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ABSTRACT 

Metazoans precisely control the number of cell divisions during organ or tissue development 

or maintenance throughout their lifetime. In adult metazoans, most differentiated cells no longer 

proliferate and lie in a quiescent state, also termed cell cycle exit. The decision to proliferate or 

to lie in quiescence is essential for development and its dysregulation may lead to defects in 

organogenesis, wound healing and regeneration as well as tumor formation. However, at what 

stage of the cell cycle the proliferation-quiescence decision occurs and what molecular 

mechanisms control this decision remain controversial.  

Here my thesis work revealed a novel role for PP2A in promoting the transition to 

quiescence upon terminal differentiation during tissue development. Using Drosophila eyes and 

wings as a model, I found that compromising PP2A activity during the final cell cycle prior to a 

developmentally controlled cell cycle exit leads to extra cell divisions and delayed normal exit. 

By systematically testing the regulatory subunits of Drosophila PP2A, I discovered that the B56 

family member widerborst (wdb) is required for the role of PP2A in promoting the transition to 

quiescence. In particular, the PP2A/B56 complex targets cyclin-dependent kinase 2 several 

hours after mitosis to promote entry into quiescence, indicating when the decision occurs and 

how PP2A impacts the decision. 
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I also investigated the dynamic features of the proliferation-quiescence transition through 

the application of a novel fluorescent cell cycle reporter and time-lapse, live-cell imaging in 

mammalian cell culture. By monitoring the proliferation-quiescence transition without cell 

synchronization, I discovered that the quiescent state is heterogeneous. Mammalian cells can 

enter into either a transient or a prolonged quiescent state after mitosis, prior to the next round 

of cell cycle even under conditions of abundant nutrients. Notably, I showed that two sister cells 

born of the same mitosis can make different cell cycle decisions, with one cell entering long-

term quiescence while the other re-entering the cell cycle. Consistent with my work in the 

Drosophila model, PP2A in mammals also plays a conserved role in promoting the entry into 

quiescence. The novel role of PP2A in modulation of the proliferation-quiescence decision may 

contribute to its tumor suppressor role and impact the emerging problem of tumor dormancy.  
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Chapter 1. General Introduction 

The cell cycle is a series of sequential molecular events that result in the production 

of two daughter cells. Cellular proliferation is fundamental to the development of all the 

eukaryotes. The cell cycle is artificially divided into specific phases during which cells 

grow and prepare for duplication (G1), replicate DNA (DNA synthesis), prepare for 

division (G2) and separate the two copies of DNA and cytoplasmic contents, forming 

two cells (Mitosis). Rapid cell proliferation is one major feature of early embryonic 

development. As tissues mature later in development, most cells differentiate into 

specialized cell types and slow or stop proliferation and contribute to organ function. 

Most adult animal cells have stopped dividing and enter a state termed G0 or cellular 

quiescence where most will remain for lifetime of the organism. The slowing or stopping 

of the proliferation at the right places and times, is critically important for proper tissue 

or organ development. Despite the importance of the proliferation-quiescence decision, 

most studies of cell cycle regulation have focused on rapidly dividing cells. It remains 

unknown why or how cells choose to enter quiescence during development, and how 

the developmental signals, tissue damage or nutrient abundance trigger specific cells to 

re-enter the cell cycle. 
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1.1 Key factors in the regulation of cell cycle progression 

In order to understand how the proliferation-quiescence decision is regulated, it is 

worth reviewing the major regulatory components of the cell cycle.  

Cell cycle progression is controlled by oscillations of the activity of different 

cyclin/Cyclin-dependent kinase complexes. In metazoans, multiple Cdks partner with 

specific cyclins to execute sequential functions in cell cycle progression. For example, 

Cdk4 or Cdk6 pairs with CycD and Cdk2 pairs with CycE to promote G1 phase 

progression, Cdk2 or Cdk1 pairs with CycA to promote S-G2 phase, and Cdk1 pairs 

with CycB as the maturation promoting factor to push mitotic entry (Morgan, 1997). Both 

cellular stress signals and environmental signals can impinge upon the regulation of 

different cyclin/Cyclin-dependent kinase activities at both transcriptional, post-

transcriptional and post-translational levels.  

The major transcriptional machinery of the cell cycle—E2F and Rb 

 E2F/DP transcriptional hetero-dimer complex is often considered to be a  master 

regulator of the cell cycle, as it regulates transcription of hundreds of genes, most of 

which are essential for DNA replication and cell cycle progression, including the cyclins 

and Cdks. In mammals, “E2F” is a general term used for seven different transcription 

factor complexes (E2F1-E2F7), six of which need the hetero-dimerization with DP 

proteins to be functional. The E2F family can be divided into three groups based on 
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their transcriptional properties. E2Fs 1-3 are the activating E2Fs, required for the 

transactivation of target genes in the G1-S transition. In contrast, E2Fs 4 and 5 are 

considered transcriptional repressors, because they are mainly nuclear in G0/G1 and 

are primarily involved in the repression of E2F- responsive genes when bound to 

members of the retinoblastoma protein (pRB) family. E2F6 also acts as a transcriptional 

repressor but without interacting with the pRB family (Bracken et al., 2004; Müller and 

Helin, 2000).  

Cyclin/Cdk complexes and E2F activator complexes promote the progression of the 

cell cycle. By contrast, the Cyclin-dependent Kinase Inhibitors (CKIs) and the 

retinoblastoma protein-family members (pRB,p107 and p130) are negative regulators of 

the cell cycle progression (Cobrinik, 2005; Vidal & Koff, 2000). Investigations into the 

function of the retinoblastoma proteins (pRB), the first identified tumor suppressor 

(Trimarchi and Lees, 2002; Huang et al., 1988), showed that pRB is quite important in 

inhibiting cell cycle entry by binding and suppressing E2F/DP complex activity, leading 

to the transcriptional repression of hundreds of cell-cycle regulators (Tamrakar et al., 

2000; Burkhart and Sage, 2008; van den Heuvel and Dyson, 2008).  This repression is 

counteracted by the G1 Cyclin/Cdk complexes Cyclin E/Cdk2 and Cyclin D/Cdk4 which 

catalyze the phosphorylation of RBs, resulting in the release of E2F/DP binding, 

(reviewed in Du and Pogoriler, 2006). Then activator E2F/DP complexes further 

promote Cyclin/Cdk expression, thus creating a positive feedback loop that promotes 
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G1 progression and robust commitment to cell cycle entry (Trimarchi and Lees, 2002; 

Blais and Dynlacht, 2004).  

The cyclin-dependent kinases (Cdks) 

The cyclin-dependent kinases are the catalytic subunits that coordinate the orderly 

events of the cell cycle and play roles in integrating growth-regulatory and intercellular 

signals with cell cycle progression. The expression level of the Cdks is relatively 

constant throughout the cell cycle. It is the different cyclins whose concentrations rise 

and fall with the cell cycle phases together with activating or inhibitory phosphorylations 

of Cdks that results in the oscillation of a series of active Cyclin-Cdk complexes.  

The typical Cdk catalytic subunit contains a 300 amino acid catalytic core which is 

inactive when monomeric and phosphorylated (Morgan, 1995). Binding to a cyclin and 

phosphorylation of a conserved Thr residue in the activation loop (T-loop) are required 

to activate Cdk kinase activity. Phosphorylation of the Cdk T-loop is catalyzed by a Cdk-

activating kinase (CAK) complex, composed of Cdk7, cyclin H, and MAT-1. The catalytic 

component Cdk7 is expressed uniformly during the cell cycle, as Cdk7 also plays an 

essential role as a component of the general transcription factor TFIIH, which 

phosphorylates the C- terminal domain (CTD) of the largest subunit of Pol II (Larochelle 

et al., 1998; Merrick et al., 2008; Fisher, 2005). Drosophila Cdk7 was first identified 

based on its requirement for proliferation, as it acts as a CAK to activate the Cdk1 
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complex in vivo (Larochelle et al., 1998). Indeed, the effects of Cdk7 loss on cell 

proliferation can be largely rescued by Cdk2T160E or Cdk1T161E phosphomimetic mutants 

in mouse embryonic fibroblasts (Ganuza et al., 2012). Thus Cdk7 is essential for the 

activation of the cell cycle by phosphorylation of T-loop residues of the Cdks.  

The active kinases and the activation process are conversely suppressed by the 

binding of cyclin-dependent kinase inhibitors (CKIs). CKIs consist of two families: INK4 

proteins (p15,p16,p18 and p19), and the Cip/Kip family (p21Cip1, p27Kip1 and p57Kip2) 

(Vidal and Koff, 2000). The INK4 family generally inhibit cyclin D-type Cdk activity by 

competitively binding to the Cdk subunit. The Cip/Kip family shares a homologous 

inhibitory domain, which is responsible for the inhibition of Cdk4- and Cdk2-containing 

complexes by direct binding. The Cip/Kip family acts on Cdk2 preferentially in vivo, 

though they can target all G1 cyclin complexes in vitro. (Parry et al., 1999; Ortega et al., 

2002; Soos et al., 1996). Mammalian p21 transcription is primarily induced by p53, a 

transcriptional regulator in response to DNA damage (Harper and Elledge, 1996). 

However, this is not conserved in other organisms such as in Drosophila, where the 

sole Cip/Kip-type CKI, dacapo (dap) expression is correlated with a cessation of cell 

proliferation during tissue development and controlled by developmental signaling (de 

Nooij et al., 1996; Lane et al., 1996; Sukhanova and Du, 2008). p21 inhibits cyclin/Cdk2 

complex activity during G1 and S phases, leading to cell cycle arrest (Wade Harper et 

al., 1993). The closely related paralogs, p27, is high in G0 cells and binds to and 
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preferably inhibits CycE/Cdk2 as cells progress into G1. The destruction of p27 by the 

E3 ubiquitin ligase Skp2 allows the Cdk2 complex to be active and to promote the G1-S 

transition (Sherr and Roberts, 1999). Consequently, disruption of p27 in mice leads to 

an increase in the fraction of S phase cells in the thymus, demonstrating that p27 

functions as a negative regulator of cell proliferation (Kiyokawa et al., 1996). 

Controlled proteolysis in cell cycle progression 

The proteolysis of cyclins and their regulators ensures the proper temporal order of 

cell cycle events. The two major protein degradation complexes involved in cell cycle 

regulation are Skp-Cullin-F-box (SCF) complexes for G1-S phase progression and the 

APC/C (the Anaphase-Promoting Complex/Cyclosome) for the completion of Mitosis 

and quiescence entry. The SCF complex consists of four subunits: Skp1 (scaffold 

protein), Cul1 (scaffold protein), RING-finger component (Rbx1), and a variable adaptor 

protein or F-box protein. The F-box protein targets a discrete number of specific 

substrates through protein–protein interactions. The F-box proteins Skp2 and Fbw7 

target multiple cell cycle regulators. Skp2 mediates the degradation of the CDK 

inhibitors p21Cip1, p27Kip1 and p57Kip2, the origin recognition subunit hOrc1, the 

replication initiation factor Cdt1, as well as the Rb-related tumor suppressor p130, 

ensuring that G1-S progression and DNA replication occur in a timely manner and only 

one per cycle (Tedesco et al., 2002; Willems et al., 2004; Cardozo and Pagano, 2004). 

Fbw7 targets several proto-oncogenes, including CycE, MYC, JUN and Notch (Welcker 
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and Clurman, 2008; Koepp et al., 2001). Mutations in Fbw7 have been found in several 

human cancers. Importantly, Fbw7 specifically targets phosphorylated CycE which is 

high during the G1-S transition due to self-phosphorylation and induces its degradation 

(Moberg, Bell, Wahrer, Haber, & Hariharan, 2001; Strohmaier et al., 2001). In Fbw7 

mutant mice and Drosophila, multiple cell types exhibit additional proliferation and 

disruption of G0 (Onoyama et al., 2007; Moberg et al., 2001), indicating Fbw7 is needed 

for timely cell cycle exit. However, loss of Archipelago (ago), ortholog of Fbw7 in 

Drosophila, did not disrupt normal cell cycle exit timing in wing development, and only 

delayed cell cycle exit in the eye by one cell cycle (Buttitta et al., 2007). This suggests 

the importance of Fbw7 at the proliferation-quiescence transition varies in different 

tissues and in some contexts may not be required. 

APC/C is an E3 ubiquitin ligase complex whose activation requires the 

phosphorylation of specific subunits and the binding of a cofactor, Cdc20 (or Fizzy; Fzy) 

or Cdh1 (or Fizzy-related; Fzr) for full activity. APC/C complex is important to coordinate 

mitotic exit and quiescence (Sigrist and Lehner, 1997; Clijsters et al., 2013). During 

mitosis, APC/CCdc20 complex promotes mitotic exit by degrading key substrates such as 

the mitotic cyclins and Geminin, which usually accumulate during the S, G2, and early 

mitotic phases (Penas et al., 2011; McLean et al., 2011). In contrast, APC/CCdh1 plays a 

major role after mitotic exit in maintaining quiescence and preventing early onset of 

DNA replication. During quiescence, APC/CCdh1 prevents the assembly of pre-replicative 
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complexes by degrading CDC6 (Mailand and Diffley, 2005). Functions for APC/C in the 

establishment and maintenance of quiescence will be discussed in detail later.  

 

1.2  Quiescence and G0 

G0 is a term broadly used to refer to a prolonged cell cycle arrest, or a sustained 

non-dividing state. G0 can encompass distinct states, distinguished by their range of 

reversibility: from easily reversible to non-reversible (Fig.1.1). The term reversible 

quiescence has sometimes been used to describe cells that are not actively cycling, but 

may re-enter the cell cycle upon external stimuli. An example would be stem cells that 

respond to signals upon wounding to maintain tissue homeostasis or cancer cells that 

can re-enter the cell cycle to seed recurrent tumors. This term also is commonly used to 

describe cells that are not dividing due to nutrient or growth factor starvation, for 

example in cell culture. In contrast, cells that acquire their final fate and undergo 

terminal differentiation during development, often enter a prolonged or sometimes 

permanent cell cycle arrest, which is also referred to as G0. This is a feature 

characteristic of neurons, mature epithelia and muscle to name a few examples. In 

some organisms however, certain mature, differentiated cell types maintain a reversible 

G0 and can re-enter the cell cycle upon damage. This includes examples such as 

mature muscle from amputated axolotl limbs (Sugiura et al., 2016), the extraocular 
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muscles of zebrafish (Saera-Vila et al., 2015), Müller glia of the zebrafish retina (Wan 

and Goldman, 2016), and the sensory epithelium of the avian inner ear (Tsue et al., 

1994). A third state of cell cycle arrest, senescence, is also often referred to as G0. In 

senescence, cells exit from the cell cycle in response to telomere loss, stress, 

accumulation of DNA damage or aberrant oncogenic activity, and undergo permanent 

arrest accompanied by metabolic, nuclear and morphological changes associated with 

DNA damage (Salama et al., 2014). Senescence often represents a general response 

to aging and stress (Chandler and Peters, 2013), but recent work has shown that 

senescence also occurs during normal development (Storer et al., 2013; Muñoz-Espín 

et al., 2013). 

1.3 Potential molecular markers of quiescence  

Molecular markers that can distinguish G0 from G1 are of great interest in the cell 

cycle field. Most cell cycle assays such as immunostaining for markers of proliferating 

cells or flow cytometry cannot distinguish G0 from early G1 cells since both G0 and G1 

cells contain 2C DNA contents and there is no obvious change in cell morphology 

(Zambon, 2010; Pozarowski and Darzynkiewicz, 2004). In some cell types, specific 

molecular markers can be correlated with G0, but these often don’t translate to other 

cell types. Without a universal marker for G0, it has been very challenging to reliably 

identify G0 cells both in vitro and in vivo. Below is a discussion of existing molecular 

approaches used to distinguish G0 from G1 cells (Fig.1.2). 
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Cyclin-dependent kinase inhibitors as markers of G0 

The CKIs p21 and p27 are often considered to be putative markers of quiescent cells 

in cell culture for the following two reasons. First, the expression levels of p21 and p27 

are highest in G0 cells (Coller et al., 2006; Oki et al., 2014). Second, p21 and p27 bind 

to G1-Cdk complexes and suppress their activity to promote cell cycle arrest at G0 

(Wade Harper et al., 1993; Polyak et al., 1994) .  

In particular, the degradation of p27 is regulated by a two-step process: 

translocation-coupled cytoplasmic ubiquitination by KPC (Kip1 ubiquitination-promoting 

complex) at G1 phase and nuclear proteolysis by Skp2 at S and G2 phases. KPC, an 

E3 ligase complex, consists of KPC1 and KPC2.  KPC-mediated p27 proteolysis 

depends on the nuclear export of p27, which takes place only at G1 phase entry. But 

depletion of either KPC1 or Skp2 does not delay cell cycle progression from G0 to S 

phase, the deficiency of both factors results in the accumulation of p27 and a delay in 

cell cycle progression (Kamura et al., 2004). KPC and Skp2 thus play redundant roles in 

p27 degradation which is essential for G0-G1 progression. Based on this, a novel 

fluorescent cell cycle reporter was generated to separate G0 and G1 cells by fusing a 

fluorescent protein to an inactive form of p27 protein. With this reporter and live, time-

lapse imaging, I investigated the cell cycle behaviors at the proliferation-quiescence 

decision without cell synchronization and details will be discussed in chapter 3. 
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Using the pRb family to identify cells in G0 

The retinoblastoma protein (pRb), the first identified tumor suppressor, functions to 

promote cell cycle exit in vivo and to slow down the G1-S progression in vitro (van den 

Heuvel and Dyson, 2008). The prevalent model of G0-G1 progression proposes that 

CyclinD:Cdk4/6 complex progressively phosphorylates Rb resulting in an inactive, hypo-

phosphorylated Rb form, which drives G1 entry. However, recent biochemical studies in 

mouse embryonic fibroblasts (MEFs) showed that Rb is exclusively mono-

phosphorylated by CyclinD:Cdk4/6 on any one of 16 putative Cdk phosphorylation sites 

that are spread throughout the protein at early G1 phase. Surprisingly, the mono-

phosphorylated Rb still functions as a suppressor of E2F activity, in direct contrast to 

the prevalent model. At late G1 phase, mono-phosphorylated Rb is further hyper-

phosphorylated by active CyclinE:Cdk2 complex thereby allowing G1/S progression 

(Narasimha et al., 2014). Importantly, in quiescent, differentiating cells, Rb remains in a 

repressive, un-phosphorylated form, which suggests that appearance of mono-

phosphorylated Rb could be an early mark of the G0-G1 transition. Any one of the 

potential 16 phospho-sites may be phosphorylated to generate the “active” form of Rb, 

and therefore it is impossible to predict which one of the sites out of 16 will be mono-

phosphorylated, and it is not feasible to generate an antibody. Moreover, the mono-

phosphorylated Rb and un-phosphorylated Rb co-migrate on 1D SDS-PAGE and 
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cannot be separated, without a two-dimensional isoelectric focusing (2D IEF) gel. Thus, 

the mono-phospho Rb as a molecular marker of the G0-G1 transition cannot be 

monitored in individual cells or fixed tissue samples. 

Another Rb family member, p130 is the primary E2F complex repressor in quiescent 

cells (Takahashi et al., 2000; Sadasivam and Decaprio, 2013). The highly conserved 

p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) is thought to be 

responsible for cell-cycle dependent gene repression in certain G0 cells, including 

human glioblastoma cells and human primary fibroblasts (Litovchick et al., 2007). 

Chromatin immunoprecipitation (ChIP) and Multidimensional Protein Identification 

Technology (MudPIT) have revealed that DREAM complex directly binds to 800 human 

promoters, and that most E2F cell cycle targets are repressed by p130. The binding of 

p130 is significantly stronger in G0-arrested cells than in proliferating cells. This again 

confirms the finding that p130 is the predominant RB family protein bound to E2F- and 

E2F4- promoters in quiescent MEFs (Balciunaite et al., 2005). At G0-G1 transition, the 

G1 Cdks phosphorylate p130, which triggers ubiquitination of p130 via Skp2 and decay 

of the E2F-p130 repressive complex (Tedesco et al., 2002; Smith et al., 1996). It is 

likely that p130 is required to repress gene expression in quiescent cells, and 

unphosphorylated p130 may be a potential marker of quiescence in certain cell types.  
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Using a T-loop phosphorylation cascade to monitor the G0-G1 transition 

During G1 phase, CycD-Cdk4/6 kinase activity is responsible for mono-

phosphorylation of Rb to progressively promote the progression into G1 phase. 

Therefore, the activation of the Cdk4/6 complex will be critical for cells at the G0-G1 

transition. CycD is constitutively expressed throughout the cell cycle, so how is the 

Cdk4 or Cdk6 activated other than binding to CycD? Previously, it has been shown that 

Cdk7, the only known CAK in metazoans, activates Cdk2 or Cdk1 in the S,G2 phases 

by phosphorylating their activating T-loop sites in vivo (Ganuza et al., 2012).  

It was recently uncovered that at early G1, Cdk4 or Cdk6 activation is also largely 

dependent upon Cdk7 kinase activity in vivo (Schachter et al., 2013). Upon mitogenic 

signals, the Cdk7 activity is induced via the phosphorylation of its T-loop site by 

unknown endogenous kinase, enabling Cdk7 to act in a T-loop cascade towards 

Cdk4/6. Once Cdk4 or Cdk6 are phosphorylated on their T-loop sites and bound to 

CycD, they become active, but require continued Cdk7 activity to combat an unknown 

endogenous phosphatase that targets the unprotected T-loop site. This is quite different 

from the activation of Cdk2 or Cdk1 complex. Cdk7 plays an essential role in the 

activation and maintenance of Cdk4/6 activity to promote the G0-G1 transition. T-loop 

phosphorylation of Cdk7 and Cdk4 both increase at G0 exit in vivo, which suggests a 

CDK activation cascade via sequential T-loop phosphorylation could underlie the G0-G1 

transition. 
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This brings up the question of what initiates Cdk7 activation at the G0-G1 transition. 

Is there another CAK? Or as in vitro studies have shown (Garrett et al. 2001), is Cdk7 a 

target of active Cdk2 in vivo? If so, Cdk2 activity will be critical for the proliferation-

quiescence decision at a time much earlier in the cell cycle than its best known major 

role in the G1-S transition. 

Using CDC6 loading to the chromatin as a way to distinguish G0 

It is believed that origins of replication need to be licensed in G1 for DNA replication 

to occur in S phase of the cell cycle. Replication licensing involves the assembly of the 

pre-replicative complexes (pre-RCs) in a sequential order (Bell and Dutta, 2003). CDC6 

is one of the pre-RC components, which plays a crucial role in recruiting the putative 

replicative helicase (Mcm2-7) to the replication origins. It has been reported that in 

quiescent cells, APC/CCdh1 dependent CDC6 proteolysis prevents pre-RC assembly 

(Petersen, 2000). Other pre-RC proteins are also down-regulated in G0 (Kingsbury et 

al., 2005). During G1 phase, Cdk phosphorylation blocks APC/C-mediated proteolysis 

and stabilizes CDC6, which promotes the assembly of pre-RC at the replication origins 

(Mailand and Diffley, 2005). It has therefore been proposed that the absence of CDC6 

from the chromatin could be a potential marker of G0. 
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Using transcriptional profiles to distinguish G0 

Quiescent cells have a distinct transcriptional profile from that of proliferative cells 

(Coller et al., 2006; Liu et al., 2007; Oki et al., 2014). With the application of a novel cell 

cycle reporter which is able to separate G0 and G1 cells, it was recently found that 

genes enriched in G0 are largely involved in tumor suppression, inflammatory response 

and wound healing. Whereas genes with enriched expression in G1 are mostly cell 

cycle regulators involved in G1-S progression as well as mitosis (Oki et al., 2014). 

Moreover, quiescence is not a uniform state. In human fibroblasts, different signals 

(such as mitogen withdrawal, loss of adhesion and contact inhibition) induce distinct 

gene expression changes in the establishment of quiescence, indicating that cells may 

exhibit variable states of G0 in response to different environmental stress (Coller et al., 

2006). 

Importantly, in the long-term maintenance of G0, the gene expression changes 

become more similar among different conditions, and the genes that are consistently 

regulated involve regulators of cell growth and division, as well as genes that suppress 

differentiation and apoptosis (Coller et al., 2006). However, there is little overlap in the 

gene expression profiles identified from different studies of G0 in different cell types 

(Coller et al., 2006; Liu et al., 2007), which raises the possibility that different cell types 

have distinct G0 states, and brings us back to the original question: what are the 

universal molecular markers of quiescence?   
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1.4 Developmental regulation of the proliferation-quiescence 

decision 

The double –repression of E2F and Cyclin/Cdk activity 

Despite the central role for the Rb family proteins in most models of cell cycle exit 

and quiescence, cell cycle exit can still occur without functional pocket proteins. In 

embryonic development, removal of all three Rb family members (triple knockout or 

TKO) in the epithelial or neuronal progenitor cells, does not prevent cell cycle exit and 

differentiation (Wirt et al., 2010). In the conditional Rb family triple knockout (cTKO) 

hepatocytes, the deletion of the Rb family causes a temporary cell-cycle re-entry, and 

finally cTKO hepatocytes stably exit the cell cycle (Ehmer et al., 2014).  This is 

consistent with the finding that hyperactivation of E2F in Drosophila can only temporarily 

delay cell cycle exit, but cells still eventually arrest in G0 (Buttitta et al., 2007). Thus 

additional mechanisms must exist to promote quiescence in differentiating cells in vivo.  

CKI expression is commonly associated with G0. Not surprisingly, TKO mouse 

embryonic fibroblasts still exit cell cycle under serum starvation, but with high p27Kip1, 

p21Cip1 levels. This implies that CKIs may act as central mediators of cell cycle arrest in 

the absence of functional pocket proteins (Foijer et al., 2005). In mouse models, it has 

been reported p21Cip1 deletion induces proliferation in hippocampal neurons, indicating 
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that p21Cip1 is required to restrain proliferation in differentiating neurons during 

development (Pechnick et al., 2008). The p27-null mice show increased body size and 

aberrant proliferation in enlarged organs, which suggests that p27 also represses 

cellular proliferation during development (Fero et al., 1996). However, loss of all three 

CKI proteins (p21,p27 and p57) in the spinal cord only delays cell cycle exit during 

neurogenesis (Gui et al., 2007). This is consistent with the finding in Drosophila that, the 

sole Cip/Kip-type CKI, dacapo (dap), is dispensable for most cell cycle exit in 

Drosophila tissue including eye and wing development (Firth and Baker, 2005; Buttitta 

et al., 2007). Therefore, Rb family and CKIs play overlapping roles in control of cell 

cycle exit in vivo. Consistently, the loss of both Rb family and CKIs leads to further 

proliferation in tissues that should be G0 in animals ranging from mice to Drosophila 

(Zindy et al., 1999; Firth and Baker, 2005; Buttitta et al., 2007).  

 

Looking beyond the pRb family and CKIs in quiescence 

Studies show that APC/CCdh1 is active and highly expressed in quiescent cells 

(Coller et al., 2006; Liu et al., 2007). Work from different groups also suggests the 

proliferation-quiescence transition requires the activity of APC/CCdh1 complex (Garcí-

Higuera et al., 2008; Buttitta et al., 2010; Ruggiero et al., 2012; The et al., 2015; Cappell 

et al., 2016). What roles could the APC/C play to promote G0? One important target of 
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the APC/C is Skp2, which leads to the ubiquitination and degradation of the negative 

cell cycle regulators, p27Kip1 and p21Cip1. Thus high activity of APC/C not only leads to 

degradation of mitotic cyclins (Sigrist and Lehner, 1997), but also stabilizes CKIs to 

prevent cell cycle progression (Binné et al., 2007). Therefore, the cell cycle protein 

degradation machinery is yet another layer of G0 regulation (Fig.1.3).  

Inhibition of the APC/C disrupts quiescence in the wing and eye in Drosophila 

(Buttitta et al., 2010; Ruggiero et al., 2012; Tanaka-Matakatsu et al., 2007). In addition, 

inhibition of the APC/C cooperates with the loss of other negative regulators such as Rb 

family. For example, repression of APC/C activity together with aberrant E2F activity is 

able to bypass permanent cell cycle exit in the wing in Drosophila (Buttitta et al., 2010). 

This indicates that APC/C activity is required to limit the accumulation of cyclins and 

other essential E2F targets that promote active proliferation. CycE/Cdk2 activity has 

been reported to inhibit APC/C activity (Moberg et al., 2001; Koepp et al., 2001) and 

thus, the high APC/C activity in quiescent, differentiating cells may also increase the 

threshold level of CycE required to suppress APC/C and initiate entry into G1.  

In C. elegans, double mutants of Rb and the APC/C activator Cdh1 exhibit aberrant 

expression of S phase genes in differentiated muscle cells, suggesting that Rb-

mediated transcriptional repression and APC/CCdh1-mediated protein degradation work 

in parallel to inhibit cell cycle progression in differentiated tissues (The et al., 2015). 

Interestingly, the CycD/Cdk4 kinase complex is able to phosphorylate both Rb and 
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APC/C Cdh1 in vitro, resulting in their inactivation. Thus one model proposes that D-type 

cyclins phosphorylate and abolish Cdh1 activity towards Skp2, and thereby allowing 

SCF Skp2 complex to degrade CKIs, resulting in high CycE/Cdk2 complex activity, which 

further inhibits the APC/C activity to push cell cycle re-entry from G0 (Bashir et al., 

2004; Wei et al., 2004). Rb-mediated transcription repression, stable CKI expression 

protected by the APC/C complex all impinge upon the restriction of CycE/Cdk2 activity 

level to promote the entry into quiescence. 

Cdk2 activity thresholds at the proliferation-quiescence decision 

Recent work by Spencer et al suggests that cells with higher Cdk2 activity choose to 

proliferate and enter a new G1 phase immediately after mitosis, while cells with lower 

levels of Cdk2 activity enter a temporary G0-like state after mitosis. This model 

suggests right after mitosis, a threshold of Cdk2 activity level is the key determinant of 

the proliferation-quiescence decision.  

The threshold of Cdk2 activity is regulated via cyclin binding, the presence of active 

and inhibitory phosphorylations (Morgan, 1995), and the levels of Cdk inhibitors such as 

p21 and p27 (Sherr and Roberts, 1999) (also known as CDKN1A and CDKN1B). The 

abundance and availability of a cyclin binding partner (Cyclin E in G1 or Cyclin A in S-

phase and G2) together with the relative levels of phosphorylation at inhibitory Cdk2 

sites (T14 and Y15) and activating sites (T160 in the T-loop) all converge to influence 
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Cdk2 activity levels (Morgan, 1995). In addition, there is a negative feedback loop, 

where Cyclin E/Cdk2 auto-phosphorylates and activates a phospho-degron to catalyze 

its own ubiquitination via the E3 ligase Fbw7 (Koepp et al., 2001; Moberg et al., 2001; 

Strohmaier et al., 2001). Phosphorylation of the inhibitory T14 and Y15 sites is 

regulated by the Wee/Myt kinases and counteracted by cdc25 phosphatases, however 

flies with knocking out these phospho-sites still exhibit essential functions, which 

suggests the inhibitory phosphosites play minimal or redundant roles in regulating Cdk2 

activity thresholds in vivo (Lane et al., 2000; Zhao et al., 2012). In contrast, Cdk2 

phosphorylation of the T-loop at T160 is a hallmark of active Cdk2, absolutely required 

for activity (Merrick et al., 2008). The Cdk2 T-loop is thought to be constitutively 

phosphorylated by CAK (Larochelle et al., 1998), but as described, earlier CAK activity 

itself can be regulated by phosphorylation. Two phosphatases have been suggested to 

be the T-loop phosphatase that could counteract CAK, and they are CDKN3 (also called 

KAP) and PP2A (Poon and Hunter, 1995; Song et al., 2001). Although functional 

evidence for these phosphatases on the Cdk2 T-loop in vivo remains lacking. As 

described in chapter 2, my thesis work has revealed a new role for PP2A complex in 

regulating the Cdk2 T-loop in vivo. 
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1.5 Protein Phosphatase 2A complex (PP2A) 

Composition of PP2A complexes in mammals and in Drosophila melanogaster 

Protein Phosphatase 2A (PP2A) is a serine/ threonine phosphatase. PP2A plays 

roles in multiple cellular activities including cell metabolism, signal transduction, 

cytoskeleton dynamics, cell proliferation and apoptosis. The functional PP2A 

holoenzyme consists of a 36-kDa catalytic subunit (C) and a 65-kDa scaffold subunit 

(A), and one regulatory subunit (B) (Hendrix, Turowski et al. 1993; Shi 2009). The 

spatial and temporal control of PP2A mostly depends on the particular regulatory 

subunit in use, in other words, the regulatory subunits direct PP2A to its substrates 

(Slupe, Merrill et al. 2011). The catalytic and scaffold subunits are highly conserved, 

while the regulatory subunits are more diverse. In mammals, PP2A complexes possess 

two isoforms of the catalytic subunit, two of the scaffold subunit and about 20 different 

regulatory subunits categorized into four families. Therefore, 92 possible PP2A 

heterotrimeric phosphatase complexes can be assembled (Virshup and Shenolikar, 

2009; Haesen et al., 2014). By contrast, in Drosophila, there is only one catalytic 

subunit, microtubule star (mts), one scaffold subunit, Pp2A-29B, and six different 

regulatory subunits (Table1.1, Janssens and Goris 2001). The simplicity of the 

Drosophila PP2A system facilitates genetic in vivo studies of PP2A functions. 

 



 

22 

 

 PP2A plays multiple roles in regulation of mitosis 

To date, the study of PP2A and its contributions to cell cycle progression have 

primarily focused on roles for PP2A in the entry and exit from mitosis. Mitotic 

progression depends largely on the coordinated activities of several kinases and 

phosphatases. CyclinB/Cdk1, mitotic promoting factor (MPF) serves as the central 

kinase in mitotic regulation. Entry into mitosis requires the activation of CycB/Cdk1 

complex, while exit from mitosis requires its degradation and the rapid 

dephosphorylation of its substrates. CycB/Cdk1 activity is regulated by the balance of 

activity between Wee1/Myt1 kinase that phosphorylates Cdk1 for inhibition and Cdc25 

phosphatase that dephosphorylates the Wee1/Myt1 sites for activation (Lew and 

Kornbluth, 1996). Studies in mammalian cell culture systems showed that during early 

mitosis the PP2A complex represses the activation of Cdc25, leading to the inactivation 

of CycB/Cdk1 complex, which prevents cells from precocious mitotic entry (Forester, 

Maddox et al. 2007). Once cells enter into mitosis, active CycB/Cdk1 complex will inhibit 

the PP2A-B55 complex by phosphorylating one of its key targets—Greatwall (Gwl), a 

nuclear localized kinase. The phosphorylation activates Gwl, which subsequently 

phosphorylates Endosulfine proteins (Endos). Phospho-Endos then binds and inhibits 

the PP2A-B55 complex by acting as a pseudo-substrate (Mochida et al., 2010; Gharbi-

Ayachi et al., 2010; Williams et al., 2014). At mitotic exit, PP2A-B55 plays a key role in 

the timely dephosphorylation of the Cdk1 substrates, while the inactivation of Cdk1 
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complex is mediated by APC/C E3 ligase complex (Mochida et al., 2009; Schmitz et al., 

2010). In Drosophila, mitotic roles for PP2A are also largely carried out by the B55 

regulatory subunit called twins, which has peak expression in mitosis. Above all, PP2A-

B55 is the predominant PP2A complex in mitosis (Fig.1.4). 

 

PP2A in tumor suppression 

PP2A has been recognized as a tumor suppressor for over two decades (Janssens, 

Goris et al. 2005), but the molecular mechanism for PP2A in tumor suppression remains 

unclear. Mutations of the genes encoding PP2A scaffold and regulatory subunits occur 

in several human cancers (Walter and Ruediger 2012,Janssens, Goris, & Van Hoof, 

2005; Nobumori et al., 2013). For example, in human prostate cancer, it has been found 

that the expression levels of PP2A scaffold and one of the B56 regulatory subunits—B’γ 

are greatly reduced in prostate cancer compared to the benign prostate (Pandey et al., 

2013). In Drosophila neural stem cells, loss-of-function of the catalytic subunit of PP2A 

complexes, called mts resulted in the over-proliferation of stem cells (neuroblasts), 

leading to a brain tumor phenotype (Wang, Chang et al. 2009). Thus, maintaining PP2A 

function is essential for tumor suppression. 

Recent evidence suggested that a subset of PP2A holoenzymes that specifically 

contain B56 (B56-PP2A) have the potential to suppress tumor formation. In human lung 
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cancer, a point mutation in B56γ has been shown to impair PP2A/B56 phosphatase 

activity towards substrates. Indeed, 24 point mutations have been identified in B56 in 

cancers (Nobumori et al., 2013). Some of the identified mutations have been shown to 

disrupt the ability of PP2A/B56 to block cell proliferation. Thus, understanding how 

compromising PP2A-B56 function leads to excessive proliferation may elucidate its role 

in tumor suppression.  

 

PP2A roles in control of quiescence/cell cycle exit 

Several studies have suggested roles for PP2A in the proliferation-quiescence 

transition. For example, PP2A- B55α was suggested to promote chondrocyte cell cycle 

exit by dephosphorylating the Rb family protein p107 (Kurimchak et al., 2013; 

Kolupaeva et al., 2013). In a second proposed mechanism PP2A inhibition during G2 

phase interferes with the quiescence establishment in the subsequent G1 phase 

(Naetar et al., 2014). It is reported that compromising PP2A function in G2 leads to 

hyperactivation of Ras signaling and thus leads to the induction of c-myc, a well-known 

oncogene essential for transformation. Accumulated CycE mRNA and protein level are 

also detected in the mitotic phase, likely due to the c-myc transcriptional activity. 

Specific depletion of one B-regulatory subunit—B56ɤ phenocopied the G0 defects 

caused by Okadaic Acid treatment. However, no hyperactivation of Ras signaling was 



 

25 

 

observed with depletion of B56ɤ alone. This indicates that B56ɤ is a critical component 

of PP2A complexes involved in G0 arrest but the molecular mechanism may be in 

alternative way. 

The two models above indicate that PP2A complex is necessary for the decision of 

proliferation-quiescence, but their conclusions are inconsistent in the regulatory 

pathways how PP2A impacts the decision as well as when the decision occurs. This 

may be due to the different cell lines used in two studies, or may indicate another 

mechanism is at work. This also raises an intriguing question: whether PP2A will impact 

the proliferation-quiescence decision in vivo tissue development? If so, what will the 

molecular mechanism be? I will present data directly addressing these questions in 

Chapter 2. 
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Figures 

 

 

Figure 1. 1 Distinct states of G0 

There are at least 3 distinct states of G0 that vary in their reversibility. 
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Figure 1. 2 Molecular markers of G0-G1 progression. 

Upon G0 exit a cascade of kinase activity inhibits Rb-mediated repression, which once 

hyperphosphorylated allows cell cycle gene transcription. As cells enter into G1, licensing of 

origins for DNA replication starts. 
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Figure 1. 3 Regulatory pathways in control of the proliferation-quiescence 

decision 

Diagram shows the current studies of the regulations of the proliferation-quiescence decision in 

the developmental contexts. Differentiation signals triggers three redundant pathways that 

promotes quiescence entry while prevents cell proliferation. Regulation may act transcriptionally 

(grey dashed lines) as well as post-translationally (black lines) and includes both positive and 

negative feedback loops. 
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Figure 1. 4 PP2A/B55 plays multiple roles in regulation of the mitotic entry and 

exit 

PP2A/B55 complex is critical to the regulation of both mitotic entry and exit. At mitotic entry, 

PP2A complex represses the early activation of CycB/Cdk1 complex, preventing cells from 

precocious mitotic entry. Upon mitotic exit, PP2A complex is responsible for the 

dephosphorylation of the Cdk1 substrates. Blue arrows indicate the progression of mitosis, while 

black lines depicts the post-translational regulations. 
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Table  

 

Table 1.1 The composition of PP2A complexes 

The components of PP2A complexes in mammals and Drosophila melanogaster 
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Chapter 2.  Protein Phosphatase 2A promotes the transition 

to G0 during terminal differentiation in Drosophila 

This chapter was published in: 

 Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal 

differentiation in Drosophila. Development. 2015 Sep 1;142(17):3033-45. 

Abstract 

Protein phosphatase type 2A complex (PP2A) has been known as a tumor suppressor for over 

two decades, but it remains unclear exactly how it suppresses tumor growth. Here we provide 

data indicating a novel role for PP2A in promoting the transition to quiescence upon terminal 

differentiation in vivo. Using Drosophila eyes and wings as a model, we find that compromising 

PP2A activity during the final cell cycle prior to a developmentally controlled cell cycle exit leads 

to extra cell divisions and delayed entry into quiescence. By systematically testing the regulatory 

subunits of Drosophila PP2A, we find that the B56 family member widerborst (wdb) is required 

for the role of PP2A in promoting the transition to quiescence. Cells in differentiating tissues with 

compromised PP2A retain high Cdk2 activity when they should be quiescent, and genetic 

epistasis tests demonstrate that ectopic CyclinE/Cdk2 activity is responsible for the extra cell 

cycles caused by PP2A inhibition. The loss of wdb/PP2A function cooperates with aberrantly 
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high Cyclin E protein, allowing cells to bypass a robust G0 late in development. This provides an 

example of how loss of PP2A can cooperate with oncogenic mutations in cancer. We propose 

that the wdb/PP2A complex plays a novel role in differentiating tissues to promote 

developmentally controlled quiescence through the regulation of CyclinE/Cdk2 activity. 

 

Introduction 

In adult metazoans, most terminally differentiated cells exit from the cell cycle and lie in a state 

of prolonged or permanent quiescence. The transition from active proliferation to quiescence in 

vivo is robust, often irreversible, and ensured by redundant cell cycle regulatory mechanisms 

(Buttitta et al., 2007; Firth and Baker, 2005; Nicolay et al., 2010; Pajcini et al., 2010; Wirt et al., 

2010). By comparison, most studies of quiescence have been performed in cell culture where 

contact inhibition, drug treatments or withdrawal of mitogens induce a quiescent state which is 

most often readily reversible (Coller, 2011).  While some of the key cell cycle regulators 

promoting quiescence in these contexts overlap (e.g. Retinoblastoma family members, Cyclin-

dependent Kinase Inhibitors, CKIs), there must be critical differences between the reversible 

quiescence in cell culture and developmentally controlled robust cell cycle exit in vivo.  

Recent work in mammalian cell culture has demonstrated that the level of Cdk2 activity after 

mitosis impacts the proliferation vs. quiescence decision for the next cell cycle, such that cells 

with low Cdk2 activity enter a quiescent “G0-like” state (Spencer et al., 2013). This suggests 
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that mechanisms regulating Cyclin/Cdk2 activity during the final cell cycle in vivo could impact 

the timing and robustness of cell cycle exit in tissues. Consistent with this hypothesis, the loss of 

CKIs which inhibit CyclinE/Cdk2 complexes or loss of the F-box protein Fbw7, which regulates 

Cyclin E stability, can partially delay proper cell cycle exit in certain tissues (Chen and Segil, 

1999; de Nooij et al., 1996; Fero et al., 1996; Kiyokawa et al., 1996; Lane et al., 1996; Minella et 

al., 2008; Moberg et al., 2001; Tane et al., 2014). But even in the presence of aberrantly high 

CyclinE/Cdk2, cell cycle exit is most often only delayed by one or two cell cycles in vivo, 

demonstrating the robustness of developmentally controlled quiescence (Baumgardt et al., 

2014; Buttitta et al., 2010; Loeb et al., 2005; Nakayama et al., 1996). 

Determining which cell cycle regulators are required for developmentally controlled cell cycle 

exit in vivo has posed some challenges. The redundant functions of multiple paralogs for each 

cell cycle regulator makes genetic analysis complicated, with studies often encompassing 

double or triple mutants (Gui et al., 2007; Wirt et al., 2010; Zindy et al., 1999). In addition the 

late stage of development where cell cycle exit occurs and the asynchronous nature of cell cycle 

exit in many tissues requires conditional genetic manipulations and timecourse analysis of 

samples. Drosophila eyes and wings have been an advantageous system to study this process, 

as they undergo a relatively synchronized cell cycle exit during metamorphosis and have fewer 

paralogs with tools for precise conditional genetic manipulations. We used this system to 

examine cell cycle exit in terminally differentiating tissues and found that even in retinoblastoma 

family 1 deficient cells, CyclinE/Cdk2 overexpression delays but cannot bypass cell cycle exit 
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(Buttitta et al., 2007), suggesting that additional downstream mechanisms ensure the transition 

from proliferation to quiescence in vivo (Ehmer et al., 2014; Nicolay et al., 2010; Simon et al., 

2009).  

To identify additional mechanisms ensuring cell cycle exit, we examined Drosophila 

homologs of several tumor suppressor proteins expected to play a role in promoting 

quiescence. PP2A has been recognized as a tumor suppressor for over two decades (Janssens 

et al., 2005), but the molecular mechanism for PP2A in tumor suppression remains unknown. 

PP2A de-phosphorylates RB family members to inhibit cycling (Kolupaeva and Janssens, 2013; 

Kurimchak and Grana, 2012), and removes an essential activating phosphorylation on the Cdk2 

T-loop in vitro (Poon and Hunter, 1995). We therefore examined whether PP2A may play 

multiple, redundant roles to promote the developmentally controlled robust cell cycle exit in vivo. 

 Here, we show that cells with reduced PP2A function fail to transition to a quiescent 

state at normal developmental time. Loss of PP2A function specifically during the final cell cycle 

leads approximately 10% of cells to perform an extra cycle before entry into permanent 

quiescence. Cells with compromised PP2A exhibit increased Cdk2 activity and aberrant E2F 

transcriptional activity.  In the presence of high, oncogenic Cyclin E the loss of PP2A function 

allows cells to bypass a robust G0 mechanism during late stages in fly development. The PP2A 

enzyme is directed to distinct substrates via associations with different regulatory subunits, 

which can be highly dynamic during development. Here we show that the PP2A-B56 regulatory 

subunit widerborst (wdb) is specifically required for the PP2A- mediated transition between 



 

35 

 

proliferation and quiescence. Furthermore, this new function for PP2A-B56 occurs even in the 

complete absence of RB/E2F/DP function, suggesting it acts through downstream targets 

directly on the cell cycle machinery to promote quiescence in vivo. 
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Results 

Loss of PP2A delays the transition to quiescence in vivo. 

We performed a small-scale RNAi-based screen of approximately 500 randomly chosen 

Harvard Transgenic RNAi Project (TRiP) lines to identify new potential tumor suppressor genes 

involved in the proper timing of the developmentally controlled quiescence in the Drosophila 

eye. The primary screen was an adult eye-color based screen, an adaptation of the method 

described by Bandura and colleagues (Bandura et al., 2013). This was followed by a secondary, 

dissection-based screen to determine which hits from the initial screen effectively compromised 

cell cycle exit. Normally, the Drosophila eye becomes completely quiescent by 24h after pupa 

formation (24h APF) (Buttitta et al., 2007).  We therefore looked for RNAis that compromised 

quiescence, leading to ectopic cell cycles at 24h APF. We used the Glass Multimer Reporter 

(GMR)-Gal4 (Ellis et al., 1993) driver to express UAS-controlled RNAi lines, and assayed for 

ectopic S-phases by 5-ethynyl-2'-deoxyuridine (EdU) incorporation (Buck et al., 2008) and 

ectopic expression of a cell cycle transcriptional reporter PCNA-GFP (Thacker et al., 2003) in 

eyes after normal quiescence from 24-30h APF (Fig. S2.1). Importantly, the GMR-Gal4 driver 

activates the UAS-RNAi specifically during the final cell cycle in the eye, thereby avoiding earlier 

deleterious effects. We found that two independent RNAi lines to the Drosophila PP2A catalytic 

subunit microtubule star (mts) and one to the sole PP2A scaffold A subunit, Pp2A-29B, caused 

ectopic S-phases and cell cycle gene expression, at timepoints when the Drosophila eye should 

be fully quiescent (Fig. S2.1 A-C). 



 

37 

 

To confirm the RNAi results, we overexpressed a dominant negative form of mts (mtsDN) 

during the final cell cycle in fly eyes and found that it fully recapitulated the RNAi phenotypes. 

The mts dominant negative is a truncation which interacts non-productively with PP2A 

scaffolding (A) and regulatory (B) subunits, and serves as an effective competitive inhibitor 

when overexpressed (Evans et al., 1999). To test whether the role for PP2A in quiescence is 

eye-specific, we overexpressed mtsDN in the posterior wing during the final 1-2 cell cycles using 

engrailed-Gal4, modified with a temperature sensitive Gal80TS (enTS, see methods for details). 

Similar to the eye, we observed ectopic S-phases by EdU incorporation and ectopic mitoses by 

staining for phosphorylation of Serine-10 on Histone H3 (PH3) at 24-28h APF, timepoints when 

few cell cycles are normally observed in the wing (Fig. 2.1A,B). Overexpression of a functional 

wild-type mts (mtsWT) however had no observable effect on quiescence in these tissues (Fig. 

2.1C-D), confirming that the observed phenotype is due to the loss of PP2A function. We 

performed a timecourse and quantification of the mitoses in wings expressing mtsDN (Fig.2.1E, 

S2.1D) or PP2A RNAis (Fig. 2.1F), which revealed continued mitoses in eyes and wings until 

37h APF, 13h after the normal cell cycle exit in these tissues (Buttitta et al., 2007; Milan et al., 

1996; Schubiger and Palka, 1987). To confirm the staining results, we measured the DNA 

content of pupal eyes expressing mtsDN by flow cytometry. As expected from the ectopic cell 

cycle markers, an increased proportion of cells containing greater than 2C DNA content was 

observed in mtsDN expressing eyes compared to stage matched controls without transgene 

expression (Fig.2.1G). However after 37hAPF, eyes expressing mtsDN exit the cell cycle with a 

normal G1 DNA content. Altogether our data suggests that inhibition of PP2A during the final 
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cell cycle causes a temporary delay of the transition to quiescence in a compartment-

autonomous manner.    

 

Inhibition of PP2A leads to an extra cell cycle during the delay of quiescence. 

We next investigated whether the delayed transition to quiescence caused by loss of PP2A 

leads to additional cell cycles or whether it is the result of a prolonged final cell cycle. To 

address this, we performed a clonal analysis to count the number of cells per clone, reflecting 

the number of cell divisions before quiescence, using the heat shock (hs)-flp 

actin>stop>Gal4/UAS “flip-out” system. In brief, with this system a precisely timed heat-shock 

leads to random cis-recombination between FRT sites (indicated by >) flanking a stop codon. 

Cells where recombination occurs “flip-out” the stop codon to allow Gal4-mediated gene 

expression, which continues permanently in all daughter cells (Pignoni and Zipursky, 1997). In 

this manner, the number of daughter cells can be counted after the delayed quiescence at 37h 

APF. Non-overlapping clones were induced at 0h APF (just prior to the final cycle) by a low-level 

of heat shock at 37°C. Transgenes to manipulate PP2A activity, as well as GFP to mark clones, 

and an apoptosis inhibitor (to prevent loss of daughters which confounds clonal cell counts) 

were expressed and cells per clone were counted blind for at least 100 clones in the wing blade 

at 42-44h APF (Fig. 2.2A, S2.1G). Most (95%) control clones expressing GFP and P35 contain 

2 cells or less per clone, as the induction of the recombination occurs during or just prior the 

final cycle. However, 15% of clones expressing mtsDN contain more than 2 cells per clone, 
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which indicates that approximately 10% of mtsDN expressing cells undergo an extra cell cycle 

before entering G0. For comparison, when the G1 cyclin complex CyclinD/Cdk4 is directly 

overexpressed via Gal4/UAS, we observe 50% of cells performing an extra cell cycle, before 

becoming quiescent at 36h APF (Buttitta et al., 2007).   

To determine whether PP2A inhibition also causes extra cell cycles in the eye, we examined 

the morphology of the fly eye at late pupal stages (40-42h APF). In a wild-type or control retinas 

(Fig. 2.2B), the apical ommatidial structure consists of four cone cells in the center surrounded 

by inter-ommatidial cells (IOCs) (Tomlinson and Ready, 1987). The IOCs are shared by 

adjacent ommatidial cores and the number of IOCs can be quantified within an ommatidial 

group (OG) that covers a defined hexagonal area (Figure 2.2D) (Ou et al., 2007). When PP2A is 

inhibited during the final cell cycle in the eye, extra IOCs are observed (17.4±0.3 cells/OG) 

consistent with approximately 1 extra cell cycle per OG. We confirmed the extra cycles are not 

due to disruption of programmed cell death in the pupal eye, as the cell number is further 

increased when apoptosis is inhibited (Fig. 2.2E,F). The size of the adult eye is also increased 

when PP2A is inhibited (Fig. 2.2H). Our cell count data suggests that PP2A inhibition enlarges 

the eye partly by ectopic cell proliferation, but we also consistently observed an increase in cell 

size. An increase in cell size is consistent with known functions of PP2A in the TOR/S6Kinase 

(S6K) pathway (Bielinski and Mumby, 2007; Hahn et al., 2010). 

PP2A counteracts the phosphorylation of S6K, which we used as an assay to confirm the 

activity of our mts transgenes (Fig. S2.2A). To test whether the increase in active phospho-S6K 
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impacts the transition to quiescence, we overexpressed the GTPase, Rheb, which increases 

cellular growth, TOR signaling and phospho-S6K (Saucedo et al., 2003). We did not observe 

any delay in cell cycle exit in the pupal wing, nor extra IOCs in the retina when Rheb is 

overexpressed, despite increased phospho-S6K (Fig. S2.2). We therefore suggest the function 

of PP2A in the transition to quiescence is independent of its role in regulating phospho-S6K. 

 

Inhibition of PP2A leads to ectopic Cdk2 activity.  

Proper cell cycle exit in Drosophila eyes and wings is ensured by inhibition of E2F/DP-mediated 

transcription and suppression of Cyclin E/Cdk2 activity (Buttitta et al., 2007; Firth and Baker, 

2005). To examine whether cells with inhibited PP2A retain high Cdk2 activity, we used anti-

MPM2 staining as an in vivo readout for ectopic Cdk2 activity at timepoints after normal cell 

cycle exit. MPM-2 antibodies detect nuclear Cdk2 phospho-epitopes on the histone locus body 

(HLB) which occur normally only during S-phase in proliferating cells, in addition to the well-

described cytoplasmic epitopes present during mitosis (White et al., 2011; White et al., 2007). 

We generated GFP marked clones in eyes and wings expressing CyclinE/Cdk2 as a positive 

control, mtsDN or wild-type mts (mtsWT) during the final 1-2 cell cycles and examined MPM2 

reactivity at 26h APF, two hours after normal cell cycle exit. We observed abundant nuclear 

HLB staining by MPM2 in cells expressing CyclinE/Cdk2 and mtsDN, but no MPM2 staining in 

cells expressing mtsWT (Fig. 2.3 A-C). This suggests that loss of PP2A leads to ectopic Cdk2 

activity in normally postmitotic tissues.  
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We next tested whether loss of PP2A also leads to a failure to repress E2F/DP 

transcriptional activity during normal cell cycle exit. We used the E2F-responsive proliferating 

cell nuclear antigen (PCNA) promoter fused to GFP (Thacker et al., 2003) as a readout of 

ectopic E2F activity at timepoints after normal cell cycle exit. Compromising PP2A function in 

eyes during the final cell cycle led to ectopic E2F activity at 26h APF, a timepoint when little to 

no E2F activity should persist (Fig. 2.3D,E).  

The repression of E2F/DP-mediated transcription upon cell cycle exit is modulated by RB 

binding, which is inhibited by RB phosphorylation via active Cyclin/Cdk complexes or promoted 

by de-phosphorylation via phosphatases. In mammals, PP2A can modulate the phosphorylation 

state of the RB- related pocket protein, p107, to promote cell cycle exit in chondrocytes 

(Jayadeva et al., 2010; Kolupaeva et al., 2008; Kurimchak et al., 2013). Thus, a plausible 

mechanism for PP2A regulation of the transition to quiescence could be through inhibition of 

Drosophila retinoblastoma family (Rbf)-mediated repression of E2F/DP transcriptional activity. 

To genetically test whether endogenous E2F/DP complexes are required for the delay of 

quiescence caused by PP2A loss, we used the MARCM system (Lee and Luo, 2001) to create 

Dp homozygous null mutant clones (Fig. S2.3), with and without PP2A inhibition.  Dp null 

mutant cells exhibit defects in cell proliferation and Dp null mutant clones in larval wings are on 

average 3.27±0.21 times smaller than wild-type clones generated in parallel (Nicolay and 

Frolov, 2008). We confirmed a similar phenotype for Dp mutant clones in pupal wings, which are 

3.06 times smaller than wild-type clones induced in parallel, Fig. 2.3G, Fig. S2.3) and Dp mutant 



 

42 

 

clones in the pupal wing lack Dp protein (Fig. 2.3H,I). Dp null mutant clones expressing mtsDN in 

pupal wings exhibit ectopic mitoses in wings at timepoints after normal cell cycle exit, while no 

mitoses were observed in any stage-matched Dp null mutant clones (Fig. 2.3 G,H). This 

suggests that the delay of cell cycle exit upon inhibition of PP2A is epistatic to E2F/DP function, 

and reveals an additional role for PP2A in promoting quiescence independent of RB/E2F/DP 

complexes in vivo.  

 

Inhibition of PP2A function does not delay cell cycle exit by preventing APC/C activity  

The Anaphase Promoting Complex/Cyclosome (APC/C) promotes timely cell cycle exit 

in Drosophila eyes and wings by degrading residual Cyclin A and Cyclin B during the 

final G1 (Buttitta et al., 2010; Ruggiero et al., 2012; Tanaka-Matakatsu et al., 2007). 

Furthermore, the APC/C complex can cooperate with RB proteins to reinforce cell cycle 

exit by promoting degradation of Skp2, which targets CKIs for destruction (Binne et al., 

2007). PP2A can impact the APC/C indirectly by counteracting Cyclin B/Cdk1 

phosphorylations (Hunt, 2013) as well as regulating the binding and stability of the 

APC/C inhibitor Emi (Wu et al., 2007), which functions similarly to Drosophila Regulator 

of Cyclin A1(Rca1) (Grosskortenhaus and Sprenger, 2002). We therefore examined 

whether APC/C function may be inhibited when PP2A is compromised, leading to a 

delay in cell cycle exit. As a read-out for APC/C activity, we examined the levels of the 

known APC/C target, Cyclin B (CycB) by immunohistochemistry. GFP-marked clones 
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with transgene expression were induced by the “flipout” Gal4/UAS/Gal80TS system and 

shifted to permissive temperature during late larval stages (Fig. 2.4A-C). As a positive 

control, we inhibited APC/C activity by expression of Rca1 and observed clear CycB 

accumulation in GFP positive cells in the posterior of larval eye imaginal discs (Fig. 

2.4A, A’). However, we observed no change in CycB levels in eyes with either PP2A 

loss-of-function via mtsDN expression or PP2A gain-of-function with mtsWT  (Fig. 2.4B-

4C’). We also extracted protein samples from late larval eye imaginal discs and 

performed western blots to measure total levels of Cyclins A and B. We found that 

neither gain-of-function PP2A nor loss-of-function PP2A significantly increased CycA or 

CycB levels (Fig. 2.4D,E).  

We next examined whether CycB/Cdk1 complex activation may be altered by PP2A 

inhibition during cell cycle exit in vivo. The activation of the CycB/Cdk1 complex is triggered by 

the removal of inhibitory phosphates on Cdk1 (at Y14 and T15) by the phosphatase cdc25c, 

termed string in Drosophila. The activity of string is rate-limiting for entry into mitosis in the 

wings and eyes in vivo (Neufeld et al., 1998) and persistent CycB/Cdk1 activity could delay 

proper cell cycle exit.  However we did not observe significant effects on Cdk1 inhibitory 

phosphorylations under genetic manipulations of PP2A activity (Fig. 2.4F), in contrast to ectopic 

expression of string, which strongly reduces Cdk1 inhibitory phosphorylation as expected 

(Fig.2.4F).   
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PP2A interacts with negative regulators of CyclinE/Cdk2 activity in vivo. 

Consistent with the evidence of ectopic Cdk2 activity when PP2A is compromised (Fig. 2.3 A-

C), we also observed functional genetic interactions between known negative regulators of 

Cdk2 activity and PP2A in the fly eye (Fig. 2.5). The sole p21/p27 CKI in Drosophila, dacapo 

(dap), is a major inhibitor of the CyclinE/Cdk2 complex upon cell cycle exit (de Nooij et al., 1996; 

Lane et al., 1996; Sukhanova and Du, 2008). We examined whether loss of dap cooperates with 

inhibition of PP2A to delay quiescence by quantifying IOCs in late pupal stages as described 

previously for Fig. 2.2. The loss of one copy of dap (using the dap4 null allele) enhanced the 

effect of mtsDN expression (driven by GMR-Gal4) on the number of IOCs (18.7±0.3), compared 

to PP2A inhibition alone (17.3 ±0.2) (Fig. 2.5A-5D). We also observed a 15% increase in adult 

eye size in dap heterozygotes expressing mtsDN compared to siblings with normal dap, while 

mtsDN expression alone caused ~8% increase in adult eye size (Fig. 2.5E). In addition, we used 

MARCM system to create dap homozygous null mutant clones, with and without PP2A inhibition 

via expression of mtsDN.  In dap null mutant clones expressing mtsDN, we also observed an 

increase in extra cells including an increase in lens-producing cone cells, which is rarely seen in 

wild-type clones expressing mtsDN (Fig.2.5G-I, S2.4I). In a reciprocal experiment, we 

overexpressed dap together with mtsDN during the final cell cycle using the GMR-Gal4 driver, 

and observed a partial suppression of the enlarged eye phenotype caused by PP2A inhibition 

alone (Fig. 2.5F). This indicates that high Cdk2 activity is at least in part, required for the 

enlarged eye phenotype resulting from PP2A inhibition.  
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 To confirm that the enhancement of the dap eye phenotypes by mtsDN were due to impacts 

on CyclinE/Cdk2 function, we next examined a different negative regulator of CyclinE for genetic 

interactions with PP2A. Cyclin E (CycE) protein level is controlled by the SCF complex with the 

ubiquitin ligase Fbw7, termed archipelago (ago) in Drosophila. Loss of ago in the fly leads to 

aberrant accumulation of CycE protein and temporarily delays cell cycle exit of the bristle 

precursors in the eye (Moberg et al., 2001). Consistent with our results from loss of one copy of 

dap, we found that loss of one copy of ago (using the ago1 allele) also enhanced the mtsDN large 

eye phenotype (Fig. S2.4).  

We next examined whether modulation of PP2A activity itself could impact CycE protein 

levels or stability during the final cell cycle. We used GMR-Gal4 to drive expression of mtsDN or 

mtsWT during the final cell cycle in the eye and extracted protein from larval eyes for western blot 

analysis. We observed no significant increase in CycE protein levels when PP2A was 

compromised (Fig S2.4). Altogether our genetic data indicates that PP2A acts through a 

pathway independent of RB/E2F/DP, and possibly in parallel to dap or ago to regulate 

CycE/Cdk2 activity.  

 

PP2A inhibition cooperates with high Cyclin E to bypass robust cell cycle exit.  

High CyclinE /Cdk2 activity during the final cell cycle in fly tissues delays cell cycle exit, but after 

only a few extra cell cycles a robust cell cycle exit mechanism ensures permanent quiescence 
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(Baumgardt et al., 2014; Buttitta et al., 2010; Buttitta et al., 2007). We asked whether PP2A 

inhibition could promote cells with aberrantly high CycE expression to override the robust 

transition to quiescence and maintain proliferation during later stages in development, as 

suggested by its known role as a tumor suppressor. To test this, we used GMR-Gal4 to drive 

UAS-CycE expression together with the Baculoviral apoptosis inhibitor P35 (to minimize 

corrective apoptosis) with or without PP2A inhibition via mtsDN. We examined proliferation in the 

eye at late pupal stages, several hours after the normal robust exit that occurs even in the 

presence of de-regulated CycE (Fig. 2.6A-D). Pupal eyes expressing Cyclin E without any PP2A 

modulation exhibit few S-phases and mitoses at this late stage of development, while eyes 

expressing CycE together with mtsDN maintain high proliferation even after the stage normally 

associated with robust permanent cell cycle exit. To further confirm this, we isolated late pupal 

eyes and performed flow cytometry to examine the DNA content in eyes at 46h APF. When 

eyes overexpress CycE, only about 9% of cells from the entire retina exhibit an abnormal S/G2 

DNA content. By contrast, when PP2A is compromised in stage-matched eyes over-expressing 

CycE, 27% of cells exhibit abnormal S/G2 DNA contents (Fig. 2.6F). This suggests that PP2A 

normally functions as a barrier to limit the bypass of cell cycle exit when CycE is de-regulated in 

vivo. 
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The PP2A B56 subunit widerborst regulates the transition to quiescence in vivo. 

To identify the PP2A regulatory subunit responsible for promoting quiescence in differentiating 

tissues, we systematically tested each PP2A regulatory subunit in Drosophila for phenotypes in 

the eye (Table 2.1). We used RNAi to knockdown regulatory subunits during the final cell cycle, 

and compared the adult eye sizes of progeny (Fig. S2.5A). Inhibition of the Drosophila B56 

epsilon homolog (also called PPP2R5E) widerborst (wdb) led to an enlarged eye phenotype, 

similar to what we observe with mtsDN expression, whereas knockdown of the B55 homolog 

twins causes a decrease in eye size, perhaps due to defects in mitosis (Brownlee et al., 2011; 

Chen et al., 2007). To test directly whether wdb is required for cell cycle exit, we used a 

dominant negative form of wdb, wdbDN (Hannus et al., 2002).  Expression of wdbDN driven by 

enTS-Gal4 during the final 1-2 cycles in the wing or GMR-Gal4 driving wdbRNAi during the final 

cell cycle in the eye, leads to ectopic S-phases and mitoses in tissues at developmental 

timepoints that are normally quiescent (Fig. 2.7A,A’, Fig. S2.5C,D). We also observed ectopic 

E2F/DP transcriptional activity at normally postmitotic stages when wdb is knocked down (Fig. 

S2.5I). We quantified the mitotic index in pupal tissues expressing wdbDN at 26h APF (Fig. 

2.7C), and found that the defect in cell cycle exit upon wdb inhibition is less dramatic than the 

defect caused by inhibition of mts. We suggest that either the dominant-negative wdb does not 

completely block wdb function, or wdb may not be the only PP2A regulatory subunit involved in 

the transition to quiescence and other subunits may provide some partially overlapping 

functions.  
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Consistent with our previous tests of genetic interactions between PP2A and negative 

regulators of CycE/Cdk2 activity, we observed that adult eye size is increased by15% in dap 

heterozygotes expressing wdbDN compared to dapWT siblings (Fig. 2.7E). Inhibition of wdb alone 

causes an ~8% increase in adult eye size, suggesting that loss of one copy of dap synergizes 

with inhibition of wdb, similar to the genetic interaction we observed with mts.  

We next tested whether wdb contributes to the role of PP2A as a barrier to limit the bypass 

of cell cycle exit when CycE is de-regulated in vivo. We examined the morphology of the 

ommatidial structure in pupal retinas expressing CycE or CycE + wdbDN as described previously 

for Fig. 2.6. The expression of wdbDN and CycE expression together dramatically enhances the 

number of IOCs (Fig. 2.7F,G), indicative of continued cycling in the late pupal retina. By 

contrast, when the B55 family regulatory subunit (twins) is knocked down by RNAi in the CycE 

expressing background, there is no obvious difference in IOC cell number compared to CycE 

expression alone (Fig. S2.5J-L). Our data thus indicate that wdb contributes to the role of PP2A 

as a barrier to limit proliferation when CycE is de-regulated in terminally differentiating tissues.  

 

Inhibition of PP2A increases the T-loop phosphorylation of Cdk2.  

Our data suggest that PP2A may promote quiescence by limiting Cdk2 activity during the final 

cell cycle in vivo to restrict proliferation in terminally differentiating tissues. To test this 

hypothesis, we compromised PP2A function in vivo by expressing mtsDN and CycE in the 
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posterior larval eye under the control of the GMR-Gal4 promoter, followed by 

immunoprecipitation of CycE to measure effects on CycE/Cdk2 kinase activity. When mtsDN is 

expressed in the posterior larval eye, we observe a 20-40% increase in CycE/Cdk2 kinase 

activity after normalization to the amount of CycE pulled down (Fig. 2.8A). One interpretation of 

this result is that PP2A knockdown leads to an increase in CycE/Cdk2 activity, however it is also 

possible that the observed increase in CycE/Cdk2 kinase activity is a result of the increased 

proliferation we observe when CycE is expressed under conditions where PP2A is 

compromised (e.g. Fig 2.6B,D) and not a direct effect of PP2A on CycE/Cdk2 activity. To 

distinguish whether the increased Cdk2 activity is due to an immediate effect of PP2A inhibition 

on CycE/Cdk2, we performed a kinase assay in Drosophila S2R+ cultured cells, where we can 

use short-term treatments with the pan-PP2A inhibitor Okadaic Acid (OA) to discern immediate 

versus indirect effects of PP2A inhibition on CycE/Cdk2 activity. We performed a timecourse 

and dosage test of OA treatment in S2R+ cells and confirmed that with 30 minutes of OA 

treatment, PP2A activity is inhibited as assessed by increased phosphorylation of S6Kinase. We 

therefore performed a timecourse of OA treatment on S2R+ cells transiently transfected with a 

CycE expression vector and performed CycE/Cdk2 kinase assays as described above. We 

found that with 30min of OA treatment, S2R+ cells exhibit a mild increase in CycE/Cdk2 activity 

(Fig. 2.8C), consistent with a direct effect of PP2A on CycE/Cdk2 activity. However upon longer 

OA treatments (2h shown), cells exhibit a reduction in CycE/Cdk2 kinase activity and a slower 

migrating form of CycE protein is immunoprecipitated (Fig. 2.8D). In mammalian cells, 

PP2A/B55𝛽 can dephosphorylate the N- and C-terminal phosphodegrons of CycE1 (Tan et al., 
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2014). Thus the slower migrating form of CycE we observe may be due to inhibition of 

PP2A/Twins (B55) by OA in Drosophila which impacts the measured CycE/Cdk2 activity. 

Altogether, our data suggests that short-term inhibition of PP2A can increase CycE/Cdk2 

activity, while a prolonged loss of PP2A function impacts CycE/Cdk2 in a complex manner, due 

to differing functions of multiple PP2A complexes. We suggest there may be smaller 

contribution of PP2A/B55 complexes to the overall PP2A activity during the final cell cycle in 

vivo, compared to actively proliferating S2R+ cells in vitro. 

PP2A can bind and remove an activating phosphate on the T-loop of human Cdk2 in vitro 

(Poon and Hunter, 1995) and the T-loop and critical activating phosphorylation sites are 

conserved between mammals and Drosophila. To test whether PP2A complexes limit 

CyclinE/Cdk2 activity after mitosis by removing the Cdk2 T-loop phosphorylation, we turned to 

murine cell lines where cells can be synchronized in M-phase and Cdk2 phospho-T-loop 

specific antibodies are available. We synchronized NIH 3T3 mouse embryonic fibroblasts 

(MEFs) in M-phase with a nocodazole treatment to de-polymerize microtubules. We then 

released cells from the mitotic arrest and performed a time-course analysis of Cdk2 T-loop 

phosphorylation in cells treated with the pan-PP2A inhibitor Okadaic Acid (OA) versus vehicle 

only. We observed that 8h after release from a mitotic arrest, treatment with OA for 30 minutes 

increases T-Loop phosphorylation 2-fold over a vehicle treated control (Fig. 2.8F). We next 

tested whether a similar OA treatment in asynchronously proliferating mouse fibroblasts could 

lead to an increase in Cdk2 T-loop phosphorylation. We observed a mild increase (20%) on 
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Cdk2 T-loop phosphorylation in 3T3 MEFs, while we detected no effect on Cdk2 T-loop 

phosphorylation in primary asynchronous MEFs. This suggests that redundant mechanisms 

may limit the effect of PP2A on the T-loop in primary cells. However, we observed a 50% 

increase in Cdk2 T-loop phosphorylation in p27-knockout (p27KO) primary MEFs treated with OA 

(Fig. 2.8G), suggesting that PP2A may preferentially act on Cdk2 complexes that are not bound 

to Cdk inhibitors. We also observed increased levels of Cdk2 in p27KO MEFs suggesting the role 

of PP2A may be fully revealed under conditions where Cyclin E/Cdk2 levels are high, but need 

to be rapidly inhibited. This is consistent with the genetic interactions we observed in Drosophila 

between PP2A and the p27 homolog dacapo.  

 An interaction between Drosophila Wdb and Cdk2 in a yeast two hybrid assay has been 

reported (Stanyon et al., 2004). To confirm whether PP2A/Wdb complexes interact with 

CycE/Cdk2 complexes, we performed an immunoprecipitation of endogenous Cyclin E with a 

V5-tagged Wdb in proliferating S2R+ cells (Fig. S2.6A). We observe a mild enrichment of Cyclin 

E in samples with Wdb-V5 pulled down, compared to controls and mock precipitations. The 

enrichment of CycE may be mild because PP2A/Wdb interacts with many substrates in a 

transient manner throughout the cell cycle. We propose that only a fraction of the precipitated 

Wdb-V5 complexes at a given time from asynchronously proliferating cells will therefore contain 

endogenous CycE. To examine this in more detail, we next transfected CycE and Wdb-V5 

expression vectors in S2R+ cells, and examined cells for co-localization of the proteins during 

the cell cycle. We found that Cyclin E and Wdb-V5 co-localize in the cytoplasm during mitosis 
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(Fig. S2.6B). Cyclin E is predominantly nuclear, but becomes dispersed in the cytoplasm during 

nuclear envelope breakdown in mitosis, while Wdb is predominantly in the cytoplasm. This 

suggests that PP2A/Wdb complexes most likely interact with Cyclin E/Cdk2 complexes 

transiently during or just after mitosis, before nuclear envelope re-formation. This is consistent 

with our results in 3T3 cells, which suggest that the maximal effect of PP2A on the Cdk2 T-Loop 

occurs about 8 h after a mitotic release. Altogether, our studies suggest that B56/PP2A can act 

to restrict CycE/Cdk2 activity after mitosis to promote quiescence in vivo. 
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Discussion  

We identify a new role for PP2A in promoting quiescence during the transition to a permanently 

postmitotic state in Drosophila wings and eyes. In our studies we observe that approximately 

10% of cells undergo an extra cell cycle when PP2A functions are compromised. While this 

effect may appear small, the cell cycle exit mechanism in vivo is so robust that cells completely 

lacking major cell cycle regulators such as the RB family member rbf1 or the sole p21/p27-type 

CKI dacapo only exhibit a mitotic or S-phase index of 9% or less in eyes and wings (Buttitta et 

al., 2007; Sukhanova and Du, 2008). As with other cell cycle regulators that act redundantly to 

promote cell cycle exit, we see synergism when PP2A is compromised under conditions de-

regulating the G1-S Cyclin, Cyclin E (Firth and Baker, 2005).  

Cells with reduced PP2A function exhibit ectopic cell cycle markers until 13h after normal 

exit timing, which is roughly consistent with the one extra cell division we measure by clonal 

lineage analysis. Importantly, the ectopic proliferation phenotypes we observe are the result of 

manipulating PP2A functions specifically during the final 1-2 cell cycles, without disturbance of 

prior PP2A mitotic functions during active proliferation.  

 

PP2A impacts the proliferation-quiescence decision in vivo 

Recent studies on PP2A in the proliferation-quiescence decision have revealed that PP2A 

activates the retinoblastoma protein related family member p107 by dephosphorylation to 
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promote growth arrest in chondrocytes (Kolupaeva et al., 2008; Kurimchak et al., 2013). Another 

group recently found a second mechanism for PP2A to promote quiescence, whereby 

PP2A/B56 inhibits Ras signaling during G2 phase which limits subsequent Myc expression and 

reduces Cyclin E expression in the following G1 (Naetar et al., 2014). This promotes quiescence 

by limiting Cyclin E, which would otherwise disrupt the association of RB family members with 

E2F/DP complexes by phosphorylation. Our data however suggest there is yet another 

mechanism during the final cell cycle in vivo, independent of Ras/ERK signaling, dMyc (Fig. 

S2.7), Cyclin E levels (Fig. S2.4), and RB/E2F/DP function (Fig. 2.3), which promotes timely 

entry into quiescence. This additional mechanism acts directly on the cell cycle machinery, 

downstream or in parallel to RB/E2F/DP function, which appears to be critical for the extremely 

robust type of developmentally controlled G0 observed in vivo. 

 

B56 regulatory subunits promote quiescence in vivo. 

The emergence of multiple pathways for PP2A to promote quiescence may be due to PP2A’s 

broad functions, with impacts on various substrates in different cell cycle phases (Janssens et 

al., 2005; Mumby, 2007; Westermarck and Hahn, 2008; Yang and Phiel, 2010).  In normal 

development, cells enter into quiescent state in response to developmental signals, while in cell 

culture serum deprivation is most often used for the synchronization in G0, via disrupted 

metabolic signals (Naetar et al., 2014). It may be that in these different biological contexts, 

PP2A acts upon different targets to influence the proliferation-quiescent decision. PP2A is 
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directed to distinct targets via the regulatory subunit, which has dynamic associations and 

localizations during the cell cycle. It is therefore important to note that consistent with the recent 

work of Naetar et. al., we also independently identified a B56 regulatory subunit (wdb) as the 

main PP2A regulatory subunit promoting quiescence in vivo. However our data demonstrates 

that wdb acts via a different mechanism to promote permanent cell cycle exit in vivo. 

Most known cell cycle functions for PP2A in Drosophila involve the B55 regulatory 

subunit twins and its roles in regulating mitotic entry and exit (Brownlee et al., 2011; Chabu and 

Doe, 2009; Chen et al., 2007; Wang et al., 2013; Wang et al., 2011).  Consistent with this, when 

we manipulate PP2A activity in early tissues such as the actively proliferating larval wing or eye, 

we also observe disruptions of mitosis. An inhibitory role for PP2A in the Hippo signaling 

pathway which regulates tissue growth, survival and proliferation has also been described 

(Ribeiro et al., 2010). However the role for PP2A inhibiting Hippo signaling acts via B’’’ 

regulatory subunits and exactly opposite to the growth and cell cycle phenotype we observe 

here. The requirement for wdb during the final cell cycle to promote quiescence implies that the 

PP2A enzyme complexes may switch from predominantly B55 (twins) to B56 (wdb) during the 

final cell cycle, mitotic exit and the subsequent G0 arrest. Understanding how the switches in 

PP2A regulatory subunits are regulated during the cell cycle and in response to developmental 

signals will be an important area for future study. 

 

PP2A inhibits CyclinE/Cdk2 activity during the final cell cycle to promote quiescence. 
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A recent study monitoring single-cell cycle dynamics in cell culture demonstrated that thresholds 

of Cdk2 activity after the completion of mitosis regulate the subsequent proliferation-quiescence 

decision (Spencer et al., 2013). Our data suggest a role for PP2A in limiting Cdk2 activity during 

the final cell cycle in vivo to restrict proliferation in terminally differentiating tissues. Inhibition of 

PP2A during the final cell cycle leads to ectopic Cdk2 activity as detected by the anti-MPM2 

epitopes at the HLB (Fig. 2.3) and genetically cooperates with Cyclin E inhibitors, ago and 

dacapo. In mammalian cells, PP2A inhibition after mitosis leads to an increase in the activating 

Cdk2 T-loop phosphorylation. It is possible that PP2A and Cyclin E/Cdk2 also share 

downstream targets in cell cycle regulation, similar to the role of PP2A/B55 complexes in 

reversing Cdk1 phosphorylation of mitotic targets. However, we could not confirm any effect of 

PP2A genetic manipulations on the phosphorylation of Drosophila Rbf, an important target of 

Cyclin E/Cdk2 activity for cell cycle exit in flies (Meyer et al., 2000) (Fig. S2.6C). We suggest 

that PP2A/Wdb acts to modulate Cyclin E/Cdk2 activity during the final cell cycle to help 

promote rapid and timely induction of G0 during development.  
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Materials and Methods 

Fly stocks  

w1118 

y w hsflp122;+;UAS-CycE,UAS-Cdk2 (Buttitta et al., 2007) 

y w hsflp122;UAS-CycD,UAS-Cdk4;+ (Datar et al., 2000) 

y w hsflp122;UAS-CycA;+ (Jacobs et al., 2001) 

y w hsflp122; UAS-Stg/CyO-GFP; + (Neufeld et al., 1998) 

y w hsflp122;+;UAS-Dacapo (Neufeld et al., 1998) 

y w hsflp122; +; UAS-HA-Rca1/TM6B 

y w hsflp122;+;UAS-Rbf (Neufeld et al., 1998) 

y w hsflp122;+;UAS-Rbf RNAi 

w;tub>CD2>gal4,UAS-GFP;tub-gal80TS,UAS-Diap (UAS-Diap from (Lohmann et al., 2002)) 

w;UAS-P35;act>CD2>gal4,UAS-GFPNLS (Neufeld et al., 1998) 

FRT42D,Dpa3/CyO-GFP;+ (Frolov et al., 2005) 

w;FRT42D,dap4/CyO-GFP (Lane et al., 1996) 

w;FRT82B ago1/TM6B (Moberg et al., 2001) 
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y w hsflp122,tub-gal4,UAS-GFP;FRT42D tub-gal80  

y w hsflp122;GMR-gal4;PCNA-GFP (Bandura et al., 2013) 

w; GMR-gal4, UAS-CycE; GMR-P35 (kindly provided by H. Richardson) 

w; GMR-gal4; Dr/TM6B 

w; en-gal4,UAS-GFP; tub-gal80TS 

UAS-P35;+;sb/TM6B 

UAS-mtsDN (Chabu and Doe, 2009) 

UAS-mtsWT (Wang et al., 2009) 

UAS-wdbDN (Hannus et al., 2002) 

 

Histology and antibodies 

Pupae, staged from white pre-pupae (0 hr after pupa formation, hr APF) at 25℃, were dissected 

and fixed as described (Buttitta et al., 2007). Pupal cuticle was removed from wings post 

fixation. Note that the wing hinge and notum were excluded from our quantifications. Hoechst 

33258 (Molecular -phospho-Ser10-

histoneH3 (PH3, Upstate,1:4,000), mouse α-MPM2 (Upstate, 1:200), rabbit α-GFP (Molecular 

Probes, 1:1,000), mouse α -CycB (DSHB,F2F4, 1:100), mouse α-Discs Large (DSHB,4F3, 
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1:100), anti-Drosophila Dp (gift from Dr. M. Frolov). Appropriate secondary antibodies were 

Alexa 488, 568 or 633 conjugated (Molecular Probes) or HRP conjugated (Jackson 

ImmunoResearch) and used at 1:4,000. EdU incorporation was performed using Click-iT EdU 

Alexa Fluor 555 Imaging Kit from Life Technologies. 

 

IOC counting 

The IOCs are shared by adjacent ommatidial cores, and the number of IOCs is quantified within 

an ommatidial group (OG) that covers a defined hexagonal area (bordered by yellow dashed 

dots in Fig.2) with its apices being the adjacent ommatidial centers. Those secondary pigment 

cells crossed by the dashed lines were counted as half. At least 15 OG’s were scored from 

independent samples for each genotype. (Method from (Ou, Wang, Jiang, & Chien, 2007)) 

 

Clonal analysis 

Clones were induced by heat shock for 7 min. at 37℃ between 48-70hr AED in a hsflp; 

tub>CD2>Gal4, UAS-GFP; tub-Gal80TS,UAS-Diap background. Animals were aged at 18℃ 

(permissive for Gal80TS, Gal4 OFF), and shifted to 28℃ (non- permissive for Gal80TS, Gal4 ON) 

at late L3 instar larval stage, collected at 0h APF and aged to different stages in 

metamorphosis.  Experiments using engrailed-Gal4 with Gal80TS were carried out in the same 

way, except that experiments restricting transgene expression to the final cell cycle were shifted 
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to 28℃ at 0h APF. By phenotypic analyses and GFP visualization, we confirmed complete 

inhibition of Gal4 in the lines used here with Gal80TS at 18℃, and we detected activation of 

target genes within 6 hr of shifting to 29℃. Development at 28℃ proceeds 1.15 times faster 

than at 25℃, and 2.2 times more slowly at 18℃ (Ashburner, 1989). All incubation times were 

adjusted accordingly. Hours APF are presented as the equivalent time at 25℃ for simplicity. 

Loss-of-function clones were generated using MARCM (Lee and Luo, 2001). Larvae were heat 

shocked for 20 min at 37℃ at early third larval instar, collected for staging at 0 hr APF, aged at 

25℃ and dissected at the indicated times. 

 

Clonal cell counts to quantify cell divisions 

Non-overlapping clones labeled with GFP, expressing the indicated transgenes, were induced 

at 0 h APF (white prepupae) with 2 min heat-shock at 37℃. Wings were dissected and fixed 40-

42 h later, nuclei were labeled with 1 µg/ml Hoechst 33258, and GFP-positive cells per clone 

were scored blind on a Leica DMI6000 microscope. Cells per clone were counted blind for at 

least 100 clones in the wing blade and the average cell number per clone reflects the number of 

cell divisions that undergoes before exit. We excluded clones in the wing margin, hinge, notum 

area, and hemocytes in the veins. Transgenic expression of an apoptosis inhibitor (UAS-P35) 

was used in the clonal cell count experiments, including all controls. 

 



 

61 

 

Flow Cytometry  

Dissociation of cells from staged, dissected pupae and FACS were carried out as described 

(Flegel et al., 2013). All experiments were carried out at least three times; representative 

examples are shown. 

 

Western Blotting and Kinase Assays 

Antibodies used: rabbit anti-CycE (Santa Cruz, sc-33748), goat anti-CycE (Santa Cruz, sc-

15905), mouse α-CycA (DSHB,A12, 1:1000), mouse anti-CycB (DSHB, 1:1000), rabbit anti-

phospho Cdc2(Cell Signaling, 1:1000), rabbit anti-Cdc2 (Upstate, 1:1000), anti-phospho 

S6K(Thr398)(Cell Signaling, 1:333), anti-dmyc (Santa Cruz, sc-28207), anti-dpERK (Sigma, 

M8159,1:500), anti-pERK (Cell Signaling, 1:1000), anti-HA probe (Santa Cruz, sc-805), anti-

mouse phospho-Cdk2T160 (Cell Signaling, 1:500), anti- mouse Cdk2(Santa Cruz, M2, 1:1000), 

anti-Drosophila Rbf (DX3), anti alpha-tubulin (DSHB,12G10, 1:1000), beta-tubulin (Sigma, 

1:1000) or anti-mouse GAPDH (Cell Signaling, 14C10, 1:2000) were used as loading controls 

with the appropriate HRP-conjugated secondary antibody. Enhanced Chemiluminescence-

detection (Amersham) followed by digital imaging (to prevent signal saturation, Bio-Rad) was 

performed and band signal intensity was quantified using NIH Image J. For kinase assays, cell 

lysates were collected either from late L3 imaginal discs or S2R+ cells transfected with pMT-
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Cyclin E. For the S2r cells, 30min or 2h OA (50nM) treatment was performed before cell 

harvest. See details in (Guest et al., 2011). 

 

Microscopy 

Images were obtained using a Zeiss LSM 510 confocal or Leica DMI6000 epifluorescence 

system with deconvolution (ImageQuant). All images were cropped, rotated and processed 

using Adobe Photoshop. For brightness/contrast the Auto Contrast function was used. All 

brightness/contrast adjustments were applied equally on the entire image. Adult eye images 

were obtained using Leica MZ10F microscope and a Nikon Ds-Vi1 digital camera. All adult eye 

images were measured using Nikon NIS Elements D software and processed with Adobe 

Photoshop.  

 

Cell culture 

Drosophila melanogaster S2R+ cells were cultured at 25C in Schneider’s insect medium 

supplemented with 10% fetal bovine serum (FBS). NIH3T3, p27WT and p27KO mouse embryonic 

fibroblast cells were cultured at 37C, 5%CO2 in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS). For cell cycle synchronization, NIH 3T3 cells 

were treated with 200ng/uL Nocodazole for 18-20h. The constructs pMT-Wdb-V5 and pMT-
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Cyclin E were transiently transfected using Fugene (Roche) and expressed by Copper induction 

(0.5mM) in S2R+ cells.  
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Figures 

 

Figure 2. 1 PP2A promotes the timely transition to quiescence in vivo. 

(A-D) Expression of a dominant negative mts (mtsDN in A,B) or wildtype mts (mtsWT in C,D) was 

restricted to the posterior wing during late larval stages using the engrailed-Gal4/temperature-

sensitive Gal80,UAS system (enTS). Pupal tissues were dissected at 24h APF and labeled with 

EdU for 1h to visualize S-phases (A,C) or labeled with anti-Phospho-histone H3 Ser10 (PH3) to 

visualize mitoses at 28h APF (B,D). In regions where PP2A function is compromised by mtsDN, 
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cells continue cycling when they should be postmitotic. (E,F) Quantification of ectopic mitoses in 

pupal tissues at different time points during normally postmitotic stages reveal a delay of cell 

cycle exit by about 10h. (G) Flow cytometry was used to assess the DNA content of 25h APF 

eyes with mtsDN expression (green trace) or controls (black trace). The arrow indicates an 

increase in cells with non-G1 DNA content. Bar = 50um.  
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Figure 2. 2 PP2A inhibition during the final cell cycle leads to extra cell divisions 

during tissue development. 
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 (A) Clonal-lineage analysis in the wing was used to measure the number of cell cycles before 

entry into quiescence. GFP marked clones were induced at the start of metamorphosis, 0h APF 

during the final cell cycle using the hs-Flp actin>Gal/UAS system. Wings were examined 42-44h 

later and cells/clone were quantified for at least 100 clones/genotype. Clones also express the 

apoptosis inhibitor P35 to prevent apoptosis. Approximately 10% of cells undergo an extra cell 

cycle when PP2A is inhibited during the final cell cycle to generate an increase in clones with >2 

cells. (B-F) GMR-Gal4/UAS was used to drive expression of the indicated transgenes in the 

eye, specifically during the final cell cycle. Quantification of interommatidial cell (IOC) number 

was performed at 40-42h APF in retinas stained for Dlg to reveal cell morphology. Cell types of 

IOC were labeled as: B, bristles; 2o,secondary pigment cell; 3o, tertiary pigment cell. IOCs are 

shared by adjacent ommatidia and the number of IOCs was quantified within an ommatidial 

group (OG) that covers a defined hexagonal area (bordered by yellow dots in C,D). The 

secondary pigment cells crossed by the hexagonal boundary were counted as half. At least 15 

OG’s were scored from independent samples for each genotype (B). Representative examples 

are shown for w1118(C), GMR>mtsDN (D), GMR>P35 (E) and GMR>P35 + mtsDN (F). (G-I) The 

lateral surface area of adult fly eyes were measured and compared between w1118, GMR (G) 

and GMR>mtsDN (H). N=8 for I. P-values were determined by Student’s t test (**P< 0.01). 
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Figure 2. 3 Inhibition of PP2A leads to ectopic Cdk2 and E2F activity during the 

final cell cycle. 
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(A-C’) Pupal wings containing clones expressing the indicated transgenes at 24h APF via the 

hs-flp actin>Gal4/UAS system, were stained with MPM2 antibody. MPM2 recognizes 

subnuclear foci (arrows) corresponding to Cdk2 phosphorylated epitope(s) at the Histone Locus 

Body. This is in contrast to the cytoplasmic staining (arrowhead) that indicates mitotic MPM2 

phospho-epitopes.  (A,A’) CyclinE/Cdk2 overexpression results in MPM2 foci within clones. 

(B,B’) Inhibition of PP2A function via expression of mtsDN leads to MPM2 subnuclear foci. (C,C’) 

No ectopic MPM2 foci are observed in clones expressing mtsWT. (D,E) Pupal eyes were 

assessed at 26h APF, a stage normally postmitotic, for E2F transcriptional activity using the 

PCNA-GFP reporter transgene. (E) Expression of mtsDN during the final cell cycle via GMR-

Gal4/UAS leads to ectopic E2F activity, when tissues should be postmitotic. (F) Quantification of 

the PCNA-GFP reporter intensity was normalized to DNA content and compared between 

control (w1118) and mtsDN. P-values were determined by Student’s t test (**P< 0.01). Wild type or 

Dpa3 null mutant clones were induced using the MARCM system by a 20 min heat shock at 

37°C at early L3 stage. Clones were examined and measured at 24-26h APF. A scatter plot (G) 

of clone sizes reveals that the average area of dDpa3 null mutant clones compared to wild-type 

control MARCM clones generated in parallel. (H-I’) Wild type or Dpa3 null mutant clones were 

stained with Dp antibody. Dpa3 mutant clones lack Dp protein. (J-K’) Loss of PP2A delays cell 

cycle exit independent of E2F activity. Dp null mutant clones (J,J’) or Dp null mutant clones 
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expressing mtsDN (K,K’) were induced as above, and assayed for ectopic mitoses via anti-PH3 

at a time normally postmitotic, 26h APF. Clones were marked by GFP. White lines outline the 

clones and yellow arrows indicate ectopic mitoses within the clones. 
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Figure 2. 4 APC/C activity is not compromised by reduced PP2A function during 

the final cell cycle. 

 (A-C’) Late L3 instar larval eye imaginal discs were isolated and stained with anti-Cyclin B in 

red, DNA in blue. Clones were induced by the hs-Flp actin>Gal4/UAS system and marked by 

GFP. As a positive control, overexpression of Rca1 (A,A’) resulted in accumulation of Cyclin B 

protein via inhibition of the APC/C. By contrast, no obvious change in Cyclin B level was 
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observed for either mtsDN overexpression (B,B’) or wildtype mts overexpression (C,C’). Note that 

Cyclin B staining is observed in R8 photoreceptors as previously described (Ruggeiro et al., 

2012). (D-F ) Western blots of Cyclin B, Cyclin A, or phospho-Cdk1 (p-Cdk1) levels with mtsDN 

or wildtype mts overexpression. Protein samples were collected from either late L3 instar larval 

eye imaginal discs with transgene expression under control of GMR-Gal4 (D,E) or late L3 instar 

larval heads with transgene expression induced by the hs-Flp actin>Gal4/UAS system (F). 

Altering PP2A activity did not increase Cyclin B or Cyclin A, nor strongly alter the ratio of p-

Cdk1/total Cdk1. Note that expression of the Cdk1 phosphatase Stg significantly reduces 

pCdk1, and serves as a positive control. Bar graphs show the quantification of signal intensities 

from two independent experiments. 
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Figure 2. 5 PP2A genetically interacts with negative regulators of CyclinE/Cdk2 

activity in vivo. 

 (A-D) The number of IOCs is modulated by PP2A and dacapo in pupal eyes. w1118, GMR (A) 

GMR>mtsDN (B) dap4/+, GMR>mtsDN (C) pupal retinas were isolated at 42h APF and stained for 

Discs Large protein (Dlg), to determine the numbers of IOCs. IOC quantification is shown in D. 



 

74 

 

Loss of one dap allele exacerbates the ectopic cell proliferation in pupal retinas caused by 

PP2A inhibition alone. (E) The lateral surface area of each adult eye was measured, and 

compared to the area of dap+/dap+; GMR-Gal4/+ control siblings. The change in eye size is 

presented as the percentage change from the control siblings. All animals were raised under 

identical conditions within the same vials. Positive values represent increases in eye size. (F) 

The area of each adult eye for the indicated genotypes was measured at the lateral view, and 

normalized to total head size by measurements of the distance between fronto-orbital to 

postvertical bristles, as animals were raised in parallel but in separate vial crosses. (G-I) GFP 

labeled mutant clones were induced using the MARCM system at the early third instar larval 

stage. In dap mutant clones and dap mutant clones expressing mtsDN, extra cone cells were 

quantified at 41h APF (I). Yellow arrows indicate examples of ommatidia with extra cone cells. 

P-values were determined by Student’s t test (*p<0.05;**p<0.01) N=10.  
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Figure 2. 6 Loss of PP2A function cooperates with high CyclinE to bypass cell 

cycle exit. 

 (A-D) Pupal eyes expressing Cyclin E and the apoptosis inhibitor P35 under control of GMR-

Gal4 were stained for mitoses (with anti-PH3) or S-phases (via EdU incorporation) at 40-44h 

APF. Eyes with mtsDN expression in the presence of high Cyclin E exhibit an increase in both 

EdU and PH3 staining (B,D), compared to the high Cyclin E control (A,C). (E-F) pupal eyes 

expressing mtsDN alone under control of GMR-Gal4 were stained for mitoses or S-phases at 40-
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44h apf. (G) EdU was quantified within a central area of the pupal eye and compared between 

genotypes (N=6 **P< 0.01 by Student’s t test). (H) FACS analysis of DNA content was 

performed on 46h APF pupal eyes with high Cyclin E and mtsDN expression and compared to 

controls with high Cyclin E. Cells with an S/G2 DNA content are increased when PP2A function 

is compromised. 
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Figure 2. 7 The B56/wdb regulatory subunit promotes the transition to quiescence 

in terminally differentiating tissues. 

 (A-B) Dominant negative wdb (wdbDN) was expressed in the posterior wing from mid-L3 using 

en-Gal4/Gal80TS. Pupal tissues were labeled with EdU for 1h at 23h APF to visualize S-phases 

(A) or labeled with anti-PH3 at 26h APF to visualize mitoses (B). Bar = 50um. (C,D) 

Quantification of ectopic mitoses in pupal wings from 24-26h APF (C) and eyes at 27h APF (D). 

(E) Quantification of adult eye sizes show an increase of >8% when wdbDN is expressed during 

the final cell cycle using GMR/Gal4. Loss of one allele of dap enhances this phenotype, while 
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loss of one allele of dap alone increases eye size <8%. (F,G) Pupal retinas were isolated at 42h 

APF and stained for Dlg to visualize IOCs in the sensitized GMR>CyclinE+P35 background (F) 

IOC numbers increase, forming multiple layers between cone cell clusters in this background 

when wdbDN is expressed (G). 
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Figure 2. 8 PP2A affects Cdk2 T-loop phosphorylation. 
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 (A,B) CycE/Cdk2 activity was measured via an in vitro kinase assay using Histone H1 as a 

substrate. Protein samples were collected from larval eyes co-expressing Cyclin E, the 

apoptosis inhibitor P35, with or without mtsDN under control of GMR-Gal4. CycE was 

immunoprecipitated, while mock precipitations (without CycE antibody) were performed with the 

same lysate. (C,D) S2R+ cells transfected with a CycE expression vector were treated with 

50nM OA for either 30min or 2h versus vehicle (DMSO) only. Kinase assays were performed on 

immunoprecipitated CycE. (E) The T-loop phosphosite of Cdk2 is conserved in human, mouse 

and Drosophila. (F) Murine 3T3 cells were arrested in G2/M using nocodazole and subsequently 

released from arrest. A timecourse was performed, to examine endogenous Cdk2-T-loop 

phosphorylation in samples treated with vehicle only or the PP2A inhibitor Okadaic Acid (OA) for 

30 minutes at the indicated timepoint after nocodazole release. An outline of the experimental 

procedure is shown at left. A representative blot of total Cdk2 and phospho-Cdk2 after 

nocodazole release is shown at right. The line graph shows quantification of the OA 

treated/vehicle treated phospho-Cdk2 ratio with 2-3 independent biological replicates at each 

timepoint. Error bars indicate s.e.m. (G) In asynchronously proliferating murine 3T3s treatment 

with OA causes a 20% increase in Cdk2 T-loop phosphorylation, while primary p27WT MEFs 

show no increase. In contrast, asynchronously proliferating p27KO MEFs exhibit a 50% increase 

in Cdk2 T-loop phosphorylation upon OA treatment. 
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Figure S2. 1 Loss of PP2A activity delays the transition to quiescence in vivo. 

 (A-C) The catalytic subunit (mts) or the scaffold subunit (Pp2A-29B) of PP2A was knocked 

down with RNAi transgenes expressed in the eye during the final cell cycle using GMR-

Gal4/UAS and compared to a control (white) RNAi. Pupal tissues were isolated at 24h APF and 

labeled with EdU for 1 h to visualize S-phase. Expression of a PCNA-GFP reporter was used as 
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a readout of ectopic E2F/DP transcriptional activity in eyes. Contrast and gain were increased in 

the control sample to show there is no reporter activity or EdU incorporation. (D) bar graph 

shows counts of mitoses posterior to posterior in pupal wings at developmental stages (E,F) 

The indicated transgenes were expressed along the anterior-posterior boundary of the wing 

under the control of patched-Gal4/UAS and adult wings were examined for wing hair 

phenotypes. Note that wdbDN causes a loss of wing hair (yellow circles), whereas 

overexpression of mts leads to a multiple wing hairs phenotype (arrows), consistent with 

(Hannus et al., 2002). Supplemental Table 1 shows the components of PP2A complexes in 

mammals and in Drosophila.  (G) A representative image from the clonal lineage tracing 

experiment in Fig. 2A. GFP-labeled clones with mtsDN expression were induced at 0h APF, and 

pupal wings were dissected at 42- 44h APF. 
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Figure S2. 2 Activation of the TOR/S6K pathway does not delay the transition to 

quiescence. 

(A)The indicated transgenes were induced by the hsflp actin>Gal4/UAS system, with a 30min 

heat-shock to drive expression throughout the animal. Protein was extracted from larval heads 

and phospho-S6K levels were determined by western blots. (B-C) The indicated transgenes 

were expressed in the posterior compartment of pupal wings from 0h APF using en-

Gal4/Gal80TS. Tissues were collected at 26h APF and labeled with anti-PH3 to visualize 

mitoses. No mitoses were observed in the posterior wing when Rheb (an activator of TOR) is 

overexpressed. By contrast, overexpression of CyclinD/Cdk4 serves as a positive control to 

demonstrate delayed quiescence. (D-F) Assessment of interommatidial cell (IOC) number in 38-

h APF eyes in which GMR-Gal4 drives expression of white RNAi (D) or Rheb (E). Pupal retinas 
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were stained for Dlg, and the numbers of IOCs were quantified in panel F (N=10). IOC number 

is not increased in eyes expressing Rheb compared to a control RNAi. 
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Figure S2. 3 Dp null mutant clones have a proliferation defect.  

Wild type or Dpa3 null mutant clones were induced using the MARCM system by a 20 min heat 

shock at 37°C at early L3 instar larval stage. Clones were examined and measured at 24-26h 

APF. (A) The majority of dDpa3 null mutant clones (~95%) are below 20,000 (arbitrary unit) in 
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size, while almost 40% of wild type clones were above 20,000 in size. (B,C) Wild type ordDpa3 

null mutant clones were induced in parallel and are marked by GFP expression. (D) Sequencing 

of the dDpa3/a3,UAS-mtsDN fly line confirms the expected point mutation in previously reported in 

the Dpa3 allele (Frolov et al., 2005). (E) Western blots for Dp expression were performed on 

samples extracted from wild type, heterozygous or homozygous dDpa3,UAS-mtsDN animals. 

Dpa3/a3,UAS-mtsDN homozygotes express only a truncated form of Dp as previously reported 

(Frolov et al., 2005). 
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Figure S2. 4 PP2A genetically interacts with negative regulators of Cyclin E/Cdk2 

activity in vivo. 

(A-D) Representative adult eye images used for quantifications in Fig. 5E. The white dots 

outline the control eye size for comparison. GMR-Gal4-mediated mtsDN expression causes a 

large eye phenotype (C) which is enhanced by the loss of one copy of dap (D). (E-H) Loss of 

one copy of ago enhances the mtsDN large eye phenotype. P-values were determined by 

Student’s t-tests (**, P< 0.01). (E-G) Adult eye examples used for quantification in Fig. S5H. (I) 

GFP labeled dap4 clones were induced using MARCM at early third instar larval stage. dap 

mutant clones and dap mutant clones expressing mtsDN were induced in parallel and examined 

at 41h APF. The total number of GFP positive cells per eye was compared between genotypes. 
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(J-K) Western blots were performed to measure Cyclin E protein levels upon manipulation of 

PP2A activity. Protein samples were extracted from late third instar imaginal discs with the 

indicated transgenes expressed via GMR-Gal4/UAS. Quantification of signal intensities from 

western blots of two independent experimental replicates are shown (K). 
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Figure S2. 5 The B56/wdb regulatory subunit promotes the transition to 

quiescence in terminally differentiating tissues. 

Flies were raised at 31°C with GMR-Gal4/UAS expression of the indicated RNAi transgenes to 

regulatory subunits of PP2A. (A) Quantification of adult female fly eye size was normalized to 

total body size.  Asterisks indicate p-values determined by a Student’s t test (*p<0.05 **p<0.01). 

(B) Quantification of PCNA-GFP expression in GMR-Gal4/UAS control (white RNAi) or wdb 
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RNAi expressing pupal eyes at 24h APF. (C,D) Pupal eyes expressing the indicated transgenes 

driven by GMR-Gal4/UAS were labeled for 1 hour at 24h APF with EdU to visualize S phases.  

(E-H) Pupal wings expressing the indicated transgenes driven by en-Gal4/Gal80TS at 26h APF 

were labeled with anti-PH3 to visualize mitoses (I) 24h APF pupal wings expressing wdbDN in 

the posterior region driven by en-gal4/UAS display ectopic PCNA-GFP reporter activity. (J-L) 

Anti-Dlg staining was used to assess pupal eye morphology at 42-44h APF in a sensitized 

background with GMR-Gal4/UAS driving Cyclin E and P35 expression as well as the indicated 

transgenes. 
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Figure S2. 6 Wdb interacts with Cyclin E. 

 (A) Lysates were prepared from S2R+ cells transfected with a pMT-Wdb-V5 expression 

plasmid, and an anti-V5 (or mock) pulldown was performed. Enrichment of endogenous Cyclin 

E was observed in the V5-pulldown. Note that in S2R+ cells two different size Cyclin E protein 

products are expressed (66 and 77 kDa). (B) S2R+ cells were transfected with a pMT-Wdb-V5 

expression plasmid and a pMT-Cyclin E expression plasmid, and fixed and stained with anti-V5 

to detect Wdb, anti-Cyclin E and anti-PH3 to detect cells in mitosis. The arrow indicates a cell in 

mitosis where Cyclin E becomes localized to the cytoplasm. (C) Lysates were collected from 

late third instar larval heads with PP2A transgene expression induced by the hs-Flp 

actin>Gal4/UAS system or from late third instar larval eyes expressing CycE and the apoptosis 
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inhibitor P35 under control of GMR-Gal4. Lysates were resolved on a NuPAGE Bis/Tris Gel as 

described (Lee et al., 2012) and blotted with anti-Rbf antibody (DX3). Lysate from larvae 

expressing Cyclin E was split, and one half was treated with lambda phosphatase (New 

England Biolabs) while the other half was not, to visualize the altered migration of 

phosphorylated Rbf. The phosphatase treated sample shows a subtle shift in migration, while no 

alteration of Rbf migration is observed in samples with genetic manipulations either increasing 

or inhibiting PP2A activity.  
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Figure S2. 7 Inhibition of PP2A during the final cell cycle does not increase 

signaling through ERK, levels of dMyc. 

(A-C) Western blots were performed to measure Myc and phospho-ERK (p-ERK) protein levels 

upon manipulation of PP2A activity. Protein samples were extracted from late third instar larval 

eye imaginal discs with the indicated transgenes expressed via GMR-Gal4/UAS to manipulate 

PP2A activity specifically during the final cell cycle. Note that compromising PP2A activity does 

not up-regulate mono p-ERK or diphospho (dp) –ERK, nor alter the migration of Myc protein. 

Quantifications of protein signal intensity on western blots were shown in (D-F), which 

represents two independent experiments. 
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  Chapter 3 Live cell imaging to examine the proliferation-

quiescence transition 

Abstract 

In asynchronously growing cell culture, it is assumed that all cells are actively 

proliferating at similar rates, while the withdrawal of nutrients leads cells to stop cycling 

and to enter a state of reversible quiescence. By monitoring the asynchronously cycling 

mouse embryonic fibroblasts using G0/G1 cell cycle reporters and live, single-cell 

tracking, we have discovered that some cells can stay in a prolonged G0 as long as 

over 10 hours even under full serum conditions and that the length of the quiescent 

state is heterogeneous. Live-cell imaging revealed that cells can enter into either a 

transient or prolonged quiescent state after mitosis, prior to the next cell cycle even 

under conditions of abundant nutrients.  Furthermore, we discovered that sister cells 

born of the same mitosis can make heterogeneous cell cycle decisions, that is, one cell 

enters quiescence while the other re-enters the cell cycle for the next round of division. 

This asymmetric decision phenotype implies a proliferation-quiescence cell cycle 

checkpoint occurs after completion of mitosis, distinct from other cell cycle checkpoints 

thought to regulate quiescence such as the Restriction point. Consistent with our work 

in Drosophila, we also found that PP2A plays a conserved role in promoting the entry 
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into quiescence after mitosis. We suggest this may contribute to PP2A’s known tumor 

suppressor role. 

 

Introduction 

Recent studies in mammalian cells found that even with abundant nutrients, many 

cells may enter a G0-like state in a cell culture (Spencer et al., 2013). The relative 

percentage of cells that enter G0-like state after mitosis varies in different cell types and 

culture conditions, suggesting many signaling inputs likely influence the proliferation-

quiescence decision. This is consistent with findings in several cancer cell lines, 

suggesting some cells enter quiescence while others do not (Dey-Guha et al., 2011). 

This population heterogeneity in cell cycle activity, with one subpopulation actively 

cycling while another one staying in quiescence is termed proliferative heterogeneity. A 

study in search of the regulatory mechanism for proliferative heterogeneity suggested 

that the relative levels of p21 and Cdk2 are responsible for the decision to proliferate or 

to enter quiescence in a human breast epithelial cell line (Overton et al., 2014). This 

Cdk2-p21 model suggests that cells with high p21/low Cdk2 activity are more likely to 

remain in a steady quiescent state, while cells with low p21/high Cdk2 activity tend to 

rapidly commit to the next cycle after mitosis. Thus the threshold of Cdk2 activity set by 

its inhibitor p21 determines the proliferation-quiescence decision. But cells deficient in 

p21 still entered quiescence in low serum conditions. This suggests that mechanisms 



 

96 

 

independent of p21 also contribute to the decision to enter quiescence or proliferative 

cell cycle. 

Indeed, another regulatory threshold model for the proliferation-quiescence 

decision, has been proposed (Yao et al., 2008). In this Rb-E2F bistable model, the two 

steady states (E2F-Off and E2F- On) define cellular quiescence and proliferation, 

respectively. The ‘barrier’ that separates the two states is the E2F activation threshold, 

and cells need to accumulate enough E2F activity to transit from quiescence to 

proliferation (Fig. 3.8). Cells under different environmental conditions or with different 

cell types are likely to have variable E2F activation thresholds. The model predicts that 

cells with a higher E2F activation threshold are in a deeper quiescence. This means that 

cells spend longer time to gain enough E2F activity in order to switch from E2F-Off/ 

quiescence to E2F-On/proliferation, whereas cells in shallow quiescence are more likely 

to re-enter cell cycle at a faster rate. Thus variying levels of quiescence may exist in 

asynchronous cell population, however evidence that demonstrates the existence of 

multi-state quiescence that is independent of serum starvation remains scarce. These 

observations raise the question that whether the multi-state quiescence is the source of 

the proliferative heterogeneity. These two models both suggest that the decision 

depends upon a bistable model with thresholds set by both positive and negative cell 

cycle regulators, which imply that within asynchronously growing cell populations, cells 

constantly make the proliferation-quiescence decision.  

What are the characteristics of the proliferation-quiescence decision that are likely 
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to be quantitatively affected by the relative levels of cell cycle regulators? In order to 

better understand the proliferation-quiescence decision without artificial synchronization, 

we have implemented cell cycle reporters that distinguish G0 from G1 in live-cell 

imaging to monitor cell cycle behaviors at the proliferation-quiescence transition. The 

first generation of cell cycle reporters is the Fucci system (fluorescent ubiquitination-

based cell cycle indicator) (Sakaue-Sawano et al., 2008), which is able to differentially 

label cells in G1/0, S and G2/M phases, thus allowing us to visualize the G1-M 

transition. The major drawback of this system is that it is unable to distinguish cells in 

quiescent/ G0 from cells in G1. Recently, a novel cell cycle indicator, mVenus-p27K-, 

was generated to specifically label quiescent cells (Oki et al., 2014). This probe is a 

fusion protein consisting of a fluorescent protein mVenus and a Cdk binding defective 

mutant of p27. p27 accumulates in quiescence, and is degraded by two ubiquitin 

ligases: Kip1 ubiquitination-promoting complex (KPC)—an E3 ligase complex mediates 

cytoplasmic p27 degradation at G0-G1 transition, and SCFSkp2 mediates its nuclear 

proteolysis at the S/G2/M phases (Kamura et al., 2004). Another cell cycle reporter—

mCherry-hCdt1(30/120), is a fusion protein consisting of mCherry fluorescent protein 

and human Cdt1(hCdt1) degron— short amino acid sequence targeted by SCFSkp2 

complex at the S/G2/M phases. mVenus-p27K- together with mCherry-hCdt1(30/120) 

reporter label cells from after mitosis until early S phase in distinct colors, which allows 

us to examine the cell cycle behaviors of the proliferation-quiescence transition via live 

imaging or FACS analysis without chemical or nutrient-deprivation synchronization (Fig. 
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3.1A).  

Since the proliferative heterogeneity mentioned earlier could be masked in bulk cell 

assays, it is important to monitor the proliferation-quiescence transition at single-cell 

resolution. However, time-lapse microscopy at the single-cell level produces large 

amounts of data, which could be tedious for the manual analysis. In order to quantitatively 

measure and analyze the proliferation-quiescence decision in live cells, we developed a 

new, automated cell cycle profiling platform to define, assign and quantify cell cycle 

behaviors after mitosis in the proliferation-quiescence decision.  
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Results 

Validation of G0/G1 cell cycle indicators  

To characterize the cell cycle behaviors in the proliferation-quiescence transition at 

single-cell resolution, I used a novel cell cycle indicator mVenus-p27K- combined with 

mCherry-hCdt1(30/120) probe to distinguish G0 cells from G1 cells (Fig. 3.1A). 

Serum starvation is commonly used to synchronize cells in G0, or push cells into 

quiescence. First, to confirm that the mVenus-p27K- / mCherry-hCdt1(30/120) reporters 

are highly expressed in G1/0 phase, I performed either a short-term (24h,1%FBS) or a 

long-term (72h,1%FBS) serum starvation treatment, and the dot plots from flow 

cytometer analysis showed a gradual accumulation of double positive cells mVenus-

p27K-(+)/mCherry-hCdt1(30/120)(+) (Fig.3.1B,C). After 72h serum starvation, almost 

90% cells are double positive (Fig. 3.1E). This data suggests that mVenus-p27K- / 

mCherry-hCdt1(30/120) expression accumulates in G0 cells. Surprisingly, I found that 

double positive cells accounted for almost 30% of the total cell population even when 

cells were cultured with abundant nutrients (Fig.3.1D,E). This suggests that under 

normal growth conditions, cells can enter a quiescent state, consistent with the findings 

of a recent study (Spencer et al., 2013). 

To verify whether mVenus-p27K- / mCherry-hCdt1(30/120) reporters can distinguish 

G0 from G1 at the molecular level, I sorted cells into mVenus-p27K-(+)/mCherry-
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hCdt1(30/120)(+), mVenus-p27K-(-)/mCherry-hCdt1(30/120)(+), mVenus-p27K-

(-)/mCherry-hCdt1(30/120)(-) three groups, and then performed western blot analysis 

(Fig. 3.2A,B) or real-time quantitative PCR (RT-qPCR) (Fig. 3.2C) from protein or RNA 

extracts to look for known markers of G0 vs. G1. For comparison, cells synchronized in 

G0 by serum deprivation were also sorted in a similar manner. p130, one of the Rb 

family members, is abundant in quiescent cells and largely involved in the repression of 

gene expression in G0 (Litovchick et al., 2007; Smith et al., 1996). As cells enter into 

cell cycle, p130 is phosphorylated, and is targeted for degradation (Tedesco et al., 

2002). The protein detection via western blots showed an enriched level of un/hypo-

phosphorylated form of p130 in quiescent cells compared to cycling cells. Quantitative 

analysis of the immunoblot signals showed that total expression level of p130 is greatly 

reduced in actively cycling cells (Fig. 3.2A). Cyclin-dependent kinase inhibitor— p27 

expression also increases in G0 cells (Sherr and Roberts, 1999), and consistent with 

this, I observed a 4-fold enrichment in endogenous p27 in double positive cells under 

serum starvation, compared to mCherry single positive cells. I next examined an active 

cell cycle regulator that increases in G1, which is the phosphorylation of Cdk2 on the T-

loop site – a readout of active Cdk2. Consistent with the proper separation of G0 and 

G1 cells, active Cdk2 accumulated in mCherry-hCdt1(30/120) single positive cells 

compared to double positive cells (Fig. 3.2B).  
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RT-qPCR results showed that in double positive mVenus-p27K-(+)/mCherry-

hCdt1(30/120)(+) cells, active cell cycle regulators are downregulated whereas tumor 

suppressors or genes protecting cells from accumulating damages are upregulated, 

such as Sod3(Fig. 3.2C), compared to the gene expression level from mCherry-

hCdt1(30/120)(+) cells. This is consistent with the gene transcription profile of quiescent 

cells discovered in the previous studies (Coller et al., 2006; Oki et al., 2014; Liu et al., 

2007). In summary, sorting of single positive and double positive cells with mVenus-

p27K- & mCherry-hCdt1(30/120) reporters exhibit molecular markers consistent with the 

separation of quiescent cells from G1 cells. 

 

Automated computational analysis of live-cell imaging under normal unperturbed 

conditions  

To understand the kinetics of cell cycle behaviors at the proliferation-quiescence 

transition at a single-cell level, I took live, time-lapse images from asynchronously 

cycling population of cells expressing mVenus-p27K- & mCherry-hCdt1(30/120) 

reporters (movie attachment in GoogleDrive).  

The time-lapse movie showed a successive fluorescent color change as cells pass 

through the mitosis-G1 transition: First, mVenus and mCherry fluorescence intensity 

increase simultaneously. In most cells this occurs for 3 hours. If both reporters continue 
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to accumulate beyond 3hr, we define this as cells enter into G0. Next, mVenus intensity 

drops down while mCherry signal increases, when cells progress from G0 to G1. 

Finally, as cells enter S phase, mCherry intensity goes down, indicating G1 exit and S-

phase entry. Thus our reporters indicate G0 entry, G1 entry and S phase entry. These 

changes and cell cycle transitions correlate with the expected DNA content based on 

flow cytometry (Fig. 3.1F). Of note, cells spend different lengths of time in G0, 

suggesting a source of proliferative heterogeneity. We therefore quantitatively 

measured the probability of cells remaining in G0 as a function of time. 

To monitor and quantitatively measure the dynamic transitions of cell cycle states—

from cytokinesis to S phase entry, in collaboration with Dr. Qiong Yang’s group in 

Biophysics and Dr. Alex Pearson in Dentistry, we developed an automated G0/G1 

profiling platform that includes a computational framework for automated cell 

segmentation (identification of individual cells in an image), tracking and cell cycle state 

identification & quantification (Fig.3.3A). The cell segmentation and tracking allows us to 

record the fluorescent reporter intensity changes from individual cells in live, time-lapse 

imaging, even without the aid of a constitutive nuclear marker (Fig.3.4 A,B). While cell 

cycle state identification (G0,G1, or early S phase) & quantification provides us the 

quantitative calculations of the kinetics of the proliferation-quiescence transition. The 

trajectory of a single-cell trace using the automated system is consistent with what we 

observed in movies (Fig.3.3B).  
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𝛥𝐶ℎ𝑒𝑟𝑟𝑦

𝛥 𝑉𝑒𝑛𝑢𝑠⁄ =
𝐶ℎ𝑡+1−𝐶ℎ𝑡

𝑉𝑡+1−𝑉𝑡
 

To quantitatively measure the relative change of two fluorescent reporters, we 

converted the pair of fluorescent intensity readings from each time interval into radian 

readings. In brief, this means that the ratio from the calculation above is converted to 

radian values over range from –π to π (pie) in the radial histogram (Fig. 3.3C). The 

length of the spikes depicts the frequency of individual cells with two fluorescent 

reporters exhibiting a specific behavior assigned to each radian. For example, a radian 

of -π/2 indicates cells enter into early S phase as mCherry signal decreases, while a 

radian of –π indicates cells exit G0 and enter G1 as mVenus signal drops down while 

mCherry is still high. In this way, we observe three distinct cell cycle behaviors at the 

proliferation-quiescence transition from the computational analysis of over 1000 single-

cell traces in total, plotted onto a radial histogram to show the frequency and variability 

of three cell cycle behaviors in a population (Fig. 3.3C).  Cells in G0 state with radian 

values from 0 to π/2, are grouped in blue state. Cells that exit G0 and progress into G1 

phase with radian values from π/2 to π or – 
2

3
 π to -π, are grouped in orange state. 

When cells enter into S phase with radian – 
2

3
 π to 0, they are grouped in grey state 

(Fig.3.3D).  

After data smoothing (described in methods & materials), we generated a dot plot to 

show all the radian assignment values for temporally adjacent t vs. t+1 cells over the 
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entire movie captured from asynchronous, cycling cells (Fig.3.3E). Each dot represents 

one single cell at any time interval. Therefore, cells remaining in the same state within 

an interval time lie on the diagonal of the plot, while cells that transit between two states 

will scatter to the left or right of the diagonal. Dots in blank squares are considered 

inconclusive or incorrect assignments, such as cells that undergo apoptosis. We find 

that each experimental data set has a correct assignment rate above 97% (Table 3.1), 

meaning over 97% of cell traces follow the expected order of reporter activity, which is 

G0-G1-S transition. This validates the accuracy of our cell cycle profiling platform and 

confirms the dynamic transitions we can observe via two reporters that reveal the 

proliferation-quiescence transition. 

 

Serum deprivation and PP2A inhibition impact the proliferation-quiescence 

transition in distinct manners. 

We next used the Kaplan-Meier (K-M) curves to estimate the time cells spent in a 

certain state (Fig.3.5). The Kaplan-Meier estimator is a common statistical analysis tool 

to approach the true survival function in a large enough sample pool in clinical trials 

(Kaplan and Meier, 1958). For our application, we took an advantage of it to estimate 

the probability of cells remaining in each state (blue/G0, orange/G1, grey/ early S 

phase) as a function of time. In the K-M curve, each step-down means cells exit that 

certain state. However, during the time-lapse imaging, due to the cell migration, cells 
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may move in or out of view in the middle of imaging, while others may be half tracked 

when the time-lapse image initiates or ends. In such cases, the total time of remaining 

in one state for the cell cannot be accurately determined, and thus the analysis 

considers them as “censored observations”. The censored traces are typically noted by 

"+" marks on the estimated K-M curve.  

Under normal growth conditions (10%serum), the Kaplan-Meier curve of G0 state 

estimated that 9% cells can stay in G0 as long as over 10 hours, indicating that cells 

can enter a prolonged G0 under normal growth conditions. Also, the relative time span 

of G0 state covers a broad range indicating that quiescence can be heterogeneous. 

To test our automated G0/G1 profiling platform, serum starvation was applied to 

promote G0 entry. Cells with serum deprivation exhibit significant difference in blue 

state (G0) and orange state (G1), but not grey state (early S phase) (Fig. 3.5A-C). As 

shown in the K-M curves, cells are more likely to enter a prolonged G0 upon serum 

starvation, suggested by the slower decline of the curve. This is consistent with many 

studies that serum starvation promotes and arrests cells in G0. However, cells also tend 

to have a longer G1 phase under serum starvation. This unexpected result may be 

consistent with a recent study showing that cells in G1 with high E2F activity can still 

delay S phase in response to serum starvation (Cappell et al., 2016). This study 

suggests that during early G1 a window of reversibility exists, when cells can return to 

quiescence under mitogenic stress. This means that cells may re-enter a quiescence 
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state in G1 phase to avoid the detrimental effects of cell division in response to the lack 

of nutrients. This suggests that there exists a quiescent state in G1 under serum 

starvation, which is not recognized by the mVenus-p27K- reporter.  

Previously, I revealed a role for PP2A in restricting Cdk2 activity after mitosis to 

modulate the proliferation-quiescence decision in tissue development (Sun and Buttitta, 

2015). My results showed compromising PP2A functions caused 10% cells to fail to 

enter G0. We showed this is due to that PP2A contributes to a mild increase of Cdk2 

activity threshold to promote G0 entry. To examine the sensitivity of our assay to mild 

modulations of the proliferation-quiescence decision, I tested how PP2A impacts the 

proliferation-quiescence decision using short-term treatments with the pan-PP2A 

inhibitor Okadaic Acid (OA) PP2A inhibitor Okadaic Acid (OA).  

In mammalian cells, PP2A/B55𝛽 can stabilize CycE1 by removing the N- and C-

terminal phosphodegrons (Tan et al., 2014). Our previous study also shows upon longer 

OA treatments (2h shown), cells exhibited a reduction in CycE/Cdk2 kinase activity and 

a slower migrating form of CycE protein, likely due to inhibition of PP2A/B55 function 

(Sun and Buttitta, 2015). Thus, short-term inhibition of PP2A can increase CycE/Cdk2 

activity. 30min OA treatment was applied to specifically inhibit PP2A activity before 

time-lapse, live-cell imaging. As expected, the Kaplan-Meier curves showed that OA 

treatment results in a statistically significant decrease in the probability of cells entering 

a prolonged G0 whereas no significant difference in time spent in other two states (G1 
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and early S phase) (Fig. 3.5D-F). This indicates that PP2A plays a conserved role in 

promoting entry into prolonged G0 without affecting the G1 state. Our automated G0/G1 

profiling platform was able to reflect a mild modulation by PP2A in the proliferation-

quiescence decision.  

 

 

The asymmetric decision between sister cells in the proliferation-quiescence 

decision  

Using manual cell tracking (Fig.3.6A-C), I observed that two daughter cells derived 

from the same mitotic event can make asymmetric decisions at the proliferation-

quiescence transition. In other words, for two sibling cells – one will enter into a 

prolonged G0 while the other will commit to the next cycle rapidly (Fig.3.6A). Although 

this occurred, it was more common to observe two daughter cells making symmetric 

decisions and simultaneously undergoing the next cycle (Fig. 3.6B) or entering into a 

prolonged G0 (Fig.3.6C). Due to lack of a constitutive nuclear marker, we were unable 

to perform the lineage tracing and to quantitatively measure the frequency of this 

asymmetric decision. Therefore, in a collaboration with Dr. Yu-Chih Chen, in the School 

of Electrical Engineering, we used a microfluidic array platform to both isolate and 

monitor single-cells, and their daughters in the subsequent cell divisions (Fig. 3.6D). 
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Our microfluidic device is a set of micrometer-size channels, using the hydrostatic 

pressure inside micro-channels to isolate and capture single cell from a fluid 

suspension. Once a cell enters a chamber, the captured cell serves as a flow restrictor 

to prevent other cells from flowing in. But occasionally more than one cell is captured in 

a single chamber, likely due to fluctuations in the fluid pressure. 

 Consistent with what I saw in the asynchronous cell culture for 3T3 cells, in the 

microfluidic device I found that two sister cells derived from the same mitosis made 

asymmetric decision: one of the two daughter enters the next cycle while the other stays 

in a quiescent state (Fig.3.6D). Cells in column 1 or 15 shows sister cells born of the 

same mitosis made heterogeneous decisions at the proliferation-quiescence transition. 

The occurrence of an asymmetric decision is about 15% from 20 mitotic divisions 

observed in about 100 single captured chambers in 40hr time-lapse movies. This 

suggests that the proliferation-quiescence decision is asymmetric after mitosis, and this 

asymmetry may be the reason for proliferative heterogeneity in asynchronous cycling 

cell populations. 
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Discussion 

Automated, quantitative analysis via computational cell cycle profiling framework  

The assessment of cell cycle behaviors in a population of cells commonly use 

traditional techniques, such as FACS and immunoblotting. However, single-cell assays 

reveal the heterogeneous behaviors that are masked by single time point (FACS) or 

bulk assays. Single-cell assays usually contain large amounts of data, which requires 

automated quantitative measurement and analysis. Here we developed large-scale, 

automated computational cell cycle profiling framework to assess cell cycle behaviors at 

single-cell level from time-lapse imaging. With the application of two fluorescent G0/G1 

cell cycle indicators, I measured the dynamic cellular behaviors at the proliferation-

quiescence transition. The advantage of our system is that we are able to characterize 

cell cycle behaviors via the measurement of two fluorescent cell cycle reporters in time-

lapse imaging, without a constitutive nuclear marker. With proper modification of 

automated computational calculations, this framework could be applicable to assess 

active cell cycle progression via the traditional Fucci reporters. Thus, it will help us 

better understand the dynamic response of cell cycle behaviors to different physiological 

conditions or in various cancer models. 

There are a few limitations of our system: first, we are unable to track multiple 

successive rounds of divisions due to the no color labeled S/G2/M phases. In other 

words, mother-daughter cell lineages cannot be assigned with the current cell cycle 
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indicators. Second, we uncovered that cells may enter into a quiescent state when they 

are in the early G1 state (the G1-G0 transition) under serum starvation, which is not 

recognized by mVenus-p27K- reporter. This implies the variability of quiescence under 

different conditions and indicates that no single cell cycle marker will be sufficient to 

cover all states of quiescence.  

 

Asymmetric decision at the proliferation-quiescence transition may lead to tumor 

dormancy 

A mixture of cycling and non-cycling cells is also likely to be an inherent 

property of many cancers that exhibit periods of dormancy and recurrence, such as 

breast and prostate cancer. Cellular dormancy refers to small groups of disseminated 

tumor cells (DTC) that separated from the primary tumor, spread through the 

circulation system to other distant locations of the body and stay in quiescence. It is 

believed that being quiescent allows residual DTCs to be refractory to the current 

chemotherapy which usually exclusively targets proliferating cells. Later, DTCs will 

cause the relapse of cancer by reverting back to proliferation when conditions are 

more favorable.  

Research in human breast cancer cell lines has shown that inhibition of AKT 

signaling could induce asymmetric cancer cell division, which produces one actively 

cycling daughter and one slowly cycling G0-like cell (Dey-Guha et al., 2011). Such an 
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asymmetric division is consistent with my observation in untransformed mammalian 

cell culture, that two daughter cells born of the same mother can make heterogeneous 

decisions at the proliferation-quiescence transition. This suggests that the asymmetric 

decision upon the proliferation-quiescence transition could be a universal phenotype in 

a wide range of cell types, and investigation of the molecular mechanisms that 

underlie the asymmetric decision may elucidate how quiescent DTCs are generated 

from a proliferative primary tumor, to shed new light on cancer prognosis and 

treatment improvement. 

 

A checkpoint at the proliferation-quiescence decision 

Cell proliferation in culture is largely driven by environmental mitogenic stimuli in 

the culture medium. It is believed that cells are sensitive to extracellular serum growth 

factors in G1 phase prior to a time point, “restriction point” (R-point). After cells pass the 

R-point, even with serum deprivation, cells continue proliferation, and commit to the 

next cycle (Pardee, 1974). Back in the 1980s, time-lapse studies of Swiss 3T3 cells 

showed that a brief serum deprivation right after mitosis can arrest cells in quiescence 

/G0, accompanied by the reduction in protein synthesis. However, only cells within 3-4hr 

after last mitosis entered into quiescence in response to serum withdrawal, whereas 

cells more than 4hr after mitosis completed the rest of cell cycle even in the absence of 

serum (Larsson and Zetterberg, 1985). Therefore, G1 phase was subdivided into two 
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phases: “G1 postmitosis” and “G1 pre-DNA synthesis”, separated by the restriction 

point, serving as the decision boundary for cells to respond to growth factors.  

Recent studies have suggested that the decision to enter quiescence actually 

occurs during G2 or immediately after mitosis, prior to the passage of cells through the 

restriction point (Spencer et al., 2013; Naetar et al., 2014; Sun and Buttitta, 2015) (Fig. 

3.7). Thus, what regulates the proliferation-quiescence decision after mitosis? Studies in 

different cell types or model systems have suggested that different mechanisms for 

PP2A in modulation of the proliferation-quiescence decision prior to G1 entry. In human 

fibroblasts, it is suggested that PP2A/B56-mediated Ras inactivation in G2 phase 

influences the entry into quiescence (Naetar et al., 2014). However, our recently 

published data suggest a different role for the PP2A/B56 complex in promoting 

quiescent entry in developing tissues, which is independent of Ras/ERK signaling and 

RB/E2F/DP function (Sun and Buttitta, 2015). It is likely that the PP2A/B56 complex 

plays multiple roles in the proliferation-quiescence decision prior to R-point by acting 

upon different targets in cell types or developmental contexts.  

Notably, our automated cell cycle reporter assay showed cells with compromised 

PP2A functions are 16% more likely to override a prolonged G0, compared to cells in 

control groups. In particular, PP2A inhibition for 30min before imaging only affects the 

probability of remaining in G0 phase but not G1 phase. This suggests that the 

proliferation-quiescence decision occurs immediately after mitosis and earlier than R-

point. My data suggests that PP2A modulates this decision via suppressing Cdk2 
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activity after mitosis. Since the threshold of Cdk2 activity is responsible for the 

proliferative heterogeneity (Spencer et al., 2013), PP2A acts as an additional barrier to 

raise this threshold. Together, this indicates that after mitosis multiple cellular signal 

inputs impinge upon Cdk2 activity level at the proliferation-quiescence decision, 

directing cells to commit to a next cycle or to enter quiescence.  
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Materials & Methods 

Cell culture    

Mouse embryonic fibroblasts (MEFs) 3t3 were grown in Dulbecco's modified Eagle's medium 

(DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin. For PC3 cells, RPMI/ 10% FBS was supplemented with 1% penicillin-

streptomycin. 

 

Flow Cytometry analysis and FACS 

Cells were fixed with 4% paraformaldehyde, and then stained with the nuclear dye-- FxCycle 

Violet. Resuspended cells were analyzed by Attune flow cytometer to read the cell cycle 

profiles. 

           Prior to sorting, the transduced NIH3T3 cells were cultured in DMEM supplemented with 

either 10% FBS or 1%FBS for 24-72 hr, then subpopulation cells were sorted according to the 

intensity of their fluorescent reporters, mVenus-p27K-(+)/mCherry-hCdt1(30/120)(+) NIH3T3 

cells (G0) or mVenus-p27K- (-)/mCherry-hCdt1(30/120)(+)NIH3T3 cells (G1) or mVenus-p27K-

(-)/mCherry-hCdt1(30/120)(-) NIH3T3 cells (S/G2/M), using BD FACS Aria II system. Cells were 

sorted into sub-population for protein extraction or RNA isolation. 
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Time-lapse, live-cell image   

Cells cultured on a 12-well plate in DMEM/10%FBS or 1%DMEM were subjected to time-lapse 

imaging by EVOS FL cell imaging system with an objective lens (20X) or IncuCyte Zoom live-

cell imager under 37oC , 5% CO2 environmental control. The imaging interval time was every 20 

or 30 minutes, and the movie length was 24-30hr.  30min, 50nM OA treatment was done 1~2hr 

prior to the time-lapse imaging.  

 

Image process & analysis (program segmentation & tracking) 

Cell segmentation and tracking were performed using a MATLAB program that automates 

these processes as described below. The program interface provides interactive adjustment of 

the parameters used at each step in the segmentation process, allowing the user to tailor the 

segmentation process to accommodate the characteristics of each image under analysis. The 

output of this software is an Excel file containing the identified cells, the frame number(s) in 

which they appear, the size, approximate radius, and cell center location in each frame, and the 

average and maximum intensity values in the cell on both the red and green channels in each 

frame, as well as the segmentation settings used to obtain these results. 

Cell segmentation 
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The segmentation process consists of four main steps: smoothing the image, conversion to 

black and white, splitting merged cells, and filtering potential cells by size. Initial smoothing is 

done using a circular averaging filter, where the filter radius is adjustable and is specified by the 

user for each image stack. The filtered image is then converted to a black-and-white image 

based on a threshold intensity level entered by the user. Pixels above this intensity are part of 

potential cell candidate areas and are white or value 1 in the resulting black-white image, while 

all remaining pixels are background (black, value 0).  Connected sets of white pixels are 

considered candidate cells, and the resulting black-and-white image is cleaned up by removing 

any potential cells overlapping a border of the image and filling any holes within remaining 

potential cells.  Since this simple threshold method often causes neighboring cells to be merged 

into a single spot, the next step splits these merged spots into separate cells. First the 

Euclidean distance transform of the inverse of the black-and-white image is calculated, giving 

the distance from each cell pixel to the background pixel. Those distances that are less than a 

user-specified threshold distance from background are then suppressed using an H-maxima 

transform; if the threshold entered is 0, this step is skipped. The resulting image, which ideally 

contains one local maximum per cell, is then segmented using the watershed algorithm. The 

dividing lines from this watershed output are overlaid with the black-and-white cell image; any 

pixel where a watershed line overlaps a cell spot is changed from a cell pixel to a background 

pixel, effectively dividing merged cells. Finally, each identified potential cell is compared to user-

entered maximum and minimum cell sizes. Any potential cells with more pixels than the 
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maximum or fewer pixels than the minimum are discarded, and the remaining cell candidates 

are identified as cells. 

Following automatic segmentation, the user has the option to manually delete cells that 

have been misidentified and/or draw additional cells that the automated process missed. 

Cell tracking 

Once segmentation is complete, cell tracking is done with the Simple Tracker tool available 

on the MATLAB File Exchange. This tool uses the Hungarian algorithm to link cells from frame 

to frame into connected tracks using user-entered parameters for maximum movement distance 

allowed between frames and maximum gap in frames allowed between occurrences of the 

same cell track. Tracks were verified by hand to be sure that one track represented the same 

cell for the duration of the track. 

 

Statistical analysis 

Fluorescence Intensity smoothing  

Analysis was restricted to cells tracked over at least 3 video frames (1~1.5hr). The mCherry and 

mVenous fluorescence signals were smoothed using a nearest neighbor proportion localized 

polynomial approach. The nearest neighbor value parameter was chosen using an Akaike 
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Information Criteria based optimization with leave one out cross-validation. Calculations were 

performed using the Locfit package in the software program R 3.0.1. 

Transformation to survival time data 

For each cell, the cell cycle state over each pair of time points was assigned as described in 

Fig. 3.3G. For each cell, the aggregated time spent in each state was calculated. The event 

class for the last time point in each state was assigned as either “correct cycle” or “censored”. 

Cells that were not assigned to progress forward in the cell cycle were excluded from the 

analysis.  

Statistical calculations 

Associations between experimental time and overall fluorescence intensity were calculated via 

the Pearson’s correlation coefficient and associated test. Survival curves were generated via the 

Kaplan-Meier method. Hazard ratios, median time to event, and time within a state comparisons 

were calculated using the Cox proportional hazards model. Survival time statistics were 

calculated using the survival package in R 3.0.1. Sample size calculations assumed equal 

number of cells per group, and equal event proportions between groups and were performed 

using the powerSurvEpi package in R 3.0.1. 

 

Western Blotting  
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Antibodies used: anti-mouse Rb2/p130 (BD Biosciences, 610261,1:1000), anti-mouse phospho-

Cdk2T160 (Cell Signaling, 1:500), anti-mouse Cdk2(Santa Cruz, M2, 1:1000), anti-rabbit p27 (Cell 

Signaling, #2552, 1:1000) or anti-mouse GAPDH (Cell Signaling, 14C10, 1:2000) were used as 

loading controls with the appropriate HRP-conjugated secondary antibody. Enhanced 

Chemiluminescence-detection (Amersham) was performed and band signal intensity was 

quantified using NIH Image J. 

 

RT-qPCR 

For RT-qPCR, RNA was isolated from sorted cells per the TRIzol manual, resuspended in 

water, and then treated with TURBO™ DNase to remove contaminating DNA. Using 500ng of 

RNA per sample, cDNA was synthesized using oligo(dT)20 and the Superscript III First-Strand 

Synthesis System (Invitrogen 18080051). qPCR using 0.5µL of cDNA per reaction was then 

performed using the 7500 Fast Real-Time PCR and StepOnePlus Real-Time PCR Systems 

(Applied Biosystems) 

Primer sequences 

Primer name Sequence 

Forward-GAPDH ATGTGTCCGTCGTGGATCTGA 

Reverse-GAPDH TTGAAGTCGCAGGAGACAACCT 

Forward-PCNA TTTGAGGCACGCCTGATCC 

Reverse-PCNA GGAGACGTGAGACGAGTCCAT 
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Forward-Mki67 CCTTGGCTTAGGTTCACTGTCC 

Reverse-Mki67 TGCAGAATCCAGATGATGGAGC 

Forward-Geminin GGGAGCCCAAGAGAATGTGAA 

Reverse-Geminin CAAGCCTTTTGGCAACTCATTT  

Forward-Sod3 CCTTCTTGTTCTACGGCTTGC 

Reverse-Sod3 GCGTGTCGCCTATCTTCTCAA 

Forward-Pdcd4 CCACTGACCCTGACAATTTAAGC 

Reverse-Pdcd4 TTTTCCGCAGTCGTCTTTTGG 
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Figures 

 

Figure 3. 1 Expressions of mVenus-p27K- & mCherry-hCdt1(30/120) cell cycle 

indicators accumulate in G1/0 phase 
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(A) Diagram of the fluorescence changes we observe with the G0/G1 mVenus-p27K- & 

mCherry-hCdt1(30/120) cell cycle reporters. (B-D) FACS dot plots are generated from 3T3 cells 

expressing mVenus-p27K- and mCherry-hCdt1(30/120) probes, cultured with 1% serum media 

for 24hr (B) or 72hr (C) or with normal 10% serum media (D). A sub-population of double 

positive cells increases as cells are treated with serum starvation. (E) Bar graph of FACS 

analysis is to show the composition of distinctively labeled cell sub-populations under different 

growth conditions. (F) Cell cycle profiles from sub-populations gated in Fig. 3.1D. Double 

positive cells with mVenus-p27K-(+)/mCherry-hCdt1(30/120)(+) or single positive cells with 

mVenus-p27K-(-)/mCherry-hCdt1(30/120)(+) labels contain 2C DNA contents. On the contrary, 

majority of S/G2/M cells with low mVenus-p27K- or mCherry-hCdt1(30/120) expression shows 

larger than 2C DNA contents.    

.  
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Figure 3. 2 Molecular evidence to confirm G0/G1 cell cycle indicators  

(A-C) cells sorted into mVenus-p27K-(+)/mCherry-hCdt1(30/120)(+), mVenus-p27K-(-)/mCherry-

hCdt1(30/120)(+), and mVenus-p27K-(-)/mCherry-hCdt1(30/120)(-) three groups via FACS, and 

then protein or RNA extracts were prepared to perform western blot analysis (A,B) or real-time 

quantitative PCR(C). (A) The western blot showed that a  2-fold increase in the ratio of un/hypo-
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phosphorylated to hyper-phosphorylated form p130 in double positive cells, compared to 

mCherry single positive cells. The un/hypo-phosphorylated form and hyper-phosphorylated form 

are indicated by the black and red arrows, respectively. (B) Cdk2 complex is a positive regulator 

in G1 phase, and the blots show the active form of Cdk2 is enriched in mCherry-hCdt1(30/120) 

single positive cells compared to double positive cells. In contrast, CKI protein-- p27 is highly 

expressed in double positive cells. (C) RT-qPCR shows that active cell cycle regulators are 

downregulated in mVenus-p27K-(+)/mCherry-hCdt1(30/120)(+) yellow cells, whereas tumor 

suppressors or genes protecting cells from accumulating damages are enriched, compared to 

the gene expression level from mCherry-hCdt1(30/120) single positive cells. Δ CT = log2 of the 

fold difference from mCherry-hCdt1(30/120) single positive cell samples. 
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Figure 3. 3 Automated computational analysis showing three distinct states under 

normal unperturbed growth conditions 

(A) A workflow of single-cell, automated computational cell cycle profiling platform (B) 

Representative single-cell trajectory of two fluorescent probes in time-lapse, live-cell imaging. 

Each circle depicts one fluorescent intensity reading at a given time in either green or red 
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channel.  (C) The radial histogram shows the conversion of the two fluorescent intensity 

readings from each time frame to the radian readings between two time frames next to each 

other. The length of the spikes depicts the frequency of individual cells with two fluorescent 

reporters behaving at certain radian. (D) Three distinct cell cycle behaviors in order were 

observed from two cell cycle reporters fluorescent intensity changes in asynchronous cells. 

When cells in state G0, mVenus reporter as well as mCherry-Cdt1 accumulate together, colored 

in blue. Then cells transit into G1 when mVenus fluorescent signal decreases while mCherry still 

keeps high, which is colored in orange. The third state is S phase entry, when mCherry signal 

decreases, colored in grey. (E) The dot plot represents the post-smoother radian assignment 

values for all temporally adjacent t vs. t+1 over all captured cells in the movies from normal full 

serum growth conditions. 

Live, time-lapse movie attachments. 

Movie 1. 3T3 cells cultured in full serum media in a 30hr movie 

 

 

 

 

Movie 2. 3T3 cells cultured in low serum media in a 30hr movie 
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Figure 3. 4 Live-cell image to show the cell cycle behaviors at the proliferation-

quiescence transition  

(A-B) the interface of cell segmentation & tracking program in MatLab. (A) the result of cell 

segmentation (B) the result of cell tracking. (C) Raw outputs of the cell tracking program. Each 

cell is represented by a dot, and the color changes from blue to red over time. The plot was 

graphed according to the fluorescent intensity readings at any interval time in a 30h time-lapse 

movie.  

  



 

128 

 

 

 

Figure 3. 5 Serum deprivation and PP2A inhibition impact the proliferation-

quiescence transition in distinct manners  

(A-C) The Kaplan-Meier curves of each state estimates the time cells remaining in each state 

under either full serum (10%) or low serum (1%) conditions. The analysis shows that cells tend 

to spend longer time in both G0 and G1 states in response to serum starvation (p value<0.05). 

(D-F) 50nM Okadaic Acid (OA) is used to inhibit PP2A functions for 30min prior to live, time-

lapse imaging. The Kaplan-Meier curves showed cells with OA treatment tend to spend less 

time in G0 than cells in vehicle treatment. There is statistically significant decrease in the 

probability of cells entering a prolonged G0 whereas no significant difference in time spent in G1 

state or S phase entry.   
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Figure 3. 6 The asymmetric decision between sister cells born of the same 

mitosis at the proliferation-quiescence transition 

(A-C) Representative images from the live, time-lapse captured in asynchronous, cycling cells 

with mVenus-p27K- & mCherry-hCdt1(30/120) constructs. Daughters from the same mitosis are 
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indicated by black and white arrows. (A) two daughter cells born of the same mitosis made 

asymmetric decisions, while (B,C) daughter cells made symmetric decisions of the proliferation-

quiescence in the same dish in normal full serum media. (D) Representative images of time-

lapse, live-cell movie. Cells were captured and monitored via a microfluidic device prior to the 

time-lapse imaging. Chamber 1 and 15 show the asymmetric decision made between daughter 

cells. Chamber 5 shows a symmetric decision from two daughter cells. Cells in chamber 4,9 and 

11 rapidly commit to the next cycle, while cell in chamber 3 stay in a prolonged G0. 5 out of 15 

chambers shown here failed to capture single cells at the beginning of the movie, including 

chamber 6, 7,10,13 and 14.    
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Figure 3. 7 Checkpoints throughout the cell cycle.  

The red arrow denotes the Restriction Point (R), while the yellow arrow denotes the 

proliferation-quiescence decision point (Q). Other cell cycle checkpoints, such as the DNA 

damage checkpoint in G2 (DD, which may also occur in G1), and spindle checkpoint (SAC) are 

in blue. The variation in G0 is depicted as dashed paths between M and G1 phases. 
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Figure 3.8 The threshold models at the proliferation-quiescence decision 

(A)The Rb-E2F bistable switch model, modified from (Yao, 2014). (B) The p21-Cdk2 model, 

proposed from (Overton et al., 2014). (C) The connection between the Rb-E2F model and the 

p21-Cdk2 model is based on a feedback loop exists between the inhibitor Rb, the transcriptional 

activator E2F and the key G1 cyclin CycE (D).  
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Tables 

 

Table 3. 1 Table of error rates.  

The correct assignment rate is 1-error rate, and here shows the majority cells (97-98%) in 

real-time imaging follow the correct G0-G1-S/G2/M order. 

 

 

Assuming 90% of cells observed to correctly exit cycle of interest 

 Hazard ratio = 1.2 Hazard ratio = 1.5 Hazard ratio = 2 

α β = 0.8 β = 0.9 β = 0.8 β = 0.9 β = 0.8 β = 0.9 

0.05 528 707 110 146 40 53 

0.01 786 1001 163 207 59 75 

0.001 1148 1406 238 291 86 105 

 

Assuming 80% of cells observed to correctly exit cycle of interest 

 Hazard ratio = 1.2 Hazard ratio = 1.5 Hazard ratio = 2 

α β = 0.8 β = 0.9 β = 0.8 β = 0.9 β = 0.8 β = 0.9 

0.05 594 795 123 165 45 60 

0.01 884 1126 183 223 66 84 

0.001 1292 1581 267 327 97 118 

Table 3. 2 Table of the power calculation  
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Chapter 4. Conclusions & Future directions 

 

4.1 The switch of PP2A functions after mitosis 

Two major models regulate the proliferation-quiescence decision: first, Rb-mediated 

repression of E2F transcriptional complexes promotes quiescence, and second, CKI-

directed suppression of G1 cyclin/Cdks activity promotes quiescence. My thesis work 

has revealed a parallel pathway for restricting Cdk2 activity through PP2A/B56 

removing T-loop phosphorylation a couple of hours after mitosis. This promotes cell 

cycle exit upon differentiation in tissue development and entry into quiescence in 

mammalian cells (Fig.4.1). The threshold of Cdk2 activity level dominates the 

proliferation-quiescence decision, and my work shows PP2A/B56 is one of the upstream 

regulators of Cdk2 activity to modulate the proliferation-quiescence decision.  

The involvement of B56 (wdb) in promoting quiescence following the completion of 

mitosis implies a regulatory subunit switch after mitosis impacts PP2A functions. The 

PP2A complex is a multisubunit protein phosphatase, and two factors influence PP2A 

activity towards substrates: the binding of specific B-type regulatory subunits and the 

levels of PP2A inhibitors (Williams et al., 2014). The expression pattern of the B-type 

subunits is often controlled in a cell- or tissue-specific manner, which can direct PP2A 
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functions to a specialized location in cells or tissues. B55 (twins) is widely expressed 

and perform its essential functions in mitosis. B55 protein level peaks in mitosis where it 

is required for mitotic entry, mitotic exit and chromosome segregation (Brownlee et al., 

2011; Chen et al., 2007; Wang et al., 2016). This raises the question of how the 

regulatory subunits may switch from predominant B55 (twins) in mitosis to B56 upon 

mitotic completion and the entry into G0. One study has suggested that APC/C might 

target B55/tws for degradation at anaphase for the sister chromatid separation (Deak et 

al., 2003). This model is intriguing as the degradation of B55 by the APC/C may bias 

PP2A complexes toward B56 after mitosis. 

Additionally, recent work characterized an inhibitor specific to PP2A/B56 complexes 

termed Bod1. Bod1 acts on the mitotic kinetochores late in mitosis (Porter et al., 2013), 

and its Drosophila ortholog CG5514 has been recently identified (Esmaeeli-Nieh et al., 

2016). Therefore, an interesting future direction will be to examine whether Bod1 

influences the proliferation-quiescence decision in opposition to PP2A/B56. 

 

4.2 Proliferation is heterogeneous in clonal cell populations 

Proliferative heterogeneity in clonal populations has been reported in multiple 

immortalized cell lines, such as MCF10A, Swiss3T3, as well as cancer cell lines, such 

as MCF7, and colon cancer-initiating cells (CCICs) (Spencer et al., 2013; Dey-Guha et 



 

136 

 

al., 2015; Srinivasan et al., 2016). The relative percentage of cells that enter quiescence 

is highly dependent upon the cell types and culture conditions, suggesting many 

signaling inputs likely influence the proliferation-quiescence decision. In the MCF10A 

cell line, this proliferative heterogeneity seems to be due to variable levels of the Cdk2 

inhibitor p21, which acts as a rheostat to modulate Cdk2 activity above and below 

certain thresholds (Overton et al., 2014). In cancer cells such as HCT116 and MCF7, 

the β1-integrin/FAK/mTORC2/AKT1–associated signaling pathway has been suggested 

to promote asymmetric cell division and produce quiescent or slowly proliferating 

daughter cells (Fischer et al., 2015).  

We also found that untransformed cells exhibit proliferative heterogeneity under 

growth conditions, and that the G0 state is heterogeneous. This means that cells spend 

variable lengths of time in G0/quiescent state, which leads to proliferative heterogeneity. 

A recent study has suggested that a transcriptional spike occurs heterogeneously at the 

mitosis-G1 transition, which could lead to cell-to-cell differences in mature mRNA 

expression (Hsiung et al., 2016). Hence, inherently heterogeneous mRNA levels may 

lead to the variability in quiescence.  

Single-cell RNAseq analysis may allow us to examine the wide distribution of gene 

differential expressions, and this may further elucidate how cells enter into a prolonged 

quiescence instead of a transient one. In situations such as cancer, cells with random 

genetic mutations give rise to a vast heterogeneity in morphology, immunophenotype 
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and etc. Therefore, the traditional bulk population analysis may mask certain features 

that could provide novel unique diagnostic or therapeutic cues. Single-cell analysis is 

the way forward for understanding cancer cell heterogeneity in tumors. 

 

4.3 Cellular quiescence in tumor dormancy 

It is appreciated that most cancers are comprised of mixed populations, with some 

cells actively proliferating, while other cells are quiescent, depending on their micro-

environmental cues (Hanahan and Weinberg, 2011). It is believed that tumor recurrence 

years after the primary treatment could be the result of the non-cycling, quiescent tumor 

cells re-entering cell cycle and developing into secondary tumors (Almog, 2010; Klein, 

2011). A small group of disseminated tumor cells (DTCs) cells left from primary tumor 

removal or treatment are often resistant to chemotherapy, even small in size which turn 

out to be extremely different for clinical detection (Aguirre-Ghiso, 2007). The dormant 

DTCs exist in several human cancers, such as breast cancer, prostate cancer and colon 

cancer (Sosa et al., 2014; Yeh et al., 2015). 

Prostate cancer (PCa) cells mainly metastasize to bone marrows, and stay dormant 

for years before switching back to proliferation and eventually causes tumor recurrence, 

reviewed in (Shiozawa et al., 2015; Morrissey et al., 2016). Recent studies in several 

prostate cancer cell lines in vitro, showed that a low frequency sub-population of cells 
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were in quiescence as assessed by a dye-retention assay (Wang et al., 2015). The idea 

that the quiescent tumor cells regain cellular proliferation triggers an interesting question 

whether disruption of quiescence will improve the primary cancer treatment outcomes in 

vivo cancer model. The mVenus-p27K- cell cycle indicator enables us to monitor the 

proliferation and quiescence properties of cells at single-cell resolution. Dr. Russ 

Taichman’s group in University of Michigan generated a xenograft mouse model for 

human prostate cancer cell metastasis to the bone (Taichman et al., 2013). 

Combination of our G0/G1 cell cycle labeling techniques and their tumor dormancy 

model will provide us a great opportunity to test the hypothesis that DTCs are 

insensitive to chemotherapies designed to target proliferative cancer cells. Furthermore, 

we will be able to examine whether disruption of quiescence will sensitize DTCs to 

current chemotherapies and improve treatment outcomes. 
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Figure 

 

Figure 4. 1 Molecular regulation of the proliferation-quiescence decision 

Molecular regulation of the proliferation-quiescence transition in development with negative 

(red) and positive (green) cell cycle regulators. Several studies suggest redundancy of negative 

regulators ensures robust cell cycle exit upon terminal differentiation. Regulation may act 

transcriptionally (grey dashed lines) as well as post-translationally (black lines) and includes 

both positive and negative feedback loops. 
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