]

and VHDL [14]. An RTL HDL represents combinational logic blocks compactly using

the following operators that can be classified into ten types:
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  Arithmetic Operators  +  -  * 
   Relational Operators  <  >  <=  >= 
   Equality Operators  =  != 

  Logical Operators   !  &&  || 

  Bit-wise Operators  ~  &  |  ^  ~^ 

   Reduction Operators  &  ~&  |  ~|  ^  ~^ 
  Shift Operators   <<  >>  <<<  >>> 
  Conditional Operators  ?: (≡ ite) 
   Concatenation Operator  {} 
  Extraction operator  [] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This classification is based on the Verilog 2005 language reference manual [13]3.

In the remainder of this section, we provide a mathematical model of a sequential

circuit. We consider a sequential circuit with n registers and m > n combinational

blocks. The circuit variables are classified as follows:

• Independent:

– Primary Inputs: y = 〈y1, · · · , yk〉

– Present-State Variables: x = 〈x1, · · · , xn〉

• Dependent:

– Combinational Block Outputs: w = 〈w1, · · · , wn, wn+1, · · · , wm〉

– Next-State Variables: x+ =
〈
x+1 , · · · , x+n

〉
The bit width of a variable v ∈ {w,x,y} is denoted |v|. v is a single-bit if |v| = 1;

otherwise v is a bit vector. Each of the m combinational blocks represents a (vector)

combinational function:

wi = fi (w,x,y) , i = 1, · · · ,m
3Verilog refers to Extraction operators as bit-selects or part-selects depending on the bit width

of their outputs. Non-synthesizable operators and the replication operator ({n{}}), which can be
replaced by a concatenation operator, are excluded.
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We assume the outputs of the first n combinational blocks are connected to the inputs

of the n registers yielding the next-state equations:

x+i = wi = fi (w,x,y) , i = 1, · · · , n

The support of a function fi (w,x,y), denoted as supp(fi), are those variables v ∈

{w,x,y} that fi depends on directly. They are also referred to as the function’s local

variables.

The combinational part of the sequential circuit can be viewed as a directed acyclic

graph G whose vertices correspond to the set of variables v ∈ {w,x,y} and whose

edges are defined by:

E =
m⋃
i=1

{(v, wi)| v ∈ supp (fi)}

A path exists between vertex u and vertex wi if there is a sequence of vertices

v1, v2, · · · , vl such that (u, v1) ∈ E, (vl, wi) ∈ E, and (vj, vj+1) ∈ E for j = 1, · · · , l−1.

This is captured by the predicate path(u,wi) which evaluates to true if there is a path

between u and wi and to false otherwise. The cone-of-influence of vertex wi, denoted

COI(wi), is the set of vertices defined by:

COI(wi) = {wi} ∪ {u ∈ {w,x,y} | path(u,wi)}

The arguments of function fi (as opposed to its support) are those independent

variables on which it (indirectly) depends:

arg (fi) = {u ∈ {x,y}| path (u,wi)}

They are also referred to as the function’s global variables. We will refer to fi(w,x,y)

7



as the local function of wi. The global function of wi is now defined by:

wi =
∧

j∈COI(wi)

(wj = fj (w,x,y))

By repeatedly replacing occurences of (dependent) variables in the above expression

with their local functions, wi can always be expressed as a nested expression in terms

of arg(fi).

Given a predicate Q(w,x,y) on current state and inputs, its evaluation on next

state and inputs is accomplished by a syntactic substitution:

Q
(
w+,x+,y+

)
= Q

(
w+\w,x+\x,y+\y

)
The transition relation for the circuit can now be expressed in (generalized) conjunc-

tive nomal form as follows:

T
(
w,x,y,x+

)
=

m∧
i=1

(wi = fi (w,x,y)) ∧
n∧
i=1

(
x+i = wi

)
1.1.5 Finite Transition Systems

Our concern is to determine if a given sequential circuit satisfies a specified safety

property. We model a sequential circuit as a finite transition system. A finite transi-

tion system is a tuple < x,y, T, I > where x is a finite set of present-state variables,

y is a finite set of primary inputs, T (w,x,y,x+) is a transition relation as defined

in Section 1.1.4, and I(x) is an initial condition that represents a finite set of initial

states. In this finite transition system, we verify a safety property, which asserts that

something bad will not happen (a formal definition can be found in [15]). The safety

property, P , can be viewed as the output of the mth (single-bit) combinational block

8



allowing it to be expressed as follows:

P (w,x,y) =
∧

j∈COI(wm)

(wj = fj (w,x,y))

A state in a transition system is identified as a Boolean assignment to state vari-

ables. We refer to a state at the bit level as a concrete state to distinguish it from

the notion of an abstract state to be defined in Section 1.1.6. We define a state literal

as a state variable or its negation, a state cube as a conjunction of state literals, a

state minterm as a state cube involving all state variables, and a state clause as the

negation of a state cube. Informally, we will refer to the states that satisfy (resp.

violate) P as good (resp. bad or error) states. We denote by R(x) the system’s

set of reachable states, i.e., those states that can be reached from I in one or more

transitions. A trace Π is a state sequence 〈s0 (x) , s1 (x) , · · · , sk−1 (x)〉 such that each

si is a set of states, s0(x) ∈ I, and si(x) ∧ T → si+1(x
+) holds for 0 ≤ i ≤ k − 2.

The length of a trace with k state sets is k − 1. An empty trace is one whose state

sequence (as a set) is empty; its length is undefined. The sequential depth [16] of a

finite transition system is the maximum length of a trace that visits each state only

once. Obviously, the maximum sequential depth of a finite transition system is 2n

where n is the number of state bits in the system. Our interest is to determine if all

reachable states of a given system satisfy P . If so, P is an invariant of the system.

Otherwise, there exists a trace whose last states violate P . Such a trace is called

a counterexample trace (CEXT). The verification task can now be stated as follows:

prove that all states in R are good or derive a counterexample trace that starts in I

and ends in ¬P .

One way of determining if P is an invariant is to examine every possible trace in

the system. However, this is not scalable because the number of possible traces is

exponential in the number of state bits. Induction is a more scalable way to achieve

9



the goal [17]. P is inductive if

• base case: the initial states are good: I → P .

• inductive step: P is closed under T :

P ∧ T → P+, where P+ is shorthand for P (w+,x+,y+)

In the above expressions, a formula M implies a formula N or M → N if every

solution of M makes N evaluate to true. M → N holds if and only if M ∧ ¬N is

unsatisfiable. When the induction step check, P ∧ T ∧ ¬P+, is satisfiable, a solution

returned by a solver is a counterexample to induction (CTI). We call the induction

step check a CTI check. In many cases where P is an invariant, P is often not

inductive. Then, we can verify the property by deriving a strengthening assertion,

A(x), such that A ∧ P is inductive [18]. If such a strengthening assertion exists, we

can conclude that P is an invariant. P ∧ A is called an inductive invariant.

1.1.6 Datapath Abstraction

Datapath components in hardware designs are regular, so they can be easily ver-

ified in isolation using customized algorithms. Therefore, we can abstract datapath

components by assuming they are correct. This type of abstraction, called datap-

ath abstraction, yields a much smaller system that can be more easily handled by

verification tools. One way to abstract the datapath elements of a design is to re-

place them with uninterpreted terms and predicates [19]. The logic of equality with

uninterpreted functions (EUF) proposed in [20] provides a very simple but powerful

way to represent the abstracted design. Fig. 1.3 is the abstract syntax of EUF logic.

During datapath abstraction, we replace a datapath operator with an uninterpreted

function (UF) or an uninterpreted predicate (UP) depending on the bit width of its

output (uninterpreted predicate if the output bit width is one, and uninterpreted

function otherwise).
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formula ::= ite ( formula, formula, formula ) 
 | propositional-connective (formula+) 
 | literal | true | false  
 
function ::= function-symbol (argument∗) 
 
predicate ::= predicate-symbol (argument∗) 
 
argument ::= formula | term 
 
term ::= ite ( formula, term, term ) 
 | function 
 | term-variable 
 
literal ::= propositional-variable  
 | ¬ propositional-variable 
 | predicate 
 | ¬ predicate 
 | (term = term) 
 | (term ≠ term) 
 
propositional-connective ::= ¬ | ∧ | ∨ | → | ↔ 
	

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Abstract Syntax of EUF Logic

The arity of a function or predicate is the number of its arguments. For example,

a zero-arity function is a function with no arguments. In the abstract syntax, a

term variable or an uninterpreted term is a zero-arity uninterpreted function, and a

propositional variable is a zero-arity uninterpreted predicate. We classify term- and

propositional variables into state variables, input variables, and constants according

to their bit-level counterparts. We distinguish the abstract-level state and input

variables from their bit-level counterparts by putting a circumflex accent over the

symbols like x̂. We denote the uninterpreted term of a constant as follows:

K{associated value} {bit width of the constant}

For example, an abstract version of a three-bit constant 1 is denoted by K 1 3. We

often denote the maximum value as MAX, so KMAX 3 represents an abstract version

of a three-bit constant 7. In this thesis, we omit the suffixes representing bit widths
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Type  Symbol  Prefix 

Arithmetic  ‐  Minus

+  Add 
‐  Sub 
*  Mult 
/  Div 
%  Mod 

Relational  >  Gt 
<  Lt 
>=  GtEq 
<=  LtEq 

Bit‐wise  &  BitWiseAnd 
|  BitWiseOr 
~  BitWiseNot 
^  BitWiseXor 
~^  BitWiseXNor 
~|  BitWiseNor 
~&  BitWiseNand 

Reduction  &  ReductionAnd 
|  RedcutionOr 
^  ReductionXor 
~^  ReductionXNor 
~&  ReductionNand 
~|  ReductionNor 

Shift  <<<  AShiftL 
>>>  AShiftR 
<<  ShiftL 
>>  ShiftR 

Concatenation  { }  Concat 
Extraction  [ ]  Ex 
 

 Figure 1.4: Prefix of Datapath Operator

for the sake of simplicity except where confusion could result.

A function symbol in the abstract syntax is the label of an uninterpreted func-

tion, and a predicate symbol is that of an uninterpreted predicate. The notation for

function and predicate symbols for all datapath operators except extraction operators

follow the pattern below:

{Prefix} {bit width of the first input} · · · {bit width of the last input} {bit width of the output}

Fig. 1.4 lists the prefix of each datapath operator. For example, the function symbol

12



of a concatenation operator concatenating three 8-bit signals is Concat 8 8 8 24. In

the case of extraction operators, we use a slightly different naming pattern:

Ex {index of the most significant bit} {index of the least significant bit} {bit width of the input}

For example, the function symbol of an extraction operator extracting the first four

bits from an 8-bit signal is Ex 3 0 8

Datapath abstraction transforms the bit-level representations of T , I, and P to

formulas in EUF which can be analyzed using an SMT solver. The solution space of

an EUF formula is the Cartesian product of bit assignments to every predicate and

literal and a partition of the set of terms in the formula, so the number of possible

solutions is the product of the nth Bell number Bn and 2m where n is the number of

terms and m is the number of predicates and literals.

At the abstract- or EUF-level, an abstract state is identified as a Boolean as-

signment to single-bit state variables and uninterpreted predicates involving state

variables and constants, and a partition among the terms involving state variables

and constants. An abstract state can map to zero, one, or multiple concrete states.

If it maps to zero concrete states, we refer to the abstract state as an infeasible ab-

stract state. We refer to the other abstract states as feasible abstract states. Similarly,

a transition between two abstract states is feasible if a bit-level counterpart exists.

Otherwise, it is infeasible.

We define a state term as an uninterpreted term that involves state variables and

possibly constants, a state predicate as an uninterpreted predicate of state terms, and

a state literal as 1) a single-bit state variable or its negation, 2) a state predicate or

its negation, or 3) an equality or dis-equality between state terms. The definitions

of a state cube and state clause are the same as the ones at the bit level. A state

minterm is a state cube involving all current-state variables, and we can derive this

by collecting the state literals of all current state variables in a solution.
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Figure 1.5: Circuit Representation of a Simple Sequential Circuit

1.1.7 Abstract State Space

Fig. 1.5 shows the circuit of an example sequential circuit that serves to visualize

the abstract state space. The circuit is basically an 8-bit counter. The 8-bit register x

is initialized to 1 and incremented by 1 if the primary input, en, is true. The counter

is initialized back to 1 when it reaches 5. The safety property to verify is that x is

not equivalent to 7. This property is always true because x cannot be larger than 5.

The concrete T, I, P equations for this example are as follows:

T (w,x, en,x+) = (w1 = en ?w2 : x)∧(w2 = w4 ? 8’d1 : w3)∧(w3 = x+ 8’d1)∧

(w4 = (x == 8’d5))∧(x+ = w1)

I (x) = (x = 8’d1)

P (w,x, en) = w5 ∧ (w5 = ¬ (x == 8’d7))

14
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Figure 1.6: Abstract State Space

After applying datapath abstraction, we obtain the following EUF formulas:

T̂ (ŵ, x̂, en, x̂+) = (ŵ1 = en ? ŵ2 : x̂)∧(ŵ2 = w4 ? 8’d1 : ŵ3)∧

(ŵ3 = ADD (x̂,K1))∧(w4 = (x̂ == K5))∧(x̂+ = ŵ1)

Î (x̂) = (x̂ = K1)

P̂ (ŵ, x̂, en) = w5 ∧ (w5 = ¬ (x̂ == K7))

In these formulas, no single-bit state variable or uninterpreted predicate exists. They

only contain five state terms: x̂, K1, K5, K7, and ADD(x̂, K1). Therefore, a single

abstract state in the system corresponds to a partition among these five terms, and

the number of abstract states is the fifth Bell number, 52.

At the bit level, a concrete state corresponds to a complete bit assignment to all

15
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Figure 1.7: Graphical Representation of Abstract State

8 bits in x. As x is an 8-bit register, there are 28 concrete states in the system. We

represent each concrete state by the decimal value of x. For example, 1 represents

the concrete state x̄7x̄6x̄5x̄4x̄3x̄2x̄1x0.

Fig. 1.6 shows the abstract state space of the system. Each abstract state in

the diagram is represented by 5 dots with colored figures. Fig. 1.7 explains how

we represent a partition4. Each dot represents a term in the partition, and the dots

covered by the same figure are the elements in the same block. Therefore, the abstract

state represented in Fig. 1.7 is: { {x̂, ADD(x̂, K1), K1}, {K5, K7}}.

Fig. 1.6 shows how the 52 abstract states in the system are classified into Î and P̂ .

The 7 states enclosed by red circles are feasible abstract states. The other 45 states

are infeasible. Among the feasible states, 6 states map to 1 concrete state each. The

number inside the red circle represents the concrete state. The other feasible abstract

state maps to the remaining 250 concrete states, so we put an asterisk in the red

circle.

As can be seen in the abstract state space, most of the abstract states are infea-

sible. They are automatically eliminated during datapath refinement, if necessary.

Concrete states are grouped into a much smaller number of feasible abstract states.

This grouping introduced by datapath abstraction allows for a simple representa-

tion of overapproximated reachable states, which improves the performance of the

reachability computation.

4We obtained this graphical representation of partitions from Wikimedia Commons at
http://commons.wikimedia.org/wiki/File:Set_partitions_5;_circles.svg.
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`define W 2
`define MAX `W'b11
module example(CLK);

input wire CLK;
reg [`W-1:0] x1, x2;
initial begin

x1 = `W'd0;
x2 = `W'd0;

end
always @(posedge CLK) begin

x1 <= (x1 < x2)? x1 :
((x2==x1)|| x1!=`MAX))? x1+`W'd1):x2;

x2 <= (x2==x1)? (x2+`W'd1) :
((x1<x2)||(x1!=`MAX))? x2 : x1;

end
wire P = !(x1 < x2);

endmodule
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Figure 1.8: Verilog Description and Corresponding STG of an Example Sequential
Circuit With a Specified Safety Property

1.2 Motivating Example

Fig. 1.8 gives the Verilog description and corresponding state transition graph

(STG) of an example sequential circuit, shown in Fig. 1.9. The state variables are

2-bit unsigned integers x1 = x11x10 and x2 = x21x20 and their values are used to label

the states (x1 followed by x2) in the STG. The good states are represented by circles

(reachable states) and squares (unreachable states); squares with rounded corners

correspond to bad states. Note that the circuit’s sequential depth is exponential in
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Figure 1.9: Circuit Representation of the Example Sequential Circuit in Fig. 1.8

18



the bit width W : 2W = 22 = 4. The circuit clearly satisfies the specified property

P (x1, x2) = ¬(x1 < x2) since, as can be seen from the STG, the reachable states

satisfy R(x1, x2) = (x1 = x2). From the Verilog description, we can derive T , I, and

P as the following formulas5:

T (w,x,x+) = (w1 = w9 ?x1 : w3)∧(w2 = w7 ?w4 : w5)∧(w3 = w10 ?w6 : x2)∧

(w4 = x2 + ‘W’d1)∧(w5 = w11 ?x2 : x1)∧(w6 = x1 + ‘W’d1)∧

(w7 = (x1 == x2))∧(w8 = ¬ (x1 == ‘W’b11...1))∧

(w9 = (x1 < x2))∧(w10 = w7 ∨ w8)∧(w11 = w8 ∨ w9)∧(
x+1 = w1

)
∧
(
x+2 = w2

)
I (x) = (x1 = ‘W’d0) ∧ (x2 = ‘W’d0)

P (w,x) = (w12) ∧ (w12 = ¬w9) ∧ (w9 = (x1 < x2))

Induction-based approaches such as IC3 and PDR follow the procedure illustrated

in Fig. 1.10. First, they check a base case query, I ∧ ¬P . If it is satisfiable, a 0-step

counterexample trace is returned. Otherwise, the induction step begins. Whenever a

counterexample to induction (CTI) is found from the induction step query, P ∧ T ∧

¬P+ where P+ is shorthand for P (x+), the CTI is checked to see if it is reachable

from initial states. If reachable, a counterexample trace is returned. If not, refinement

clauses are derived to refute the CTI, and P is updated accordingly. This procedure

iterates until no CTI is found, i.e., the updated P becomes an inductive invariant

proving that P holds. The detailed procedure will be explained in Section 2.4.

When IC3 is run on the example, it makes two CTI checks and derives three

refinement clauses: ¬x11, (¬x10∨x20), and (¬x11∨x21). From the refinement clauses,

it derives a strengthening assertion, (¬x10 ∨ x20)∧ (¬x11 ∨ x21), which, together with

P , basically says that x1 is equal to x2. As can be seen in Fig. 1.8, the concrete states

5Even though the formula is expressed in terms of the 2-bit state variables, x1 and x2, we
view it as a bit-level formula with the understanding that RTL operations such as x1 < x2 can be
synthesized to their bit-level implementations.
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Figure 1.10: Procedure for Induction-Based Verification

(0, 0), (1, 1), (2, 2), and (3, 3), represented by (¬x10 ∨ x20) ∧ (¬x11 ∨ x21) ∧ P , i.e., a

conjunction of P and a strengthening assertion, are closed under T .

The induction-based approaches at the bit level, however, do not scale as the bit

width of the state variables in the example grows. Table 1.1 illustrates this problem.

The table lists runtimes with a time-out of 1500 seconds, the number of CTI checks,

and the number of refinement clauses for IC3 and PDR as the bit width is increased

from 2 to 64. Every performance metric in the table increases exponentially as the bit

width increases, and both IC3 and PDR time out when the bit width reaches 16. This

is because of irrelevant bit-level details that bit-level approaches have to deal with.

As can be seen in Fig. 1.8 and Fig. 1.11, the number of states and state transitions

increases from 16 to 64 as the bit width increases from 2 to 3. This results in the

exponentially larger number of CTIs and much more complicated transition relation

leading to an exponentially longer runtime.

We wondered what would happen if we were to hide the irrelevant bit-level details.
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Table 1.1: IC3 v. PDR on the Example Circuit for Different Bit Widths

Bit
Width

Sequential
Depth

Runtime, sec CTI-Checks Refinement-Clauses

IC3 PDR IC3 PDR IC3 PDR

2 4.00E+00 0.02 0.02 2 6 3 12
4 1.60E+01 0.07 0.05 16 71 84 114
8 2.56E+02 59.59 3.82 293 4782 31527 6503
16 6.55E+04 T.O. T.O. 402 299511 179776 327581
32 4.29E+09 T.O. T.O. 200 313973 28018 327958
64 1.84E+19 T.O. T.O. 241 244916 11470 259737

2,01,0 3,0 4,0 5,0 6,0 7,0 0,7 0,1

2,1 3,1 4,1 5,1 6,1 7,1 1,7 0,2 1,2

3,2 4,2 5,2 6,2 7,2 2,7 0,3 1,3 2,3

4,3 5,3 6,3 7,3 3,7 0,4 1,4 2,4 3,4

5,4 6,4 7,4 4,7 0,5 1,5 2,5 3,5 4,5

6,5 7,5 5,7 0,6 1,6 2,6 3,6 4,6 5,6

7,6 6,7

0,0 1,1

6,67,7

2,2

5,5

3,3

4,4

ܲሺ1ݔ, 2ሻݔ ൓ܲሺ1ݔ, 2ሻݔ

ܴሺ1ݔ, 2ሻݔ

Figure 1.11: STG of the Example Circuit With the Bit Width of Three

This is the motivation of datapath abstraction. Datapath abstraction hides irrelevant

bit-level details by abstracting complicated datapath operators and results in much

simpler formulas to handle during the reachability computation. In addition, it allows

us to derive a simple but powerful strengthening assertion regardless of the bit width

of the state variables. Fig. 1.12 provides a high-level block diagram for the induction-

based verification with datapath abstraction. The function blocks in the red-dashed

box are the abstract-level counterparts of the bit-level ones for induction-based verifi-

cation described in Fig. 1.10. The new procedure applies datapath abstraction before

running the induction-based verifier. If the verifier returns an abstract counterexam-

ple trace (ACEXT), it checks to see if the abstract trace is feasible at the bit level. If
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Figure 1.12: Induction-Based Verification With Datapath Abstraction

feasible, a bit-level counterexample trace is returned. If not, datapath refinement is

triggered to refute the spurious trace, and the process is repeated.

Datapath abstraction creates the following uninterpreted variables, predicates,

and functions from the corresponding bit-level equivalents:

reg [`W−1:0]x1,x2;

`W′d0

`W′d1

`W′b11...1

x1 < x2
x1 + `W’d1

x2 + `W’d1

,

K0

K1

KMAX

LT( , )

ADD( ,K1)

ADD( ,K1)

DP-Abstract

DP-Concretize

Note that this abstraction is reversible; we just need to maintain the correspondence

between the abstract entities and their bit-level counterparts. The abstract transition
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Figure 1.13: STG of the Example Circuit at the Abstract Level

relation T̂ , initial state Î, and safety property P̂ of the example design are:

T̂ (ŵ, x̂, x̂+) = (ŵ1 = w9 ? x̂1 : ŵ3)∧(ŵ2 = w7 ? ŵ4 : ŵ5)∧(ŵ3 = w10 ? ŵ6 : x̂2)∧

(ŵ4 = ADD (x̂2,K1))∧(ŵ5 = w11 ? x̂2 : x̂1)∧(ŵ6 = ADD (x̂1,K1))∧

(w7 = (x̂1 == x̂2))∧(w8 = ¬ (x̂1 == KMAX))∧

(w9 = LT (x̂1, x̂2))∧(w10 = w7 ∨ w8)∧(w11 = w8 ∨ w9)∧(
x̂+1 = ŵ1

)
∧
(
x̂+2 = ŵ2

)
Î (x̂) = (x̂1 = K0) ∧ (x̂2 = K0)

P̂ (ŵ, x̂) = (w12) ∧ (w12 = ¬w9) ∧ (w9 = LT (x̂1, x̂2))

We denote the abstract version of variables by putting a circumflex accent over the

symbols like x̂1. In the abstracted formulas, K0, K1, KMAX, x̂1, x̂2, x̂
+
1 , and x̂+2 are

uninterpreted variables; ADD is an uninterpreted function; and LT is an uninter-

preted predicate.

To see the effect of datapath abstraction on the STG, we derived the STG at the
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Figure 1.14: Number of Abstract States and Transitions of the Example Circuit

abstract level, as shown in Fig. 1.13. We obtained this graph by running a feasibility

check on every abstract state and transition. For each abstract state minterm, m̂,

we checked to see whether it is satisfiable at the abstract level (i.e., consistent). If m̂

is unsatisfiable, it cannot be a feasible abstract state (i.e., it cannot be satisfiable at

the bit level), because the bit-level counterpart of an unsatisfiable abstract formula is

unsatisfiable in a sound abstraction. If m̂ is satisfiable, we checked the satisfiability of

m with a bit-level solver, where m is the bit-level counterpart of m̂. If m is satisfiable

(i.e., it is feasible), we collected the set of concrete states mapped to the abstract state

by running a bit-level solver with the query, m ∧ s, for each concrete state minterm

s. If this query is satisfiable, we conclude that s maps to m̂. Once all the feasible

abstract states are collected, we computed the feasible abstract transitions among

them by checking the satisfiability of m̂1 ∧ T̂ ∧ m̂+
2 for each pair of abstract state

minterms, m̂1 and m̂2. If satisfiable at the bit level, we concluded that the abstract

transition from m̂1 to m̂2 is feasible. We conducted this bit-level check only when

the formula was satisfiable at the abstract level (i.e, consistent), just as we did for

abstract states.

Now, consider how datapath abstraction affects the state transition graph. Datap-

ath abstraction produces two major changes in the bit-level STG. First, some concrete
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states are merged into a single abstract state. As can be seen in Fig. 1.13, each ab-

stract state, which is enclosed by a black dotted line, contains one or more concrete

states. This can lead to a non-deterministic behavior when the concrete states in a

single abstract state have different next states under the same input condition. For

example, the next abstract state of the abstract state A (that corresponds to the con-

crete states (2, 2), (3, 3), (4, 4), and (5, 5)) is not uniquely defined. A can go to either

A or B (which corresponds to (6, 6)) under the same input condition (this example

circuit has no input signal, so the input condition is true). This non-deterministic

behavior occurs, because A contains two concrete states, (2, 2) and (5, 5), whose

next states are (3, 3) and (6, 6), i.e., different. The transitions, (2, 2)  (3, 3) and

(5, 5)  (6, 6), are captured by A  A and A  B respectively at the abstract

level, which results in a non-deterministic behavior. Second, datapath abstraction

introduces infeasible abstract states and abstract state transitions. For example, the

red solid lines in the STG are infeasible abstract state transitions. Fig. 1.13 displays

only the feasible abstract states and the transitions among them, but the entire ab-

stract STG contains many more infeasible ones. Fig. 1.14 summarizes how many

abstract states and transitions exist in the entire abstract STG. There are 1419 in-

feasible abstract states and 4668 infeasible transitions, 4437 of which are transitions

among infeasible abstract states. Most of these infeasible states and transitions are

not considered during the reachability computation at the abstract level.

When an induction-based verifier is run on the abstract formulas, it returns the

0-step abstract counterexample trace:

(x̂1 = K0) ∧ (x̂2 = K0) ∧ (LT (x̂1, x̂2))

since it does not know the semantics of the abstract constant K0 and the abstract

predicate LT . However, upon concretization and bit-level feasibility checking, we

can conclude that this counterexample is spurious and derive the following datapath

lemma:
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Figure 1.15: Close-up View of Abstract STG near I

δ1 = ¬LT (x̂1, K0)

to rule it out. The detailed procedure for deriving datapath lemmas will be explained

in Section 3.3. The second run of the verifier returns a 1-step abstract counterexample

trace, which is also found to be infeasible and is refuted by the datapath lemma:

δ2 = ¬
[
(x̂1 = x̂2) ∧ LT (ADD(x̂1, K1), ADD(x̂2, K1))

]
.

This lemma is a constraint that relates the uninterpreted LT predicate and the un-

interpreted ADD function: in words, it states that incrementing two equal values

cannot yield results in which one is less than the other. The effect of datapath refine-

ments can be seen in Fig. 1.15. The STG displays all feasible and infeasible abstract

states in Î and ¬P̂ . The first datapath lemma removes the fifteen infeasible abstract

states in the intersection of Î and ¬P̂ , and the second datapath lemma removes thirty

three infeasible transitions from infeasible abstract states in Î to the ones in ¬P̂ . The

third, and final run, of the verifier returns an empty trace after eliminating one CTI

and generating a strengthening assertion: (x̂2 = x̂1). Thus, after eliminating 0- and

1-step counterexamples with two datapath lemmas, the induction-based verifier is

able to prove the property in just one CTI check regardless of the bit width of the
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state variables.

This example illustrates two advantages of applying datapath abstraction to the

induction-based approaches. First, datapath abstraction allows us to handle much

simpler formula during the reachability computation by hiding unnecessary details of

complex datapath operators. To verify control-centric properties, we do not need to

know all the characteristics of datapath operators in a design. A small number of their

characteristics is enough for the verification. This is why our approach works well.

In our example, we were able to finish the proof with only two simple constraints

on ADD and LT . Second, our approach takes advantage of the richer syntax of

EUF logic in comparison to propositional logic at the bit level. In particular, we can

represent a relationship among multi-bit registers in a formula that does not depend

on their bit widths. In our example, we represented a strengthening assertion at the

abstract level with a very simple EUF formula, (x̂2 = x̂1), independent of the bit

width, W . The bit-level counterpart of the formula would have required (2 × W )

literals and clauses.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter II reviews previous

work relevant to our research. Chapter III explains the Averroes system, which

provides a scalable unbounded hardware verification framework. Chapter IV presents

our abstraction methodology, which we call structural abstraction, and our datapath

refinement procedure follows in Chapter V. We then provide the experimental results

of Averroes in Chapter VI. Finally, Chapter VII discusses our conclusions and future

work.
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CHAPTER II

Previous Work

In this chapter, we review previous work that is related to our research. We

then explain the IC3/PDR approximate reachability algorithms and the automatic

datapath refinement algorithm in detail in the subsequent sections, because they are

closely linked with our research.

2.1 Model Checking

Model checking (MC) [21, 22] is a technique that determines whether a finite

transition system, M , satisfies a given specification, or a property, P . If M does not

satisfy P , the technique produces a counterexample trace demonstrating how M vio-

lates P . Solving this problem involves a reachability computation in the state space of

the transition system. This computation often leads to the so-called state-explosion

problem [23, 24], because the number of states in the state space is exponential in

the number of state elements. Since the first model checker based on explicit model

checking, extended model checker (EMC) [25, 26, 27], was released in the early 1980s,

most of the research in MC has focused on attacking this problem. One of the ear-

liest major advances was symbolic model checking [28, 29, 30]. It represents a set of

reachable states with binary decision diagrams (BDDs) and performs fixed-point al-

gorithms for verifying temporal properties. Another major advance, bounded model
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checking (BMC) [31, 32] came from the significant improvement of modern conflict-

driven clause-learning SAT solvers [6, 7, 33]. BMC proves the existence of a k- or

fewer-step counterexample trace by checking the satisfiability of a propositional for-

mula with a SAT solver. The propositional formula is generated by unrolling the

transition relation k times. BMC can efficiently disprove temporal properties, but

it cannot prove those properties unless the sequential depth (the smallest number of

transitions that can reach all the reachable states) is known, which is not common.

Interpolation-based model checking [34] solves this problem by detecting a fixed point.

It produces Craig interpolants from the UNSAT query of BMC to obtain an overap-

proximation of the set of reachable states. If the overapproximation reaches a fixed

point, the property is proved to hold. Otherwise, it continues BMC with an increased

bound. The procedure terminates if either a counterexample trace or a fixed point is

found.

2.2 Reachability by Incremental Induction

The recently-introduced IC3 algorithm [2, 17] and its re-implementation in PDR [3]

represent a major milestone for scalable model checking. Both can be described as

SAT-based induction methods and both share some features of the earlier attempts

at using induction [35, 36]. In particular, assuming that a given safety property P

holds but is not inductive (i.e., is not closed under the transition relation), induc-

tion methods can be viewed as ways of performing approximate reachability with the

goal of finding an assertion that strengthens (i.e., restricts) P so that it becomes

an inductive invariant [17]. Alternatively, such methods can be seen as an applica-

tion of counterexample-guided abstraction refinement (CEGAR) [1, 37, 38] whereby

overapproximations of the reachable states are refined iteratively until enough un-

reachable states have been eliminated to prove that P does in fact hold or to produce

a counterexample trace. Eliminating the need to compute exact reachability makes it
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possible for induction methods to converge in a number of iterations that can be much

smaller than the sequential depth of the transition relation. Additionally, induction

methods can be applied without having to unroll the transition relation, which al-

lows them to have better scalability than the earlier memory-intensive BDD or BMC

approaches.

Several extensions of the IC3/PDR approach have already been proposed. Vizel

et al. [39] layered an abstraction refinement framework based on localization reduc-

tion1 on top of IC3 to significantly scale performance (over just IC3) on a set of large

industrial benchmarks. Baumgartner et al. [40] utilized the invariants collected dur-

ing an incomplete IC3 run to improve the abstract quality of localization reduction.

Some approaches extended IC3/PDR to first-order logic. Hoder et al. [41] described

an extension to PDR that enables reasoning about nonlinear predicate transform-

ers and linear real arithmetic. Cimatti et al. [42, 43] extended IC3 to the theories

of linear rational arithmetic, linear integer arithmetic, and fixed-size bit vectors by

integrating implicit predicate abstraction. Welp et al. [44] generalized PDR to the

quantifier free bit-vector theory. For the generalization, they proposed integer cubes

and polytopes as a means to represent state cubes and applied interval simulation for

cube enlargement.

2.3 Various Approaches to Abstraction

Four types of abstraction have been proposed to improve the scalability of model

checking algorithms. Predicate abstraction [45, 46] identifies a set of predicates on

data variables that are necessary for proving the property of interest. It then repre-

sents the transition relation with the predicates replaced by fresh Boolean variables,

so the resulting abstract system does not include the original data variables, yielding a

much simpler formula to verify. If the initial abstraction leads to spurious counterex-

1Localization reduction will be explained in Section 2.3.

30



amples, they are refuted by adding more predicates to the abstract system. Predicate

abstraction was originally used in software verification [47, 48], but Jain et al. [49]

applied it to hardware verification.

The second type of abstraction is localization reduction [37, 50, 51, 52]. It creates

the abstract model by replacing some state variables or internal variables in the

transition relation with unrestricted primary inputs. This substitution eliminates

the logic attached to the variables, producing a smaller transition relation. If this

abstraction causes spurious counterexamples, we can recover some of the variables

causing the counterexamples.

The third type of abstraction is bit width reduction [53, 54, 55, 56]. This reduction

technique separates datapaths from control logic and then reduces the widths of dat-

apaths to lower bounds. The lower bounds, computed by a static analysis, guarantee

that the properties being checked are preserved. Thus, the properties can be verified

by running existing model checkers with the reduced system. This approach does

not lead to any spurious counterexample that causes a refinement process, and it can

be easily combined with any bit-level model checking algorithm. However, its use is

quite limited; we can apply this method only when reducible datapaths exist.

The last type of abstraction is datapath abstraction [20, 57, 58, 59]. It classifies cir-

cuit components into datapath and control logic and abstracts datapath components

by replacing them with uninterpreted functions or predicates in EUF2 logic[20]. In the

remainder of this section, we will discuss this type of abstraction. Burch and Dill [20]

pioneered this type of abstraction to efficiently verify the control logic of pipelined

microprocessors. Bryant et al. [57] introduced the CLU3 logic, which extended EUF

logic with counting logic expressions and lambda expressions. This extension allowed

efficient memory modeling, and they built the UCLID4 verification system [57, 60]

2EUF stands for equality with uninterpreted functions.
3CLU stands for counter arithmetic with lambda expressions and uninterpreted functions.
4UCLID stands for uninterpreted functions, counter arithmetic and lambda expressions for infi-

nite domains. UCLID is also the name of the modeling language used in the system.
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based on this CLU logic.

Counterexample-guided abstraction and refinement(CEGAR) [1] provides an au-

tomated procedure for datapath abstraction. Andraus et al. demonstrated a fully

automatic CEGAR-based verification system called Reveal [58, 61, 62]. From the

Verilog HDL description of a hardware design, Reveal automatically abstracts dat-

apaths and produces EUF or CLU logic formulas. These formulas are passed to an

SMT solver for word-level reasoning. If the word-level reasoning returns spurious

counterexamples, Reveal applies automatic refinement based on localization, general-

ization and minimal unsatisfiable subsets extraction. The refinement process derives

lemmas that tighten the initial rough abstraction and refute the spurious counterex-

amples.

Reveal applies abstraction on datapath operators such as addition and subtrac-

tion, but Brady et al. later demonstrated that we can abstract a bigger component

consisting of many datapath operators as an uninterpreted function or predicate. In

their abstraction technique, called CAL5 [59, 63], they applied abstraction on module

instantiations. CAL applies random simulation to collect candidate module instantia-

tions for abstraction. They are abstracted as uninterpreted functions or predicates. If

spurious counterexamples are found from the resulting abstract formula, CAL refines

the initial abstraction by adding a multiplexer that selects either one of the original

bit-level module instantiations or its abstracted version. The multiplexer is controlled

by a conjunction of conditions. That is, the conditions specify when a model checker

should use the precise model instead of an abstracted one to refute the spurious coun-

terexamples. CAL uses machine learning (a decision tree learning algorithm [64]) to

derive those conditions from simulation traces.

CAL’s coarse-grained abstraction leads to a simple abstract formula at the be-

ginning. However, the abstract formula can become bigger than the original bit-level

5CAL stands for conditional abstraction through learning
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formula, because CAL brings back the original bit-level module instantiations during

refinement. In addition, the condition of the multiplexer is a constraint on many local

variables involved in the module instantiation to be refined. Thus, the condition can

become big and complicated. Reveal’s fine-grained abstraction, on the other hand,

introduces a different kind of uninterpreted function or predicate for each datapath

operation, generating a more complicated abstract formula. However, the abstract

formula can be efficiently and effectively refined by a simple word-level lemma that

is highly localized.

In datapath abstraction, memories are often modeled in a special way to avoid

trivial spurious counterexamples caused by inconsistent memory read and write op-

erations. That is, we need to model a memory so that what we read from a certain

memory address is the same as the latest data we wrote to the address. To achieve

this goal, Burch and Dill modeled a memory with two interpreted functions, read

and write [20], and Bryant et al. modeled a memory with lambda expressions [57].

Unlike these approaches, Bjesse [65] proposed a memory abstraction technique that

replaces a memory with a set of representative slots. His approach follows a CE-

GAR framework. It first replaces a memory with one represented slot representing

one memory location. If this abstraction causes spurious counterexamples, it adds

more slots based on the simulation-based analysis of the counterexamples. Because

his approach performs only word-level netlist-to-netlist transformation for memory

abstraction, we can easily apply datapath abstraction techniques to the transformed

netlist. For example, we can replace datapath components in the represented slots

with uninterpreted functions.

2.4 IC3 and PDR Approximate Reachability Algorithms

As defined in Section 1.1.5, our verification task is to determine whether or not

a specified safety property P is always true on a finite transition system represented
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1.  trace Reach-CEGAR(T, I, P){ 
2.      F0 = I; 

3.      if (F0 ⋀ !P) 
4.          then return CEXT;// len(CEXT)=0 

5.      if (F0 ⋀ T ⋀ !P+) 
6.          then return CEXT;// len(CEXT)=1 
7.      k = 1; 
8.      Fk = P; 
9.      while (true){ 
10.        Fk+1 = P; 

11.        while(Fk ⋀ T ⋀ !P+){// CTI 
12.            if Reachable(CTI, I) 

13.                then return CEXT;// len(CEXT) ≥ k+1 

14.                else Refine(1, k+1); 
15.        } 

16.        if (Fi = Fi-1 for some 2 ≤ I ≤ k+1) 

17.            then return empty trace;// P holds 
18.        k++; 
19.    } 
20. } 
	
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: High-Level Pseudo Code for CEGAR-Based Reachability

by a transition relation T and an initial state I. The IC3/PDR approach solves this

verification problem by induction. Using Bradley’s terminology [17], these algorithms

consist of two main steps:

• Initiation: prove that the initial states are good: I → P .

• Consecution: derive a strengthening assertion A(x) such that A ∧ P ∧ T →

A+ ∧ P+.

For our purposes, we find it useful to view the IC3/PDR approach as a clever applica-

tion of CEGAR whereby a series of reachability overapproximations are systematically

refined based on CTIs until either (i) a feasible state sequence from the initial state

to an error state (a CEXT) is found or (ii) the refinements become sufficient to ren-

der the property being checked inductive, i.e., an overapproximation of the reachable
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states that satisfies the property is found. A sketch of this approach, loosely mimick-

ing IC3, is given in Fig. 2.1. The procedure, which we call Reach-CEGAR, takes

as input T , I, and P , and returns a CEXT. An empty trace indicates that P holds;

otherwise the returned CEXT demonstrates how P is violated.

Reach-CEGAR maintains an array of frontiers F0, F1, · · · , Fk, · · · such that

F0 = I and Fj, j > 0 is an overapproximation of what is reachable after j steps from

I. After checking for 0- and 1-step CEXTs (lines 2 to 6), Reach-CEGAR enters its

main loop (lines 9 to 19). At iteration k > 0, the goal is to check for the existence

of CTIs that correspond to a CEXT whose length is at least k + 1. Each satisfying

assignment to the current-state variables in the query on line 11 is a CTI that is

checked to determine if it is reachable from I (line 12). If unreachable, the CTI is

used to tighten the approximations of frontiers 1 to k+1 (line 14) by constraining them

with appropriate refinement clauses. This process continues until either a reachable

CTI is found (line 13) or all CTIs from the current frontier have been ruled out as

unreachable. At that point, Reach-CEGAR checks for convergence (line 16) which

is indicated when two frontier approximations become equal. If converged, Reach-

CEGAR returns an empty trace signaling that P holds (line 17). Otherwise, it

increments the iteration counter (line 18) and proceeds to check for the existence of

CTIs that correspond to longer CEXTs.

This sketch hides many details that are critical to the performance of the algo-

rithm. Specifically, in IC3/PDR Reachable and Refine are not separate procedures.

Instead, the reachability check implied by Reachable is decomposed into a collection

of 1-step backward reachability checks that are queued and processed in some order.

Each such check may spawn further checks and/or yield one or more refinements that

are propagated backward and forward to tighten the frontier approximations. The

checks and attendant refinements, which are performed through appropriate calls to

an incremental SAT solver, are closely choreographed to improve the quality of the
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derived refinement clauses and speed up convergence. Different implementations will

thus yield different refinements that can lead to drastically different performance.

There is, however, a critical detail in the implementation of Reach-CEGAR that

deserves mention. Let ρj denote the CNF formula corresponding to the refinement

clauses associated with frame j. With a slight abuse of notation, we will also view

ρj as a set of clauses. At the beginning of each major iteration k, Reach-CEGAR

insures that the sets of refinement clauses are distinct and subsumption-free, i.e.,

ω 9 υ where ω ∈ ρj and υ ∈ ρi for i 6 j. The frontier overapproximations can now

be expressed as:

Fj = P ∧
k+1
∧
i=j

ρi, j ∈ [1, k + 1]

which in turn implies that F1 → F2 → · · · → Fk+1, and reduces the convergence check

on line 16 to checking that the set of refinement clauses at some frame j has become

empty (ρj = 1). At that point, the refinement clauses at the last frontier serve as a

strengthening assertion that helps prove the property: ρk+1 ∧ P ∧ T → ρ+k+1 ∧ P+

2.5 Feasibility Check and Datapath Refinement for Combi-

national Circuits

In a datapath abstraction and refinement framework, we conduct a feasibility

check on an abstract counterexample and refine the abstraction if it is spurious. Sup-

pose that datapath abstraction was applied to a problem verifying a safety property of

a combinational circuit, and we found an abstract counterexample from the abstract

formula representing the property. Then, one easy way to check the feasibility of

the counterexample is to convert the entire abstract formula and the counterexample

into a bit-level counterpart. If the bit-level formula is unsatisfiable, i.e., the abstract

counterexample is spurious, we can refute the spurious counterexample by adding the

negation of the counterexample to the original abstract formula. This kind of formula
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that refines or tightens the initial abstraction is referred to as a datapath lemma. This

simple approach has two problems. First, the converted bit-level formula for a feasi-

bility check can be more complicated than the bit-level formula checking the property

directly. In this case, it is better not to apply datapath abstraction. Second, the de-

rived datapath lemma refutes only one spurious counterexample. In practice, this is

not enough: this often results in too many refinement iterations.

The Reveal verification system provides an automatic procedure for efficiently

deriving a set of powerful datapath lemmas. Reveal (i) conducts the feasibility check

on a solution cube6, which is much smaller than the original formula, and (ii) derives

multiple strong datapath lemmas from a single refinement process. A solution cube,

Ĉ, is defined by a given satisfiable abstract formula, F̂ , and its solution, Ŝ. Ĉ is an

abstract formula implied by Ŝ and that implies F̂ . To derive a solution cube, the

circuit representation of F̂ is utilized. Reveal traverses the cone-of-influence of the

property signal in the circuit and collects EUF literals, which affect the evaluation

of the property signal. A solution cube, Ĉ, is a conjunction of the collected literals.

Ĉ then is concretized and passed to a bit-level solver. If it is satisfiable, a bit-level

counterexample is returned. Otherwise, we can derive a datapath lemma, ¬Ĉ, to

refute the spurious counterexample. Reveal derives a set of more powerful datapath

lemmas by extracting minimal unsatisfiable subsets (MUSes) from the concretized

solution cube. The datapath lemmas derived from the minimal unsatisfiable subsets

refute a much larger number of spurious counterexamples than the original datapath

lemma, ¬Ĉ.

6They call this a violation

37



CHAPTER III

Approximate Reachability at the Abstract Level

This chapter describes our scalable verification system, which combines (a) counter-

example-guided datapath abstraction and refinement, and (b) induction-based ap-

proximate reachability computation. This chapter consists of two parts. Sections

3.1, 3.2, and 3.3 explain the two most complex modules in Averroes, and Section 3.4

describes the entire procedure in which Averroes integrates the two modules.

The first module is explained in Sections 3.1 and 3.2. These sections go into depth

because this is a new approach. During the abstract-level reachability computation,

Averroes incrementally refines the overapproximations of reachable states by elimi-

nating a set of abstract states that can reach bad states. The set of abstract states

is represented by an abstract state cube, which is a conjunction of equalities and

disequalities among state terms. The most important and challenging task of the

abstract-level reachability computation is to compute the abstract state cube from

the solution of an abstract formula in EUF logic. The state cube must represent as

many states as possible in order to reduce the number of the refinement iterations. In

Sections 3.1 and 3.2, we describe a systematic and efficient way to compute this kind

of abstract state cube. Section 3.1 defines this problem theoretically and explains our

solution to this problem. Section 3.2 describes the entire procedure of deriving an
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abstract state cube from a query made by Averroes.

The second module is explained in Section 3.3. Once the abstract-level reachability

computation returns an abstract counterexample trace, we need to check the bit-level

feasibility of the trace and perform datapath refinement if necessary. To conduct

these tasks, we extend the procedure explained in Section 2.5 to sequential circuits.

In Section 3.3, we explain the theoretical problems we encountered while developing

the extended procedure and our solutions to these problems.

3.1 Partition Spaces

Datapath abstraction creates an abstract state space in which uninterpreted terms

are used to encode abstract datapath states, and uninterpreted functions and predi-

cates are used to approximate the combinational blocks in the design. Reachability

computations in such an abstract state space require checking the satisfiability of a se-

quence of first-order logic queries. In this section we describe the projection procedure

needed to reason about such queries. We begin by considering partition spaces de-

fined over zero-arity terms. Next we consider partition spaces involving uninterpreted

functions, followed by spaces containing uninterpreted predicates. We conclude by

proving the correctness of our projection procedure.

3.1.1 Partial Order of Partition Spaces

Consider a set of n uninterpreted zero-arity terms {t1, t2, · · · , tn} and let

P(n) (t1, t2, . . . , tn) denote the space of partitions defined on these terms. For example,

P(1)(t1) = {t1}

P(2)(t1, t2) = {{t1|t2}, {t1, t2}}

P(3)(t1, t2, t3) = {{t1|t2|t3}, {t1, t3|t2}, {t1|t2, t3}, {t1, t2|t3}, {t1, t2, t3}},1

1This is not standard notation, but is sufficient for our purposes. For example {t1, t2|t3} should
be interpreted to mean {{t1, t2} , {t3}} in standard set notation.
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Figure 3.1: Partial Order of Partitions

etc. The size of P(n) (the number of partitions it has) is the nth Bell number Bn [5].

For ease of reference, the partitions of P(n) will be labeled π
(n)
1 , π

(n)
2 , · · · , π(n)

Bn
based

on a numbering scheme to be described shortly.

As shown in Fig. 3.1, the partitions of P(1),P(2), · · · ,P(n) form a partial order

whereby π
(n−1)
i ≤ π

(n)
j if and only if for all pairs of terms, if t1 and t2 are in the same

cell (different cells) of π
(n−1)
i then they are also in the same cell (different cells) of

π
(n)
j . For example, π

(3)
2 ≤ π

(4)
7 , because for all three terms in π

(3)
2 , π

(4)
7 also contains

t1 and t3 in the same cell, and t2 and the other two terms in different cells. Given

two partitions π
(n−1)
i and π

(n)
j such that π

(n−1)
i ≤ π

(n)
j , we will say that π

(n)
j is a
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refinement of π
(n−1)
i and that π

(n−1)
i is compatible with π

(n)
j . Noting further that this

partial order is a directed tree, each partition, execpt for the root partition, has a

unique predecessor. Thus, π
(n−1)
i ≤ π

(n)
j is equivalent to pred(π

(n)
j ) = π

(n−1)
i where

pred denotes the predessor function.

Given a set of partitions S(n) ⊆ P(n), their projection on P(n−1) is the set of

predecessor partitions according to the partial order. Specifically,

S(n) (t1, t2, · · · , tn) ↓ P(n−1) =
⋃

π(n)∈S(n)

pred
(
π(n)

)
(3.1)

where we use ↓ as the projection operator. This operation can be applied recursively

to obtain the projection of S(n) on P(n−m) for any m ≥ 1:

S(n) (t1, t2, · · · , tn) ↓ P(n−m) =
(((

S(n) ↓ P(n−1)) ↓ P(n−2)) · · ·) ↓ P(n−m) (3.2)

The projection operation can also be written in the following equivalent form

S(n) (t1, t2, · · · , tn) ↓ P(n−m) = S(n) (t1, t2, · · · , tn) ↓ {t1, t2, · · · , tn−m} (3.3)

which should be interpreted as either a restriction of the set S(n) to the first (n−m)

terms or as a generalization through elimination of the last m terms. To illustrate

projection, consider the following four partition sets on 4 terms and their projections

on {t1, t2, t3} (see Fig. 3.1):

S
(4)
1 =

{
π
(4)
13

}
: S

(4)
1 ↓ {t1, t2, t3} =

{
π
(3)
4

}
S
(4)
2 =

{
π
(4)
13 , π

(4)
15

}
: S

(4)
2 ↓ {t1, t2, t3} =

{
π
(3)
4 , π

(3)
5

}
S
(4)
3 =

{
π
(4)
11 , π

(4)
12 π

(4)
13 , π

(4)
14 , π

(4)
15

}
: S

(4)
3 ↓ {t1, t2, t3} =

{
π
(3)
4 , π

(3)
5

}
S
(4)
4 =

{
π
(4)
4 , π

(4)
10 π

(4)
13

}
: S

(4)
4 ↓ {t1, t2, t3} =

{
π
(3)
1 , π

(3)
3 , π

(3)
4

}
(3.4)

The partition numbering scheme used in Fig. 3.1 is based on a given, arbitrary,
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ordering of the terms. Let t1 < t2 < · · · < tn−1 < tn and assume that the

partitions of P(1),P(2), · · · ,P(n−1) have already been numbered. In particular, let

π
(n−1)
1 , π

(n−1)
2 , · · · , π(n−1)

Bn−1
be the numbered partitions of P(n−1). The partitions of P(n)

are now constructed and numbered sequentially by considering all possible ways of

adding tn to each partition of P(n−1) starting from π
(n−1)
1 and ending in π

(n−1)
Bn−1

. For

example, the five partitions of P(3) are obtained from the two partitions of P(2) as

follows:

1. From π
(2)
1 which has 2 cells we generate the following three cells of P(3):

(a) π
(3)
1 by adding t3 as a new third cell

(b) π
(3)
2 by adding t3 to the first cell

(c) π
(3)
3 by adding t3 to the second cell

2. From π
(2)
2 which has 1 cell we generate the following two cells of P(3):

(a) π
(3)
4 by adding t3 as a new second cell

(b) π
(3)
5 by adding t3 to the first (and only) cell

It is important to note that this numbering scheme is meant only as a way to easily

refer to any partition or set of partitions in P(n) and does not imply any restriction

on the definition of the projection operator. In particular, given a set of partitions

on {t1, t2, · · · , tn} its projection on any subset of T ⊆ {t1, t2, · · · , tn} can be obtained

using (3.2) or (3.3) by simply re-ordering the terms so that the terms in T occur

before the other terms.

3.1.2 Implicit Encoding of Partition Sets

Reasoning about partition sets by explicit enumeration is clearly unscalable. In

this section we show how partition sets can be encoded implicitly using logical formu-

las that involve equality and dis-equality between terms. To facilitate the description

42



of this encoding, we introduce a set of n(n−1)
2

binary encoding variables

eij , (ti = tj) , i, j ∈ {1, 2, · · · , n} , and i < j

and a corresponding set of literals

E = {ė12, ė13, · · · , ėn−1,n}

where ėij is a literal that stands for either eij or ¬eij. These encoding varaibles must

satisfy the transitivity of equality, namely,

eij ∧ ejk → eik, i < j < k (3.5)

which states that if ti and tk are both equal to tj, then they must also be equal to

each other. This constraint can also be written in the following clausal form

(¬eij ∨ ¬ejk ∨ eik) , i < j < k (3.6)

allowing further implications to be inferred. For example, if ti is equal to tj but not

to tk, then tj and tk cannot be equal. In general, wherever any two literals in (3.6)

are false, the third literal must be true to satisfy the transitivity of equality.

Partition Minterms: Any single partition can be completely specified by a con-

junction of n(n−1)
2

distinct literals from E that does not include opposing literals and

that does not violate the transitivity of equality. We refer to such conjunctions as

partition minterms and use the notation µ
(n)
i to refer to the minterm of partition

π
(n)
i

2. The minterms for P(2) and P(3) are shown in Fig. 3.2. Each such minterm is

2The minterm nomenclature is meant to conjure up the notion of minterms in the n-dimensional
Boolean space. We must note, however, that the literals used to encode partition minterms cannot

take all 2
n(n−1)

2 possible valuations of {0, 1} because of the transitivity of equality.
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Figure 3.2: Partition Minterms

unique (modulo commutativity and associativity) but is not minimal. For example,

µ
(3)
2 can be simplified to either (e13 ∧ ¬e12) or (e13 ∧ ¬e23) because the removed con-

junct is implied, by the transitivity of equality, from the two that are kept. On the

other hand, these minimal forms are obviously non-unique.

Partition Cubes: A partition cube is a conjunction of up to n(n−1)
2

distinct

literals from E that does not include opposing literals and that does not violate the

transitivity of equality. A partition cube is an implicit representation of a set of

partitions. A partition minterm is a partition cube that includes all n(n−1)
2

literals

and covers a single partition. Larger partition cubes cover more than one partition.

For example, the partition cube (e12) covers {π(2)
2 } in P(2), {π(3)

4 , π
(3)
5 } in P(3), and
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{π(4)
11 , π

(4)
12 , π

(4)
13 , π

(4)
14 , π

(4)
15 } in P(4)3.

Subsets of E that include neither opposing literals nor literal combinations that

violate the transitivity of equality will be referred to as consistent. A partition cube

can now be viewed as a consistent subset of E and interpreted as the logical conjunc-

tion of the literals in that subset. Notationally, we will use C ⊆ E to capture the

literals of a partition cube and ϕ(C) =
∧

ėij∈C
ėij to express it as a logical constraint

on these literals. To simplify notation, we will also assume that we are operating in

the Bn-dimensional partition space P(n) and drop the (n) superscript notation.

Partition sets S
(4)
1 , S

(4)
2 , S

(4)
3 , and S

(4)
4 in (3.4) can now be implicitly encoded by

the following partition cubes:

C1 = {e12, e34,¬e13} ϕ (C1) = e12 ∧ e34 ∧ ¬e13

C2 = {e12, e34} ϕ (C2) = e12 ∧ e34

C3 = {e12} ϕ (C3) = e12

C4 = {¬e14, e34} ϕ (C4) = ¬e14 ∧ e34

(3.7)

as can be readily verified by reference to Fig. 3.1.

A partition cube is complete if it contains all the literals implied by the transitivity

of equality. In (3.7), only C2 and C3 are complete, whereas C1 and C4 are incomplete.

The missing literals in an incomplete partition cube can be derived in a manner

similar to unit propagation in satisfiability solvers [6]. For example, C1 and C4 can

be completed by the following implication sequences:

3As an aside, for i 6= j, the number of partitions covered by the single-literal cube eij in P(n) is
Bn−1, and the number covered by ¬eij is Bn −Bn−1.
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12
e

13
e

34
e

14
e

24
e

23
e

( )1
Cj

14
e

34
e

13
e

( )4
Cj

We will use C∗ to indicate the complete cube induced by partition cube C.

Implicit Projection: The projection operator on explicit representations of par-

tition sets corresponds to cofactoring the implicit representations of these sets. Recall

that the positive cofactor of an n-variable Boolean function f(x1, · · · , xi, · · · , xn) with

respect to xi, usually denoted as fxi or f |xi , is the (n− 1)-variable Boolean function

obtained by setting xi to 1, i.e., f(x1, · · · , 1, · · · , xn) [66]. Similarly, the negative

cofactor of f with respect to xi, denoted as f¬xi or f |¬xi is f(x1, · · · , 0, · · · , xn). This

definition extends naturally to any set of literals. Thus, f |{xi,¬xj} is obtained by set-

ting xi to 1 and xj to 0. When f is a conjunction of literals (a cube), cofactoring

with respect to a subset of those literals is simply done by dropping them from the

cube. For example, (x1 ∧ ¬x3 ∧ x4 ∧ ¬x6){¬x3,x4} = x1 ∧ ¬x6.

We can now define the implicit projection of a partition cube C on a set of terms

S ⊂ {t1, t2, · · · , tn} by the formula:

ϕ (C) ↓ S = ϕ (C) |{ ėij∈C|ti /∈S ∨ tj /∈S} (3.8)

which simply says that the projection is accomplished by dropping all literals that do

not exclusively refer to the terms in the set S. Applying this to the partition cubes
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in (3.7) yields the following projections:

ϕ (C1) ↓ {t1, t2, t3} = (e12 ∧ e34 ∧ ¬e13) ↓ {t1, t2, t3} = (e12 ∧ e34 ∧ ¬e13) |e34 = (e12 ∧ ¬e13)

ϕ (C2) ↓ {t1, t2, t3} = (e12 ∧ e34) ↓ {t1, t2, t3} = (e12 ∧ e34) |e34 = e12

ϕ (C3) ↓ {t1, t2, t3} = e12 ↓ {t1, t2, t3} = e12|e34 = e12

ϕ (C4) ↓ {t1, t2, t3} = (¬e14 ∧ e34) ↓ {t1, t2, t3} = (¬e14 ∧ e34) |{¬e14,e34} = 1

(3.9)

Comparing (3.9) and (3.4) we can verify that the implicit projections match their

explicit counterparts except for the projection of ϕ(C4). To match {π(3)
1 , π

(3)
3 , π

(3)
4 }

which is the explicit projection of S
(4)
4 , the correct implicit projection should be ¬e13

and not 1! However, the literal ¬e13 is not present in C4 even though it is implied

by the transitivity of equality. This immediately suggests that cofactoring should be

applied after all relevant literals implied by the transitivity of equality are included

in the representation of the partition cube. In particular, the correct projection is

guaranteed to be obtained from a complete cube. Because C∗4 = C4 ∪ {¬e13}, the

correct projection of C4 is now obtained as follows:

ϕ (C∗4) ↓ {t1, t2, t3} = (¬e14 ∧ e34 ∧ ¬e13) ↓ {t1, t2, t3}

= (¬e14 ∧ e34 ∧ ¬e13) |{¬e14,e34}

=¬e13

(3.10)

We should note, though, that cofactoring a complete cube is a sufficient but not

necessary condition to produce the correct projection. For example, the correct pro-

jection was obtained from the incomplete cube C1. This suggests that we extend the

definition of completeness to completeness relative to a given set of, instead of all,

terms. A partition cube is complete relative to the set of terms S if it includes all

literals involving terms in S. Given a partition cube C and a set of terms S, the

complete cube induced by C relative to S will be denoted as C∗S. Computing C∗S
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can be viewed as an optimization of the unit propagation procedure used to produce

C∗ by limiting the implications to those that only yield literals involving terms in S.

To summarize, given a partition cube C and a projection set S ⊂ {t1, t2, · · · , tn},

the implicit projection procedure is a 2-step process:

1. Compute C∗S by a restricted form of unit propagation from C to produce literals

“in” S.

2. Cofactor ϕ(C∗S) with respect to those literals “not in” S.

3.1.3 Partition Spaces Involving Uninterpreted Functions

So far we have considered partition spaces involving zero-arity terms. We now

consider partition spaces on n terms such that some of these terms have arity greater

than 0, namely uninterpreted functions (UFs) of one or more arguments. To keep

the notation simple, we will still refer to the terms as ti for i ∈ {1, 2, · · · , n} and

indicate that a particular term is a UF by associtaing it with the definition of that

UF. For example, in the partition space defined over the 4 terms {t1, t2, f(t1), f(t2)},

we will have t3 = f(t1) and t4 = f(t2). The presence of UF terms imposes constraints

on the partition space that render certain partitions impossible because they violate

functional consistency. Continuing with this example, the functional consistency

constraint is (t1 = t2) → (f(t1) = f(t2)) which can be expressed in terms of the e

variables as:

e12 → e34 (3.11)

Negation of this constraint identifies those impossible partitions that violate func-

tional consistency. Specifically, e12 ∧ ¬e34 corresponds to the three partitions π
(4)
11 ,

π
(4)
12 , and π

(4)
14 (see Fig. 3.3). Other than this, the machinery we developed in Sec-

tion 3.1.2, augmented with a few extensions, applies to partition spaces containing

UFs.
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Figure 3.3: Partition Space With Impossible Partitions
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In particular, we extend the definition of a consistent subset of literals as follows.

A subset C ⊆ E is consistent if:

• It does not include opposing literals

• It does not include literals that violate the transitivity of equality

• It does not include literals that violate functional consistency

Partition cubes continue to be defined as consistent subsets of E and interpreted as

a conjunction of the literals in that subset.

Next, the notion of a complete cube is extended to include not only the literals

implied by the transitivity of equality but also those literals implied by functional

consistency. The unit propagation procedure now involves both types of implication

which can be interleaved to yield the desired implications. To illustrate, consider the

partition space defined over {t1, t2, t3 , f(t1, t2), t4 , f(f(t1, t2), t2)}. The functional

consistency constraint can be expressed in the following equivalent ways:

t1 = f (t1, t2)→ f (t1, t2) = f (f (t1, t2) , t2)

e13 → e34

(¬e13 ∨ e34)

(3.12)

Given the partition cube C = {e12,¬e34}, its completion C∗ is obtained by the im-

plication sequence:

12
e

13
e

34
e

14
e

24
e

23
e

( )1
Cj

14
e

34
e

13
e

( )4
Cj

34
e

12
e

13
e

( )Cj

23
e

yielding

ϕ(C∗) = e12 ∧ ¬e13 ∧ ¬e23 ∧ ¬e34 (3.13)
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where ¬e13 is implied by functional consistency and ¬e23 is implied by the transitivity

of equality. A variety of projections of C∗ can now be easily computed:

(e12 ∧ ¬e13 ∧ ¬e23 ∧ ¬e34) ↓ {t1, t3} = ¬e13 = ¬ (t1 = f (t1, t2))

(e12 ∧ ¬e13 ∧ ¬e23 ∧ ¬e34) ↓ {t2, t3} = ¬e23 = ¬ (t2 = f (t1, t2))

(e12 ∧ ¬e13 ∧ ¬e23 ∧ ¬e34) ↓ {t1, t2, t3} = e12 ∧ ¬e13 ∧ ¬e23 = (t1 = t2) ∧ ¬ (t1 = f (t1, t2))

(e12 ∧ ¬e13 ∧ ¬e23 ∧ ¬e34) ↓ {t3, t4} = ¬e34 = ¬ (f (t1, t2) = f (f (t1, t2) , t2))

(3.14)

Finally, the notion of relative completeness is extended to account for functional

consistency, which is a straightforward operation.

With these extenstions, the 2-step projection procedure described for zero-arity

terms is applicable to partition spaces containing UFs.

3.1.4 Partition Spaces Involving Uninterpreted Predicates

Next, we consider partition spaces of n terms of zero- or higher-arity as well as

r uninterpreted predicates (UPs) of one or more arguments. Adding r UP literals

induces 2r versions of each consistent partition. We represent each version as a con-

junction of UP literals and a partition among terms. In the partition space defined

over 4 terms {t1, t2, f(t1), f(t2)}, for example, the addition of two UP literals, p(t1)

and p(t2), will induce four versions of each consistent partition. One of the consis-

tent partitions, {t1, t2 | f(t1), f(t2)}, now has four different versions according to the

evaluations of the two UP literals as follows:

¬p(t1) ∧ ¬p(t2) ∧ {t1, t2 | f(t1), f(t2)}

¬p(t1) ∧ p(t2) ∧ {t1, t2 | f(t1), f(t2)}

p(t1) ∧ ¬p(t2) ∧ {t1, t2 | f(t1), f(t2)}

p(t1) ∧ p(t2) ∧ {t1, t2 | f(t1), f(t2)}

(3.15)
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This extended space is defined on a set of terms and predicates:

{t1, t2, ..., tn, p1, p1, ..., pr}

so we extend P(n) to P(n,r), to denote the space of partitions defined on these terms

and predicates. The size of the partition space defined by P(n,r) is h = 2r × Bn. We

represent each partition minterm in this partition space, µ
(n,r)
i where 1 ≤ i ≤ h, as a

conjunction of the literals in the following extended E:

E = {ė12, ė13, ..., ėn−1,n, ṗ1, ṗ2, ..., ṗr} (3.16)

where ṗi is a UP literal that stands for either pi or ¬pi. That is, µ
(n,r)
a =

∧
ė∈E

ė. A

partition cube, ϕ(C) is a conjunction of the literals in C where C ⊆ E. That is,

ϕ(C) =
∧
ė∈C

ė. Similar to the case of UF terms, functional consistency constraints on

UPs and their arguments make some of the partitions impossible. In this example,

the functional constraint is (t1 = t2)→ (p(t1) = p(t2)), which can be expressed with

the literals in E as:

e12 → (p1 = p2) (3.17)

,where p1 and p2 stands for p(t1) and p(t2) respectively. This constraint makes the

second and the third partitions in (3.15) impossible.

With the presence of UP literals, the notion of a partial order is extended as

follows: π
(m,q)
i ≤ π

(n,r)
j if and only if (1) every pair of terms in the same cell (different

cells) of π
(m,q)
i are in the same cell (different cells) of π

(n,r)
j , and (2) a conjunction

of the UP literals in π
(n,r)
j implies that of the UP literals in π

(m,q)
i . The projection

operation is also restated as follows:

S(n,r)(t1, t2, · · · , tn, p1, p2, · · · , pr) ↓ P(m,q)

= S(n,r)(t1, t2, · · · , tn, p1, p2, · · · , pr) ↓ {t1, t2, · · · , tm, p1, p2, · · · , pq}

=
⋃

π(n,r)∈S(n,r)

pred(π(n,r))

(3.18)
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In addition, the implicit projection of a partition cube, ϕ(C), on a set of terms and

predicates S ⊂ {t1, t2, · · · , tm, p1, p2, · · · , pq} is altered to:

ϕ(C) ↓ S = ϕ(C)|{ėij∈C | ti /∈S ∨ tj∈S}∪ {ṗi∈C | pi /∈S} (3.19)

The procedure of unit propagation, and the definitions of a consistent subset, a com-

plete cube, and a complete cube relative to a certain set are almost the same as those

explained in Section 3.1.3; the only difference is that UPs as well as UFs must be

taken into account when we consider functional consistency. In our example consist-

ing of two UPs (p(t1) and p(t2)) and 4 terms ({t1, t2, f(t1), f(t2)}), the following two

functional consistency constraints need to be considered:

(t1 = t2)→ (p(t1) = p(t2)) , e12 → (p1 = p2) , ¬e12 ∨ (p1 ∧ p2) ∨ (¬p1 ∧ ¬p2)

(t1 = t2)→ (f(t1) = f(t2)) , e12 → e34 , ¬e12 ∨ e34
(3.20)

If we take the set of literals of a partition cube, C = {p1, e12,¬e13}, we can compute

its completion, C∗ by the following implication sequence:

yielding

ϕ(C∗) = e12 ∧ ¬e13 ∧ ¬e14 ∧ ¬e23 ∧ ¬e24 ∧ e34 ∧ p1 ∧ p2 (3.21)

where e34 and p2 are implied by functional consistency, and ¬e14, ¬e23, and ¬e24 are

implied by the transitivity of equality. We can compute the projection of ϕ(C) on a
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partition space from ϕ(C∗). Here are some examples:

(e12 ∧ ¬e13 ∧ ¬e14 ∧ ¬e23 ∧ ¬e24 ∧ e34 ∧ p1 ∧ p2) ↓ {t1, t2} = (e12)

(e12 ∧ ¬e13 ∧ ¬e14 ∧ ¬e23 ∧ ¬e24 ∧ e34 ∧ p1 ∧ p2) ↓ {t1, t2, p1} = (e12 ∧ p1)

(e12 ∧ ¬e13 ∧ ¬e14 ∧ ¬e23 ∧ ¬e24 ∧ e34 ∧ p1 ∧ p2) ↓ {p1, p2} = (p1 ∧ p2)

(e12 ∧ ¬e13 ∧ ¬e14 ∧ ¬e23 ∧ ¬e24 ∧ e34 ∧ p1 ∧ p2) ↓ {t2, t4, p1, p2} = (¬e24 ∧ p1 ∧ p2)
(3.22)

With these extensions to accommodate UPs, we can apply the 2-step projection

procedure described in Section 3.1.3 to the projection of partition spaces containing

both UFs and UPs.

3.1.5 Proof of Correctness

We want to show that our implicit projection procedure from P(n,r) to P(m,q) is

correct. Without loss of generality, we can assume that

P(n,r) = {t1, t2, · · · , tm, · · · , tn, p1, p2, · · · , pq, · · · , pr} and

P(m,q) = {t1, t2, · · · , tm, p1, p2, · · · , pq}.

We start by defining some expressions. For some a and b with 1 ≤ a ≤ 2r × Bn

and 1 ≤ b ≤ 2q × Bm, let µ
(n,r)
a and µ

(m,q)
b be partition minterms of π

(n,r)
a and π

(m,q)
b

respectively, where Pred(π
(n,r)
a ) = π

(m,q)
b . That is, µ

(n,r)
a ↓ P(m,q) = µ

(m,q)
b . A partition

minterm is a conjunction of literals, so we can represent µ
(n,r)
a and µ

(m,q)
b as:

µ
(n,r)
a =

∧
ė∈E(n,r)

a

ė, where E
(n,r)
a = {ė12, ė13, · · · , ėn−1,n, ṗ1, ṗ2, · · · , ṗr}.

µ
(m,q)
b =

∧
ė∈E(m,q)

b

ė, where E
(m,q)
b = {ė12, ė13, · · · , ėm−1,m, ṗ1, ṗ2, · · · , ṗq}.

Let ϕ(C) be the partition cube of S(n,r) where S(n,r) = {π(n,r)
1 , π

(n,r)
2 , · · · , π(n,r)

h }.

Then, ϕ(C) =
∨

1≤k≤h
µ
(n,r)
k where µ

(n,r)
k represents π

(n,r)
k . ϕ(C∗P

(m,q)
) is the complete

cube induced by ϕ(C) relative to the set of terms and predicates, P(m,q).

54



Now, we can restate what we are seeking to prove as follows:

ϕ(C) ↓ P(m,q) =
∨

1≤k≤h

µ
(n,r)
k ↓ P(m,q) = ϕ(C∗P

(m,q)

)| {ė∈Eϕ}

where Eϕ = {ėij ∈ C∗P
(m,q)| ti /∈ P(m,q) ∨ tj /∈ P(m,q)} ∪ {ṗi ∈ C∗P

(m,q) | pi /∈ P(m,q)}.

Our proof consists of two steps. First, we prove that µ
(n,r)
a ↓ P(m,q) = µ

(m,q)
b if and

only if E
(m,q)
b ⊆ E

(n,r)
a (or µ

(n,r)
a → ė for all ė ∈ E

(m,q)
b ).

If part: E
(m,q)
b ⊆ E

(n,r)
a , so ėij ∈ E

(n,r)
a for all ėij ∈ E

(m,q)
b where 1 ≤ i < j ≤ m.

Thus, for all pairs of terms, ti and tj in the same cell (different cells) of π
(m,q)
b are also

in the same cell (different cells) of π
(n,r)
a . In addition, ṗk ∈ E

(n,r)
a for all ṗk ∈ E

(m,q)
b

where 1 ≤ k ≤ q, so a conjunction of the UP literals in π
(n,r)
a implies that of the UP

literals in π
(m,q)
b . Therefore, µ

(n,r)
a ↓ P(m,q) = µ

(m,q)
b .

Only if part: µ
(n,r)
a ↓ P(m,q) = µ

(m,q)
b , so for all pairs of terms, ti and tj in the

same cell (different cells) of π
(m,q)
b are in the same cell (different cells) of π

(n,r)
a , where

1 ≤ i < j ≤ m, and a conjunction of the UP literals in π
(n,r)
a implies that of the UP

literals in π
(m,q)
b by definition. Thus, ė ∈ E

(n,r)
a for all ė ∈ E

(m,q)
b , and E

(m,q)
b ⊆ E

(n,r)
a .

Second, we prove that ϕ(C) ↓ P(m,q) = ϕ(C∗P
(m,q)

)| {ė∈Eϕ}. As defined at the

beginning, ϕ(C) =
∨

1≤k≤h
µ
(n,r)
k . Let µ

(n,r)
k ↓ P(m,q) = µ

(m,q)
k where 1 ≤ k ≤ h. Let

µ
(n,r)
1 =

∧
ė∈E(n,r)

1

ė, where E
(n,r)
1 = {ė12, ė13, · · · , ėn−1,n, ṗ1, ṗ2, · · · , ṗr}. Let µ

(m,q)
1 =∧

ė∈E(m,q)
1

ė, where E
(m,q)
1 = {ė12, ė13, · · · , ėm−1,m, ṗ1, ṗ2, · · · , ṗq}.

ϕ(C) is a conjunction of the literals in C, and µ
(n,r)
1 implies ϕ(C). Thus, C ⊆

E
(n,r)
1 . In addition, E

(m,q)
1 ⊆ E

(n,r)
1 by the first proof, so C−(E

(n,r)
1 −E(m,q)

1 ) ⊆ E
(m,q)
1 .

That is, if ϕ(C) → ėij where 1 ≤ i < j ≤ m, then ėij ∈ E
(m,q)
1 ; and if ϕ(C) → ṗi

where 1 ≤ i ≤ q, then ṗi ∈ E
(m,q)
1 .

For some ė ∈ E
(m,q)
1 , µ

(m,q)
k → ė if and only if µ

(n,r)
k → ė by the first proof.

Thus, for some ė ∈ E
(m,q)
1 , (

∨
1≤k≤h

µ
(m,q)
k ) → ė if and only if (

∨
1≤k≤h

µ
(n,r)
k ) → ė. Let
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Ω = {ė | ė ∈ E
(m,q)
1 , ϕ(C) → ė}. Then, (

∨
1≤k≤h

µ
(n,r)
k ) → ė, which is ϕ(C) → ė, can

be restated as ϕ(Ω)→ ė, and

ϕ(C) ↓ P(m,q) =
∨

1≤k≤h
µ
(n,r)
k ↓ P(m,q) =

∨
1≤k≤h

µ
(m,q)
k = ϕ(Ω).

Recall that Eϕ = {ėij ∈ C∗P
(m,q)| ti /∈ P(m,q) ∨ tj /∈ P(m,q)} ∪ {ṗi ∈ C∗P

(m,q) | pi /∈

P(m,q)}. Ω = C∗P
(m,q) − Eϕ by the definition of relative completeness, so ϕ(Ω) =

ϕ(C∗P
(m,q)

)| {ė∈Eϕ}. Therefore,

ϕ(C) ↓ P(m,q) =
∨

1≤k≤h
µ
(n,r)
k ↓ P(m,q) = ϕ(Ω) = ϕ(C∗P

(m,q)
)| {ė∈Eϕ}.

3.2 Abstract State Cube

In the IC3 and PDR approximate reachability algorithms, the size of the state

cube derived during the reachability computation affects the overall performance sig-

nificantly because it determines the size of the formula passed to a solver. In addition,

the number of reachability refinements on the frontiers can be reduced exponentially

if we derive a large state cube involving a small number of state literals.

At the bit level, a ternary-simulation-based approach [3] provides an efficient and

effective way to enlarge a state minterm into a state cube. Suppose that a SAT solver

returns a solution from the following 1-step query:

Fi(x) ∧ T (w,x,y,x+) ∧N(w+,x+) (3.23)

where Fi is the frontier of the ith frame, T is the transition relation, and N+ is a

state cube at the (i + 1)st frame. This means that a state in Fi can reach one of

the states in N in one transition. We need to collect a set of states including the

state that can reach N . The ternary-simulation-based approach applies the values of

register outputs in the solution to the original sequential circuit. It then changes one

of the register outputs to X and checks to see whether this value propagates to the

register inputs. If X does not appear in any of the register inputs, we can eliminate
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the corresponding state variable from the state minterm derived from the solution.

Otherwise, we keep the state variable. We repeat this process for all of the register

outputs to obtain a state cube.

At the abstract level, however, we cannot apply this method because the solution

of an EUF formula does not assign specific values to state variables. It specifies only

the equality or disequality relationships among state terms. We explain this problem

with our motivating example in Fig. 1.8. After deriving two datapath lemmas, we

use the following query to identify a counterexample-to-induction at the first frame.

We omit the two datapath lemmas for simplicity.

ϕ(ŵ, x̂, x̂+) ≡ P̂ (ŵ, x̂) ∧ T̂ (ŵ, x̂, x̂+) ∧ ¬P̂ (ŵ+, x̂+)

= (w12) ∧ (w12 = ¬w9) ∧ (w9 = LT(x̂1, x̂2)) ∧ T̂ (ŵ, x̂, x̂+)∧

(¬w+
12) ∧ (w+

12 = ¬w+
9 ) ∧ (w+

9 = LT(x̂+1 , x̂
+
2 ))

(3.24)

The query is satisfiable, and an SMT solver returns a solution as follows:

¬w+
12 ∧ w+

9 ∧ w+
11 ∧ LT(x̂+1 , x̂

+
2 ) ∧ w12 ∧ ¬w9 ∧ ¬w7 ∧ w8 ∧ w10 ∧ w11 ∧ ¬LT(x̂1, x̂2)∧

{x̂1 |K1 |ADD(x̂2,K1), ŵ4 |KMAX | x̂+2 , ŵ2, ŵ5, x̂2 | x̂+1 , ŵ1, ŵ3, ŵ6,ADD(x̂1,K1) |K0}
(3.25)

The solution consists of a conjunction of bit assignments and a partition of terms.

Thus, we cannot apply the ternary-simulation-based approach, which requires the bit

assignments of all the state variables. During the reachability analysis, we need to

compute a state cube from this solution, so we project this solution to the abstract

state space of the system. This projection can be done by simply dropping terms

and literals involving primary-input variables and dependent variables (next-state

variables and local variables), yielding:
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¬LT(x̂1, x̂2) ∧ {x̂1 |K1 |ADD(x̂2,K1) |KMAX | x̂2 |ADD(x̂1,K1) |K0}. (3.26)

We then need to encode this solution information as an EUF formula. As discussed

in Section 3.1, we can convert the partition into a conjunction of equalities and

disequalities among every pair of terms. To derive a more compact formula, we can

use the following procedure for the conversion:

1. Pick a cell representative from each cell in the partition.

2. Make every term in a cell equal to the cell representative.

3. Make every cell representative not equal to the cell representatives of other cells.

By applying this procedure, we can derive a state minterm. The state minterm is a

conjunction of the bit assignments in the projected solution and the equalities and

disequalities we have obtained:

Ĉ0(x̂1, x̂2) = ¬LT(x̂1, x̂2) ∧ (x̂1 6= K1)∧

(x̂1 6= ADD(x̂2,K1)) ∧ (x̂1 6= KMAX) ∧ (x̂1 6= x̂2) ∧ (x̂1 6= ADD(x̂1,K1)) ∧ (x̂1 6= K0)∧

(K1 6= ADD(x̂2,K1)) ∧ (K1 6= KMAX) ∧ (K1 6= x̂2) ∧ (K1 6= ADD(x̂1,K1)) ∧ (K1 6= K0)∧

(ADD(x̂2,K1) 6= KMAX) ∧ (ADD(x̂2,K1) 6= x̂2) ∧ (ADD(x̂2,K1) 6= ADD(x̂1,K1))∧

(ADD(x̂2,K1) 6= K0) ∧ (KMAX 6= x̂2) ∧ (KMAX 6= ADD(x̂1,K1)) ∧ (KMAX 6= K0)∧

(x̂2 6= ADD(x̂1,K1)) ∧ (x̂2 6= K0) ∧ (ADD(x̂1,K1) 6= K0)

(3.27)

This state minterm represents a single abstract state. This kind of minterm expres-

sion easily becomes too big and complicated to be successfully handled by a solver.

Thus, we need to enlarge this abstract state minterm for more compact representa-

tion. One easy way to enlarge it is to utilize the structural information of the circuit.
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This approach, however, cannot be applied after the projection, because some solu-

tion information gets lost during the projection. Thus, we perform this structural

generalization right after a solver returns a solution. Based on the information in

the solution, the structural generalization traverses the circuit representation of the

1-step query and collects relevant EUF literals causing a violation until it reaches

independent variables (primary inputs or state variables) or constants. In the case

of the transition relation, T̂ , we traverse only the cone-of-influence of each next-state

variable in ¬P̂+ and collect such EUF literals. For each next-state variable, we also

find an equivalent term in its cone-of-influence. The resulting cube is a conjunc-

tion of the collected EUF literals and the equalities of the next-state variables and

their equivalent terms. In our example, the structural generalization gives rise to the

following cube:

Ĉ1(x̂1, x̂2, x̂
+
1 , x̂

+
2 ) = LT(x̂+1 , x̂

+
2 ) ∧ ¬LT(x̂1, x̂2) ∧

(
x̂+1 = ADD(x̂1,K1)

)
∧(

x̂+2 = x̂2
)
∧ (x̂1 6= KMAX) ∧ (x̂1 6= x̂2)

(3.28)

From this cube, we can derive a state cube by applying the implicit projection proce-

dure described in Section 3.1. The procedure consists of two steps. First, we compute

a complete cube relative to the following set of state terms4 and predicates5 :

S = {K0,K1,KMAX, x̂1, x̂2,ADD(x̂1,K1),ADD(x̂2,K1),¬LT(x̂1, x̂2)}. (3.29)

From the uninterpreted predicate, LT, we obtain the following functional consistency

4In our definition, state terms include constant terms.
5If single-bit state variables are involved in the cube, we treat them as zero-arity predicates and

apply this projection procedure.
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constraint represented in two equivalent ways.

(x̂+1 = x̂1) ∧ (x̂+2 = x̂2)→ (LT(x̂1, x̂2) = LT(x̂+1 , x̂
+
2 ))

¬(x̂+1 = x̂1) ∨ ¬(x̂+2 = x̂2) ∨ (LT(x̂1, x̂2) ∧ LT(x̂+1 , x̂
+
2 )) ∨ (¬LT(x̂1, x̂2) ∧ ¬LT(x̂+1 , x̂

+
2 ))

(3.30)

This functional consistency constraint and (LT(x̂+1 , x̂
+
2 ) ∧ ¬LT(x̂1, x̂2) ∧ (x̂+2 = x̂2))

in Ĉ1 imply ¬(x̂+1 = x̂1). This disequality and (x̂+1 = ADD(x̂1,K1)) in Ĉ1 imply

¬(x̂1 = ADD(x̂1,K1)). This literal involves only the terms in S, so this literal is

included in the complete cube. The resulting complete cube relative to S is:

Ĉ∗S1 (x̂1, x̂2, x̂
+
1 , x̂

+
2 ) = LT(x̂+1 , x̂

+
2 ) ∧ ¬LT(x̂1, x̂2) ∧

(
x̂+1 = ADD(x̂1,K1)

)
∧(

x̂+2 = x̂2
)
∧ (x̂1 6= KMAX) ∧ (x̂1 6= x̂2) ∧ (x̂1 6= ADD(x̂1,K1))

(3.31)

Second, we drop terms and literals involving primary-input variables and dependent

variables (next-state variables and local variables) from this complete cube, which

yields:

Ĉ2(x̂1, x̂2) = ¬LT(x̂1, x̂2) ∧ (x̂1 6= KMAX) ∧ (x̂1 6= x̂2) ∧ (x̂1 6= ADD(x̂1,K1)) (3.32)

This state cube represents a set of abstract states that can reach ¬P̂ in one transition,

and it is much simpler than the simplified state minterm, Ĉ0.

If the following formula were UNSAT, we could apply minimal unsatisfiable subset

(MUS) extraction to further enlarge Ĉ2 [67].

ψ(ŵ, x̂, x̂+) ≡ C2(x̂1, x̂2) ∧ T̂ (ŵ, x̂, x̂+) ∧ P̂ (ŵ+, x̂+) (3.33)

However, ψ is satisfiable, so we terminate our generalization procedure. It is inter-

esting to note that Ĉ2 can reach both P̂ and ¬P̂ at the same time in one transition.

This means that the transitions from Ĉ2 are non-deterministic.
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In this section, we applied our two-step generalization procedure, structural gen-

eralization followed by implicit projection, to derive a state cube from a 1-step query.

3.3 Feasibility Check and Datapath Refinement for Sequen-

tial Circuits

Applying the datapath abstraction and refinement framework for the verification

of sequential circuits requires an extension of the combinational feasibility check and

datapath refinement procedure in Section 2.5. Specifically, verifying a sequential cir-

cuit requires that we handle a multi-cycle counterexample, which is captured by a

counterexample trace (CEXT). Performing an IC3-style reachability computation on

the abstract term-level encoding of the circuit returns an abstract counterexample

trace (ACEXT) if the given safety property is violated at the abstract level. This

ACEXT must now be checked for bit-level feasibility by concretizing it to a cor-

responding CEXT. If the ACEXT yields a corresponding continuous CEXT, this

bit-level trace is returned as a true bug witness to the violation of the property.

Otherwise, datapath refinement (1) derives datapath lemmas to refute the spurious

ACEXT by eliminating infeasible abstract states or transitions, and (2) if neces-

sary, introduces a new state term or state predicate to increase the granularity of

the abstract state space. The basic procedure for datapath refinement is the same

as the one described in Section 2.5: we (1) derive an abstract-level solution cube

from a structural analysis of the circuit, (2) concretize the solution cube, (3) extract

MUSes if the concretized formula is unsatisfiable, and (4) derive the negation of each

MUS’s abstract-level counterpart. However, a major difference exists in the manner

of deriving a solution cube, because our application is a sequential circuit, not a com-

binational circuit. That is, we need to derive a solution cube of current variables from

a formula containing both current- and next-state variables. To achieve this goal, we
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Figure 3.4: Nondeterministic Abstract Counterexample Trace

perform the structural generalization explained in Section 3.2 followed by the sub-

stitution of next-state variables with their equivalent terms and the elimination of

redundant equalities. For example, from Ĉ1 in (3.28), we can obtain the following

solution cube after replacing x̂+1 and x̂+2 with ADD(x̂1,K1) and x̂2 respectively and

eliminating redundant equalities:

Ĉ3(x̂1, x̂2) = LT(ADD(x̂1,K1), x̂2)∧¬LT(x̂1, x̂2)∧ (x̂1 6= KMAX)∧ (x̂1 6= x̂2) (3.34)

This solution cube includes only current variables and represent the conditions re-

quired for the transitions to the next states.

As explained in Section 1.2, state transitions at the abstract level can be non-

deterministic. This gives rise to two problems. First, the success of an independent

feasibility check on each segment of an ACEXT does not guarantee the existence of

a continuous path from I to ¬P at the bit level. Second, adding datapath lemmas is

sometimes insufficient to refute a spurious ACEXT. We will review these two issues

one by one.

Fig. 3.4 depicts a single ACEXT, Î  ¬P̂ . Ŝ1, Ŝ2, and Ŝ3 are abstract state

minterms, i.e., each of them represents a single abstract state. The bit-level counter-

parts are represented without the circumflex accents as before. The dots in the circle

are concrete states that map to the abstract state, and the solid and dashed arrows
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Figure 3.5: ACEXT After the Split of Â1

represent the transitions between abstract states and concrete states, respectively. In

the diagram, all abstract transitions have their bit-level counterparts (i.e., they are

feasible abstract transitions). Therefore, the independent feasibility check on each

segment in the ACEXT will succeed. As can be seen in the diagram, however, there

is no continuous bit-level transition from I to ¬P . This is the first problem caused

by the non-deterministic behavior, and this happens because the concrete state that

goes to S2 is different from the concrete state that comes from I. If the next state

of Ŝ1 were deterministic (i.e., Ŝ1 goes only to Ŝ2), this problem would not happen,

because all the concrete states in S1 would go to the states in S2.

We will now explain how this problem affects the feasibility check of an ACEXT.

In practice, an abstract-level reachability computation returns a sequence of state

cubes (i.e., not state minterms) that represents a set of ACEXTs. For example, it

returns < ĈS1, ĈS2 > for the 3-step ACEXT in Fig. 3.4. ĈS1 and ĈS2 cover Ŝ1 and

Ŝ2 respectively, and they satisfy the following formulas6:

ĈS2(x̂) ∧ T̂ (x̂, x̂+) ∧ ¬P̂ (x̂+) (3.35)

ĈS1(x̂) ∧ T̂ (x̂, x̂+) ∧ ĈS2(x̂+) (3.36)

Î(x̂) ∧ T̂ (x̂, x̂+) ∧ ĈS1(x̂+) (3.37)

6In this section, we assume no input in the system for simplicity.

63



The above formulas are all satisfiable at the bit level, but this does not guarantee the

existence of a continuous CEXT as illustrated in Fig. 3.4. The granularity of state

cubes is not fine enough to distinguish two sets of states heading to different sets of

states, because a state cube is the projection of a solution cube on the abstract state

space. A solution cube, on the other hand, can distinguish those sets of states due to

the terms or predicates introduced during the substitution of its derivation process.

Thus, we accumulatively derive solution cubes, M̂2(x̂), M̂1(x̂), and M̂0(x̂) from the

following formulas respectively.

ĈS2(x̂) ∧ T̂ (x̂, x̂+) ∧ ¬P̂ (x̂+) (3.38)

ĈS1(x̂) ∧ T̂ (x̂, x̂+) ∧ M̂2(x̂
+) (3.39)

Î(x̂) ∧ T̂ (x̂, x̂+) ∧ M̂1(x̂
+) (3.40)

We then perform feasibility checks on the solution cubes7. For example, we perform

the feasibility check of the solution cube, Ĉ3, in (3.34) by checking the satisfiability

of its corresponding bit-vector formula:

((x1 + ‘W’d1) < x2) ∧ ¬(x1 < x2) ∧ ¬(x1 = ‘W’b11...1) ∧ ¬(x1 = x2), (3.41)

where W is the bit width of x1 and x2. We obtain this formula by simply replacing

uninterpreted terms and predicates in Ĉ3 with their bit-vector counterparts. The

satisfiability of this formula is checked by an SMT solver. In this case, the SMT

solver returns that no assignment of x1 and x2 satisfies the formula, from which we

conclude that Ĉ3 is infeasible.

Once a set of ACEXTs is identified as infeasible traces, we need to derive a datap-

ath lemma to refute them, which can be done by extracting MUSes from the bit-level

7In fact, the feasibility check on M0 is enough, because it checks the existence of a continuous
path from Î to ¬P̂ . However, it is better to check M2, M1, and M0 incrementally, because most
spurious traces are found from the earlier checks.
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counterpart of the solution cube. The datapath lemma is the negation of each MUS’s

abstract-level counterpart8. This datapath lemma eliminates either infeasible abstract

states or transitions. In some cases, there can be no infeasible one to eliminate. This

is the second problem caused by a non-deterministic state transition. In the ACEXT

illustrated in Fig. 3.4, there are no infeasible ones to eliminate even though the trace

is spurious. This happens because the granularity of the abstract state space is too

coarse to eliminate the spurious ACEXT. Thus, we need to increase the granularity

by introducing a new state term or state predicate so that we can distinguish the two

concrete states in Ŝ1. This is done by investigating state terms or state predicates

in solution cubes that are not present in their corresponding state cubes. Once Ŝ1

is split into two abstract states, the non-deterministic behavior is gone and we can

refute the spurious ACEXT by eliminating the infeasible transition from Î to Ŝ1b, as

illustrated in Fig. 3.5.

3.4 The Averroes Algorithm

Averroes takes an input a hardware design and a property written in Verilog-HDL.

They are parsed with a commercial Verilog-HDL parser, Verific [68], and then passed

to a datapath abstraction and refinement framework, DP-CEGAR, which integrates

an IC3/PDR-style reachability computation, Reach-CEGAR. In this section, we

provide the detailed procedures of DP-CEGAR and Reach-CEGAR. We then

conclude this section by proving the convergence of these procedures.

3.4.1 DP-CEGAR

Fig. 3.6 illustrates the high-level pseudo-code of DP-CEGAR. The initial dat-

apath abstraction is performed by DP-Abstract which returns EUF formulas of

8We apply additional two processes to derive more powerful datapath lemmas, which will be
explained in Chapter V.
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1.  trace DP-CEGAR(T, I, P){ 

2.      (T෡, Iመ, P෡) = DP-Abstract(T, I, P); 
3.      ∆ = 1; // Initialize datapath lemmas 
4.      while(true){ 

5.          ACEXT = Reach-CEGAR(T෡, Iመ, P෡, ∆); 
6.          if empty(ACEXT) 
7.          then return empty trace; //P holds 
8.          CEXT = DP-Concretize(ACEXT); 
9.          if Feasible(CEXT) 
10.             then return CEXT; //P fails 
11.             else ∆ = ∆ ⋀ DP-Refine; 
12.     } 
13. } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: High-Level Pseudo Code for CEGAR-Based Datapath Abstraction

the bit-level transition, initial, and property formulas (line 2) by, basically, replac-

ing wide datapath signals with uninterpreted terms, and datapath operators and

predicates with, respectively, uninterpreted functions and predicates. Single-bit con-

trol signals are not abstracted [61]9. The abstract formulas are overapproximations

of the bit-level versions and, thus, represent a sound abstraction. The procedure

then initializes ∆ (line 3) which serves as a database of derived datapath lemmas.

The reachability computation is carried out by calling Reach-CEGAR (line 5) that

operates on the abstract formulas. Note, in particular, that this version of Reach-

CEGAR takes as a fourth argument a formula representing the learned datapath

lemmas which it augments to all the queries it performs. If Reach-CEGAR returns

an empty trace, DP-CEGAR terminates with the conclusion that the property holds

(line 7). However, if Reach-CEGAR returns a non-empty abstract counterexample

trace (ACEXT), a concrete bit-level version counterexample trace (CEXT) is con-

structed by DP-Concretize (line 8) and checked for feasibility (line 9). If found to

9For better classification of datapath and control, we supplement this classification method by
applying two more sophisticated techniques that will be discussed in Chapter IV.
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be feasible, CEXT is returned as a witness for the violation of the property (line 10).

Otherwise, the ACEXT returned by Reach-CEGAR are concretized and checked

for feasibility one transition at a time. Each infeasible state or transition in a coun-

terexample triggers the generation of one or more datapath lemmas using a simplified

version of the MUS extractor in [69]. If the abstract state space is not fine enough

to refute the spurious ACEXT, a new state term or -predicate is introduced. Feasi-

bility checking is done using the bit-vector theory in the Yices (version 1.0.35) SMT

solver [12].

3.4.2 Reach-CEGAR

Fig. 3.7 highlights the major steps of the approximate reachability computation in

Reach-CEGAR. The formulas processed by Reach-CEGAR are all in EUF and

all reasoning is done using the Yices SMT solver. The procedure utilizes a queue Q

of proof obligations each of which is a pair (ĉ(x̂), k) where ĉ(x̂) is a state cube and k

is a frame number. The following numbered list corresponds to the numbered boxes

in Fig. 3.7:

1. At the start of major iteration k, frame k is overapproximated to P̂ (F̂k = P̂ ).

The iteration then repeatedly checks for counterexamples to induction (CTIs)

using the function 1-step which calls the SMT solver with the query:

F̂k ∧ T̂ ∧∆ ∧ ¬P̂+

2. A satisfying solution m̂(x̂) ∈ F̂k(x̂) to this query indicates a CTI that must

now be checked for reachability from Î(x̂). Before proceeding with that check,

however, the state minterm derived from the solution is “expanded” to a state

cube. The detailed procedure can be found in Section 3.2. The enlarged cube

ĉ is now added to the Q as a proof obligation in frame k, meaning “can ĉ be

eliminated from Fk by showing that it is unreachable from I along paths whose

length is at least k?”
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Figure 3.7: Implementation of Reach-CEGAR in the Averroes Verifier
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3. An empty queue signifies that the current CTI has been successfully eliminated

and the algorithm proceeds to check for the existence of another CTI from the

current frame.

4. The reachability computation starts here by retrieving a proof obligation (t̂, j)

from the queue.

5. The 1-step function checks the formula F̂j−1 ∧ T̂ ∧∆ ∧ t̂+ ∧ P̂+ to determine if

t̂ can be reached in one step from frame j − 1.

6. If t̂ is not reachable from frame j − 1, it is enlarged to ˆ̃t by extracting one or

more MUSes from the UNSAT formula in step 5. The negation of ˆ̃t is now

added as a refinement clause to frame j (which means that all frames 1 ≤ i ≤ j

are tightened as a result of the unreachability of t̂ in frame j).

7. The processing of cube t̂ terminates if we reach the last frontier k.

8. Otherwise, t̂ is added as a proof obligation in frame j+ 1. This step is optional

but, as pointed out in [3], it helps to improve performance and to find ACEXTs

that are longer than k + 1.

9. If the current proof obligation is (t̂, 1) and t̂ is found to be reachable from frame

0, then we have found an ACEXT and the procedure terminates.

10. If t̂ in frame j is found to be reachable (in one step) from frame j − 1, the

satisfying solution r̂ to the query in step 5 is enlarged similarly to how m̂ was

enlarged in step 2. Processing continues by re-inserting (t̂, j) into the queue

and adding (ˆ̃r, j − 1) as a new proof obligation.

11. When all CTIs from the current frontier k have been eliminated, refinement

clauses from earlier iterations are checked to see if they can be moved forward

to tighten later frontiers. A refinement clause ω ∈ F̂j, 1 ≤ j ≤ k that causes the

query F̂j∧ T̂ ∧∆∧¬ω+∧P̂+ to be UNSAT indicates that cube ¬ω in frame j+1

is unreachable in one step from frame j and can thus be eliminated from frame

j + 1. This is accomplished by propagating clause ω forward: F̂j+1 = F̂j+1 ∧ ω.
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12. The procedure terminates proving that P̂ holds if two successive frames become

equal, i.e., if F̂j = F̂j+1 for some 1 ≤ j ≤ k. This check is equivalent to finding

the clause set associated with frame j has become empty.

13. Otherwise, a new frame is created and initialized to P and the procedure con-

tinues to check for CTIs corresponding to longer ACEXTs.

3.4.3 Proof of Convergence

Averroes is guaranteed to terminate. We will prove the termination of Reach-

CEGAR and DP-CEGAR in turn. Reach-CEGAR in Averroes performs the

reachability computation in a finite abstract state space that is fixed during the com-

putation, so its termination proof is similar to the proof of its bit-level counterpart.

At the k-th iteration, at least one abstract state is removed from one of k frontiers

whenever a CTI is found. Thus, the k-th iteration must terminate after a finite num-

ber of CTI checks. At the end of the iteration, Reach-CEGAR is in one of the

following three cases:

1. An abstract-level counterexample trace is found.

2. Two successive frontiers become equal.

3. No additional CTI is found.

In the first two cases, Reach-CEGAR terminates. In the last case, Reach-CEGAR

increases k and repeats the main loop. In this case, each frontier must contain at

least one more abstract state than the other frontiers in the earlier frames (otherwise,

two successive frontiers would have become equal during the forward propagation in

step 11 of Reach-CEGAR). Thus, k cannot be greater than the number of abstract

states in the abstract state space, and the main loop will terminate in a finite number

of iterations.

Next, we will prove the convergence of DP-CEGAR. The while loop in DP-

CEGAR repeats only when Reach-CEGAR returns a spurious counterexample
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trace. In this case, DP-CEGAR calls DP-Refine, which conducts one of the fol-

lowing tasks:

1. To increase the granularity of the abstract state space.

2. To eliminate infeasible abstract states.

3. To eliminate infeasible abstract transitions.

The first task is performed when we need to split a feasible abstract state that cor-

responds to more than one concrete state, so the number of repetitions of the task is

bounded by the number of concrete states. Thus, the maximum number of abstract

states and transitions in the finest abstract state space is finite. This leads to the

finite number of the repetition of the last two tasks. Each elimination task deletes

at least one abstract state or transition, so the number of repetitions is bounded by

the maximum number of abstract states and transitions, which is finite. Therefore,

the while loop in DP-CEGAR iterates for a finite number of times, and Averroes

terminates.
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CHAPTER IV

Structural Abstraction

Our abstraction framework is called structural abstraction because it preserves

the structure of the concrete system and makes it easy to map abstract components

to their concrete counterparts and vice versa. It consists of two parts: advanced

datapath abstraction and memory abstraction. In Section 4.1, we investigate smart

ways to abstract irrelevant details in a hardware design to improve the scalability of

the verification task. A conventional datapath abstraction approach classifies each

circuit component into datapath and control according to the width of the component

without any further analysis. This often leads to (a) the misclassification of datapath

and control and (b) unnecessary terms or literals in the resulting abstract formula.

We demonstrate these problems by analyzing datapath lemmas derived during our

reachability computation with the conventional abstraction strategy. To solve those

problems, we introduce advanced datapath abstraction which (a) decomposes unnec-

essarily concatenated signals and (b) applies a property-directed concretization to a

small part of the hardware design that is misclassified as a datapath component. In

Section 4.2, we describe a way to handle a large memory or array of vectors in an

efficient way. One easy way to handle a memory would be to treat it as a set of

registers. For example, we can convert a memory with 1024 entries of 32 bits each

into 1024 individual 32-bit registers. Obviously, this conversion does not scale to a
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large memory. Therefore, we instead abstract a large memory by replacing it with a

represented slot incorporating additional circuits. We then add more slots if one slot

is insufficient for our reachability computation.

4.1 Advanced Datapath Abstraction

In this section, we provide the results of our analysis of the datapath lemmas that

we have collected. We then present our advanced datapath abstraction approach.

4.1.1 Patterns of Datapath Lemmas

If we abstract some control components that are directly related to a given control-

centric property, we end up with many iterations of datapath refinement. Datapath

lemmas derived during datapath refinements introduce constraints among misclas-

sified control components to compensate for any information missing as a result of

abstraction. Therefore, it is often useful to analyze datapath lemmas to diagnose

problems in the abstraction strategy. In this section, we analyze the patterns of

the datapath lemmas that were derived during our reachability computation with a

conventional datapath abstraction strategy from a set of large-datapath industrial

benchmarks.

The datapath lemmas can be classified into three categories based on the types

of terms in the datapath lemmas. The datapath lemmas in the first category, con-

stant, include only constant terms. These datapath lemmas represent an equality

or disequality relationship among constant terms. The datapath lemmas in the sec-

ond category include the uninterpreted functions (UFs) and uninterpreted predicates

(UPs) of bit-field extraction and concatenation operators. The second category can

be divided into bit-select and part-select according to the output bit width of the

extraction operators involved (bit-select if the bit width is one, and part-select other-

wise). The other datapath lemmas are classified as others. These datapath lemmas
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Table 4.1: Proportions of Four Types of Datapath Lemmas

Type Example (Corresponding Verilog expression) # Lemmas Proportion (%)

Constant 3’d6 != 3’d0 21 0.65
Bit-select {a, b, 1’b1}[0] 2554 78.97
Part-select !(m = n) || ({a, b, m, c}[5:3] == {d, e, n, f}[5:3]) 577 17.84
Others 8d0 + 8d1 + 8d1 = 8d2 82 2.54
Total 3234 100

Table 4.2: Composition of Datapath Operators in a Set of Large Industrial Bench-
marks

Bit-Select Part-Select Concatenation Others Total

# Operators 35276 56739 89663 51833 233511
Proportions 15.11 24.3 38.4 22.19 100

constrain the UFs and UPs of other types of operators such as additions and mul-

tiplications. Table 4.1 lists these four different types of datapath lemmas and their

proportions in a set of datapath lemmas collected from 211 large-datapath industrial

benchmarks. The table includes an example for each type. Datapath lemmas are

EUF formulas, but we represent them in the table as Verilog expressions to make

them easier to understand.

As can be seen in the table, bit-select accounts for about 79% of the set of dat-

apath lemmas. This is a very high percentage in contrast with the proportion of

bit-select operators, which is about 15% as can be seen in Table 4.2. This kind of

datapath lemma is introduced when control signals are concatenated together to sim-

plify the RTL description of a hardware design. For example, an instruction register

is usually a concatenation of register addresses and some control bits. Thus, individ-

ual control bits are represented by extracted signals of the instruction register, which

are abstracted as uninterpreted predicates in a conventional datapath abstraction ap-

proach. That is, control signals are abstracted due to misclassification. In this case,

many datapath lemmas are required to constrain the uninterpreted predicates espe-

cially when their corresponding control signals are involved in a given control-centric
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property. The same thing happens to control logic circuits. They are sometimes

described as datapath operations on concatenated signals, so they are abstracted in

a conventional approach. This also causes many iterations of datapath refinements

followed by many datapath lemmas.

Part-select makes up the second largest portion. This kind of datapath lemma

is also introduced by concatenated signals. In the earlier example, the instruction

register contains register addresses, and part-select operators are used to access the

registers. The datapath lemmas in this category have two interesting features. First,

most of them are implications. Like the example in the table, the datapath lemmas

in this category assert that the value of a register remains unchanged even after the

register goes through concatenation and extraction operations. Thus, it is natural for

them to be expressed as implications. Second, concatenation operators are involved

in all of the datapath lemmas. Extraction (bit-select and part-select) operators are

closely related with concatenation operators, because extractions are usually applied

to concatenated signals. Thus, most of the datapath lemmas in part-select also involve

concatenation operators. As a result, concatenation operators are involved in more

than 90% of the entire set of datapath lemmas.

In conclusion, an unnecessarily concatenated signal results in the misclassification

of datapath and control on the individual signals concatenated in the signal as well as

the control logic circuits connected to them. They also introduce many unnecessary

extraction and concatenation operators, which are abstracted as uninterpreted func-

tions or predicates in a conventional datapath abstraction approach. These problems

lead to an inefficient abstract formula, which yields many datapath lemmas in the

categories of bit-select and part-select. This is why more than 95% of the datapath

lemmas are classified in those categories. To solve this problem, we developed two

techniques: circuit components decomposition so as to reduce the number of datap-

ath lemmas involving extraction and concatenation operators; and property-directed
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Verilog Description :
1.  wire [7:0] w1;
2.  wire [3:0] w2, w3;
3.  wire prop = (w2 + w1[7:4]) == (w1[3:0] + w3);
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Figure 4.1: Motivating Example of the Optimization Technique

concretization in order to correct the misclassification of circuit components that play

an important role in verifying a property.

4.1.2 Circuit Components Decomposition

An important contribution of Vapor [61] is that it pointed out the benefit of

eliminating unnecessary concatenation and extraction operators in the design. In an

abstract formula, they are abstracted as uninterpreted functions or predicates like

other datapath operators, so they can cause spurious counter-examples followed by

many iterations of datapath refinement. As demonstrated in Section 4.1.1, more than

95% of datapath lemmas derived from industrial benchmarks involve the abstract-

level counterparts of one of these two operators. To reduce the number of such

operators, Vapor decomposes signals in a formula into multiple pieces if the accesses

to them are mutually disjoint. For example, the eight-bit signal, w1 in Fig. 4.1, can

be decomposed into two 4-bit signals, w1a and w1b which are the same as w1[7 : 4]

and w1[3 : 0] respectively. Then, we can eliminate unnecessary extraction operators

involved. When the resulting partition includes single-bit signals, they are treated as

terms (i.e., abstracted) even though they are single-bit components.

The approach of Vapor is intended for a combinational (or unrolled) circuit, which

is different from our target system, a sequential circuit, and Vapor does not have a
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systematic procedure for the optimization. Therefore, we developed a systematic

way of eliminating unnecessary concatenation and extraction operators that can be

applied to a sequential circuit. We apply this technique during preprocessing, i.e.,

before applying datapath abstraction.

Fig. 4.2 shows the pseudo-code of our decomposition algorithm. We represent T

and P as directed graphs consisting of nodes and edges. Each circuit component in

T and P corresponds to a node in the graphs. For our decomposition algorithm, we

introduce a decomposition index list, N.indices, for each node, which is initialized

to {width, 0}. The list indicates how to decompose a node linked to the list. For

example, a node M with a decomposition index list of {width, b, a, 0}, is decomposed

into three pieces: M [width − 1 : b], M [b − 1 : a], and M [a − 1 : 0]. To construct

decomposition index lists, we (1) traverse the graph of P from the node of a prop

signal to sources (i.e., the nodes of primary inputs and state variables) and (2) update

the decomposition index lists of every node we visit (lines 2 to 3). We then traverse

the graph of T from the nodes of next-state variables to sources (lines 6 to 7).

ConstructIndexes() (lines 15 to 34) fills in the index lists. This is done recursively.

Suppose that ConstructIndexes() is called from a direct successor, we insert every

element in the list of the successor to the list of the current node (line 17). Once

all the successors are traversed (line 18), we create a temporary decomposition index

list, B, according to the type of the node and pass it to direct predecessors. If it

is a concatenation operator (lines 20 to 24), we adjust the index list for each child

node. If it is an extraction operator of [msb index : lsb index] (lines 25 to 29), we

increase every index in the list by lsb index and put msb index + 1 and lsb index

into the list. We then call ConstructIndexes() with the updated list for every direct

predecessor. If the decomposition index lists of current-state variables have updated

in ConstructIndexes(), We need to synchronize the lists of the current- and next-state

variables of the same register after (lines 4 and 8) so as to decompose the two nodes
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1.  ሺGT,GPሻ	DecomposeሺGT,GPሻ	ሼ	
2.  								P	ൌ	Node	in	GP	representing	a	property;	
3.  								ConstructIndicesሺP,	∅ሻ;	
4.  								Synchronize	the	indices	of	state	variables;
5.  								for	ሺ	i	ൌ	0;	i	൏	param_depth;	i൅൅	ሻ	ሼ	
6.  																for	ሺ	each	node	representing	a	next‐state	variable N	in	GT ሻ
7.  																								ConstructIndicesሺN,	∅ሻ;	
8.  																Synchronize	the	indices	of	state	variables;
9.  								ሽ	
10.  								for	ሺ	each	node	representing	a	next‐state	variable N	in	GT ሻ
11.  																GT	ൌ	GT	ሺ	N	↦	DecomposeNodeሺNሻ	ሻ;	
12.  								GP	ൌ	GP	ሺP	↦	DecomposeNodeሺPሻ	ሻ;	
13.  								return	ሺGT,GPሻ;	
14.  ሽ	
15.  ConstructIndicesሺN,	Sሻ	ሼ	
16.  								W	ൌ	0;	
17.  								N.indices	ൌ	N.indices	⋃	S;
18.  								ifሺAll	the	successors	of	N	have	been	visitedሻ
19.  																for	ሺ	each	direct	predecessor	NP	of	N	ሻ	ሼ
20.  																								ifሺN.type	ൌൌ	Concatenationሻ	ሼ	
21.  																																for	ሺ	each	index	i	in	S	ሻ	
22.  																																								if	ሺ	W	൅	NP.width	൏ൌ	i	ሻ								break;
23.  																																								else								B ൌ	B	⋃	ሺi‐Wሻ;	
24.  																																W	ൌ	W	൅	NP.width;	
25.  																								ሽ	else	ሺN.type	ൌൌ	Extraction	ሻ	ሼ	
26.  																																ሺM,	Lሻ	ൌ	MSB	and	LSB	indices of	the	extraction;
27.  																																for	ሺ	each	index	i	in	N.indices	ሻ
28.  																																								B	ൌ	B	⋃	ሺi൅Lሻ;	
29.  																																B	ൌ	B	⋃	ሼM൅1,	Lሽ;	
30.  																								ሽ	else								B	ൌ	N.indices;	
31.  																								if	ሺNP.width	ൌൌ	1ሻ								ConstructIndicesሺNP,	∅ሻ;
32.  																								else																																				ConstructIndicesሺNP,	Bሻ;
33.  																ሽ	
34.  ሽ	
35.  Nodes	DecomposeNodeሺNሻሼ
36.  								if	ሺ	N.type	ൌൌ	Signal	or	Constant	ሻ	ሼ	
37.  																return	decomposed	elements	of	N	based	on	N.indices;
38.  								ሽ	else	ሼ								//	operators	
39.  																for	ሺ	each	direct	predecessor	NP	of	N	ሻ
40.  																								D	ൌ	D	⋃	DecomposeNodeሺNPሻ;	
41.  																if	ሺN.type	ൌൌ	Extraction	ሻ	ሼ	
42.  																								return	extracted	set	of	nodes	from	D;
43.  																ሽ	else	if	ሺN.type	ൌൌ	one	of	concatenation,	conditional,

																											equality,	reduction,	or	bit‐wise	operators	ሻ	ሼ
44.  																								return	Node	incorporating	decomposed	nodes	D

																																					,	which	is	functionally	equivalent	to	N;
45.  																ሽ	else	ሼ		//	one	of	arithmetic,	relational,	and	shift	operators
46.  																								for	ሺ	each	entry	d	in	D	ሻ	
47.  																																C	ൌ	C	⋃	Node	of	a	concatenation	of d;
48.  																								Nt	ൌ	Node	of	N.type	with	the	direct	predecessors	of	C;
49.  																								return	decomposed	elements	of	Nt based	on	N.indices;
50.  																ሽ	
51.  								ሽ	
52.  ሽ	
	
	

Figure 4.2: Node Decomposition Algorithm
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in the same way, because they are connected to the same register. This synchronizing

process may require another updating process (lines 5 to 9), because the changes

in the decomposition index lists of the nodes of next-state variables can affect the

index lists of their predecessors. We can repeat the two processes of updating and

synchronizing index lists until there is no further change anymore, but since this often

leads to excessive decomposition, we repeat the procedure just once (i.e. param depth

is currently set to be one). Depending on the target transition relation and property,

the best choice of the parameter may vary, but our default value of one led to the

best results in our set of benchmarks.

After constructing decomposition index lists, we decompose each node based on

its index list (lines 10 to 12). If a node’s type is a signal or a constant (lines 36

to 37), we decompose it into multiple pieces based on its decomposition index list.

For example, we decompose an 8-bit signal, x, with the decomposition index list,

{8, 4, 1, 0}, into three pieces:

xa (= x[7 : 4]), xb (= x[3 : 1]), and xc (= x[0 : 0]).

In the case of an operator node, we decompose its child nodes (lines 39 to 40) and

then process the decomposed nodes according to its operation type recursively (lines

41 to 51). For an extraction operator (lines 41 to 42), we apply the extraction

operation to the decomposed nodes and return a concatenation of the extracted nodes.

For concatenation, conditional, equality, reduction, or bit-wise operators operators

(lines 43 to 44), we decompose the operator node into multiple nodes and put a

proper operator on top of the decomposed nodes in order to make the resulting

compound node functionally equivalent to the original operator node. For example,

the equality of two wide signals is converted into a conjunction of the equalities of

each decomposed element pair. During the decomposition procedure, we eliminate

the following unnecessary datapath operators.

• Extraction of entire bits
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e.g. replace A [ (bit width of A)− 1 : 0 ] with A

• Concatenation of a single component

e.g. replace {A} with A

For other operators such as arithmetic, relational, and shift operators (lines 46 to 49),

we do not decompose the operator node at this stage, because the circuit we would

have to introduce to derive a functionally equivalent node from the decomposed op-

erator nodes is very large and complicated1. Thus, we keep the operator node intact,

and we put concatenation and extraction operators before and after the operator to

connect it with decomposed child nodes (lines 46, 47 and 49). Suppose that there is an

addition operator and our decomposition technique decomposes its child and parent

nodes. Instead of decomposing the addition operator node, we insert (1) a concate-

nation operator to combine decomposed child nodes to connect them with the wide

addition operator node (lines 46 to 47) and (2) extraction operators to the operator

node (line 49) to connect it with multiple parent nodes that have been decomposed.

Our decomposition process improves on the approach of Vapor in two aspects with-

out sacrificing the advantages of Vapor. First, we treat the single-bit FFs decomposed

from multi-bit registers as control components. Vapor abstracts the single-bit FFs,

but this abstraction is often not helpful in reducing the complexity of abstract for-

mulas. Second, our decomposition process is more aggressive in that we decompose

circuit components even when the accesses to them are not mutually disjoint. Vapor

does not decompose the components in that case. Our aggressive approach offers

more opportunities to eliminate unnecessary concatenation operators. In Fig. 4.3, we

can reduce the number of datapath operators from six to three, which is not possi-

ble with Vapor because the accesses to the topmost concatenation operator are not

mutually disjoint.

1It is better to concretize the operator instead. We decide whether to concretize this kind of
operator during our property-directed concretization.
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Verilog Description :
1. wire [15:0] w1, w2, w3;
2. wire [7:0] w4, w5;
3. wire w6;
4. wire [7:0] w7, w8, w9, w10;
5. wire [15:0] temp1;
6. wire [31:0] temp2;
7. assign temp1 = (w6 ? {w7, w8} : {w9, w10});
8. assign temp2 = {w4, temp1, w5};
9. assign w1 = temp2[31:16];
10. assign w2 = temp2[23:8];
11. assign w3 = temp2[15:0];
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Figure 4.3: Benefit of the New Aggressive Decomposition Algorithm
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Verilog Description : 
1.  input wire clk; 
2.  reg [7:0] x; 
3.  wire y1, y2; 
4.  wire [3:0] y3; 
5.  always @(posedge clk) 
6.  x <= y1 ? (y2 ? 8'd0 : x) : {4'd1, (y3 + x[7:4])};
7.  wire prop = (x[3:0] == 4'd0); 
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Figure 4.4: Simple Transition System for the Demonstration of the Circuit Compo-
nents Decomposition Procedure
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Figure 4.5: Constructed Decomposition Index Lists on the Simple Transition System
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Figure 4.6: Resulting Circuit after Circuit Components Decomposition

Fig. 4.4, Fig. 4.5, and Fig. 4.6 illustrate how our algorithm works. A simple

transition system in Fig. 4.4 contains one register, x, and the property compares the

lower 4 bits of the register with a 4-bit constant zero. In our decomposition procedure,

we traverse the graph of the prop signal first and fill the decomposition index lists of

each node. Then, we move to the node of the register, x, and the same procedure

for filling decomposition index lists is applied to the graph of the next-state circuit

of the register. Fig. 4.5 shows this two-step procedure. The left diagram displays the

decomposition index lists after the first traversal. The decomposition index lists are

red in the diagram. After the second traversal, we obtain the decomposition index lists

in the right diagram. Based on the decomposition index lists, we decompose circuit

components, which results in the circuit in Fig. 4.6. Note that our decomposition

procedure automatically eliminates three unnecessary operators, one concatenation

and two extraction operators, from the original circuit.
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Table 4.3: The Number of Extraction and Concatenation Operators Before and After
Applying the Decomposition Algorithm

Abstraction Method Bit-Select Part-Select Concatenation Total

Default 35276 (21612) 56739 (43320) 89663 (7912) 181678 (72844)
Decomposition 43552 (11344) 31454 (4432) 84286 (6839) 159292 (22615)

Table 4.3 lists the number of extraction and concatenation operators before and

after applying the decomposition technique. The number in parenthesis represents

the number of extraction and concatenation operators that are connected with un-

necessarily concatenated signals or multiplexers attached to those signals. These

operators cause many datapath refinement iterations, and our decomposition tech-

nique eliminates them by splitting concatenated signals. As can be seen in the table,

our decomposition technique eliminates about 70% of those kinds of operators, which

leads to the 12% reduction in the entire set of extraction and concatenation opera-

tors. The gap between the two different percentages comes from the extraction and

concatenation operators we introduce to preserve non-splittable datapath operators

such as arithmetic, relational, and shift operators.

We don’t decide whether to split those kinds of operators at this stage, because

the careless split of a big datapath operator can offset the benefit of datapath ab-

straction. Instead, we put concatenation and extraction operators before and after

the operator to connect it with split signals as explained earlier. Unlike the extrac-

tion and concatenation operators related with unnecessarily concatenated signals,

these newly introduced operators usually do not introduce additional datapath re-

finement iterations, because they stick to the existing datapath operator most of the

time. Thus, whenever the existing datapath operator needs to be refined, they all

are refined together. Otherwise, none of them are refined. Some of those groups of

operators may need to be concretized to reduce the number of datapath refinement

iterations, and this is done during our property-directed concretization.

In sum, our decomposition technique traverses the graph representation of T and
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P, and it minimizes the number of extraction and concatenation operators by de-

composing unnecessarily concatenated signals. This technique allows us to derive an

efficient abstract formula, which leads to a much smaller number of datapath refine-

ment iterations. However, this optimization technique has one limitation; it considers

only extraction and concatenation operators. That is, it does not correct the misclas-

sification of other types of operators. For example, a counter is often represented by

a wide register, and its operation is represented by an add operator. If this counter

affects only some control components, it is usually better treated as a control compo-

nent and concretized. This cannot be done by our decomposition technique. In the

following section, we provide a systematic way to detect and concretize this kind of

circuit component.

4.1.3 Property-Directed Concretization

One easy solution to the misclassification problem would be to ask users to provide

some hints for the classification. For example, a user who designed a microprocessor

can easily recognize that the instruction register in his or her design is a control

register even though it is a wide register. This approach, however, has two problems.

First, it is often too much to ask. Except some easy cases, it is not obvious how to

characterize components in a design, even for the designers, and it usually requires a

deep analysis. This obviously is a cumbersome task, so circuit designers are not willing

to do it. Second, some hints can cause a counter-productive effect even when they are

correct. This is because the best abstraction strategy depends on the property to be

verified. For example, it is better to abstract a complicated control logic circuit that

has nothing to do with the property even when a correct hint guides us to concretize

it.

To resolve this issue, we developed a property-directed concretization algorithm

that automatically detects a part of a circuit that is better to be concretized. Fig. 4.7
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1.	 ሺGT,GPሻ	ConcretizeሺGT,GPሻ	ሼ	
2.	 								P	ൌ	Node	in	GP	representing	a	property;	
3.	 								C	ൌ	a	set	of	nodes	in	the	graphs	to	be	concretized;
4.	 								if	ሺ	Width	of	the	widest	node	in	P's	COI	൏	param_width	ሻ
5.	 																C	ൌ	C	⋃	P;	
6.	 								SS	ൌ	Set	of	the	nodes	of	state	variables	in	P's	COI;
7.	 								for	ሺ	i	ൌ	1;	i	൏	param_depth;	i൅൅	ሻ	ሼ	
8.	 																for	ሺ	each	node	N	in	SS ሻ	
9.	 																								S	ൌ	S	⋃	Set	of	the	nodes	of	state	variables	in	N's	COI;
10.	 																SS	ൌ	SS	⋃	S;	
11.	 								ሽ	
12.	 								for	ሺ	each	node	N	in	SS	ሻ	
13.	 																ifሺ	Width	of	the	widest	node	in	N's	COI ൏	param_width ሻ
14.	 																								C	ൌ	C	⋃	N;	
15.	 								for	ሺ	each	node	N	in	C	ሻ	
16.	 																ሺGT,GPሻ	ൌ	Bit‐blast	the	entire	COI	of	N;
17.	 								return	ሺGT,GPሻ;	
18.	 ሽ	
	
	

Figure 4.7: Property-Guided Concretization Algorithm

provides a pseudocode of the concretization algorithm. First of all, we check to see

if it is better to concretize the cone-of-influence of a property node. This is done by

calculating the widest bit width of the datapath operators in the cone-of-influence

of the property node (line 4). During the analysis, we consider only arithmetic,

relational, and shift operators, whose bit-level counterparts are huge. If the widest

bit width of the datapath operators is smaller than a parameterizable threshold,

param width, currently set to be 32, we conclude that the circuit nodes we traversed

are better to be concretized. We then collect a set of state nodes to apply the

analysis of the widest bit-width. To maximize the benefit of datapath abstraction,

we need to collect a minimal number of circuit components that are expected to play

an important role during our reachability computation. We observed that the state

variables in the cone-of-influence of a property are more involved in the reachability

lemmas derived during the reachability computation than the other state variables.

This is reasonable, because they directly affect the property to verify. With the same

reason, misclassifications on the state variables are more critical than those of the
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others. Thus, we consider only the state nodes in the cone-of-influence of a property

node when we look for state nodes to be concretized (line 6). We can collect more

state nodes if we apply a multi step cone-of-influence analysis (i.e., if we collect a set

of state variables that affects a property in multi clock cycles) (lines 7 to 11). Another

parameterizable threshold, param depth, which is currently set to be 1, indicates the

number of steps (or depth) for this analysis. Once we collect a set of state nodes to

examine, we check to see if any of them needs to be concretized by using the same

method applied to a property node (lines 12 to 14).

The collected nodes to be concretized can represent multi-bit registers, single-bit

FFs, or a property. A node of a single-bit FF is collected when the next-state circuit

of the FF includes a small datapath component that seems to be better to concretize.

For example, if the next state of a single-bit FF depends on the sum of two three-bit

signals, it sometimes is better to concretize the adder to prevent a spurious abstract

counterexample trace that can be caused by the abstraction of the adder. Once

the nodes to be concretized are collected, we concretize related circuit components

accordingly (lines 15 to 16). For a multi-bit register, we decompose the register into

single-bit FFs and concretize the next-state circuit of the register. For a single-bit

FF, we just concretize its the next-state circuit. In the case of a prop signal, we

concretize the entire cone-of-influence of the prop signal. This approach is based on

our observation that the concretization of a single circuit component introduces many

concatenation and extraction operators surrounding the component. Therefore, it is

usually better to concretize the circuit component as well as the circuit surrounding

the component at the same time. This can lead to an excessive concretization which

slows down an SMT solver significantly, so we need to be careful when we decide

a circuit component to concretize. This is the reason why we examined a small

number of state nodes during our property-directed concretization procedure. After

the concretization is done, we update a property node and a set of secondary output
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nodes with the concretized ones.

In sum, our property-directed concretization technique analyzes a prop signal

and the state variables appearing in the cone-of-influence of the prop signal and

then detects the best part of a circuit to concretize. This approach uses a select

and concentration strategy; it focuses on only a small number of important control

components and corrects misclassification on them. Thus, we can achieve the best

result when this technique is paired with the decomposition technique in Section 4.1.2,

because the optimization technique covers the other part of a design ignored in this

concretization technique.

4.2 Memory Abstraction

Many industrial designs contain large memories. Because of the large number of

state bits involved in a memory, handling a memory affects the verification scalability

significantly. In this section, we discuss an efficient memory abstraction technique for

making a verification system more scalable. We limit our discussion to a simple ran-

dom access memory (RAM), which can be represented by a two-dimensional array in

Verilog-HDL, because this is the most common type of memory in industrial designs.

Suppose that we converted a memory into a set of registers incorporating a multi-

plexer and a demultiplexer. This is one easy way to handle a memory. For example,

a 1024 × 32 bit memory is converted into (i) 1024 registers of 32-bit width, (ii) a

1024-to-1 multiplexer for a memory-read operation, and (iii) a 1-to-1024 demulti-

plexer for a memory-write operation. The multiplexer and demultiplexer allow us to

access one of the 1024 registers corresponding to a 10-bit address. When we abstract

these converted circuit components, we can simplify each 32-bit register as one state

term. However, we cannot reduce the number of registers; we end up with 1024 state

terms. In addition, the multiplexer and demultiplexer lead to a very big and compli-

cated EUF formula. Therefore, this approach will undermine the scalability of our
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Figure 4.8: Represented Slot of Bjesse’s Memory Abstraction

verification system.

Bjesse proposed a more scalable way to handle a memory, in which a memory is

replaced with a set of represented slots [65]. The overall procedure follows a counter-

example guided abstraction refinement framework:

1. An initial abstraction replaces a memory output with a fresh input variable.

2. If a given property holds with the initial abstraction, we finish the proof by

concluding that the property holds.

3. If the property is proved to be violated, yielding a counterexample trace, we

check to see whether the trace is valid. If it is valid, we return the trace.

Otherwise, we apply a simulation-based analysis and collect the set of memory

read operations that caused the invalid trace. A memory-read operation with

an address contained in a signal v in T or P at d cycles before the violation is

represented by an abstraction pair, (v, d).

4. A represented slot is constructed for each abstraction pair, (v, d). Fig. 4.8 pro-

vides the circuit diagram of the represented slot. sel and cont registers represent

the address and the content of the memory slot respectively. The represented

memory location (sel) is set arbitrarily at the beginning, and it does not change

during the execution. Whenever we access the memory location specified in sel,
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we access the cont register. When we access a memory location that is not

represented by any slots, we return an unconstrained value represented by an

input variable, ndt. The memory in T is replaced by this represented slot. We

then update the property as (prevd(sel == v) → P ) to ensure that this slot

represents the memory location at d cycles before the property check. prevd

in the updated property is a temporal formula that is true at the kth cycle if

(i) k ≥ d and (ii) sel == v at the (k-d)th cycle. This property can be easily

transformed to a circuit consisting of a flip-flop chain.

5. We check to see whether the updated property holds in the updated transition

relation. If the property holds, we check for the existence of a counterexample

trace whose length is less than dmax in the original design (without memory

abstraction) by using standard bounded model checking. dmax is the longest

time delay among the abstraction pairs that have been derived. If no such trace

is found, we conclude that the property holds. Otherwise, we return the trace

found during the bounded model checking.

6. If a counterexample trace is returned showing that the updated property is

violated, we check the validity of the counterexample trace with simulation. If

it is valid, we finish the proof by returning the trace. Otherwise, we need to

add more represented slots with the same procedure described in steps 3 and 4.

We then repeat steps 5 and 6 until we prove that the property holds or we find

a valid counterexample trace.

This approach performs another counter-example guided abstraction refinement

loop on top of Averroes, so it does not require any change in Averroes. In addition,

this memory abstraction can be viewed as another instance of structural abstraction

like datapath abstraction, because the structure of the original hardware design is

preserved during abstraction. It simply applies a netlist-to-netlist transformation to

a memory and keeps everything else in place.
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Figure 4.9: Four Different States of a FIFO

We applied this memory abstraction technique to our FIFO benchmark2, which

checks a “read-after-write” property. When each memory in the four FIFOs of the

benchmark contained 16 entries, the abstraction technique replaced the 16 entries

with a represented slot consisting of 2 registers. Because of the 1/8 reduction of the

number of registers, we anticipated a speed-up of 8 times. However, we only doubled

the speed. The effect of memory abstraction turned out to be quite limited, because

the major bottleneck of the property checking was the enumeration of all the possible

values of the read and write pointers in the FIFOs.

This enumeration is caused by an address wraparound, which may or may not

occur. If an address cannot wrap around, the behavior of a FIFO becomes very

simple. As illustrated in Fig. 4.9 (a), (b), and (c), both read and write pointers are

initialized to zero at the beginning (a), and they are incremented whenever there is

a read or write operation respectively (b). If all the written entries are read, both

pointers are pointing the same memory address (c). In this case, an “empty” signal is

enabled to prevent an additional read operation. Otherwise, the address of the read

2The detailed description of the benchmark will be provided in Chapter VI.
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pointer (read address) is always smaller than that of the write pointer (write address).

All the safe (or good) states can be categorized into these two cases. The bad states

are categorized into the other case where the read address is greater than the write

address. When we apply datapath abstraction to the FIFO, these three cases are

simply represented by the equality and less-than relationship of the read and write

addresses. Thus, induction-based proofs can quickly verify the “read-after-write”

property.

When the address can wrap around, however, the problem becomes very difficult

to verify. Now, the read address can be greater than the write address in a safe state,

as shown in Fig. 4.9 (d). This happens when only the write address wraps around.

The examination of whether the read address is pointing to a written memory entry

requires the enumeration of the read and write addresses, because we need to trace

every possible track of the two addresses. In this case, the exact values of the pointers

play an important role, so abstracting these pointers will lead to many iterations of

datapath refinement. Thus, we cannot abstract the pointers3.

A simple but very powerful solution to this problem is to introduce a “wraparound”

signal, which is enabled when the write address wraps around, to the FIFO and to

check the property only when the signal is disabled. This simple helper signal sim-

plifies the verification problem at the abstract level dramatically, because we do not

need to consider the case shown in Fig. 4.9 (d). We can ensure that the “wraparound”

signal can be automatically generated by analyzing the pattern of the read and write

pointers of a memory. Different types of memories and properties may require differ-

ent types of signals to be able to abstract read and write pointers. We call this tech-

nique memory address abstraction, because the introduction of a helper signal allows

us to abstract memory address signals. Memory address abstraction combined with

memory abstraction allows a constant or linear time verification of a control-centric

3Averroes automatically detects this potential problem through its structural analysis, and it
does not apply datapath abstraction to the pointers.
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property involving a memory regardless of the number of entries in the memory.
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CHAPTER V

Datapath Refinement

In our counterexample-guided abstraction and refinement (CEGAR)-based data-

path abstraction, feasibility check and datapath refinement methodologies affect the

overall performance significantly. A feasibility check is done at the bit level, so we

need to keep the bit-level formula passed to a solver as small as possible. Otherwise,

the overhead of the feasibility check will outweigh the benefit of datapath abstraction.

Datapath refinement also plays an important role. If we can derive much more pow-

erful datapath lemmas during datapath refinement, our abstraction and refinement

loop will finish in a much smaller number of iterations.

Reveal introduced an automatic procedure for the feasibility check and datap-

ath refinement based on localization, generalization, and minimal unsatisfiable sub-

set (MUS) extraction, but this procedure can be applied only to a combinational

circuit. Thus, we have extended it for application to a sequential circuit as presented

in Section 3.3. In addition, the procedure does not scale to large industrial designs,

because it often generates similar datapath lemmas over and over. To solve this

problem, we introduce localized datapath lemmas and constant propagation-based

generalization techniques. The two techniques are capable of deriving powerful dat-

apath lemmas, so we do not need to generate as many similar datapath lemmas. In

this chapter, we explain these two techniques.
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5.1 Localized Datapath Lemmas

A datapath lemma is a constraint on uninterpreted terms and literals that cor-

respond to abstracted circuit components, and it tightens the initial abstraction by

refuting spurious ACEXTs. As explained earlier, it is important to derive a powerful

datapath lemma that refutes a large number of spurious ACEXTs, because this leads

to a small number of refinement iterations. In Section 3.3, we explained the basic

procedure for deriving a datapath lemma from a solution cube. We now introduce

one additional step at the end to derive a localized datapath lemma. A localized dat-

apath lemma locally constrains an abstract function block by making the connection

between the function block and the peripheral blocks attached to it indirect. This

is done by replacing some sub-expressions in a datapath lemma with local variables,

w, in a transition relation, T (w,x,y,x+). For example, a localized datapath lemma

constrains the function block, M, in Fig. 5.1 by using the abstract-level counterparts

of the local variables, ŵ1 to ŵk. A localized datapath lemma can effectively constrain

the abstract function block that needs to be refined, but it cannot constrain the other

abstract function blocks with the same type that are connected to different local

variables. A globalized datapath lemma, on the other hand, constrains the abstract

function block with independent variables (primary inputs or state variables) and

constants, so it can simultaneously constrain the other function blocks with the same

type. However, a globalized datapath lemma cannot constrain the target function

block effectively, because it constrains all the function blocks in the cone-of-influence

of the target function block at the same time.

We use local variables to significantly reduce the size of a formula passed to a

solver, because common expressions do not need to be repeatedly redefined. During

the reachability computation, on the other hand, we do not use local variables to

represent a state cube, because the number of literals in the state cube must be

reduced. We need to keep the number of literals as small as possible for the efficient
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Figure 5.1: Internal Nodes of a Sequential Circuit
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Figure 5.2: A Part of a Sequential Circuit for the Demonstration of a Refinement
Process

computation of a minimal unsatisfiable subset during our cube enlargement process.

By the same reasoning, we do not use local variables during the derivation of datapath

lemmas, which is basically a process of computing minimal unsatisfiable subsets from

a solution cube. Thus, we need to apply an additional process to derive localized

datapath lemmas.

We will explain this process with a simple example, provided in Fig. 5.2. The

circuit in the diagram is a part of a sequential circuit, and xi, yi, and wi represent a

state element, primary input, and internal wire respectively. Suppose that we found

an ACEXT that assigns y1y2y3w5 to 1110 at a certain cycle. This is obviously a
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spurious ACEXT, because w5 must be true when ŵ3 equals ŵ4. A corresponding

solution cube of the ACEXT is:

w1 ∧ w2 ∧ w3 ∧ ¬Ex 0 0 9(Concat 4 4 1 9(x̂1, x̂2, true))
1.

Note that this is a part of the entire solution cube, and it includes only the literals

derived from the circuit part shown in Fig. 5.2. Its bit-level counterpart is:

w1 ∧ w2 ∧ w3 ∧ ¬{x1, x2, true}[0 : 0].

This is obviously unsatisfiable, and we can find the following bit-level MUS from the

unsatisfiable formula.

¬{x1, x2, true}[0 : 0]

The satisfiability of this formula remains the same even after we replace x1 and x2

with any other variables. Thus, we replace them with the local variables w1 and w2,

which correspond to the internal nodes connected to the concatenation. We then

obtain the following formula.

¬{w1, w2, true}[0 : 0]

The resulting datapath lemma is the negation of the abstract-level counterpart of the

above formula:

Ex 0 0 9(Concat 4 4 1 9(ŵ1, ŵ2, true)).

This datapath lemma injects the simple constraint that the least significant bit of the

concatenation whose last operand is one-bit true is the one-bit true. This datapath

lemma is highly localized in the sense that it involves only the circuit components it is

constraining. It is interesting to note that without the substitution of local variables,

we would end up with the following weak datapath lemma.

Ex 0 0 9(Concat 4 4 1 9(x̂1, x̂2, true)).

This lemma refutes only spurious ACEXTs that assign w1w2 to 11, so we need the

following three more datapath lemmas to refute the other spurious ACEXTs that

assign w1w2 to 00, 01, or 10.

1In this formula, Ex 0 0 9 and Concat 4 4 1 9 are the uninterpreted predicate of extraction and
the uninterpreted function of concatenation respectively as defined in Section 1.1.6.
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Figure 5.3: Graph Representation of a Weak Datapath Lemma
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Ex 0 0 9(Concat 4 4 1 9(K0, x̂3, true))

Ex 0 0 9(Concat 4 4 1 9(K0, x̂2, true))

Ex 0 0 9(Concat 4 4 1 9(x̂1, x̂3, true))

That is, we need four datapath lemmas (with four datapath refinement iterations)

to inject the same constraint without the use of local variables. The number of

datapath lemmas required to inject the constraint increases exponentially (i) if more

multiplexers are involved in the cone-of-influence of the concatenation operator and/or

(ii) if the concatenation operator has more operands. Therefore, it is essential to

derive a localized datapath lemma in a scalable refinement methodology.

We have considered a situation where local variables can be used in a datapath
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1.	 δ	LocalizedLemmaDerivationሺδሻ	ሼ	
2.	 								Gδ	ൌ	DAG	representation	of	δ;	
3.	 								for	ሺ	each	converging	node	or	source	N	in	Gδሻ ሼ
4.	 																F	ൌ	node	of	free	variable;	
5.	 																Gδ	ൌ	Gδ	ሺ	N	↦	Fሻ;	
6.	 																δt	ൌ	EUF	formula	represented	by	Gδ;	
7.	 																if	ሺ	δt	is	always	true	at	the	bit‐level	ሻ	ሼ
8.	 																								ሺN1,	N2ሻ	ൌ	matching	nodes	in	Gδ;	
9.	 																								if	ሺ	N1	is	always	equivalent	to	N2	at	the	bit‐level ሻ ሼ
10.	 																																Gδ	ൌ	DAG	representation	of	ሺN1 ൌൌ	N2ሻ;
11.	 																								ሽelse	if	ሺ	N1	is	always	equivalent	to	N2 at	the	bit‐level ሻ ሼ
12.	 																																Gδ	ൌ	DAG	representation	of	ሺN1 !ൌ	N2ሻ;
13.	 																								ሽ	
14.	 																								Nr	ൌ	node	in	GT	or	GP	that	N	originated	from;
15.	 																								Gδ	ൌ	Gδ	ሺF	↦	Nrሻ;
16.	 																								δ	ൌ	EUF	formula	represented	by	Gδ;
17.	 																ሽ	
18.	 								ሽ	
19.	 								return	δ;	
20.	 ሽ	
	

	 Figure 5.5: Localized Lemma Derivation Algorithm

lemma, but the same idea can be applied to a more complicated case where an

uninterpreted function or predicate can be replaced by local variables. Fig. 5.3 shows

the graph representation of a datapath lemma’s bit-level counterpart (the actual

datapath lemma is represented as an EUF formula). The datapath lemma in the

diagram means that even after we append one bit to the most significant bit of an

adder’s two inputs and remove the most significant bit of its output, the result does

not change. The circuit components in the red box are what we want to constrain,

and the circuit components outside the red box make the datapath lemma too specific

or weak to constrain them. By using local variables, we can derive a much more

powerful datapath lemma as represented in Fig. 5.4. Again, this diagram is the graph

representation of the datapath lemma’s bit-level counterpart, and the actual datapath

lemma is represented as an EUF formula.

The pseudocode of the localized lemma derivation is given in Fig. 5.5. Local-

izedLemmaDerivation() in the pseudocode takes a datapath lemma as an input and
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returns a localized datapath lemma. From the input datapath lemma, we try re-

placing each converging node or source (i.e., a node that has no predecessors) with a

corresponding internal node (line 3). A converging node is a good candidate for sub-

stitution, because it corresponds to a common expression shared by multiple terms.

The literals in a datapath lemma are usually an equality and disequality among terms,

and the substitution of a common expression in both of the sides often does not affect

the evaluation of the literals. In a for loop, we replace the converging node with a

node of an arbitrary free variable (lines 4 to 5) and check to see whether an EUF

formula represented by the replaced graph is always true at the bit level (lines 6 to

7). If it is always true, we replace the free variable with an appropriate local variable

in T or P (lines 14 to 15). The substitution for a free variable in a formula does not

change the satisfiability of the formula, so the datapath lemma after the substitution

is always true (i.e., correct) at the bit-level as well. We can further generalize a data-

path lemma by eliminating irrelevant parts of the datapath lemma through structural

analysis (lines 8 to 13). This time, we traverse Gδ starting from a sink (i.e., a node

that has no successors) and find a pair of nodes at the same distance from the sink

that represent different types of operators. Once we find two such nodes, we check

to see whether they are always the same at the bit-level (line 9). If they are always

the same at the bit-level, we replace Gδ with a graph representing N1 = N2 (line

10). If they are always different at the bit-level (line 11), we replace Gδ with a graph

representing N1 6= N2 (line 12). This generalization technique can replace a large

number of datapath lemmas with few powerful datapath lemmas, so we can verify a

property with a smaller number of datapath lemmas, which leads to more efficient

runtime and memory usage.
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5.2 Constant Propagation Based Generalization

During the analysis on the datapath lemmas derived from our industrial bench-

marks, we found that some of them follow the pattern below.

¬[(wa = Ka) ∧ L(wa, wb, Kb)] (5.1)

In the formula, wa and wb are uninterpreted terms; Ka and Kb are constant terms;

and L(wa, wb, Kb) is an EUF literal involving wa, wb, Kb. In this pattern, a sig-

nal is assigned to a constant, so we can generalize the lemma by applying constant

propagation as in the following formula:

¬L(Ka, wb, Kb). (5.2)

For example, a datapath lemma following the pattern,

¬((x = K0) ∧ (x = ADD(x,K1)))

where K0 and K1 are constant terms of zero and one respectively, can be general-

ized to (K0 6= ADD(K0, K1)) after constant propagation. Contrary to the original

datapath lemma, which is valid only if x equals to K0, the generalized one can be

applied to any signal equal to K0. In other words, the generalized one constrains the

uninterpreted function, ADD, in a more direct or effective way.

The generalized datapath lemma, (5.2), is correct. That is, its negation is unsat-

isfiable at the bit level (i.e., it is always true at the bit level) if the negation of (5.1)

is unsatisfiable at the bit level:

Proof.

(wa = Ka) implies (L(wa, wb, Kb) = L(Ka, wb, Kb)). (∵ Substitution of Equational logic)

Thus, the negation of (5.1), ((wa = Ka) ∧ L(wa, wb, Kb)), is equivalent to

((wa = Ka) ∧ L(Ka, wb, Kb)).
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1.	 MUS	ConstantPropagationሺMUSሻ	ሼ	
2.	 								do	ሼ	
3.	 																M	ൌ	set	of	ሺvariable,	constantሻ	pairs;	
4.	 																for	ሺ	each	literal	L	in	MUS	ሻ	ሼ	
5.	 																								ifሺL	→	ሺv	ൌ	cሻሻሼ	
6.	 																																M	ൌ	M	⋃	ሺv,	cሻ;	
7.	 																																MUS	ൌ	MUS	‐ L;	
8.	 																								ሽ	
9.	 																ሽ	
10.	 																for	ሺ	each	pair	ሺv,	cሻ	in	M	ሻ	ሼ	
11.	 																								MUS	ൌ	MUS	ሺv	↦ cሻ;	
12.	 																ሽ	
13.	 								ሽ	while	ሺ	MUS	has	been	updated	ሻ;	
14.	 								return	MUS;	
15.	 ሽ	
	

	 Figure 5.6: Constant Propagation Algorithm

The former expression is UNSAT at the bit level, so the latter expression is also

UNSAT at the bit level.

In the latter expression, (wa = Ka) is SAT, and wa is not involved in L(Ka, wb, Kb).

Therefore, L(Ka, wb, Kb),the negation of (5.2), is UNSAT at the bit level.

The constant propagation-based generalization technique can be easily applied to

more complicated patterns by applying it multiple times as in the following example.

¬[(wa = Ka) ∧ (wb = Kb) ∧ (wc = wa) ∧ L(wa, wb, wc, Kc)]

→ ¬[(wb = Kb) ∧ (wc = Ka) ∧ L(Ka, wb, wc, Kc)]

→ ¬[(wc = Ka) ∧ L(Ka, Kb, wc, Kc)]

→ ¬[L(Ka, Kb, Ka, Kc)]

Fig. 5.6 provides a pseudocode of a function, ConstantPropagation(), which conducts

this iterative procedure. As discussed in Sections 2.5 and 3.3, a datapath lemma

is a negated conjunction of an MUS, and ConstantPropagation() applies a simple

constant propagation algorithm to the MUS. For each EUF literal in the MUS (line 4),

we collect variable and constant pairs if the literal implies their equality relationship
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(lines 5 to 8). We then replace each collected variable with its corresponding constant

in the MUS (lines 10 to 12). We repeat this collection and substitution process until

no further changes in the MUS are possible (line 13). With this constant propagation-

based generalization, we can reduce the number of datapath lemmas required for a

proof at the abstract level.
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CHAPTER VI

Empirical Evaluation

In this chapter, we demonstrate the scalability of Averroes on three different sets

of proprietary industrial benchmarks. We then discuss the effects of our four advanced

abstraction and refinement optimizations. We would like to note that we use AVR

instead of Averroes in our tables and figures to save space.

6.1 Statistics of Benchmarks and Experimental Setup

Anecdotally, abstracting a design’s datapath is commonly believed to yield scal-

able verification of its control logic. However, unlike verification at the bit level, which

enjoys a large corpus of benchmarks and published results, there is little documen-

tation in the open literature of the effectiveness of datapath abstraction on a diverse

set of word-level benchmarks. The dearth of publicly-available RTL benchmarks that

preserve the word-level semantics of a design was one of the main challenges we faced

when evaluating the effectiveness of Averroes. Realizing that reporting on hand-

crafted synthetic benchmarks would not be convincing, we opted instead to evaluate

performance on a set of 350 industrial Verilog benchmarks that we obtained under
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Table 6.1: Statistics of the Large Industrial Benchmarks

Benchmark Regs FFs
State
Bits

%Regs
%Reg
Bits

AIG
Size

mult hold 1 6 2 258 75 99 24452
mult hold 2 6 2 514 75 100 98052
mult hold 3 6 2 1026 75 100 392708
mult hold 4 6 10 266 38 96 24638
mult viol 1 7 2 268 78 99 25008
mult viol 2 7 2 524 78 100 99119
mult viol 3 7 2 1036 78 100 394797
mult viol 4 7 10 279 41 96 25193
mult viol 5 7 10 279 41 96 25193
mult viol 6 7 10 279 41 96 25190
mult viol 7 7 10 279 41 96 25190

fifo hold 2 28 10 474 74 98 6848
fifo hold 3 44 10 866 81 99 17968
fifo hold 4 76 10 1642 88 99 53904

M0+ hold 56 26 1306 68 98 41630

non-disclosure agreements 1. Of these, 124 were medium-sized “generic” benchmarks

that were used for initial calibration. Their code sizes ranged between 298 and 805

lines; in terms of flip-flops, the smallest had 514 and the largest had 931. Another

211 “big-datapath” benchmarks came from RTL designs consisting of big complicated

datapath components. These benchmarks are the instances of equivalence checks be-

tween the two designs before and after applying high-level optimization. Their code

sizes ranged between 135 and 16658 lines, and they included 6 to 3788 flip-flops.

The remaining 15 benchmarks included 11 large multipliers, 3 FIFO designs, and the

ARM Cortex-M0+ core [70]. The code sizes for these ranged from 116 to 10,226 lines.

Table 6.1 lists additional statistics of the 15 benchmarks including the number of

multi-bit registers (Regs), the number of single-bit flip-flops (FFs), the total number

of state bits (FFs + the number of bits in the registers), the percentage of registers

and register bits in the benchmark, and the number of AND nodes in the AIG repre-

1Unfortunately, we are not allowed to disclose the word-level benchmarks. In fact, the company
that provided the benchmarks did not even want to be identified. We understand this situation,
because the company representatives want to protect the IP of their, or their customers’, RTL
designs. However, to spur further research in this space, it is important to find a way to make such
RTL designs publicly available without compromising their owners’ IP rights.
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sentation [71] of its synthesized bit-level netlist. The multiplier benchmarks involved

checking the sequential equivalence before and after clock gating optimizations; in

four of these the property holds, and in the remaining seven it fails. The FIFO

benchmarks check a “read-after-write” property for different FIFO depths. Finally,

the M0+ experiment involved checking self-equivalence under partial initialization

(i.e., when only a subset of the state bits are initialized on reset); this is sometimes

referred to as self-equivalence with don’t-cares or SEQX. In all cases, the verification

involved an unbounded check to determine if the given safety property holds, on all,

or is violated, by some, reachable states.

We compared the performance of Averroes to that of PDR with and without pre-

processing, because PDR is one of the most reliable and efficient bit-level verification

tools. In its default mode, PDR simplifies the input design before it starts the ap-

proximate reachability loop: PDR invokes the ABC dprove command [72]. Such

pre-processing can greatly reduce the size of the input circuit, which helps with the

subsequent reachability computation. All experiments were run on a 3.2GHz Xeon

desktop computer with a 16 GB memory. A time-out of 10,000 seconds was used for

each verification run.

6.2 Emperical Results for Generic Industrial Benchmarks

Each of the 124 generic benchmarks was provided with a single specified safety

property and were meant to calibrate the performance of Averroes against that of

PDR. Fig. 6.1 compares the runtime of Averroes against that of PDR as a function

of the number of flip-flops in these benchmarks. In all cases, Averroes is faster than

PDR, and, unlike PDR, its performance is largely independent of the number of

flip-flops. This validates the hoped-for benefit of datapath abstraction. Oddly, the

performance of PDR with pre-processing was worse than without! This seems to be

due to the fact that there was not much structural reduction due to pre-processing
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a. PDR with pre-processing vs. Averroes

b. PDR without pre-processing vs. Averroes

0

1

2

3

4

5

6

500 700 900

ru
nt

im
e 

(s
ec

)

number of FFs

PDR
AVR

0

1

2

3

4

5

6

500 700 900

ru
nt

im
e 

(s
ec

)

number of FFs

PDR
AVR

Figure 6.1: Verification Results of the Generic Industrial Benchmarks
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Figure 6.2: Runtimes of Averroes With and Without Datapath Abstraction

causing pre-processing overhead to outweigh its benefit.

We also checked the effectiveness of datapath abstraction by running Averroes

both with and without datapath abstraction and comparing the results. In this

experiment, we used a time-out of 1,500 seconds to save time. In Fig. 6.2, the effec-

tiveness of datapath abstraction can be seen by comparing the green dashed line and

blue dotted line, which correspond to runs of Averroes with and without datapath

abstraction respectively. Note that bit-level Averroes, shown in the blue dotted line,

times out on all large benchmarks and is about 3 orders of magnitude slower than

the word-level abstract version on the smaller ones. Note also that bit-level Averroes

is 1 to 2 orders of magnitude slower than PDR, shown in the red solid line. This is

primarily because our current prototype implementation of the IC3/PDR framework

lacks many of its optimizations and utilizes a much slower solver. Despite this handi-

cap, word-level Averroes is close to 2 orders of magnitude faster than PDR as a result
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of datapath abstraction. Assuming that the performance of the reachability engine

in Averroes can be optimized so that it is comparable to that of PDR, we can expect

the runtime performance of word-level Averroes to improve by one or two orders of

magnitude. The seemingly erratic runtime curves for the smaller benchmarks are due

to the fact that in 15 of these benchmarks, P happens to be an inductive invariant,

that is, it is closed under T. Thus, no reachability computation is needed to establish

P and all three solvers finish very quickly in these cases.

6.3 Emperical Results for Big-Datapath Industrial Bench-

marks

The 211 “big-datapath” benchmarks contain complex datapath components and

their properties are designed to compare a design with an optimized one. Fig. 6.3

compares the runtime of Averroes with the runtimes of PDR with and without pre-

processing. In the graphs, the x- and y-axes are in a logarithmic scale. Because of the

complexity of the datapath components involved, the runtimes of PDR and Averroes

are slower than those of the generic benchmarks. PDR is faster than Averroes when

the number of flip-flops is small. However, PDR slows down very quickly as the

number increases, and it times out in 30 large benchmarks, as can be seen in the

topmost red crosses. The performance of Averroes, on the other hand, is less affected

by the number of flip-flops, and it finishes all the proofs. This runtime patterns

of PDR and Averroes are clearly shown in Fig. 6.4. Averroes becomes faster in

the benchmarks whose PDR runtime is longer than about 100 seconds. The slower

runtimes of Averroes in easier problems are caused by its lack of implementation-level

optimizations, as discussed in Section 6.2. The generic benchmarks in Section 6.2 are

much smaller than these benchmarks; The average code size of the generic benchmarks

(about 574 lines of code) is about 11 times smaller than that of these big-datapath
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a. PDR with pre-processing vs. Averroes 

 

b. PDR without pre-processing vs. Averroes 
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Figure 6.3: Verification Results of the Big-Datapath Industrial Benchmarks
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Figure 6.4: Verification Results of the Big-Datapath Industrial Benchmarks 2
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Table 6.2: Verification Results of the Large Industrial Benchmarks.

Benchmark
Runtime, sec Frames CTI Checks Refinement Clauses Solver Calls

PDR AVR PDR AVR PDR AVR PDR AVR PDR AVR

mult hold 1 T.O. 0.02 3 1 3 4 131720 3 6331714 22
mult hold 2 T.O. 0.02 3 1 3 4 13008 3 1032718 22
mult hold 3 T.O. 0.02 3 1 3 4 5986 3 546718 22
mult hold 4 T.O. 0.04 2 2 2 8 1 8 10 56
mult viol 1 116.15 0.05 2 1 2 5 3 3 21 15
mult viol 2 256.32 0.18 2 1 2 5 2 3 16 15
mult viol 3 1483.92 0.75 2 1 2 5 2 3 16 15
mult viol 4 T.O. 0.54 2 7 2 30 262365 29 8177493 335
mult viol 5 T.O. 11.88 2 22 2 47 252987 69 7961852 3040
mult viol 6 T.O. 299.23 2 115 2 120 247035 275 8102702 55251
mult viol 7 T.O. 1884.52 2 451 2 536 239809 754 7826919 425892

fifo hold 2 14.87 1.35 12 8 12 115 4030 115 94230 1574
fifo hold 3 201.58 12.88 20 16 20 355 17772 317 612147 9711
fifo hold 4 746.94 264.85 31 28 36984 1804 24609 1403 1611008 103590

M0+ hold T.O. 917.76 8 17 5315 1154 3783 911 75898 45755

a. PDR was run with pre-processing.

mult hold 1 T.O. 0.02 2 1 134 4 217 3 1307 22
mult hold 2 T.O. 0.02 2 1 257 4 512 3 3147 22
mult hold 3 T.O. 0.02 2 1 521 4 612 3 2915 22
mult hold 4 T.O. 0.04 2 2 189 8 250 8 1611 56
mult viol 1 0.62 0.05 2 1 256 5 383 3 1439 15
mult viol 2 10.86 0.18 2 1 386 5 532 3 2129 15
mult viol 3 219.93 0.75 2 1 537 5 798 3 3396 15
mult viol 4 T.O. 0.54 2 7 181 30 284 29 1821 335
mult viol 5 T.O. 11.88 2 22 191 47 252 69 1596 3040
mult viol 6 T.O. 299.23 2 115 177 120 273 275 1751 55251
mult viol 7 T.O. 1884.52 2 451 179 536 260 754 1660 425892

fifo hold 2 21.12 1.35 16 8 7191 115 5544 115 192592 1574
fifo hold 3 1252.89 12.88 29 16 28402 355 39937 317 2525164 9711
fifo hold 4 T.O. 264.85 32 28 98122 1804 153114 1403 7618089 103590

M0+ hold T.O. 917.76 8 17 5532 1154 4363 911 77808 45755

b. PDR was run without pre-processing.

benchmarks (about 6147 lines of code). Thus, this performance handicap did not

appear in the runtime graph of word-level Averroes, shown in Fig. 6.1.

6.4 Emperical Results for Large Industrial Benchmarks

Table 6.2 shows the results of our experiments on the 15 large benchmarks; time-

outs are indicated as T.O. As with the generic benchmarks, Averroes was faster than

PDR across this entire set of 15 benchmarks. PDR had particular difficulty with the
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multiplier benchmarks. PDR timed out on eight out of the eleven cases. A possible

explanation for this behavior is that the combinational logic in the multiplier bench-

marks, which involves wide (32- to 256-bit) datapath signals, led to bit-level formulas

that were too large and complicated for PDR to handle effectively. An examination

of the runtime per solver call for mult hold 2 and fifo hold 2 confirms this. These

two benchmarks have similar sizes in terms of state bits, but mult hold 2 leads to

an AIG whose size is more than 14 times larger than that of fifo hold 2, as shown in

Table 6.1. PDR made 3,147 solver calls in 10,000 seconds for the multiplier bench-

mark, averaging about 3.18 seconds per call. The corresponding data for the FIFO

benchmark were 192,592 calls in 21.12 seconds, an average of 110 micro seconds per

call which is more than four orders of magnitude faster. Additionally, the peculiarly

low number of solver calls for mult hold 4 in Table 6.2-a seemed too suspicious; on

closer examination we found out that the first 10 calls were very quick, but the solver

timed out on the 11th. This again suggests a difficult formula that thwarted the

solver.

In contrast to PDR’s performance, Averroes was able to solve all 11 cases, most

in fractions of a second. Other performance metrics, such as the number of net

refinement clauses and number of solver calls, are significantly less than those for

PDR suggesting that datapath abstraction was effective in reducing the “size” of the

reachability search space and that the abstract refinement clauses were much stronger

than their bit-level counterparts in pruning the space. The cases requiring longer run-

times, about 30 minutes for mult viol 7, were due to extremely long counterexample

traces that require the traversal of many frames which, in turn, translate into many

solver calls. For instance, the counterexample trace for mult viol 7 consisted of 1002

transitions which required the traversal of 451 frames and making 425,892 solver calls.

The three FIFO benchmarks involved checking a “read-after-write” property for

the FIFO entries. The FIFO depths (number of entries) ranged from 4 (for fifo hold 2)
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to 16 (for fifo hold 4) and each benchmark had two FIFOs whose width is 32 bits and

two FIFOs whose width is 16 bits. Again, Averroes outperforms PDR on these

benchmarks, on average being about 20 times faster. This is another indication of

the effectiveness of datapath abstraction. To dramatize this, we carried out a para-

metric experiment by increasing the width of the FIFO entries. As expected, the

runtime of Averroes did not change, whereas the runtime of PDR exhibited expo-

nential behavior. However, all three verifiers exhibited exponential behavior as FIFO

depths were increased! Upon reflection, this too should have been expected since

FIFOs are basically “small” memories and datapath abstraction alone is insufficient

to handle them. We present in Table 6.3 data showing the performance of Averroes

when it is augmented with the structural memory abstraction described in [65]. This

type of abstraction can be layered on top of any model checking verifier and can

certainly be added to PDR. But as the column labeled AVR MA in this table shows,

memory abstraction scales the performance of Averroes only to a FIFO depth of

32. Further scaling requires integrating memory abstraction with datapath abstrac-

tion of the memory addresses, as explained in Section 4.2. This is shown in column

AVR MAA. Clearly the combination of memory abstraction and memory address ab-

straction yields a verification flow that is largely independent of memory size. The

linear increase in the runtime of Averroes is due to the bit-level feasibility checks on

wider memory addresses as memory size increases.

The last benchmark in Table 6.2 is the SEQX instance of the Cortex-M0+.

The verification goal here was to show that the M0+ core is self-equivalent when 41

of its state bits are left uninitialized on reset (i.e., their initial value is X or don’t

care). Specifically, SEQX holds when none of these don’t-care values propagate to

observable outputs. Effectively, the verifier is establishing the state equivalence of

241 possible initial states. We should note that SEQX becomes quite trivial if the

number of uninitialized state bits is small. In fact, bit-level verifiers can quickly
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Table 6.3: Runtimes (in Seconds) of FIFO on Various Depths

depth State Bits PDR AVR AVR MA AVR MAA

22 474 14.87 1.35 1.8 8.28
23 866 201.58 12.88 10.92 20.57
24 1642 746.94 264.85 120.51 21.93
25 3186 T.O. T.O. 2538.49 23.31
26 6266 T.O. T.O. T.O. 19.17
27 12418 T.O. T.O. T.O. 24.02
28 24714 T.O. T.O. T.O. 20.58
29 49298 T.O. T.O. T.O. 21.15
210 98458 T.O. T.O. T.O. 27.9
211 196770 T.O. T.O. T.O. 29.02
212 393386 T.O. T.O. T.O. 23.57
213 786610 T.O. T.O. T.O. 33.79
214 1573050 T.O. T.O. T.O. 46.85
215 3145922 T.O. T.O. T.O. 57.04
216 6291658 T.O. T.O. T.O. 79.19

solve such problems using structural hashing techniques. However, as the number of

uninitialized state bits increases, structural hashing ceases to be effective (not very

many equivalent signals to merge) and bit-level verifiers fail. This is clearly shown in

Table 6.2: PDR was not able to prove self-equivalence; Averroes required about 15

minutes to show that SEQX holds for M0+.

6.5 Effects of Advanced Features in Averroes

In Chapters IV and V, we discussed two advanced abstraction optimizations,

circuit components decomposition and property-directed concretization; and two ad-

vanced refinement optimizations, localized datapath lemmas and constant propaga-

tion. To demonstrate the effectiveness of these optimizations, we need a reasonably

large number of benchmarks that require many datapath refinement iterations for the

proofs. Among our industrial benchmark suites, the big-datapath benchmarks meet

this requirement. Thus, we focus on these benchmarks in this section. To check the

effectiveness of the advanced abstraction optimizations, circuit components decom-

position and property-directed concretization, we ran Averroes without each of the
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optimizations and Averroes with neither optimizations. Fig. 6.5 shows the runtime

distribution with a timeout of 10,000 seconds. As can be seen in the green dashed

line and the black solid line, Averroes (with all the optimizations) finished all the 211

proofs, but it finished only about 40% of them without the abstraction optimizations.

Between the two optimizations, the effect of the circuit components decomposition

optimization is more dramatic; Averroes finished the proofs in only about half of the

instances as shown by the red long-dashed line. This dramatic difference shows how

important the classification as data or control is. The misclassification can cause

many iterations of datapath refinements, leading to the slower runtimes.

The effect of the property-directed concretization optimization is less dramatic,

but it leads to a non-trivial difference; Averroes timed out in about 10% of the entire

instances without the concretization optimization. We can achieve the best results

by combining the two optimizations. Circuit components decomposition separates

entangled signals, so property-directed concretization can detect a smaller part of

a circuit to be concretized. This yields a smaller formula, which leads to the faster

runtime of a solver and thus Averroes. Therefore, Averroes with the two optimizations

proved all the instances, which could not be achieved with only one of them.

It is also interesting to compare Averroes with bit-level approaches. The orange

dash-dot line and purple dash-dot-dot line represent the results of PDR and bit-

level Averroes (i.e., Averroes without datapath abstraction) respectively. They both

proved 181 instances (about 86% of the entire set of instances) before timing out,

but bit-level Averroes is much slower than PDR. It took only about 300 seconds for

PDR to finish the proofs of the 181 instances, but it took about 8,800 seconds for

bit-level Averroes. This again shows that the performance of Averroes can be further

improved by implementation level optimizations. Even without those optimizations,

our (word-level) Averroes finished all the proofs in about 1,500 seconds, including the

30 instances that bit-level approaches could not solve in 10,000 seconds.
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Table 6.4: Number of Learned Datapath Lemmas

Index No-Optimizations Localized-Lemma Constant-Propagation Both-Optimizations

1 7560 4 7374 4
2 36 36 9 9
3 189 16 14 14
4 14 16 14 14
5 2217 18 2216 18
6 2208 20 2206 20
7 2236 20 2243 20
8 2217 21 2232 21
9 2224 22 2220 22
10 3671 22 2221 22
11 2227 22 2226 22
12 2238 24 2243 24
13 402 24 576 26
14 2221 36 2229 36
15 100 69 94 69
16 102 74 98 74
17 102 82 98 82
18 166 218 223 95
19 194 131 188 131
20 214 211 164 132
21 173 147 175 137
22 182 141 182 141
23 192 141 190 141
24 190 142 190 142
25 184 142 182 142
26 180 143 186 143
27 192 146 182 146
28 196 148 188 148
29 301 168 308 153
30 278 193 172 154
31 309 157 358 159
32 316 160 330 165
33 541 277 541 277
34 220 290 335 303

Average 999.76 102.38 953.15 94.29

Fig. 6.5 shows the performance results with the datapath refinement optimiza-

tions enabled. Without the refinement optimizations, Averroes timed out in 10 in-

stances (about 5% of the instances) as shown by the green dashed line of Fig. 6.6.

It is obvious that they helped improve the performance of Averroes, but their effects

are not clearly observable in this graph. Thus, to highlight the effects of the datapath

refinement optimizations, we disabled advanced abstraction optimizations and com-

pared the number of datapath lemmas learned during the proof instead of runtime
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Table 6.5: Runtimes (seconds) of PDR and AVR With Various Settings

without refinement optimizations with refinement optimizations

AVR Without Abstraction Optimizations 5905.21 5743.68
AVR Without Decomposition 5049.2 4793.63
AVR Without Concretization 1089.87 1042.68
AVR 575.59 137.5

Bit-Level AVR (Without Datapath Abstraction) 1942.16
PDR 1446.35

as shown in Table 6.4. After the disabling of the abstraction optimizations, Averroes

solved 90 out of 211 instances in 10,000 seconds. Among the 90 benchmarks, only 34

benchmarks required datapath refinements during the proofs, so we made the com-

parison of the number of datapath lemmas in these 34 benchmarks. Table 6.4 lists the

34 benchmarks that yielded datapath lemmas. As the table makes clear, the localized

datapath lemmas optimization yields about a 10 times smaller number of datapath

lemmas on average. In the best case, the first instance, it reduced the number of

datapath lemmas from 7,560 to only 4. This dramatic effect comes from a localized

datapath lemma that focuses on a small subset of circuit components. The localized

lemma directly and effectively constrains the datapath components involved, which

leads to this huge reduction. The effect of constant propagation is not as impressive;

it leads to about a 1.05 times (up to 13.5 times) smaller number of datapath lemmas

on average. Constant propagation turns a localized lemma into a globalized datapath

lemma, which can simultaneously constrain scattered datapath components, and this

result shows the limitation of a globalized datapath lemma. Even though the effect of

the constant propagation is limited on average, it sometimes plays an important role

when the localized datapath lemmas optimization is not that effective. This effect

can be seen in the 2nd, 18th, and 20th instances. Using only the localized datapath

lemmas optimization, we had no improvement, but with the addition of the constant

propagation, the improvement was marked: the number of datapath lemmas was

reduced by about two thirds with the combined optimizations.

The runtime comparison gives us a better intuition about the performance impact
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of our optimizations. As can be seen in Table 6.5, the average runtime of Averroes

with all the optimizations (137.5 seconds) is about 43 times less than that of Averroes

without any optimizations (5,905.21 seconds). Averroes (with all the optimizations)

is also faster than PDR by about 11 times. In the table, we counted the runtime of

an unsolved instance as the time-out value, 10,000 seconds. Thus, the actual runtime

gap can be much longer than this, because Averroes (with all the optimizations)

proved all the instances before timing out when the other ones timed out in some

instances2. The comparison between bit-level Averroes and PDR can be misleading

because of the timed-out instances; their average runtimes are reduced to 606.6 and

28.62 seconds respectively when we exclude the 30 out of 211 instances that timed

out. That is, bit-level Averroes is about 21 times slower than PDR.

In sum, our experimental results clearly demonstrate that the scalability of Aver-

roes is significantly improved by the advanced abstraction and refinement optimiza-

tions we have developed. In the 211 large-datapath benchmarks, Averroes with the

optimizations proved about more than two times more instances with a speed-up of

more than 43 times. Among the optimizations, the effects of the circuit components

decomposition and the localized datapath lemmas were much more notable than the

other optimizations. However, the other optimizations also made measurable contri-

butions when these optimizations were less effective.

2When we conducted the same experiment with a time-out of 15,000, Averroes (with all the
optimizations) was about 65 times faster than Averroes without any optimizations and about 16
times faster than PDR
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CHAPTER VII

Conclusions and Future Work

In this chapter, we discuss conclusions and future directions for our research.

7.1 Conclusions

The computational complexity of verification problems is often caused by irrel-

evant details associated with them; we can achieve a scalable way to attack those

problems by abstracting away the irrelevant details. We combine two orthogonal

abstraction techniques, structural abstraction and approximate reachability, which

yields a scalable system for the verification of control-centric properties in hardware

designs containing wide datapaths and complex control logic. Other abstraction ap-

proaches have been shown to work well in different domains, but structural abstraction

seems to provide the most scalability for the particular control logic bugs targeted in

our approach.

Our verification system, Averroes, introduced in Chapter III, applies structural

abstraction, which classifies circuit components into datapath and control logic and

abstracts the datapath as uninterpreted functions or predicates, producing abstract

formulas in the EUF logic. Averroes then conducts an IC3/PDR style approximate

reachability computation on the abstract formulas. Averroes defines the abstract state
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space with a set of state terms and predicates, which is fixed during the reachability

computation. If the granularity of this abstract state space is not fine enough to

prove the property, the granularity is increased by introducing more state terms or

predicates during refinement. There are two key advantages in our approach. First,

the reachability computation is performed at the abstract level in EUF logic. Thus,

every query to a solver is made with EUF formulas, which tend to be simpler and

easier to solve than the corresponding bit-level equivalents. Second, the reachability

computation is conducted in the small fixed-size abstract state space. This makes the

computation more efficient and guarantees the termination of the computation.

The performance of Averroes, however, is highly dependent on the initial abstrac-

tion and refinement strategies. Inappropriate choices of these can slow the compu-

tation at the abstract level and lead to a huge number of abstraction refinement

iterations. For better initial abstraction, Averroes introduced the circuit components

decomposition and the property-directed concretization optimizations described in

Chapter IV. The optimizations detect misclassification of datapath and control logic

by a structural analysis, and then correct the misclassification by decomposing cir-

cuit components in the word-level netlist and then concretizing a small part of the

netlist. For better refinement, Averroes introduced the localized datapath lemmas

and the constant propagation-based generalization optimizations detailed in Chap-

ter V. The localized lemmas optimization derives datapath lemmas that constrain

datapath components directly, and thus effectively, by means of their local variables.

Those datapath lemmas, called localized datapath lemmas, allow us to refute a large

number of spurious counterexamples with a small number of simple lemmas. The con-

stant propagation-based generalization optimization applies constant propagation to

datapath lemmas to eliminate redundant terms, yielding more compact and powerful

datapath lemmas.

Our experimental evaluation, presented in Chapter VI, demonstrated that Aver-
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roes outperforms a bit-level approach significantly on three different sets of industrial

benchmarks. This result suggests that scalability is quite achievable by augmenting

bit-level reasoning with RTL word-level abstractions. In the subsequent experiment,

we examined the effect of each of the four advanced abstraction and refinement opti-

mizations in Averroes. The effects of the circuit components decomposition and the

localized datapath lemmas optimizations were much more dramatic than those of the

other optimizations, showing that the decomposition of unnecessarily concatenated

circuit components and the derivation of localized datapath lemmas are indispensable

parts of our abstraction and refinement framework.

7.2 Future Work

While this thesis presented a complete and fully automatic procedure for verifying

the safety properties of a hardware design, it could be further extended in a number

of ways, as follows.

1. Supporting liveness properties

Averroes currently supports only safety properties, but we can extend it for

liveness properties. One easy solution would be to adopt the liveness-to-safety

conversion algorithm proposed in [73, 74]. We may have to make an extra effort

to make it suitable for abstract-level verification. This extension will allow us to

support various features in SystemVerilog assertion (SVA) [75], which is widely

used in industry.

2. Investigating a more efficient way to derive a localized datapath

lemma

We demonstrated that a localized datapath lemma can effectively constrain

datapath components. Currently, we use a two-step procedure to derive the

localized lemma. We first derive a datapath lemma from a solution cube repre-
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sented by global variables such as primary inputs and state variables. We then

convert it into a localized lemma by using a structural analysis followed by sat-

isfiability checks. Instead of this two-step approach, we can derive a localized

lemma directly from a solution cube represented by local variables. When we

represent a solution cube with local variables, we end up with a solution cube

consisting of many equalities between each local variable and its corresponding

term. Thus, one main challenge of this new approach would be to efficiently

compute minimal unsatisfiable subsets from the solution cube including many

term-level literals.

3. Constructing a database of datapath lemmas

Some datapath lemmas can be shared across many verification problems origi-

nated from similar designs. Thus, we can avoid re-deriving the same datapath

lemma by constructing a database of the lemmas. There are two challenges in

this approach. First, if we introduce many datapath lemmas at the beginning

of each verification run, a formula passed to an SMT solver will become large.

This can slow down an SMT solver significantly. Thus, we need to select a small

number of relevant datapath lemmas from the database at each verification run.

Second, we may need to modify some of the datapath lemmas in the database

for different variable names in different designs.

4. Extending the memory abstraction technique

We adopted Bjesse’s memory abstraction technique and made an improvement

for our abstract-level reasoning. We have tested our improved technique, mem-

ory address abstraction, only with FIFOs. Thus, we need to test our technique

with different types of memories such as stack and content-addressable mem-

ory (CAM). Furthermore, some opportunities for improving Bjesse’s memory

abstraction technique remain. For example, we might be able to replace his

simulation-based refinement process in the abstraction technique with another
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one utilizing an SMT solver.

125



BIBLIOGRAPHY

126



BIBLIOGRAPHY

[1] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV’00. Springer Berlin / Heidelberg (2000) 154–
169

[2] Bradley, A.R.: SAT-based model checking without unrolling. In: VMCAI’11,
Springer-Verlag (2011) 70–87

[3] Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: FMCAD’11, IEEE (2011) 125–134

[4] Lee, S., Sakallah, K.A.: Unbounded scalable verification based on approximate
property-directed reachability and datapath abstraction. In: CAV’14, Springer
(2014) 849–865

[5] Rota, G.C.: The number of partitions of a set. American Mathematical Monthly
(1964) 498–504

[6] Silva, J.P.M., Sakallah, K.A.: GRASP-new search algorithm for satisfiability.
In: ICCAD’96, IEEE Computer Society (1996) 220–227

[7] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: DAC’01, ACM (2001) 530–535
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