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Abstract	
	

	
In	the	first	part	of	this	dissertation,	we	study	the	binding	kinetics	and	

equilibrium	thermodynamics	of	suspensions	of	lock	and	key	anisotropic	colloidal	

particles	that	self-assemble	in	the	presence	of	polyethylene	oxide	polymeric	

depletant.	Using	confocal	laser	scanning	microscopy	and	particle	tracking	methods,	

we	measure	the	kinetic	pathways	of	interaction	of	lock	and	key	particles.	We	find	

that	specific	lock-key	bonds	can	be	formed	by	the	diffusion	of	a	key	into	the	lock	

dimple	from	bulk	or	by	the	surface	diffusion	of	a	key	particle	that	binds	to	the	

spherical	surface	of	the	lock	and	diffuses	on	its	surface	until	finding	and	binding	to	

the	lock	dimple.	We	compare	experimental	results	to	a	Smoluchowski	diffusion-

migration	model	and	find	quantitative	agreement	between	both.	

	 We	then	investigate	the	equilibrium	thermodynamic	behavior	of	lock	and	key	

colloids	by	varying	the	degree	of	shape	complementarity	between	the	lock	dimple	

and	the	key	particles.	We	perform	binding	experiments	with	five	different	key	

particles	whose	sizes	are	smaller	or	larger	than	the	dimple	cavity	size,	and	find	

lower	free	energies	of	formation	for	key	particles	that	are	smaller	than	the	dimple	

radius	of	curvature.	Moreover,	we	find	that	binding	affinity	is	asymmetric	about	this	

optimum:	smaller	keys	have	better	overall	binding	affinity	to	the	lock	dimple	than	

keys	larger	than	the	lock	dimple.	Our	results	are	in	agreement	with	previous	
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modeling	and	simulation	work	that	predicts	optimized	binding	and	formation	of	

specific	lock-key	bonds	for	spherical	key	particles	smaller	than	the	lock	cavity	

radius.		

	 In	the	second	part	of	this	dissertation,	we	investigate	emerging	propulsion	of	

transient	associations	of	colloidal	spheres	in	binary	suspensions	subject	to	a	low	

frequency	oscillatory	electric	field	that	acts	perpendicular	to	the	plane	of	motion	of	

the	particles.	Particle	propulsion	under	perpendicular	oscillatory	electric	fields	has	

been	observed	before	for	rigid	colloidal	dimers	and	asymmetric	dumbbells.	We	

observe	propulsion	arise	in	a	binary	suspension	of	unequally	sized	unbound	

particles	that	revert	back	to	normal	diffusion	upon	turning	off	the	electric	field.	We	

attribute	the	active	motion	of	particles	to	unbalanced	electrohydrodynamic	flow.	We	

characterize	large	particle	motion	using	confocal	microscopy	and	particle	tracking	

algorithms,	and	find	that	the	mean-squared	displacement	of	the	particles	is	well	fit	

by	single-particle	active	motion	models	of	mean-squared	displacement.	We	observe	

that	the	propulsion	speed	of	large	particles	increases	with	increasing	applied	

voltage	and	decreases	with	increasing	frequency	of	oscillation.	Moreover,	we	

characterize	the	short-time	ballistic	motion	of	the	particles	and	find	it	to	depend	on	

the	number	of	small	particle	neighbors	surrounding	the	large	particle,	where	

particles	with	2	and	3	small	neighbors	move	fastest.		

	



	 1	

Chapter	1 	
Introduction	

	

The	study	of	colloidal	particles	and	suspensions	is	part	of	the	study	of	soft	

condensed	matter:	matter	that	is	easily	deformed	by	external	forces	or	thermal	

fluctuations.	Colloidal	particles	are	mesoscopic	building	blocks	that	can	be	used,	by	

tuning	their	interactions,	to	produce	artificial	soft	matter	via	self-assembly	in	

equilibrium	and	out-of-equilibrium	systems.	In	this	dissertation	we	investigate	the	

equilibrium	self-assembly	kinetics	and	thermodynamics	of	anisotropic	colloidal	

particles	interacting	via	polymer-mediated	depletion.	We	also	investigate	out-of-

equilibrium,	emerging	active	motion	in	a	suspension	of	binary	isotropic	colloids	

driven	by	an	electric	field.	

Colloidal	particles	

Colloidal	suspensions	are	made	of	particles	suspended	in	a	fluid,	where	the	

particles	are	a	few	nanometers	to	a	few	microns	in	size,	and	the	fluid	can	be	treated	

as	a	continuum	medium.1	When	in	suspension,	colloidal	particles	diffuse	by	

Brownian	motion	owing	to	thermal	forces	imparted	to	them	by	the	surrounding	

medium.	Due	to	their	size,	colloidal	particles	can	be	studied	with	diverse	microscopy	

methods,	from	scanning	and	transmission	electron	microscopy	to	brightfield	and	

confocal	laser	scanning	microscopy2.	Model	spherical	colloids	have	been	used	to	



	 2	

understand	the	liquid	state3,4,	the	phase	behavior	of	hard	spheres5-7,	and	glassy	

dynamics8.	Although	much	has	been	learned	from	colloidal	spheres,	their	isotropic	

interactions	result	in	the	formation	of	structures	with	relatively	simple	symmetry	

and	high	coordination	number.	Nature,	on	the	other	hand,	uses	anisotropic	

interactions,	that	is,	directed	and	selective	interactions	between	atoms	and	

molecules	to	form	materials	as	complex	as	the	double	helix	of	DNA	or	protein	

crystals	on	the	surface	of	bacteria9.	Introducing	anisotropic	interactions	to	colloidal	

particles	can	lead	to	the	fabrication	of	materials	with	similar	complexity.	

	In	recent	years,	different	synthetic	routes	to	make	anisotropic	colloidal	

particles	have	been	developed,	spurred	by	the	abundance	of	different	colloidal	

synthesis	methods.	Chemically	patchy	particles	as	well	as	shape	anisotropic	

particles	have	been	synthesized	in	the	lab,	enabling	scientists	to	study	the	effect	of	

anisotropy	on	particle	self-assembly10	and	to	predict	what	particle	shapes	and	

interactions	would	lead	to	the	efficient	assemblies	of	a	given	target	structure11.	

Examples	of	patchy	particles	include	tri-block	metallodielectric	Janus	particles12,	

particles	with	DNA	patches	on	its	surface13,	and	ellipsoids	with	chemically	patchy	

surfaces14.	Patchy	particles	may	also	be	created	using	methods	like	

electrohydrodynamic	co-jetting15,	placing	different	types	of	materials	into	a	single	

particle,	which	can	be	very	useful	for	applications	like	drug	delivery	and	drug	

therapy10.	Shape	anisotropic	(anisometric)	particles	include	rough	spheres11,	

ellipsoidal	particles16,	discoids17,	branched	nanoparticles18,	colloidal	molecules	with	

controlled	bond	angles19,	and	dimpled	particles20-22,	among	many	others.	
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Lock	colloids	

Recently,	dimpled	colloids	made	of	3-trimethoxysilylpropyl	methacrylate	

(TPM)	have	been	synthesized	in	high	yield	via	a	two-step	polymerization	reaction.23	

A	polycondensation	step	leads	to	the	formation	of	TPM	droplets,	and	a	subsequent	

free	radical	polymerization	step	leads	to	the	formation	of	a	thin	elastic	shell	on	the	

surface	of	the	droplets	that	eventually	buckles	to	form	a	dimple	on	the	particle.	The	

dimple	on	the	surface	of	these	lock	colloidal	particles	is	a	region	of	concave	

curvature	on	the	surface	of	the	otherwise	spherical	(convex)	particle	surface.	The	

dimple	radius	of	curvature	is	different	than	the	lock	particle	radius.	Lock	and	key	

colloids	are	a	coarse	model	of	Fischer’s	lock-and-key	model	for	receptor-ligand	

binding.20	There	are	other	synthetic	routes	that	can	be	used	to	make	dimpled	

particles:	seeds	or	templates	can	be	used	to	make	lock	particles	with	perfectly	

shaped	dimples	of	ellipsoidal,	cubic,	or	spherical	shape24.	Lock	particles	with	

multiple	cavities	have	also	been	experimentally	realized.25	

	

Interactions	between	colloidal	particles	

The	properties	of	colloidal	suspensions	and	the	assemblies	they	form	are	

dependent	on	the	interactions	between	the	particles.	Colloidal	particles	suspended	

in	a	fluid	interact	with	each	other	via	electrostatic	and	van	der	Waals	forces,	as	well	

as	hard-core	excluded	volume	repulsion,	among	other	interactions.26	Hard-core	

repulsion	arises	because	particles	occupy	a	finite,	impenetrable	volume.	The	

screened	electrostatic	interaction	arises	due	to	Coulombic	interaction	of	the	
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particles’	diffuse	double	layers,	which	surround	charged	particles	in	suspension.	It	is	

a	repulsive	interaction	for	equally	charged	particles	and	attractive	for	oppositely	

charged	ones.	The	electrostatic	interaction	potential	can	be	tuned	by	tuning	the	

electrolyte	concentration	of	the	suspension.	Dispersion	or	van	der	Waals	

interactions	between	particles	occur	due	to	quantum	mechanical	effects	regarding	

time-correlations	in	the	fluctuation	of	particle	polarizability,	and	can	be	tuned,	for	

example,	by	changing	the	type	of	solvent	the	particles	are	dispersed	in.	The	

Derjaguin-Landau-Verwey-Overbeek	(DLVO)	theory	of	colloidal	interactions	

includes	the	effect	of	electrostatic	and	van	der	Waals	forces,	and	adequately	

describes	the	interaction	of	colloidal	particles	in	suspension	in	electrolyte	

solutions1.	In	systems	where	DLVO	forces	cause	aggregation	of	particles,	

suspensions	can	be	stabilized	by	the	use	of	steric	agents,	which	preferentially	

deposit	themselves	on	or	are	grafted	onto	the	surface	of	particles	creating	a	steric	

energy	barrier	that	prevents	particle	aggregation.	Chemical	patchiness	and	shape	

anisotropy	introduce	orientational	effects	to	the	above	mentioned	pair	interactions.	

For	example,	metallodielectric	Janus	particles	have	stronger	van	der	Waals	

interactions	when	the	metallic	hemispheres	of	the	particles	come	together	than	

when	their	dielectric	hemispheres	are	in	contact.27	

	

Depletion	interaction		

Colloidal	particles	may	also	interact	with	each	other	through	the	depletion	

interaction.	The	depletion	interaction	between	particles	arises	whenever	large	
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particles	are	in	the	presence	of	smaller	particles	or	cosolutes.		It	is	entropic	in	origin,	

since	it	results	from	excluded	volume	interactions,	namely	the	exclusion	of	smaller	

particles	from	the	gaps	between	larger	particle	surfaces.28	Large	particles	in	the	

presence	of	small	depletants	have	a	depletant	exclusion	zone	around	their	surface,	

the	thickness	of	which	is	given	by	the	radius	of	the	small	depletants,	since	the	

centers	of	the	depletant	particles	cannot	get	any	closer	to	the	surface	of	the	large	

particles	than	this	distance.	When	the	surfaces	of	large	particles	are	within	a	

distance	less	than	the	size	of	the	depleting	particles,	an	osmotic	pressure	difference	

pushes	the	large	particles	together.	This	osmotic	pressure	difference	arises	due	to	

the	different	concentrations	of	depletant	particles	in	the	gap	region	between	the	

particles	and	elsewhere.	When	two	large	particles	come	together,	a	volume	equal	to	

the	overlap	of	the	particles’	depletion	zones,	ΔV,	is	made	available	for	the	depletant	

particles	to	occupy.	This	increases	the	entropy	of	the	system,	which	lowers	the	free	

energy	of	the	overall	suspension.		

The	depletion	pair	interaction	potential	Φdepletion	is	described	by	

𝜙!"#$"%&'( =  −Π!"#$"%&'( Δ𝑉,	 	 	 	 	 	 	 							(1)	

where	Πdepletant	is	the	depletant	osmotic	pressure.	This	equation	suggests	ways	of	

tuning	the	depletion	interaction	potential:	the	depletant’s	osmotic	pressure	or	the	

overlap	of	particle	depletion	zones	can	be	changed	by,	for	example,	use	of	

thermoresponsive	depleting	polymer	particles,	such	as	pNIPAM	(poly(N-

isopropylacrylamide)),	or	by	engineering	particle	shapes	so	as	to	impart	

directionality	to	the	depletion	interaction.	Particles	such	as	lock	colloids,	described	
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above,	are	good	candidates	to	study	how	the	depletion	interaction	mediates	

interactions	between	particles	with	anisometry.			

There	have	been	a	few	studies	that	investigate	the	effect	of	changing	ΔV	on	

the	depletion	interaction.	Notably,	Dinsmore	et	al.29	studied	how	surface	

microstructure	leads	to	the	creation	of	“localized	entropic	force	fields”	that	effect	

particle	motion	near	edges	when	in	the	presence	of	depleting	particles.	Kraft	et	al.30	

reports	that	anisotropic	particles	with	regions	of	differing	surface	roughness	lead	to	

the	formation	of	colloidal	micelles	in	the	presence	of	depletants.	Lock	and	key	

colloidal	self-assembly,	which	is	the	focus	of	the	first	part	of	this	disseration,	has	

also	been	studied	in	the	presence	of	non-adsorbing	polymeric	depletants.20	We	

focus	on	studying	the	binding	kinetics	of	lock-key	colloids	and	the	effect	shape	

complementarity	has	on	the	equilibrium	thermodynamic	behavior	of	lock-key	

colloidal	suspensions	interacting	via	the	depletion	interaction.	Shape	

complementarity	between	lock	and	key	colloids	has	a	direct	effect	on	the	size	of	the	

overlap	of	exclusion	zones,	Δ𝑉,	and	therefore	on	the	interaction	between	lock	and	

key	particles.	

	

Colloidal	self-assembly	

Colloidal	self-assembly	is	a	spontaneous,	reversible	thermodynamic	process	

dictated	by	the	minimization	of	free	energy	of	the	system.	In	constant	volume	

systems,	the	total	free	energy	of	the	system	--	the	Helmholtz	free	energy	,	F--	is	due	

to	the	internal	energy	U	and	the	entropy	of	the	system	S,	and	is	given	by	F	=	U	–	TS,	
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where	T	is	the	temperature	of	the	system.	(In	isobaric	systems,	the	Gibbs	free	

energy	is	minimized.)	The	types	of	structures	that	building	blocks	can	assemble	into	

depend	on	the	types	and	the	strength	of	interactions	existing	between	particles	-	the	

internal	energy	-		and	how	many	microstates	the	system	has	access	to	–	its	entropy.A	

Spherical	colloidal	particles	with	hard-core	repulsion	self-assemble	into	

symmetric	structures	at	sufficiently	high	volume	fraction	as	a	consequence	of	the	

spherical	symmetry	of	their	interactions,	whereas	spheres	with	short-ranged	

attractive	interactions	may	form	gels37.	Spherical	particles	form	close	packed	

assemblies	where	particles	have	a	coordination	number	as	high	as	12.	For	

anisotropic	colloidal	systems,	particle	location	and	orientation	can	result	in	the	

formation	of	materials	with	other	symmetries38-40	because	of	the	directional	

dependence	of	particle	interactions,	which	may	result	in	the	formation	of	structures	

with	low	coordination	number.41	Anisotropic	building	blocks	may	prefer	to	orient	

themselves	in	a	particular	way	to,	for	example,	minimize	internal	energy	and,	thus,	

their	free	energy.		

In	systems	of	particles	that	interact	through	anisotropic	interaction	

potentials,	differing	energy	scales	at	different	particle	relative	orientations	can	lead	

																																																								
A	Structure	formation	in	isometric	and	anisometric	particle	systems	can	be	realized	
solely	by	the	maximization	of	entropy.	Recent	studies	of	“entropically	patchy	
particles”	31-36	have	shown	that	entropy	can	order	particles	that	interact	through	
hard-core	or	excluded	volume	interactions.	Entropic	patches	in	anisometric	
particles	lead	to	the	emergence	of	directional	entropic	forces34.	Maximization	of	
entropy	does	not	always	imply	the	existence	of	disorder	in	a	system;	if	there	are	
more	ways	to	organize	(order)	a	collection	of	particles	in	a	system	than	to	keep	the	
particles	in	disordered	configurations,	minimization	of	free	energy	dictates	that	
particles	will	organize.	
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to	the	frustration	of	structure	formation	due	to	kinetic	trapping	of	the	system	as	it	

attempts	to	minimize	its	free	energy42.	Particles	may	remain	stuck	in	metastable	

configurations17	and	form	arrested	structures.	In	order	to	make	ordered	materials	

out	of	anisotropic	colloids,	we	need	to	understand	how	their	constituents	interact,	

and	how	to	tune	or	control	anisotropic	interactions	for	assembly	purposes.	This	

understanding	could	lead	to	the	design	of	anisotropic	particles	that	interact	with	

each	other	in	a	rational,	prescribed	manner43,44.	A	promising	way	to	control	the	self-

assembly	of	anisotropic	particles	is	by	engineering	the	free	energy	as	well	as	

diffusivity	landscapes	of	interacting	particles45.	

Salient	examples	of	anisotropic	colloidal	assemblies	include	the	formation	of	

an	ordered	cubic	crystalline	phase	of	cubic-shaped	colloids	interacting	via	the	

depletion	interaction38,	as	well	as	the	formation	of	an	open	Kagomé	lattice	with	

patchy	tri-block	metallodielectic	Janus	particles	in	electrolyte	solution12.	In	the	

latter,	a	Kagomé	lattice	is	formed	when	each	metallic	patch	in	a	particle	is	in	contact	

with	two	other	particles’	metallic	patches.	This	leads	to	the	formation	of	an	open,	

flexible	lattice	with	different	pore	sizes	and	interesting	mechanical	behavior.40,46	

Patchy	colloids	with	different	types	of	DNA	strands	on	its	surface	serve	as	an	

additional	example	of	colloids	with	valence	and	directional	interactions41	that	form	

colloidal	molecules	with	suitable	partners.		

Simulation	work	regarding	the	self-assembly	of	lock-and-key	colloids	has	

shown	sensitive	dependence	of	the	resulting	structures	on	the	shape	of	the	lock	

dimple.47	Other	simulation	work	has	shown	that	lock-key	colloidal	molecules	–	
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comprised	of	one	central	key	surrounded	by	one	to	four	locks	--	may	form	

structures	with	complex	symmetries,	depending	on	bond	length	and	relative	

particle	size.48	In	this	dissertation,	we	investigate	how	readily	lock	and	key	colloids	

associate	to	form	specific	lock-and-key	bonds,	which	precludes	the	formation	of	

lock-key	colloidal	molecules.	Optimizing	the	assembly	of	lock-key	colloidal	

molecules	lays	the	foundation	for	subsequent	investigation	of	structure	formation	in	

self-assembled	lock-key	systems.	

Colloidal	assembly	can	also	be	aided	by	the	use	of	external	fields	such	as	

gravitational49,	electromagnetic50,51,	and	shear	flow	fields52.	Externally	applied	

forces	help	particles	overcome	kinetic	and	energy	barriers	to	assembly,	changing	

the	free	energy	landscape	of	interaction	between	building	blocks.	Changes	in	

temperature	can	also	be	strategically	used	to	control	the	quenching	of	structures	of	

colloidal	particles,	specifically	those	where	single-stranded	DNA	is	used	to	induce	

particle	interactions53,54,	those	that	use	polyethylene	oxide	as	depletant55,	or	that	

use	thermoresponsive	depletant	polymers	whose	radius	of	gyration	is	temperature-

dependent	(and	therefore	result	in	temperature-dependent	ΔVoverlap),	like	

pNIPAM.56	

Application	of	external	fields	may	also	lead	to	the	actuation	of	reversible	

colloidal	structures,	which	enable	switching	from	one	configuration	of	particles	to	

another.	Recently,	alternating	current	(AC)	electric	fields	applied	perpendicular	to	

the	plane	of	particle	motion	were	observed	to	induce	anisotropic	interactions	

between	spherical	particles,	resulting	in	the	reversible	formation	of	colloidal	
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molecules	and	open	structures	of	spherical	particles.57	Recently,	metallodielectric	

Janus	ellipsoids	were	observed	to	self-assemble	into	chains	and	bundles	that	

respond	to	the	application	of	a	co-planar	AC	electric	field	by	stretching,	increasing	

their	length	by	~36%.58	Recently,	parallel	AC	electric	fields	were	also	found	to	

induce	lock-key	binding	in	the	absence	of	depleting	polymer.59	Magnetic	fields	have	

also	been	used	to	aid	particle	self-assembly:	magnetic	fields	were	found	to	

synchronize	the	self-assembly	of	metallodielectric	Janus	spheres	into	microtubes	or	

small	clusters60,	and	hematite	cubes	embedded	in	a	TPM	polymer	matrix	have	been	

used	as	magnetic	patches	that	“click”	together	to	form	colloidal	molecules	and	

higher	order	structures	in	the	presence	of	magnetic	fields.61	

	

Colloidal	active	motion	and	active	matter	

Colloidal	suspensions	have	also	been	used	to	study	active	matter.	Active	

matter	is	made	of	particles	that	consume	energy	from	their	environment	and	

transform	this	energy	into	kinetic	energy	by	undergoing	directed	motion.	Active	

matter	has	the	ability	to	self-organize	into	transient,	dynamic	structures.	Examples	

of	active	matter	include	run-and-tumble	bacteria	like	E.	coli62,63,	living	cells,	flocks	of	

birds,	and	schools	of	fish64.			

A	few	artificial	colloidal	active	particle	systems	have	been	experimentally	

realized	and	studied.	Metallodielectric	platinum/polystyrene	Janus	particles	propel	

due	to	self-diffusiophoresis	when	immersed	in	hydrogen	peroxide	(H2O2)	solutions	

65.	The	asymmetric	distribution	of	catalyst	on	the	surface	of	the	Janus	particle	sets	a	
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concentration	gradient	of	hydrogen	peroxide,	which	drives	particle	propulsion	in	

these	systems.	Carbon/silica	Janus	particles	in	critical	water-2,6-lutidine	mixtures	

propel	upon	heating	by	a	green	light	laser.66	TPM	spheres	with	a	hematite	patch	on	

their	surface	have	also	been	observed	to	propel	in	H2O2	solutions	upon	illumination	

with	ultraviolet	light.67,68		

Anisotropic	dumbbell	particles	have	been	observed	to	individually	propel	

and	form	propelling	chiral	clusters	due	to	the	action	of	low-frequency	AC	electric	

fields	applied	perpendicular	to	the	particles’	plane	of	motion.69	Here,	particle	

propulsion	occurs	due	to	unbalanced	electrohydrodynamic	(EHD)	flow	acting	on	the	

particle.	The	EHD	flow	acting	on	the	particles	is	due	to	the	particle’s	induced	dipole	

electric	field	perturbing	the	concentration	polarization	layer	that	is	set	up	on	top	of	

a	conducting	electrode	upon	application	of	an	electric	field.70,71	Symmetric	particles	

do	not	propel	under	the	same	conditions,	but	form	colloidal	crystalline	clusters.72	

Further	experimental	verification	of	the	origin	of	this	new	propulsion	mechanism	

was	obtained	by	performing	experiments	with	irreversibly	bound	colloidal	dimers	

with	asymmetric	properties.73	Tuning	the	propulsion	speed	of	these	dimers	is	

possible	by	choosing	particles	with	differing	size,	composition,	and	zeta	potential	to	

form	the	colloidal	dimers.	In	the	second	part	of	this	thesis,	we	investigate	emergent	

propulsion	of	particles	in	binary	colloidal	suspensions	of	unequally	sized	colloidal	

spheres	driven	by	an	alternating	current	electric	field	that	acts	perpendicular	to	the	

plane	of	particle	motion.	We	observe	active	motion	of	unbound	particles	that	couple	

due	to	the	action	of	a	low-frequency	AC	electric	field.	To	the	best	of	our	knowledge,	
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this	is	the	first	time	propulsion	has	been	observed	in	a	system	of	isotropic,	

unmodified	colloidal	particles.	

	 The	dynamic	behavior	of	active	colloidal	particles	is	different	than	that	of	

Brownian	colloidal	particles.	Passive	Brownian	particles	undergo	translational	as	

well	as	rotational	diffusion1.		The	direction	of	motion	of	a	passive	Brownian	particle	

is	random,	given	the	stochastic	nature	of	the	Brownian	force.	In	N	dimensions,	the	

mean-squared	displacement	of	a	particle	with	translational	diffusion	coefficient	D	at	

lag	time	t	is	given	by:	

Δ𝑟!(𝑡) = 2 𝑁 𝐷 𝑡	.	 	 	 	 	 	 	 	 	 							(2)	

In	the	case	of	active	colloidal	particles	propelling	with	velocity	v,	particle	motion	is	

due	to	an	internal	self-propelling	force	as	well	as	random	diffusion74.	The	mean-

squared	displacement	of	an	active	colloidal	particle	exhibits	ballistic	behavior	at	

short	times	relative	to	the	time	it	takes	the	particle	to	change	its	orientation;	at	lag	

times	longer	than	this	characteristic	reorientation	time,	the	mean-squared	

displacement	of	active	particles	is	linear	in	time,	with	an	enhanced	effective	

diffusion	coefficient65,67.		The	two-dimensional	mean-squared	displacement	of	an	

active	colloidal	particle	with	passive	translational	diffusion	coefficient	D,	propulsion	

speed	v,	and	reorientation	time	τ	at	lag	time	t	is	given	by75	

Δ𝑟!(𝑡) = 4 𝐷 𝑡 + !
! 𝑣!𝜏! !!

!
+ exp − !!

!
−  1 .	 	 	 	 							(3)		

	 	Active	colloidal	particle	suspensions	have	also	been	used	to	study	dynamic	

clustering,	phase	separation76	and	giant	number	fluctuations67,77.	Dynamic	
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clustering	in	active	particle	suspensions	is	caused	by	self-trapping	of	the	self-

propelled	particles.67,76	At	higher	particle	densities,	active	colloidal	suspensions	are	

observed	to	phase	separate	into	a	dilute	gas	phase	and	a	dense	large	clusters	

phase.76	Giant	number	fluctuations,	which	are	characteristic	of	out-of-equilibrium	

systems,	have	been	observed	in	colonies	of	bacteria78,	in	actively	driven	granular	

rods79,	and,	recently,	in	light-activated	active	colloidal	particles.67	Systems	in	

thermal	equilibrium	have	number	fluctuations	with	standard	deviation	ΔN	that	

grows	as	∆𝑁 ~ 𝑁	;	the	relation	is	exact	for	an	ideal	gas.	Ordered	states	of	active,	

self-propelled	particles	exhibit	giant	number	fluctuations	with	standard	deviation	in	

particle	numbers	that	grow	as		∆𝑁 ~ 𝑁.	The	active	colloidal	particle	system	we	

present	in	this	dissertation	could	be	used	to	study	collective	active	matter	

phenomena,	since	particle	dynamics	can	be	easily	quantified	using	image	processing	

and	particle	tracking	methods.	

Organization	the	dissertation	

This	dissertation	is	divided	in	two	parts.	In	the	first	part	of	the	dissertation,	

we	study	the	binding	kinetics	and	equilibrium	thermodynamic	behavior	of	lock-key	

colloidal	suspensions	in	the	presence	of	polyethylene	oxide,	a	non-ionic,	non-

adsorbing	polymer.	In	the	second	part	of	the	dissertation,	we	investigate	emerging	

particle	propulsion	in	binary	colloidal	suspensions	under	the	effect	of	an	alternating	

current	electric	field	applied	perpendicular	to	the	plane	of	particle	motion.		
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In	the	first	part	of	the	dissertation	(Chapters	2	and	3)	we	seek	to	understand	

how	shape	complementarity	affects	binding	kinetics	and	the	equilibrium	

thermodynamic	behavior	of	lock	and	key	colloids	interacting	via	the	depletion	

interaction.	In	Chapter	2,	we	use	confocal	laser	scanning	microscopy	and	particle	

tracking	methods	to	study	how	lock-key	pairs	form	specific	bonds.	We	compare	

experimental	measurements	of	rate	constants	and	free	energy	to	Smoluchowski	

diffusion-migration	modeling	of	the	system.	In	Chapter	3,	using	confocal	

microscopy,	we	measure	fractional	occupation	and	equilibrium	free	energies	of	

formation	of	specific	lock-key	bonds	as	a	function	of	varying	key-to-dimple	size	ratio	

to	understand	the	role	of	shape	complementarity	for	lock-key	binding.	

Understanding	how	and	why	lock	and	key	colloids	bind	to	form	colloidal	molecules	

will	enable	future	researchers	to	assemble	structures	with	these	novel	building	

blocks.	

In	Part	2	of	the	dissertation	(Chapter	4),	we	use	confocal	laser	scanning	

microscopy	and	particle	tracking	algorithms	to	characterize	the	dynamics	of	

propelling	particles	in	a	binary	colloidal	suspension	of	unequally	sized	latex	beads..	

We	characterize	the	short-time	ballistic	motion	of	large	particles	as	a	function	of	the	

number	of	small	neighbors	surrounding	it.		

We	conclude	by	summarizing	our	results	and	suggesting	future	work	that	

would	complement	the	research	presented	in	this	dissertation.	
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Chapter	2 	
Binding	kinetics	of	lock	and	key	colloids	

	

Abstract	

Using	confocal	microscopy	and	first	passage	time	analysis,	we	measure	and	

predict	the	rates	of	formation	and	breakage	of	polymer-depletion-induced	bonds	

between	lock-and-key	colloidal	particles,	and	find	that	an	indirect	route	to	bond	

formation	is	accessed	at	a	rate	comparable	to	that	of	the	direct	formation	of	these	

bonds.		In	the	indirect	route,	the	pocket	of	the	lock	particle	is	accessed	by	

nonspecific	bonding	of	the	key	particle	with	the	lock	surface,	followed	by	surface	

diffusion	leading	to	specific	binding	in	the	pocket	of	the	lock.	The	surprisingly	high	

rate	of	indirect	binding	is	facilitated	by	its	high	entropy	relative	to	that	of	the	pocket.		

Rate	constants	for	forward	and	reverse	transitions	among	free,	nonspecific,	and	

specific	bonds	are	reported,	compared	to	theoretical	values,	and	used	to	determine	

the	free	energy	difference	between	the	nonspecific	and	specific	binding	state.			

In	this	work,	Daniel	J.	Beltran-Villegas	performed	modeling	and	simulation	

work,	Jun	Liu	provided	modeling	work,	Greg	van	Anders	contributed	to	the	

conceptual	framework,	Matthew	Spellings	provided	custom	written	Python	code	for	

binding	kinetics	analysis,	and	Stefano	Sacanna	helped	with	particle	synthesis	and	

dyeing.	This	chapter	has	been	modified	from	a	published	paper	by	the	author.		
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Introduction	 	

Colloidal	particles	mimic	molecular	systems	in	that	they	can	form	ordered	

crystalline	phases1,	disordered	glasses2,	and	can	even	bind	together	tightly	to	form	

colloidal	“molecules”	that	can	themselves	assemble	into	higher-order	phases.3	

Assembling	colloids	into	higher	order	phases	and	structures	frequently	requires	the	

colloids	to	be	anisotropic	or	“patchy”	such	that	specific	binding	between	particles	

leads	to	the	formation	of	complex	structures.4	The	interaction	specificity	of	these	

building	blocks	limits	the	kinetic	pathways	that	system	can	take	to	reach	their	

ground	state.5	The	lock	and	key	colloidal	system,6	depicted	in	Fig.	2.1,	forms	

colloidal	molecules	through	anisotropic	potential	interactions;	its	behavior	mimics	

the	binding	of	drug	or	ligand	in	the	binding	pocket	of	a	protein.	In	this	system,	the	

binding	force	is	created	by	the	presence	of	a	polymer	depletant,	which	creates	an	

osmotic	pressure	that	drives	particles	to	reduce	free	volume	by	binding	either	

nonspecifically	or	specifically,	as	shown	in	Fig.	2.1.	The	synthesis	and	

thermodynamics	of	specific	binding	of	lock	and	key	colloids	was	recently	reported.6-

9	Here,	we	report	on	the	rich	kinetics	of	bond	formation	in	lock	and	key	colloids.		In	

particular,	we	find	that	two	different	pathways	to	a	specific	bond	proceed	at	

comparable	rates.	One	occurs	through	a	direct	transition	from	free	lock	and	key	

particles.	The	other,	indirect,	pathway,	transitions	through	an	intermediate	

nonspecifically	bound	lock	and	key	pair,	in	which	the	key	binds	onto	the	spherical	

surface	of	the	lock	particle,	and	then,	through	a	combination	of	rotations	of	the	lock	
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particle,	and	sliding	and	rolling	motions	of	the	key,	finds	the	dimple	of	the	lock	and	

forms	a	specific	bond.	This	finding	is	consistent	with	previous	simulation	results.8	

The	importance	of	the	role	of	nonspecific	binding	as	a	transitional	step	to	

specific	binding	has	been	demonstrated	earlier	for	biological	macromolecules,10,11	

specifically	for	DNA	interacting	with	proteins,	as	well	as	in	models	of	bacteriophage	

tail	attachment.12	The	role	of	the	equilibrium	constant	of	different	reaction	

pathways	in	determining	clustering	and	self-assembly	in	anisotropic	Janus	colloids	

has	also	been	shown.13	However,	there	is	as	yet	no	study	that	measures	and	models	

the	kinetics	of	multiple	reaction	pathways	in	a	colloidal	system;	establishing	

experimentally	validated,	first	principles	understanding	of	this	complex	chemical	

kinetics	can	improve	the	potential	for	self-assembly	in	a	variety	of	systems,	both	

natural	and	artificial.		

Toward	this	aim,	we	use	confocal	microscopy	to	measure	all	of	the	transition	

rate	constants	shown	in	Fig.	2.1a.		We	compare	these	results	to	the	predictions	of	a	

diffusion-migration	model	of	transition	dynamics	and	find	quantitative	agreement	

for	the	constants	that	determine	the	relative	magnitudes	of	the	direct	and	indirect	

pathways	to	lock	and	key	binding.		The	model	is	parameterized	by	direct	

measurement	of	the	transition	times	from	nonspecific	lock-and-key	pairs	to	free	

locks	and	keys;	this	determination	of	the	net	strength	of	the	interaction	potential	is	

more	accurate	than	what	is	possible	from	a	simple	theory	for	the	depletion	

interaction.		Model	predictions	include	the	success	probability	of	nonspecific-to-

specific	binding	as	a	function	of	interaction	strength,	and	the	lifetimes	of	indirect	
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binding	events.		We	also	predict	the	rates	of	formation	of	specific	lock-and-key	pairs,	

and	of	the	forward	and	reverse	rates	of	formation	of	nonspecific	bonds.	The	latter	

rates	determine	the	overall	rate	of	formation	of	specific	lock-and-key	bonds,	and,	in	

a	concentrated	system,	merit	measurement	and	prediction	because	they	control	the	

kinetics	of	gel	formation,	which	might	inhibit	the	formation	of	macrocrystalline	

phases	of	lock-and-key	bound	pairs.		From	the	measured	rate	constants,	we	also	

obtain	the	free	energy	difference	between	the	nonspecific	and	specific	lock-key	

bond,	which	reveals	interesting	effects	of	entropy	differences	between	the	two	

states.	
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Materials	and	Methods		

Lock	and	key	particles	were	synthesized	by	polycondensation	and	free	

radical	polymerization	of	3-trimethoxysilylpropylmethacrylate	(TPM,	≥	98%,	Sigma-

Aldrich),	with	a	different	fluorescent	dye	incorporated	into	each	so	they	could	be	

distinguished	by	confocal	microscopy.14	The	resulting	lock	particles	had	diameter	dL	

=	2.38	µm	±	0.02	µm	and	the	keys	had	diameter	dK	=	2.14	mm	±	0.01	mm	as	

determined	by	analysis	of	NL	=	74	and	NK	=	90	particles	imaged	by	SEM	(Fig.	2.2).	

TEM	images	of	the	lock	particles	(Fig.	2.2)	showed	their	angle	of	aperture	to	be	α	=	

0.58	±	0.01	radians	(for	N	=	3	measurements).	The	lock	particles	have	a	zeta	

potential	of	ζL	=	-77.2	mV	±	2.22	mV;	the	keys	have	a	zeta	potential	of	ζK	=	-88.0	

mV	±	2.38	mV	(Malvern	Zetasizer).	The	particular	dimple	shape	of	the	lock	particles	

is	such	that	all	six	reactions	shown	in	Fig.	2.1a	occur	at	measureable	rates,	a	

condition	that	facilitates	understanding	the	interrelationship	among	the	six	rate	

constants	of	this	reaction	system.	

Stock	solutions	of	2	g/L	polyethylene	oxide	(PEO,	Mv	=	600,000	g/mol,	

Sigma-Aldrich)	at	1.5	mM	NaCl	(κ-1	=	7.9	nm)	were	prepared	as	the	depletant.	The	

radius	of	gyration	of	the	PEO	is	estimated	to	be	Rg	=	50	nm.15	Dilute	lock	and	key	

colloid	suspensions	of	2	mL	volume	were	prepared	by	adding	corresponding	

amounts	of	1.5	mM	NaCl	solution,	PEO	solution,	25	µL	of	a	1%	wt	

tetramethylammonium	hydroxide	solution	in	water	(TMAH,	Acros	Organics)	

solution	and	25	µL	of	a	5%	wt	Pluronic	F108	aqueous	solution	(Pluronic	F108,	
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Sigma-Aldrich)	such	that	the	final	volume	sample	was	2	mL	and	pH	=	9.	PEO	

concentrations	ranged	from	[PEO]	=	0	g/L	to	1.4	g/L	(c/c*	from	0	to	0.74,	where	c*	

is	the	critical	overlap	concentration, 𝑐∗  =  3 𝑀! 4 𝜋𝑅!! 𝑁!).	300	µL	of	the	prepared	

samples	were	placed	in	an	8-well	chamber	(Lab	Tek	II),	covered	with	silicone	oil	to	

prevent	evaporation,	and	placed	on	the	microscope.	

Polymer	polydispersity	was	estimated	by	DLS	measurements	of	

hydrodynamic	radius,	Rh,	distributions,	converted	to	molecular	weight	distributions	

following	the	correlation	between	M	and	Rh	by	Devanand	and	Selser15,	and	fitted	to	a	

lognormal	distribution	yielding	a	polydispersity	index,	PDI,	of	Mw/Mn	=	3.29.	The	

effect	of	polymer	polydispersity	on	depletant	size	is	estimated	after	the	method	of	

Kleshchanok	and	collaborators16	by	assuming	a	viscosity	average	molecular	weight,	

Mv	=	600,000,	and	PDI	of	3.	Specifically,	following	Young	&	Lowell,17	and	by	using	

the	Mark-Houwink	equation	coefficient	“a”	for	polyethylene	oxide	in	water	obtained	

from	Ito	et	al,18	we	find	Rg	=	48.9	nm	corresponding	to	a	polydisperse	depletant	

radius	of	rd,polydisperse	=	55.1nm,	comparable	to	rd	=	56.7nm.	Thus,	we	estimate	an	

uncertainty	on	the	depletant	radius	to	be	2.6%,	on	the	zeta-potential	to	be	2.9%	and	

2.7%	for	lock	and	key	particles,	respectively,	and	electrolyte	concentration	to	be	

2.4%.	

To	measure	the	kinetic	rate	coefficients	of	interaction,	samples	were	imaged	

with	an	inverted	confocal	microscope	(Leica	TCS	SP8).	Two	fluorescence	channel	

imaging	was	performed	to	distinguish	the	two	different	particles.	After	10	minutes,	

during	which	partial	sedimentation	of	the	particles	to	the	coverslip	occurred,	time	
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series	of	two	dimensional	images	were	acquired	at	1.15	frames/second	at	a	

resolution	of	512	x	512	pixels2	using	a	63x	oil-immersion,	NA	=	1.40	Leica	objective	

for	30	minutes,	for	a	total	capture	of	2065	images.	The	pixel	size	was	117.3	X	117.3	

nm2	and	the	total	frame	size	was	60	x	60	µm2.	2D	confocal	microscopy	images	from	

each	channel	were	separately	analyzed	by	applying	a	Hough	transform	algorithm	for	

circle	detection19	implemented	in	MATLAB	to	find	the	particles’	centers	to	a	

resolution	of	±	14	nm.		Histograms	of	bonded	particles	allowed	resolution	of	

specific,	nonspecific,	and	free	particles	bonds	at	those	with	separation	less	than	2.2	

µm,	between	2.2	and	2.6	µm,	and	greater	than	2.6	µm,	respectively	(Fig.	2.3).	This	

histogram	shows	the	presence	of	two	bond	length	ranges	associated	with	the	

binding	state	between	lock	and	key	particles.	The	width	of	these	peaks	can	be	

explained	by	building	block	polydispersity	(the	ratio	of	standard	deviation	to	

average	particle	size	for	locks	and	keys	were	7.2%	and	4.4%,	respectively)	and	by	

out-of-plane	Brownian	rotation	of	the	particle	pairs.	See	Appendix	A	for	a	discussion	

of	the	effects	of	improper	identification	of	specific	and	nonspecific	bonds.	

Representative	image	sequences	of	kinetic	binding	processes	are	shown	in	

Figure	2.1b	and	2.1c,	for	both	the	direct	formation	of	a	lock-key	specific	bond,	and	

the	indirect	formation,	through	a	nonspecifically	bound	intermediate,	respectively.	

Figure	2.1b	shows	an	image	sequence	of	a	direct	specific	binding	event:	a	key	

particle	binds	to	the	dimple	of	a	lock	particle	upon	finding	the	lock.	Figure	2.1c	

shows	a	nonspecifically	bound	key	particle	diffusing	on	the	surface	of	the	lock	

particle	until	it	binds	to	the	dimple	of	the	lock.	Although	the	thermodynamics	of	lock	
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and	key	binding	dictate	the	degree	of	binding	at	equilibrium	–	i.e.	large	times	–	the	

kinetic	pathways	by	which	equilibrium	is	achieved	are	complex,	and	require	that	all	

six	reactions	be	resolved.		This	kinetic	complexity	is	a	consequence	of	the	anisotropy	

of	the	lock,	and	the	fact	that	it	offers	two	different	binding	states	–	specific	and	

nonspecific	–	to	the	diffusing	key.		We	find	that	rate	constants	for	all	six	reactions	

shown	on	Fig.	2.1a	are	measurable.			

The	relative	frequency	of	the	kinetic	events	shown	in	Figures	2.1a	vary	with	

the	concentration	of	depleting	polymer,	and	can	be	quantified	by	analysis	of	the	

time	series	of	confocal	microscopy	images.	These	images	are	analyzed	to	yield	the	

rate	coefficients	kF-S,	kF-NS,	kNS-S,	kNS-F,	kS-NS,	and	kS-F,	as	defined	below.		Also	measured	

were	the	lifetime	distribution	of	specifically	and	nonspecifically	bound	pairs,	the	

mean	first	passage	time	for	nonspecific	pairs	to	passage	to	specific	pairs,	and	the	

success	probability	for	a	nonspecific	pair	to	transition	to	a	specific	pair.	

We	measure	the	number	density	of	locks	and	keys	by	counting	the	lock	and	

key	particles	in	each	frame	for	the	complete	image	time	series	and	time-averaging	

their	count.	We	then	divide	this	number	by	the	volume	of	the	region,	taken	to	be	

𝑉 = 2𝑟! × 𝐴,	where	A	is	the	area	of	the	region,	A	=	(60	µm)2,	and	2rL	=	2.4	µm	is	the	

diameter	of	the	lock	particles.	We	also	track	the	different	events	as	they	happen,	and	

calculate	the	rates	at	which	the	different	events	occur,	normalized	by	volume.	From	

these	measurements,	we	calculate	the	event	rate	coefficients	kF-S,	kF-NS,	kNS-S,	kNS-F,	kS-

NS	,	and	kS-F	according	to	first	and	second	order	reaction	kinetic	processes.		

Specifically,	the	following	equations	for	kinetic	rate	constants	were	used:		
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𝑟!!! =  𝑘!!! 𝑛!𝑛!         1 ,	

𝑟!!!" =  𝑘!!!" 𝑛!𝑛!    (2),	

𝑟!!!! =  𝑘!"!! 𝑛!"         (3),	

𝑟!"!! =  𝑘!"!!  𝑛!"        (4),	

𝑟!!!" = 𝑘!!!" 𝑛!          (5),	and	

𝑟!!! = 𝑘!!!  𝑛!               (6),	

where	nL,	nK	,	nNS	,	and	nS	denote	the	number	densities	of	locks,	keys,	nonspecifically	

bound	and	specifically	bound	lock-key	pairs,	and	rF-S,	rF-NS,	rNS-S,	rNS-F,	rS-NS,	and	rS-F	

denote	the	rate	per	unit	volume	at	which	free	to	specific,	free	to	nonspecific,	

nonspecific	to	specific,	nonspecific	to	free	events,	specific	to	nonspecific	and	specific	

to	free	events,	respectively,	occur.	Note	the	units	of	the	rate	coefficients	vary	

depending	on	whether	or	not	the	binding	process	is	uni-colloidal	or	bi-colloidal.		

The	kinetic	rate	coefficients	for	the	six	equations	are	obtained	by	measuring	the	

concentration	of	lock	and	key	particles	present	(nL	and	nK,	respectively,	with	units	of	

µm-3)	and	the	number	of	nonspecific	and	specific	lock-key	bonds	formed	and	broken	

over	the	image	acquisition	time.	
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Theory	

Smoluchowski	diffusion-migration	model	

To	model	the	kinetics	of	events	starting	from	NS	to	other	states	we	use	a	

diffusion-migration	description	of	lock	and	key	pair	particle	motion	in	terms	of	

relative	separation,	h,	defined	as	the	surface	to	surface	distance	between	particles,	

and	relative	orientation,	θ,	defined	as	the	angle	between	the	lock	director	and	

center-to-center	vector	between	particles	(Fig	2.4).	The	governing	equation	for	the	

evolution	of	probability	density	is	the	Smoluchowski	equation,20	given	by		

!" !,!,!
!"

= ∇ ⋅ 𝐃 ℎ,𝜃 exp −! !,!
!!!

⋅ ∇exp ! !,!
!!!

𝜌 ℎ,𝜃, 𝑡   (7),	

where	r	is	the	probability	density	that	the	pair	is	at	position	(h,θ),	W	is	the	potential	

of	mean	force	as	a	function	of	(h,θ),	given	by	W(h,θ)=	Φ(h)+Wg(h,θ),	where	Φ(h)	is	

the	interaction	potential	between	particles	given	by	a	sum	of	repulsive	electrostatic	

and	depletion	attractive	potentials,	Wg(h,θ)	is	the	configurational	contribution	to	the	

potential	of	mean	force	associated	with	the	choice	of	coordinates	at	a	given	position	

(h,θ),	and	D	is	a	diffusion	tensor	related	to	hydrodynamic	interactions	between	lock	

and	key	in	both	the	normal	and	tangential	directions.21	The	Smoluchowski	equation	

is	a	particular	case	of	the	more	general	master	equation	for	stochastic	process	

description.	The	main	assumptions	of	this	model	are	ergodicity	and	that	the	

dispersion	is	dilute	enough	to	prevent	three	or	higher-body	effects.	The	

Smoluchowski	equation	can	be	written	as		

	!" !,!,!
!"

= −∇ ⋅ 𝐒 ℎ,𝜃, 𝑡   (8),	
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where	S	is	the	probability	current.	Transition	between	NS	to	F	is	taken	in	both	

experiments	and	theory	as	the	separation	h=ha,	a	height	at	which	a	gap	between	the	

particles	can	be	resolved	in	our	system.	For	our	system	ha	=	372	nm;	it	is	equal	to	

the	difference	between	the	largest	lock-key	center-to-center	separation	distance	

used	to	define	NS	events,	as	defined	above,	and	the	sum	of	the	lock	and	key	average	

radii.		A	transition	from	NS	to	S	is	taken	to	occur	at	an	orientation	θ=α,	with	α	=	0.58	

radians,	determined	from	TEM	images,	as	above.	The	boundary	conditions	required	

to	solve	equation	(7)	are	absorbing	(probability	sinks)	at	h=ha	and	θ=α.	The	last	

absorbing	boundary	condition,	at	θ=α	states	that	we	are	assuming	the	binding	is	fast	

once	a	key	finds	its	way	to	this	position.	Previous	work	shows	the	existence	of	a	

depletion	energy	barrier	due	to	sharp	edges.22	This	effect	was	found	to	be	minor	in	

our	calculations.	The	solution	of	equation	(7)	gives	lifetimes	for	different	events	as	

well	as	the	relative	occurrence	of	competing	events,	which	can	be	estimated	from	

lifetime	distributions	for	events	starting	in	NS	and	ending	in	state	B	(either	F	or	S),	

wNS-B(t),	as	

𝑤!"!! 𝑡 = 𝐒 ℎ,𝜃, 𝑡 ⋅ 𝑑𝐧𝕊!"!!
  (9),	

where	the	integral	is	over	the	boundary	𝕊!"!! 	between	states	NS	and	B,	and	dn	is	a	

unit	vector	normal	to	the	boundary.	The	zeroth	moment	of	wNS-B(t),		

𝑃!"!! = 𝑑𝑡 𝑤!"!! 𝑡∞

!   (10),	

is	the	success	probability,	which	is	the	probability	of	crossing	the	boundary	𝕊!"!! 	

before	crossing	any	other	boundary.	The	success	probability	for	a	transition	from	
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NS	to	S	is	noted	here	as	PS.	Normalization	of	wNS-B(t)	by	the	success	probability	

yields,	

𝑝!"!! 𝑡 = !!"!! !
!!"!!

  (11),	

which	is	the	lifetime	distribution	conditional	to	events	of	the	same	type.	The	first	

moment	of	pNS-B(t)	gives	us	the	mean	first	passage	time,	tMFP|NS-B,	of	events	of	this	

kind,	given	by	

𝑡!"#|!"!! 𝑡 = 𝑑𝑡 𝑡 𝑝!"!! 𝑡∞

!   (12).	

Alternatively,	the	mean	first	passage	time	for	all	events	leaving	the	NS	state,	tMFP|NS,	

is	given	by	

𝑡!"#|!" 𝑡 = 𝑑𝑡 𝑡 𝑤!"!! 𝑡 + 𝑤!"!! 𝑡
∞

!   (13).	

The	kinetic	rate	constant	between	two	states	is	then	given	by		

𝑘!"!! =
!!"!!
!!"#|!"

  (14).	

The	predictions	of	the	analysis	were	confirmed	to	be	accurate	by	direct	

Brownian	dynamics	simulations	with	full	hydrodynamic	interactions	using	

established	mobility	tensor	for	pairs	of	spheres.23,24	Further	detail	of	the	model	can	

be	found	in	recently	published	work.21		

	

Nonspecific	interaction	potential	determination	

The	nonspecific	lock-and-key	interaction	potential	is	the	result	of	the	sum	of	

electrostatic	repulsive	potential,	ΦR(h),	and	a	depletion	attractive	potential,	ΦD(h),	

as	
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Φ ℎ =Φ! ℎ +Φ! ℎ   (15),	

where	the	repulsive	potential	is	described	by	DLVO	theory25	as	

Φ! ℎ = 32𝜋𝜀 !!!!
!!!!!

!!!
!

!
tanh !!!

!!!!
tanh !!!

!!!!
 exp −𝜅ℎ   (16),	

where	dL	and	dK	are	lock	and	key	particle	diameters,	respectively,	e	is	the	solvent	

dielectric	permittivity,	kB	is	Boltzmann’s	constant,	T	is	the	absolute	temperature,	e	is	

the	elemental	charge,		κ-1	is	the	Debye	screening	length,	and	ζL	and	ζK	are	lock	and	

key	particle	zeta	potentials,	respectively.		

The	depletion	potential	follows	an	Asakura-Oosawa26	form	as	

Φ! ℎ = −ΠΔ𝑉 ℎ   (17),	

where	Π	is	the	depletant	osmotic	pressure	and	ΔV	is	the	overlap	excluded	volume	

for	depletants.		 	

To	determine	the	depletant	osmotic	pressure	one	needs	an	equation	of	state	

for	the	polymer	solution,	which	can	be	estimated	by	assuming	the	polymer	solution	

to	be	ideal	(i.e.	Πideal=nPEOkBT,	where	nPEO	is	the	PEO	number	density).	Nonetheless	

there	is	an	uncertainty	in	parameters	in	equations	(15)-(17)	which	can	change	the	

shape	and	well	depth	of	the	potential	such	as	PEO	molecular	weight	polydispersity,	

as	explained	above,	and	measurement	uncertainty	for	electrolyte	concentration	and	

zeta	potential,	as	discussed	below.	 	



	 33	

Results	and	Discussion	

Because	the	theoretical	form	of	the	potential	energy,	Φ(h)	–	which	combines	

both	electrostatic	and	depletion	contributions	–	is	uncertain27,	due	to	the	

experimental	uncertainty	of	the	parameters	that	it	depends	on,	we	determine	it	

from	the	measurements	of	the	lifetime	distributions	for	NS-F	events.	To	accomplish	

this	we	compare	the	lifetime	distributions	for	NS-F	events	estimated	from	the	

diffusion-migration	model	for	varying	interaction	strengths.	In	Figure	2.5a,	we	show	

the	experimental	data	for	[PEO]	=	1.0	g/L,	and	the	NS-F	lifetime	distribution	

corresponding	to	the	interaction	strength	that	minimizes	the	weighed	sum	of	

squared	errors	between	the	experimental	and	modeled	lifetime	distributions.	This	

was	repeated	for	all	the	different	[PEO],	giving	interaction	strengths	shown	as	the	

minimum	of	the	potential	energy,	Φmin,	in	Figure	2.5b.		Although	the	trend	for	the	

potential	energy	inferred	from	the	lifetime	of	non-specific	bonds	on	the	colloid	

surface	agrees	with	an	a	priori	estimation	from	theory,	there	are	quantitative	

differences.		In	this	system,	for	the	range	of	PEO	concentrations	studied,	the	

minimum	of	the	pair	potential	between	lock	and	key	varies	from	about	1	to	3	kBT.		

Such	analysis	of	the	lifetime	of	non-specific	bonds	is	a	simple	way	to	parameterize	

colloidal	pair	potential	for	comparison	to	theory	and	simulation.			

To	determine	depletant	osmotic	pressure	we	fit	estimates	of	lifetime	

distributions	for	NS-F	events,	using	the	diffusion-migration	model	(equation	(7)),	

for	varying	values	of	P	to	lifetime	distributions	obtained	from	experiment	for	each	

depletant	concentration.	This	fitting	process	is	based	on	the	minimization	of	a	sum	
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of	square	errors,	weighed	by	the	inverse	of	the	experimental	variance,	between	the	

experimental	quantity	and	the	model-estimated	quantity.	We	estimate	P	using	

average	values	of	ζ,	κ-1	and	Rg	to	fix	the	shape	of	the	potential.	In	Figure	2.5a	we	

show	results	of	lifetime	distributions	at	[PEO]	=	1.0	g/L	from	experiment	and	

diffusion-migration	model	using	the	depletant	osmotic	pressure	that	minimizes	the	

weighed	sum	of	square	errors.	To	compare	with	predictions	using	an	ideal	polymer	

solution	we	allow	the	PEO	molecular	weight	(which	changes	Rg),	zeta	potential,	ζ,	

and	Debye	screening	length	κ-1,	to	vary	by	5%.	We	find	two	extreme	cases	where	the	

potential	well	depth	is	maximal	and	minimal.	In	Figure	2.5b	we	show	the	value	of	

the	minimum	of	the	nonspecific	interparticle	potential,	Φmin,	as	a	function	of	[PEO]	

from	this	fitting	process	alongside	the	values	obtained	from	the	ideal	solution	

equation	of	state	estimations	(average,	low	and	high	estimates)	for	comparison.	We	

find	that	the	fitted	potentials	are	within	the	variability	of	the	ideal	polymer	theory	

given	the	uncertainty	of	its	parameters.		

The	determination	of	the	potential	Φ(h)	from	the	lifetime	distribution	for	NS	

to	F	events	fully	specifies	the	diffusion-migration	model.	From	it	we	compute	the	

NS-S	event	lifetime	distributions,	pNS-S(t),	shown	for	the	particular	case	of	1.0	g/L	

depletant	on	Figure	2.6a,	the	mean	first	passage	times	for	the	NS	to	S	and	NS-F	

transitions	(Figure	2.6b)	and	success	probabilities,	PS,	(Figure	2.6c)	for	NS	to	S.		

These	quantities	are	of	particular	interest	because	they	probe	how	increased	

attraction	between	lock	and	key	affects	the	dynamics	of	nonspecifically	bound	

dynamics,	leading	in	some	cases	to	a	transition	from	this	bond	to	a	specific	bond.				
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	 The	lifetime	distribution	of	the	NS	–	S	event,	pNS-S(t),	plotted	in	Figure	2.6a,	

decays	non-exponentially	with	time.		Keys	that	successfully	transition	from	NS	to	S	

spend	a	considerable	time	nonspecifically	bound	to	the	lock	surface.	This	

observation	is	consistent	with	previous	findings	showing	the	potential	between	lock	

and	key	has	a	secondary	minimum	in	NS	configuration.8	For	example,	7.3%	of	the	

trajectories	of	keys	bound	nonspecifically	to	locks	survive	6.1	s	or	more.		By	

comparison,	the	time	for	a	key	colloid	to	diffuse	a	distance	equal	to	its	own	radius	is	

5.7	s.		These	long	trajectories	endure	because	of	the	strength	of	the	nonspecific	

depletion	bond	between	the	lock	and	key;	unless	Brownian	fluctuations	induce	the	

nonspecific	bond	to	break	and	for	the	key	to	become	free,	it	continues	surface	

diffusion	on	the	lock	until	specific	binding	occurs.			

	 The	diffusion-migration	model	captures	this	physics	with	very	good	

quantitative	agreement,	except	at	long	times.	The	long-time	disagreement	between	

experimental	and	modeled	lifetime	distributions	in	Fig.	2.6a	can	also	be	seen	in	

Figure	2.5a	and	is	attributed	to	two	possible	factors.	First,	events	with	longer	

lifetimes	have	larger	errors	because	they	occur	less	frequently	for	an	experiment	of	

finite	duration.	However,	this	explanation	is	incomplete	because	deviation	is	

systematically	towards	larger	probabilities	at	long	times	for	all	concentrations	and	

is	outside	the	error	bars	of	the	experiments.		Second,	possible	three-body	and	

greater	interactions	in	our	system,	especially	at	late	times	and	high	concentrations	

of	PEO,	are	expected	to	slow	down	the	kinetics	of	specific	binding.		These	multiple-

particle	interactions	occur,	for	example,	when	a	nonspecifically	bound	lock-and-key	
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pair	encounters	and	binds	with	another	particles,	which	amounts	to	minor	

qualitative	differences.		These	multiparticle	interactions	are	rare	at	the	depletant	

concentrations	studied	here,	but	when	they	occur,	they	should	produce	longer	NS-S	

and	NS-F	event	lifetimes.	For	example,	a	key	diffusing	on	the	surface	of	a	lock	might	

be	approached	by	another	particle	and	interact	with	it,	delaying	its	motion	toward	

the	dimple,	or	a	key	might	interact	with	an	occupied	lock	particle.	Our	diffusion-

migration	model	assumes	only	pair	particle	interactions.	Apart	from	this	long-time	

deviation,	the	experimental	and	theoretical	binding	time	distributions	agree	with	

each	other	for	the	range	of	[PEO]	considered	in	our	experiments.		

As	[PEO]	is	increased	from	0.3	g/L	to	1.4	g/L,	the	average	event	lifetime	of	

NS-F	events,	tMFP|NS-F,	increases	from	2.9	s	to	6	s,	and	tMFP|NS-S	increases	from	1.8	s	to	

2.9	s,	as	shown	experimentally	and	confirmed	by	the	model.	From	Fig	2.6b,	the	

average	transition	times	for	NS-F	events	are	longer	than	those	for	NS-S	events.	

Because	NS-F	and	NS-S	processes	compete,	the	average	time	for	each	process	is	

dominated	by	the	faster	of	the	two,	while	the	relative	rates	control	the	relative	

numbers	of	each	transition	type.	The	observed	modest	difference	in	average	times	

between	NS-F	and	NS-S	is	due	to	different	shapes	of	the	probability	distributions	for	

the	transition	times.		While	the	NS-F	process	is	essentially	Poissonian,	the	NS-S	

process	is	non-Poissonian	due	to	the	finite	distance	to	binding	over	which	surface	

diffusion	must	occur,	which	creates	an	enhanced	population	of	quickly-binding	

states,	relative	to	a	Poissonian	process.	This	trend	is	not	as	obvious	in	the	

experimental	data,	which	show	longer	NS-S	times	than	in	model	predictions.	
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Discrepancies	here	are	a	consequence	of	the	disagreement	in	the	long-time	tail	in	

lifetime	distributions,	as	explained	above	in	the	context	of	three-body	interactions.	

This	means	there	are	a	number	of	long-lasting	events	that	shift	average	lifetimes,	

especially	for	NS-S	events.		Comparison	of	the	lifetime	distributions	for	NS-F	(Fig	

2.5a)	and	NS-S	(Fig	2.6a)	confirms	that	the	former	distribution	generally	falls	above	

the	latter,	with	this	trend	however	becoming	less	clear	at	long	times.	

In	Figure	2.6c,	we	plot	the	experimental	and	model	success	probability	PS,	

defined	as	the	probability	that	a	key	will	specifically	bind	to	the	lock	dimple	given	

that	it	is	initially	nonspecifically	bound	to	the	lock	surface	versus	polymer	

concentration.	Our	experiments	show	that	as	[PEO]	is	increased	from	0	g/L	to	1.2	

g/L,	PS	increases	from	7.6	%	to	17.3	%.	Success	probabilities	extracted	from	our	

diffusion	model	are	in	good	agreement	with	our	experimental	success	probabilities	

for	[PEO]	below	1.4	g/L.	As	[PEO]	increases,	we	expect	that	more	nonspecifically	

bound	lock	and	key	pairs	will	specifically	bind	to	each	other,	because	keys	will	have	

more	time	to	perform	the	successful	search	for	the	lock	dimple.	As	the	time	that	the	

key	remains	on	the	surface	of	the	lock	increases,	as	discussed	above,	so	does	the	

probability	of	NS-S	binding	between	the	lock	and	key	particle.	For	this	last	polymer	

condition,	we	observe	a	large	deviation	in	the	experimental	success	probability	from	

the	other	experimentally	determined	values	and	from	the	modeled	result,	which	can	

be	explained	by	the	inapplicability	of	our	diffusion	model	for	NL	>	1,	NK	>	1	

multiparticle	interactions	(c.f.	Fig	2.7	for	evidence	of	multiparticle	interactions	at	

[PEO]	=	1.4	g/L).	
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We	now	report	the	kinetic	rate	coefficients	for	the	NS-S	reaction,	as	well	as	

the	five	others	shown	in	Figure	2.1a,	as	obtained	by	measuring	the	concentration	of	

lock	and	key	particles	present	(nL	and	nK,	respectively,	with	units	of	μm-3)	and	the	

number	of	nonspecific	and	specific	lock-key	bonds	formed	and	broken	over	the	

image	acquisition	time,	as	described	above.	We	predict	the	NS-F	and	NS-S	rate	

constants	using	the	diffusion-migration	model	explained	previously	and	computed	

using	equation	(14).		

We	find	that	as	[PEO]	is	increased	from	0	g/L	to	1.4	g/L,	the	rate	coefficient	

for	nonspecific	lock-key	bond	formation,	kF-NS,	remains	roughly	constant	at	kF-NS	=	

6.6	±	0.5	mm3/s		(Figure	2.8a).		This	is	expected,	since	this	rate	is	diffusion	

controlled	and	a	lock-key	collision	counts	as	a	binding	event	forming	a	nonspecific	

“bond,”	which	is	ephemeral,	unless	depletion	is	present	to	slow	breakage	of	this	

“bond.”	The	rate	coefficient	for	direct	lock-key	bond	formation,	kF-S,	likewise	

remains	constant	for	polymer	concentrations	ranging	from	0	g/L	to	1.2	g/L	at	a	

value	of	0.67	±	0.12	mm3/s.		These	rate	constants	do	not	change	with	polymer	

concentration	because	the	rate	of	these	events	depends	on	the	collisional	dynamics	

of	the	lock	and	keys,	which	for	a	short	range	potential	studied	here,	is	independent	

of	potential	strength.	Free	lock	and	key	particles	may	collide	with	each	other	at	the	

spherical	surface	of	the	lock	or	at	the	dimple	of	the	lock	particle,	which	has	an	angle	

of	aperture	a,	and	thus	occupies	a	fraction	𝑓 =  (1− cos𝛼) 2	of	the	lock	surface	

area.		The	Smoluchowski	collision	rate	between	two	spheres	of	unequal	size	rL	and	

rK	is	given	by	𝑘 =  2𝑘!𝑇 1 𝑟! +  1 𝑟! 𝑟! + 𝑟! 3𝜇.25	Here,	kB	is	Boltzmann’s	
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constant,	T	is	temperature,	µ	is	viscosity,	and	rL	and	rK	are	the	lock	and	key	radii,	

respectively.	For	our	system,	T	=	293	K,	µ	=	1.002	x	10-3	Pa	s,	rL	=	1.19	µm,	and	rK	=	

1.07	µm,	yielding	a	collision	rate	of	10.8	µm3/s.	On	Figure	2.8a,	we	compare	the	

measured	rate	coefficients	for	F	-	NS	and	F	-S	lock-key	binding	to	Smoluchowski	

collision	rates,	given	by	𝑘!!!" = 1− 𝑓  𝑘 and	𝑘!!! = 𝑓 𝑘.	The	agreement	is	

satisfactory.	

The	observation	of	a	finite	rate	coefficient	of	direct	binding	in	the	weak	

interaction	limit	is	consistent	with	the	study’s	definition	of	direct	binding	–	the	

lifetimes	of	these	weakly	interacting	cases	are	short,	and	the	time	resolution	of	our	

measurements	was	constrained	by	our	frame	capture	rate	of	1.15	fps.		Some	

disagreement	between	the	theoretical	collision	rate	and	experimental	values	might	

be	expected	due	to	the	quasi-2D	nature	of	our	system,	because	the	lock	and	key	

particles	are	close	to	the	coverslip.	This	implies	that	at	any	given	time,	there	is	a	

fraction	of	the	surface	area	of	these	particles	that	cannot	interact	with	other	

particles	due	to	their	proximity	to	the	glass	surface.	Another	factor	to	be	considered	

is	the	effect	of	recently	broken	NS	pairs	that	can	bind	faster	than	remote	or	far-away	

F	pairs,	although	this	effect	would	increase	our	theory	predictions	making	

agreement	worse.		However,	the	comparison	of	Figure	2.8a	indicates	that	proximity	

and	spatial	correlation	effects	are	not	great.		

In	Figure	2.8b	we	show	that	the	rate	coefficient	for	unbinding	of	

nonspecifically	bound	locks	and	keys,	kNS-F	,	decreases	from	0.42	s-1	to	0.14	s-1	as	

[PEO]	is	increased	from	0.3	g/L	to	1.4	g/L,	showing	increased	difficulty	for	keys	to	



	 40	

unbind	from	the	lock	at	higher	depletant	concentration.	We	also	observe	that	the	

rate	coefficient	for	indirect	specific	binding,	kNS-S,	is	insensitive	to	changes	in	[PEO],	

as	seen	on	Figure	2.8b,	remaining	constant	near	a	value	of	0.064	±	0.006	s-1.	The	NS-

S	binding	rate	coefficient	is	independent	of	depleting	polymer	concentration	due	to	

the	insensitivity	of	the	surface	diffusivity	of	keys	on	locks	to	small	changes	in	

surface-to-surface	separation.21,28	The	NS-S	binding	rate,	on	the	other	hand,	depends	

on	the	concentration	of	NS-bound	lock	and	key	pairs,	which	is	a	function	of	polymer	

concentration.	

In	the	particular	lock	and	key	system	analyzed	here	the	strength	of	the	

specific	bond	is	not	so	strong	as	to	preclude	unbinding	during	the	long	durations	of	

the	experiments.	In	Figure	2.8c,	we	plot	the	measured	S-NS	and	S-F	event	rate	

coefficients	against	polymer	concentration.	As	depleting	polymer	concentration	

increases,	the	experimental	rate	coefficients	for	both	specific	unbinding	processes	

decrease;	the	specific-to-nonspecific	rate	coefficients	decreases	from	0.4	s-1	to	0.07	

s-1	for	[PEO]	equal	to	0.3	g/L	and	1.2	g/L,	respectively,	and	specific-to-free	rate	

coefficients	decrease	from	0.21	s-1	to	0.02	s-1	for	[PEO]	equal	to	0.3	g/L	and	1.2	g/L,	

respectively.	The	decrease	in	specific	unbinding	rate	coefficients	can	be	explained	

by	an	increase	in	the	specific	binding	energy	as	[PEO]	is	increased.	As	binding	

energy	increases,	it	becomes	more	difficult	for	key	particles	that	are	specifically	

bound	to	the	lock	dimple	to	unbind,	and	they	remain	in	specific	lock-key	

configuration	for	longer	before	unbinding.		
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While	we	can	measure	the	rate	constants	for	breaking	a	lock-key	specific	

bond,	shown	in	Figure	2.8c,	either	to	form	a	free	pair	or	a	nonspecifically	bound	one,	

a	theoretical	estimation	of	these	rates	would	require	intimate	knowledge	of	both	the	

3-dimensional	dependence	of	potential	energy	for	the	key	in	the	pocket	and	

hydrodynamic	interactions	for	this	geometry,	which	is	not	readily	available.	One	

thing	to	notice	at	this	point	is	the	fact	that	details	of	the	shape	of	the	lock	pocket	are	

not	required	to	explain	kinetic	events	in	the	direction	of	NS	to	S.	This	insensitivity	is	

due	to	the	nature	of	NS-S	binding	which	is	the	result	of	diffusion	of	a	key	on	the	

surface	of	the	lock	until	the	lip	of	the	pocket	is	found,	after	which	binding	occurs	

faster	than	surface	diffusion	and	the	binding	rate	is	not	sensitive	to	the	geometric	

details	and	complex	hydrodynamics	as	the	key	enters	into	the	pocket.	The	reverse	

process	of	escape	from	the	pocket	(ie.	from	S	to	NS),	however,	involves	more	

crucially	the	non-spherical	shape	of	this	pocket,	the	modeling	of	which	is	beyond	the	

scope	of	this	work.		

Rate	constants	determined	from	transient	experiments	as	explored	here	are	

related	to	the	equilibrium	behavior	of	the	reactions	involved.	In	particular	we	can	

relate	kinetic	rate	constants	to	equilibrium	constants,	and	obtain	the	equilibrium	

free	energy	difference	between	the	nonspecific	and	specific	lock-key	bond	from	the	

kinetics.		At	equilibrium,	association	and	disassociation	rates	between	free,	

nonspecific	and	specific	rates	are	equal.	This	yields	the	relations		

𝑘!!!" 𝑛! 𝑛! = 𝑘!"!!  𝑛!"   18 	,	

𝑘!!! 𝑛! 𝑛! = 𝑘!!!  𝑛!   (19)	,	and	
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𝑘!"!! 𝑛!" = 𝑘!!!" 𝑛!   (20)	,	

which	imply	the	following	relationship	between	kinetic	rates: 𝑘!"!! 𝑘!!!! =

 𝑘!"!!  𝑘!!! 𝑘!!!" 𝑘!!! .		At	equilibrium	this	ratio	is	equal	to	the	concentration	ratio	

of	specific	to	nonspecific	pairs,	𝑛! 𝑛!".		Equilibrium	also	requires	this	ratio	to	be	

𝑛! 𝑛!" = exp −∆𝐹!!!! 𝑘!𝑇 .	Thus,	we	can	obtain	the	free	energy	difference	

between	the	nonspecific	and	specific	state,	∆𝐹!"!!,	for	all	[PEO]	by	taking	the	ratio	

of	rate	constants	as	

∆𝐹!"!! = −𝑙𝑛 !!"!!
!!!!!

   (21),	or	

∆𝐹!"!! = −𝑙𝑛 !!"!! !!!!
!!!!" !!!!

   (22),	

where	the	difference	between	equations	(21)	and	(22)	is	simply	the	path	one	NS	

pair	can	take	to	get	to	S	(c.f	Fig	2.1a).	

	A	similar	relation	can	be	made	to	obtain	the	free	energy	difference	between	

F	to	NS	from	the	equation	(18)	as	𝑛!" 𝑛!𝑛! =  𝑘!!!" 𝑘!"!! .	Equilibrium	for	this	

reaction	requires	𝑛!"𝑛! 𝑛!𝑛! = exp −∆𝐹!!!" 𝑘!𝑇 ,	where	n0	is	a	reference	

concentration.	As	a	reference	concentration	we	assume	that	one	particle	occupies	

the	volume	that	defines	the	nonspecific	state,	𝑉!" =  4𝜋(1− 𝑓)(𝑅′! −  𝑅!) 3,	

where	𝑓	is	defined	above,	R	=	rL	+	rK,	and	R’	=	R	+	ha;	that	is,	n0		=	1/	VNS.	The	free	

energy	difference	between	F	and	NS	states	is	

∆𝐹!!!" = −𝑙𝑛 !!!!"!!
!!"!!

   (23).	

In	Fig	2.9,	we	plot	the	NS-to-S	free	energy	difference	obtained	from	

experiment.	We	measure	the	free	energy	difference	between	NS	and	S	two	different	
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ways:	we	can	take	the	ratio	of	the	NS-S	and	S-NS	rate	constants	(direct	

measurement)	using	equation	(21)	or	the	product	of	the	ratios	of	the	four	reactions	

(indirect	measurement)	using	equation	(22).	The	free	energy	difference	between	NS	

and	S	decreases	from	~	2	kBT	to	0	as	[PEO]	increases	from	0	g/L	to	1.4	g/L.	

Moreover,	direct	and	indirect	measurements	of	this	difference	are	in	agreement	

with	each	other,	which	serves	as	a	thermodynamic	consistency	check	for	the	

measurements	made.		

Interestingly,	the	free	energy	measurements	show	that	at	depletant	

concentrations	equal	to	1	g/L	or	below,	the	nonspecific	binding	state	is	favored	over	

the	specific	binding	state.	For	[PEO]	=	1.2	g/L	and	1.4	g/L,	the	free	energy	difference	

between	NS	and	S	is	close	to	zero,	implying	no	preference	between	NS	and	S	

binding.	Given	the	expected	stronger	potential	of	interaction	for	specifically	bound	

pairs,	the	preference	for	nonspecific	pairs	seems	counterintuitive.	Nonetheless	the	

free	energy	estimated	above	includes	contributions	of	both	the	potential	energy	of	

interaction	and	the	associated	entropy	of	each	type	of	bond.	Because	the	

(energetically)	weaker	nonspecific	bond	is	more	prevalent,	the	entropy	of	this	bond	

(as	related	to	the	nonspecific	binding	volume)	must	be	much	higher	than	that	of	the	

specific	bond,	as	is	indeed	the	case.	In	this	colloidal	system,	the	entropic	penalty	

associated	with	the	smaller	number	of	particle	configurations	allowed	for	the	

specific	binding	state	is	large	enough	to	favor	nonspecific	binding	for	[PEO]	below	

1.0	g/L.			
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This	discussion	shows	the	critical	role	of	entropy	on	both	the	equilibrium	

and	kinetic	behavior	of	lock	and	key	binding	specifically,	and	for	anisotropic	colloids	

in	general.		For	lock	and	key	binding	the	entropy	is	determined	by	the	shape	of	the	

lock	pocket	relative	to	the	key;	the	transition	PEO	concentration	determining	the	

point	at	which	specific	binding	is	favored	relative	to	nonspecific	binding	would	

therefore	certainly	depend	on	complementarity	between	the	key	and	pocket	shape.		

We	can	therefore	envisage	that	certain	pocket	shapes	–	different	than	the	one	

studied	here	(c.f.	Figure	2.2)	–	might	lead	to	potential	energy	and	entropy	changes	

upon	binding	that	would	combine	to	produce	a	more	favorable	free	energy	change	

for	the	specific	bond,	relative	to	the	non-specific	bond,	than	reported	in	Figure	2.5.		

Future	work	to	generate	a	pocket-shape	dependent	free	energy	landscape	–	either	

by	simulation	or	experiment	–	would	be	an	interesting	means	to	evaluate	the	role	of	

shape	complementarity	on	the	energetic	and	entropic	contributions	to	binding	in	

this	model	lock-and-key	system.	

	Figure	2.9	also	shows	the	free	energy	difference	between	F	and	NS	obtained	

from	experiment	and	modeling.	This	free	energy	difference	is	obtained	from	the	

ratio	of	rate	constants	(see	Equation	(23))	and	the	reference	concentration.		(Note	

that	the	reference	concentration	is	independent	of	[PEO].		Therefore,	relative	

changes	along	the	curve	are	not	a	function	of	the	choice	of	reference.)		Our	

experiments	indicate	that	the	free	energy	difference	between	F	and	NS	decreases	

with	increasing	[PEO],	from	a	value	of	0.7	kBT	at	0.3	g/L	to	-0.6	kBT	at	1.4	g/L.	The	

corresponding	free	energy	difference	obtained	from	our	modeling,	using	equation	
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(23)	and	rate	constants	using	the	diffusion-migration	model	for	kNS-F	and	

Smoluchowski	collision	rates	for	kF-NS,	is	also	shown	on	Figure	2.9	and	is	in	very	

good	agreement	with	our	experiments.	Absolute	values	of	the	NS-F	free	energy	

depend	on	the	particular	choice	of	reference	concentration.		Therefore,	the	

preference	of	NS	over	F,	as	indicated	by	the	sign	of	the	free	energy,	will	ultimately	

depend	on	the	total	particle	concentration	of	the	system.	

Conclusions	

We	have	shown	that	specific	lock-and-key	binding	occurs	through	two	

different	kinetic	pathways:	a	direct	pathway	from	free	particles	to	specifically	bound	

ones	and	an	indirect	pathway	involving	a	key	particle	nonspecifically	bound	to	the	

spherical	lock	surface,	which	transitions	by	surface	diffusion	to	a	specific	bond.	We	

quantified	lock-and-key	binding	kinetics	and	extracted	event	rate	coefficients	for	the	

two	binding	pathways,	demonstrating	the	importance	of	nonspecific	binding	

pathways	for	the	self-assembly	of	anisotropic	particles.	From	a	diffusion-migration	

analysis	we	fit	the	lifetime	event	distributions	from	nonspecifically	bound	to	free	

particles,	and	thereby	obtained	experimentally	derived	estimates	of	the	attractive	

interaction	between	particles	as	a	function	of	depleting	polymer	concentration.	

Predicted	rates	of	nonspecific-to-specific	(NS-S)	lock-key	binding,	as	well	as	

distributions	of	transition	times	for	nonspecific	to	free	particles	(NS-F)	and	

nonspecific-to-specific	binding	were	found	to	agree	with	the	experimentally	

measured	quantities.	From	the	measured	rate	constants	we	computed	free	energy	

differences	between	different	states	of	the	system.	We	found	that	nonspecifically	
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bound	pairs	are	preferred	to	specifically	bound	pairs	for	depletant	concentrations	

below	1.0	g/L,	due	to	the	large	entropy	penalty	for	formation	of	the	specific	bond	

relative	to	that	for	the	nonspecific	bond.	Similar	entropy	penalties	are	well	known	to	

limit	binding	affinities	in	highly	specific	protein-ligand	interactions.29	The	

measurements	of	lock-key	binding	kinetics	is	a	starting	point,	not	only	for	

understanding	more	complex	binding	events	in	biology,	but	also	for	determining	

rates	of	formation	of	complex	colloidal	materials	involving	particles	with	

anisotropic	interactions.		
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Figure	2.1	(a)	Kinetic	pathways	of	lock	and	key	colloidal	particle	binding.	(b)	Free-
to-specific,	direct	binding	event.	Scale	bar	3	µm.	872	ms	between	frames.	(c)	
Transition	from	nonspecific	to	specific	binding.	Scale	bar	3	µm.	1.74	s	between	
frames.	 	
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Figure	2.2	Images	of	lock	and	key	particles:	Panels	(a)	and	(b):	SEM	images	of	the	
lock	and	key	particles.	The	lock	particles,	panel	(a),	have	diameter	dL	=	2.38	µm	±	
0.02	µm	(N	=	74)	and	the	key	particles,	panel	(b),	have	diameter	dK	=	2.14	µm	±	0.01	
µm	(N	=	90).	Scale	bars:	2	µm.	Panel	(c)	shows	a	TEM	image	of	a	lock	particle;	on	
panel	(d)	the	curvature	of	the	dimple	(dotted	red	line)	and	the	depth	of	the	dimple	δ	
(solid	white	line)	are	shown.	The	pocket	of	the	lock	particle	has	angle	of	aperture	a	
=	0.58	±	0.01	radians	(N	=	3).	 	
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Figure	2.3	Confocal	image	analysis	and	sample	bond	length	distribution:	Panel	(a)	
shows	a	region	of	a	two-channel	confocal	microscopy	image	of	lock	and	key	
particles.	Scale	bar	5	µm.	We	split	the	confocal	image	into	its	two	channels,	where	
locks	are	red	and	keys	are	green	(panels	(b)),	and	find	the	centers	(red	dots)	of	the	
lock	and	key	particles	independently	(panels	(c))	using	Hough	transforms.	Panel	(d)	
shows	a	histogram	of	the	bond	lengths	between	the	centers	of	lock	and	key	particles	
for	N	=3	samples	at	[PEO]	=	1.4	g/L.	The	green	region	denotes	specifically	bound	
lock-key	pairs,	the	blue	region	nonspecifically	bound	pairs,	and	the	red	region	
denotes	free	locks	and	keys.	 	
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Figure	2.4	Smoluchowski	diffusion-migration	modeling:	(a)	Schematic	of	lock-key	
pair	and	relevant	variables	for	diffusion-migration	modeling.	(b)	Phase	space	in	the	
θ-h	plane	showing	the	regions	where	specific	(S),	nonspecific	(NS),	and	free	(F)	
configurations	are	present.		 	
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Figure	2.5	(a)	NS	to	F	event	lifetime	distribution	for	[PEO]	=	1.0	g/L	from	
experiments	(symbols)	and	theory	(line),	to	yield	the	depletant	osmotic	pressure	
that	minimizes	the	weighed	sum	of	squared	errors.		(b)	Nonspecific	potential	energy	
minima	obtained	from	this	method	plotted	against	depleting	polymer	concentration.		
The	blue	curve	is	polynomial	fit	to	the	nonspecific	binding	energies.	The	black,	red,	
and	green	lines	correspond	to	usage	of	ideal	depletant	equation	of	state	
(Πideal=nPEOkBT)	allowing	for	variability	in	potential	energy	parameters,	for	average,	
low	and	high	estimates,	respectively.	
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Figure	2.6	(a)	NS	to	S	event	lifetime	distribution	for	1.0	g/L.	Open	symbols	denote	
experimental	results;	the	red	line	is	the	best-fit	of	theory	result.	(b)	Mean	first	
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passage	times	for	NS-F	(red	filled	squares)	and	NS-S	(blue	filled	circles)	events	
plotted	against	[PEO].	Model	results	are	denoted	by	red	(NS-F)	and	blue	(NS-S)	lines.	
(c)	Success	probability	of	NS-to-S	binding.	Experimental	results	are	denoted	by	open	
symbols;	model	results	are	shown	as	a	red	line.	
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Figure	2.7	Multiparticle	interactions:	Experimental	images	for	[PEO]	=	0.6g/L	
(panels	(a)	–	(c))	and	[PEO]	=	1.4g/L	(panels	(d)	–	(f))	for	different	times	in	the	
experiment	where	locks	are	shown	as	red	particles,	keys	as	green	particles.	Scale	
bar	on	all	images	is	10	mm.	Panel	(a)	is	taken	at	t=0	s,	(b)	at	t=872	s	and	(c)	at	
t=1744	s.	Panel	(d)	is	taken	at	t=0	s,	(e)	at	t=872	s	and	(f)	at	t=1744	s.	
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Figure	2.8	(a)	Rate	constants	for	F-NS	(red	filled	squares)	and	F-S	(blue	filled	
circles)	are	plotted	against	[PEO].	Collisions	rates	from	Smoluchowski	collision	
theory	are	shown	as	red	and	blue	lines,	respectively.	(b)	Rate	constants	for	NS-F	
(red	filled	squares)	and	NS-S	(blue	filled	circles).	Modeled	rate	constants	are	shown	
as	red	and	blue	lines,	respectively.	(c)	Rate	constants	for	S-NS	(blue	filled	circles)	
and	S-F	events	(red	filled	squares).	 	
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Figure	2.9	Free	energy	differences	between	nonspecific	and	specific	lock-key	
binding	states	are	shown	as	blue	filled	circles	(directly	measured)	and	filled	red	
squares	(indirect	measurement).	The	free	energy	difference	between	free	and	
nonspecific	binding	is	shown	as	filled	green	triangles;	the	green	line	represents	the	
free	energy	difference	as	obtained	by	our	model.	
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Chapter	3 	
Effect	of	shape	complementarity	on	the	free	energy	of	binding	of		

lock	and	key	colloids	
	

Abstract	

Using	confocal	microscopy,	we	measure	the	free	energy	of	formation	of	

specific	lock-key	bonds	to	probe	the	role	of	shape	complementarity	on	the	

formation	of	lock-key	colloidal	molecules.		We	find	that	the	free	energy	of	formation	

of	lock-key	bonds	is	asymmetric	around	a	perfect	match	between	the	key	and	lock	

cavity,	with	smaller	free	energies	observed	for	key-to-lock	cavity	size	ratios	less	

than	one	relative	to	size	ratios	greater	than	one.		The	free	energies	of	formation	are	

derived	from	measurements	of	the	equilibrium	fractional	occupation	of	locks	for	

fixed	initial	concentration	of	lock	and	key	particles.	The	lock	dimple	geometry	of	the	

particles	was	characterized	using	atomic	force	microscopy.		We	find	that	keys	with	

key-to-lock	dimple	ratio	equal	to	δ	=	0.7	and	δ	=	0.9	have	the	most	favorable	specific	

lock-key	bond	free	energies	of	formation.	Our	results	suggest	that	the	formation	of	

specific	lock-key	bonds	is	promoted	when	the	key	particle	is	smaller	than	the	

dimple,	in	agreement	with	previous	simulation	and	modeling	work	showing	that	

lock-key	specific	bond	formation	in	this	region	is	more	entropically	favored	than	for	

larger	keys	due	to	better	shape	recognition	between	the	particles.	
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In	this	work,	Daniel	J.	Beltran-Villegas	and	Greg	van	Anders	contributed	to	

the	conceptual	framework	and	helped	design	research	regarding	lock	and	key	

binding	and	shape	complementarity.		
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Introduction	

Equilibrium	colloidal	self-assembly	occurs	as	a	spontaneous	thermodynamic	

process	driven	by	the	minimization	of	free	energy.		In	systems	of	colloidal	particles	

with	isotropic	interactions,	such	as	colloidal	polymer	spheres,	close-packed	

assemblies	are	the	free-energy	minimum	at	high	volume	fraction.		The	formation	of	

assemblies	with	complex	symmetries,	such	as	non-close	packed	colloidal	

assemblies,	can	be	achieved	by	introducing	anisotropic	pair	potential	interactions	

into	the	system1-8.		However,	systems	of	particles	with	anisotropic	interactions	can	

be	prone	to	kinetic	arrest	and	metastability.9-11	Kinetic	trapping	is	observed	in	

systems	where	bonds	formed	between	particles	in	metastable	configuration	do	not	

easily	break12.	There	is	interest	in	developing	design	rules	for	the	assembly	of	

anisotropic	building	blocks	so	as	to	enhance	the	formation	of	structure	while	

avoiding	kinetically	arrested	phases	6,13-18.	The	development	of	such	rules	requires	

thorough	understanding	of	the	free	energy	landscape	of	interaction19,20	in	

anisotropic	particle	systems.		

In	systems	where	self-assembly	is	driven	by	the	depletion	interaction,	the	

system	equilibrates	into	states	at	which	depletant	particles	maximize	their	free	

volume21.	The	depletion	interaction	originates	due	to	the	exclusion	of	small	cosolute	

particles	from	the	surface	of	large	particles	or	surfaces	in	the	system.	Large	surfaces	

and	particles	submerged	in	the	presence	of	small	depletants	thus	have	a	depletion	

exclusion	zone	around	them,	which	depletant	particles	cannot	penetrate.	When	the	

depletion	exclusion	zones	of	two	particles	overlap,	an	osmotic	pressure	difference	
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pushes	the	two	particle	surfaces	together.	The	osmotic	pressure	difference	is	due	to	

a	difference	between	the	concentration	of	depletants	in	bulk	and	in	the	gap	between	

the	particles.	When	two	particles	come	together,	the	depletant	particles	gain	free	

volume	equal	to	the	overlap	of	the	two	particles’	exclusion	zones,	ΔVoverlap,	enabling	

them	to	explore	more	spatial	configurations	and	increase	their	entropy.		Therefore,	

an	increase	in	the	free	volume	of	the	depletant	particles	leads	to	a	decrease	in	the	

overall	free	energy	of	the	system.		The	larger	the	overlap	between	depletion	

exclusion	zones,	the	stronger	the	depletion	interaction	between	the	two	surfaces.	

For	spherical	particles,	the	depletion	interaction	between	two	particles	is	isotropic.	

The	interaction	between	two	particles	can	be	made	anisotropic	and	selective	by	

altering	the	volume	of	the	overlap	between	exclusion	zones7,22-24,	thereby	inducing	a	

preferred	relative	particle	orientation.		

Lock	colloids	as	first	synthesized	by	Sacanna	et	al7,8	are	anisotropic	building	

blocks	with	a	region	of	concave	curvature	--	a	dimple	--	on	their	surface.	The	shape	

of	this	dimple	is	akin	to	the	shape	formed	when	a	spherical	shell	buckles	under	a	

point	load25.	When	immersed	in	a	solution	of	non-ionic	depleting	polymer,	shape-

complementary	lock	and	key	colloids	assemble	into	dumbbells.		Lock	and	key	

colloids	may	bind	to	each	other	in	two	ways:	they	may	form	a	nonspecific	bond,	

where	the	key	particle	binds	to	the	convex	(spherical)	surface	of	the	lock	particle,	or	

they	may	form	specific	bonds,	where	the	key	particle	binds	to	the	concave	dimple	on	

the	lock	surface26.		Specific	bond	formation	is	promoted	over	nonspecific	bond	

formation	if	there	is	a	greater	loss	in	free	energy	when	keys	bind	into	the	lock	
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dimple	versus	onto	its	remaining	surface.	The	specific	bond	between	lock	and	key	

particles	is	a	freely	rotating	bond	whose	free	energy	depends	on	the	magnitude	of	

the	depletion	overlap	volume	between	the	key	and	the	lock	dimple.	The	depletion	

overlap	volume	depends	on	the	degree	of	shape	complementarity	between	the	key	

and	lock	dimple	surfaces.	The	freely	rotating	lock-key	bonds	enable	lock-key	

colloidal	molecules	to	be	mechanically	reconfigurable27,28.	Shape	complementarity	

between	the	key	and	lock	dimple	surfaces	refers	to	the	degree	of	geometric	

(curvature)	matching	of	the	convex	and	concave	particle	surfaces	so	as	to	facilitate	

docking	of	one	particle	onto	the	other’s	surface.		

Although	depletant	particles	gain	free	volume	when	a	lock	and	key	bond	is	

formed,	the	key	particles	that	bind	to	the	lock	dimple	lose	configurational	entropy,	

because	the	volume	their	centers	of	mass	can	explore	is	reduced	to	a	small	binding	

volume.	Thus,	for	specific	lock-key	bonds	to	be	stable	and	to	increase	the	formation	

number	of	lock-key	dumbbells,	the	increase	in	binding	(internal)	energy	

experienced	by	the	key	when	it	binds	at	the	dimple	has	to	be	sufficiently	large	to	

account	for	the	loss	in	the	key	particle’s	configurational	entropy.			

In	previous	work,	we	performed	experiments	and	modeling	to	probe	the	

kinetic	pathways	of	lock-key	colloidal	assembly26.		We	found	that	specific	lock-key	

bonds	are	formed	via	two	binding	routes:	one	direct	route	where	key	particles	

diffusing	in	bulk	bind	to	the	lock	cavity,	and	another	indirect	route	where	key	

particles	diffuse	on	the	surface	of	the	lock	until	they	encounter	and	bind	to	the	lock	

dimple.		Modeling	and	simulation	that	considered	the	interaction	between	the	
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concave	and	convex	surfaces	of	the	interacting	particles	predicted	more	favorable	

formation	of	specific	bonds	over	nonspecific	bonds	for	key	particles	that	are	slightly	

smaller	in	size	than	the	dimple	cavity19.		

Previous	experimental	work	on	the	equilibrium	self-assembly	of	lock-key	

colloids	suggested	that	more	lock-key	specific	bonds	are	formed	when	the	depletion	

overlap	volume	between	key	and	dimple	is	maximized7,	which	occurs	when	the	

spherical	key	particles	matches	the	dimple	cavity	shape.	In	that	work,	because	the	

topographical	feature	sizes	(dimple	and	key	radii)	exceed	the	depletant	size	and	

Debye	screening	length,	the	electrostatic	and	depletion	interaction	between	key	

particles	and	the	lock	dimple	were	modeled	as	occurring	between	flat	plates	with	an	

effective	area	of	interaction.	No	explicit	characterization	of	the	lock	surface	

topography	was	reported,	and	the	effective	area	between	key	and	lock	dimple	was	

reported	as	a	fitting	parameter.	Existing	literature	on	the	rational	design	of	ligand-

protein	binding,	on	the	other	hand,	suggests	that	tight	fits	between	protein	and	

ligand	are	unfavorable	due	to	their	high	entropic	cost29,30.	Results	from	previous	

simulation	work	that	included	full	determination	of	the	depletion	and	electrostatic	

interaction	potentials	from	considering	of	the	dimple	topography	imply	the	same	

principle	applies	to	the	formation	of	lock	and	key	colloidal	molecules.		

In	this	work,	we	perform	experiments	to	investigate	the	effect	of	shape	

complementarity	on	the	binding	free	energy	and	formation	of	lock-key	dumbbells.	

We	change	the	magnitude	of	the	overlap	volume	by	matching	one	lock	particle	to	

five	different	key	particles	of	sizes	smaller	and	larger	than	the	lock	dimple	cavity	
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radius.	We	characterize	the	lock	particles	using	atomic	force	microscopy	(AFM),	and,	

using	topographic	information	extracted	with	AFM	and	the	size	of	the	key	particles	

used,	we	characterize	the	ratio	of	the	key	size	to	lock	cavity	size.	We	perform	

measurements	of	fractional	occupation	for	each	of	the	different	size	ratios	and	for	

different	depletant	concentrations;	these	fractional	occupancies	are	converted	to	

free	energies	of	formation	by	choice	of	a	suitable	reference	state.		We	find	that	key	

particles	smaller	than	the	average	dimple	cavity	size	have	more	favorable	free	

energies	of	specific	lock-key	bond	formation	than	keys	whose	size	is	larger	than	the	

size	of	the	dimple.		That	is,	the	free	energy	of	formation	is	asymmetric	about	a	

condition	at	which	the	lock	dimple	curvature	matches	the	key	curvature,	with	key	

curvature	smaller	than	pocket	curvature	being	more	favorable.		Our	results	are	in	

agreement	with	previous	modeling	and	simulation	work19	that	predicts	optimized	

binding	and	formation	of		specific	lock-key	bonds	for	spherical	key	particles	smaller	

than	the	lock	cavity	radius,	which	also	exhibits	a		similar	asymmetry	about	matched	

particle	curvatures.		In	addition,	results	at	high	polymer	concentrations	suggest	that	

the	depletion	attractive	is	moderated	at	these	conditions,	and	that	the	free	energy	of	

formation	in	this	case	is	not	as	favorable	as	would	be	predicted	by	the	Asakura-

Oosawa	depletion	interaction.	 	
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Theory	

The	law	of	mass	action,	and	equilibrium	thermodynamics	

In	our	experiments,	the	colloidal	suspensions	reach	equilibrium	at	constant	

volume	and	temperature	conditions.	Thus,	the	Helmholtz	free	energy	of	the	system,	

F,	where	F =  U− TS,	U	is	the	internal	energy	of	the	system,	S	is	its	entropy,	and	T	is	

the	absolute	temperature,	is	minimized.	From	considering	thermodynamic	

equilibrium	for	the	reaction	L	+	K	!"	LK,	and	assuming	we	have	an	ideal,	dilute	gas	

of	particles,	the	equilibrium	constant,	Keq	,	is	given	by	

	𝐾!" =  !!"
!!!!

=  !!"!!"!#$
!!!!

=  !!"!!"!#$
!!!!

,			 	 	 	 	 	 (1)	

where	ni	is	the	number	density	of	species	i,	Ni	is	the	number	of	particles	of	free	

species	i,	χi	is	the	ratio	of	partial	fractions	of	dilute	gaseous	species	i,		χi	=	ni/ntotal,	

ntotal	is	the	sum	of	the	number	densities	of		all	species,	and	the	total	number	of	

particles	is	given	by	Ntotal	=	NL	+	NK	+	NLK	31	(Since	the	volume	in	our	experiments	is	

constant,	we	record	particle	numbers	instead	of	number	densities.)	The	free	energy	

of	formation	of	lock-key	bonds,	ΔFo,	is	then	given	by	

	𝛽∆𝐹! =  − ln 𝐾!" = − ln  !!"!!"!#$
!!!!

 ,	 	 	 	 	 	 (2)	

where	β	=	(kBT)-1,	kB	is	Boltzmann’s	constant,	and	T	is	temperature.		

We	measure	the	free	energy	of	formation	of	lock-key	bonds,	ΔFo,	by	

measuring	the	equilibrium	constant,	Keq,	which	we	do	by	counting	the	number	of	

free	locks,	free	keys,	and	occupied	available	locks	in	fixed	volume	regions	identified	

by	the	field	of	view	of	a	microscope,	as	outlined	below.	We	do	not	include	the	
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number	of	locks	occupied	by	another	lock,	NLL,	in	the	total	number	of	locks	counted,	

to	yield	the	count	of	free,	unbound	locks	that	are	available	to	bind	to	keys,	NL;	the	

number	of	locks	occupied	by	other	locks	is	small	relative	to	the	total	number	of	

other	particle	species	(see	below).	Errors	in	the	number	measurements	are	

calculated	by	propagating	errors	in	counting	of	particle	species.	To	compare	

experimental	results	to	previously	published	simulation	results,	we	plot	ΔFo	against	

nonspecific	binding	energy.	

In	previous	work,	we	measured	the	free	energy	of	formation	of	nonspecific	

bonds	(free	to	nonspecific	binding),	as	well	as	the	free	energy	difference	between	

nonspecific	and	specific	binding.	In	that	work,	we	measured	the	equilibrium	

constant	for	free	to	nonspecific	binding	by	applying	detailed	balance26.		In	this	case,	

the	equilibrium	constant	was	a	ratio	of	rate	constants	and	the	reference	

concentration	(standard	state)	was	taken	as	the	reciprocal	of	the	volume	of	the	

nonspecific	state.		In	this	work,	we	calculate	equilibrium	constants	using	particle	

numbers,	based	on	treating	the	particles	like	dilute	particle	species.	Thus,	the	

reference	concentration	is	given	by	the	total	particle	concentration,	as	outlined	

above.	The	use	of	different	reference	concentrations	has	the	effect	of	shifting	the	

free	energy	curves	by	a	factor	equal	to	the	natural	logarithm	of	the	ratio	of	the	

reference	concentrations.		

Specifically,	the	reference	concentration	used	in	our	previous	work26	was	the	

reciprocal	of	the	volume	of	the	nonspecific	binding	state,	no	=	0.039	µm-3.	In	our	

current	experiments,	since	we	treat	the	species	as	dilute	gases,	the	reference	
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concentration	is	given	by	the	total	number	density	of	particles.	This	concentration	is	

made	by	a	direct	count	the	number	of	particles;	for	the	experiments	reported	here,	

the	total	number	density	of	particles	in	an	experiment	varies	in	the	range	10-3	–	10-4	

µm-3.		This	implies	that,	had	we	chosen	the	same	reference	concentration	as	in	our	

previous	work,	the	free	energies	in	this	work	would	be	shifted	up	by	3.6	kBT	–	6	kBT,	

given	by	the	ratio	of	reference	concentrations.		We	compare	the	free	energy	of	

specific	bond	formation	at	1.5	mM	NaCl	and	0.8	g/L	extracted	in	past	work26	to	the	

free	energy	of	specific	bond	formation	at	those	conditions	from	the	experiments	

presented	in	this	paper	(1.5	mM,	0.8	g/L,	δ	=	1.1).	From	Figure	2.9	in	Chapter	2	and,	

using	 Δ𝐹! =  Δ𝐹!!!" +  Δ𝐹!"!!,	we	find	Δ𝐹! = 1.7 𝑘!𝑇	in	our	previous	work	for	a	

shift	up	of	~1.5	kBT	for	values	reported	here	at	the	same	condition.	Experimental	

errors	discussed	in	the	previous	chapter	could	potentially	explain	this	deviation.	

Nonspecific	pair	potential	energy	calculation	

	 We	plot	the	fractional	occupation	of	locks	𝜃!"  and	the	free	energy	of	lock-key	

bond	formation	∆𝐹!versus	the	non-specific	binding	energy	Eb.	The	nonspecific	

binding	energy	Eb	is	defined	as	the	absolute	value	of	the	minimum	of	the	total	

nonspecific	interaction	potential,	which	is	given	by	the	sum	of	the	contributions	by	

the	depletion	interaction	and	the	electrostatic	interaction	between	two	spheres.	We	

do	not	include	van	der	Waals	interactions	because	we	use	Pluronic	F108	in	our	

system	as	a	steric	stabilizer,	which	keeps	the	particles	separated	by	distances	at	

which	attractive	van	der	Waals	forces	are	small.	We	use	the	Asakura-Oosawa	
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model32	for	the	depletion	interaction,	and	the	Yukawa	screened	electrostatic	

interaction	potential	for	the	electrostatic	interaction,	namely,	Φ =  Φ!"#$"%&'(
!" +

Φ!"!#$%&'$($)#'.	The	depletion	interaction	potential,	Φ!"#$"%&'(
!" ,	is	given	by	

Φ!"#$"%&'(
!" =  −Π!"#$%&'  ΔV!"#$%&',	where	Π!"#$%&' 	is	the	osmotic	pressure	of	the	

depletant	polymer	particles,	and	ΔV!"#$%&'	is	the	volume	of	the	overlap	of	the	

exclusion	zones	of	two	spherical	surfaces.		For	our	simple	estimate,	we	assume	that	

polymers	are	ideal,	such	that	Π!"#$%&' =  𝛽!!𝑛!"#$%&' ,	where		

β-1	=	kBT,	npolymer	is	the	number	density	of	polymer	molecules,	kB	is	Boltzmann’s	

constant,	and	T	is	absolute	temperature.	Thus,	the	strength	of	the	depletion	

interaction	increases	with	increasing	polymer	concentration.		The	electrostatic	

interaction	potential,	Φ!"!#$%&'$($)#'	is	given	by	the	screened	electrostatic	repulsion	

potential	between	two	unequally	sized	charged	spheres33.			

	 Our	estimate	of	nonspecific	binding	energy	assumes	that	the	depleting	

polymer	molecules	do	not	interact	with	each	other,	resulting	in	a	depletion-induced	

attraction	that	is	purely	entropic	in	origin.		Experiments	and	theories	describing	the	

depletion	interaction	suggest	that	a	complete	description	of	the	depletion	

interaction	mediated	by	non-ionic	macromolecules	like	polyethylene	oxide	must	

consider	the	effects	of	polymer	polydispersity34,	non-ideal	solution	osmotic	

pressure35,	as	well	as	effects	arising	from	structure	formation	of	the	small	depletant	

chains36,37	that	result	in	the	presence	of	oscillatory	depletion	interaction	potentials.		

These	structure	effects	might	have	a	stabilizing	effect	on	particle	suspensions,	
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especially	at	high	polymer	concentrations38.	

	

Materials	and	Methods	

Lock	and	key	particle	characterization	

In	this	study	we	used	one	size	lock	particle	and	five	different	sized	key	

particles	(see	Table	3.1).	Lock	particles	were	made	with	3-trimethoxysilylpropyl	

methacrylate	(TPM)	and	synthesized	following	Sacanna	et	al7,26.		A	key	particle	

made	of	TPM	was	synthesized	as	described	elsewhere26.		Polystyrene	beads	used	as	

keys	were	obtained	from	Polysciences	(1.75	µm)	and	Life	Technologies	(1.0	µm,	1.4	

µm,	1.9	µm).	Average	values	of	the	particle	zeta	potentials,	measured	using	a	

Malvern	ZetaSizer,	are	reported	on	Table	1	(N	=	5	measurements).	For	more	details	

on	key	particle	characteristics,	see	Table	3.1.		

We	used	an	atomic	force	microscope	(Veeco	Dimension	Icon,	equipped	with	a	

Bruker	SCANASYST-AIR	probe	tip)	to	image	the	lock	particles	and	obtain	

information	about	surface	concavity	of	the	lock	particles	(see	Fig	3.1a	–	3.1c).	We	

obtain	line	height	profile	information	from	the	AFM	images	with	Gwyddion	open-

source	software.	As	can	be	seen	on	Figures	3.1a	and	3.1b,	three	regions	of	different	

curvatures	characterize	the	lock	particle	surface:	the	lock	dimple,	the	lock	lip,	and	

the	rest	of	the	lock’s	spherical	surface.	Using	Matlab,	we	perform	a	fit	to	each	height	

profile	data	and	average	the	different	fit	results	to	obtain	the	mean	radius	of	

curvature	of	the	dimple,	Rdimple	=	0.965	±	0.167	µm	(N	=	15	different	measurements;	

standard	error	of	the	mean	𝜎 𝑁	=	0.043	µm)	(Fig.	3.1c).	Note	that	the	lock	
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particles	have	a	polydisperse	dimple;	the	radius	of	curvature	of	the	dimple	has	a	

coefficient	of	variation	(CV)	equal	to	17.3%.	We	calculate	δ,	the	key-to-dimple	size	

ratio,	δ	=	Rkey/Rdimple,	for	all	key	particles	used	(see	Table	3.1	and	Fig.	3.1d),	using	

average	values	and	error	propagation.	

	

Sample	preparation	

Stock	solutions	of	1.0	mM,	1.5	mM,	and	2.0	mM	NaCl	were	prepared,	as	well	

as	stock	solutions	of	2	g/L	polyethylene	oxide	(PEO,	viscosity	average	molecular	

weight	Mv	=	600,000	g/mol,	Rg	=	50.2	nm	39,	critical	overlap	concentration	c*	=	1.88	

g/L;	Sigma-Aldrich)	at	1.0	mM,	1.5	mM	and	2.0	mM	NaCl.	Dilute	lock	and	key	colloid	

suspensions	of	2	mL	volume	(lock	volume	fraction	ϕ	=	9.5	x	10-5;	key	volume	

fractions	ϕ	=	1.6	x	10-4	−	2.7	x	10-4	;	see	table	3.1)	were	prepared	by	adding	

corresponding	amounts	of	1.0	mM,	1.5	mM,	or	2.0	mM	NaCl	solution,	PEO	solution,	

25	µL	of	a	1	wt%	tetramethylammonium	hydroxide	(TMAH,	Sigma	Aldrich)	solution	

in	water,	and	25	µL	of	a	5	wt%	Pluronic	F108	(Sigma	Aldrich)	aqueous	solution.	For	

each	different	salt	condition,	we	varied	[PEO]	from	0.4	g/L	to	1.2	g/L	in	0.2	g/L	

increments.		This	range	corresponds	to	c/c*	varying	from	c/c*	=	0.21	to	0.64.	

After	we	prepared	the	samples,	we	dipped	a	rectangular	capillary	tube	

(Vitrocom,	#5012-050;	inner	capillary	height	h	=100	µm)	into	the	suspension	until	

it	was	completely	filled	and	devoid	of	air	bubbles.	After	the	capillaries	were	filled	

with	the	prepared	suspensions,	they	were	glued	to	a	glass	slide	using	UV	light-

curable	glue	(Dymax®	GR217-A).	The	slides	were	then	taped	onto	the	inner	surface	
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of	a	10	cm	inner	diameter	PVC	tube.	The	tube	was	placed	on	a	mechanical	roller	

(rotation	rate	=	9	rpm)	for	three	days40.		

	

Confocal	imaging	and	particle	counting	

After	a	given	sample	rotated	for	3	days,	it	was	removed	and	its	assemblies	

and	particles	allowed	to	sediment	for	at	least	10	minutes	before	imaging	at	the	

bottom	surface	of	the	capillary.	Lock	particles	(density	ρ	=	1.24	g/cm3),	have	a	

sedimentation	velocity	of	0.75	µm/s.	Therefore,	by	10	minutes,	we	expect	that	lock	

particles	and	lock-key	colloidal	molecules	will	have	sedimented	to	the	bottom	of	the	

capillary.		Key	particles	may	only	have	partially	sedimented,	and	this	point	is	

addressed	below.		Samples	were	imaged	using	a	Nikon	A1.R	confocal	microscope	

equipped	with	a	100x	oil-immersion,	NA	=	1.45	oil	immersion	objective,	and	imaged	

at	10	different	regions	for	a	total	of	6.67	seconds	(fifty	frames	at	7.5	fps	per	region,	

or	one	hundred	frames	at	15	fps,	depending	on	the	number	of	fluorescent	channels)	

to	ensure	proper	identification	of	lock-key	dumbbells.		(The	potential	effect	of	

possible	misidentification	of	specifically	bound	lock-key	complexes	is	discussed	

below.)	When	possible,	fluorescence	imaging	was	performed	to	distinguish	between	

particle	species	(λex	=	488	nm,	λex	=	561	nm;	see	Table	3.1	and	Fig.	3.2).	Differential	

interference	contrast	(DIC)	transmission	images	were	acquired	to	identify	the	lock	

particle	dimple	and	count	potential	false	positives.	The	image	acquisition	size	was		

A	=	(512	pixels)2	=	(127.45	µm)2,	where	1	pixel	=	0.249	µm.	Representative	images	
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of	a	lock-and-key	suspension	used	for	particle	identification	are	shown	in	Figures	

3.2	and	3.3.		

To	measure	the	number	of	different	free	particle	species	i,	Ni,	we	manually	

count	the	number	of	free	keys	NK,	all	free	available	locks	NL,	and	the	number	of	locks	

occupied	by	key	particles	NLK	within	the	image	area.		Since	the	abundance	of	trimer	

and	tetramer	colloidal	molecules	was	low	relative	to	the	formation	of	dumbbell	

colloidal	molecules	(one	lock	bound	specifically	bound	to	one	key),	we	include	these	

locks	and	keys	in	the	count	of	NLK	and	NK,	respectively.		To	count	the	number	of	free	

available	(unbound)	locks	NL,	we	discount	the	number	of	locks	occupied	by	other	

locks,	NLL.	The	percentage	of	locks	occupied	by	other	locks	increases	with	depletant	

concentration	and	does	not	exceed	10%	even	at	the	largest	polymer	concentrations.		

We	used	three	different	methods	to	count	key	particles.	To	measure	the	

number	of	polystyrene	key	particles,	we	calculated	the	number	of	particles	present	

in	the	image	area	by	multiplying	the	particle	volume	fraction	(see	table	3.1)	by	the	

volume	of	the	column	of	liquid	above	the	image	acquisition	area,	equal	to	V	=	A	h,	

where	h	is	the	capillary	height	(h	=	100	µm)	and	A	is	the	image	acquisition	area	(A	=	

(127.45	µm)2).	Measurements	of	particle	numbers	using	a	hemocytomer	(INCYTO™	

C-Chip™)	were	in	agreement	with	these	calculations.	Finally,	we	counted	TPM	keys	

with	the	same	method	as	the	TPM	locks,	since	both	particles	fully	sediment	to	the	

substrate	by	the	10	minute	observation	time.	
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Fractional	occupation	

We	measure	the	fractional	occupation	of	locks	by	key	particles,	as	well	as	the	

free	energy	of	formation	of	lock-key	bonds	for	all	five	different	lock-key	particle	

concentrations	at	different	[PEO]	and	NaCl	concentrations,	after	the	system	has	

reached	equilibrium.		To	measure	the	fractional	occupation	of	locks	by	key	particles	

for	a	given	experimental	condition,	𝜃!" ,	we	divide	the	number	of	locks	occupied	by	

keys	NLK	by	the	total	number	of	locks	that	were	available	to	bind	with	keys,	NL	+	NLK,	

𝜃!" =  !!"
!!! !!"

.	Errors	in	fractional	occupation	arise	due	to	errors	in	counting	of	the	

different	particle	species.		

	 	



	 75	

Results	and	Discussion	

In	Figure	3.2,	we	show	representative	images	of	two	different	lock-key	

combinations	at	different	depletant	polymer	concentrations	and	constant	salt	

concentration.	Figures	3.2a	and	3.2b	show	1.4	µm	polystyrene	keys	in	1.0	mM	NaCl	

solution	in	the	presence	of	0.6	g/L	and	1.2	g/L	of	PEO,	respectively.	Figures	3.2c	and	

3.2d	show	1.9	µm	polystyrene	keys	at	the	same	respective	conditions.	As	can	be	

seen,	for	both	cases	the	number	of	available	lock	particles	occupied	by	key	particles	

increases	as	[PEO]	increases.		The	fractional	occupation,	𝜃!" ,	of	locks	with	1.4	µm	

keys	is	larger	than	that	for	1.9	µm	keys	at	both	conditions:	a	larger	fraction	of	lock	

particles	are	occupied	by	keys	when	using	1.4	µm	PS	keys	than	1.9	µm	PS	keys.		

As	discussed	in	previous	work19,	it	is	possible	to	misidentify	the	number	of	

specifically	bound	keys	by	conflating	them	with	nonspecifically	bound	lock-key	

complexes	which	are	not	in	the	object	plane.	When	counting	the	number	of	lock-key	

dumbbells,	we	keep	track	of	the	number	of	specifically	bound	lock-and-keys	that	

could	potentially	have	been	misidentified	(false	positives)	by	keeping	count	of	lock-

key	pairs	where	one	of	the	particles	is	out	of	the	focal	plane.	On	Fig	3.3,	we	show	the	

fluorescent	and	DIC	imaging	channels	of	one	frame	of	a	1.5	mM	NaCl,	0.8	g/L	PEO	

lock-key	suspension	for	δ	=	0.9.	On	Fig.	3.3a,	we	show	the	composite	image	of	two-

fluorescence	channels,	and	on	Fig.	3.3b	we	show	the	DIC	transmission	image	of	the	

same	frame.	All	specific	bonds	between	locks	and	keys	are	circled	on	Fig.	3.3a.	The	

dashed-lined	circle	shown	in	Fig.	3.3a	and	3.3b	represents	a	possibly	misidentified	

lock-key	complex.	We	use	DIC	transmission	images	to	assess	whether	identified	
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lock-key	complexes	can	be	considered	false	positives,	by	considering	whether	the	

lock	dimples	are	visible	and	whether	key	particles	are	out	of	plane,	which	can	be	

determined	by	its	appearance,	as	keys	in	plane	look	darker	than	those	out	of	plane.	

As	can	be	seen	on	Fig.	3.3b,	the	key	particle	in	this	case	is	out	of	plane,	and	it	is	

uncertain	whether	the	key	is	inside	the	dimple	or	nonspecficially	bound	to	the	

spherical	surface	of	the	lock	particle.		

Figures	3.4a	and	3.4b	show	plots	which	establish	bounds	on	the	effect	of	false	

positives	on	fractional	occupation	measurements	and	free	energy	measurements	for	

δ	=	0.9	at	1.0	mM	NaCl.		In	these	figures,	“criterion	1”	refers	to	considering	all	lock-

key	complexes;	“criterion	2”	refers	to	considering	all	lock-key	complexes	except	

possible	false	positives.	Consideration	of	possible	false	positives	causes	the	

fractional	occupation	curve	to	shift	down	by	an	average	of	15%	and	the	free	energy	

of	formation	curve	to	shift	up	in	value	an	average	of	0.4	kBT	for	any	given	[PEO].		

These	error	bounds	are	much	less	than	the	effect	of	depletant	concentration,	as	

evidenced	by	the	equivalent	trend	and	shape	of	the	curve.		

In	Figure	3.5,	we	plot	the	effect	that	salt	concentration	on	the	fractional	

occupation	of	available	locks	for	the	particular	case	of	a	key-to-dimple	ratio	δ	=	0.9.	

For	[PEO]	below	1.0	g/L,	corresponding	to	c/c*	below	0.53,	fractional	occupations	

increase	with	increasing	[PEO],	as	expected7.	As	salt	concentration	goes	up,	the	

fractional	occupation	of	available	locks	is	expected	to	increase	because	of	the	

increased	screening	of	repulsive	charge	between	the	lock	and	key	pair.	At	1.0	mM	

NaCl,	fractional	occupation	values	increase	with	[PEO],	reaching	more	than	80%	
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available	lock	occupation	at	[PEO]	=	1.2	g/L.	For	1.5	mM	and	2.0	mM	NaCl,	fractional	

occupation	values	saturate	after	[PEO]	=	0.8	g/L	to	approximately	60%	occupied	

available	locks	for	1.5	mM	NaCl,	and	approximately	75%	for	2.0	mM	NaCl.		A	small	

number	of	multiparticle	clusters	were	observed	at	[PEO]	greater	than	0.8	g/L	for	1.5	

mM	and	2.0	mM	NaCl	conditions.		Moreover,	at	2.0	mM	NaCl	and	1.2	g/L,	clustering	

of	locks	and	keys	prevented	measurement	of	the	number	of	bound	lock-key	

complexes.	

The	fractional	occupancy	of	locks	is	a	strong	function	of	the	relative	size	of	

the	key	and	dimple.		In	Fig.	3.6a,	we	plot	the	fractional	occupation	(𝜃!")	as	a	

function	of	nonspecific	binding	energy	βENS	for	all	five	different	key-to-dimple	size	

ratios	δ	and	[PEO]	probed	for	the	particular	case	of	1.5	mM	NaCl	(See	Figure	3.9a	

and	3.9b	for	[NaCl]	=	1.0	mM	and	2.0	mM	data).		Data	for	all	five	different	δ	indicate	

an	increase	in	fractional	occupation	number	with	increasing	nonspecific	binding	

energy.	For	δ	smaller	than	or	equal	to	0.9,	we	observe	that	maximum	𝜃!" 	exceeds	

0.5	for	nonspecific	binding	energies	below	kBT.		That	is,	the	enhanced	depletion	

generated	by	the	concave	shape	of	the	dimple	generates	strong	binding	when	the	

convex	binding	interaction	is	still	well	below	the	thermal	energy.				

Suspensions	with	δ	=	0.5,	corresponding	to	1.0	µm	keys,	yield	𝜃!" 	below	0.11	

for	all	nonspecific	binding	energies	probed	except	for	ENS	=	0.9	kBT,	which	yields	

𝜃!" = 0.68.	Lock-key	particle	suspensions	with	δ	=	0.7	and	δ	=	0.9,	corresponding	to	

key	particles	with	size	1.4	µm	and	1.75	µm	respectively,	are	the	most	effective	

binders,	showing	increasing	fractional	occupation	of	available	locks	with	increasing	
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nonspecific	binding	energy,	and	achieving	the	largest	values	of	fractional	occupation	

of	all	five	different	δ.	For	δ	=	0.7,	the	largest	fractional	occupation	value	observed	

was	𝜃!" = 0.83	for	βENS	=	0.81.	For	δ	=	0.9,	𝜃!" = 0.64	was	measured	at	βENS	=	0.78.	

Lock-key	particle	suspensions	with	δ	=	1.0,	corresponding	to	a	key	size	of	1.9	µm,	

show	an	increase	in	fractional	occupation	number	from	𝜃!" = 0.012	for	βENS	=	0.45	

to	approximately	21%	for	βENS	=	1.2.	For	δ	=	1.1,	fractional	occupation	of	𝜃!" = 0.55	

is	achieved	when	βENS	=	1.74.	Lock-key	binding	for	δ	=	1.0	is	the	least	favored	of	all	

size	ratios,	with	fractional	occupations	equal	to	or	below 𝜃!" = 0.21	for	all	

nonspecific	binding	energies	probed.		Figure	3.6a	therefore	shows	a	complex	

dependence	of	binding	on	both	the	nonspecific	binding	energy	and	the	pocket	to	key	

ratio.	

Figure	3.6b	plots	the	free	energy	of	formation	of	specific	lock-key	bonds,	ΔFo,	

versus	nonspecific	binding	energy	for	all	five	different	δ	at	1.5	mM	NaCl	(See	Figure	

3.10a	and	3.10b	for	[NaCl]	=	1.0	mM	and	2.0	mM	data),	using	equations	(1)	and	(2)	

to	calculate	free	energies	from	measured	particle	numbers.	In	this	plot,	positive	free	

energies	(Keq	>	1)	indicate	that	specific	lock-key	bond	formation	is	not	favored,	

whereas	negative	free	energies	(Keq	<	1)	indicate	specific	lock-key	pair	formation	is	

favored.	Consistent	with	the	fractional	occupation	data,	key-to-dimple	size	ratios	of	

δ	=	0.7	and	δ	=	0.9	show	the	most	favorable	binding	free	energies.	For	these	two	size	

ratios,	the	free	energy	becomes	negative	at	nonspecific	binding	energies	that	are	

lower	than	those	of	the	other	size	ratios.		For	δ	=	0.7,	the	free	energy	of	formation	of	

lock-key	bonds	decreases	from	βΔFo	=	0.13	to	-1.84	as	the	nonspecific	binding	



	 79	

energy	increases	from	βENS	=	0.52	to	βENS	=0.81.	For	δ	=	0.9,	βΔFo	changes	from	βΔFo	

=	1.04	for	βENS	=	0.25	to	βΔFo	=	-0.63	for	βENS	=0.49.	The	decrease	in	the	free	

energies	of	specific	bond	formation	for	δ	=	0.7	and	δ	=	0.9	correspond	to	more	than	

doubling	of	their	fractional	occupation	values,	seen	in	Figure	3.6a.	For	the	smallest	

key-to-dimple	size	ratio,	specific	binding	is	not	favored	until	ENS	=	0.9	kBT,	when	the	

free	energy	of	specific	bond	formation	becomes	negative,	and	the	fractional	

occupation	has	a	sharp	increase	to	𝜃!" = 0.68	from	its	previous	value	at	ENS	=	0.7	

kBT,	𝜃!" = 0.11.		

For	δ	=	1.0,	crossover	from	a	positive	to	negative	free	energy	of	formation	is	

absent.		Instead,	we	observe	that	the	free	energy	of	specific	bond	formation	is	

positive	and	plateaus	at	~1.5	kBT,	implying	that	specific	bond	formation	is	not	

favored	even	as	nonspecific	binding	energies	increase.	In	suspensions	with	δ	=	1.1,	

specific	bond	formation	is	favored	over	unbound	particle	species	for	nonspecific	

binding	energies	greater	than	1.2	kBT.	Correspondingly,	fractional	occupation	values	

at	these	conditions	remain	low.	Figure	3.6b	shows	that	the	free	energy	of	formation	

of	specific	lock-key	bonds	is	sensitive	to	the	key	to	pocket	ratio,	and	that	specific	

bond	formation	is	more	readily	favored	for	key	to	dimple	ratios	below	one.		

In	previous	modeling	and	simulation	work19,the	free	energy	difference	

between	nonspecific	and	specific	binding	was	determined	as	a	function	of	

nonspecific	binding	energy	for	different	key-to-dimple	size	ratios.		In	that	work,	

nonspecific	binding	energies	were	obtained	by	assuming	the	Asakura-Oosawa	form	

for	the	depletion	interaction.		Overlap	volumes	ΔV!"#$%&'were	calculated	taking	into	
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consideration	dimple	topography	extracted	from	TEM	images.	Plots	of	the	free	

energy	difference	between	nonspecific	and	specific	binding	versus	nonspecific	

binding	energy	were	concave	downward	for	all	key-to-dimple	size	ratios	probed.	In	

our	experiments,	we	observe	saturation	of	the	fractional	occupation	numbers	as	

well	as	the	free	energy	of	formation	of	specific	bonds	(Figures	3.5	and	3.6)	at	[PEO]	

greater	than	0.8	g/L,	which	corresponds	to	c/c*	=	0.42.	The	plots	of	free	energy	of	

specific	bond	formation	plotted	against	nonspecific	energy	exhibit	changes	in	their	

concavity	as	the	key	to	dimple	size	ratio	and	the	depletant	concentration	is	

increased.	Thus,	the	simulations	and	experiments	show	differences,	especially	at	

high	depletant	concentration	and	high	key	to	dimple	ratios.	We	explore	possible	

explanation	for	this	deviation	observed	at	higher	depletant	concentrations	below.	

In	Figures	3.7a	and	3.7b,	we	show	two	specific	lock-key	bonds	with	key-to-

dimple	size	ratio	δ	=	1.1	formed	at	1.5	mM	NaCl	and	[PEO]	=	1.0	g/L	which	break.	

Modeling	work	that	took	into	consideration	the	anisotropy	of	the	interaction	

potential	between	the	particles19	suggested	that	at	this	depleting	polymer	

concentration	and	salt	concentration,	unbinding	events	from	the	specifically	bound	

lock-key	configuration	would	be	rare,	and	that	the	free	energy	difference	between	

the	nonspecific	binding	configuration	and	specific	binding	configuration	favored	the	

formation	of	specific	bonds.	This	work	predicted	that	specific	lock-key	bonds	would	

break	at	a	rate	below	10-3	s-1	(specific	to	nonspecific	unbinding	rate	coefficient,	see	

ref.	[19]).	The	images	shown	in	Figures	3.7a	and	3.7b	show	that	specific	binding	

events	break	more	readily	than	predicted	by	theory,	signifying	that	specific	lock-key	
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binding	at	this	condition	is	not	as	favored	as	theoretically	expected.	The	specific	

bonds	shown	in	these	images	break	in	about	50	seconds.	In	Figure	3.7c,	we	show	

several	specific	bonds	formed	between	locks	and	keys	with	key-to-dimple	size	ratio	

δ	=	0.9	at	1.0	mM	NaCl	and	[PEO]	=	1.0	g/L	(See	Figure	3.10a	for	the	free	energy	of	

specific	bonds	at	this	salt	condition).	No	unbinding	events	were	observed	over	a	

time	period	of	10	minutes.	Differences	between	theory	and	experiments	regarding	

the	behavior	of	free	energy	of	specific	bond	formation	plotted	against	nonspecific	

binding	energy	suggest	further	exploration	of	the	depletion	interaction,	in	particular	

deviations	from	ideal	depletant	osmotic	pressure.	

When	calculating	nonspecific	binding	energies	for	the	abscissa	scale	in	

Figures	3.5	and	3.6,	we	assume	the	Asakura-Oosawa	form	of	the	depletion	

interaction.		This	assumes	that	depleting	particles	behave	like	penetrable	hard-

spheres	that	do	not	interact	with	each	other	and	form	no	structure.	In	previous	

work,	we	measured	the	nonspecific	binding	energy	between	particles	using	the	

lifetime	of	nonspecific	lock-key	to	unbound	events,	and	found	that	our	values	

deviated	from	Asakura-Oosawa	model	expectations26.	The	results	presented	on	

Figures	3.5	and	3.6,	which	are	plotted	against	nonspecific	binding	energy,	might	

change	if	the	nonspecific	binding	energy	is	actually	measured.			Based	on	the	results	

of	ref	[28],	the	AO	potential	is	a	good	estimate	of	potential	in	these	systems	for	

depletant	polymer	concentrations	below	0.8	g/L	(c/c*	=	0.42),	but	overestimates	the	

potential	at	higher	polymer	concentrations.			
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The	non-ideal	behavior	of	non-ionic	polymer	depletant	solutions	has	been	

studied	by	direct	measurement	of	the	depletion	interaction	potential	between	large	

particles	and	surfaces	mediated	by	polyethylene	oxide	macromolecules41,42.		

Edwards	et	al.	used	total	internal	reflection	microscopy	(TIRM)	to	measure	the	

depletion	potential	between	particles	and	a	glass	surface	for	polymer	

concentrations	below	c/c*	=	0.3.	Experimentally	measured	potentials	were	suitably	

fitted	by	modifying	the	equation	of	state	of	the	polymer	using	renormalization	group	

theory,	which	yields	smaller	predicted	binding	energies	than	the	Asakura-Oosawa	

model,	and	a	depletion	layer	thickness	that	decreases	with	increasing	polymer	

concentration,	which	effects	the	range	of	the	interaction	potential41.		Bechinger	et	al.	

used	TIRM	to	measure	the	depletion	interaction	potential	between	a	particle	and	a	

glass	surface	in	an	aqueous	suspension	with	PEO,	and	found	that	their	measured	

potentials	could	be	explained	by	considering	an	inhomogeneous	distribution	of	PEO	

near	surfaces.		This	inhomogeneous	distribution	of	PEO	arises	due	to	short-ranged	

electrostatic	repulsion	at	small	distances	and	dispersion	attraction	between	the	PEO	

coils	and	the	glass	surface.		In	their	work,	they	report	the	presence	of	a	small	

repulsive	barrier	in	the	depletion	interaction	at	depletant	concentrations	below	c/c*	

=	0.03	42.		

In	addition	to	this,	at	high	depleting	particle	volume	fractions,	depletion	

interactions	may	have	a	stabilizing	effect,	arising	from	the	formation	of	structure	

that	occurs	as	depleting	particles	interact	with	each	other,	which	lead	to	oscillatory	

interaction	potentials	with	an	energy	barrier	and	secondary	minima37,38.	Energy	
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barriers	and	structural	oscillations	in	the	potential	of	interaction	of	the	particles	

could	explain	the	plateaus	we	observe	in	fractional	occupation	and	free	energies	of	

formation,	since	less	particles	would	reach	the	global	internal	energy	minimum	as	

they	may	be	stable	in	secondary	minima	or	unable	to	pass	energy	barriers	without	

external	energy	input.		Direct	measurement	of	the	potential	of	interaction	using	

techniques	such	as	optical	tweezers	or	total	internal	reflection	microscopy	would	

clarify	what	effect,	if	any,	structural	forces	or	enthalpic	effects	arising	from	

interactions	between	the	PEO	depletant	particles	have	on	the	assembly	of	lock-key	

colloids.	

Note	that	for	all	but	one	of	the	five	different	key-to-dimple	size	ratios	at	1.5	

mM	NaCl,	the	plots	of	free	energy	of	formation	exhibit	a	crossover	from	positive	to	

negative	binding	free	energies	as	nonspecific	binding	energy	increases.		To	better	

investigate	the	effect	of	key-to-dimple	size	ratio,	we	define	the	crossover	nonspecific	

binding	energy	βENScrossover	as	the	nonspecific	binding	energy	where	free	energy	of	

formation	is	equal	to	zero.		(The	crossover	is	determined	by	interpolation	between	a	

positive	and	negative	binding	free	energy.		That	is,	we	measure	the	value	of	

βENScrossover	by	interpolating	between	the	points	immediately	above	and	below	the	

nonspecific	binding	energy	axis	for	each	free	energy	curve	on	Fig.	3.6b.)		Errors	in	

βENScrossover	are	obtained	by	interpolating	between	the	upper	and	lower	errors	of	the	

points	immediately	above	and	below	the	nonspecific	binding	energy	axis.	We	do	not	

estimate	a	crossover	nonspecific	binding	energy	for	key-to-dimple	size	ratios	whose	

free	energy	of	formations	remain	positive.	
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To	quantify	the	effect	of	key-to-dimple	size	ratio	on	the	formation	of	specific	

lock-key	bonds,	we	plot	the	crossover	nonspecific	binding	energy	βENScrossover	against	

key-to-dimple	size	ratio,	δ,	as	shown	in	Fig.	3.8,	for	the	[NaCl]	=	1.5	mM	data	

presented	on	Fig	3.5b	and	the	1.0	mM	and	2.0	mM	data	presented	on	Figures	3.10a	

and	3.10b,	respectively.		For	δ	≤	0.9	and	[NaCl]	=	1.5	mM,	the	crossover	nonspecific	

binding	energies	are	smaller	than	kBT.	The	results	imply	that	for	these	size	ratios,	

the	specific	binding	energy	is	much	larger	than	kBT,	so	as	to	drive	the	key	into	the	

pocket	even	given	the	entropic	penalty	associated	with	localization	in	the	bond.		

	The	nonspecific	interaction	potentials	at	[NaCl]	=	1.0	mM	were	positive	for	

all	key	sizes	except	2.1	µm,	which	precludes	us	from	plotting	crossover	nonspecific	

binding	energies	at	this	salt	condition	except	for	δ	=	1.1.	(See	Figure	3.10a).	

Crossover	nonspecific	binding	energies	for	[NaCl]	=	1.0	mM	and	2.0	mM	are	plotted	

along	with	those	for	1.5	mM	on	Figure	3.8.	At	this	higher	salt	concentration,	we	

observe	that	keys	with	size	ratio	below	one	have	lower	crossover	nonspecific	

binding	energies	than	those	with	size	ratio	greater	than	one,	but	that	the	values	of	

the	crossover	nonspecific	binding	energies	are	above	kBT.		The	increase	in	crossover	

nonspecific	binding	energies	is	explained	by	the	increased	salt	concentration,	which	

results	in	stronger	nonspecific	binding	at	equal	[PEO]	due	to	increased	screening	of	

the	particles’	double	layers.		

The	value	of	the	crossover	nonspecific	binding	energy	at	1.5	mM	is	smallest	

for	δ	=	0.9,	for	a	value	of	βENScrossover	=	0.39	±	0.01,	closely	followed	by	δ	=	0.7	with	

βENScrossover	=0.54	±	0.02.	For	δ	=	1.0,	corresponding	to	a	perfect	match	between	key	
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and	dimple,	the	crossover	nonspecific	binding	energy	value	has	more	than	tripled	its	

value	at	δ	=	0.9	to	βENScrossover	=	1.4	±	0.13.	The	data	on	Figure	3.8	suggest	that	

specific	lock-key	binding	is	preferred	over	unbound	locks	and	keys	at	lower	

nonspecific	binding	energies	for	suspensions	where	the	key-to-dimple	size	ratio	is	

below	that	of	a	perfect	match,	relative	to	above	a	perfect	match.	

Figure	3.8	supports	the	claim	that	smaller	key	sizes	form	lock-key	bonds	

more	readily	than	larger	key	sizes.		That	is,	if	a	key	does	not	match	the	lock	pocket,	

then	a	smaller,	mismatched	key	still	allows	for	better	specific	binding	than	a	larger	

mismatched	key.		There	is	an	asymmetry	in	how	well	the	lock	key	bond	respond	to	

geometric	mismatch.		This	result	is	consistent	with	previously	obtained	simulation	

results	for	the	free	energy	difference	between	nonspecific	and	specifically	bound	

lock-and-key	pairs.		

To	explore	the	cause	of	the	observed	asymmetry,	we	consider	the	effect	of	

geometric	mismatch	on	both	the	energetic	and	entropic	contributions	to	the	free	

energy	for	the	case	of	mismatch	due	to	a	relatively	small	key,	or	a	relatively	large	

key.		In	previous	work19,	the	depletion	overlap	volume	and	the	repulsive	

electrostatic	interaction	were	determined	as	a	function	of	distance	between	lock	and	

key	particles	and	the	angle	between	the	line	connecting	the	centers	of	the	particles	

and	the	orientation	vector	of	the	lock	dimple	for	the	δ	=	1.1	case.	Changes	in	the	

magnitude	of	the	overlap	volume	as	well	as	the	electrostatic	repulsion	interaction	

show	that	the	internal	energy	of	the	specific	bond,	made	up	of	depletion	interaction	
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and	electrostatic	interaction	contributions,	between	lock	and	key	particles	is	a	

complicated	function	of	the	curvatures	of	the	particles,	as	discussed	below.		

For	geometric	mismatch	due	to	small	keys,	we	expect	the	key’s	convex	

surface	to	be	able	to	be	in	close	proximity	to	the	concave	surface	of	the	lock,	leading	

to	more	overlap	of	the	depletion	zones	surrounding	these	surfaces	than	in	the	case	

when	the	key	to	dimple	size	ratio	is	greater	than	one.	The	overlap	volume	in	cases	

where	the	key-to-dimple	size	ratio	is	less	than	one	is	expected	to	decrease	as	the	key	

to	dimple	size	ratio	decreases,	since	there	is	less	proximity	between	the	particle	

surfaces	as	the	key	curvature	becomes	smaller.	This	entails	that	key	particles	with	

small	key-to-dimple	size	ratios	will	not	bind	so	easily	to	the	lock	dimple	as	a	key	

particle	with	key-to-dimple	size	ratio	slightly	smaller	than	one,	since	larger	particles	

will	interact	more	strongly	with	the	lock	dimple	surface	than	small	ones,	since	the	

depletion	interaction	is	proportional	to	the	overlap	volume.		

When	bound	to	the	concave	surface	of	the	lock,	particles	with	key-to-dimple	

size	ratio	below	one	are	free	to	explore	different	binding	configurations	inside	the	

dimple,	which	increases	the	entropy	of	the	bond.	Key-to-dimple	size	ratios	equal	to	

one	are	entropically	penalized,	as	key	particles	are	able	to	access	less	microstates	in	

their	binding	volume.		

For	geometric	mismatch	due	to	a	large	key,	however,	the	key’s	convex	

surface	and	the	lock’s	surfaces	are	not	necessarily	in	close	proximity,	due	to	the	

changing	curvature	of	the	lock	surface.	As	shown	in	Figure	3.1a-c,	the	lock	particle	

surface	has	three	distinct	regions	of	curvature:	the	spherical	surface	of	the	lock,	the	
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lock	lip,	and	the	lock	dimple	area.	The	key	particle	surface,	in	the	case	of	key-to-

dimple	size	ratio	exceeding	one,	is	not	in	close	proximity	to	the	lock	dimple	basin,	

which	entails	a	smaller	depletion	overlap	volume	between	the	two	surfaces.	The	

surface	of	a	key	particle	that	exceeds	the	lock	dimple	size	will	interact	with	the	

concave	(bowl-shaped)	dimple	area	and	the	convex	lock	lip	or	rim,	affecting	the	

magnitude	of	the	overlap	of	the	depletion	exclusion	zones.	For	key-to-dimple	ratios	

that	slightly	exceed	one,	such	as	the	δ	=	1.1	case,	the	loss	in	internal	energy	of	the	

specific	lock-key	bond	is	not	sufficiently	low	to	forbid	the	preferential	formation	of	

specific	bonds,	as	observed	in	Figure	3.6.	The	depletion	overlap	volume	between	the	

particles	is	still	large	enough	to	allow	the	particles	to	form	specific	bonds,	and	the	

binding	volume	is	sufficiently	large	for	the	key	particles	to	be	able	to	explore	

configurations	within	it,	i.e.	the	bond	has	sufficient	entropy.	As	the	size	mismatch	

increases,	depletion	overlap	volumes	decrease	and	the	internal	energy	of	the	bond	

is	not	large	enough	to	overcome	particle	entropy	loss.		

When	a	key	particle	binds	onto	the	dimple	of	a	lock	particle,	it	loses	

configurational	entropy	relative	to	when	it	was	freely	diffusing	in	bulk;	within	the	

dimple,	a	key	particle	has	much	less	volume	and	configurations	to	explore7.	

Movement	of	the	key	particle	when	bound	to	the	dimple	results	in	a	slight	change	in	

the	distance	between	the	centers	of	mass	of	the	lock	and	key	particles.	Allowing	key	

particles	to	move	and	retain	configurational	entropy	while	specifically	bound	in	the	

lock	dimple	would	help	minimize	the	free	energy	of	the	system.		
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For	a	key-to-dimple	size	ratio	of	δ	=	0.5,	the	internal	energy	of	the	specific	

bond	is	not	favorable	enough	to	overcome	the	overall	loss	in	entropy	of	the	keys,	

resulting	in	the	formation	of	fewer	specific	bonds.	As	δ	increases	its	value	to	δ	=	0.7	

and	δ	=	0.9,	specific	bonds	are	favored	over	unbound	species	at	lower	nonspecific	

interaction	energies.	For	these	two	key-to-dimple	size	ratios,	the	internal	energy	of	

the	specific	bond	is	apparently	negative	enough	to	overcome	the	loss	in	entropy	of	

the	key	particles.	Moreover,	key	particles	have	enough	space	to	assume	different	

configurations	within	the	dimple	while	remaining	strongly	bound	to	the	surface.		

For	δ	>	1,	the	internal	energy	of	the	specific	bond	decreases	because	

 ΔV!"#$%&'	decreases	when	the	key	particle	is	not	in	full	contact	with	the	concave	

surface	of	the	lock	particle.	Although ΔV!"#$%&'	is	smaller,	it	is	still	large	enough	to	

promote	the	formation	of	some	lock-key	bonds	at	large	enough	nonspecific	binding	

energies.		

For	the	two	best	binders	(δ	=	0.7	and	δ	=	0.9),	the	data	in	Figure	3.8	indicate	

that	specific	bond	formation	is	favored	over	unbound	lock	and	key	particles	at	

nonspecific	binding	energies	below	or	around	0.5	kBT.		This	implies	that	a	higher	

yield	of	formation	of	specific	bonds	can	be	expected	at	smaller	[PEO]	concentrations,	

which	is	observed	in	our	fractional	occupation	curves	for	the	two	best	binders,	on	

Fig	3.6a,	where	fractional	occupation	𝜃!" 	exceeds	0.5	at	nonspecific	binding	

energies	below	kBT.			

In	previous	work,	we	showed	that	low	nonspecific	binding	energies	result	in	

short-lived	nonspecific	bonds19,26.	Provided	that	it	is	not	kinetically	trapped,	a	key	
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particle	in	to	a	nonspecific	bond	can	still	transition	into	to	an	available	lock	dimple	

where	it	could	lower	the	overall	free	energy	of	the	system.	The	fact	that	δ	=	0.7	and	

δ=0.9	specific	bonds	form	readily	at	low	nonspecific	energies	of	interaction	suggests	

that	such	conditions	can	be	used	to	assemble	structures27	through	the	hierarchical	

or	directed	assembly	of	assembled	lock-key	dumbbells,	since	locks,	keys,	and	lock-

key	dumbbells	are	not	expected	to	aggregate	into	clusters19	at	nonspecific	binding	

energies	below	thermal	energy.		
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Conclusions	

	 The	work	shows	that	in	order	to	optimize	the	formation	of	specific	lock-key	

bonds	for	a	given	lock	particle,	key	particles	must	have	radii	smaller	than	the	radius	

of	curvature	of	the	lock	dimple.	This	result	is	commensurate	with	the	expectation	

that	the	best	binder	is	that	which	lowers	the	overall	free	energy	of	the	system,	

previously	predicted	by	simulations.	Optimum	binding	occurs	not	when	the	binding	

volume	between	lock	and	key	is	maximized,	but	just	barely,	so	that	the	key	particle	

is	still	allowed	to	explore	configurations	within	the	dimple,	which	allows	it	to	have	

translational	configurational	entropy,	which	further	enables	minimization	of	the	

free	energy	of	bond	formation.	The	formation	of	specific	bonds	is	asymmetric	with	

respect	to	geometric	mismatch;	lock-key	suspensions	with	key-to-dimple	ratios	

below	one	more	readily	form	specific	bonds	than	systems	with	key-to-dimple	ratios	

greater	than	one.	Key	particles	with	a	perfect	match	to	the	dimple	size	cannot	

assume	many	configurations	inside	the	dimple,	since	they	cannot	move	inside	it.	Key	

particles	larger	that	the	dimple	size	may	still	bind	to	the	dimple,	but	the	binding	

volume	is	smaller,	as	there	is	less	contact	between	concave	and	convex	particle	

surfaces,	resulting	in	less	internal	energy	for	the	bond	and	less	formation	of	specific	

bonds.		
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Particle	 Material	 2RK(µm)	±	σ	
ϕ	(volume	
fraction)	

Zeta	potential	(mV)	 δ	=	Rkey/Rdimple	 Dyed	

1.0	mM	 1.5	
mM	

2.0		
mM	 	 	

Lock	1	 TPM	 2.38	±	0.17	
	 9.5	x	10-5	 -74	 -80	 -78	 --	

	 RBITC	

Key	1	 Sulfate	PS	 1.00	±	0.03	 2.0	x	10-4	 -86	 -79	 -76	 0.5	±	0.1	 Yellow-Green	

Key	2	 Sulfate	PS	 1.40	±	0.05	 2.0	x	10-4	 -73	 -86	 -84	 0.7	±	0.1	 undyed	

Key	3	 Carboxylated	PS	 1.75	±	0.05	 2.7	x	10-4	 -98	 -91	 -96	 0.9	±	0.2	 Yellow-Green	

Key	4	 Carboxylated	PS	 1.90	±	0.09	 2.1	x	10-4	 -66	 -70	 -65	 1.0	±	0.2	 undyed	

Key	5	 TPM	 2.14	±	0.09	 1.6x10-4	 -38	 -36	 -42	 1.1	±	0.2	
	 NBD-MAEM	

	
Table	3.1	We	include	different	particle	characteristics	for	the	lock	and	key	particle	suspensions	used	in	our	study,	as	well	as	
key-to-dimple	size	ratios	for	all	different	binary	lock-key	suspensions	used.	RBITC	refers	to	Rhodamine	B	isothiocyanate,	
whereas	NBD-MAEM	stands	for	4-methylaminoethylmethacrylate-7-nitrobenzo-2-oxa-1,3-diazol.	
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Figure	3.1	Panels	(a)	and	(b)	show	atomic	force	microscopy	images	of	a	dimpled	
lock	particle,	presented	at	different	views	to	reveal	the	topography	of	the	particle.	In	
panel	(c)	we	show	a	representative	height	profile,	obtained	by	performing	a	line	
scan	through	a	different	dimpled	particle	(blue	dots),	as	well	as	showing	a	fit	
identifying	the	radius	of	curvature	of	the	dimple	(red	circles	and	line),	which	we	
used	to	extract	the	dimple	size.	Panel	(d)	shows	the	key-to-dimple	size	ratio	for	all	
five	different	keys	used	(see	Table	1).		
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Figure	3.2	Panel	(a)	shows	1.4	µm	key	particles	(undyed)	in	1.0	mM	NaCl	and	0.6	
g/L	PEO.	Only	a	few	lock	particles	(dyed	red)	are	occupied	by	keys.	Panel	(b)	shows	
the	same	system	at	1.2	g/L	PEO.	Most	lock	particles	are	occupied	by	keys	or	by	other	
locks.	Panel	(c)	shows	1.9	µm	key	particles	(red)	in	1.0	mM	NaCl	and	0.6	g/L	PEO.	
Only	one	lock	is	occupied	by	a	key	particle.	Panel	(d)	shows	the	same	system	at	1.2	
g/L	PEO.	The	fractional	occupation	of	locks	is	lower	than	that	for	1.4	µm	keys	at	the	
same	experimental	conditions	(panel	b).	Note	that	lock	particles	are	also	dyed	red;	
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we	adjusted	confocal	imaging	parameters	such	that	the	intensity	of	emitted	light	
from	the	locks	was	low	relative	to	the	keys,	which	fluoresced	brighter.	 	
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Figure	3.3	Panels	show	the	(a)	fluorescence	and	(b)	DIC	channels	of	one	frame	of	a	
1.5	mM	NaCl,	0.8	g/L	PEO,	δ	=	0.9	suspension.	Lock	particles	are	shown	in	red	and	
key	particles	in	green.	Yellow	circles	on	panel	(a)	circle	specific	lock-key	bonds.	The	
dotted	line	circles	on	panels	(a)	and	(b)	surround	a	lock-key	pair	where	the	key	
particle	is	out	of	plane	and	out	of	focus,	which	could	be	a	source	of	error	for	the	
counting	of	specific	lock-key	bonds.		DIC	images	allow	us	to	tell	whether	particles	
are	out	of	plane	since	particles	in	plane	look	darker	than	those	out	of	plane.		 	
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Figure	3.4	A	fractional	occupation	plot	for	δ	=	0.9	at	1.0	mM	as	a	function	of	[PEO]	is	
presented	on	panel	(a),	showing	the	effects	of	possible	false	identification	of	specific	
lock-key	bonds.	When	we	discount	any	lock-key	pair	that	could	conceivably	be	a	
false	positive,	fractional	occupation	numbers	decrease	by	a	modest	amount,	less	
than	the	replication	uncertainty,	which	here	is	based	on	three	different	experiments.	
Panel	(b)	shows	the	free	energy	of	formation	for	the	same	data	as	in	panel	(a).	Free	
energies	of	formation	increase	when	possible	false	positives	are	discounted	from	
the	data.	 	
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Figure	3.5	We	plot	the	effect	of	salt	concentration	on	the	fractional	occupation	of	
available	lock	particles	for	δ	=	0.9,	showing	a	fractional	occupation	increase	with	salt	
at	low	[PEO].	 	
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Figure	3.6	The	fractional	occupation	curves	for	all	five	different	key-to-dimple	size	
ratios	δ	at	1.5	mM	NaCl	(panel	a)	and	the	free	energy	of	formation	of	specific	bonds	
for	all	five	different	δ	at	1.5	mM	NaCl	(panel	b)	are	plotted	against	nonspecific	
binding	energy	of	interaction.	 	
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Figure	3.7	Panels	a	and	b:	Formation	and	unbinding	of	specific	lock-key	bonds	for	δ	
=	1.1	at	1.5	mM	NaCl	and	1.0	g/L	polyethylene	oxide	concentrations.	The	time	
elapsed	from	panel	a(i)	to	panel	a(iii)	is	87.2	seconds.	The	time	elapsed	from	panel	
b(i)	to	panel	b(iii)	is	43.6	seconds.	Panel	c:	Specific	bonds	between	lock	and	key	
particles	for	δ	=	0.9	at	1.0	mM	NaCl	and	[PEO]	=	1.0	g/L	are	not	observed	to	
unbinding	over	a	time	scale	of	ten	minutes.	The	time	elapsed	from	panel	c(i)	to	
panel	c(iii)	is	600	seconds.	Scale	bars	on	all	figures	on	panels	a	and	b:	5	µm.	Scale	
bars	on	figures	on	panel	c:	10	µm	.	 	
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Figure	3.8	Crossover	nonspecific	binding	energies	of	interaction	are	shown	for	all	
six	different	key-to-dimple	size	ratios	at	1.0	mM	NaCl	(green	triangles),	1.5	mM	NaCl	
(black	circles),	and	2.0	mM	(red	squares).	The	crossover	nonspecific	binding	energy	
for	each	δ	are	the	interpolated	point	at	which	the	free	energy	curves	intersect	the	x-
axis.	 	
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Figure	3.9	In	panel	a,	we	plot	the	fractional	occupation	for	five	different	key-to-
dimple	size	ratios	at	[NaCl]	=	1.0	mM.	In	panel	b,	we	plot	the	fractional	occupation	at	
[NaCl]	=	2.0	mM.	
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Figure	3.10	On	panel	a	we	plot	the	free	energy	of	formation	of	specific	bonds	at	
[NaCl]	=	1.0	mM	and,	on	panel	b,	for	[NaCl]	=	2.0	mM.	
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Chapter	4 	
Active	motion	in	alternating	current	electric	field-driven	binary	colloidal	

suspensions	
	

Abstract	

We	observe	the	active	motion	of	particles	emerging	from	transient	

associations	of	unbound	large	and	small	colloids	in	low-frequency	(≤	2	kHz)	

alternating	current	electric	fields	perpendicular	to	the	plane	of	motion	of	a	binary	

colloidal	suspension	of	unequally	sized	polystyrene	spherical	beads.	Their	

propulsion	is	attributed	to	unbalanced	electrohydrodynamic	flow,	as	recently	

described	for	systems	of	asymmetric	colloidal	dumbbells	by	Ma	et	al.	Two-channel	

confocal	microscopy	is	used	to	image	the	active	motion	of	the	binary	colloidal	

suspensions;	particle	trajectories	are	quantified	by	particle	tracking	algorithms.	We	

find	that	the	propulsion	speed	of	particles	and	effective	diffusion	coefficients	are	

comparable	to	other	means	of	generating	active	motion;	we	find	effective	diffusion	

constants	fifteen	times	larger	than	Brownian	diffusion.		The	propulsion	speed	

increases	as	the	peak-to-peak	voltage	of	the	applied	AC	field	is	increased	and	the	

frequency	of	oscillation	of	the	electric	field	is	decreased.	We	analyze	the	short-time	

ballistic	motion	of	large	beads	based	on	the	number	of	neighboring	small	particles	

and	find	that	large	particles	with	two	and	three	neighbors	propel	the	fastest.		
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In	this	work,	Mayank	Agrawal	and	Matthew	Spellings	contributed	custom	

written	Python	code	to	analyze	particle	trajectory	dynamics.	
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Introduction	

Active	matter	is	far	from	thermal	equilibrium:	objects	that	exhibit	active	

motion	transform	energy	they	collect	from	their	environment	into	kinetic	energy1.		

They	exhibit	interesting	dynamic	behavior,	such	as	the	dynamic	birth	and	death	of	

particle	clusters2,3	and	giant	number	fluctuations3,4.	The	standard	deviation	of	the	

mean	number	of	particles	N	in	equilibrium	systems	is	proportional	to	N1/2;	out-of-

equilibrium	systems	have	been	observed	to	have	number	fluctuations	that	are	

linearly	dependent	on	the	number	of	particles5.	Examples	of	living	active	matter	

systems	are	schools	of	fish,	bird	flocks,	insect	swarms6,	and	motile	bacteria7,8.		

Examples	of	artificial	active	matter	include	self-propelled	colloids	such	as	

catalytically	active	platinum/gold	nanorods,9	platinum/polystyrene	Janus	particles	

in	hydrogen	peroxide	(H2O2)	solutions,10	carbon-coated	Janus	particles	in	near-

critical	water-2,6-lutidine	mixtures	exposed	to	green	laser	light11,	and	composite	3-

trimethoxysilyl	propyl	methacrylate	particle/hematite	particles	that	propel	in	dilute	

solutions	of	H2O2	upon	ultraviolet	light-activation12,13.		

Another	class	of	self-propelling	colloids	are	those	driven	by	locally	generated	

electrohydrodynamic	flows.		Recently,	the	propulsion	of	anisotropic	colloidal	

dumbbell	and	dimer	particles	was	observed	in	perpendicularly	applied	alternating	

current	electric	fields14,15,	and	was	found	to	depend	on	the	amplitude	of	the	applied	

electric	field	and	its	frequency.		Platinum-polystyrene	hybrid	colloidal	dimers	have	

also	been	observed	to	propel	in	perpendicularly	applied	electric	fields	in	the	

absence	of	hydrogen	peroxide16.			
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Colloidal	particles	that	exhibit	active	motion	are	still	subject	to	thermal	

fluctuations,	but	their	motion	exhibits	ballistic	behavior	at	short	times	relative	to	

reorientation	times	dictated	by	the	particles’	rotational	diffusivity10.	At	long	times,	

the	behavior	of	these	active,	Brownian	particles	converges	to	diffusive-like	behavior	

with	an	effective	diffusion	coefficient	that	is	strongly	enhanced	by	the	particles’	

activity.		

Single-component	particle	suspensions	in	perpendicular	electric	fields	do	not	

display	active	motion.		The	behavior	of	these	systems	has	been	extensively	

studied17-21	and	is	known	to	depend	on	the	particles	zeta	potential	and	dielectric	

behavior,	the	electrolyte22,23,	as	well	as	the	amplitude	and	frequency	of	the	applied	

electric	field19.	Critically,	at	low	driving	frequencies	electrohydrodynamic	(EHD)	

flow	generated	by	the	particles’	distortion	of	the	concentration	polarization	layer	at	

the	electrode	can	cause	particles	to	mutually	attract	or	repel	depending	on	the	

direction	of	the	EHD	flow	around	the	particles.18		

The	behavior	of	symmetric	and	asymmetrically	sized	colloidal	dumbbells	in	

perpendicularly	applied	electric	fields	has	been	recently	reported24	as	well	as	the	

behavior	of	dumbbells	asymmetric	due	to	size	or	composition16,25.	Symmetric	

colloidal	dumbbells	were	observed	to	form	reversible	colloidal	crystals	where	

particles	laid	down	or	stood	upright	aligned	with	the	field	direction;	asymmetric	

colloidal	dumbbells	formed	Ising-like	lattices	where	particles	next	to	each	other	had	

alternating	lobe	orientations.	At	dilute	concentration,	these	asymmetric	colloidal	
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dumbbells	were	also	observed	to	propel	and	also	to	form	chiral	clusters	that	could	

propel	clockwise	or	counterclockwise14.			

In	recent	work,	Ma	et	al.	investigated	the	propulsion	of	irreversibly	bound	

asymmetric	colloidal	dimers15.	They	detected	electrohydrodynamic	flow	

surrounding	the	particles	that	generated	an	effective	attraction	or	repulsion	of	

tracer	particles.	Under	the	experimental	conditions	investigated,	sulfate	polystyrene	

particles	subjected	to	an	external	oscillatory	field	repelled	tracer	particles,	whereas	

silica	beads	attracted	them.		A	rigid	dumbbell	model	of	the	propelling	asymmetric	

colloidal	dimers,	which	took	into	consideration	the	EHD	flow	around	each	lobe	of	

the	dimer,	quantitatively	described	the	propulsion	of	the	dimers.	Ma	et	al.	found	

they	could	change	the	propulsion	of	colloidal	dimers	by	changing	particle	

characteristics	such	as	size,	zeta	potential	and	composition,	and	applied	field	

frequency15.	This	discovery,	coupled	to	electrolyte-dependent	EHD	flow	behavior	

observed	by	some22,23,	suggests	colloidal	beads	in	low-frequency	AC	electric	fields	

can	convectively	entrain	other	particles	without	the	need	to	bind	the	particles	into	

irreversibly	bound	structures.		

In	this	work,	we	observe	colloidal	propulsion	in	binary	colloidal	suspensions	

of	unequal	size	particles	when	subjected	to	an	external	alternating	current	electric	

field.		The	dynamics	of	the	binary	colloidal	suspensions	of	unequally	sized	

carboxylated	polystyrene	spheres	are	observed	by	confocal	laser	scanning	

microscopy	and	quantified	by	image	analysis	and	particle	tracking.		At	constant	salt	

concentration	and	particle	concentrations,	the	amplitude	and	frequency	of	the	
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applied	field	is	varied.		We	observe	the	emergent	formation	of	transient,	propelling	

colloidal	clusters	comprised	of	large	particles	surrounded	by	associating	small	

particles.	The	number	of	associated	small	particles	varies	stochastically	and	is	a	

determinant	of	the	overall	propulsion	of	the	transient	clusters.		The	phenomenon	is	

reversible:	when	the	field	is	turned	off,	particles	revert	back	to	normal	diffusion.	

We	characterize	the	mean-squared	displacement	of	the	large	particles	as	

they	undergo	propulsion.		We	also	determine	the	effect	of	the	number	of	associated	

small	particle	on	the	short-time	ballistic	propulsion	of	the	large	particles.		We	find	

that	the	effective	diffusion	coefficient	and	propulsion	speed	of	particles	increase	as	

the	peak-to-peak	voltage	is	increased	and	frequency	of	oscillation	decreases.	We	

also	find	that	large	particles	surrounded	by	two	and	three	small	particle	neighbors	

exhibit	faster	short-time	ballistic	motion	than	large	particles	associated	with	either	

a	smaller	or	larger	number	of	small	particles.			
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Materials	and	Methods	

Sample	preparation	

Dilute	binary	colloidal	suspensions	of	1.75	µm	diameter	carboxylated	

polystyrene	(d	=	1.75	µm	±	0.05	µm)(Polysciences,	yellow-green	dye,	2.7%	solids)	

beads	and	1.0	µm	diameter	carboxylated	polystyrene	(d	=	0.99	µm	±	0.022	µm)	(Life	

Technologies,	red	dye,	2%	solids)	beads	are	prepared	by	placing	2	µL	of	each	bead	

suspension	in	0.125	mM	sodium	chloride	(NaCl)	solution	prepared	with	18.2	MΩ	cm	

deionized	water.	The	zeta	potential	of	the	particles	are	-42.1	mV	±	1.2	mV	for	1.75	

um	carboxylated	PS	spheres,	and	-48.2	mV	±	1.7	mV	for	1.0	um	carboxylated	PS	

spheres.	Samples	are	centrifuged	at	least	twice	and	resuspended	in	0.125	mM	NaCl	

solution	(κ-1	=	27.2	nm),	then	sonicated	with	an	ultratip	sonicator	for	three	1-second	

intervals.	Then	25	µL	of	the	suspension	is	loaded	into	the	electric	field	device.		

	

Electric	field	device	preparation	

Glass	coverslips	(35	mm	x	50	mm,	#1.0	thickness	(Fisher	Scientific))	are	covered	

with	a	thin	layer	(~	10	nm	thick)	of	indium	tin	oxide	(ZC&R	Coatings).	The	ITO-

covered	glass	coverslip	are	washed	thoroughly	and	treated	using	existing	

protocols20.		A	250	µm-thick	insulating	spacer	(Thermo	Scientific™	Gene	Frame	

Seals)	is	placed	on	top	of	one	of	the	ITO	covered	slides,	forming	a	25	µL	chamber.		

After	the	sample	is	pipetted	onto	the	bottom	ITO	surface,	it	is	covered	with	the	other	

ITO-covered	glass	coverslip.	Thin	wires	(50	µm-thick	T2	thermocouple	alloy	wire,	

Goodfellow	Corporation)	are	taped	onto	the	electrodes	to	ensure	metal-to-metal	
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contact.		These	leads	are	connected	to	a	function	generator	for	application	of	a	

periodically	oscillating	potential.		

	

Electric	field	application	

We	use	a	function	generator	(Digol	DG1022)	to	apply	a	square-wave	

oscillating	potential	to	the	sample.	We	apply	peak-to-peak	voltages	equal	to	10	V,	15	

V	or	20	V,	and	a	frequency	of	oscillation	of	1	kHz,	1.5	kHz,	and	2.0	kHz,	to	yield	N	=	9	

total	experimental	conditions.		Following	an	experimental	protocol	found	

elsewhere26,	we	initially	apply	a	potential	of	20	V	at	10kHz	prior	to	beginning	any	of	

the	experiments,	and	then	decrease	the	frequency	and/or	voltage	to	the	desired	

experimental	value.	

	

Confocal	microscopy	image	acquisition,	particle	tracking	and	data	analysis	

Two-channel	confocal	imaging	is	performed	using	the	resonant	scanner	of	an	

inverted	confocal	laser	scanning	microscope	(Nikon	A1.R)	using	an	oil-immersion	

100x	objective	with	numerical	aperture	NA	=	1.45.		Emission	laser	lines	of	488	nm	

and	561	nm	are	used	to	excite	the	dyes	on	the	yellow-green	and	red-dyed	beads,	

respectively.	Time	series	of	the	samples	are	acquired	as	the	electric	field	acts	on	the	

samples	at	7.5	fps	(tinterval	=	0.133	s)	for	a	total	of	1000	frames.	Images	are	acquired	

at	a	spatial	resolution	of	0.249	µm/pixel,	and	are	(512	pixels)2,	for	an	image	area	of	

(127.45	µm)2.	Three	series	are	acquired	at	every	experimental	condition	reported.		
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	 Images	from	each	channel	were	independently	analyzed	using	the	

ImageJ/Fiji	plugin	Mosaic	Particle	Tracker27,	which	finds	individual	particle	

centroids	in	each	frame	and	links	their	trajectories	using	an	algorithm	based	on	the	

Crocker	&	Grier	particle	tracking	algorithm28.		Individual	particle	trajectories	are	

input	to	the	freely	available	TRACKPY	code29	to	obtain	the	mean	squared	

displacements	of	the	large	particles.		For	each	image	series,	more	than	200	

trajectories	were	typically	analyzed.		Individual	large	particle	mean	squared	

displacements	are	averaged	to	generate	the	ensemble	average	at	a	given	

experimental	condition,	for	each	sample	(N=3	replicates	per	experimental	

condition).		

The	ensemble	average	of	the	large	particle	mean-squared	displacements	is	fitted	

to	the	single-particle	active	motion	model,	as	explained	below,		using	weighted	non-

linear	least	squares	fitting	using	Matlab	curve	fitting	software.		We	extract	three	

fitting	parameters	from	our	data:		the	propulsion	speed	v,	the	diffusion	coefficient	D,	

and	the	characteristic	reorientation	time	τ.		To	perform	weighted	fitting,	we	

consider	the	weight	to	each	data	point	i,	corresponding	to	a	particular	lag	time,	to	be	

given	by	the	standard	error	of	the	mean	𝜎!! =
!!
!
	.	Here	σi	is	the	standard	deviation	

of	the	mean	value	of	the	data	and	N	is	the	number	of	points	averaged	to	obtain	the	

mean-squared	displacement	at	that	lag	time.		
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Nearest	neighbor	and	velocity	analysis	

We	observe	that	during	their	trajectories,	large	particles	have	varying	numbers	

of	small	particle	neighbors	(see	below).	Using	custom-written	Python	code,	we	

obtain	cross-particle	pair	correlation	functions,	which	allow	us	to	obtain	a	nearest-

neighbor	distance	cutoff	and,	subsequently,	a	nearest-neighbor	distribution	of	small	

particles	around	a	large	particle.	We	compute	the	cross-particle	pair	correlation	

functions	for	large	and	small	particles,	gLS(r)	for	all	applied	potential	differences	at	

frequency	1	kHz,	averaged	for	all	three	samples	at	each	condition.	Using	a	cutoff	

distance	extracted	from	the	cross-particle	pair	correlation	functions,	we	segment	

the	trajectories	of	the	larger	particles	by	the	number	of	small	neighboring	particles	

to	investigate	the	effect	of	number	of	neighbors	on	the	short-time	ballistic	motion	of	

the	large	particles.	Neighbor-dependent	propulsion	speeds	are	obtained	by	fitting	a	

parabola	to	the	average	mean-squared	displacement	plots	at	short	times	(≤	1.2	

seconds),	considering	from	N	=	0	to	N	=	5	small	particle	neighbors.		

	

Results	and	Discussion		

On	Figure	4.1,	we	show	a	typical	trajectory	for	a	1.75	µm	carboxylated	

polystyrene	bead	in	0.125	mM	NaCl.	This	particle	exhibits	Brownian	diffusion,	

evidenced	by	the	randomly-directed	displacements	of	the	particle	from	frame	to	

frame.	The	mean-squared	displacement	of	a	Brownian	particle	of	radius	R	diffusing	

in	two	dimensions	is	given	by ∆𝑟!(𝑡) = 4 𝐷 𝑡,	where	D	is	the	translational	
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diffusion	coefficient	of	the	particle,	given	by	𝐷 =  𝑘!𝑇 6𝜋𝜂𝑅, kB	is	Boltzmann’s	

constant,	T	is	absolute	temperature,	η	is	the	fluid	viscosity,	and	t	is	the	lag	time	

between	particle	positions.		

On	Figure	4.2,	we	show	a	series	of	images	of	a	binary	colloidal	suspension	

made	of	1.75	µm	(green)	and	1	µm	(red)	carboxylated	polystyrene	beads	under	the	

effect	of	an	alternating	current	electric	field	with	peak-to-peak	voltage	of	20	V	and	

frequency	of	oscillation	equal	to	f	=	1.0	kHz.	By	comparing	Figure	4.1	and	Figure	4.2,	

it	is	apparent	the	trajectory	of	the	large,	green	particle	in	the	AC	electric	field	is	

qualitatively	different	than	that	of	a	passively	diffusing	particle.	The	trajectory	of	

this	particle	is	comprised	of	intervals	of	directed	motion;	the	trajectory	of	the	large	

particle	appears	to	be	influenced	by	the	presence	of	small	1	µm	particles	in	close	

proximity	to	it.		

Active	colloidal	particles,	in	addition	to	being	influenced	by	the	thermal	

fluctuations	of	the	medium	surrounding	them,	transform	energy	acquired	from	their	

environment	into	kinetic	energy.		An	active	particle	moving	with	speed	v	still	

undergoes	changes	in	orientation	due	to	rotational	diffusion30.	The	two-dimensional	

mean-squared	displacement	of	a	particle	with	Brownian	translational	diffusion	

coefficient	D,	propulsion	speed	v,	and	characteristic	reorientation	time	τ	is	given	by	

∆𝑟!(𝑡) = 4 𝐷 𝑡 + !
!

 𝑣!𝜏! ! ! 
!
+ 𝑒!

!!
! − 1 .	 	 	 	 	 (1)	

This	expression	also	describes	the	two-dimensional	mean	square	displacement	of	

run-and-tumble	particles	that	swim	with	constant	speed	v	and	suddenly	change	
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their	direction	in	Poisson-distributed	time	intervals30.		At	lag	times	t	<<	τ,	active	

particles	whose	mean	square	displacement	is	described	by	equation	(1)	exhibit	

mean-squared	displacements	which	can	be	described	by	 

∆𝑟!(𝑡) = 4 𝐷 𝑡 +  𝑣!𝑡!.	 	 	 	 	 	 	 	 (2)	

The	squared	dependence	in	lag	time	can	be	explained	by	the	ballistic	behavior	of	

particles:	a	body	moving	at	constant	velocity	v	has	displacement	equal	to	(𝒗 𝑡)	in	a	

time	t.	At	lag	times	t	>>	τ,	the	particle’s	mean	square	displacement	is	given	by	

∆𝑟!(𝑡) = 4 𝐷!"" 𝑡 −  𝑣
!𝜏!

2		 	 	 	 	 	 	 (3)	

where	Deff	is	the	effective	diffusion	coefficient	and	is	given	by	𝐷!"" = 𝐷 +  𝑣
!𝜏

2	.		

Figure	4.3	plots	the	ensemble	average	of	the	mean-squared	displacement	of	

all	individual	large	particle	trajectories	for	a	peak-to-peak	potential	difference	of	20	

V	and	frequency	f	=	1	kHz.	The	shape	of	the	mean-squared	displacement	displays	

short-time	behavior	that	is	non-linear	in	time,	and	approaches	linear,	diffusive	

behavior	at	longer	times.	We	explore	the	short-time	behavior	of	the	mean-squared	

displacement	of	the	particles	below.	We	show	similar	plots	for	the	mean-squared	

displacement	at	10	V	and	15	V,	at	1	kHz,	in	Figures	4.4a	and	4.4b,	respectively.	

Comparison	of	the	mean-squared	displacements	at	varying	peak-to-peak	voltages	

(10	V,	15	V,	and	20	V)	while	holding	frequency	fixed	at	1	kHz	show	that	mean-

squared	displacements	for	a	given	lag	time	increase	with	increasing	peak-to-peak	

voltage.		



	 121	

On	Figure	4.3,	we	include	the	standard	error	in	the	measurement	of	the	

mean-squared	displacement	at	a	given	lag	time	t.	Since	large	particles	may	exit	the	

image	acquisition	frame	due	to	their	motion,	not	all	trajectories	have	the	same	time	

duration,	which	explains	why	as	lag	time	increases,	so	does	the	error	in	

measurement	of	the	mean-squared	displacement.		The	best	fit	of	the	data	to	

equation	(1)	is	shown	as	a	red	line,	which	describes	the	mean-squared	displacement	

of	an	active	particle	with	propulsion	speed	v,	diffusion	coefficient	D	and	

reorientation	time	τ.	In	the	inset	plot	of	Figure	4.3,	we	plot	the	short	time	(for	lag	

times	t	≤	1.2	seconds)	mean-squared	displacement	data	and	find	that	the	data	is	also	

well-described	by	the	short-time	limit	of	equation	(1),	given	by	equation	(2).	At	long	

times,	the	mean-squared	displacement	of	the	particles	recovers	the	linear	form	one	

would	expect	from	a	diffusing	particle,	but	now	with	a	larger	effective	diffusion	

coefficient	than	expected	for	Brownian	motion,	as	described	by	equation	(3).	On	

Figure	4.3,	we	also	include	the	fit	to	the	long-time	mean-square	displacement	data	

using	equation	(3).	

On	Figure	4.5a,	we	show	the	percent	difference	between	the	experimental	

data	and	weighted	non-linear	least	square	fits	to	the	data	using	equation	(1)	–	the	

active	motion	model	–	and	the	linear	mean-squared	displacement	of	a	passive	

Brownian	motion	in	two	dimensions	for	the	experimental	condition	presented	on	

Figure	4.3.	Our	analysis	shows	the	mean-squared	displacement	at	this	condition	is	

much	better	described	by	the	active	motion	of	equation	(1),	rather	than	that	of	

purely	Brownian	diffusion.		Average	percent	differences	between	the	active	motion	
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fit	(equation	(1))	and	the	experimental	data	do	not	exceed	2%	for	all	active	motion	

fits	reported.	On	Figure	4.5b,	we	plot	the	percent	difference	between	the	

experimental	data	and	the	two	different	fits	at	a	peak-to-peak	voltage	of	10	V	and	

frequency	of	oscillation	f	=	2	kHz.	Although	equation	(1)	fits	the	data	marginally	

better,	the	percent	difference	between	the	models	(active	motion	and	Brownian	

motion)	and	the	experimental	data	are	comparable.	In	this	case,	we	do	not	consider	

the	particles	in	such	samples	--	10	V	at	2	kHz	--	to	be	active	movers	and	therefore	do	

not	report	fitting	parameters	from	equation	(1)	for	this	experimental	condition	in	

subsequent	figures.		

On	Figures	4.6a	and	4.6b,	we	plot	the	values	extracted	from	the	fits	(equation	

(1))	for	the	propulsion	speed	(Figure	4.6a)	and	the	characteristic	time	(Figure	4.6b).	

On	Figure	4.6c,	we	plot	the	effective	diffusion	coefficient	of	the	particles	extracted	

from	fitting	the	long-time	mean-squared	displacement	of	the	particles	to	equation	

(3),	as	well	as	𝐷!"" = 𝐷 +  𝑣
!𝜏

2	computed	from	the	fit	parameters	D,	v,	and	τ	

obtained	from	fitting	the	data	to	the	active	fit	model	(equation	(1)).		

On	Figure	4.6a,	we	can	see	that	particle	propulsion	speeds	increase	with	

increasing	applied	peak-to-peak	voltage	and	decrease	with	frequency	of	oscillation	

of	the	field.	This	behavior	is	consistent	with	what	is	expected	from	EHD	flow	for	

permanent	dimers	19	and	what	has	been	found	in	other	experiments15,18.		What	is	

interesting	and	different	about	the	present	results	however,	is	that	the	active	

motion	is	obtained	in	a	suspension	of	unbound,	isotropic	particles,	rather	than	in	

permanently	bound	dimers	or	asymmetric	dumbbells,	as	has	been	shown	in	the	
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literature14,15.		This	difference	highlights	the	fact	that	the	active	motion	found	here	is	

emergent,	arising	from	the	collective	proximity	of	the	different	size	colloids	as	a	

result	of	attractive	EHD	flow,	discussed	below.		When	the	electric	field	is	turned	off,	

we	no	longer	observe	transient	associations	between	the	particles;	particles	revert	

back	to	performing	Brownian	diffusion.	

The	largest	propulsion	speed	was	measured	at	20	V	and	1	kHz,	with	a	value	

of	v	=	1.5	µm/s.	The	dashed	line	on	Figure	4.6a	represents	the	propulsion	speed	of	

gold/polystyrene	Janus	particles	in	2%	H2O2	solution,	v	~	1.1	µm/s,	as	reported	in	

Howse	et	al10.	The	value	of	the	propulsion	speeds	at	15	V,	1	kHz,	and	20	V,	1.5	kHz	

are	comparable	to	this	value.	As	the	peak-to-peak	voltage	is	increased,	we	observe	

an	increase	in	propulsion	speed	at	fixed	frequency,	and	a	decrease	in	propulsion	

speed	as	frequency	is	increased	at	fixed	applied	voltage.	At	the	experimental	

condition	of	10	V	and	2	kHz,	the	mean-squared	displacement	of	the	particle	is	no	

longer	distinguishable	from	that	due	to	Brownian	motion.	These	results	are	in	

agreement	with	expected	behavior	due	to	EHD	flow	in	which	fluid	flow	is	

proportional	to	the	field	strength	(therefore,	applied	voltage)	and	inversely	

proportional	to	the	frequency	of	field	oscillation.15,19		

On	Figure	4.6b,	we	show	the	values	for	the	characteristic	reorientation	time	τ	

extracted	from	the	weighted	fits.	The	dashed	grey	line	represents	the	time	scale	for	

Brownian	rotational	diffusivity	for	a	1.75	µm	particle,	given	by	τr	=	4.2	seconds.	(A	

colloidal	particle	of	radius	R	has	rotational	diffusion	coefficient	Dr	given	by	
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𝐷! =
𝑘!𝑇

8𝜋𝜂𝑅! ≡  𝜏!!!.)	Large	statistical	errors	on	the	data,	which	rise	from	the	

quite	gradual	transition	from	ballistic	to	diffusive	motion	for	these	particles,	

preclude	us	from	making	a	definite	statement	about	changes	in	reorientation	time	

with	frequency	and	applied	voltages.		However,	overall,	the	data	suggests	that	

reorientation	times	are	smaller	for	higher	applied	voltages	than	for	lower	applied	

voltages.		At	10	V,	characteristic	times	are	about	14	seconds.		At	15	V,	average	

characteristic	times	are	between	8.4	and	12	seconds.	At	20	V,	the	characteristic	

reorientation	times	range	from	6.5	seconds	at	2	kHz	to	7.2	seconds	at	1.0	kHz	and	

1.5	kHz.			

The	characteristic	rotational	times	are	approximately	a	factor	of	2	to	3	times	

greater	than	predicted	for	a	free	particle	undergoing	Brownian	motion.		This	

difference	could	potentially	be	a	consequence	of	the	EHD	flow	itself:		work	by	

Santana-Solano	et	al.31	suggests	that	the	rotation	rate	of	particles	is	affected	by	the	

EHD	flow.	In	their	study	on	the	rotation	of	4.2	µm-sized	carboxylated	polystyrene	

particles	in	clusters	of	particles	brought	together	by	EHD	flow,	they	observed	that	

the	rotation	frequency	of	boundary	particles	increased	as	applied	voltage	was	

increased,	and	that	rotation	frequencies	were	inversely	proportional	to	the	

frequency	of	the	applied	field.	An	increase	in	rotation	frequency	would	imply	a	

decrease	in	reorientation	time	with	increasing	applied	voltage,	which	is	

commensurate	with	the	characteristic	times	we	report.	However,	in	our	data,	we	do	

not	observe	frequency	dependence	to	the	characteristic	time,	yet	the	particles	
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whose	motion	we	are	tracking	are	freely	moving	by	propulsion	and	not	part	of	a	

cluster.		

On	Figure	4.6c,	we	plot	the	effective	diffusion	coefficient,	Deff,	as	it	varies	with	

applied	peak-to-peak	voltage	and	frequency	of	field	oscillation.	The	dashed	line	on	

this	figure	represents	the	Brownian	translational	diffusion	coefficient	for	1.75	µm	

particles,	D	=	0.26	µm2/s.		Overall,	we	observe	that	higher	applied	voltages	and	

lower	frequencies	of	oscillation	yield	the	greatest	enhancements	to	the	diffusion	

coefficient.		At	10	V,	the	values	for	Deff	are	comparable	to	Brownian	diffusion.	At	15	V	

and	1	kHz,	Deff	=	1.9	µm2/s,	for	a	seven	fold	increase	in	diffusivity,	comparable	to	the	

enhacement	observed	at	20	V	and	1.5	kHz.	At	20	V,	1kHz,	we	measure	Deff	=	3.8	

µm2/s	for	a	nearly	fifteen-fold	enhancement	of	the	diffusion	coefficient.	Thus,	when	

particles	propel	faster,	their	effective	diffusion	coefficient	increases,	which	can	be	

seen	by	comparing	Figures	4.6a	and	4.6c.	

Next,	we	turn	our	attention	to	how	the	propulsion	of	large	particles	is	

affected	by	the	number	of	small	particle	neighbors	surrounding	them.	On	Figure	4.7,	

we	show	three	representative	trajectories	of	large	particles	over	a	total	period	of	16	

seconds.	On	Figures	4.7a	and	4.7b,	a	number	of	large	particles	are	present	in	these	

frames,	and	it	can	be	observed	that	they	have	different	numbers	of	small	particle	

neighbors.		Focusing	on	the	particular	trajectory	drawn	on	the	image,	we	observe	

that	this	large	particle	is	initially	surrounded	by	one	small	particle,	indicated	by	an	

arrow.		Later,	by	the	frame	shown	in	Figure	4.7c,	the	particle	has	now	acquired	an	

additional	neighbor.	On	Figure	4.7d,	we	observe	that	the	particle	being	tracked	has	
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two	small	neighbors.	In	subsequent	frames	(Figure	4.7e	and	4.7f),	the	particle	is	

surrounded	by	three	particles.		From	the	frame	represented	on	Figure	4.7e	to	the	

one	represented	in	Figure	4.7f,	we	can	observe	that	the	large	particle’s	trajectory	

has	turned,	perhaps	under	the	effect	of	encountering	the	third	particle.	On	Figures	

4.7g	to	4.7i,	we	show	the	trajectory	of	a	large	particle	as	it	exchanges	small	particles	

with	neighboring	large	ones.	On	Figure	4.7g,	we	see	that	the	large	particle	has	two	

neighbors.	Next,	on	frame	4.7h,	it	is	surrounded	by	three	small	particles.	Finally,	on	

Figure	4.7i,	it	only	has	two	small	particle	neighbors.	These	three	trajectories	show	

that	the	trajectories	of	large	particles	are	influenced	by	the	small	particles	surround	

it.		Moreover,	they	show	that	the	number	of	particles	in	the	associated	clusters	is	a	

function	of	time.		

The	electrohydrodynamic	flow	velocity	of	the	fluid	at	a	point	r	away	from	the	

center	of	a	particle	of	radius	R	is	given	by	15	

𝑢!"# 𝑟 = !
!

!!! !
!!"

!!!

!!( !
!!"

)! 
! (! !)

!(!! ! ! !)!/!
 	,		 	 	 	 	 	 (4)	

where	𝐶 =  𝜀𝜀!
!
!"

!
𝜅ℎ.	In	these	expressions,	η	is	the	fluid	viscosity,	R	is	the	

particle	radius,	K’	and	K’’	are	the	real	and	imaginary	components,	respectively,	of	

the	particle’s	polarization	coefficient,	ε	is	the	dielectric	constant	of	the	medium,	εo	

the	permittivity	of	vacuum,	V	is	the	applied	peak-to-peak	voltage,	κ	is	the	inverse	of	

the	Debye	length,	2h	is	the	separation	between	the	electrodes,	ω	is	the	frequency	of	

oscillation	of	the	field,	and	ωRC	is	the	inverse	of	the	RC	time	for	charging	the	

electrode,	given	by		ωRC	=	κ	Dion/h,	where	Dion	is	the	diffusion	coefficient	of	the	
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ions15,19.	The	resulting	toroidal	flow	streamlines	surrounding	the	particles	are	

directed	towards	or	away	from	the	particle,	depending	on	the	polarization	

coefficient	of	the	particle,	whose	real	and	imaginary	parts	depend	on	frequency,	

particle	size,	ion	diffusivity,	Debye	length,	particle	zeta	potential,	and	Stern	layer	

conductance	of	the	particles.		

In	our	experiments,	we	always	observe	large	particles	leading	the	small	ones.	

That	is,	large	particles	pull	small	particles.	In	the	present	case	both	types	of	particles	

are	made	of	carboxylated	polystyrene.	The	volume	of	dielectric	material	that	is	

polarized	by	the	electric	field	is	5.4	times	greater	for	the	larger	spheres	than	for	the	

smaller	ones.	In	terms	of	equation	(4),	this	means	that	the	velocity	of	the	

electrohydrodynamic	flow	surrounding	the	large	polystyrene	particles	is	larger	than	

that	surrounding	the	smaller	polystyrene	particles.	This	velocity	difference	is	

enough	to	entrain	small	polystyrene	particles	in	the	convective	EHD	flow	generated	

by	the	large	particle,	and	propel	the	large	particles	while	keeping	the	small	particles	

close	to	it.	The	asymmetry	in	the	EHD	flow	fields	is	what	determines	the	direction	of	

propulsion.	This	is	why	we	observe	large	particles	to	move,	roughly,	in	the	direction	

defined	by	the	sum	of	the	line-of-center	directors	from	the	neighboring	small	

particles	to	the	large	particle.		

We	are	interested	in	quantifying	how	the	number	of	small	particles	

neighboring	a	large	particle	affects	the	propulsion	speed	of	large	particles.	In	2D,	a	

1.75	µm-sized	particle	can	be	surrounded	by	up	to	eight	1.0	µm	particles.		(Briefly,	
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the	number	of	particles	that	can	be	placed	side-by-side	around	another	is	 𝑁!"#$$ =

 !!(!!"#$$!!!"#$%)
!!!"#$$

= 8.6 .)		To	investigate	the	effect	of	small	particle	neighbors	on	the	

motion	of	large	particles,	we	need	to	identify	the	number	of	small	particles	in	close	

proximity	a	large	one.		We	use	the	cross-particle	pair	correlation	function	gLS(r),	

which	is	the	probability	of	finding	small	particles	as	a	function	of	distance	r	from	the	

center	of	large	particles.		On	Figure	4.8a,	we	plot	gLS(r)	at	a	driving	frequency	of	1	

kHz	for	peak-to-peak	applied	voltages	of	10	V,	15	V	and	20	V.	We	see	that	for	all	

three	applied	voltages	the	likelihood	of	finding	a	small	particle	is	largest	at	small	

distances,	and	reduces	to	its	expected	value	of	1	at	large	distance	away	from	the	

large	particle	centers.	For	15	V	and	20	V,	the	likelihood	of	finding	small	particles	

close	to	the	large	particles	is	greater	than	at	10	V,	evidenced	by	the	relative	height	of	

the	peaks	in	gLS(r).	This	implies	that	the	entrainment	of	small	particles	by	large	

particles	is	strongest	at	higher	electric	field	amplitudes,	which	is	expected,	as	the	

EHD	flow	magnitude	increases	with	increasing	field	amplitude.	We	note	that	the	

cross-correlation	function	is	itself	a	confirmation	of	the	EHD	coupling	between	the	

large	and	small	particles.		The	particles	themselves	are	stable.		This	fact,	coupled	

with	the	low	concentration	of	the	specimens,	indicates	that	the	passive,	equilibrium	

structure	would	be	largely	uncorrelated,	and	the	strong	peak	absent.	

We	measure	the	number	of	nearest	small	particle	neighbors	next	to	a	large	

particle	using	a	distance	cutoff	given	by	2.4	µm,	shown	in	Figure	4.8a	as	a	dashed	

vertical	grey	line.	This	distance	is	roughly	equal	to	1.5	small	particle	diameters	away	
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from	the	large	particle	surface.	Using	this	distance	as	our	nearest-neighbor	cutoff,	

we	measure	the	nearest	neighbor	distributions	at	f	=	1kHz	for	peak-to-peak	voltages	

of	10	V,	15	V	and	20	V,	shown	in	Figure	4.8b.	The	small-nearest	neighbor	

distribution	functions	plotted	in	Figure	4.8b	indicate	that,	in	all	image	frames	

acquired,	roughly	20%	of	large	particles	have	no	small	particle	neighbors.		Most	

large	particles	have	one,	two	or	three	small	particles	surrounding	them	during	the	

image	capture.	Less	than	10%	of	particles	have	four	or	more	neighbors.	Visual	

evidence	of	neighboring	small	particles	is	provided	on	Figures	4.2	and	4.7.				

We	segment	the	large	particle	trajectories	into	runs	in	which	the	number	of	

small	particle	neighbors	are	fixed.			From	these	segmented	particle	trajectories,	we	

measure	the	mean-squared	displacement	of	large	particles	at	each	different	number	

of	small	particle	neighbors.		On	Figure	4.9a,	we	show	the	short-time	(lag	time	≤	1.2	

s)	mean-squared	displacements	of	large	particles	as	a	function	of	the	number	N	of	

small	particles	surrounding	it	for	one	sample	at	20	V,	1	kHz	experimental	condition.	

Note	the	ordering	of	the	MSD	curves	with	N	in	this	plot:		we	see	that	large	particles	

with	one,	two,	or	three	neighbors	achieve	larger	mean-squared	displacements	than	

particles	with	zero,	four	or	five	neighbors	at	the	same	lag	times.		

In	order	to	obtain	the	propulsion	speed	of	the	particles,	we	fit	the	short-time	

mean-squared	displacements	to	equation	(2).		Results	for	the	propulsion	speed	are	

plotted	on	Figure	4.9b.		For	a	fixed	number	of	neighbors,	the	propulsion	speed	

increases	as	the	peak-to-peak	voltage	is	increased.	This	agrees	with	results	shown	in	

Figure	4.6a,	where	the	large	particle	ensemble	average	propulsion	speed	shows	the	
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same	pattern.	At	10	V,	large	particles	move	relatively	slowly	compared	to	measured	

velocities	at	15	V	and	20	V.	At	15	V,	particles	with	two	and	three	neighbors	have	

propulsion	speeds	roughly	equal	to	0.8	µm/s.	At	20	V,	particles	with	two	and	three	

neighbors	have	speeds	of	1.2	µm/s	and	1.3	µm/s,	respectively.		

Large	particles	with	two	and	three	small	neighbors	are	observed	to	have	the	

largest	propulsion	speeds.	As	the	number	of	small	neighboring	particles	increases	

from	three	to	four	and	five	neighbors,	the	propulsion	speed	decreases.	As	

mentioned	above,	large	particles	can	be	surrounded	by	up	to	8	particles,	and	the	

asymmetry	in	the	EHD	flow	is	what	determines	the	direction	of	propulsion.		When	

the	number	of	small	particles	surrounding	a	large	one	exceeds	4,	we	expect	small	

particles	to	have	a	constraining	effect	on	large	particle	motion,	since	the	large	

particle	would	collide	with	them.	Also,	the	sum	of	the	forces	acting	on	the	large	

particles	due	to	the	effect	of	the	small	ones	would	decrease	with	more	than	4	small	

neighboring	particles,	as	the	line-of-center	directors	start	to	cancel	themselves	out	

when	summed.		
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Conclusions	

	 We	observe	emerging	propulsion	of	transient	colloidal	molecules	formed	

upon	the	application	of	perpendicular,	low-frequency	alternating	current	electric	

fields	onto	a	binary	suspension	of	unequally	sized	carboxylated	polystyrene	

particles.	We	observe	that	the	mean-squared	displacement	of	the	particles	is	well-

described	by	fitting	it	to	the	mean-squared	displacement	of	active	particles.	As	peak-

to-peak	voltage	is	increased	and	frequency	of	oscillation	decreased,	we	measure	

larger	propulsion	velocities.	The	application	of	the	field	is	observed	to	affect	the	

rotation	of	the	large	particles	via	measurement	of	characteristic	reorientation	times	

that	differ	from	the	expected	Brownian	rotational	diffusion	scale.	The	effect	of	the	

field	leads	to	enhanced	effective	diffusion	coefficients	up	to	sixteen	times	larger	than	

the	diffusion	coefficient	for	Brownian	translational	motion.	The	number	of	small	

particles	neighboring	large	ones	is	found	to	impact	the	propulsion	speed	of	large	

particles;	large	particles	with	two	and	three	small	particle	neighbors	are	observed	

to	propel	the	fastest.		

	 We	perform	our	experiments	solely	with	carboxylated	polystyrene	beads	at	

constant	salt	concentration.	We	observe	propulsion	of	carboxylated	polystyrene	

particles	without	the	need	to	perform	surface	modifications	to	the	particle	or	to	use	

hydrogen	peroxide	or	other	solvent	mixtures.	Our	work,	combined	with	previous	

work	done	in	other	groups,	suggests	that	one	can	rationally	control	propulsion	

speeds	of	particles	by	choosing	different	electrolytes	and	changing	relative	particle	

sizes,	composition	and	zeta	potentials.	We	perform	our	experiments	at	relatively	
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dilute	particle	concentrations.	Subsequent	experiments	may	show	what	effect	

changing	salt	concentration	and	the	relative	and	overall	particle	concentrations	

have	on	the	dynamical	behavior	of	this	propelling	particle	system.		
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Figure	4.1	Brownian	motion	of	a	1.75	µm	polystyrene	bead	in	water.	Scale	bars:	3	
µm.	Time	between	frames:	1.33	seconds.	Images	were	also	acquired	at	7.5	fps.	
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Figure	4.2	Trajectory	of	a	1.75	µm	polystyrene	bead	driven	by	20	V	at	1	kHz.	Scale	
bars:	5	µm.	Time	between	frames:	1.33	s.	The	trajectory	of	this	particle	is	markedly	
different	than	that	of	passive	Brownian	particles.	
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Figure	4.3	Ensemble	average	of	all	large	particle	trajectories’	mean-squared	
displacements	of	large	particles	at	20	V,	1	kHz	applied	electric	field.	The	
experimental	data	(blue	open	circles)	is	fit	by	the	mean-squared	displacement	for	an	
active	particle	propelling	with	speed	v,	diffusion	coefficient	D	and	characteristic	
reorientation	time	τ	(equation	(1)),	shown	here	as	a	red	line.	We	show	the	mean-
squared	displacement	data	plotted	every	four	data	points	for	clarity	purposes.	The	
inset	plot	shows	the	short	time	ensemble	mean-squared	displacement,	displaying	
ballistic	behavior,	fit	by	equation	(2).	The	dashed	gray	line	is	the	fit	to	the	long-time	
mean-squared	displacement	data	obtained	from	fitting	equation	(3)	to	the	long	time	
mean-squared	displacement,	which	exhibits	linear	behavior.	
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Figure	4.4	Ensemble	average	of	all	large	particle	trajectories’	mean-squared	
displacements	of	large	particles	at	(a)	10	V,	1	kHz	applied	electric	field,	and	(b)	15V,	
1kHz	applied	electric	field.	In	both	panels,	experimental	data	is	represented	by	blue	
open	circles	and	fits	to	the	active	motion	model	mean-squared	displacement,	
equation	(1),	are	shown	in	as	a	red	line.	
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Figure	4.5	Panel	(a)	shows	the	percent	difference	between	experimental	mean-
squared	displacement	and	the	active	motion	fit	for	MSD	(equation	(1)),	shown	as	
blue	circles,	and	Brownian	motion	(red	squares)	for	a	peak-to-peak	voltage	of	20	V	
and	frequency	of	oscillation	f	=	1	kHz.	Panel	(b)	shows	the	same	for	10	V	and	2	kHz.	 	
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Figure	4.6	Fitted	parameters	extracted	from	mean-squared	displacement	model.	On	
panel	(a)	we	plot	the	ensemble	average	propulsion	speed	of	large	particles	as	a	
function	of	applied	frequency	for	all	three	different	applied	voltages.	The	dotted	
lines	is	the	value	of	the	propulsion	speed	of	a	Janus	particle	in	2%	H2O2	solution,	per	
Howse	et	al.10.	On	panel	(b),	we	plot	the	characteristic	reorientation	time.	The	
dotted	line	is	the	characteristic	time	of	rotational	diffusion,	τr,	for	the	1.75	µm	
polystyrene	beads.	Panel	(c)	is	a	plot	of	the	effective	diffusion	coefficient	Deff	
obtained	via	two	different	methods.	Open	symbols	denote	Deff	values	obtained	by	
using	the	values	of	D,	v,	and	τ	obtained	from	fitting	the	data	to	equation	(1).	Closed	
symbols	denote	Deff	obtained	from	fitting	the	long-time	mean-squared	
displacements	to	equation	(3).	The	dotted	line	is	the	Brownian	diffusion	coefficient	
for	1.75	µm	polystyrene	beads.	On	panels	a	thru	c,	data	for	10	V	is	plotted	as	solid	
blue	circles,	15	V	as	solid	red	squares,	and	for	20V,	solid	green	triangles.		On	panel	c,	
solid	symbols	denote	Deff	obtained	from	fitting	parameters	of	equation	(1);	open	
data	symbols	(pink	circles	for	10	V,	orange	squares	for	15	V,	and	purple	triangles	for	
20	V)	denote	Deff	obtained	from	long-time	mean-squared	displacement	fits.	
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Figure	4.7	Entrainment	of	small	particles	by	large	particles.		Panels	(a)-(c),	(d)-(f),	and	(g)-
(i)	show	three	different	large	particle	trajectories,	respectively.	On	all	panels,	solid	yellow	
lines	indicate	where	the	tracked	particle	has	been,	and	white	dashed	lines	indicate	the	
particles’	future	trajectories.	The	time	interval	between	all	frames	is	4	s.	Solid	yellow	and	
dashed	white	line	trajectories	are	plotted	for	a	total	of	16	s.	In	these	panels,	it	can	be	seen	
that	the	number	of	small	particle	neighbors	surrounding	a	large	particle	is	not	constant	in	
time.	Arrows	indicate	the	location	of	the	small	particles	surrounding	the	large	beads.		 	
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Figure	4.8	Small-large	particle	pair	correlation	function	and	nearest	neighbor	
distributions:	On	panel	(a)	we	show	the	pair	correlation	function	at		10	V	(blue	
circles),	15	V	(red	triangles),	and	20	V	(green	squares)	at	f	=	1	kHz.	The	dashed	grey	
vertical	line	represent	the	cutoff	used	to	obtain	the	nearest	neighbor	distribution	of	
small	particles	surrounding	large	particles	shown	in	panel	(b).	Colors	in	panel	(b)	
are	the	same	as	(a).	 	
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Figure	4.9	On	panel	(a)	we	plot	the	short-time	mean-squared	displacement	of	large	
particles	as	a	function	of	how	many	small	particle	neighbors	N	surround	them	for	a	
peak-to-peak	voltage	of	20	V	and	a	driving	frequency	f	=	1	kHz.	(N	=	0:	small	blue	
circles,	N	=	1:	red	squares,	N	=	2:	green	up-facing	triangles,	N	=	3:	purple	down-
facing	triangles,	N	=	4:	orange	diamonds,	N	=	5:	large	black	circles).	On	panel	(b)	we	
plot	the	propulsion	speeds	extracted	from	fitting	short-time	mean-squared	
displacements	for	10	V	(blue	circles),	15	V	(red	squares),	and	20	V	(green	triangles)	
at	f	=	1	kHz.		
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Chapter	5 	
Conclusions	and	Future	Directions	

	

Binding	kinetics	and	equilibrium	thermodynamics	measurements	of	anisotropic	
colloidal	systems	

In	Chapter	2,	we	used	confocal	microscopy	and	particle	tracking	methods	to	

study	the	kinetics	of	formation	of	lock-key	dumbbells	due	to	depletion	interactions.	

The	interaction	potential	between	lock	and	key	particles	is	a	function	of	distance	

and	relative	orientation	of	key	with	respect	to	the	lock	dimple.	This	anisotropy	leads	

to	there	being	two	possible	configurations	of	lock	and	key	colloids	at	contact:	a	key	

particle	may	be	bound	at	the	spherical	surface	of	the	lock	or	it	could	be	bound	at	its	

dimple.	We	were	able	to	distinguish	between	the	two	different	particle	

configurations	using	the	bond	length	distribution	between	lock	and	key	centers,	

since	the	distance	between	lock	and	key	centroids	when	the	key	is	inside	the	lock	

dimple	is	smaller	than	the	sum	of	the	two	particle	radii,	which	is	the	distance	

between	centroids	when	the	particles	are	nonspecifically	bound	to	each	other.	Our	

experimental	results	showed	that	lock-key	dumbbells	are	formed	by	direct	diffusion	

of	the	key	into	the	lock	dimple	from	bulk,	or	from	the	surface	diffusion	of	key	

particles	from	the	spherical	surface	of	the	lock	particle	to	its	dimple	via	a	surface	

diffusion	mechanism.1		
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We	quantified	the	kinetic	rate	constants	of	all	six	different	pathways	in	the	

interaction.	Lock	and	key	colloids	may	be	free	(unbound),	bound	to	each	other	

nonspecifically	or	specifically	bound.	Locks	and	keys	may	bind	to	each	other	from	

bulk,	and	unbind	to	bulk,	or	they	may	go	from	being	nonspecific	to	specifically	

bound.	We	treat	all	binding	in	the	system	as	reversible.	We	find	that	the	rate	of	

nonspecific	to	specific	binding	is	independent	of	depleting	polymer	concentration.	

The	rate	of	unbinding	from	the	nonspecific	binding	state	decreases	as	the	depletant	

concentration	increases.	The	impact	that	this	has	on	assembly	is	that,	as	keys	are	

more	strongly	bound	to	the	surface,	the	more	time	a	key	particle	is	likely	to	be	

bound	to	the	surface	of	the	lock.	This,	combined	with	the	constant	NS	–	S	kinetic	rate	

constant,	implies	more	nonspecifically	bound	keys	will	make	it	to	the	specific	

binding	configuration	at	the	lock	dimple	as	the	depletant	concentration	increases.	

We	measure	the	success	probability	for	NS-S	binding,	that	is,	the	conditional	

probability	that	once	a	key	is	nonspecifically	bound	to	the	lock	surface	it	will	

successfully	bind	to	the	lock	dimple,	and	find	that,	indeed,	the	success	probability	

increases	as	the	depletion	interaction	increases.		

Subsequent	simulation	and	modeling	work2	studied	the	effect	that	

nonspecific	binding	energy	would	have	on	the	formation	of	specific	bonds	from	a	

nonspecific	binding	configuration	as	a	function	of	key	to	dimple	size	ratio.	

Simulations	found	that	the	kinetic	rate	of	NS	–	S	binding	depends	on	the	key	to	

dimple	size	ratio,	and	so	does	the	free	energy	of	NS	–	S.		The	threshold	nonspecific	

binding	energy,	defined	as	the	nonspecific	binding	energy	between	locks	and	keys	
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where	formation	of	nonspecific	and	specific	bonds	is	equally	likely,	is	minimized	for	

keys	slightly	smaller	than	the	lock	dimple	cavity	size.	This	threshold	nonspecific	

energy	is	an	asymmetric	function	of	key	to	dimple	size	ratio:	if	the	key-to-dimple	

size	ratio	is	reduced	by	ε	from	the	aforementioned	optimum	value,	the	threshold	NS	

binding	energy	increases	by	less	than	if	the	key-to-dimple	size	ratio	is	increased	by	

the	same	ε.	When	there	is	good	shape	recognition	between	the	key	and	the	lock	

dimple	surfaces,	specific	binding	is	favored	over	nonspecific	binding	at	lower	

interaction	strengths,	i.e.	lower	depleting	polymer	concentrations.		

In	Chapter	3,	we	studied	the	effect	that	the	key-to-dimple	size	ratio	has	on	

the	free	energy	of	formation	of	specific	bonds.	Our	experimental	results	were	

consistent	with	the	above-mentioned	modeling	and	simulation	work	where	keys	

smaller	than	the	dimple	cavity	size	formed	specific	bonds	more	readily	that	keys	

that	were	much	smaller	(less	than	70%)	or	of	equal	or	larger	size	than	the	dimple.	If	

the	size	mismatch	between	lock	dimple	and	keys	is	too	small,	the	specific	binding	

interaction	energy	is	not	large	enough	to	overcome	the	loss	of	entropy	of	the	key	

particle.	When	a	key	binds	to	the	lock	dimple,	it	loses	configurational	degrees	of	

freedom,	since	it	cannot	explore	configurations	around	the	bulk	volume.	Entropy,	

however,	penalizes	a	perfect	key-dimple	fit:	when	a	key	particle	and	the	dimple	

perfectly	match	each	other,	the	key	particle	has	restricted	configurational	phase	

space	to	explore	within	the	dimple	since	it	cannot	move	within	it.	As	the	key	to	

dimple	size	ratio	increases	from	one,	the	convex,	circular	shape	of	the	key	is	in	less	

contact	with	the	concave	dimple,	and	gains	more	contact	with	the	convex	rim	of	the	
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lock	dimple,	which	is	not	of	negligible	curvature.		In	fact,	we	performed	our	

experiments	by	rotating	the	samples	to	eliminate	the	effect	that	lock	dimple	binding	

to	the	glass	substrate	of	our	capillaries	would	have	on	our	experiments,	since	this	is	

not	a	negligible	interaction:	it	is	as	if	a	toroid	of	curvature	given	by	the	lock	lip	

radius	was	in	contact	with	a	flat	plate	in	the	presence	of	depletants.		

Our	experimental	approach,	where	particles	are	allowed	to	assemble	and	

then	a	bond	length	distribution	or	pair	distribution	function	is	used	to	distinguish	

one	spatial	configuration	state	from	the	other,	coupled	with	diffusion-migration	

modeling,	can	be	extended	to	other	systems,	such	as	Janus	particles	or	other	types	of	

patchy	colloids3,	or	to	the	binding	of	keys	to	locks	with	multiple	cavities4	to	explore	

the	kinetics	of	self-assembly	of	anisotropic	particle	systems.	It	would	be	interesting	

to	study	how	the	lock	rim	geometry	affects	binding;	locks	with	a	perfectly	circular	

cavity	have	been	synthesized5,	and	it	would	be	interesting	to	see	what	effect	the	

sharp	rim6	has	on	the	formation	of	specific	bonds	via	the	surface	diffusion	

mechanism	described	on	Chapter	21.		

Our	work	on	the	free	energies	of	formation	of	specific	locks	enables	the	

experimental	study	of	the	rational	design	of	lock-key	assemblies,	which	have	been	

shown	to	exhibit	exciting	symmetries7,8.	Modeling	work	performed	to	this	end	

suggests	that	interactions	should	be	as	nonspecific	as	possible	while	promoting	

specific	binding	assembly2,	consistent	with	studies	on	the	self-assembly	of	protein	

crystals9.	
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Simulations	of	assemblies	of	reconfigurable	lock-key	colloidal	molecules7,8	

suggest	the	formation	of	many	exciting	crystalline	phases,	depending	on	lock-key	

size	ratios,	the	bond	length	between	the	particles,	and	the	type	of	lock-key	colloidal	

molecules	formed.	As	first	presented	by	Sacanna	et	al.10,	lock-key	colloids	may	form	

different	colloidal	molecules	based	on	the	number	of	locks	that	dock	around	a	

central	spherical	key.	To	experimentally	realize	predicted	lock-key	crystalline	

assemblies,	it	would	be	useful	to	study	the	effect	that	changing	particle	ratios	would	

have	on	the	formation	of	different	types	of	lock-key	colloidal	molecules,	as	well	as	

the	effect	of	changing	overall	particle	concentration.	A	strategy	that	could	be	used	to	

promote	the	formation	of	lock-key	bonds	is	to	apply	electric	fields,	as	recently	

shown	by	Kamp	et	al.11	Another	experimental	possibility	is	to	work	with	lock	and	

key	colloids	in	organic	solvents.	An	experimental	procedure	to	transfer	3-

trimethoxysilylpropyl	methacrylate	colloidal	particles	from	aqueous	solvents	to	

apolar	solvents	has	already	been	developed12,	and	would	enable	refractive	index	

and	density	matching	of	the	suspensions,	and	use	of	polystyrene	polymer	as	

depletant.	This	could	lead	to	studies	of	lock-key	colloidal	structure	formation	that	

are	free	from	the	effect	of	sedimentation.	

We	performed	a	few	experiments	at	higher	overall	particle	concentrations	

using	one	of	the	two	best	binding	lock-key	pairs	in	our	experiments	(key	to	dimple	

size	ratio	δ	=	0.9)	made	of	1.75	µm	polystyrene	keys	and	2.4	µm	lock	particles.	On	

Figure	5.1,	we	show	a	binary	colloidal	gel	of	lock	and	key	particles	prepared	at	a	3:1	

lock-to-key	number	ratio	at	0.1	mM	NaCl	and	1.0	g/L	polyethylene	oxide	(Mv	=	
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600,00	g/mol).	The	total	particle	concentration	in	this	suspension	was	less	than	

30%	volume	fraction.	The	structures	shown	in	this	image	merit	further	study:	

recent	simulation	work	predicts	the	formation	of	empty	liquids	of	colloidal	dimpled	

particles13.	Does	the	structure	shown	in	Figure	5.1	have	regions	where	empty	

liquids	are	present?	How	does	the	presence	of	keys	affect	the	formation	of	that	

phase?	On	Figure	5.2,	we	show	a	colloidal	suspension	of	locks	and	keys	with	key-to-

dimple	size	ratio	δ	=	0.9	that	has	been	tilted	at	a	slight	angle	with	respect	to	the	

horizontal	and	allowed	to	assemble	overnight	at	1.0	mM	NaCl	and	1.0	g/L	PEO,	

showing	the	suitability	of	using	gravitational	fields	to	crystallize	lock-key	colloids14,	

and	study	the	effect	of	packing	fraction	on	lock-key	colloidal	assembly.	Both	Figure	

5.1	and	5.2	are	examples	of	potential	further	experiments	that	can	be	conducted	

toward	the	self-assembly	of	lock-key	colloidal	structures.	Moreover,	the	abundance	

of	lock-key	bonds	observed	in	these	images	for	this	particular	pair	of	binders	

indicates	experimental	agreement	of	the	the	suitability	of	lock-key	pairs	with	key	to	

dimple	size	ratio	slightly	below	one	for	increasing	the	yield	of	specific	lock-key	

bonds.		

	

Binary	suspensions	in	perpendicular	AC	electric	fields		

In	Chapter	4,	we	presented	experimental	evidence	of	propulsion	of	particles	

in	binary	colloidal	systems	under	the	action	of	a	perpendicular	alternating	current	

electric	field.	We	used	carboxylate	polystyrene	particles	of	different	sizes,	and	

observed	that	large	particles	propel	while	accompanied	by	one	or	more	small	
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particles	surrounding	them.	The	reason	why	particles	propel	is	due	to	unbalanced	

electrohydrodynamic	flow,	which	arises	in	the	system	as	the	dipole	fields	of	the	

particles	perturb	the	concentration	polarization	layer	that	forms	over	the	electrodes	

in	the	system.	In	our	work,	we	observed	that	we	could	obtain	enhancements	to	the	

large	particle	diffusion	coefficient	of	up	to	fifteen	times	the	diffusion	coefficient	due	

to	Brownian	motion.	We	found	that	particle	velocities	increase	with	increasing	

applied	peak-to-peak	voltage	and	with	decreasing	oscillation	frequency.	Small-large	

particle	nearest-neighbor	analysis	enabled	us	to	determine	that	large	particles	

associated	with	two	or	three	small	particle	neighbors	has	the	fastest	short-time	

propulsion	speeds	for	three	different	peak-to-peak	voltages	at	constant	frequency	of	

oscillation.		

By	definition,	active	Brownian	particles	have	reorientation	times	given	by	the	

inverse	of	their	rotational	diffusion	coefficient.	It	would	be	interesting	to	study	the	

rotation	rates	of	the	particles	as	they	are	acted	upon	by	the	electrohydrodynamic	

flow.	Anisotropic	particles	such	as	dimpled	colloids	might	be	promising	candidates	

for	generating	more	enhanced	directed	motion	via	this	mechanism.	In	an	electric	

field,	lock	particles	align	their	dimple	perpendicularly	to	the	direction	of	the	field,	

since	this	minimizes	the	interaction	energy	between	the	field	and	the	particle’s	

dipole11.	This	could	have	an	effect	of	slowing	down	the	rotational	diffusion	of	a	lock	

particle	in	low-frequency	AC	electric	fields	like	the	ones	we	have	used	in	our	

experiments,	which	would	have	the	effect	of	increasing	the	ballistic	motion	regime	

of	the	particles	–	it	would	result	in	larger	effective	diffusivities.		
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Work	by	Ma	et	al.15	established	that	one	can	change	the	propulsion	speeds	of	

colloidal	dimers	by	changing	the	zeta	potential	of	the	particles	or	their	composition.	

Apart	from	using	carboxylated	polystyrene	particles,	we	also	made	a	suspension	

with	3-trimethoxysilyl	lock	colloids	and	sulfate	polystyrene	spheres.	On	Figure	5.3,	

we	show	an	image	of	a	suspension	of	colloidal	lock	particles	and	sulfate	polystyrene	

spheres	driven	at	a	frequency	of	1	kHz	at	a	20	V	peak	to	peak	voltage	over	a	gap	of	h	

=	250	µm.	Since	the	lock	particles	can	be	imaged	using	confocal	laser	scanning	

microscopy,	we	tracked	their	motion.	On	Figure	5.4,	we	show	the	self-part	of	the	van	

Hove	correlation	function	for	a	suspension	of	locks	and	PS	particles	that	was	driven	

at	a	peak-to-peak	voltage	of	20	V,	and	where	the	frequency	was	swept	from	10	kHz	

to	1	kHz	as	the	sample	was	imaged.	Figure	5.4	shows	exciting	dynamic	behavior:	we	

observe	that	the	self-part	of	the	van	Hove	correlation	functions	show	broad	

shoulders	uncharacteristic	of	Brownian	motion.	The	self-part	of	the	van	Hove	

correlation	function	quantifies	the	likelihood	of	given	particle	displacements	for	

fixed	lag	times.	These	results	suggests	it	may	be	fruitful	to	investigate	particle	

dynamics	in	these	systems	in	more	detail	by,	for	example,	changing	the	electrolyte	

used,	using	different	particle	combinations,	and	changing	the	amplitude	and	

frequency	of	the	applied	electric	field.	The	use	of	anisotropic	particles,	such	as	lock	

colloids,	seems	promising	too,	since	anisotropic	particles	can	exhibit	preferred	

orientational	configurations	in	electric	fields16-18,		which,	combined	with	unbalanced	

electrohydrodynamic	flow,	might	lead	to	higher	propulsion	velocities	due	to	

reduced	rotational	motion	of	the	lock	particles	in	the	field.	
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!	

In	this	dissertation,	we	have	found	that	anisotropic	lock-and-key	colloids	

may	form	specific	bonds	via	diffusion	from	bulk	or	a	surface-diffusion	mechanism	

that	allows	keys	particle	to	diffuse	to	the	lock	dimple.	We	have	also	found	that	

specific	binding	is	favored	for	lock-key	particle	combinations	where	the	key	size	is	

smaller	than	the	lock	dimple,	in	agreement	with	existing	simulation	work.	The	

research	that	we	have	done	regarding	lock-and-key	binding	may	be	extended	to	

study	the	kinetics	and	thermodynamic	behavior	other	anisotropic	particle	systems,	

such	as	Janus	particles,	where	different	binding	states	can	be	easily	identified	via	

optical	microscopy	and	particle	tracking	methods.		

We	have	also	investigated	and	characterized	active	motion	in	binary	colloidal	

suspensions	acted	upon	by	an	oscillating	perpendicular	electric	field.	To	the	best	of	

our	knowledge,	this	is	the	first	active	colloidal	particle	system	studied	where	the	

propelling	particles	are	not	modified	to	be	anisotropic	but	active	motion	is	

generated	by	the	proximity	of	two	different	isotropic	colloidal	spheres	via	

electrohydrodynamic	flow.	This	system	may	lend	itself	to	further	study	of	collective	

active	motion,	such	as	phase	separation	and	dynamic	clustering	studies.	
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Figure	5.1	Lock-and-key	colloidal	gel	prepared	at	0.1	mM	NaCl	and	1.0	g/L	PEO	(Mv	
=	600,000	g/mol)	at	a	stoichiometric	number	ratio	of	3	(three	locks	for	every	key).	
Notice	the	abundance	of	specific	bonds.	Scale	bar:	10	µm.	 	



	 159	

	

	

Figure	5.2	Self-assembly	of	lock-and-key	colloids	at	1.0	mM	NaCl	and	1.0	g/L	PEO.	
The	sample	was	titled	at	a	slight	angle	overnight	to	promote	the	densification	of	the	
system.	Scale	bar:	20	µm.	 	
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Figure	5.3	Lock	colloids	(2.4	µm	size)	and	suflate	polystyrene	spheres	(1.4	µm)	
driven	at	20	V	peak-to-peak	voltage	and	frequency	of	oscillation	of	1	kHz.	Image	is	
(127.45	µm)2.	
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Figure	5.4	Self-part	of	the	van	Hove	correlation	function	for	lock	particles	driven	at	
20	V.	For	this	data,	the	frequency	of	oscillation	of	the	field	was	swept	down	at	a	slow	
rate	of	~0.1	kHz/second	from	10	kHz	to	1	kHz.	The	self-part	of	the	van	Hove	
correlation	function	for	diffusing	locks,	for	a	lag	time	of	0.133	seconds,	is	plotted	as	
small	black	stars.	The	self-part	of	the	van	Hove	correlation	function	for	active	lock	
particles	is	shown	in	red	large	starts	for	a	lag	time	of	0.133	s,	blue	squares	for	a	lag	
time	of	0.667	s,	and	green	circles	for	a	lag	time	of	1.33	s.	
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	Appendix	
	
Appendix	A		
	

As	briefly	discussed	above,	the	bond	length	distribution,	shown	in	Fig.	2.3,	

has	two	broad	peaks	which	indicate	the	bond	length	distance	between	specifically	

and	nonspecifically	bound	lock-key	pairs.	The	broadness	of	these	peaks	can	be	

explained	by	the	polydispersity	of	the	particles	and	by	out-of-plane	Brownian	

rotation	of	particle	pairs.	Out-of-plane	rotation	of	the	particles	would	lead	to	the	

identification	of	false	positives:	nonspecifically	bound	pairs	of	particles	that	our	

code	would	identify	as	specifically	bound	(see	Figure	A.1	below).	In	such	cases,	the	

apparent	distance	between	particle	centroids	is	below	the	threshold	value	for	

specific	bonds,	and	the	bond	is	classified	as	a	specific	bond.		

The	presence	of	false	positives,	and	the	effect	that	they	have	on	the	

determination	of	kinetic	rate	constants,	was	studied	and	discussed	in	subsequent	

modeling	and	simulation	work	(see	Chapter	2,	ref.	[21]).	Due	to	the	presence	of	false	

positives,	S-F	and	S-NS	kinetic	rate	constants	include	the	influence	of	fast	events	

with	short	lifetimes,	leading	us	to	obtain	S-F	and	S-NS	kinetic	rate	constants	that	

describe	these	events	as	faster	than	what	they	occur	in	reality.	The	influence	of	false	

positives	leads	us	to	estimate	NS-S	free	energy	differences	that	indicate	a	weaker	

specific	bond	than	in	reality.		Modeling	work	that	incorporated	the	effect	of	false	



	 165	

positives	successfully	described	the	impact	such	misidentifications	have	on	the	

measurement	of	S-NS	kinetic	rate	constants	and	the	NS-S	free	energy	difference.		
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Figure	A.1	Experimental	evidence	for	false	positive	identification	
Panels	(a)	thru	(d)	show	confocal	images	of	a	correctly	identified	specifically	bound	
lock-key	pair	that	undergoes	a	transition	to	being	nonspecifically	bound.	Panels	(e)	
thru	(h)	shows	the	position	of	the	particles	on	the	previous	panels,	by	denoting	
locks	with	red	crosses	and	keys	with	green	“x”s.	Thick	purple	circles	denote	what	
the	code	has	identified	as	a	specific	bond	between	the	particles,	using	the	bond	
length	distribution	from	Figure	2.3.		In	panels	(i)	–	(l),	we	show	a	false	positive	
“specific	bond”,	as	can	be	seen	from	comparing	these	images	with	centroid	position	
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images	on	panels	(m)	thru	(p).	We	can	clearly	see	that	the	dimple	of	the	lock	particle	
is	not	occupied	by	a	key.	
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