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ABSTRACT

Three Essays on Modeling Consumer Behavior and Its OM Implications

by

Hakjin Chung

Chair: Hyun-Soo Ahn

Traditionally, models used in operations management have considered the firm

side of the problem by making simplifying assumptions on demand or market: For

instance, in many inventory models, demand is simply assumed to be an exogenous

random variable. In practice, however, consumers or agents in the market actively

make decisions or choices based on self interest. This dissertation aims to analyze

how insights and results from traditional models are affected when we account for

such active decision making by consumers or the market.

In Chapter II, we study how the customers’ decision of joining the queue to receive

a service varies by the individual incentive (selfishness) as well as the firm’s capacity

decision, which also depends on the firms selfishness. By considering three customer

types: individual, collective, and social, and two firm types: profit maximizing and

welfare maximizing, we are able to disentangle the effects of selfishness of the cus-

tomers and the firm, and the interactions between these two in equilibrium. Among

other results, we find that there can be a “benefit of selfishness” to consumers and

the system, in contrast to the price of anarchy literature. That is, customers acting in
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their individual self interest in response to a strategic firm can have a greater overall

utility compared to strategically behaving customers.

In Chapter III, we discuss the customers’ redemption behavior of loyalty points

and its impact on the seller’s pricing and inventory rationing strategy. We model

the customer choice between cash or loyalty points by characterizing consumers in

three dimensions: the amount of points in their accounts, their perceived valuation

of points, and their valuation of the product. Applying this choice model into the

seller’s dynamic pricing model, we characterize the seller’s optimal strategy that spec-

ifies the optimal cash price, the control of reward sales (black-out decision), and the

redemption points. We find that a loyalty program has non-trivial impacts on the

seller’s strategy, for instance, the seller either adds a premium or offers a discount on

price.

In Chapter IV, we study the substitution behavior of customers when their pre-

ferred product is not available, and the seller’s assortment optimization problem. Mo-

tivated by the classic exogenous demand model and the recently developed Markov

chain model, we propose a new approximation to the general customer choice model

based on random utility called rescaled multi-attempt model, in which a customer may

consider several substitutes before finally deciding to not purchase anything. The key

feature of our proposed approach is that the resulting approximate choice probability

can be explicitly written. From a practical perspective, this allows the decision maker

to use an off-the-shelf solver, or borrow existing algorithms from literature, to solve

a general assortment optimization problem with a variety of real-world constraints.
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CHAPTER I

Introduction

Consumers actively make decisions based on their self interest. Taking account

of such reactions is very important when the firm makes decisions such as capacity

investment, pricing adjustment, and product line selection. While the existing litera-

ture of operations management often relies on simplifying assumptions about demand,

it is noteworthy that properly incorporating consumers’ behavior provides more prac-

tical insights. In that vein, this dissertation aims to analyze how insights and results

from traditional models are affected, when we account for this active decision making

by consumers. Focusing on this goal, we cover a variety of the firm’s decisions, such

as optimal capacity investment in a service system, revenue management strategies,

and assortment planning.

In Chapter II, we analyze how the strategic behavior by consumers affects the

firm’s capacity decision and the system equilibrium. Some service systems have the

benefit of full coordination to maximize total social welfare. For example, highway

planners both decide on highway capacities and ration access in congested periods by

enforcing arrival thresholds at entrance ramps. Big bandwidth Internet users, such

as Netflix or Spotify, can achieve customer coordination, so customers act for their

mutual benefit, while the internet access provider maximizes its own profit. We study

how the customers’ decision of joining the queue to receive a service varies by the
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individual incentive (selfishness) as well as the firm’s capacity decision, which also

depends on the firm’s selfishness. By considering three customer types: individual,

collective, and social, and two firm types: profit maximizing and welfare maximizing,

we are able to disentangle the effects of selfishness of the customers and the firm

and to answer to the following questions: (i) how the customers decisions to join the

system vary by their selfishness, (ii) how the firm’s capacity decision of the system

varies by its selfishness, and (iii) what are the interactions between the selfishness of

customers’ and the firm’s in equilibrium. Among other results, we find that when the

firm endogenously sets the service rate, there can be a “benefit of anarchy,” rather

than the usual “price of anarchy.” That is, customers acting in their individual self

interest in response to a strategic firm can have a greater overall utility than customers

who are acting to maximize their overall utility. Similarly, the selfishness of customers

is not always socially costly (in terms of the total welfare - customer utility plus firm

profit) when the firm is a profit maximizer. We also find that for selfish customers,

higher capacity can lead to lower utility.

In Chapter III, we study a loyalty program and its impact on the seller’s pricing

and inventory rationing strategies. Loyalty programs are very popular marketing tools

used in many industries, and one of their most significant perks is to allow members

to acquire products by redeeming loyalty points (e.g., airline mileage, hotel points,

credit card reward points). The amount of goods purchased through loyalty program

is quite significant: for example, Hilton issued 4.3 million reward room nights in 2012.

In Chapter III, we examine the customers’ redemption behavior of loyalty points and

it’s impact on the seller’s strategy. In many loyalty programs, the seller (franchisee)

receives monetary compensation from the loyalty point issuer (franchisor or brand

headquarters) when consumers use points. We modeled the customer choice between

using cash or loyalty points, and incorporated this choice model into the sellers dy-

namic pricing model where the revenues from both cash sales and reimbursement for

2



reward sales are embedded in each period. We develop the first mathematical model

that characterizes the customers’ redemption behavior. Our customer choice model

allows consumers to be heterogeneous in three dimensions: the amount of points in

their accounts, their perceived valuation of points, and their valuation of the product,

and characterizes when consumers use points or cash as a function of the price and

the number of redemption points. Applying this choice model into the seller’s dy-

namic pricing model, we characterized the seller’s optimal strategy that specifies the

optimal cash price, the control of reward sales (black-out decision), and the number of

redemption points. We find that with the loyalty program affects the seller’s optimal

price either lower or higher that without, depending on whether the reimbursement

is lower or higher than the optimal price without loyalty program. We also find that,

if the seller can discretionally control the point redemption options (e.g., some sellers

can allow point redemptions only in certain periods or can dynamically change the re-

demption requirement points), the optimal strategy is to discourage the reward sales

(by blackout or increasing the required points) if the amount of inventory is relatively

smaller compared to the remaining periods.

In Chapter IV, we study the substitution behavior of customers and the seller’s as-

sortment optimization problem. When their most preferred product is not available,

customers may substitute other available products. Understanding such a substitu-

tion behavior is mathematically challenging but very important as the seller needs to

select an optimal subset of products to offer to maximize revenue. Motivated by the

classic exogenous demand model and the recently developed Markov chain model, we

propose a new approximation to the general customer choice model based on ran-

dom utility called the multi-attempt model, in which a customer may consider several

substitutes before finally deciding to not purchase anything. We show that the ap-

proximation error of the multi-attempt model decreases exponentially in the number

of attempts. However, despite its strong theoretical performance, the empirical perfor-
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mance of the multi-attempt model is not satisfactory. This motivates us to construct

a modification of the multi-attempt model called the rescaled multi-attempt model.

We show that the rescaled 2-attempt model is exact when the underlying true choice

model is Multinomial Logit (MNL); if, however, the underlying true choice model

is not MNL, we show numerically that the approximation quality of the rescaled 2-

attempt model is very close to that of the Markov chain model. The key feature of

our proposed approach is that the resulting approximate choice probability can be

explicitly written. From a practical perspective, this allows the decision maker to use

an off-the-shelf solver, or borrow existing algorithms from the literature, to solve a

general assortment optimization problem with a variety of real-world constraints.
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CHAPTER II

Effect of Strategic in a Service System

2.1 Introduction and Literature review

We examine the effect of individual incentives (selfishness) in the context of a

service system modeled as a single-server queue. Specifically, we consider a system

where customers decide to join the queue or not based on their objective, which can

range from individual utility maximization to maximization of overall customer utility

to social welfare maximization, depending on the level of selfishness. In response to

the customers’ behavior, the firm decides the rate at which customers are to be served

in order to maximize its own objective function, which can be profits (selfish objective)

or social welfare (social objective). We examine how the system-equilibrium outcome,

characterized by service rate and customer joining behavior, depends on the objectives

of the customers and the firm.

Classical economics (Mas-Colell et al. 1995) considers the trade-off between con-

sumer surplus and producer surplus in an economic exchange. Recent literature on

the price of anarchy (Roughgarden 2005 and Gilboa-Freedman et al. 2014) is concerned

with the differences in policies and outcomes when there are selfish (individually opti-

mizing) customers versus when they are coordinated. The latter research stream takes

the infrastructure as given, so does not consider the firm’s capacity or infrastructure

cost. In contrast, we combine aspects of both streams of research and model the
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firm’s infrastructure decisions and costs as well as the customers’ joining decisions,

and include the effects of having a profit maximizing firm versus having a firm whose

objective is social welfare maximization. By considering three objective functions for

the customers: individual, collective (customers as a group), and social (customers

plus firm), and two for the firm: selfish and social (customers plus firm), we are able

to disentangle the effects of both the price of anarchy and the consumer-producer

surplus trade-off. That is, we can look at the benefits of coordination or regulation

at multiple levels.

We find, surprisingly, that there can be a “Benefit of Anarchy” in contrast to the

price of anarchy (PoA) literature. The PoA is defined as the ratio of the individual

and collective utilities (the utility of individual customers when they are selfishly

trying to maximize their own utility and the utility when they are coordinated to

maximize their average utility). We find that, although the PoA must be less than 1

for a fixed service rate (i.e., customer utility must be higher when customers are not

selfish), the PoA can be greater than 1 when the firm can endogenously choose the

service rate knowing customer behavior.

Some service systems have the benefit of full coordination to maximize total social

welfare. For example, highway planners both decide on highway capacities and ration

access in congested periods by enforcing arrival thresholds at entrance ramps. Others

can achieve customer coordination, so customers act for their mutual benefit, while the

firm maximizes its own profit. For example, a big bandwidth user of the internet such

as Netflix or Spotify can coordinate the traffic it generates to optimize performance

for all its users, taking internet access capacity as fixed. Note that although our

model setup is from the perspective of customers and firms choosing actions based on

particular objective functions, social or collective customer actions can be enforced

through thresholds, without expecting individual customers to choose those actions.

There has been an extensive stream of research that analyzes customers’ strategic
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behavior in queueing systems (see the comprehensive review by Hassin and Haviv

2003). The first paper in this area is the seminal paper by Naor (1969), who studied

customers’ joining decision after observing the queue length. Naor showed that selfish

customers do not consider their negative externalities, thus resulting in suboptimal

welfare, and that levying a congestion toll can induce selfish customers to choose the

socially optimal decisions. Naor’s work has been generalized to multi-server systems

(e.g., Knudsen 1972 and Yechiali 1972), generalized arrival processes (e.g., Yechiali

1971), state-dependent pricing (e.g., Borgs et al. 2014), and variable service rate (e.g.,

Lippman and Stidham 1977).

While these papers focused on customer joining behavior and the impact of prices,

relatively few papers have studied the firm’s capacity decision and the interaction of

the capacity decision with the customers’ joining behavior. Grassmann (1979) devel-

oped a numerical method to find the welfare-maximizing service rate assuming the

customers’ behavior is given regardless of the service rate. De Vany (1976), Mendel-

son (1985), Dewan and Mendelson (1990), Stidham (1992), and Chen and Frank

(2004) studied the short-run pricing and the long-run capacity decisions together.

However, this prior work on the capacity problem has not considered state-dependent

joining decisions for the customers (i.e., customers do not observe the queue length

upon arrival). The only exception is De Vany (1976), but he did not explicitly solve

the optimization problem. While the assumption of an unobservable queue makes

the resulting mathematical model tractable by making the customers’ utility func-

tion continuous, it assumes customers (who often have bounded rationality) have the

ability to correctly estimate the long-run behavior of the system. However, in most

practical applications, customers base their decisions on the queue length at the time

they arrive, and from this they can reasonably estimate their waiting time. Here we

relax the restrictive assumption of earlier work, and study the interaction of the firm’s

capacity decision with the strategic and dynamic balking behavior of customers.
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The remainder of this chapter is organized as follows. Section 2 outlines our

queueing model. We study the customers’ problem, for a fixed service rate, in section

3, and show that the customer strategy reduces to a threshold such that customers

join if and only if the number of customers is less than the threshold. We also show

how the threshold changes in the customers’ selfishness. In section 4 we consider the

firm’s problem, given the customer type. The analysis is complicated because of the

discrete (threshold) strategy of the customers. Thus, profits and social welfare are

discontinuous functions of the service rate. We derive properties of these functions

that allow a more complete analysis as well as efficient computation. In section 5, we

put what we have learned in sections 3 and 4 together to compare the equilibrium

outcomes for different scenarios. All proofs are provided in the Appendix. Our major

findings are as follows.

• For a fixed service rate, collective customers (those who maximize their col-

lective utility, as compared with those maximizing their own individual utility

or those maximizing social welfare) are least likely to join the queue. Conse-

quently, they minimize the provider’s profits, and, of course, they maximize

overall customer utility (Proposition II.2(i)).

• For fixed and intermediate service rates (neither very large or very small),

individually selfish customers are most likely to join and they maximize the

provider’s profits and minimize their collective utility. On the other hand, for

extreme service rates, social customers are most likely to join, and they maxi-

mize provider profits and minimize customer utility (Proposition II.2(ii)).

• When customers are coordinated to maximize their average utility, a profit

maximizing firm always under-invests in capacity relative to the socially op-

timal capacity (Proposition II.11). On the other hand, when customers act

to selfishly maximize their individual utility, increasing capacity does not nec-
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essarily lead to increasing utility, and, depending on the parameters, a profit

maximizing firm may either over-invest or under-invest in capacity relative to

the social optimum. When customers are regulated to maximize social wel-

fare, again a profit maximizing firm may either over-invest or under-invest in

capacity relative to the social optimum, but now we can characterize the be-

havior in terms of price. In particular, there exists a cut-off price, below which

the profit-maximizing firm under-invests in capacity and over-invests otherwise

(Proposition II.13).

• With either a profit maximizing or social welfare maximizing firm, there may

be a “Benefit of Anarchy” rather than a “Price of Anarchy.” That is, the utility

of collective customers can be lower than when they are individually selfish (see

Section 5.2).

• For a profit-maximizing firm, there can be a “Social Benefit of Customers’ Self-

ishness.” That is, social welfare can be larger for selfish customers (who maxi-

mize their individual or collective utility) than for customers who are regulated

to maximize social welfare. So, for example, no regulation by a social planner

(selfish customers and firm) can generate higher welfare than customer-only

regulation (see Section 5.2).

• It is impossible to induce a profit-maximizing firm to choose the socially optimal

service rate through price alone, even when customers can be regulated to choose

the socially optimal threshold (Proposition II.15).

2.2 Model description

We consider a service system where a firm provides services to delay-sensitive

customers. To model this, we consider an M/M/1 queue. Without loss of generality,

we scale the Poisson arrival rate so that λ = 1. Upon arrival, a customer observes the
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number of customers in the system, the service rate, and the price. She then decides

whether or not to join the queue based on the specific objective she wants to maximize

(which will be discussed later). We assume that all customers are risk-neutral and

identical in terms of willingness-to-pay (i.e., in their benefits of receiving service) and

in their disutility for waiting. We denote by R the reward that a customer draws from

completing a service, and by p the service fee that a customer pays. If she joins the

system, the service is FIFO (First-In-First-Out) and the customer incurs a disutility

for waiting which we model as a linear holding cost, h, that is, a cost h per unit time

is incurred until she completes the service. If she leaves without being served, there

is no gain or loss, thus yielding zero utility.

We assume the firm chooses the service rate µ for the exponential service times at

time 0, and the operating cost per unit time, c(µ), is assumed to be increasing and

convex.

To measure the impact of customers’ selfishness, we consider three different types

of customers : (1) Individual customers make decisions that maximize their own

individual utility. (2) Collective customers, as in the price of anarchy literature,

make decisions that maximize the average customer utility. (3) Social customers

make decisions that maximize the social welfare, which is the sum of average customer

utility and the firm’s profit. Likewise, to measure the impact of the firm’s selfishness,

we consider a firm that can be either a profit or a social-welfare maximizer: (1) The

selfish firm chooses the service rate that maximizes its long-run average profit. (2)

The social firm chooses the service rate that maximizes the social welfare, or utility

plus profit.

In each scenario, we examine the equilibrium behavior of customers and the firm.

By comparing equilibrium behavior, utility, profit, and social welfare among different

scenarios, we analyze the effect of selfishness and answer the following questions: (i)

How do customers behave differently depending on their objective? (ii) How does

10



Individual
Customers

Collective
Customers

Social
Customers

Selfish Firm IP CP SP

Social Firm IS CS SS

Table 2.1: Scenarios based on customers’ and firm’s objectives

the service rate of a firm depend on its objective and the type of customers? (iii) Do

collective customers achieve a higher customer utility than individual customers? Do

social customers generate a higher social welfare than other customer types?

Though the SP combination of social, welfare-maximizing, customers and a selfish,

profit-maximizing, firm is unrealistic, it is interesting to note, as we show later, that

social welfare can actually be higher under the traditional IP scenario, when both par-

ties are selfish, than under the SP scenario. We also note that a social planner could

induce a social optimum (social behavior) through regulation, thresholding/metering,

and price.

2.3 The Customers’ Problem

In this section, we study how customer behavior (whether to join the queue or

not) depends on their selfishness for a given service rate.

Customers decide whether or not to join based on the number of customers in the

system when they arrive. Following Naor (1969), the joining rule can be specified as

a threshold strategy. That is, there exists a threshold n such that a customer joins

the system if and only if she observes fewer than n customers in the system upon

arrival, and otherwise leaves without being served. We will show that for each of

the customer objectives we consider, the optimal decision rule for customers can be

always characterized by a threshold, though the particular threshold value depends
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on the particular objective, as we detail below.

2.3.1 Individual Customers

If customers are individually selfish, each arriving customer makes her decision

based on maximizing her own utility. For a given service rate, µ, the expected utility

that an arriving customer can draw when she joins the system with i customers is

given by

U(i) = R− p− hi+ 1

µ
. (2.1)

Since the alternative, not joining, gives her zero utility, the individual customer joins

the system as long as her expected utility is non-negative. To avoid any ambiguity,

we assume that the customer joins the queue if she is indifferent. Then, individual

customers join the queue if and only if the number of customers present is less than

the individual threshold, nI(µ), which is given by

nI(µ) = max

{
n ∈ N0

∣∣∣ R− p− h(n− 1) + 1

µ
≥ 0

}
= bbµc , (2.2)

where b = R−p
h

and b·c indicates the largest integer not exceeding the value inside the

bracket.

2.3.2 Collective Customers

In the case of collective customers, a customer not only optimizes her own utility

but also the utility of the other customers. That is, all customers follow the same

decision rule that maximizes the average utility of customers. In our model, the

average customer utility depends on how many customers receive service and how

long they wait. Given the fact that the individual utility from service, given in (2.1),

decreases in the queue length, it can be shown that collective customers always join

the queue with i customers if joining the queue with i+1 is optimal, i.e., the collective
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customers’ optimal pure strategy is also characterized by a threshold.

When the threshold is n, the resulting system is an M/M/1/n queue in which the

maximum number of customers in the system is bounded by n. Then the average

customers’ utility is :

U
(
µ, n

)
= (R− p)λe

(
µ, n

)
− hL

(
µ, n

)
. (2.3)

where λe(µ, n) = 1 − µ−1
µn+1−1

is the effective arrival rate (for those who join), and

L(µ, n) = 1
µ−1
− n+1

µn+1−1
is the average number of customers in the system, L(µ, n).

Then, the optimal threshold for collective customers (which we call the collective

threshold), nC(µ), is the one that maximizes U(µ, n). We can use known results from

Naor (1969) to find the collective threshold. Letting b = R−p
h

, we have

nC(µ) = arg max
n

{
bλe
(
µ, n

)
−L
(
µ, n

)}
= max

{
n ∈ N0

∣∣∣ nµn+1 − (n+ 1)µn + 1

µn(µ− 1)2
≤ b

}
(2.4)

Notice that both the effective arrival rate and the average number of customers

in the system are increasing in the threshold. That is, a larger threshold means more

customers receive service (increasing the total benefit of service) and more customers

in the system on average (increasing the waiting cost). Hence, the collective threshold,

nC(µ) which maximizes average customer utility, balances the trade-off between the

throughput and the waiting cost.

2.3.3 Social Customers

Social customers make their decision to maximize the social welfare, which is the

sum of the firm’s profit and the average customer utility. Note that the operating

cost of the firm is given, thus, independent from customers’ decisions. Thus, social

customers account for the firm’s revenue in addition to the customer utility. In

other words, if the price is zero, the objectives of social and collective customers are
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identical. From this fact, we derive the optimal threshold for social customers (which

we call the social threshold), which is the same as the collective threshold with p = 0,

i.e., with b0 = R
h

instead of b.

nS(µ) = max

{
n ∈ N0

∣∣∣ nµn+1 − (n+ 1)µn + 1

µn(µ− 1)2
≤ b0

}
. (2.5)

2.3.4 Threshold Analysis

The following result summarizes how the thresholds depend on µ.

Lemma II.1. For all customer types, the optimal policies are characterized by thresh-

olds, which are increasing in the service rate. That is, for customer type α, α ∈

{I, C, S}, the threshold changes from n− 1 to n at µ = µα(n) for n ∈ N:

µI(n) = min
{
µ | nI(µ) = n

}
=
n

b
, (2.6)

µC(n) = min
{
µ | nC(µ) = n

}
=

{
µ > 0

∣∣∣ nµn+1 − (n+ 1)µn + 1

µn(µ− 1)2
= b

}
, (2.7)

µS(n) = min
{
µ | nS(µ) = n

}
=

{
µ > 0

∣∣∣ nµn+1 − (n+ 1)µn + 1

µn(µ− 1)2
= b0

}
, (2.8)

and µα(n) is increasing in n.

The intuition behind this lemma is straightforward. The faster the service is, the

more utility a customer receives from completing service with the same number of

customers upon her arrival to the queue. Thus, for individual and collective cus-

tomers, if it is optimal to join the queue of length i at rate µ, then it is optimal to

join the queue of length i at rate µ′ > µ. Compared to collective customers, social

customers additionally consider the firm’s revenue, and therefore put more weight on

the throughput than the collective customers, and again, if they join at rate µ, they

will also join at rate µ′ > µ. For values of µ between the threshold-change points

characterized above, the threshold will remain constant: nα(µ) = n for α ∈ {I, C, S}

and for any µ ∈
[
µα(n), µα(n+ 1)

)
(which we call a threshold interval).
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The next question is how the thresholds compare across the three customer types.

Proposition II.2 tells us that, at the same service rate, collective customers are least

likely to join the queue. For intermediate service rates (neither very large nor very

small), individual customers are most likely to join, while for extreme service rates,

social customers are most likely to join.

Proposition II.2. For given service rate µ,

(i) the collective threshold is the smallest, i.e., nC(µ) ≤ nI(µ) and nC(µ) ≤ nS(µ) for

any µ > 0.

(ii) there exist µL and µH such that nI(µ) ≥ nS(µ) if µL ≤ µ ≤ µH , otherwise,

nI(µ) ≤ nS(µ).

(iii) as the price increases, the individual and collective thresholds decrease while the

social threshold remains the same. i.e., µI(n) and µC(n) increase in p while µS(n)

does not change.

Figure 2.1: Threshold as a function of service rate at two different prices (p): 4 (left)
and 6 (right) when λ = 1, R = 10 and h = 0.5.
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Proposition II.2 (i) states that for the same service rate, collective customers in-

crease their average utility by not joining the queue when the other types of customers

join. Social customers are more likely to join than collective customers because they

include the revenue for joining in their objective function, and individual customers
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are also more likely to join than collective customers because they do not consider

the negative externality that their joining imposes on other customers.

Proposition II.2 (ii) shows that, depending on µ, social customers can improve

social welfare by either joining more or less than individual customers depending on

which of the two – increasing revenue or decreasing negative externalities – improves

the welfare the most. When the service rate is very low, i.e., µ < µL, the individual

threshold is also very small, thus most individual customers do not receive service.

In this case, the negative externality caused by an entering customer is small relative

to the revenue it brings. When the service rate is very high, µ > µH , the negative

externality is again small because very fast service reduces the marginal impact of

an extra customer on future customers. Hence, for extreme service rates the revenue

benefit dominates the negative externalities, and the social threshold is higher than

the individual threshold. On the other hand, for intermediate values of µ, µL ≤ µ ≤

µH , the negative externality is relatively higher than the boost in revenue. Thus, the

social threshold is lower than the individual threshold.

Proposition II.2 (iii) further shows the effect of the service fee, p. First, the social

threshold is independent of p, which is just a payment between the customers and

the firm. However, individual and collective customers do not consider the firm’s

revenue, thus, with a higher price they are less likely to join. As a result, the range

of µ where the individual threshold is higher than the social threshold shrinks as p

increases (see Figure 2.1). If the price is sufficiently high, the individual threshold

is always less than the social threshold. If the price is set to be zero, we know that

social and collective customers are identical, and the individual threshold is higher

than the social threshold.

Given the threshold properties from Proposition II.2, the profit, the customer

utility, and the social welfare can be shown to have the following properties. To

simplify the notation, in the following corollary we will omit µ (e.g., nI for nI(µ) and
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Π(nI) for Π(µ, nI(µ)), where Π represents the firm’s profit function).

Corollary II.3. For given service rate,

(i) Π(n) is increasing in n.

(ii) U(n) is increasing in n for n < nC and decreasing in n for n ≥ nC.

(iii) if the service rate is low or high, i.e., µ < µL or µ > µH ,

W(nC) ≤ W(nI) ≤ W(nS).

(iv) if the service rate is intermediate, i.e., µL ≤ µ ≤ µH ,

W(nC) ≤ W(nS) and W(nI) ≤ W(nS).

First, the firm’s profit is increasing in the effective arrival rate and therefore in

the threshold. From Proposition II.2, the collective customers are least likely to join

so they minimize profits among the three types.

Second, customer utility is decreasing in the threshold given that it is higher than

the collective threshold. The collective threshold maximizes customer utility, which

is discretely unimodal in the threshold. As more customers join the queue compared

to collective customers, the excessive waiting cost diminishes the average customer

utility.

As expected, the social welfare is greatest with social customers. But, interest-

ingly, the social welfare with collective customers can be lower than that with indi-

vidual customers. When this happens, the collective customers’ effort to increase the

average utility is dominated by the decrease in the firm’s revenue (since they increase

the average utility by not joining).

2.4 The Firm’s Problem

We now consider the firm’s problem. Knowing the customers’ behavior for each

service rate as given in Section 3, the firm chooses the service rate to optimize its

objective. We start with the selfish firm that chooses the service rate to maximize
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its own profit.

2.4.1 The Profit-Maximizing Firm

From the fact that the optimal strategy of customers is always characterized by a

threshold, the firm’s average profit when the service rate is µ is given by

Π
(
µ, nα(µ)

)
= pλe

(
µ, nα(µ)

)
− c(µ) for α ∈ {I, C, S}.

Since the effective arrival rate, λe(µ, n
α(µ)), is increasing in µ, both the revenue

and the operating cost increase in µ. Thus, the optimal service rate should balance

the trade-off between the revenue and the operating cost. However, as the customer

threshold is a step function in µ (Lemma II.1), the profit function is not smooth in µ

as illustrated in Figure 2.2.

Lemma II.4. For each customer type α ∈ {I, C, S}, the following properties hold for

the firm’s profit function.

(i) Π
(
µ, nα(µ)

)
is strictly concave in µ for µ within each threshold interval where the

threshold remains the same, i.e., µ ∈
[
µα(n), for µα(n+ 1)

)
, for all n.

(ii) Π
(
µ, nα(µ)

)
is discontinuous and jumps upward at µα(n) for n ∈ N, i.e.,

limε→0+ Π
(
µα(n)− ε, n− 1

)
< Π

(
µα(n), n

)
.

At µα(n), the profit function jumps upwards because the effective arrival rate

increases when a threshold changes from n − 1 to n. This discontinuity complicates

the analysis of the capacity problem, which is in contrast to the price problem for prior

literature. In the price-setting problem (Figure 2.3), the profit is also discontinuous

in p, that is, as price increases, the customers’ threshold decreases and consequently

the revenue decreases. However, for values of p inducing the same threshold, the

profit function is increasing in p, thus, the profit-maximizing p for given threshold

n is always located at the right-end point. Given that only the right-end points of
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Figure 2.2: Profit as a function of µ
when p = 5, λ = 1, R = 10, h = 1,
and c(µ) = 2µ3.
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Figure 2.3: Profit as a function of p
when µ = 0.6, λ = 1, R = 10, h = 1,
and c(µ) = 2µ3.
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each interval need to be considered, the pricing problem can be transformed into

the threshold problem, i.e., what threshold the seller needs to induce in order to

maximize the profit. On the other hand, in the capacity problem (Figure 2.2), the

profit is not monotone within each interval and the optimal µ within this interval

can be either the left-end point or an interior point. Thus, in order to solve for the

profit-maximizing service rate, one may need to exhaustively search for the optimal

µ’s for each threshold interval and then compare them.

Instead, we solve the problem more efficiently by utilizing the upper envelope

function. For this, we first relax the constraint that the thresholds be integers and

define relaxed thresholds as follows:

ñI(µ) = bµ, (2.9)

ñC(µ) =

{
n
∣∣∣ nµn+1 − (n+ 1)µn + 1

µn(µ− 1)2
= b

}
, and (2.10)

ñS(µ) =

{
n
∣∣∣ nµn+1 − (n+ 1)µn + 1

µn(µ− 1)2
= b0

}
. (2.11)

The profit function with the relaxed threshold (which we call the relaxed profit func-
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tion), Π(µ, ñα(µ)), is given by

Π
(
µ, ñα(µ)

)
= p

(
1− µ− 1

µñα(µ)+1 − 1

)
− c(µ),

for α ∈ {I, C, S}. The relaxed profit function is amenable to analysis and we will

use it to find the true optimal service rate more efficiently. The following proposition

gives its properties and an efficient means of determining the optimal service rate.

Figure 2.4: The original (solid line) and the relaxed (dashed line) profit functions
when λ = 1, R = 10, p = 6, h = 1, and c(µ) = 2µ3.
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Lemma II.5. For each customer type α ∈ {I, C, S},

(i) Π
(
µ, ñα(µ)

)
, is differentiable and is an upper envelope of the profit function, that

is, Π
(
µ, ñα(µ)

)
≥ Π

(
µ, nα(µ)

)
, where equality holds if and only if µ = µα(n) for all

n.

(ii) The optimal service rate, µαP , exists in an interval that contains a maximizer of

the relaxed profit function, i.e., µαP ∈
[
µα(nα0 ), µα(nα0 + 1)

]
for nα0 = nα(µ̃) where µ̃

satisfies the first order condition of Π(µ, ñα(µ)).

By using the relaxed profit function, we can specify intervals that contain the

profit-maximizing service rate through first order analysis. Then, Lemma II.5 (ii)
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implies that we only need to search the intervals,
[
µα(nα0 ), µα(nα0 + 1)

]
, that contain

stationary points of the envelope function. For each stationary point, the correspond-

ing interval can be divided into two parts: the interval
[
µα(nα0 ), µα(nα0 + 1)

)
in which

the threshold is nα0 and the end point of µα(nα0 + 1) with threshold nα0 + 1. For the

first sub-interval, the original profit function is concave, thus again we can find the

maximum by first order analysis.

• Individual Customers (System IP)

When customers are individually selfish, the relaxed profit function has the following

property.

Lemma II.6. If customers are individually selfish and the following sufficient condi-

tion is satisfied,

c

(
2

b

)
− c

(
1

b

)
≤ 4bp

(b+ 2)(b2 + 2b+ 4)
, (2.12)

then nIP > 1 and the envelope function has a unique optimal solution which is con-

tained in the interval that contains the optimal service rate for the original problem.

From Lemma II.6, we need to search only one interval, identified by the envelope

method, if condition (2.12) holds. This is because the relaxed profit function is

concave for values of µ such that the induced threshold is greater than 1, and the

condition (2.12) implies that the operating cost is small enough relative to the revenue

to yield an equilibrium threshold that is greater than 1, nIP > 1.

The violation of condition (2.12) implies that the equilibrium threshold can be 1,

which is a trivial case where no customer will join the system if a server is busy. Even

when condition (2.12) is not satisfied, the envelope method is still efficient because

the relaxed profit function is still unimodal for µ ≥ 2
b
. In this case, we need to search

at most two intervals, [1
b
, 2
b
] and [

nα0
b
,
nα0 +1

b
], for the maximizer of the relaxed profit
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function.

• Collective or Social Customers (System CP and SP)

When customers are collective or social, the concavity of the relaxed profit function

cannot be shown analytically. One difficulty comes from the fact that a closed form

for the threshold does not exist (see (2.10) and (2.11)) and we are not able to explicitly

write the firm’s profit as a function of µ. Second, the collective and social thresholds

follow a convex pattern (see Figure 2.1), which, in turn, can make the relaxed profit

function convex. Therefore, analytically there may exist multiple stationary points of

the relaxed profit function, so, in principle, we need to examine multiple intervals to

find the profit-maximizer. However, in most of our numerical experiments, the profit

is unimodal.

2.4.2 The Social Firm

We now consider the optimal service rate of a social firm, e.g., a government

agency, that wants to maximize social welfare. The social welfare per unit time is

given by

W
(
µ, nα(µ)

)
= Rλe

(
µ, nα(µ)

)
− hL

(
µ, nα(µ)

)
− c(µ) for α ∈ {I, C, S}.

Now, in addition to the discontinuous effective arrival rate that we had in the

profit function, we also have a discontinuous waiting cost, making the analysis even

more difficult. The following lemma first characterizes the welfare function within

each threshold interval (where the threshold remains the same).

Lemma II.7. For all customer types, α ∈ {I, C, S},

(i) W
(
µ, nα(µ)

)
is differentiable in µ within each threshold interval, and its slope is

strictly greater than the slope of the profit function.
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Figure 2.5: Social welfare as a function of the service rate when λ = 1, R = 10,
h = 0.5, p = 5, and c(µ) = 2µ2.
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(ii) For µ > 1, W
(
µ, nα(µ)

)
is concave in µ for µ within each threshold interval.

The first differentiability property is immediate from the differentiability of the

effective arrival rate and the average number of customers for a fixed threshold. As

long as the threshold remains the same, customer utility, U(µ, n), can be shown to

be increasing in µ since fast service reduces congestion and, hence, waiting costs.

Because the social welfare is the sum of profit and customer utility, this implies that

the welfare increases faster in µ than the profit for any given threshold.

The second concavity result follows from the fact that the average number of

customers in the system is convex in the service rate µ if the service rate is larger

than the arrival rate (λ = 1). However, when the service rate is below λ = 1, the

average number of customers can be concave in µ. This, in turn, implies that the

welfare function within a threshold interval is not necessarily concave if µ < 1. This

makes the determination of the optimal service rate difficult.

We now explore how the welfare function (and the optimal service rate) depends

on the customer type.
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• Individual Customers (System IS)

From Lemma II.1, the threshold for individual customers increases by 1 in µ at

multiples of 1
b
. When the threshold increases, revenue increases but waiting cost also

increases, so social welfare may jump either upwards or downwards. The following

lemma characterizes the welfare function with individual customers.

Lemma II.8. The social welfare with individual customers, W
(
µ, nI(µ)

)
, is discon-

tinuous in µ at the points where the individual threshold changes, i.e., µ = µI(n)

for n ∈ N. Furthermore, there exist µL and µH , such that if µ is low or high

(µ < µL or µ > µH), the welfare jumps upward when the threshold increases, i.e.,

limε→0+W
(
µI(n)− ε, n− 1

)
≤ W

(
µI(n), n

)
. If µ is moderate (µL ≤ µ ≤ µH), the

welfare jumps downwards, i.e., limε→0+W
(
µI(n)− ε, n− 1

)
≥ W

(
µI(n), n

)
.

To see the intuition, recall from Proposition II.2 that nI(µ) ≤ nS(µ) if the service

rate is either low or high. This implies that if the individual threshold increases (and

gets closer to the social threshold), the welfare can be improved. On the other hand,

for a moderate value of service rate, when nI(µ) ≥ nS(µ), the negative externality is

significant in the individual customers’ case. If the threshold increases, the negative

externality increases, decreasing social welfare.

Due to the irregular discontinuities, we need to derive all the local maxima for

each interval,
[
µI(n), µI(n+ 1)

)
for n ∈ N, and compare them to find the socially

optimal service rate. Note that the social welfare is negative if c(µ) > R, so we need

only consider µ < µ0 where µ0 is such that c(µ0) = R. Then, we need to find the

best service rate within each threshold interval. After comparing all the best service

rates within each interval, we determine the optimal service rate of a social firm with

individual customers.

• Collective Customers (System CS)

The social welfare function with collective customers has the following properties.
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Lemma II.9. The welfare with collective customers, W
(
µ, nC(µ)

)
, is discontinuous

in µ at the points where the collective threshold changes, i.e., µ = µC(n) for n ∈

N. Furthermore, the welfare jumps upward, i.e., limε→0+W
(
µC(n)− ε, n− 1

)
<

W
(
µC(n), n

)
.

We only have upward jumps in social welfare because the collective customers’

utility is continuous while the profit jumps upward at the points where increasing µ

increases the threshold (and hence the effective arrival rate). As in the individual

customers’ case, we can derive the socially optimal service rate by comparing the

local maxima for all of the threshold intervals.

• Social Customers (System SS)

The social welfare, when both customers and firm are coordinated to maximize the

welfare together, has the following properties.

Lemma II.10. The social welfare function with social customers W
(
µ, nS(µ)

)
is

continuous but not differentiable at the points where the social threshold changes, i.e.,

µ = µS(n) for n ∈ N.

Since the social customers change their threshold if and only if it improves the

social welfare, the social welfare function is continuous even for the points at which

the threshold changes. In particular, if it were discontinuous, say W(µ, nS(µ)) <

W(µ+ ε, nS(µ) + 1) for small enough ε, the social welfare at µ could be improved by

customers choosing nS(µ) + 1 instead of nS(µ), which contradicts the fact that nS(µ)

is socially optimal at µ.

Now we can efficiently search for the socially optimal service rate when customers

are also social. Since both the firm and customers maximize the same objective, we
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can exchange the order of optimizations as follows,

max
µ
W
(
µ, nS(µ)

)
= max

µ
max
n
W
(
µ, n

)
= max

n
max
µ
W
(
µ, n

)
. (2.13)

This property can be used to find an optimal service rate more efficiently, as we

do not need to find the boundaries of each threshold interval. First, for each n, we

find the welfare maximizer over the entire domains given n fixed. Since the welfare

function with n fixed is differentiable, it can be found by first- and second-order anal-

ysis. Second, by comparing the optimal welfare for each n, we can determine which

service rate is the welfare maximizer.

2.5 Analysis

In this section, we study how the equilibrium outcomes change depending on the

objectives of the firm and the customers. In particular, we compare the equilibrium

service rate and threshold, and examine how the welfare changes as the firm and

customers become selfish. We call this the social effect (cost) of selfishness as selfish

behavior lowers welfare compared to the all social case (system SS). We also study

the effects of selfishness on the profit and the utility components of social welfare.

2.5.1 On the Firm’s Selfishness

We first compare the equilibrium outcomes under a profit-maximizing and a social

firm for given customer type. This will help us understand the efficiency loss when

public service becomes privatized (i.e., service by a government agency vs. service by

a private firm).

• Collective Customers (System CP vs. CS)

We start with the easiest case, which is when customers are coordinated to maximize
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their joint utility, i.e., they are collective customers. From the fact that the social firm

generates a higher welfare while the selfish firm earns a higher profit, we know that

customer utility is always higher with the social firm, i.e., the social firm generates

greater welfare by enhancing customer utility compared to the selfish firm. The

following proposition shows how the social firm’s service rate differs from the selfish

firm’s.

Proposition II.11. With collective customers, the social firm’s service rate is at

least as large as the selfish firm’s, i.e., µCP ≤ µCS. As a consequence, the equilibrium

threshold with the social firm is also at least as large as with the selfish firm, nCP ≤

nCS, and hence, more customers are served by the social firm.

When customers maximize their joint utility, they always achieve a higher utility

when they are served faster. That is, the collective customers’ utility is strictly in-

creasing in service rate. This implies that the social firm sets a higher service rate

than the selfish firm, and the equilibrium threshold is also higher. In other words, the

efficiency loss (in terms of a lower welfare) from privatization arises from the selfish

firm’s underinvestment in capacity.

• Individual Customers (System IP vs. IS)

Now suppose customers are selfish, i.e., they maximize their individual utility. As

with collective customers, one might expect the social firm to set a higher service rate

than the selfish firm because it considers average customer utility. However, we find

that this is not always the case.

Proposition II.12. With individual customers, we can have µIP > µIS or µIP < µIS,

depending on the parameters.

To gain some intuition as to why the social firm might choose a smaller capacity

than the selfish firm, first note that, in contrast to collective customers (Proposition
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Figure 2.6: The service rate choice depending on the firm’s objective function and
the type of customers. With collective customers (left), the customer utility increases
in µ and the social firm always chooses a higher service rate than the selfish firm.
However, the individual customer utility is not monotone and in this example, the
social firm chooses a lower service rate than the selfish firm. The parameters in both
figures are: R = 10; p = 6; h = 1; c(µ) = 4.5µ4.
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(b) Individual Customers and µIS < µIP 
  

II.11), individual customers are not necessarily better off with a higher service rate

(a higher threshold), because of their negative externalities. That is, customer utility

increases in service rate only within the threshold interval of service rate. Combining

this with the fact that the profit might be increasing or decreasing even within the

interval, the selfish firm may want to induce a higher threshold (and more revenue)

by increasing µ beyond the interval, whereas the social firm may not because of the

increased negative externalities and decreased customer utility. Figure 2.6 shows an

example where the social firm sets a lower service rate so that the individual threshold

is smaller, alleviating excess congestion. Note that the individual customers’ utility

decreases when the threshold increases.

• Social Customers (System SP vs. SS)

Lastly, we consider social customers, i.e., those that are regulated by the social planner

to maximize welfare. As with individual customers, the utility of social customers

decreases when their regulated threshold increases with a higher service rate because
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their objective function includes the firm’s revenues, so negative externalities for the

customers are compensated for by increased profits for the firm. Thus, we can have

µSP > µSS or µSP < µSS depending on the parameters, as with individual customers

(Proposition II.12). However, with social customers we are able to give a complete

characterization of their behavior as a function of price, as follows.

Proposition II.13. With social customers, the selfish firm’s service rate is an in-

creasing function of price, while the welfare-maximizing service rate (µSS) is con-

stant. Hence, there exists a cut-off price (denoted by p̄SP ), such that µSP ≥ µSS and

nSP ≥ nSS if and only if p > p̄SP .

Figure 2.7: Comparison of the profit-maximizing and the welfare-maximizing service
rates when customers are social at two different prices (p) : 5 (left) and 9 (right).
The other parameters in both figures are: R = 10; h = 1; c(µ) = 2µ4. Note that the
profit can be higher than welfare because social customers’ utility can be negative.
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Proposition II.13 implies that the selfish firm sets a higher service rate than the

social firm only when the price is high. First, note that µSS and nSS do not depend

on the price because price is just a transfer cost between customers and the firm,

and is not included in social welfare. On the other hand, a high price (thus a high

margin) implies that the selfish firm can collect high revenue, which encourages the

selfish firm to invest in capacity to increase the effective arrival rate. When price is

low (p < p̄SP ), the selfish firm under-invests compared to the socially optimal level

29



(i.e., µSP < µSS), because the operating cost is relatively higher than the potential

revenue.

2.5.2 On Customers’ Selfishness and the Price of Anarchy

We now compare the equilibrium outcomes among individual, collective, and social

customers holding the firm type fixed. This will help us understand the effect of

customers’ selfishness (or, equivalently, of customer coordination to maximize their

utility or their regulation to maximize welfare) on their utility and overall welfare.

In contrast to the firm’s selfishness, customers in our model choose their threshold

depending on the service rate chosen by the firm. This means that the effects of

customer type on their utility and welfare depend on how the firm sets its service

rate for each customer type. We found that the interaction is complicated, and there

is no general comparative rule, except for the trivial observation that for the social

firm, social welfare is largest when customers are also social. However, we found some

surprising behavior in some circumstances.

First, the utility of collective customers can be the lowest among all customer

types. Because collective customers are the least likely to join, the (selfish or social)

firm may set a significantly lower service rate compared to that for the other customer

types and this can cause the collective customers’ utility to be lower than for other

customer types. This is in contrast to the PoA literature (Roughgarden 2005, Haviv

and Roughgarden 2007, and Gilboa-Freedman et al. 2014). PoA is defined as the

ratio of selfish customer utility to collective customer utility, i.e., U(µ,nI(µ))
U(µ,nC(µ))

. Without

considering the server’s decision (i.e., µ is given), PoA must be less than 1. However,

our model incorporates the server’s decision, and in this case, PoA can be greater

than 1. See Figure 2.8 for an example where the selfish firm under-serves customers

and PoA is 1.8169. Summarizing, we can have a “Benefit of Anarchy” rather than

a “Price of Anarchy” when the server under-invests in capacity in response to the
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Figure 2.8: Benefit of Anarchy when R = 10, h = 1, p = 5.2, and c(µ) = 3µ:
The selfish firm sets a lower service rate for collective customers than for individual
customers (µCP = 0.72 and µIP = 1.05). Consequently, the utility of collective
customers is lower than the utility of individual customers (UCP = 0.71 and U IP =
1.29), that is, the PoA = 1.29

0.71
= 1.8169, so individual customers have an 80% higher

utility relative to collective customers.
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demand coordination.

Second, the welfare with social customers can be lower than with the other cus-

tomer types when the firm is selfish. This implies that the social planner, who wants

to maximize social welfare, can be worse off using demand-only regulation (by enforc-

ing thresholds) compared to no regulation at all. Of course, the full coordination of

both demand and supply generates the first-best welfare of the system, i.e., WSS is

the maximum possible welfare. And as we observed in Section 5.1, supply regulation

(i.e., the social firm) allows the system to achieve higher welfare, i.e.,WαS ≥ WαP for

α ∈ {I, C, P}. However, demand-only regulation means that social customers may

be more likely to join in order to enhance the firm’s revenue (thus, improving social

welfare) for any given service rate. The selfish firm can take advantage of this behav-

ior and set a lower service rate. Thus, we can have a “Social Benefit of Customers’

Selfishness” when the firm is also selfish.
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Figure 2.9: Social Benefit of Customer Selfishness with a selfish firm when R = 10,
h = 1, p = 6.5, and c(µ) = 3µ2. The selfish firm sets a lower service rate for social
customers than for individual customers (µIP = 0.75 and µSP = 0.86). As a result,
the equilibrium welfare is even lower when customers are social than when selfish
(WIP = 3.01 and WSP = 2.80).
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2.5.3 Price As a Tool to Achieve the Social Optimum

Of course if either the customers’ threshold or the firm’s service rate is not reg-

ulated to maximize social welfare, the system generates a sub-optimal equilibrium.

This social cost of selfish behavior arises because the selfish agent (customers or the

firm) maximizes a partial objective (utility or profit). Because the price is a transfer

cost between customers and the firm, it only affects these partial objectives, not the

overall welfare. Thus, choosing a proper price (which until now has been assumed to

be exogeneously given in our model) may compensate for selfishness.

• Selfish Customers

First consider the system in which a social planner can regulate the firm, but can

only affect customer behavior through the price (i.e., individual/collective customers

with the social firm). Then, if customers choose the socially optimal threshold given

service rate µSS, the equilibrium outcome will be the same as the first-best outcome.
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The following proposition shows that there exist intervals for the price such that the

first-best outcomes can be obtained with selfish customers.

Proposition II.14. With the social firm, there exists a price range such that the

equilibrium outcome with (individually or collectively) selfish customers equals the

first-best equilibrium outcome:

(i) For collective customers, there exists a cut-off price p̄CS such that for p ≤ p̄CS,

µCS = µSS, nCS = nSS, and WCS = WSS. Furthermore, the equilibrium welfare

decreases in price for p > p̄CS.

(ii) For individual customers, there exists an interval (p̄ISL , p̄
IS
H ) such that for p ∈

(p̄ISL , p̄
IS
H ), µIS = µSS, nIS = nSS, and WIS =WSS.

Figure 2.10: Equilibrium Welfare as a function of price when R = 10, h = 1, c(µ) =
2µ4. To achieve the first-best equilibrium, the price should be less than p̄CS = 2.83 for
collective customers, and between p̄ISL = 5.56 and p̄ISH = 6.66 for individual customers.
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Proposition II.14 (i) implies that a social planner, who controls the firm’s service

rate, can achieve the first-best outcomes with collective customers only if the price

is sufficiently low. Collective customers consider the overall customer utility, but act

without considering the firm’s revenue. However, recall from Section 3 that for a

fixed service rate, the social threshold is the special case of the collective threshold
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when p = 0. That is, if the service rate is fixed at µSS, nC(µSS) = nS(µSS) when

p = 0. Since the threshold is an integer, the price can be increased from 0, holding

µSS fixed, without affecting social welfare as long as the threshold doesn’t increase

from nS(µSS), giving an upper bound on price, p ≤ p̄CS. If the price is so high

as to decrease the effective arrival rate at µSS, the service rate has to be adjusted

(either upwards to increase the threshold or downwards to save on operating cost),

resulting in suboptimal welfare. Since the collective threshold is always lower than the

social threshold, increasing the price only makes the gap larger, thus, the resultant

equilibrium welfare decreases in price.

Proposition II.14 (ii) shows that there exists a congestion toll (first suggested by

Naor, 1969) that induces the socially optimal threshold even with individually selfish

customers. The price must be high enough to make them behave as if they considered

their negative externality. On the other hand, as with collective customers, it should

not be so high as to decrease the effective arrival rate above the socially optimal level.

• Selfish Firm

Now suppose that a social planner can only regulate the customers’ behavior while

the firm is selfish. In particular, suppose the social planner can set the threshold to

nS(µ) for any µ, and tries to set the price to induce a selfish firm to choose the socially

optimal service rate, µSS. From Proposition II.13, we observed that the selfish firm’s

service rate increases in price when customers are social. This is because increasing

the price increases the slope of the profit function, while the welfare function (its

slope and threshold intervals) does not change in price. So, one might expect that

there exists a price such that µSP = µSS. However, this is not the case. For any given

threshold interval (where the social threshold remains the same), the welfare function

is strictly steeper than the profit function in µ because the difference (customer utility)

is strictly increasing in µ for any given n (see Lemma II.7 (i)). Therefore, the first-

order conditions for µSP and µSS are always different, and the service rates that
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maximize welfare and profit must be different. Thus we have the following.

Proposition II.15. A social planner cannot regulate the selfish firm through price.

2.6 Conclusion

We consider a queueing system in which a firm sets the service rate and each

customer decides whether to join or not depending on the expected waiting cost. We

particularly study how the performance (i.e., customer utility, firm profit, and overall

social welfare) depends on the selfishness in the objectives that customers and the

firm use to make decisions.

(i) For a given service rate, collective customers are least likely to join, and have

lower waiting cost. (ii) In addition, individually selfish customers maximize the

provider’s profits and minimize their collective utility when service rate is moderate

(neither very large nor very small). On the other hand, for extreme service rates,

social customers maximize profit and minimize customer utility. (iii) We also show

that, as long as the threshold remains the same, the social firm always provides service

at a higher level than the selfish firm. These results are intuitive as we focus on either

the customers’ decision or the firm’s decision by fixing the action of the counter-party.

However, when the interplay between the customers and the firm is considered

(i.e., choosing the best response), the equilibrium outcome exhibits complicated and

counter-intuitive behavior.

(i) Benefit of Anarchy : In contrast to the case with a fixed service rate in which

individual customers always draw lower utility than collective customers (“Price of

Anarchy”), the utility of collective customers can be lower than that of selfish cus-

tomers when either a selfish firm or a social firm chooses the service rate. This

happens particularly when the (selfish or social) firm sets a lower service rate for
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collective customers because of their lower joining rate.

(ii) Social Benefit of Customers’ Selfishness : We also find that either individual or

collective customers can generate greater overall social welfare than social customers

when the firm sets the service rate to maximize its profit.

(iii) Social Benefit of Lower Capacity : When the firm chooses the service rate, it

changes the threshold and effective arrival rate. Thus, the result that the social firm

provides a higher service rate is no longer true when there is an interplay between

customers and the firm. In fact, when customers are either individual or social,

customer utility decreases whenever the threshold increases as a response to a higher

service rate. We find that the social firm can choose a lower service rate than the

selfish firm and increase utility by reducing congestion.

(iv) Price control is insufficient to regulate the system: In the queueing literature,

it is well known that a price (i.e., a congestion toll) is a mechanism that induces

otherwise selfish customers to behave in a socially efficient way (Naor 1969). We

show that, in contrast, it is impossible to induce a profit-maximizing firm to choose

the socially optimal service rate through price alone, even when customers can be

regulated to choose the socially optimal threshold.
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CHAPTER III

Dynamic Pricing and Loyalty Programs

3.1 Introduction

Loyalty or reward programs are widely used in a number of industries including

hospitality, financial service, transportation, and retailing. Many loyalty programs

offer points (e.g. Delta’s Skymiles, Hilton’s HHonor points, and Member’s reward

points by American express) to consumers for their purchases of products or services,

which can be later redeemed to buy perks, products, or services. Therefore, loyalty

points are considered as an alternative form of currency. The option of purchas-

ing with points has significant impacts both on consumers’ purchase behavior and

the seller’s revenue. Indeed, both membership size and activities of many loyalty pro-

grams are astronomical. Between 2000 and 2014, loyalty program memberships in the

U.S. tripled from 1.1 to 3.3 billions, that is an average of 10 memberships per person

or 29 per household (Colloquy 2015). With the growth in membership, a significant

number of points are issued and redeemed. In each year, newly issued points in the

U.S. have a monetary value of $48 billion (Gordon and Hlavinka 2011). Frequent flyer

miles are considered as one of the world’s most valuable currency, with an estimated

14 trillion miles worth more than $700 billion (Economist 2005a). Marriott’s program

alone had more than 40 million loyalty members with 225 billion points issued to its

members in 2013 (Marriott 2013). A recent survey further shows that consumers ac-
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tively manage and redeem these loyalty points, and these redemptions account for a

substantial portion of goods and services purchased (NerdWallet 2015). Passengers of

Southwest Airline, for instance, redeemed 6.2 million award flights, which represented

11% of revenue passenger miles flown in 2014, up from 9% in 2012. Hilton HHonor

program awarded 5.4 million reward nights and more than 95,800 items through the

HHonors Global Shopping Mall (HiltonWorldwide 2015a).

Depending on how the points are issued and redeemed, the impact of point re-

demption to the seller is quite different. In a stand-alone loyalty program, such as

restaurant loyalty programs and airlines, the seller is the point issuer and, at the

same time, the provider for goods or services. In this case, the seller bears the cost

of redeemed goods or services, making a redemption a cost activity without revenue.

Since it is a pure cost activity, its implication on the revenue (at least from a short-run

perspective) is quite straight-forward. It should be noted that, due to its magnitude

and monetary value (not to mention, its value in marketing and consumer loyalty),

accumulated points are important in the firm’s accounting statement. In account-

ing, accumulated points are treated as a liability either through deferred revenue or

incremental cost (Chapple et al. 2010).

On the other hand, there are many loyalty programs where point issuers are dif-

ferent from firms that actually provide a service or product. For instance, about 85

percent of Hilton’s 4300 properties are franchised and operated by property man-

agement companies (HiltonWorldwide 2015b). In such case, when a consumer uses

accumulated points to stay in the franchisee property, the property management

company (franchisee) collects compensatory revenue from a hotel headquarter who

manages the loyalty program. When consumers use their credit-card points to buy an

airline ticket or to buy frequent mileages from an airline (transfer points), the seller

(the airline) gets compensatory revenue from the credit card company who is the

original point issuer. In fact, this type of transactions (called by the sales of miles) is
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the largest contributor of airlines’ ancillary revenue. For instance, US major airlines

generate $10.7 billion of ancillary revenue through frequent flier program (IdeaWorks

2015).

In this paper, we study the implications of a loyalty program on the seller’s pricing

and inventory rationing policies regarding reward sales. In particular, we focus on

a situation where the revenue implication of loyalty program is less obvious, that is,

when the seller gets reimbursed for a reward sale from a point issuer. It should be

noted that, even among loyalty programs where sellers are different from issuers, the

terms and conditions of reward sales that apply to sellers and consumers vary signifi-

cantly within and across industry. In some hotel loyalty programs, point requirements

for a reward stay are often fixed and determined by the hotel headquarter. Conse-

quently, an individual seller (e.g., a property management company) cannot easily

change these policies, and have a little control over reward sales. For instance, one

night stay at Hyatt Regency San Francisco is fixed to 15, 000 points, which contrasts

to the cash price that is dynamically changing from $209 to $524 (BoardingArea

2015). In some cases, the issuer prevents even the use of operational tools such as

rationing or black-out (e.g., Hilton properties with no black-out policy for standard

rooms). On the other hand, even in hotel reward stays, the seller can change point

requirement quite frequently depending on availability and posted price for suites.

For instance, one night stay of grand king corner suite at Conrad Seoul (a premier

Hilton property) on June 3, 2016 can be booked using either 435,000 Won or 102,542

HHonors points. However, one night stay of the same room on June 5, 2016 requires

either 450,000 Won or 106,078 HHonors points (about 4.24 Won per 1 Hhonor point

in both cases).

Given these various settings of loyalty program, our central question is how the

terms of reward sales (e.g., reimbursement rate, operational discretion over reward

sales) affect the seller’s pricing and rationing decisions. Specifically, (i) how does the
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reward sale affect the seller’s posted price?, (ii) if the seller can dynamically ration

inventory for reward sales, when should the seller block reward sales, and when should

not?, and (iii) if the seller can also set point requirement, how does the seller change

the point requirement along with cash price?

In order to address our research questions, we first model a consumer’s decision:

how he/she compares purchase options and decides whether to buy or not, and, if

buying, how to pay for the product (either in cash or with loyalty points). We

reflect the fact that consumers are heterogeneous in their willingness to pay, point

balance, and perceived value of a point (i.e., how much does 1 loyalty point worth to a

consumer?). In particular, we characterize a consumer’s decision as a function of price

(cash price and point requirement) and rationing decisions. We then incorporate this

into a dynamic pricing (and rationing) model for the seller who wants to maximize the

total expected revenue – the sum of the revenue from cash sales and the revenue from

reward sales. To account for the fact that sellers have different levels of discretion over

reward sales, we consider several settings in which the level of operational discretion

over reward sales differs. We first examine the setting where the seller can only change

cash price and has no discretion over the terms of reward sales. In this case, no

rationing (e.g., black out) is allowed, and both point requirement and reimbursement

are fixed. We then consider the case in which the seller can dynamically ration (black

out) inventory for reward sales in addition to choosing the price. Lastly, we generalize

our analysis to the case where the seller can change both price and point requirement,

and the reimbursement rate depends on the point requirement.

3.1.1 Summary of Contributions

Our paper is the first paper to examine the dynamic pricing problem of a seller

whose product can be purchased with cash or loyalty points. Specifically, we model

how consumers decide whether to buy or not, and if buying, whether to pay in cash
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or points depending on their reservation price, point balance, and perceived value of a

point. Incorporating this consumer model into the seller’s problem, we show that how

the presence of loyalty program influences the seller’s pricing and inventory rationing

decision.

We first show that a consumer will view two different purchase options (cash vs.

point) as imperfect substitutes. As a result, as cash price (or point requirement) in-

creases, some consumers switch from paying cash to redeeming points (or vice versa),

but the overall demand decreases (as a result of being imperfect substitutes). We

find that the impact of reward sales on the seller’s price is non-trivial. One may

think that, allowing reward purchase will increase the marginal value of the inventory

(since the seller can sell a product in more ways), and, as a result, increase the price.

We find that this is not the case: In fact, the seller’s price can be either higher or

lower than the seller’s price when a reward sale is not available (we call it cash-only

price) depending on the gap between the reimbursement rate (which is the revenue

a seller earns from a reward sale) and the cash-only price. For instance, when the

reimbursement rate is low relative to the cash-only price, the seller offers a discount

in order to induce more cash sales. In the opposite case, the seller increases cash

price (adds a premium) in order to induce more consumers to buy with points while

charging a higher price to cash consumers.

We examine how discretion over the terms of a reward sale affects the seller’s

decision and resultant revenue. We find that it is optimal to block out a reward

sale (i.e., disallow point redemption) when inventory level (relative to the remaining

selling season) or a reimbursement rate is very low. In both cases, the cash-only

price will be significantly higher than a reimbursement rate. Thus, allowing a reward

sale only decreases the seller’s revenue as some consumers choose to buy with points

instead of cash. To avoid this, the seller blocks the reward sale completely and sell

products by cash only. However, unless the gap between the cash-only price and
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the reimbursement rate is significant, allowing reward sales is generally better for

the seller as the total sales increase. That is, even when the seller’s revenue from

a reward sale (the reimbursement rate) is lower than the cash-only price, allowing a

reward sale can be still optimal as long as the benefit from increasing the likelihood of

a sale is significant. We also analyze the case where the seller can dynamically change

both price (for cash sales) and point requirement (for reward sales), and characterize

the optimal policy. We find that further segmenting reward sales with multiple tiers

of point requirements only marginally increases the revenue from the seller with the

option to black-out reward sales.

Since consumers in our model are heterogeneous in multiple dimensions, the re-

sulting seller’s problem is not necessarily tractable under the existing assumption used

in the classic pricing literature (e.g., increasing generalized failure rate). However, we

show that, under a set of reasonable assumptions that are common in many practical

scenarios, the revenue function is indeed well-behaved (e.g., the revenue function is

unimodal in price, the price-point pair is monotone in inventory and time). In fact,

we believe that our paper is one of the first papers in dynamic pricing literature

that study the case when consumers are heterogeneous in several attributes and have

multiple options for purchase.

The remainder of this paper is organized as follows. Section 2 provides a survey

of relevant literature. Section 3 outlines our base model, in which a consumer choice

model is embedded into a dynamic pricing problem, and describes its analytical results

regarding the effect of reward sales. In sections 4 and 5, we provide extensions of our

base model to the cases in which the seller further decides whether to allow or block

reward sales and the seller dynamically changes point requirement along with price.
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3.2 Literature Review

Our paper is related to mainly two streams of research – loyalty program and

dynamic pricing. Impact of loyalty programs has been extensively studied in market-

ing, both from consumers’ and firm’s perspective. In particular, a substantial body

of marketing literature focuses on the long-term effect of loyalty program. Bijmolt

et al. (2010), Dorotic et al. (2012), and Breugelmans et al. (2014) provide compre-

hensive reviews. Many of these studies attempt to establish empirical evidences on

positive impact of loyalty programs or suggest several underlying mechanism leading

to positive impacts. For instance, a loyalty program generally improves a consumer’s

evaluation of the good and induces repeat-purchasing behavior. The reasons stud-

ied include switching cost (Carlsson and Löfgren 2006), psychological barrier (Bolton

et al. 2000 and Hallberg 2004), and strategic behavior (Lewis 2004). There are also

a few studies that find the limited impact of loyalty program (Uncles et al. 2003,

Sharp and Sharp 1997). While there are conflicting results on the effect of loyalty

program on customers’ retention, several papers explain how the seller can improve

their profit through a loyalty program. Kim et al. (2001) show that a loyalty program

creates a switching cost, which then allows the seller to charge a higher price than

the seller without a loyalty program. In another study, Kim et al. (2004) show that

the seller can use reward sales to reduce excess capacity in a low-demand season.

In a competitive setting, Shin and Sudhir (2010) demonstrates how the seller can

strategically manage loyalty program to gain a competitive advantage (e.g., offering a

discount to its own or a competitor’s loyalty members). While our paper also focuses

on the seller’s profit, we zoom in the seller’s pricing and rationing decisions when

some customers are trying to buy the product with reward points (which may not be

always highly profitable).

Specifically, instead of focusing on the impact of lingering behavioral changes

induced by a loyalty program such as retention or repeating purchases (which most
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marketing literature does), we focus on the redemption of points and how it inflicts

on the seller profit maximizing price. In that vein, our paper is closely related to a

handful of papers that study how consumers assess and use loyalty points (Liston-

Heyes 2002, Kivetz and Simonson 2002a, Liu 2007 and Basumallick et al. 2013). For

instance, Kivetz and Simonson (2002a) show how a consumer evaluates loyalty points

depending on effort to acquire loyalty points (e.g., accumulating points through credit

card spending vs. accumulating points by flying). Dreze and Nunes (2004) propose

mental accounting model to explain how a consumer evaluates loyalty points and

show that using loyalty points may lower psychological cost for purchasing goods and

services. In a similar vein, Kivetz and Simonson (2002b) find that some consumers

use points to indulge in luxury goods without feeling guilty. While these papers

focus on how they use points, Stourm et al. (2015) explain why many consumers

stockpile loyalty points using cognitive and psychological incentives, both of which

enable consumers to value points differently than cash. Since we consider a consumer

comparing two purchase methods (cash vs. point), the endowed point balance (i.e.,

how many points do you currently have?) and the perceived value of points (i.e.,

how much is 1 point worth to you?) are equally important determinants of whether

a consumer buys the product or not and using what method. In this regard, Kopalle

et al. (2012), Dorotic et al. (2014), and Chun et al. (2015) are closely relevant to our

paper. These papers show that allowing point redemptions may cannibalize cash sales

and revenue. Departing from these, our focus is on the seller who has to operationalize

pricing and rationing decisions when facing consumers who can purchase with cash

or points.

Our paper is also closely related to papers in dynamic pricing. Bitran and Caldentey

(2003) and Elmaghraby and Keskinocak (2003) provide extensive reviews on earlier

works in this area. These area focuses on how the seller should adjust the price based

on remaining time and inventory throughout the selling horizon in different settings:
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single product (Gallego and Van Ryzin 1994 and Bitran and Mondschein 1997), mul-

tiple products (Zhang and Cooper 2005 and Maglaras and Meissner 2006), impact of

strategic consumers (Aviv and Pazgal 2008, Ahn et al. 2007), and negotiation (Kuo

et al. 2011). Up to our best knowledge, this is the first paper that examines the inter-

action between price and reward purchase (point redemption) in a dynamic pricing

setting.

Like the majority of pricing papers, we derive analytic results and extract insights

therein. To gain analytic tractability of optimal price, we introduce technical condi-

tion that is analogous to Ziya et al. (2004) and Lariviere (2006)). However, in our

model, a consumer has to compare two options (three if we include “do not purchase”)

depending on realization of three idiosyncratic attributes – reservation price, point

balance, and point worth. The details will be discussed later. As we will so, sim-

ply extending IGFR to multiple dimensions does not result in a well-behaved profit

function. We provide a sufficient condition and explain why it is not a big concern in

many practical cases.

3.3 The Model

We consider the seller’s problem in the context of a dynamic pricing model in

Gallego and Van Ryzin (1994) and Bitran and Mondschein (1997). This enables us

to highlight how reward sales through point redemption affects the seller’s pricing

(and rationing) policy compared to the seller that does not offer a loyalty program.

Following the convention, we consider a seller with limited inventory of a product

over a predetermined selling horizon, which is divided into T periods, indexed by

t ∈ {1, 2, ..., T}. Each period is short enough so that at most one consumer arrives

in a given period with probability λ ∈ (0, 1). In each period, the seller can sell its

product either in cash (cash sale) or with points (reward sale). That is, a consumer
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can purchase a product either by paying p in cash or redeeming q loyalty points

(we call a number of redeemed points for purchasing as a point requirement). After

seeing both price and point requirement, a consumer decides whether to buy or not,

and, if buying, chooses the method of payment. The seller receives the revenue

p from each cash sale. On the other hand, the seller receives the reimbursement

for each reward sale. In many situation, the amount of reimbursement depends on

point requirement, q, thus it is reasonable to assume that the reimbursement rate,

R(·), is a non-decreasing function of q. The seller’s goal is to maximize its total

expected revenue (the revenue from cash sales plus the revenue from reimbursements)

throughout the selling season. In particular, we consider several types of the seller

depending on the discretionary control over the terms of reward sales (e.g., whether a

seller can block reward sales, whether a seller can change point requirement), which

will be discussed later in detail.

3.3.1 Consumers’ Problem

An arriving consumer observes cash price (p) and point requirement (q), and

decides whether to buy or not, and how to pay for a product (either paying p in cash

or redeeming q points). We assume that a consumer maximizes her utility, which

depends on the following three attributes: (i) reservation price, i.e., how much she

values the product (ii) point balance which determines whether a consumer is able

to buy with points or not, and (iii) perceived value of a point, i.e., how much she

values points (in terms of monetary denomination). We assume these attributes are

consumer idiosyncratic, thus heterogeneous.

Specifically, we model the consumer’s reservation price by a random variable, V ,

which follows distribution F (·) and density f(·). If cash is the only available form of

payment, consumers with reservation price higher than the current price will purchase

the product. Thus, F̄ (p) := 1 − F (p) represents the probability that a consumer
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prefers buying with cash to not buying.

We assume that point balance is also a heterogeneous attribute. This reflects the

fact that not all consumers belong to a loyalty program (i.e., they have zero point bal-

ance) and, among members, only some of them have accumulated more than q points.

We model the point balance as a non-negative random variable, W , with distribution

β(·). Then, β̄(q) := 1 − β(q) represents the proportion of consumers with sufficient

points: We call them loyalty consumers and we call consumers without enough points

(either a non-member or having insufficient points) as cash-only consumers.

In addition to reservation price and point balance, the perceived value of a point,

which is how one point is worth to a consumer, is also an idiosyncratic attribute.

This reflects the fact that not all consumers with the same reservation price and

point balance will behave the same. The point-worth is highly subjective and depend

on many factors (Liston-Heyes 2002, Liu 2007, and Basumallick et al. 2013). In fact,

loyalty points do not have the universally accepted conversion rate. In addition, how

each consumer assesses loyalty points varies depending on how she acquires points

and how she intends to use. For instance, depending on how a consumer has accrued

points (e.g., credit card usage, paying for points, and promotion gift), the perceived

value of points widely varies (Kivetz 2003). In addition, the value of points also

depends on how she intends to use. A consumer can use 80, 000 Chase Ultimate

Rewards points to buy a business-class round-trip ticket from US to Europe (which

has the cash-value of $6, 000) or to buy a $800 Amazon gift card (PointsGuy 2015).

Although it is obvious that using points for a flight ticket saves a lot more cash, some

consumers will opt in for a gift card (which has less cash value) as the value of a

business-class ticket to Europe differs significantly from one person to another. This

observation implies that the value of 80, 000 points can be quite different depending

on the intended use. We model this attribute using a non-negative random variable

Θ with distribution G(·) and density g(·). That is, a point-worth of Θ = θ (i.e., 1
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point is equal to $θ) means that q points has the equivalent monetary value of $θq to

that consumer, making her indifferent between paying $θq in cash and redeeming q

points.

We assume that all three attributes – V , W , and Θ are independent. Not only

this assumption gives us a traction for analysis, it also reflects the fact that there is no

direct evidence or underlying cognitive mechanism to relate one attribute to another.

For instance, as mentioned earlier, the point worth has many compounding factors

including the method of acquisition and the intended use. Even among elite members

(e.g., an Hhonors diamond member who accumulates more than 120,000 points per

year), some members choose to redeem points frequently while other consumers choose

to stockpile points for a grand adventure. Hence, the amount of points a consumer

accumulates does not necessarily dictate her point-worth (as a result, her redeeming

choice). In addition, even for the same person, the perceived value may change per

circumstance. For instance, the perceived value of points when an elite member

makes a hotel reservation for a personal vacation will be significantly different from

that when the same person makes a reservation for a business trip. Consequently,

there is no obvious correlation among these attributes.

For given p and q, the utility from each purchase option depends on these three

attributes – v, w, and θ (realizations of V , W , and Θ). If she obtains a product by

paying p in cash, the corresponding utility is v − p. If she purchases by redeeming q

points, her utility is v− θq. If she does not purchase, she earns the reservation utility

of the outside option, which is set to be zero. In case of a cash-only consumer who

does not have enough points (i.e., w < q), her decision is reduced to either buying

with cash or not buying, i.e., max {v− p, 0}. On the other hand, a loyalty consumer

(who has enough points) compares three options (cash purchase, point purchase and

no purchase) and makes a choice to maximize her utility, i.e., max {v− p, v− θq, 0}.

Given this consumer model, the following Lemma and Figure 1 characterizes the
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Figure 3.1: Consumer behavior depending on their type (cash-only consumer or loy-
alty consumer), reservation price (V ), and point-worth (Θ) given price p and point
requirement q.
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likelihood of each behavior by a random consumer (or depending on the type of a

consumer).

Lemma III.1. Suppose that price p and point requirement q are given.

(a) Consumer decision falls into three cases:

• With probability P (cash purchase) = β(q)F̄ (p) + β̄(q)F̄ (p)Ḡ(p/q), a consumer will

buy with cash.

• With probability P (point purchase) = β̄(q)
∫ p/q

0
F̄ (qx)dG(x), a consumer will buy

with points.

• With probability 1 − P (cash purchase) − P (point purchase), a consumer will not

purchase.

(b) Compared to a cash-only consumer, a loyalty consumer will buy with cash less

likely, but in overall (using cash and points), buy a product more likely.

Part (a) describes who buys with each payment method. With probability β(q), a

consumer is a cash-only consumer, thus, she purchases if and only if v ≥ p (as shown

in Figure 1-a). With probability β̄(q), a consumer has enough points and her choice

depends on her v and θ. Cash purchase is optimal if and only if v ≥ p and θq ≥ p,
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point redemption is optimal if and only if v ≥ θq and p > θq. When her reservation

price is low and point worth is high, then she does not purchase (as shown in Figure

1-b). Note again that all three attributes – reservation price, point balance, and point

worth – affect a consumer’s choice.

Part (b) shows that a loyalty consumer is more likely to purchase (combining cash

and point purchase) than a cash-only consumer (who can only purchase with cash).

This implies that allowing point redemption increases the overall probability of a

purchase, but decreases the probability of a cash purchase. The decrease in cash sales

implies that some consumers (those whose point balance is high and point-worth is

low) will switch the payment from cash to points (Point B in Figure 1-b) given that

these consumers would have paid in cash if there is no option to buy with points.

On the other hand, allowing point redemption creates a new stream of demand from

loyalty consumers who find the price p is too high but redeeming q points is not too

costly (Point A in Figure 1-b). Adding these consumers to a mix, point redemption

increases the likelihood of total sales while substituting the likelihood of cash sales.

The next result further characterizes how consumers respond to a change in price

or point requirement. We note that the results hold regardless of distributions.

Lemma III.2. (a) If price p increases given point requirement q,

dP (cash purchase)

dp
≤ 0,

dP (point purchase)

dp
≥ 0,

dP (total purchase)

dp
≤ 0.

(b) If point requirement q increases given price p,

dP (cash purchase)

dq
≥ 0,

dP (point purchase)

dq
≤ 0,

dP (total purchase)

dq
≤ 0.

Lemma III.2 shows that cash and point purchases are indeed imperfect substitutes

as the increase of price (or point requirement) results in some consumers switching

from cash to point purchase (or vice versa) and others not buying. If price increases, a

50



cash purchase becomes less attractive while making a point purchase relatively more

attractive. The result shows that a decrease in cash sales is always bigger than an

increase in reward sales. As a result, the probability of a purchase (by cash and

points) decreases. One may think this imperfect substitution is an obvious result:

cash-only consumers (who cannot use points) simply get priced-out as p increases.

This argument does not tell the whole story. To see this, suppose that all consumers

are loyalty consumers (they have enough points). Even in this case, the probability of

a purchase still decreases, thus, two options still remain to be imperfect substitutes.

This is because consumers whose perceived value of a loyalty point is high enough

(θq > v) will not consider point purchase and drop out if price increases (i.e., Cash

A in Figure 1-b).

On the other hand, when a point requirement increases, some consumers who buy

with points will switch to either pay with cash or not purchase at all. This is derived

from the two facts: As q increases, point-purchase becomes less attractive and fewer

people become eligible to use points (i.e., β̄(q) decreases in q).

Remark 1. There are cases where consumers receive a slightly different product

when purchasing with points, making the product purchased with cash more valuable.

For instance, many loyalty programs issue points only for a cash purchase, but not for

point-redeeming consumers. In other example, passengers with award flight tickets

will be placed to a different priority for a seat upgrade. Our model can accommodate

such scenario (with a slight modification), and thus, adding so does not alter the

results or ensuing insights of our model. To see this, suppose that a consumer accrues q̄

points only if she purchases with cash. To capture this, we add a term that represents

the difference in form of a disutility: v − θ(q + q̄) becomes the utility from a point

purchase. Other than this minor change, everything else remains the same.
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3.3.2 The Seller’s Problem

We now consider the seller’s pricing problem in each period. As mentioned in

the introduction, one of the main questions is to examine how the seller’s discretion

over the terms of reward sales (e.g., open-close point redemption or changing point

requirement) affects the seller’s (pricing) decision and revenue. To do this, we first

start with a simple model where the seller always allows point redemptions, and

the point requirement and reimbursement rate are fixed throughout a selling season.

Later, we will gradually relax the restrictions in two ways: In section 4, we consider

a seller who can block the reward sales (black-out model). In section 5, we consider a

seller who chooses not only price but also point requirement in each period (dynamic

adjustment model).

Since q and R are the fixed, we use, for ease of notation, β for β(q), β̄ for β̄(q), and

R for R(q) throughout this section. We incorporate Lemma 1 and embed consumer

choice for given (p, q) in a seller’s dynamic pricing problem. We let Jt(p, y) represents

the revenue-to-go function when the seller charges price p when it has y units in

inventory with t-periods to go and then follows the optimal policy starting from t− 1

and onwards:

Vt(y) = max
p≥0

Jt(p, y) for y > 0, t = 1, 2, . . . , T, and (3.1)

V0(y) = 0 for y ≥ 0, and Vt(0) = 0 for t = 1, 2, . . . , T,
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where

Jt(p, y) = λβ̄

[
F̄ (p)Ḡ(p/q)(p+ Vt−1(y − 1)) +

p/q∫
0

F̄ (qx)dG(x)(R + Vt−1(y − 1))

+

1− F̄ (p)Ḡ(p/q)−

p/q∫
0

F̄ (qx)dG(x)

Vt−1(y)

]
+ λβ

[
F̄ (p)(p+ Vt−1(y − 1)) + F (p)Vt−1(y)

]
+ (1− λ)Vt−1(y).

We define ∆t(y) = Vt(y)−Vt(y−1), which represents the marginal value of inventory,

and rewrite Jt(p, y) as

Jt(p, y) = λβ̄

[
F̄ (p)Ḡ(p/q)(p−∆t−1(y)) +

p/q∫
0

F̄ (qx)dG(x) (R−∆t−1(y))

]
+ λβ

[
F̄ (p) (p−∆t−1(y))

]
+ Vt−1(y). (3.2)

We observe from (3.2) that Jt(p, y) has three sources of revenue.

1. the revenue of cash sales to a cash-only consumer :

λβF̄ (p)(p−∆t−1(y)).

2. the revenue of cash sales to a loyalty consumer :

λβ̄F̄ (p)Ḡ(p/q)(p−∆t−1(y)).

3. the revenue of reward sales to a loyalty consumer :

λβ̄
∫ p/q

0
F̄ (qx)dG(x) (R−∆t−1(y)).

Note that the first term λβF̄ (p)(p−∆t−1(y)), has been extensively studied in the

literature, as this is the revenue term in class dynamic pricing problems. It has been

shown that this term is unimodal in p if F (·) has an increasing generalized failure

rate (IGFR) – Ziya et al. (2004) and Lariviere (2006). Following similar derivation,

the cash-sale revenue to a loyalty consumer is also unimodal in p if both F (·) and
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G(·) are IGFR. Lastly, from Lemma III.2(a), more consumers will choose to use

points as price increases. Thus, the reward-sale revenue increases in p. Although

each portion is unimodal under simple condition (IGFR), note that Jt(p, y) is not

necessarily unimodal in p as it is the sum of these three functions. This imposes a

challenge in characterizing optimal price and its properties.

Figure 3.2: Examples of expected revenue-to-go functions in price when both F (·)
and G(·) are truncated normal (i.e., IGFR): F ∼ truncated N(30, 10), q = 1, t = 1,
and y = 1. In figure (a), β̄ = 0.6, G ∼ truncated N(15, 2) and R = 10. In figure (b),
β̄ = 1, G ∼ truncated N(28, 1) and R = 30.
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Figure 2-a and b illustrate two examples that show how the seller’s revenue changes

in price. One may think that the lack of unimodality comes from the fact that there

are two different subgroups, cash-only consumers and loyalty consumers, as illustrated

in Figure 2-a. This explanation, however, is not always true. The expected revenue

function is not unimodal even when all consumers are loyalty consumers (Figure 2-

b). To see why this is the case, note that loyalty consumers always compare two

options. Depending on how loyalty consumers buy, the seller receives two different

revenues, price and reimbursement rate. As price increases, marginal consumers

whose valuations are close to p drop out from cash purchase, but only some of them

substitute to buy with points. Thus, the change of revenue in price not only depends
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on F (·) but also on G(·), and the interaction between two. Because of this, the

expected revenue-to-go function is not unimodal even when F (·) andG(·) are IGFR.

Nonetheless, we identify a sufficient condition under which the revenue function

is unimodal in price, allowing us to characterize the optimal price and comparative

statics.

Theorem III.3. If the following three conditions are satisfied for a given q:

A1. F (·) and G(·) are with an increasing failure rate (IFR),

A2.
f(p)

F̄ (p)
≥ g(p/q)

Ḡ(p/q)
for any p, and

A3.
f(p)

F̄ (p)

/
β̄g(p/q)

1− β̄G(p/q)
is non-decreasing in p,

there exists a unique optimal price, p∗t (y), that satisfies the first-order condition for

Jt(p, y).

Condition A1 is common in the pricing literature (see Ziya et al. 2004 and Lar-

iviere 2006) and is satisfied by a large range of probability distributions including

uniform, normal, and exponential and their truncated versions. This condition guar-

antees that cash-sale revenues from cash-only and loyalty consumers are unimodal,

respectively. As mentioned above, because of substitution between cash purchase

and point redemption, IGFR of F and G does not guarantee the unimodality. Two

conditions, A2 and A3, address this. Recall from Lemma 2-(a) that an increase in

price induces some cash-paying consumers either to not buying (pricing-out effect)

or switching to point-purchase (substitution effect). Condition A2 implies that, as p

increases, the number of consumers who are priced out increases faster than the num-

ber of consumers who switch to point purchase. In other words, the pricing-out effect

dominates the substitution effect. Condition A3 further implies that the pricing-out

effect grows faster than the substitution effect as price increases. Both conditions

imply that an increase in price always has a greater impact on the pricing-out effect

than the substitution effect.
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It can be shown that conditions A2 and A3 can be satisfied if the condition in the

following corollary is satisfied. If this is the case, the revenue function is unimodal

even when all consumers are loyalty consumers (β = 1).

Corollary III.4. The sufficient conditions for A2 and A3 are as follows: for a

given q, the hazard ratio of the reservation price distribution to the q point-worth

distribution,
f(p)

F̄ (p)

/
g(p/q)

Ḡ(p/q)
, is greater than 1 and increasing in price.

It turns out these two conditions are not restrictive from practical perspective.

Stourm et al. (2015) find that consumers tend to accumulate and stockpile points

(for distant future use) rather than using immediately. For instance, only about a

quarter of newly issued frequent-flyer miles (or equivalently 6.3% of the accumulated

miles) is redeemed in 2004, while the rest are accumulated or expired (Economist

2005b). Moreover, at least one third of issued points ($15 billion worth) in the United

States each year are never redeemed and go expired (Colloquy 2011). There are many

plausible reasons for this, including cognitive cost (e.g., redeeming process is costly)

and psychological motivation (e.g., a high value on the possession of points itself) as

discussed by Stourm et al. (2015). Furthermore, points required for redemption is

often set quite high, thus, a consumer needs to have a sufficiently large balance of

points. All of these suggest that consumers do not immediately use up points as soon

as they are qualified. In these situations, A2 and A3 are not restrictive assumptions.

As explained above, conditions A2 and A3 imply that the primary impact of increase

in price is the pricing-out effect, not the substitution effect (from cash to point use).

When consumers are hesitant to use points (instead, they rather hold and stockpile

points for future use), the conditions are easily satisfied. Thus, Theorem III.3 shows

that, although the revenue function is not unimodal in general, such a pathological

behavior does not arise in many situations where loyalty points are accumulated and

redeemed.

Building on this, we now examine the property associated with the optimal price.
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For this, we first define an auxiliary optimization problem, which represents a pricing

problem of the seller who does not offer reward sales in period t, but follows the

optimal policy from period t− 1 and onward. That is, the revenue-to-go from period

t− 1 onward is still Vt−1(·) as defined by (3.1).

V c
t (y) = max

p

{
λF̄ (p) (p+ Vt−1(y − 1)) +

(
1− λF̄ (p)

)
Vt−1(y)

}
, y > 0, t = 1, ..., T.

(3.3)

Let pct(y) be the solution to (3.3), which we call as cash-only price, the best price that

the seller can charge if only the cash sale is available in period t. We also denote the

optimal price that the seller will charge considering both cash and reward sales (the

solution to (3.2)) by p∗t (y). As the seller has an additional channel to sell using points,

one can suggest that the marginal value of inventory increases. This logic is further

supported by the fact that, for a given price, the likelihood of total sales is always

higher when the reward sales are available (Lemma III.1-b). If this intuition holds,

the optimal price must be always higher than the cash-only price: i.e., p∗t (y) > pct(y)

for any t and y. However, the next result shows that this is not the case.

Proposition III.5. Given y units of inventory and t periods to go until the end of

the season:

(a) If the reimbursement rate is higher than the cash-only price price, R > pct(y),

the reward sales induce the seller to add a premium on the cash-only price, i.e.,

pct(y) < p∗t (y) < R.

(b) If the reimbursement rate is lower than the cash-only price, R < pct(y), the reward

sales induce the seller to offer a discount on the cash-only price, i.e., R < p∗t (y) <

pct(y).

This proposition indicates that the optimal price, p∗t (y), can be higher or lower

than the cash-only price pct(y) depending on whether pct(y) is higher or lower than R
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(Note that pct(y) monotonically changes in y and t). To elaborate further, consider the

case when R > pct(y). Suppose that the seller charges the cash-only price, pct(y), but

allows a reward purchase. Since R > pct(y), the seller gains more from a reward sale

than a cash sale. From Lemma 2-a, the seller can increase reward sales by increasing

price; in other words, the seller adds a premium: pct(y) < p∗t (y). By converting more

consumers to buy with points, the seller’s revenue increases. As stated, the amount of

a premium is chosen so that p∗t (y) does not exceed R. To understand why, the primary

reason for a premium is to induce some consumers (with a relatively lower willingness

to pay in cash) to buy with points while earning a good portion of revenue from cash

sales. This is especially beneficial to the seller as the revenue from consumers who

buy with points is higher than their willingness to pay in cash. However, when this

premium becomes too high (p > R), then a very few will buy in cash in the first place,

thus the cash-sale alone is suboptimal. Furthermore, a good portion of consumers

who should have bought with cash now buy with points. Thus, the seller is no longer

able to price discriminate effectively if a premium is too high. Hence, p∗t (y) should

always lie between pct(y) and R.

Similarly, when R < pct(y), the seller will prefer cash sales to reward sales. If the

seller charges pct(y) while allowing reward sales, the seller will get the lower reim-

bursement rate from any consumer who will buy with points. In anticipation of this,

the seller offers a discount to induce more consumers to buy with cash. Once again,

p∗t (y) should always lie between R and pct(y) because, if price falls below R, the seller

does not earn much from both cash and reward sales.

The following result further shows that the region that the seller offers a discount

or premium is monotone in inventory level and remaining periods.

Corollary III.6. Given y units of inventory and t periods to go until the end of the

season:

(a) If it is optimal to offer a discount from the cash-only price, then it is also optimal
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to offer a discount with y − 1 units of inventory or/and t+ 1 periods to go.

(b) If it is optimal to add a premium to the cash-only price, then it is also optimal to

add a premium with y + 1 units of inventory or/and t− 1 periods to go.

This result identifies when the reward sales will reduce a mark-up or mark-down

that is applied in a dynamic pricing policy. In the standard dynamic pricing model

(Gallego and Van Ryzin 1994 and Bitran and Mondschein 1997), there exists a mark-

up when the inventory level changes from y to y − 1 given t periods to go. The

proposition says that in regions where the cash-only price is sufficiently high (com-

pared to R), the seller must reduce such a mark-up (and keep the price not too

high), otherwise, a sizable portion of consumers will buy with points. Likewise, in

regions where the cash-only price is very low (lower than R), the seller needs to re-

duce a mark-down (and keep the price not too low) in order to induce consumers to

purchase with points. Thus, the reward sales have non-trivial effects on the seller’s

price. In fact, the reward sales attenuate the price fluctuation of dynamic pricing as

it reduces the extent of a mark-up or mark-down. Figure 3 illustrates this result.

Figure 3.3: The optimal price, p∗t (y), and the cash-only price, pct(y), depending on the
inventory level (left figure; for given t = 10) and the remaining time (right figure; for
given y = 8) when λ = 0.8, β̄ = 0.7, F ∼Uniform[0, 100], G ∼Uniform[0, 10], q = 10,
and R = 55.
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Our next result explores how the optimal price, p∗t (y), changes in the fraction of
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loyalty consumers and the reimbursement rate.

Proposition III.7. Given y units of inventory and t periods to go until the end of

the season:

(a) The amount of price adjustment (either premium or discount) from considering

a reward sale becomes greater if more consumers are eligible to purchase with points

in period t (the higher β̄t).

(b) The optimal price p∗t (y) and the resultant expected revenue increase if R increases.

Although more consumers buy with points, no consumer’s utility increases.

As expected, the seller makes a more aggressive price adjustment if there are more

loyalty consumers (Part a). This is simply because consumer substitution (from cash

to points, or vice versa) has a greater impact when there are more loyalty consumers.

Part (b) states that as the reimbursement rate goes up, the seller increases the price

so that more consumers buy with points. One interesting observation is that no

consumers are better off in spite of the fact that more consumers buy products with

points (not paying in cash). The reason is that, as the point requirement q being

fixed, the only way the seller can induce more reward sales is to increase price. While

the consumer’s utility from a point purchase is independent of price, a high price

negatively affects the utility of consumers who previously purchased with cash. For

instance, a consumer who switched from cash purchase to point purchase because of

price increasing, will have a lower utility than before.

Remark 2. In Proposition III.7, we assume that the change of a parameter (β

or R) is limited only to period t. If the change is global (the parameter changes

for all periods), it affects the marginal value of inventory in each period and, as a

result, value function. This makes comparing two different policies difficult as one

needs to know the exact difference of the value functions for two separate dynamic

programming problems. However, we have conducted an extensive numerical study

and found that Proposition III.7 continues to hold globally. In our numerical exper-
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iment, we consider three different combinations of reservation price and point-worth

distributions (F (·) and G(·) follow uniform over [0, 100], exponential over [0, 100]

with mean 60, and truncated normal over [0, 100] with mean 60 and standard devi-

ation 20; where the point requirement given at q = 1), three different values for the

arrival probability (λ ∈ {0.3, 0.6, 0.9}), ten different values of loyalty consumers ’

fraction (β̄ ∈ {0.1, 0.2, · · · , 1.0}), and ten different values of reimbursement rate

(R ∈ {10, 20, · · · , 100}), with inventory levels ranging from 1 to 20 with T = 20

periods to go until the end of the season. In all instances, we note that the result of

Proposition III.7 continues to hold even when we change the parameters (β and R)

globally.

Figure 3 shows that the optimal price is monotone in the inventory level and re-

maining periods. The following proposition summarize this result and it’s implication

on the customers’ redemption behavior.

Proposition III.8. The optimal price, p∗t (y), is decreasing in the inventory level y

and increasing in the remaining periods t. Consequently, consumers are more likely

to use points when the inventory level is low and/or more periods remain.

As in the dynamic pricing literature (without loyalty program consideration),

the proposition above shows that the seller is willing to move inventory faster by

lowering price as the inventory level increases or the remaining time decreases. In

other words, the price adjustment (premium or discount) in Proposition 1, while it

reduces the seller’s mark-up and mark-down, does not change the monotonicity of

price in inventory and time. The result is simply a consequence of Lemma 2-(a) that

the probability of (cash + reward) sales is decreasing in cash price for a given point

requirement. However, this result has an interesting implication on how the reward

channel is utilized. Kim et al. (2004) show that the seller uses reward sales to reduce

excess capacity (e.g., high inventory level and short periods left). Given the constant

reimbursement rate, this implies that the seller is more willing to sell with points when
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the marginal value of inventory is very low. However, the seller can only incur more

consumers to use points by increasing price, which decreases the likelihood of total

sales. In this case, the seller needs to decrease price and can not induce more reward

sales. In other words, consumers use points more likely when it is less desirable (when

the seller can earn high revenue from cash sales) and use points less likely when it

is more desirable (when the seller can earn high revenue from reward sales). This

implies the limitation of seller’s price-only control on reward sales.

3.4 The Black-Out Model

In Section 3, we consider the seller who does not have any discretion on the terms

of reward sales. However, we observe from practice that sellers have different degrees

of discretion. One of such discretion is the ability to block out the reward sales (i.e.,

disallowing consumers to use points for purchase). We now consider a seller who

decides the price along with whether to allow consumers to use points (open) or not

(close) in each period.

We modify the dynamic programming problem of (3.1) for this case (black-out

seller). We let V B
t (y) be the optimal value function of the black-out seller with y

units of inventory in period t, which is given by the following optimality equation:

V B
t (y) = max

{
Ṽ c
t (y), Ṽ o

t (y)
}

for y > 0, t = 1, 2, . . . , T, and (3.4)

V B
0 (y) = 0 for y ≥ 0, and V B

t (0) = 0 for t = 1, 2, . . . , T,

where Ṽ c
t (y) and Ṽ o

t (y), respectively, represent the value functions when the seller
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closes and opens the reward-sale channel in period t:

Ṽ c
t (y) = max

p≥0

{
λF̄ (p)

(
p+ V B

t−1(y − 1)
)

+
(

1− λF̄ (p)
)
V B
t−1(y)

}
and (3.5)

Ṽ o
t (y) = max

p≥0

{
λβ̄
[
F̄ (p)Ḡ(p/q)

(
p+ V B

t−1(y − 1)
)

+

p/q∫
0

F̄ (qx)dG(x)
(
R + V B

t−1(y − 1)
)

+

1− F̄ (p)Ḡ(p/q)−

p/q∫
0

F̄ (qx)dG(x)

V B
t−1(y)

]

+ λβ
[
F̄ (p)

(
p+ V B

t−1(y − 1)
)

+ F (p)V B
t−1(y)

]
+ (1− λ)V B

t−1(y)

}
.

(3.6)

Analogous to the cash-only price, pct(y), in Section 3, we denote the solution of (3.5)

by p̃ct(y) to represent the cash-only price that maximizes the revenue if a reward sale

is not available (closed) in period t. (We note that the solution of (3.3) is different

from the solution of (3.5). We assume that the seller always allows reward sales from

period t − 1 onward in (3.3) while, in (3.5), the seller optimally controls the reward

sale availability from period t− 1 onward. From now on, we use the cash-only price

to denote the solution of (3.5), p̃ct(y).) Also, let p̃ot (y) be the solution of (3.6), the

best price when a reward sale is allowed in period t. We denote the optimal price by

pBt (y), which is either p̃ct(y) or p̃ot (y) depending on the open/close decision.

The first question to ask is when the seller should allow reward sales and when

to block. The following proposition and Figure 3 answer this question and specify

the effect of reward sales on price depending on the inventory level y and remaining

periods t.

Proposition III.9. Given t remaining periods, there exist two (inventory) thresholds

h0(t) and h1(t), h0(t) ≤ h1(t), such that

(a) if y < h0(t), it is optimal to close reward sales and set pBt (y) = p̃ct(y) > p̃ot (y).

(b) if h0(t) ≤ y < h1(t), it is optimal to open and offer a discount, i.e., pBt (y) =

63



p̃ot (y) < p̃c(t).

(c) if h1(t) ≤ y, it is optimal to open reward sales and add a premium, i.e., pBt (y) =

p̃ot (y) > p̃c(t).

Furthermore, the two thresholds, h0(t) and h1(t), are increasing in t.

Figure 3.4: The optimal strategy when the seller has y units of inventory with t
periods to go until the end of the season: λ = 0.8, β̄ = 0.5, q = 10, R = 55, F (·) ∼
Uniform[0, 100], G ∼ Uniform[0, 10].
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Proposition III.9 implies that the seller blocks out reward sales when the inventory

level is sufficiently low compared to the remaining time, y < h0(t). From earlier

discussion, the cash only price likely exceeds R in this case, making a cash buyer

more valuable to the seller. To induce more cash sales, the seller has to offer a

discount (Proposition III.5-b) to make sure not too many consumers buy with points.

If a discount becomes too deep, the seller instead blocks reward sales and focuses

only on cash sales. It should be noted that, however, it can still be optimal to open

even when R is smaller than pot (y) (when h0(t) ≤ y < h1(t)). Although the seller gets

a lower reimbursement than a cash sale, opening reward sales increases the overall

sales (Lemma III.1-b). As long as the discount is not too big, the benefit of boosting

sales still outweighs the discounted margin from cash sales. In this case, it is still
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optimal to open reward sales with a discounted price. When the inventory level is

high relative to the number of periods left, opening reward sales is obviously optimal

and the seller adds a premium to induce even more reward sales.

Our next result explores how the optimal strategy changes in the reimbursement

rate and the fraction of loyalty consumers.

Proposition III.10. For a given period t, the thresholds, h0(t) and h1(t), decrease :

(a) if the reimbursement in period t (Rt), increases.

(b) if the fraction of loyalty consumers in period t (βt) increases for any reimbursement

rate R > 0.

First note that the fact that two thresholds decrease (in Figure 3) implies that a

region of open decision expands (the seller tends to open more likely). Given that, the

first result is obvious since reward sales become more desirable as the reimbursement

rate increases. On the other hand, the second result is surprising as one may think

that the seller may want to avoid the reward sales if the reimbursement rate is low

enough and there are more loyalty consumers. However, the result states the opposite,

that is, the seller opens more likely if there are more loyalty consumers even for the

low enough reimbursement rate. To see why it is, suppose that it is optimal to open,

i.e., V o
t (y) > Ṽ c

t (y). Notice that the seller’s revenue is a weighted sum of the expected

revenue from a cash-only consumer and a loyalty consumer. Since p̃ct(y) maximizes

the revenue from a cash-only consumer, we know that the expected revenue from a

cash-only consumer at p̃ot (y) is lower than that from a loyalty consumer. That is,

when the seller opens reward sales with price adjustment (premium or discount), the

seller indeed sacrifices the revenue from a cash-only consumer to get more from a

loyalty consumer. In other words, when V o
t (y) > Ṽ c

t (y), the revenue from a loyalty

consumer at p = p̃ot (y) is higher than that from a cash-only consumer. In such case, if

there are more loyalty consumers (the higher β̄), the overall expected revenue (which

is a weighted sum) increases, which makes the open decision more profitable. This
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is true even when the reimbursement rate is sufficiently low. The reason behind this

result is that, one of the benefits of reward sales is that it increases the likelihood of

total sales (Lemma 1-b), which further increases in the fraction of loyalty consumer.

Thus, regardless of the reimbursement rate, the seller tends to open reward sales more

likely if there are more loyalty consumers.

Observe from Figure 3 that the optimal policy changes from close to open as

inventory level increases (or remaining time decreases). Hence, the optimal price

switches from p̃ct(y) to p̃ot (y). It can be shown that p̃ct(y) and p̃ot (y) are decreasing

in y (increasing in t), which immediately implies that the optimal price is indeed

decreasing in y within each of the two regimes – open and close. However, it is not

clear whether the monotonicity is preserved for all inventory level because pot (y) can

be higher or lower than pct(y) depending on the inventory level (Proposition III.9).

Notice that closing is beneficial only when R is sufficiently small so that the seller has

to offer a deep discount in order to curb reward sales: p̃ct(y) > p̃ot (y) for y < h0(t).

That is, the optimal price (either of p̃ct(y) or p̃ot (y)) decrease in y. A similar result

holds for the monotonicity of price in the number of periods left as summarized in

the following result.

Proposition III.11. (Analogous to Proposition III.8) The optimal price, pBt (y), is

decreasing in the inventory level y and increasing in the number of remaining periods

t.

One interesting question to ask is when the seller gains the most from the abil-

ity to block out reward sales. We conduct a numerical study to answer this, and

compare the following three different settings – (i) no reward sales in any period,

(ii) reward sales in every period (denoted with O), and (iii) discretionally open-

ing/closing reward sales in each period (denoted with B). For the sellers who allow

reward sales, we assume that point requirement is given at 10. We consider a 20-

period selling season in which at most one consumer arrives in each period with a
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Table 3.1: Summary statistics for percentage revenue change from allowing reward
sales in every periods (O) and allowing only when it is optimal (B) compared to the
bench-mark in which there is no reward sale. The number in the bracket represents
the proportion of open decisions for the black-out seller.

uniform exponential normal
β̄ R O B (open) O B (open) O B (open)

0.2 10 -13.20 0.00(0.00) -12.73 0.00(0.00) -11.66 0.00(0.00)
0.2 20 -9.92 0.00(0.00) -7.42 0.00(0.00) -9.48 0.00(0.00)
0.2 30 -6.58 0.00(0.00) -2.00 2.13(0.65) -7.19 0.00(0.00)
0.2 40 -3.17 0.96(0.55) 3.50 5.96(0.75) -4.78 0.00(0.00)
0.2 50 0.30 2.93(0.70) 9.10 10.39(0.85) -2.25 0.60(0.55)
0.2 60 3.85 5.33(0.80) 14.79 15.33(0.90) 0.41 1.76(0.75)
0.5 10 -27.76 0.00(0.00) -26.94 0.00(0.00) -22.21 0.00(0.00)
0.5 20 -20.87 0.00(0.00) -15.40 0.00(0.00) -18.41 0.00(0.00)
0.5 30 -13.68 0.00(0.00) -3.49 5.18(0.60) -14.17 0.00(0.00)
0.5 40 -6.20 2.35(0.55) 8.97 14.27(0.75) -9.46 0.00(0.00)
0.5 50 1.55 7.08(0.65) 21.80 24.81(0.80) -4.23 1.47(0.50)
0.5 60 9.59 12.81(0.75) 34.96 36.45(0.85) 1.51 4.31(0.70)
0.8 10 -38.59 0.00(0.00) -37.40 0.00(0.00) -28.91 0.00(0.00)
0.8 20 -29.11 0.00(0.00) -21.44 0.00(0.00) -24.27 0.00(0.00)
0.8 30 -18.97 0.00(0.00) -4.10 8.15(0.60) -18.89 0.00(0.00)
0.8 40 -8.22 3.72(0.50) 14.17 21.88(0.70) -12.65 0.00(0.00)
0.8 50 3.11 10.95(0.65) 33.27 37.85(0.80) -5.42 2.32(0.50)
0.8 60 15.01 19.71(0.70) 53.00 55.47(0.85) 2.82 6.75(0.70)

probability λ = 0.9. For each setting, we vary the starting inventory levels (ranging

from 1 to 20). We also consider three different reservation and point-worth distri-

butions (F (·), G(·)) – uniform, exponential, normal. (Specifically, we consider (i)

F (·) ∼ U [0, 100], G(·) ∼ U [0, 10], (ii) F (·) ∼ Exp(mean = 60), G(·) ∼ Exp(mean =

6), F (·) ∼ N(60, 20), G(·) ∼ N(6, 2). For normal and exponential, we consider the

truncated versions.) We also vary fraction of loyalty consumers (β̄ ∈ {0.2, 0.5, 0.8}),

and reimbursement rate (R ∈ {10, 20, 30, 40, 50, 60}). For each scenario, we measures

the percentage revenue increase/decrease compared to the seller with no reward sales.

The result is summarized in Table 1.

Notice that reward sales do not always increase the seller’s revenue. As expected,

67



when R is low, allowing reward sales can be quite costly to the seller. This shows

once again that reward sales with a low reimbursement rate cannibalizes the seller’s

cash-sale revenue. In such case, the seller has every intention to not use reward sales.

If R is high, allowing reward sales is indeed beneficial as it increases the total sales and

enables further price discrimination. Giving the ability to black out reward sales helps

the seller only when R is low: the black-out seller takes advantage of her discretion

by disallowing reward sales if the reimbursement is low. On the other hand, if R is

high, blocking out is hardly used by the seller, which makes the additional benefit of

discretion relatively small.

3.5 Dynamic Adjustment Model

We now extend our model to the case of a seller who changes price and point

requirement in each period. In particular, we consider the seller who chooses a point

requirement from a set, Q = {q1, q2, ..., qN} where qi < qj for any i < j. We also

allow that the seller earns different reimbursement revenue depending on the amount

of points redeemed: R(qi) ≤ R(qj) for all i < j. To capture general property, we

did not make a specific assumption about R(q) except that it is non-decreasing. This

allows us to capture many cases. For instance, if there is a fixed conversion rate, R(q)

is linear in q. If qN = ∞ (or sufficiently large), this is equivalent to blocking out

reward sales entirely. If N = 1 and q1 <∞, this becomes our basic model considered

in Section 3. Thus, the dynamic adjustment model can represent the previous two

models as special cases.

The seller’s problem of choosing optimal price and point requirement, (pQt (y), qQt (y)),

with remaining period t and inventory level y is as follows:

V Q
t (y) = max

q∈Q, p≥0
JQt (p, q, y) for y > 0, t > 0, and V Q

t (y) = 0 if t = 0 or y = 0.
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where

JQt (p, q, y) = λβ̄(q)

[
F̄ (p)Ḡ(p/q)

(
p+ V Q

t−1(y − 1)
)

+

p/q∫
0

F̄ (qx)dG(x)
(
R(q)− V Q

t−1(y − 1)
)

+

1− F̄ (p)Ḡ(p/q)−

p/q∫
0

F̄ (qx)dG(x)

V Q
t−1(y)

]
+ λβ(q)

[
F̄ (p)

(
p+ V Q

t−1(y − 1)
)

+ F (p)V Q
t−1(y)

]
+ (1− λ)V Q

t−1(y). (3.7)

From Theorem 1, JQt (p, q, y) is unimodal in p for a given q under the conditions

A1-A3 hold for all q. Thus, for each q ∈ {q1, q2, ..., qN}, there exists a unique price

(denoted by p̃t(y, q)) that maximizes the revenue. However, since q itself is a decision

variable, conditions A1-A3 are no longer sufficient to characterize the property of

an optimal policy, (pQt (y), qQt (y)). This is due to the fact that a change in q triggers

non-trivial changes in both consumer’s and seller’s decisions. For instance, suppose

that a seller increase a point requirement (q increases). Then, a smaller fraction

of consumers will buy with points for two reasons: (i) the proportion of eligible

consumers decreases (as β̄(q) decreases in q) and (ii) buying with points becomes

more expensive (as G(p/q) decreases in q). On the other hand, the seller receives

a higher reimbursement rate for a reward sale as R(q) increases in q, changing the

optimal price to charge. Because of complex interactions among the three attributes,

the induced revenue function does not necessarily have nice analytical properties (see

Figure 4).

Let p̃t(q, y) be the best price for given q that maximizes the revenue function,

JQt (p, q, y). Figure 3.5-(a) and (b) illustrate that not only the revenue is multi-modal

but also the best price for each q changes non-monotonically, which makes the seller’s

problem difficult to analyze. Note that we incorporate multi-dimensional attributes
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Figure 3.5: Examples of best revenue (maxp J
Q
t (p, q, y)) and best price

(arg maxp J
Q
t (p, q, y)) for each given point requirement when F ∼ N(60, 30), G ∼

N(6, 3), q ∈ {7.0, 7.2, 7.4, · · · , 12.0}, β̄(q) = 1
log q

, R(q) = 8q, t = 1, and y = 1.
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of consumers’ behavior – i.e., reservation price F (·), point balance β(·), and point

worth G(·). With dynamic adjustment, now the reimbursement rate (the revenue

from a reward sale) is no longer a constant. The interaction among these three

attributes makes the optimal policy complicated and analysis difficult as JQt (p, q, y)

is not jointly unimodal in (p, q). However, since |Q| is finite, one can utilize the fact

that the revenue function is unimodal for given q and find the optimal price and point

requirement combination, (pQt (y), qQt (y)), by comparing the revenue at p = p̃t(qi, y)

for each qi. In addition, we provide a condition under which we can characterize the

seller’s optimal policy.

Theorem III.12. The best price for a given q, p̃t(q, y), increases in q if the conditions

A1–A3, and the following two conditions hold:

A4. For a given p,
1

q
· β̄(q)g (p/q)

1− β̄(q)G(p/q)
decreases in q ∈ Q. That is, the substitution

effect (from cash to points) decreases in q in the hazard rate order.

A5. The reimbursement rate is smaller than the cash-only price, i.e., maxq∈QR(q) ≤

p̃ct(y). This condition is automatically satisfied when R(qN) is smaller than the cash-
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only price for a single-period problem, i.e., maxq∈QR(q) ≤ arg maxp pF̄ (p).

The condition A4 reflects the fact that, as q increases, a point purchase become

less and less attractive (compared to paying p in cash). In particular, A4 implies that

the proportion of marginal consumers who are indifferent between using q points and

paying p in cash to consumers who purchases with cash decreases in q. In other words,

the proportion of consumers who will buy with points over cash decreases sharply as

the point requirement increases.

Condition A5 stipulates that, as long as the reimbursement rate is low enough

(thus, the margin from a reward sale is considerably smaller than the margin from a

cash sale), the best price for given q is increasing in q. Note that low reimbursement

rates can be observed quite frequently in a number of examples. For instance, Marriott

program reimburses $201 for one award night at Ritz-Carlton South Beach (a premier

Marriott property) while the cash price of the same room is $599 (Ollila 2012 and

Ollila 2013). Note that, when the reimbursement rate is sufficiently low, the seller

wants to discourage the reward sale by offering a discount from a cash-only price

(p < pc). In this region, increasing q has two reinforcing effects. Since R(q) increases,

the seller needs to offer a smaller discount. In addition, as q increases, the proportion

of consumers who are eligible to buy with points decreases. Thus, the seller needs to

worry less about the effect of point redemption, thus can charge a higher price. Both

effects contribute to an increase in price as q increases.

Now consider the case when condition A5 does not meet. This happens in a

region where the reimbursement rate is higher than the optimal price. From earlier

results, this is precisely the instance in which the seller needs to offer a premium

(compared to a cash-only price) in order to induce more reward sales. As q increases,

R(q) increases further, which will induce the seller to increase a premium and charge

a even higher price. However, the proportion of consumers who are eligible to buy

with points decreases as well, and so does the importance of revenues from reward
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sales. If this effect is sufficiently strong, then the seller’s price will decrease toward

a cash-only price. Thus, depending on which effect is strong, the seller’s price may

increase or decreases in q. Given these conflicting effects, the best price for each q can

change non-monotonically if condition A5 is violated, as illustrated in figure 4-(b).

In cases where two additional conditions hold, we can further characterize how

the optimal price and point requirement change in remaining inventory and time, as

given in the following Proposition and Figure 3.6.

Figure 3.6: The optimal price and point requirement depending on the remaining
inventory level and period when λ = 0.9, Q = {7, 8, 9, 10, 12}, β̄(q) = 0.6 − 0.05q,
R(q) = 5q, F ∼ Uniform [0, 100], G ∼ Uniform [0, 10], t = 9 (left), and y = 6 (right).
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Proposition III.13. If conditions A1 ∼ A5 hold, the optimal price and point require-

ment, pQt (y) and qQt (y), are both decreasing in the inventory level, y, and increasing

in the remaining periods, t.

We note that Proposition III.13 generalizes Proposition III.9 and show that both

price and point requirement move in the same monotonic direction. For instance,

as inventory level y increases (or the number of remaining period t decreases), the

seller wants to move inventory fast, which makes the seller to choose the lower price

and point requirement. In fact, this result explains the current dynamic pricing

patterns in the field, including hotels using a fixed ratio between cash price and point

requirement.
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One pertaining question to ask is whether a full capability of dynamic adjustment

is necessary. Note that a numerical experiment in Section 4 shows that the seller can

substantially accrue a higher revenue with an option to block out. We further conduct

a numerical study to examine the effect of seller’s discretion (in multiple level) on its

revenue. To this end, we compare 4 different cases, ranging from no discretion to full

discretion (see below for details). For each case, we consider the same settings from

Section 4 (20 periods of selling season, λ = 0.9, starting inventory = {1, ..., 20}, (F,G)

= uniform, exponential, and normal), but now the point balance and reimbursement

rate depend on what point requirement is chosen. Thus, we consider three different

point-balance distributions (β̄(q) = 0.6 − q/20, 1.35 − q/8, and 2.1 − q/5) and four

different reimbursement-rate function (R(q) = 40+q, 30+2q, 20+3q, and 10+4q). For

each setting, we consider the following different cases to study the effect of discretion

at multiple levels:

• Q0: No black-out and the static point requirement q̄ = arg minq∈{6,7,8,9,10} Vt(y; q),

• Q1: No black-out and the static point requirement q̄ = arg maxq∈{6,7,8,9,10} Vt(y; q),

• Q2: Black-out and the static point requirement q̄ = arg maxq∈{6,7,8,9,10} V
B
t (y; q),

and

• Q3: Black-out and the dynamic point control among 5 point levels, {6, 7, 8, 9, 10,∞}.

The first two sellers (Q0 and Q1) have no discretion at all, and a static point

requirement is used throughout a planning horizon (no black-out policy). But, the

difference between Q0 and Q1 is on which point-requirement is being used: The point

requirement of seller Q0 (which is a bench-mark seller) is set to be the worst among

{6, 7, 8, 9, 10} (i.e., minimizes its revenue), while that of seller Q1 is the best static

point requirement that maximizes its revenue. By comparing these two sellers, we

measure the effect of choosing an optimal static point requirement on the seller’s
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revenue (e.g., if the seller cannot dynamically control point requirement, what point

requirement should he start with?). The seller Q2 has an option to block out in

each period. The seller Q3 can dynamically control point requirement and price in

each period. For each scenario, we solve dynamic programming problems associated

with each seller’s scenario, measure the average (over different starting inventories)

percentage revenue improvement compared to the bench-mark seller (Q0), and sum-

marize the results in Table 2.

Table 3.2: Summary statistics for percentage revenue improvement from the seller’s
discretion at multiple levels.

Uniform Exponential Normal
β̄(q) R(q) Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

0.6− q/20
β̄(6) = 0.3

β̄(10) = 0.1

40 + q 3.20 8.98 9.02 5.05 8.19 8.24 3.65 9.96 9.97
30 + 2q 5.05 8.19 8.24 3.65 9.96 9.97 3.02 10.08 10.21
20 + 3q 3.65 9.96 9.97 3.02 10.08 10.21 4.44 8.52 8.73
10 + 4q 3.02 10.08 10.21 4.44 8.52 8.73 3.94 11.75 11.81

1.35− q/8
β̄(6) = 0.6

β̄(10) = 0.1

40 + q 5.42 16.55 16.63 7.69 13.86 13.96 6.10 17.58 17.60
30 + 2q 7.69 13.86 13.96 6.10 17.58 17.60 5.34 19.10 19.34
20 + 3q 6.10 17.58 17.60 5.34 19.10 19.34 6.91 14.89 15.33
10 + 4q 5.34 19.10 19.34 6.91 14.89 15.33 6.86 21.17 21.29

2.1− q/5
β̄(6) = 0.9

β̄(10) = 0.1

40 + q 7.23 23.27 23.37 8.86 17.74 17.98 8.27 24.09 24.11
30 + 2q 8.86 17.74 17.98 8.27 24.09 24.11 7.17 27.05 27.40
20 + 3q 8.27 24.09 24.11 7.17 27.05 27.40 8.16 19.71 20.42
10 + 4q 7.17 27.05 27.40 8.16 19.71 20.42 9.58 29.34 29.52

Avg. improvement 5.37 14.99 15.11 5.72 16.44 16.60 6.15 18.29 18.48

A number of observations can be made from Table 2. First, we observe that

optimizing a static point requirement (the seller Q1) can improve the revenue by more

than 5 ∼ 6% on average than the seller with the worst point requirement (bench-mark

Q0). Second, as we observe from section 4, the seller’s black-out (open/close) policy

continues to show a significant extent of improvements even compared to the seller

Q1 with the optimal fixed point requirement. We find that the additional benefit of

dynamic adjustment is surprisingly small. That is, the black-out seller Q2 achieves

almost the same revenues of the seller Q3 who can further refine point requirement.

This implies that, compared to a black-out seller, further segmenting reward sales
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with multiple tiers of point requirements only marginally increases the revenue.

Remark 3. Note that the dynamic adjustment model allows the reimbursement

rate changes in point requirement. If the reimbursement rate is constant, i.e., R(q) =

R for any q, changing point requirement decision only affects the consumers’ choice,

not the seller’s compensation scheme. In this simple extension model, all our results

in this section hold without conditions A4 and A5.

3.6 Conclusion

In this paper we study the consumers’ point redemption behavior (redeeming

accumulated points to pay for a product) and its consequent effects on the seller’s

dynamic pricing and inventory rationing decisions. Since the seller earns different

amounts of revenue from cash payment and point redemption, the loyalty program

and consumer’s redemption choice affects the seller’s bottom line. For instance, if the

reimbursement rate is low (compared to the cash price), the loyalty program hurts

the seller’s revenue (i.e., cannibalization with a lower priced good). On the other

hand, loyalty program can benefit the seller if a consumer who can not afford a cash

price purchases with points. We first model the consumer choice behavior, capturing

three attributes – reservation price, point balance, and perceived value of a loyalty

point. Then, we incorporate this choice model into the seller’s problem to see how

the seller reacts to the point redemption behavior and its impact on the revenue. We

particularly modeled three different cases depending on the level of sellers’ discretion

over the terms of reward sales: (1) the seller who has no discretion, (2) the seller

who can black out reward sales, and (3) the seller who can change both the price and

point requirement in each period, and analyze the impact of seller’s discretion on the

seller’s strategy and revenue.

We find that the seller either adds a premium or offers a discount depending
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on the gap between the reimbursement rate and the cash-only price. For instance,

when the reimbursement rate is low relative to the cash-only price, the seller offers

a discount in order to convert some of reward sales to cash sales. In the opposite

case, the seller offers a premium to divert some consumers to reward sales. When a

seller can further control the availability of reward sales, we find that it is optimal

to block out when the inventory level (relative to the remaining selling season) or

the reimbursement rate is very low. Notice that, in both cases, the seller can avoid

a deep discount on price by simply closing the reward sales. However, unless the

gap between the cash-only price and the reimbursement rate is significant, allowing

reward sales is generally better for the seller as doing so increases the total sales and

revenue. Thus, even when the reimbursement rate is lower than the cash-only sales,

allowing reward sales with a discount can be still optimal as long as the benefit from

increased sales is significant. In the case where the seller can dynamically change both

price (for cash sales) and point requirement (for reward sales), we find that the seller

change both the price and point requirement in the same monotone direction (e.g.,

increase price and point requirement as the inventory level decreases or the remaining

time increases). We also find that further segmenting reward sales with multiple tiers

of point requirements only marginally increase the revenue from the seller with the

option to black-out reward sales.
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CHAPTER IV

On (Rescaled) Multi-Attempt Consumer Choice

Model and Its Implication on Assortment

Optimization

4.1 Introduction

Assortment optimization is one of the most important problems in operations and

marketing; it is both mathematically challenging and practically prevalent. Despite a

few decades of research on the topic, the pursuit of a new approach that can efficiently

solve a general assortment optimization problem that takes into account a wide variety

of real-world business constraints is still very vibrant. There are many reasons why

assortment optimization is difficult. First, the estimation of customer choice behavior

itself is far from trivial — it continues to be one of the most important topics in the

academic literature (Hess and Daly 2014). Second, even after a customer choice

model has been successfully estimated, the resulting model is sometimes difficult to

optimize, which limits how a decision maker can operationalize assortment, pricing,

and inventory decisions based on the solution of a model. Our work is motivated

by these very concerns. Working under the framework of mixed logit model (this

assumption is without loss of generality since McFadden et al. (2000) show that any

random utility model can be approximated to any degree of accuracy by a mixed
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logit model), we propose an approximation scheme that improves the approximation

quality of the so-called exogenous demand model (see below) and show that this

approximation can be potentially used to solve a general assortment optimization

problem with a wide variety of real-world constraints.

Exogenous demand model is perhaps the most popular choice model used in the

operations literature. It assumes that each customer behaves in the following way:

when faced with an assortment of products (an offer set), she first looks for her fa-

vorite product in the assortment; if this product is not available, she considers a

substitute product, and if this substitute product is also not available, she will not

purchase anything. Since a customer is only making two attempts when purchasing a

product, we also call this 2-attempt model. As explained in Kök and Fisher (2007),

the assumption that a customer does not consider further substitutions in her search

is not necessarily restrictive, at least in some settings. The strengths of exogenous

demand model are obvious: Not only it is intuitively appealing, it also provides a

tractable estimation and optimization framework. (We are not aware of works that

study the theoretical complexity of assortment optimization under exogenous demand

model. However, per our experience on running numerical experiments with exoge-

nous demand model, its Mixed Integer Program (MIP) formulation can be solved

very efficiently within a few seconds for a reasonable sized problem; see Table 2.)

The main weakness of exogenous demand model is that, when many customers are

willing to consider more than one substitute, it does not necessarily provide an accu-

rate approximation of the true choice model. Thus, an important research question

is how to improve the approximation quality of exogenous demand model without

significantly compromising its strengths.

The most relevant advancement to the above question that we are aware of is

made recently by Blanchet et al. (2013). (There exist other approximation schemes

such as ranking-based model, see Bertsimas and Mǐsic (2016) for literature review;
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however, these models are not the focus of our work.) The authors propose an itera-

tive Markov search model where a customer does not stop after the first substitution

attempt but continues searching until either she finds a product that she likes within

the assortment or she hits the no-purchase option. More precisely, they interpret the

substitution probability as a transition probability in a Markov chain where both the

no-purchase option and the set of products in the assortment act as the absorbing

states. The authors show that their proposed model approximates the true choice

model well, and they develop a polynomial-time algorithm to solve the corresponding

unconstrained assortment optimization problem. Although they do not benchmark

the performance of Markov chain model against the exogenous demand model, we

show using numerical experiments in Section 2.3 that the former significantly im-

proves the accuracy of the later. Moreover, since Markov chain model requires ex-

actly the same number of parameters as exogenous demand model, it is as tractable

as exogenous demand model from the estimation perspective.

The main drawback of Markov chain model is that its corresponding choice prob-

ability cannot be explicitly written. This makes it rather difficult for practitioners

to use Markov chain model in conjunction with off-the-shelf optimization solvers,

especially for the setting of assortment optimization with constraints. As noted in

Bertsimas and Mǐsic (2016), firms typically have many business rules that limit the

set of possible assortments. To name a few, a firm may have a limited shelf space

which dictates that only a finite number of products can be displayed at any time; a

firm may require that some products be offered together; and, a firm may also require

that only a number of products within a certain category to be offered at any time,

etc. There are two typical approaches taken by researchers to solve assortment opti-

mization problem with constraints. The first approach is what Bertsimas and Mǐsic

(2016) call the fix-then-exploit approach, where the researchers first fix a particular

choice model and then exploit the structure of the resulting assortment problem to
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develop either an exact or approximate solution (e.g., Rusmevichientong et al. 2010

and Désir et al. 2015). The second approach is the so-called Mixed Integer Optimiza-

tion (MIO) approach where an assortment problem is formulated as an MIP (or its

variant) and then solved using an off-the-shelf MIP solver; this approach typically re-

quires that the corresponding choice probability can be explicitly written. Note that

while the fix-then-exploit approach allows researchers to develop a highly efficient

algorithm for a specific model, the MIO approach is highly flexible in the sense that

no problem-specific effort to develop a specialized algorithm is required and prac-

titioners can simply declare their constraints to the solver. Since the approximate

choice probability under Markov chain model cannot be explicitly written, a spe-

cific algorithm needs to be developed to solve a constrained assortment optimization

problem under Markov chain model. Indeed, this is the approach taken by Feldman

and Topaloglu (2014) and Désir et al. (2015), where the authors focus on specific

forms of constraints. In particular, Feldman and Topaloglu (2014) develop a linear

programming algorithm in the context of the network revenue management problem,

and Désir et al. (2015) develop constant factor approximations for assortment opti-

mization problem with the cardinality and capacity constraints. In contrast to this,

constrained assortment optimization problems under exogenous demand model, at

least for the types of constraint discussed above, can be easily formulated as a Mixed

Integer Linear Program (MILP) and solved using an off-the-shelf solver. (Per our

numerical experiments in Section 3, the resulting MILP can be solved within a few

seconds for a reasonable sized problem.)

Our contribution. In this work, we wish to bridge the gap between the classical

exogenous demand model and the recently introduced Markov chain model. The cen-

tral question we ask is whether it is possible to improve the approximation quality of

exogenous demand model without sacrificing its tractability and versatility in dealing

with real-world constraints. We are particularly interested in a type of approximation
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whose corresponding choice probability can be explicitly written as it allows practi-

tioners to simply use off-the-shelf optimization solvers to solve a variety of constrained

assortment problems without having to develop a specific algorithm for a specific set

of constraints. Thus, our work shares the same spirit as the recent work of Bertsimas

and Mǐsic (2016). (Our work differs from theirs in that they use a ranking-based

approximation whereas we use a new multi-attempt approximation.) We first study

the approximation quality of a natural generalization of exogenous demand model,

called multi-attempt model. To be precise, assuming that all customers are willing

to consider at most k − 1 substitutes, how much improvement does this extra flexi-

bility give, in general, as a function of k? We show that the approximation error of

multi-attempt model relative to the true choice probability decreases exponentially in

k. This confirms our intuition that capturing higher substitution dynamics leads to

a better approximation. Unfortunately, while the theoretical bound of multi-attempt

model is encouraging, its empirical performance is somewhat discouraging as it heav-

ily depends on the number of products n. (Per our results in Table 4.1, for n = 10,

4-attempt model is better than Markov chain model; for n = 100, even 5-attempt

model is still a lot worse than Markov chain model. This is not satisfactory be-

cause k-attempt model with k ≥ 3 requires a lot more parameters than Markov chain

model.) Upon a closer examination, however, it turns out that multi-attempt model

consistently underestimates the true choice probability, which leads to its poor em-

pirical performance. This motivates us to construct a modified multi-attempt model,

which we call the rescaled multi-attempt model. The idea is to start with the original

k-attempt model and then re-scale it with a non-constant factor to make the sum

of probability equals one. The proposed re-scaling significantly improves the perfor-

mance of the original multi-attempt model: If the true choice model is Mutinomial

Logit (MNL), we show that the rescaled k-attempt model is exact for all k ≥ 1 (this

result is reminiscent of the result in Blanchet et al. (2013) that Markov chain model is
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exact for MNL); if, on the other hand, the true choice model is not MNL, our numeri-

cal experiments show that the approximation quality of the rescaled 2-attempt model

is very close to Markov chain model and the approximation quality of the rescaled

3-attempt consistently dominates the Markov chain model (see Table 4.1).

Both the rescaled 2-attempt and the Markov chain models share exactly the

same number of parameters; and yet, the corresponding choice probability under

the rescaled 2-attempt model can be explicitly written. This allows us to more easily

formulate an assortment optimization problem with constraints. In Section 3, we

show that the resulting constrained assortment optimization problems (with typi-

cal constraints discussed before) under the rescaled 2-attempt model can be written

as a Mixed Integer Linear Fractional Program (MILFP). Although MILFP in gen-

eral is difficult to solve, many important problems in engineering and science can

be formulated as MILFPs; these have motivated intensive researches in the scientific

community to develop efficient methods (both exact and approximate) for solving

large-scale MILFPs (e.g., Tawarmalani and Sahinidis 2002 and Yue et al. 2013). On

another note, the MILFP formulation of assortment optimization under the rescaled

2-attempt model can be equivalently transformed into a 0-1 quadratic programming.

Again, although 0-1 quadratic programming is in general difficult to solve (i.e., from

theoretical complexity perspective), we do have a 50-year deep of literature on the

topic of approximation algorithm for 0-1 quadratic programming (e.g., Kochenberger

et al. 2014 ). Thus, we are not lacking of sophisticated algorithms that can be used to

solve the resulting assortment problem under our proposed approach. Indeed, this is

another advantage of having an explicit expression of approximate choice probability

as it allows us to borrow tools from existing literature in addition to using off-the-shelf

solvers. For the purpose of numerical illustrations, in this work, we will only focus

on one approach, the so-called Dinkelbach algorithm. We discuss this in more detail

in Section 3.
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4.2 Choice Approximation Models

In this section, we describe both the multi-attempt and the rescaled multi-attempt

models. In addition, we also provide results from numerical experiments to compare

the approximation accuracy of these models with Markov chain model. We denote the

universe of n products by the set N = {1, ..., n} and the no-purchase alternative as

product 0. Since McFadden et al. (2000) show that any random utility choice model

can be approximated by a mixture of Multinomial Logits (MNLs) at any degree of

accuracy, we will assume that the underlying true model is a mixture of M MNL

models. Let θm, m = 1, . . . ,M , denote the probability that a random customer

belongs to segment m (by construction, we must have θ1 + ... + θM = 1) and let the

MNL parameters for segment m be denoted by uim ≥ 0 for i ∈ N0 = N ∪ {0} and

m = 1, ...,M . Then, for any offer set S ⊂ N , the true choice probability of product

i ∈ S0 := S ∪ {0} is given by

π(i, S) =
M∑
m=1

θm
uim∑
j∈S0

ujm
.

4.2.1 Multi-Attempt Model

Per our discussions in Section 1, under the k-attempt model, each customer con-

siders up to k− 1 substitutes, beyond her favorite product, before she decides to not

purchase anything. To illustrate, suppose that N = {1, 2, 3, 4} and S = {1, 2}. Under

2-attempt model, a customer will purchase product 1 if either (1) it is her favorite

product among all four products and it is preferred to the no-purchase alternative, or

(2) she likes either product 3 or 4 best but unfortunately neither of these is included

in S and her next favorite product is 1. Let Ui denote the utility of product i and let S̄

denote the complement of S. Mathematically, we can write the probability that a cus-

tomer will purchase product 1 as follows: π̂2(1, S) = P (U1 > max{U0, U2, U3, U4}) +

P (U3 > U1 > max{U0, U2, U4}) + P (U4 > U1 > max{U0, U2, U3}) := λ1 + λ31 + λ41.
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Note that this choice probability is the same as the choice probability under the

classic exogenous demand model. Similarly, under 3-attempt model, a customer will

purchase product 1 if either (1) it is her favorite product among all four products

and the no-purchase alternative, or (2) it is her second favorite product after either

product 3 or 4, or (3) it is her third favorite product after both products 3 and 4. We

can write the probability that a customer will purchase product 1 as follows:

π̂3(1, S) = P (U1 > max{U0, U2, U3, U4})

+ P (U3 > U1 > max{U0, U2, U4}) + P (U4 > U1 > max{U0, U2, U3})

+ P (min{U3, U4} > U1 > max{U0, U2})

:= λ1 + λ31 + λ41 + λ{3,4}1.

More generally, given a set of products N and an offer set S, the probability that

a customer will purchase product i ∈ S0 under k-attempt model is given by

π̂k(i, S) = λi +
∑
j1∈S̄

λj1i +
∑

{j1,j2}⊆S̄

λ{j1,j2}i + · · · +
∑

{j1,j2,...,jk−1}⊆S̄

λ{j1,j2,...,jk−1}i,

where λ{j1,j2,...,jk−1}i is the probability that a customer values product j ∈ {j1, j2, . . . , jk−1}

better than i and product j′ ∈ N − {j1, j2, . . . , jk−1} ∪ {0} worse than i. That is,

λ{j1,j2,...,jk−1}i = P
(

min{Uj1 , . . . , Ujk−1
} > Ui

≥ max{Ul : l ∈ N \ {j1, j2, . . . , jk−1} ∪ {0}}
)
.

Since a customer makes a purchase as soon as her next favorite product is in S, she

only needs to consider at most |S̄| substitutes (beyond her most favorite product)

before making a purchase. This means that, under multi-attempt model, we must

have: π̂|S̄|+1(i, S) = π(i, S) for all i ∈ S0. Moreover, by construction, we also have
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π̂k(i, S) < π(i, S) for all k < |S̄|+ 1 and i ∈ S0.

Error bound for multi-attempt model. We now derive an error bound for

k-attempt model. Let umax(S̄) be the maximum probability that the most favorite

product of a random customer from any segment m = 1, . . . ,M is included in a

compliment of offer set S, S̄ := N \ S ∪ {0}. That is, umax(S̄) = maxm
∑

i∈S̄ uim.

The following theorem tells us that the relative error of multi-attempt model decreases

exponentially with the number of attempts k.

Theorem IV.1. For any S ⊂ N and i ∈ S0, we have:

(
1− umax(S̄)k

)
· π(i, S) ≤ π̂k(i, S) ≤ π(i, S). (4.1)

Note that multi-attempt model best approximates the true choice model when

umax(S̄) is small. Intuitively, this is likely to happen when S is large. As mentioned

in Section 1, although the theoretical bound of multi-attempt model is encouraging,

we will show that its empirical performance is not satisfactory: see numerical results

in Table 4.1. This motivates us to construct a modified multi-attempt model, called

the rescaled multi-attempt model which we discuss next.

4.2.2 The Rescaled Multi-Attempt Model

Under the rescaled k-attempt model, we approximate π(i, S) with π̂Rk (i, S) defined

below:

π̂Rk (i, S) =
π̂k(i, S)∑
j∈S0

π̂k(j, S)
.

Two comments are in order. First, since the rescaled k-attempt model uses the k-

attempt model as its primitive, they share the same set of parameters. In particular,

all three models – the 2-attempt model, the rescaled 2-attempt model, and the Markov
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chain model – share exactly the same set of parameters. Second, the rescaled 1-

attempt model is identical to MNL approximation. Thus, if the underlying true choice

model is MNL (i.e., there is only 1 segment of customer), the rescaled 1-attempt model

is exact.

Analogous to umax(S̄), we define umin(S̄), the minimum probability that the most

favorite product of a random customer from any segment m = 1, . . . ,M is included

in S̄. That is, umin(S̄) = minm
∑

i∈S̄ uim. The following result is an immediate

corollary of Theorem 1.

Corollary IV.2. For any S ⊂ N and i ∈ S0, we have:

1− umax(S̄)k

1− umin(S̄)
· π(i, S) ≤ π̂Rk (i, S) ≤ 1

1− umax(S̄)
· π(i, S). (4.2)

While multi-attempt model consistently underestimates the true choice probabil-

ity, the rescaled multi-attempt model may sometimes overestimate the true proba-

bility. Note that the lower bound in Corollary IV.2 is larger than the lower bound

in Theorem IV.1. This suggests that the rescaled multi-attempt model improves the

underestimation error while admitting the overestimation error. The important ques-

tion is whether this is a good compromise overall. Our numerical results in Table 4.1

show that the rescaled multi-attempt model significantly improves the empirical ac-

curacy of multi-attempt model. Theoretically, we are also able to show the exactness

of the rescaled multi-attempt model when the true choice probability is MNL. This

result is reminiscent of the result in Blanchet et al. (2013) that Markov chain model

is exact in the case of MNL.

Lemma IV.3. Suppose that the underlying true choice model is an MNL. For any

k > 0, S ⊂ N and i ∈ S0, the rescaled k-attempt model is exact, i.e., π̂Rk (i, S) =

π(i, S) for any k > 0.
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4.2.3 Numerical Experiments

We conduct numerical experiments with respect to a mixture of M MNLs to

compare the performance of the multi-attempt, the rescaled multi-attempt, and the

Markov chain (MC) models. Let n denote the number of products and M denote

the number of customer segments in the MMNL model. For a fixed combination of

number of products (n = 10, 20, 50, 100) and number of segments (M = 3, 5, 10, 20),

we generate 100 instances. The probability distribution over different MNL seg-

ments, θ1, ..., θM , are first generated using i.i.d samples of the uniform distribu-

tion in [0, 1] and then normalized such that θ1 + · · · + θM = 1. For each segment

m = 1, ...,M , the MNL parameters of segment m, u0m, ...unm are randomly sampled

from the uniform distribution in [0, 1]. For each instance, we generate a random offer

set of size between n/3 and 2n/3, and compute the choice probabilities under the

three models. We report both the average and maximum relative errors defined as:

avg.Error = 1
400

∑400
a=1 Error(Sa) and max.Error = max1≤a≤400 Error(Sa), where

Error(S) = 100% ·maxi∈S
|π̂(i,S)−π(i,S)|

π(i,S)
. The results can be seen in Table 4.1.

Table 4.1: Comparison of approximation accuracy of various models

k-attempt rescaled k-attempt
MC k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

n=10
max.Error 11.69 72.06 48.89 30.42 16.58 7.20 21.95 15.44 9.68 5.10 1.95
avg.Error 2.45 48.36 21.47 8.58 2.99 0.82 5.64 3.35 1.70 0.71 0.22

n=20
max.Error 8.40 68.55 45.76 29.59 18.43 10.96 17.46 11.26 6.64 4.14 2.77
avg.Error 2.13 50.82 25.02 11.91 5.47 2.40 4.56 2.91 1.72 0.95 0.49

n=50
max.Error 8.44 63.41 39.76 24.64 15.07 9.10 13.99 10.44 7.41 5.02 3.24
avg.Error 1.76 50.68 25.58 12.84 6.41 3.18 3.66 2.40 1.51 0.91 0.53

n=100
max.Error 3.17 61.17 37.16 22.41 13.42 7.97 6.03 4.23 2.86 1.87 1.18
avg.Error 1.35 51.10 26.18 13.44 6.90 3.55 2.30 1.51 0.96 0.59 0.35

A number of observations can be made from Table 4.1. First, although the ac-

curacy of multi-attempt model improves as k increases, its rate of improvement is

not satisfactory. For example, when n = 100, the average relative error of 5-attempt

model is 3.55%; in contrast, the average relative error of Markov chain model is only

about 1.35%. Considering the fact that 5-attempt model requires much more param-
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eters than Markov chain model, this level of performance is not acceptable. Second,

the rescaled 2-attempt model significantly improves the accuracy of 2-attempt model

and its relative error is very close to the relative error of Markov chain model. More-

over, the rescaled 3-attempt consistently performs better than Markov chain model.

This highlights the benefit of re-scaling.

4.3 Assortment Optimization

We now discuss how to use the rescaled multi-attempt model in assortment op-

timization. Since the approximation quality of the rescaled 2-attempt model is very

close to Markov chain model, in this work, we will only focus our discussions on the

rescaled 2-attempt model. (Our approach for the rescaled 2-attempt model is also

generalizable to re-scaled k-attempt model.) We show that assortment optimization

under the rescaled 2-attempt model is not much harder than assortment optimization

under exogenous (2-attempt) demand model. In particular, it can be formulated as

a Mixed Integer Fractional Linear Program (MILFP) and can be solved using the

so-called Dinkelbach algorithm.

4.3.1 Optimization Formulation

Let ri denote the revenue of product i and xi ∈ {0, 1} be a binary decision variable

for product i. We first consider unconstrained assortment optimization problem under

exogenous demand model. This can be written as a Mixed Integer Linear Program
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(MILP) formulation below:

J2 = max
~x∈{0,1}n

n∑
i=1

ri

[
λi · xi +

∑
j 6=i

λji · xi · (1− xj)

]

= max
~x∈{0,1}n

~y∈[0,1]n(n−1)

n∑
i=1

ri

[
λi · xi +

∑
j 6=i

λji · yji

]
s.t. yji ≤ xi, yji ≤ 1− xj, yji ≥ xi − xj ∀ i 6= j

We next consider unconstrained assortment optimization under the rescaled 2-

attempt model:

JR2 = max
~x∈{0,1}n

n∑
i=1

ri

[
λi · xi +

∑
j 6=i λji · xi · (1− xj)

]
λ0 +

∑
j 6=0 λj0 · (1− xj) +

∑n
i=1

[
λi · xi +

∑
j 6=i λji · xi · (1− xj)

]
= max

~x∈{0,1}n
~y∈[0,1]n(n−1)

n∑
i=1

ri

[
λi · xi +

∑
j 6=i λji · yji

]
λ0 +

∑
j 6=0 λj0 · (1− xj) +

∑n
i=1

[
λi · xi +

∑
j 6=i λji · yji

]
s.t. yji ≤ xi, yji ≤ 1− xj, yji ≥ xi − xj ∀ i 6= j

Note that JR2 is an MILFP. As discussed in Section 1, although MILFP is in

general difficult to solve, it appears in many applications in engineering and science

(Tawarmalani and Sahinidis 2002). Consequently, there is a deep and ever-growing

literature on different algorithmic approaches to solve MILFP, either exactly or ap-

proximately. When it comes to large-scale MILFP, one popular approach is based

on Dinkelbach algorithm, first developed in Dinkelbach (1967). In the context of our

assortment problem above, Dinkelbach algorithm works as follows. First, we define

N(~x, ~y) =
∑n

i=1 ri

[
λi · xi +

∑
j 6=i λji · yji

]
and D(~x, ~y) = λ0 +

∑
j 6=0 λj0 · (1 − xj) +∑n

i=1

[
λi · xi +

∑
j 6=i λji · yji

]
, and let F (q) = max{N(~x, ~y)−q ·D(~x, ~y) : (~x, ~y) ∈ A∗},

where A∗ is the set of feasible (~x, ~y). Now, we proceed in three steps:

Step 1. Choose an arbitrary feasible (~x1, ~y1), set q2 = N(~x1,~y1)
D(~x1,~y1)

, and let t = 2
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Step 2. Compute F (qt) and denote its optimal solution as (~xt, ~yt).

Step 3. If F (qt) ≤ ε (optimality tolerance), stop and output (~xt, ~yt);

Otherwise, let qt+1 = N(~xt,~yt)
D(~xt,~yt)

, set t = t+ 1, and go back to Step 2.

Note that computing F (qt) in Step 2 requires solving an MILP with similar size as

J2. So, the running time of Dinkelbach algorithm approximately equals the running

time for solving J2 multiplies the number of iterations for F (qk) to be sufficiently close

to 0. It has been shown that F (qk)→ 0 at a super-linear rate (You et al. 2009); in fact,

when all the variables are binary, in the worst case scenario, Dinkelbach algorithm only

requires about log(number of variables) iterations. This highlights the practicality of

Dinkelbach algorithm for solving MILFP, especially when the corresponding inner

optimization can be quickly solved.

Dealing with constraints. Our optimization model can further accommodate

a variety of constraints on the assortment. For example, the following types of con-

straint from Bertsimas and Mǐsic (2016) can be easily included: (1) At most U

products can be chosen from a subset of size B (maximum subset, also called as

cardinality constraints); (2) the number of offered products from a subset of size B

cannot be greater than that from the other subset of size B (precedence type 1);

(3) a specific product must be offered to include any product from a subset of size

B − 1 (precedence type 2). Any of these constraints can be formulated as a linear

constraint, and adding linear constraints still results in an MILFP (under the rescaled

2-attempt model). Thus, we can still use Dinkelbach algorithm.

4.3.2 Numerical Experiments

To compare the performance of the multi-attempt choice model in assortment

optimization, we conduct numerical experiments using the same random instances of

the mixture of M MNLs as in Section 2.3. In addition, we also generate a random
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number between 0 and 1 for the revenue of each product(i.e., ri for product i). We then

compute the optimal assortment under the Markov chain, 2-attempt, and rescaled 2-

attempt models, and calculate the expected revenue of each solution under the true

choice model. Table 4.2 summarizes the average relative gap in expected revenue

from the true optimal revenue, including the average running time, for each model.

We note that all the computational experiments are carried out on a Mac with Intel

Core i5 @ 2.7 GHz and 16-GB RAM. All models and solution procedures are coded

in Matlab 2011 and the MILP problems in the proposed algorithm are solved using

CPLEX 12 with optimality tolerance of 10−5.

Table 4.2: Average relative gap in expected revenue for Markovian model and multi-
attempt models with its computing time in second.

Markov Chain 2-attempt rescaled 2-attempt
gap(%) time(s) gap(%) time (s) gap(%) time (s)

n=10
M = 3 0.0243 0.0011 9.5785 0.0062 0.0723 0.0193
M = 5 0.1077 0.0009 9.5440 0.0061 0.1246 0.0196
M = 10 0.0601 0.0009 9.4490 0.0064 0.0998 0.0201

n=20
M = 6 0.0558 0.0028 14.6167 0.0260 0.0751 0.0859
M = 10 0.0217 0.0027 14.5592 0.0252 0.0217 0.0834
M = 20 0.0478 0.0029 14.6049 0.0250 0.0492 0.0859

n=50
M = 10 0.0380 0.0134 21.2468 0.2997 0.0498 1.2327
M = 20 0.0380 0.0134 21.2468 0.2997 0.0498 1.2327
M = 50 0.0069 0.0169 20.7945 0.2882 0.0080 1.2406

n=100
M = 10 0.0218 0.0407 24.5002 3.3212 0.0234 14.8783
M = 20 0.0179 0.0439 23.8145 3.2690 0.0186 14.6535
M = 50 0.0044 0.0555 24.4001 3.2699 0.0045 14.5374

Observe that re-scaling significantly improves the performance of 2-attempt model.

Moreover, the difference between the relative gap of Markov chain model and rescaled

2-attempt model is negligible. As expected, assortment optimization under Markov

chain model can be solved extremely quickly. Although the running time of assort-

ment optimization under the rescaled 2-attempt model is not as short as the running

time under Markov chain model, it is nevertheless still quite tractable. Note that

the running time under 2-attempt model is only about 3 seconds for n = 100. In the
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case of the rescaled 2-attempt, we use about 5 iterations in the Dinkelbach algorithm,

which explains the approximate running time of 15 seconds for n = 100. The number

of iterations in Dinkelbach algorithm is dictated by the optimality tolerance ε (see

Step 3). Practically, by adjusting the desired optimality level, one can further reduce

the running time under the rescaled 2-attempt model.

Table 4.3: Average relative gap in expected revenue for constrained (non-scaled and
rescaled) 2-attempt models with its computing time in second.

2-attempt rescaled 2-attempt
gap(%) time(s) gap(%) time(s)

n = 10, M = 5

No constraints 9.5541 0.0068 0.1218 0.0191
Max.subset, C = 2, B = 5, U = 3 7.8698 0.0077 0.1250 0.0203
Prec.type 1, C = 1, B = 5 9.6111 0.0076 0.1392 0.0210
Prec.type 2, C = 2, B = 5 7.1255 0.0073 0.0846 0.0218

n = 20, M =10

No constraints 14.8914 0.0268 0.0440 0.0839
Max.subset, C = 4, B = 5, U = 3 12.2535 0.0387 0.0420 0.0944
Prec.type 1, C = 3, B = 5 13.7742 0.0373 0.0534 0.0959
Prec.type 2, C = 4, B = 5 11.2007 0.0334 0.0668 0.1110

n = 50, M =20

No constraints 21.3102 0.2994 0.0229 1.2814
Max.subset, C = 5, B = 10, U = 5 14.6982 0.4824 0.0209 1.3596
Prec.type 1, C = 4, B = 10 20.3282 0.3591 0.0154 1.3101
Prec.type 2, C = 5, B = 10 17.1013 0.3500 0.0148 1.5295

n =100, M =20

No constraints 24.3847 3.3763 0.0111 15.2983
Max.subset, C =10, B = 10, U = 5 18.2043 5.5751 0.0119 16.9237
Prec.type 1, C = 9, B = 10 24.7584 4.4081 0.0125 16.8627
Prec.type 2, C =10, B = 10 20.0725 3.8482 0.0143 18.3797

Constrained problem. To see the effect of constraints in optimization perfor-

mance, we solve the optimization instances that we used in Table 2 with a combination

of constraints that we discussed in Section 3.1. For each constraint set, we create C

constraints by randomly partitioning a set of n products into (mutually exclusive)

subsets of size B. The average relative gap and computing time for each constraint

are summarized in Table 3. We confirm that the constrained problems also can be

solved quickly (less than 20 seconds when n = 100) and its performance is very close

to the true optimal performance (less than 0.2% of relative average gap).
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4.4 Conclusion

In this work, we provide a new approach to approximate a general mixed-logit-

based choice model. We show that the classic exogenous demand model can be

significantly improved by re-scaling. The resulting approximation is exact for MNL

and has an empirical performance that is very close to the performance of the recently

developed Markov chain model. Moreover, since the proposed approximation model

has an explicit mathematical expression, it can be immediately used in an assortment

optimization with a variety real-world constraints. Our numerical experiments show

that our model is quite tractable for a reasonable sized problem.
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CHAPTER V

Conclusions

To summarize the dissertation, we study consumer behavior and its effects on the

firm’s operations management strategies. We consider various aspects of consumer

behavior – strategic joining behavior, loyalty point redemption, and substitution be-

havior – in the contexts of the capacity investment, pricing adjustment, inventory

rationing, and product line selection problems. Incorporating such behavior into the

traditional operations management problem, the dissertation extends insights about

demand or market reactions to the firm’s decisions, and highlights directions on how

to properly fix the firm’s strategies accordingly.

In Chapter II, we study the customers’ strategic joining behavior in a service

system. In particular, we consider three scenarios for consumers – selfish, collective,

and social – for their decisions to join the service system after observing the queue

length. Depending on how consumers join, the firm chooses the service rate, which

also depends on their types – profit-maximizing and welfare-maximizing. We find

that there can be a “Benefit of Anarchy” in contrast to the price of anarchy liter-

ature. That is, the utility of selfish (non-strategic) customers can be higher than

that of collective customers who are coordinated to maximize their average utility. In

particular, this happens when the profit-maximizing firm endogenously chooses the

lower service rate to collective customers knowing that collective customers join less
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to resolve the unnecessary traffic cost. Furthermore, we also find that the self-interest

behavior can generate a greater welfare of the system. Despite that we consider a

very simple queueing context, this work confirms the interesting effects of strategic

(or selfish) behavior of consumers and the firm on the system performance through

their interactions in the equilibrium.

In Chapter III, we study the consumers’ redemption behavior of loyalty points and

its impacts on the seller’s pricing and inventory rationing strategies. In widely used

loyalty programs, consumers actively manage and redeem their accumulated loyalty

points to acquire a product or service. While consumers strategically compare when

to use loyalty points instead of paying the posted price, the seller accrues different

amount of revenues depending on these consumers’ payment decisions. Taking ac-

count for its effect on the seller’s revenue, we characterize how the seller should adjust

the posted price and manage the terms of reward sales. In particular, we find that

the seller should either add a premium or offer a discount critically depending on

whether the seller receives a higher or lower revenue from reward sales compared to

when there are no reward sales. We also find that the seller blocks out the availability

of point redemption (or increases the point requirement) when the seller accrues the

significantly lower revenue from reward sales.

In Chapter IV, we study the consumers’ substitution behavior when their preferred

product is not available, and its implications on the seller’s assortment optimization

problem. Given the combinatorial properties of the problem itself, the estimation

and optimization regarding these substitutions are mathematically challenging but

also very important. Motivated by the classic exogenous demand model and the

recently developed Markov chain model, we develop a new approximation to the

random utility-based customer choice model called rescaled multi-attempt model, in

which a customer may consider several substitutes before finally deciding to not pur-

chase anything. The rescaled multi-attempt model provides an explicit form of the
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approximate choice probability. From a practical perspective, this allows the decision

maker to use off-the-shelf solver to solve a general assortment optimization problem

with a variety of real-world constraints.
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APPENDIX A

Proofs and Technical Details for Chapter II:

Effect of Strategic Behavior In a Service System

Proof of Proposition II.2. (Comparison of three thresholds)

(i) Suppose that nI(µ) < nC(µ) for some µ. Then, any collective customer who

joins the queue of length greater than nI(µ) receives negative utility from service.

Moreover, such a customer can only decrease the utility of other customers. We

therefore have a contradiction to the optimality of nC(µ) for customer utility.

That nC(µ) ≤ nS(µ) is trivially true because the definitions of nC(µ) and nS(µ) share

the same function, f(µ, n), on the LHS of the condition which is increasing in n, and

the RHS for the collective threshold is less than for the social threshold (b ≤ b0).

(ii) In this proof, we relax the integer constraint on the thresholds, and use the

unrounded thresholds, ñI(µ) and ñS(µ). We want to show that there exists an interval

(µL, µH) such that the unrounded individual threshold is larger than the unrounded

social threshold if and only if the service rate falls in this interval, i.e., ñI(µ) ≥ ñS(µ)

if and only if µ ∈ (µL, µH). This is equivalent to the following:

ñIµñ
I(µ)+1 − (ñI(µ) + 1)µñ

I(µ) + 1

µñI(µ)(µ− 1)2
≥ b0 if and only if µ ∈ (µL, µH). (A.1)
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After plugging in ñI(µ) = bµ, (A.1) for µ 6= 1 is equivalent to

g(µ) := (b0 − b)(µ− 1)

(
µ− b0

b0 − b

)
+ 1− µ−bµ ≤ 0 if and only if µ ∈ (µL, µH).

(A.2)

The first derivative of g(µ) with respect to µ is

g′(µ) = (b0 − b)
(

2µ− 2b0 − b
b0 − b

)
+ bµ−bµ(1 + log µ). (A.3)

Note that g(0) > 0, limµ→∞ g(µ) > 0, g(1) = 0, and g′(1) = 0. Thus, (A.2) will hold

if we can show that g′(x) has at most 3 zeros including one at µ = 1. We have that

g′(µ) = 0 is equivalent to

(b0 − b)
(

2µ− 2b0 − b
b0 − b

)
= −bµ−bµ(1 + log µ). (A.4)

A number of observations about (A.4):

(i) The LHS is an increasing linear function in µ because b0 ≥ b.

(ii) The RHS is positive only if µ < 1
e

and negative otherwise.

(iii) The first derivative of the RHS with respect to µ is

bµ−1−bµ(bµ(1 + log µ)2 − 1).

Thus, there exists a unique µa such that bµa(1 + log µa)
2 = 1, and the RHS decreases

in µ if µ < µa, and increases to 0 if µ > µa.

(iv) The second derivative of the RHS with respect to µ is

bµ−2−bµ (1 + 3bµ(1 + log µ)− b2µ2(1 + log µ)3
)
.

There exists µb such that the RHS is convex if 1
e
< µ < µb and concave if µ > µb.
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(v) We have µb > µa because the function is convex around the minimum at µa.

Then, we have that the RHS is convex decreasing if 1
e
< µ < µa, convex increasing if

µa < µ < µb, and concave increasing if µ > µb. Depending on the values of µa, µb,

and 1, we have the following three cases:

(vi-a) µa ≤ µb ≤ 1: If the slope of the LHS is greater than that of the RHS (i.e.,

2(b0 − b) > bµ−2−bµ (1 + 3bµ(1 + log µ)− b2µ2(1 + log µ)3)), we can have at most

three solutions to (A.4) where all the non-trivial solutions are smaller than 1, i.e.,

µ1 ≤ µ2 ≤ µ3 = 1. If the slope of the LHS is smaller, we also have three solutions

(µ1 ≤ µ2 = 1 ≤ µ3).

(vi-b) If µa ≤ 1 ≤ µb, we have the three solutions to (A.4): µ1 ≤ µ2 = 1 ≤ µ3.

(vi-c) If 1 ≤ µa ≤ µb. we can have at most three solutions to (A.4): µ1 = 1 ≤ µ2 ≤ µ3.

We have shown that g′(µ) has at most three zeros, which implies that g(µ) has at
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Figure A.1: Illustration of the LHS and RHS of (A.4) where µ = 1 is the largest
solution (left: b = 5, b0 = 16), the middle solution (middle: b = 3, b0 = 4), or the
smallest solution (right: b = 1, b0 = 1.25).

most three stationary points. If there are two different intervals of µ within which

g(µ) ≤ 0, this is only possible if g(µ1) < 0, g(µ2) > 0 and g(µ3) < 0 (i.e., g(µ)

has a shape of W ). Given that one of the three stationary points is µ = 1 and

g(1) = g′(1) = 0, it follows that one of the g(µ1), g(µ2), and g(µ3) equals zero.

Thus, there exists a unique interval (µL, µH) such that (A.2) holds for µ 6= 1, and

ñS(µ) ≥ ñI(µ) if and only if µ 6= 1 is within that interval. This further implies that,

after applying the integer constraint on the threshold, there exists an interval within

which nS(µ) ≥ nI(µ), otherwise nS(µ) ≤ nI(µ). �
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Proof of Corollary II.3. (Comparison of Π, U , W by customer type)

(i) The effective arrival increases in n, thus, the profit function increases in n.

(ii) For given µ, the customer utility function is discretely unimodal in n. Given that

nC(µ) is a unique optimal threshold, it follows that customer utility increases in n if

n < nC(µ), and decreases if n > nC(µ).

(iii) and (iv): As with (ii), the welfare function is discretely unimodal in n for given

µ while nS(µ) achieves the optimum. �

Proof of Lemma II.4. (Profit function properties)

(i) The profit function for given n is Π(µ, n) = pλe(µ, n) − c(µ) where the effective

arrival rate (λe) is given by

λe(µ, n) =


1− µ−1

µn+1−1
, µ 6= 1

n
n+1

, µ = 1.

(A.5)

For any µ 6= 1 , the effective arrival rate is increasing in µ for given n > 0:

∂λe(µ, n)

∂µ
=
nµn+1 − (n+ 1)µn + 1

(µn+1 − 1)2

=
(µ− 1)

{
nµn − µn−1

µ−1

}
(µn+1 − 1)2

=
(µ− 1)

{
(µn − 1) + (µn − µ) + ...+ (µn − µn−1)

}
(µn+1 − 1)2

≥ 0. (A.6)

And the effective arrival rate is concave in µ for given n:

∂2λe(µ, n)

∂µ2
= −

(n+ 1)µn−1
(
n(µ− 1)(µn+1 + 1)− 2µ(µn − 1)

)
(µn+1 − 1)3

= −
(n+ 1)µn−1(µ− 1)

(
n(µn+1 + 1)− 2µµ

n−1
µ−1

)
(µn+1 − 1)3

≤ 0. (A.7)
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The last inequality holds because n(µn+1 + 1)− 2µµ
n−1
µ−1

> 0 (see the Proof of Lemma

1 for details). Thus, the effective arrival rate is concave in µ. Given the convex

operating cost, we complete the proof.

(ii) The effective arrival rate is increasing in n for given µ:

λe(µ, n+ 1)− λe(µ, n) = − µ− 1

µn+2 − 1
+

µ− 1

µn+1 − 1
> 0.

This implies that the profit function jumps upward when the threshold increases:

limε→0+ λe(µ− ε, n− 1) = λe(µ, n− 1) < λe(µ, n) for µ <∞. �

Proof of Lemma II.5. (Upper-envelope function)

(i) The relaxed effective arrival rate is given by

λe(µ, ñ(µ)) =


1− µ−1

µñ(µ)+1−1
, µ 6= 1

ñ(µ)
ñ(µ)+1

, µ = 1.

To show the continuity of the relaxed profit function, we only need to show that

λe
(
µ, ñα(µ)

)
is continuous at µ = 1. Using L’Hôpital’s rule, we have

lim
µ→1

(
1− µ− 1

µñ(µ)+1 − 1

)
= lim

µ→1

(
1− 1

(ñ(µ) + 1)µñ(µ) + ñ′(µ)µñ(µ) log µ

)
=

ñ(1)

ñ(1) + 1
.

Hence, the relaxed profit function is continuous.

To show that the relaxed profit function is an upper envelope, note that λe
(
µ, ñ(µ)

)
≥

λe
(
µ, n(µ)

)
holds because λe(µ, n) is increasing in n and ñ(µ) ≥ n(µ) for any µ. And

the equality holds only for every µ(n) because ñ(µ) = n(µ) only for µ = µ(n).

(ii) Consider a profit maximizer is µ∗ with the corresponding threshold n∗. That is,

µ∗ ∈ [µ(n∗), µ(n∗ + 1)). Suppose that there exists no stationary point of the relaxed

profit function within (µ(n∗ − 1), µ(n∗ + 1)). This implies that the relaxed profit
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function is monotone within [µ(n∗ − 1), µ(n∗ + 1)]. If the relaxed profit function is

decreasing, Π(µ(n∗ − 1), n∗ − 1) is greater than Π(µ∗, n∗), which is a contradiction.

Likewise, if the relaxed profit function is increasing, Π(µ(n∗ + 1), n∗ + 1) is greater

than Π(µ∗, n∗), which is a contradiction. �

Proof of Lemma II.6. (Upper-envelope function with individual customers)

We first show the relaxed profit function with individual customers is concave for any

µ if ñ ≥ 2. Then, we will show that (2.12) is a sufficient condition for the equilibrium

threshold to be greater than or equal to 2.

The effective arrival rate with the individual customers’ relaxed threshold (i.e.,

ñI(µ) = bµ) is

λe
(
µ, ñI(µ)

)
= 1− µ− 1

µbµ+1 − 1
for µ > 1/b,

where b = R−p
h

. The first and second derivatives of λe(µ, ñ(µ)) with respect to µ are

given by

dλe
(
µ, ñI(µ)

)
dµ

=
bµbµ+1(µ− 1)(1 + log µ)− (µbµ − 1)

(µbµ+1 − 1)2
≥ 0,

and

d2λe
(
µ, ñI(µ)

)
dµ2

= − µbµ

(µbµ+1 − 1)3

[
− 2(µbµ − 1)

− b
(

(µbµ+2 − 1) + (µbµ+1 − 1)− 5(µ− 1)
)

+ b2µ(µ− 1)(µbµ+1 + 1) +
(
− 2b(µbµ+1 − 2µ+ 1)

+ 2b2µ(µ− 1)(µbµ+1 + 1)
)

log µ+ b2µ(µ− 1)(µbµ+1 + 1)(log µ)2

]
.

We want to show that the second derivative is non-positive for any b and µ > 1/b.
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After replacing b by ñ/µ, it is equivalent to show the following for any ñ > 1 and µ:

F (µ, ñ) = −ñ(1 + µñ+1)(1 + log µ)2 + 2

(
µñ+1 − 1

µ− 1
− 2

)
(1 + log µ)

+ (µñ+1 − 1) +
2

ñ

µñ+1 − µ
µ− 1

≤ 0

for any µ > 0 and ñ > 1.

F (µ, ñ) can be shown to be decreasing in ñ as follows,

∂F (µ, ñ)

∂ñ
= lim

ε→0

1

ε

[
F (µ, ñ+ ε)− F (µ, ñ)

]
= lim

ε→0

1

ε

[ (
−(ñ+ ε)µñ+1+ε + ñµñ+1 − ε

)
(1 + log µ)2 + 2µñ+1µ

ε − 1

µ− 1
(1 + log µ)

+ µñ+1(µε − 1) +
2µ

(µ− 1)

(
µñ+ε − 1

ñ+ ε
− µñ − 1

ñ

)]
≤ lim

ε→0

1

ε

[ (
−(ñ+ ε)µñ+1+ε + ñµñ+1 − ε

)
(1 + log µ)2 + 2µñ+1µ

ε − 1

µ− 1
(1 + log µ)

+ µñ+1(µε − 1) + µñ+1(µε − 1)
]

(A.8)

= lim
ε→0

1

ε

[ (
−(ñ+ ε)µñ+1+ε + ñµñ+1 − ε

)
(1 + log µ)2 + 2µñ+1µ

ε − 1

µ− 1
(µ+ logµ)

]
= lim

ε→0

µñ+1

ε

[ (
−(ñ+ ε)µε + ñ− εµ−ñ−1

)
(1 + log µ)2 + 2

µ+ logµ

µ− 1
(µε − 1)

]
≤ lim

ε→0

µñ+1

ε

[ (
−(ñ+ ε)µε + ñ− εµ−ñ−1

)
(1 + log µ)2 +

4µ− 2

µ− 1
(µε − 1)

]
(A.9)

≤ lim
ε→0

µñ+1

ε

[ (
−(1 + ε)µε + 1− εµ−2

)
(1 + log µ)2 +

4µ− 2

µ− 1
(µε − 1)

]
(A.10)

= lim
ε→0

µñ+1
[
−
(
µε + (1 + ε)µε logµ+ µ−2

)
(1 + log µ)2 +

4µ− 2

µ− 1
µε logµ

]
(A.11)

= µñ+1
{
−
(
1 + log µ+ µ−2

)
(1 + log µ)2 +

4µ− 2

µ− 1
logµ

}
≤ 0.

where the upper bounds in (A.8), (A.9), and (A.10) are derived from the followings:

(i) The upper bound, (A.8), is derived from the fact that ∂µñ

∂ñ is greater than
∂ 2
ñ
µñ−1
µ−1

∂ñ :

µñ logµ ≥ −2(µñ − 1)

ñ2(µ− 1)
+

2ñµñ logµ

ñ2(µ− 1)
,
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which is equivalent to

logµ


> 2(µ−ñ−1)

ñ2(µ−1)−2ñ
if µ < 1 or µ > 1 + 2

ñ ,

≤ 2(µ−ñ−1)
ñ2(µ−1)−2ñ

if 1 < µ < 1 + 2
ñ .

(A.12)

If µ > 1 + 2
ñ , (A.12) is trivially true since the LHS is positive while the RHS is negative.

If µ < 1+ 2
ñ , we first show that the RHS of (A.12) is decreasing in ñ if µ < 1 and increasing

in ñ if µ > 1. The derivative of the RHS with respect to ñ is

4(µñ − 1)(ñ(µ− 1)− 1) + 2ñ(2− ñ(µ− 1)) logµ

ñ2µñ(ñ(µ+ 1)2 − 2)2
. (A.13)

The derivative of the numerator in (A.13) with respect to µ is non-negative :

2ñ

µ

{
(µ− 1)(2(ñ+ 1)µñ − ñ− 2)− ñµ logµ

}
≥ 2ñ

µ

{
(µ− 1)(2(ñ+ 1)µñ − ñ− 2)− ñµ(µ− 1)

}
=

2ñ(µ− 1)

µ

{
2(ñ+ 1)(µñ − 1)− ñ(µ− 1)

}
≥ 0.

Given that the numerator of (A.13) is increasing in µ and it equals 0 when µ = 1, it follows

that the RHS of (A.12) is decreasing in ñ if µ < 1 and increasing in ñ if µ > 1. Thus, it

suffices to show (A.12) is true when ñ = 1, and can be shown as follows,

logµ >
−2(µ− 1)

µ(µ− 3)
≥ 2(µ−ñ − 1)

ñ2(µ− 1)− 2ñ
if µ < 1,

logµ ≤ −2(µ− 1)

µ(µ− 3)
≤ 2(µ−ñ − 1)

ñ2(µ− 1)− 2ñ
if 1 < µ < 1 +

2

ñ
.

(ii) The upper bound, (A.9), is derived from logµ ≤ µ− 1.

(iii) The upper bound, (A.10), holds because the value in the square bracket of (A.9) can

be shown to be decreasing in n. Let l(µ, ñ) := −(ñ + ε)µε + ñ − εµ−ñ−1 and lñ(µ, ñ) =

1 − µε + εµ−ñ−1 logµ, the derivative of l(µ, ñ) with respect to ñ. For small enough ε > 0,
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both l(µ, ñ) and lñ(µ, ñ) are negative. Thus, ñ = 1 gives the upper bound.

Since F (µ, ñ) is decreasing in ñ, the upper bound of F (µ, ñ) can be derived by plugging

in a small n. If µ > 1, we can show that F (µ, ñ) is negative for any n:

F (µ, ñ) ≤ F (µ, 1) = −(1 + µ2)(1 + log µ)2 + 2(µ− 1)(1 + log µ) + µ2 + 2µ− 1

= −(1 + µ2)(logµ)2 − 2(µ2 − µ+ 2) logµ+ 4(µ− 1)

= (2 + logµ)
[
2(µ− 1)− (µ2 + 1) logµ

]
≤ (2 + log µ)

[
2(µ− 1)− (µ2 + 1)(µ− 1)/µ

]
= (2 + logµ)

(
− (µ− 1)3/µ

)
≤ 0.

If µ < 1, we need ñ ≥ 2 for the concavity of the relaxed profit function:

F (µ, ñ) ≤ F (µ, 2)

= −2(µ3 + 1)(1 + logµ)2 + 2(µ2 + µ− 1)(1 + log µ) + (µ3 + µ2 + µ− 1) ≤ 0.

Thus, for any µ > 0, the sufficient condition for the concave relaxed profit function is that

the equilibrium threshold, nIP , is greater than or equal to 2. A sufficient condition for

nIP ≥ 2 is that any profit in the threshold interval for n = 1 is less than the starting point

of the threshold interval for n = 2, given by

max
µ∈[1/b,2/b)

Π(µ, 1) < p

(
1− 2/b− 1

(2/b)2 − 1

)
− c(1/b) ≤ p

(
1− 2/b− 1

(2/b)3 − 1

)
− c(2/b).

With some algebra, this is equivalent to (2.12). Then, nIP ≥ 2 and the envelope method

specifies the unique interval that contains the profit-maximizer with individual customers.

�

Proof of Lemma II.7. (Differentiability and concavity of the welfare function)

(1) Trivially true from its components’ differentiability.
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(2) Given n fixed, the effective arrival rate is concave from (A.7). Thus, it is sufficient to

show the average number of customers, L(µ, n), is convex in µ for µ ≥ 1. The second-order

derivative with respect to µ is

∂2L(µ, n)

∂µ2
=

2

(µ− 1)3
− (n+ 1)2(n+ 2)µ2n + n(n+ 1)2µn−1

(µn+1 − 1)3
. (A.14)

We will first show that (A.14) is increasing in n for any µ > 1. That is, for any n ≥ 1 and

µ > 1,

∂3L(µ, n)

∂µ2∂n
=

(n+ 1)µn−1

(µn+1 − 1)4

[(
(n+ 1)(n+ 2)µ2n+2 + 4(n+ 1)2µn+1 + n(n+ 1)

)
logµ

−
(

(3n+ 5)µ2n+2 − 4µn+1 − (3n+ 1)
)]
≥ 0.

(A.15)

This is equivalent to

logµ− (3n+ 5)µ2n+2 − 4µn+1 − (3n+ 1)

(n+ 1)(n+ 2)µ2n+2 + 4(n+ 1)2µn+1 + n(n+ 1)
≥ 0.

Letting x = µn+1, this is equivalent to

k(x, n) := log x− (3n+ 5)x2 − 4x− (3n+ 1)

(n+ 2)x2 + 4(n+ 1)x+ n
≥ 0.

The derivative of k(x, n) with respect to x is positive for any x > 1, i.e.,

∂k(x, n)

∂x
=

(x− 1)3
(
n2(x− 1) + 4x(n+ 1)

)
x ((n+ 2)x2 + 4(n+ 1)x+ n)2 > 0,

and k(1, n) = 0. Thus, (A.15) is true, and (A.14) is increasing in n for any µ > 1. Then,

from

∂2L(µ, n)

∂µ2
≥ ∂2L(µ, 1)

∂µ2
=

2

(µ− 1)3
− 12µ2 + 4

(µ2 − 1)3
=

2

(µ+ 1)3
> 0, (A.16)
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we complete the proof. �

Proof of Lemma II.8. (Discontinuities in the welfare function for individual customers)

Recall that the welfare is discretely unimodal in n for given µ. For µ /∈ (µL(p), µH(p)), in

which the individual threshold is smaller than or equal to the social threshold, the thresh-

old increase makes the throughput closer to the socially optimal level, thus, it increases the

welfare. The argument for µ /∈ (µL(p), µH(p)) is similar. �

Proof of Lemma II.9. (Discontinuities in the welfare function for collective customers)

We only need to show that the customers utility is continuous and increasing in µ. First,

if the service rate changes, the collective threshold changes if and only if it improves the

resultant customer utility. Given that the customer utility is continuous in µ for any given

n, it follows that the utility of collective customers is also continuous in µ. Second, it is

trivial that the faster the service is, the higher average utility collective customers receive.

Thus the discontinuity of the welfare function when the threshold changes only comes from

the profit part, which increases in n. �

Proof of Lemma II.10. (Continuities in the welfare function for social customers)

Social customers optimize the social welfare. In other words, if the service rate changes,

their threshold changes if and only if it improves the resultant welfare. Suppose that the

threshold changes from n− 1 to n and the resultant welfare jumps upward at µ = x, then,

for µ = x − ε for small enough ε > 0, the social welfare can be larger if they take the

threshold n instead of n − 1. The same explanation also holds when the social welfare

jumps downward. �

Proof of Proposition II.11. (Collective customers and selfish or social firm)

The social firm will produce higher social welfare and lower profit, and hence higher utility,

than the profit-maximizing firm. The utility can be shown to be increasing in µ within any

threshold interval, and because collective customers change their threshold if and only if it
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improves their utility, this implies that overall the collective customers’ utility is increasing

in µ. Thus, with collective customers, the social firm sets a higher service rate than the

profit-maximizing firm’s, i.e., µCP ≤ µCS . �

Proof of Proposition II.13. (Social customers and selfish or social firm)

Note that the social threshold does not change in p. That is, the threshold interval remains

the same for any change of price. Suppose that µSP is a profit-maximizer for some fixed p.

If p increases, revenue increases. Then, it is trivial that the profit at µSP still dominates

the profit with any µ < µSP because the throughput is increasing in µ. �

Proof of Proposition II.14. (Price coordination with a social firm)

Since the social firm chooses the service rate to maximize the welfare, we only need to

show that there exist a set of prices such that selfish customers choose the social threshold

nS(µSS) when µSS is given.

(i) By definition, nC(µSS) = nS(µSS) if p = 0. From Proposition II.2 (iii), we know nC(µSS)

is a decreasing step function of price. Thus, the smallest price such that nC(µSS) ≤ nS(µSS)

is p̄CS . (In case of multiple equilibria for the SS case, i.e., multiple pairs of nSS and µSS

exist, the price upper bound, p̄CS , is simply the maximum of the bounds. We further show

that welfare is decreasing in price. For any given µ, the collective threshold nC(µ) moves

away from the social threshold nS(µ) as price p increases. This implies that the welfare

using the collective threshold and fixed service rate, W(µ, nC(µ)), is decreasing in price.

Since the social firm chooses the service rate that maximizes the welfare, the equilibrium

welfare is also decreasing in price with collective customers.

(ii) Suppose that µSS is given. From Proposition II.2 (iii), we know nI(µSS) is a decreasing

step function in price. We only need to show that nI(µSS) = 0 ≤ nS(µSS) when p is high

and nI(µSS) ≥ nS(µSS) for p = 0. For p = R, the individual customer will not join no

matter how fast service is because U(i) = R − p − h i+1
µ < 0 for any i ≥ 0. When p = 0,

nS(µ) = nC(µ), and from Proposition II.2, we know nI(µSS) ≥ nS(µSS) if p = 0. �
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Proof of Proposition II.15. (No price regulation for the selfish firm)

First, we show that the welfare-maximizing service rate is a stationary point. From (2.13),

the socially optimal welfare,W(µSS , nS(µSS)) can be defined as maxn∈NW(µS(n), n) where

µS(n) is the welfare maximizer assuming the threshold is fixed at n. Because the welfare

function of µ for given n is differentiable, the welfare-maximizing function is a stationary

point (i.e., it is not on the boundary of any threshold interval).

Suppose that the profit and welfare maximizers are the same for some p, i.e., µSP = µSS .

Given the fact that the social threshold does not change in price, this implies that µSP is

not on the boundary of any threshold interval, and it is a stationary point.

From Lemma II.7 (i), the difference between the welfare and the profit functions (i.e.,

the customer utility function) is strictly increasing in µ within the threshold interval. This

contradicts the assumption that both µSS and µSP are stationary points. �
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APPENDIX B

Proofs and Technical Details for Chapter III:

Dynamic Pricing and Loyalty Programs

Proof of Lemma III.1

P (cash purchase
∣∣cash-only)− P (cash purchase

∣∣loyalty) = F̄ (p)G(p/q) > 0 and

P (total purchase
∣∣loyalty)− P (cash purchase

∣∣cash-only) =

p/q∫
0

F̄ (qx)dG(x) > 0.

Proof of Lemma III.2

(a) It can be shown by the derivatives of probabilities from Lemma III.1 with respect to p:

∂P (cash purchase|p)
/
∂p = −f(p)Ḡ(p/q)− F̄ (p)g(p/q) < 0

∂P (point purchase|p)
/
∂p = F̄ (p)g(p/q) > 0

∂P (total purchase|p)
/
∂p = −f(p)Ḡ(p/q) < 0.

(b) Suppose that the point requirement is increased from q to q + ε for any ε > 0.

Under the higher point requirement, the proportion of loyalty consumer is smaller, i.e.,

β̄(q) ≥ β̄(q + ε). P (cash purchase) increases and P (point purchase) decreases, as there are

more cash-only consumers (who buy with cash more likely than loyalty consumers) and
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less loyalty consumers (who can buy with points). Also, for loyalty consumers, increasing q

makes P (point purchase
∣∣loyalty) smaller. �

Proof of Theorem III.3

First, we only need to consider any p greater than or equal to ∆t−1(y). If ∆t−1(y) > p,

it also implies that ∆t−1(y) > R. Together, it means that the seller makes the negative

contributions to the expected revenue by making any sales (both the cash sales and the

reward sales). That means, Vt(y) < Vt−1(y), which contradicts to the property of the value

function. Note that the first order condition is given by

∂Jt(p, y)

∂p
= λ

(
1− β̄G(p/q)

)
F̄ (p)

[
1− f(p)

F̄ (p)

(
p−∆t−1(y)

)
− β̄g(p/q)/q

1− β̄G(p/q)

(
p−R

)]
= 0.

and the second order condition (the second-order derivative is negative for any stationary

point) is given by

∂2Jt(p, y)

∂p2

∣∣∣
p=p∗

= λ
(

1− β̄G(p/q)
)
F̄ (p)

[
−
(
f ′(p)

F̄ (p)
+
f(p)2

F̄ (p)2

)(
p−∆t−1(y)

)
− f(p)

F̄ (p)

−
(
β̄g′(p/q)/q2

1− β̄G(p/q)
+

β̄2g(p/q)2/q2

(1− β̄G(p/q))2

)(
p−R

)
− β̄g(p/q)/q

1− β̄G(p/q)

]

= λ
(

1− β̄G(p/q)
)
F̄ (p)

[
−
(
f ′(p)

F̄ (p)
+
f(p)2

F̄ (p)2

)(
p−∆t−1(y)

)
− f(p)

F̄ (p)

−
(
g′(p/q)/q

g(p/q)
+

β̄g(p/q)/q

1− β̄G(p/q)

)(
1− f(p)

F̄ (p)

(
p−∆t−1(y)

))
− β̄g(p/q)/q

1− β̄G(p/q)

]
< 0,

which is equivalent to

(
p−∆

) f(p)

F̄ (p)

{(
g′(p/q)/q

g(p/q)
+

β̄g(p/q)/q

1− β̄G(p/q)

)
−
(
f ′(p)

f(p)
+
f(p)

F̄ (p)

)}
<
f(p)

F̄ (p)
+
g′(p/q)/q

g(p/q)
+ 2

β̄g(p/q)/q

1− β̄G(p/q)
.

Note that the assumption A3 implies that
(
g′(p/q)/q
g(p/q) + β̄g(p/q)/q

1−β̄G(p/q)

)
−
(
f ′(p)
f(p) + f(p)

F̄ (p)

)
is non-

positive, which further implies that the LHS is non-positive because p > ∆t−1(y). On the
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other hand, the RHS can be shown to be positive under the assumption A1 and A2. Par-

ticularly, the assumption A2 implies that the hazard rate of F (·) is no less than that of

G(·). Then, after replacing f(p)
F̄ (p)

by g(p/q)/q
Ḡ(p/q)

, the RHS is shown to be positive by the IFR

condition of G(·). �

Proof of Corollary III.4

The proof is immediate from Theorem III.3 and the fact that a marginal value of inventory

is increasing in t and decreasing in y. �

Proof of Proposition III.5

The optimal price, p∗, satisfies the following first-order condition:

1− f(p)

F̄ (p)
(p−∆)− β̄ · g(p/q)/q

1− β̄G(p/q)
(p−R) = 0, (B.1)

and the cash-only price, pc, satisfies the following first-order condition:

1− f(pc)

F̄ (pc)
(pc −∆) = 0. (B.2)

Suppose that pc < R and the seller chooses the cash-only price pc, then, the optimal first-

order condition (B.1) will be positive. On the other hand, any p > R makes (B.1) to be

negative. From the unimodal property, this implies that p∗ ∈ (pc, R).

The opposite case when pc > R can be proved by the same logic. �

Proof of Corollary III.6

The proof is immediate from Proposition III.5 with the fact that the marginal value of

inventory, ∆t(y), is increasing in t and decreasing in y. �

Proof of Proposition III.7

(a) From Proposition III.5, we have two cases to consider, in which the seller either adds a

premium or offers a discount considering the reward sales. In the case of adding a premium
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(pc < p∗ < R), note that 1− f(p∗)
F̄ (p∗)

(p∗−∆) < 0 and − β̄g(p∗/q)/q
1−β̄G(p∗/q)

(p∗−R) > 0. If β̄ increases,

the first order of the revenue when p = p∗ becomes positive, which means that the optimal

price should be also higher as β̄ increases.

In the opposite case when the seller offers a discount (R < p∗ < pc), we have 1− f(p∗)
F̄ (p∗)

(p∗−

∆) > 0 and − β̄g(p∗/q)/q
1−β̄G(p∗/q)

(p∗ − R) < 0. Then, increasing β̄ makes the first order to be

negative. Therefore, the amount of discount increases in β̄t.

(b) Suppose that the optimal price is p̄ when the reimbursement rate and the marginal

value of inventory are Rt and ∆, respectively, and consider that Rt increases by ε > 0.

Then, the first order of the expected revenue at p = p̄ becomes positive: 1− f(p̄)
F̄ (p̄)

(p̄−∆)−
β̄g(p̄/q)/q

1−β̄G(p̄/q)
(p̄ − Rt − ε) = β̄g(p̄/q)/q

1−β̄G(p̄/q)
ε > 0. From Lemma III.3, this implies that the optimal

price should be higher as Rt increases. It is also trivial to see that the expected revenue

increases in Rt.

From a consumer’s perspective, their utilities are the maximum of three options. Given

that the price increases, the utility from a cash purchase decreases while the utilities from

a point purchase or no purchase remain the same. This implies the the consumer’s utility

remains the same or gets worse as a consequence to the increase of reimbursement rate. In

particular, the utility of a consumer who previously purchase with cash decreases. �

Proof of Proposition III.8

We need to show that p∗ increases in marginal value of inventory since the marginal value of

inventory (∆t(y)) increases in t and decreases in y. Suppose that p∗ satisfies the first-order

condition, given by (B.1), when the marginal value of inventory is ∆. If ∆ increases by ε > 0,

then, the first order at p∗ becomes positive : 1− f(p∗)
F̄ (p∗)

(p∗ −∆− ε)− β̄g(p∗/q)/q
1−β̄G(p∗/q)

(p∗ −R) =

f(p∗)
F̄ (p∗)

ε > 0. Thus, the optimal price should also increase if the marginal value of inventory

increases. �

Proof of Proposition III.9

From XXX, we know that the marginal value of inventory increases in t and decreases in y.

Thus we only need to show that there exist three regions separated by the two threshold
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values of ∆. Suppose that ∆ is low enough such that the cash-only price is lower than

the reimbursement rate (i.e., pc(∆) < R), then, it is trivially true that allowing reward

sales gives a higher expected revenue by Jo(p∗) ≥ Jo(pc) > Jc(pc). On the other hand,

if ∆ is high enough so that ∆ > R, the seller is always better off to block reward sales

because any point-sale transaction will be a loss. In the middle of these two cases where

∆ < R < p∗ < pc,

dJo(p∗(∆),∆)

d∆
=

∂J

∂p∗
∂p∗

∂∆
+
∂J

∂∆
= 0−

F̄ (p∗) + β̄

p/q∫
0

F̄ (xq)dG(x)

 (B.3)

while

dJc(pc(∆),∆)

d∆
=
∂J

∂pc
∂pc

∂∆
+
∂J

∂∆
= 0− F̄ (pc) (B.4)

Since pc > p∗, it is obvious that the value-to-go function decreases faster in the marginal

value of inventory when it is open compared to when closed, i.e., Jo∆ < Jc∆. This implies

that if the value of inventory increases (as the longer periods or the less inventories left),

the value function with open decision becomes less favorable than the value function with

black-out decision. �

Proof of Proposition III.10

(a) From Proposition III.7 (b), we know that the expected revenue with reward sales in-

creases in the reimbursement rate while the cash-only revenue remains the same. Thus, it

is obvious that for some value of ∆, the optimal decision changes from close to open.

(b) Suppose that it is optimal to open when β̄ is given, that is, Jo(p∗) > Jc(pc). Note that

the expected revenue with allowing reward sales is a weighted sum of revenue from loyalty

consumers, F̄ (p∗)Ḡ(p∗/q)(p∗ − ∆) +
∫ p∗/q

0 F̄ (qx)dG(x)(R − ∆), and cash-only consumers,

F̄ (p∗)(p∗ − ∆). Let us write the expected revenue with black-out by β̄F̄ (pc)(pc − ∆) +

βF̄ (pc)(pc −∆) and compare part by part. Since pc maximizes the revenue from cash-only
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consumers,

βF̄ (pc)(pc −∆) > βF̄ (p∗)(p∗ −∆).

With the assumption that the open decision is optimal (Jo(p∗) > Jc(pc)), this implies that

the expected revenue from loyalty consumers is greater when allowing reward sales:

β̄F̄ (pc)(pc −∆) < β̄
[
F̄ (p∗)Ḡ(p∗)(p∗ −∆) +

p∗/q∫
0

F̄ (xq)dG(x)(R−∆)
]
.

Suppose that β̄ increases. It is obvious that the expected revenue with allowing reward

sales increases as β̄ even under the same price p∗ while the expected revenue with black-out

decision remains the same. The further adjustment of the optimal price for changing β̄ will

make even higher revenue from allowing reward sales, and this completes the proof. �

Proof of Proposition III.11

We know that both pct(y) and p∗t (y) are non-decreasing in t and non-increasing in y (Gallego

and Van Ryzin (1994) for pc and Proposition III.8 for p∗). From Proposition III.9, we also

know that the optimal price changes from pBt (y) = pct(y) to pBt (y) = p∗t (y) as t decreases and

y increases. Suppose that the transition is made between t and t− 1, that is, pBt (y) = p̃ct(y)

and p̃ot (y + 1) = pBt (y + 1). From Proposition III.9 (a), the cash-only price is higher than

the point-selling price when it is optimal to close and we know that pot (y) decreases as t

decreases, thus, we have p̃ct(y) > p̃ot (y) > p̃ot−1(y). We can show the same result when the

transition is made between y and y − 1. �

Proof of Theorem III.12

Note that p̃t(q, y) satisfies the following first-order condition:

1− f(p)

F̄ (p)
(p−∆)− 1

q
· β̄(q) · g(p/q)

1− β̄(q) ·G(p/q)
(p−R(q) = 0. (B.5)
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By A4 and A5, we know that the third term, −1
q

β̄(q)·g(p/q)
1−β̄(q)G(p/q)

(p− R(q), increases in q for a

given p. This implies that the best price p̃t(q, y) should also increase to satisfy the first-order

condition as q increases. �

Proof of Proposition III.13

First note that any (t, y) can be summarized by the corresponding marginal value of inven-

tory. For simplicity of notation, we will use ∆ for replacing t and y, i.e., we use J(p, q,∆)

for JQt (p, q, y) and p̃t(q, y) for p̃(q,∆). We also assume that ∆ is a continuous variable for

this proof despite the fact that it takes the discrete value because t and y are integral. Now

we want to show that, for any pair of point requirements (ql and qh with ql < qh), there

exists a unique ∆̄l,h such that

J(p̃(ql,∆), ql,∆) > J(p̃(qh,∆), qh,∆) if ∆ < ∆̄l,h and

J(p̃(ql,∆), ql,∆) < J(p̃(qh,∆), qh,∆) if ∆ > ∆̄l,h.

There are three different cases to consider depending on the value of ∆.

(i) Suppose that ∆ is high enough such that R(ql) < R(qh) < ∆. In this case, any reward

sale (regardless of whether q = ql or qh) negatively affects the seller’s revenue. Since the

probability of a reward sale decreases in q, the higher point requirement is better, i.e.,

J(p̃(qh, y), qh,∆) < J(p̃(qh, y), qh,∆).

(ii) Suppose that ∆ has some intermediate value such that R(ql) < ∆ < R(qh). In this case,

only a reward sale at q = ql negatively affects the seller’s revenue. Thus, the value function

with a higher point requirement is better, i.e., J(p̃(qh, y), qh,∆) < J(p̃(qh, y), qh,∆).

(iii) Suppose that ∆ is low enough such that ∆ < R(q1) < R(q2). The derivative of value-

to-go function with respect to ∆ is given by the negative of the probability of a purchase:

dJQ(p̃(q,∆), q,∆)

d∆
= −

F̄ (p̃(q,∆))− β̄(q)

p̃(q,∆)∫
0

G(x/q)dF (x)

 < 0.

From β̄(ql) > β̄(qh) and p̃(ql,∆) < p̃(qh,∆), we know that the probability of total sales is

higher when the point requirement is low. That is, the value-to-go function decreases faster
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in ∆ with a lower point requirement. With the continuity of the value-to-go function in ∆,

this implies that there exists at most one threshold, ∆̄ql,qh , such that qh is better than ql

if ∆ > ∆̄ql,qh , and vice versa. Along with the fact that the marginal value of inventory is

increasing in t and decreasing in y, this completes the proof. �
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APPENDIX C

Proofs and Technical Details for Chapter IV:

On (Rescaled) Multi-Attempt Consumer Choice

Model and Its Implication on Assortment

Optimization

Proof of Theorem IV.1

Per our discussions above, π̂k(i, S) = π(i, S) for k ≥ |S̄|+1. So, we only need to consider the

case k ≤ |S̄|. We first consider the case where the true choice model is MNL with parameters

{u0, u1, ..., un},
∑n

i=0 ui = 1. Note that, for any preference sequence j1, j2, . . . , jl, i ∈ N , we

have:

P (Uj1 > Uj2 > · · · > Ujl > Ui ≥ max{Um : m ∈ N \ {j1, j2, . . . , jl} ∪ {0}})

=

(
uj1

1− uj1

)(
uj2

1− uj1 − uj2

)
· · ·
(

ujl
1− uj1 − · · · − ujl

)
· ui.

The above probability is an immediate consequence of the assumption of i.i.d noises

with Gumbel distribution in the construction of MNL model and not difficult to prove (we
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omit the details). Given the above formula, we can bound π̂k(i, S) as follows:

π̂k(i, S) = λi +
∑
j1∈S̄

λj1i +
∑

{j1,j2}⊆S̄

λ{j1,j2}i + · · · +
∑

{j1,j2,...,jk−1}⊆S̄

λ{j1,j2,...,jk−1}i

=

k−1∑
l=0

∑
j1,··· ,jl∈S̄

(
uj1

1− uj1

)(
uj2

1− uj1 − uj2

)
· · ·
(

ujl
1− uj1 − · · · − ujl

)
· ui

≥
k−1∑
l=0

∑
j1,··· ,jl∈S̄

(
uj1

1− uj1

)(
uj2

1− uj2

)
· · ·
(

ujl
1− ujl

)
· ui

=

k−1∑
l=0

l! ·

[ ∑
{j1,··· ,jl}⊆S̄
j1<j2<···<jl

(
uj1

1− uj1

)(
uj2

1− uj2

)
· · ·
(

ujl
1− ujl

)
· ui

]

=

k−1∑
l=0

l! ·

[ ∑
{j1,··· ,jl}⊆S̄
j1<j2<···<jl

(
uj1 + u2

j1 + · · ·
) (
uj2 + u2

j2 + · · ·
)
· · ·
(
ujl + u2

jl
+ · · ·

)
· ui

]

= ui ·

[
0! + 1!

∑
j1∈S̄

(uj1 + u2
j1 + · · · ) + 2!

∑
{j1,j2}⊆S̄
j1<j2

(uj1 + u2
j1 + · · · )(uj2 + u2

j2 + · · · )

+3!
∑

{j1,j2,j3}⊆S̄
j1<j2<j3

(uj1 + u2
j1 + · · · )(uj2 + u2

j2 + · · · )(uj3 + u2
j3 + · · · ) + · · ·

+(k − 1)!
∑

{j1,··· ,jk−1}⊆S̄
j1<j2<···<jk−1

(uj1 + u2
j1 + · · · ) · · · (ujk−1

+ u2
jk−1

+ · · · )

]

≥ ui ·

[
1 +

∑
j1∈S̄

uj1 +

(∑
j1∈S̄

u2
j1 + 2!

∑
{j1,j2}⊆S̄
j1<j2

uj1uj2

)

+

(∑
j1∈S̄

u3
j1 + 2!

∑
{j1,j2}⊆S̄
j1<j2

(u2
j1uj2 + uj1u

2
j2) + 3!

∑
{j1,j2,j3}⊆S̄
j1<j2<j3

uj1uj2uj3

)
+ · · ·

+

(∑
j∈S̄

uk−1
j1

+ 2!
∑

{j1,j2}⊆S̄

∏
t1+t2=k−1

ta∈N

ut1j1u
t2
j2

+ · · ·

+(k − 1)!
∑

{j1,··· ,jk−1}⊆S̄
j1<···<jk−1

uj1 · · ·ujk−1

)]

= ui ·

[
1 +

(∑
j∈S̄

uj

)
+
(∑
j∈S̄

uj

)2
+
(∑
j∈S̄

uj

)3
+ · · ·+

(∑
j∈S̄

uj

)k−1
]
,
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where the fourth equality follows from identity x
1−x =

∑∞
n=1 x

n for all x ∈ [0, 1] and the last

inequality follows by collecting polynomial terms with the same degree.

Now, if the true choice probability is a mixture of M MNL models with parameters

{uim} and {θm} for all i ∈ S0 and m ∈ {1, · · · ,M}, applying the result above, we can

bound π̂k(i, S) as follows:

π̂k(i, S) ≥
M∑
m=1

θmuim ·

[
1 +

∑
j∈S̄

ujm + · · ·+
(∑
j∈S̄

ujm

)k−1
]

=
M∑
m=1

θmuim ·
1−

(∑
j∈S̄ ujm

)k
1−

(∑
j∈S̄ ujm

)
≥

(
1−max

m
um(S̄)k

)
·
M∑
m=1

θm ·
uim

1−
(∑

j∈S̄ ujm

)
=

(
1− umax(S̄)k

)
· π(i, S).

This completes the proof. �

Proof of Theorem IV.2

Let π̂mk (i, S) denote the choice probability under k-attempt model by a customer that

belongs to segment m. We can write:

π̂Rk (i, S) =

∑
m θmπ̂

m
k (i, S)∑

m

∑
j∈S0

θmπ̂mk (j, S)
.

Given the lower bound of π̂k(i, S) in Theorem 1, we can bound:

π̂Rk (i, S) ≥ (1− umax(S̄)k) · π(i, S)∑
m

∑
j∈S0

θmπ̂mk (j, S)
≥ (1− umax(S̄)k) · π(i, S)

maxm
∑

j∈S0
π̂mk (j, S)

=
1− umax(S̄)k

1− umin(S̄)
· π(i, S) .

Similarly, we also have:

π̂Rk (i, S) ≤ π(i, S)∑
m

∑
j∈S0

θmπ̂mk (j, S)
≤ π(i, S)

minm
∑

j∈S0
π̂mk (j, S)

=
1

1− umax(S̄)
· π(i, S) .

This completes the proof. �
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Proof of Theorem IV.3

Let αl(S̄) =
∑

j1,··· ,jl∈S̄
uj1

1−uj1
uj2

1−uj1−uj2
· · · ujl

1−uj1−···−ujl
. Per our note in the proof of Theo-

rem 1, αl(S̄) ·ui is the probability that a customer values product j ∈ {j1, j2, . . . , jl} better

than i and product j′ ∈ N \ {j1, j2, . . . , jl} ∪ {0} worse than i. Since a customer only

purchases product i if her other favorite products (which rank higher than i) are not in the

offer set, by definition of random utility model, we must have: π(i, S) =
∑|S̄|

l=0 αl(S̄)ui. As

for k-attempt model, since customers only consider up to k − 1 substitutes, we can write:

πk(i, S) =
∑k−1

l=0 αl(S̄)ui. Putting all things together,

π(i, S)− π̂Rk (i, S) =

|S̄|∑
l=0

αl(S̄)ui −
∑k−1

l=0 αl(S̄)ui∑k−1
l=0 αl(S̄)u(S0)

=
ui

u(S0)
− ui
u(S0)

= 0.

This completes the proof. �

122



BIBLIOGRAPHY

123



BIBLIOGRAPHY
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Carlsson, F., and Å. Löfgren (2006), Airline choice, switching costs and frequent flyer
programmes, Applied Economics, 38 (13), 1469–1475.

Chapple, S., L. Moerman, and K. Rudkin (2010), Ifric 13: accounting for “customer loyalty
programmes”, Accounting Research Journal, 23 (2), 124–145.

Chen, H., and M. Frank (2004), Monopoly pricing when customers queue, IIE Transactions,
36 (6), 569–581.

124



Chun, S. Y., D. A. Iancu, and N. Trichakis (2015), Points for peanuts or peanuts for points?
setting the optimal value of loyalty currency.

Colloquy (2011), Loyalty census.

Colloquy (2015), Loyalty census.

De Vany, A. (1976), Uncertainty, waiting time, and capacity utilization: A stochastic theory
of product quality, The Journal of Political Economy, pp. 523–541.

Désir, A., V. Goyal, D. Segev, and C. Ye (2015), Capacity constrained assortment optimiza-
tion under the markov chain based choice model, Operations Research, Forthcoming.

Dewan, S., and H. Mendelson (1990), User delay costs and internal pricing for a service
facility, Management Science, 36 (12), 1502–1517.

Dinkelbach, W. (1967), On nonlinear fractional programming, Management Science, 13 (7),
492–498.

Dorotic, M., T. H. Bijmolt, and P. C. Verhoef (2012), Loyalty programmes: Current knowl-
edge and research directions*, International Journal of Management Reviews, 14 (3),
217–237.

Dorotic, M., P. C. Verhoef, D. Fok, and T. H. Bijmolt (2014), Reward redemption effects in
a loyalty program when customers choose how much and when to redeem, International
Journal of Research in Marketing, 31 (4), 339–355.

Dreze, X., and J. C. Nunes (2004), Using combined-currency prices to lower consumers’
perceived cost, Journal of Marketing Research, 41 (1), 59–72.

Economist (2005a), Frequent-flyer miles: In terminal decline?, magazine.

Economist (2005b), Frequent-flyer miles: Funny money, magazine.

Elmaghraby, W., and P. Keskinocak (2003), Dynamic pricing in the presence of inventory
considerations: Research overview, current practices, and future directions, Manage-
ment Science, 49 (10), 1287–1309.

Feldman, J. B., and H. Topaloglu (2014), Revenue management under the markov chain
choice model.

Gallego, G., and G. Van Ryzin (1994), Optimal dynamic pricing of inventories with stochas-
tic demand over finite horizons, Management science, 40 (8), 999–1020.

Gilboa-Freedman, G., R. Hassin, and Y. Kerner (2014), The price of anarchy in the Marko-
vian single server queue, Automatic Control, IEEE Transactions on, 59 (2), 455–459.

Gordon, N., and K. Hlavinka (2011), The 2011 forecast of us consumer loyalty program
points value.

Grassmann, W. K. (1979), The economic service rate, The Journal of the Operational
Research Society, 30 (2), pp. 149–155.

Hallberg, G. (2004), Is your loyalty programme really building loyalty? why increasing
emotional attachment, not just repeat buying, is key to maximising programme success,
Journal of Targeting, Measurement and Analysis for Marketing, 12 (3), 231–241.

Hassin, R., and M. Haviv (2003), To queue or not to queue: Equilibrium behavior in queueing
system, vol. 59, Springer Science; Business Media.

Haviv, M., and T. Roughgarden (2007), The price of anarchy in an exponential multi-server,
Operations Research Letters, 35 (4), 421–426.

Hess, S., and A. Daly (2014), Handbook of choice modelling, Edward Elgar Publishing.

125



HiltonWorldwide (2015a), Hilton hhonor fact sheet.

HiltonWorldwide (2015b), A world of opportunities, White paper.

IdeaWorks (2015), Airline ancillary revenue projected to be 59 billion usd worldwide in
2015, White paper.

Kim, B.-D., M. Shi, and K. Srinivasan (2001), Reward programs and tacit collusion, Mar-
keting Science, 20 (2), 99–120.

Kim, B.-D., M. Shi, and K. Srinivasan (2004), Managing capacity through reward programs,
Management Science, 50 (4), 503–520.

Kivetz, R. (2003), The effects of effort and intrinsic motivation on risky choice, Marketing
Science, 22 (4), 477–502.

Kivetz, R., and I. Simonson (2002a), Earning the right to indulge: Effort as a determinant
of customer preferences toward frequency program rewards, Journal of Marketing Re-
search, 39 (2), 155–170.

Kivetz, R., and I. Simonson (2002b), Self-control for the righteous: Toward a theory of
precommitment to indulgence, Journal of Consumer Research, 29 (2), 199–217.

Knudsen, N. C. (1972), Individual and social optimization in a multiserver queue with a
general cost-benefit structure, Econometrica, 40 (3), pp. 515–528.

Kochenberger, G., J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang (2014),
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