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“A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic

community. It is wrong when it tends otherwise.”

-Aldo Leopold, A Sand County Almanac, 1948

For all those who strive to make tomorrow a better day than today, for those who came before, and for those

who will come after, I dedicate this work.
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Abstract

This investigation is a complete case study of transdisciplinary research. The goals were to

engage farmers in exploring landscape patterns for perennial agriculture and to assess

resulting environmental impacts. Transdisciplinary research involves participants from

several academic disciplines and nonacademic stakeholders, who work together toward a

single research goal relevant to a societal problem. Participation in transdisciplinary research

can be enhanced through the use of boundary objects, which are conceptual tools that

promote cooperation without requiring consensus and that allow meaningful discussion of

complex issues. When research explores landscape change, landscapes or landscape

representations may be used as boundary objects. Working with farmers in an Illinois

watershed, I developed future landscape patterns (FLPs) that include perennial bioenergy

crops (PBC) within the corn/soy agricultural matrix to develop societally acceptable PBC

farming systems. My results suggest that employing real places, landscape visualizations, and

spatially explicit datasets as landscape boundary objects is an effective means of involving

stakeholders. Next, I used a spatially explicit model of bee abundance to explore effects on

wild bee habitat of the FLP’s crop composition, total PBC area, and landscape configuration.

I found that more PBC area enhanced bee habitat. Prairie provided the greatest modeled bee

abundance, followed by switchgrass and then by willow. Landscape configuration altered the

proportion of PBC within a given distance from a specific location in the landscape, but did

not affect overall modeled bee abundance at the level of the watershed. Next, I developed

additional FLPs that represent spatial patterns associated with temperate agroforestry:

willow/prairie alley cropping and entire-field management. I found that alley crop

composition significantly influenced modeled bee abundance. Specifically, prairie provided

the greatest modeled bee abundance, followed by alley cropping, and then by willow. Entire-

xi



field management did not affect overall modeled bee abundance, but did affect distribution

of habitat. My results suggest that simply incorporating PBC into the corn/soy agricultural

system will enhance wild bee habitat, but that crop composition, area converted to PBC, and

agroforestry strategies could further enhance wild bee habitat in agricultural landscapes.

xii
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Chapter I
Introduction

Society is facing an interrelated series of complex social and ecological challenges. Often

characterized as “wicked problems,” these unique, ill-defined challenges can be untestable or

elusive (Rittel and Webber 1973). Their resolution requires that knowledge from different

disciplines be combined across multiple spatial scales and in multiple forms of governance.

Recent literature stresses the importance of transdisciplinary synthesis to this process (Klein

2008, Stokols et al. 2008, Hampton and Parker 2011, Palmer 2012).

Transdisciplinary synthesis employs problem structuration, theories, and methods

from multiple disciplines, and effectively incorporates diverse scientific disciplines and

societal stakeholders to create novel insights or solutions, aimed at fostering societal action

in policy or practice (Palmer et al. 2004, Tress et al. 2005, Wu 2006, Pickett et al. 2007,

Hirsch Hadorn et al. 2008, Palmer 2012) Its goal is “bringing together diverse forms of

knowledge in ways that generate useful new insights: producing new knowledge, anticipating

future conditions, producing new solutions to problems, or opening up new ways to think

about a particular problem” (www.sesync.org). Key elements of transdisciplinary synthesis

include the transcendence of disciplinary boundaries, the establishment of a nexus between

society and science, and the participation of stakeholders who affect problem definition and

study methods and help to generate socially acceptable, actionable solutions (Nowotny et al.

2001, Wickson et al. 2006, Fry et al. 2007, Klein 2010, Jahn et al. 2012).

Transdisciplinary synthesis can be useful in addressing wicked problems that have a

landscape component, and landscape ecology can play a vital role. The transdisciplinarity of

landscape ecology has been recognized since its early days in North America: Zonneveld

(1989) maintained that effective landscape ecology needs to be a holistic, transdisciplinary
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endeavor that incorporates system theory, and Naveh (1990 p. 53) argued that landscape

ecology “require[s] the development and large-scale application of methods for analysis and

synthesis,” and that it “offer[s] practical solutions [relevant to] land use planning,

management, conservation and restoration.” Landscape ecology is inherently a

transdisciplinary science with landscape sustainability as its ultimate goal (Wu 2006, 2013),

and transdisciplinary integration of humans and human-activities into the science will

continue to be a key part of landscape ecology in the 21st century (Wu and Hobbs 2002).

One particularly promising method for conducting transdisciplinary synthesis within

landscape ecology draws on participatory scenario planning (PSP; Figure 1.1). PSP involves

the development of one or more alternative future scenarios (plausible stories about future

social, technical, or policy conditions (Nassauer and Corry 2004)) that can be expressed as

future landscape patterns (FLPs). FLPs represent spatially explicit, testable hypotheses

about the effect of scenario conditions, and provide common reference points for

transdisciplinary research groups to communicate, explore, and evaluate potential solutions

to problems. The development of FLPs within a PSP project allows landscape ecologists,

designers, practitioners, and stakeholders to directly contribute to an iterative design process

that extends the traditional scientific paradigm from an expert-driven process to a

participatory process (Nassauer and Opdam 2008).

One wicked problem for which a PSP approach can work well is that of

agriculture. Agriculture is the dominant land use through much of the American Upper

Midwest, including in Illinois where less than 8% of natural vegetation remains and over

80% of the state is in agriculture (Iverson 1988, Jin et al. 2013). Following European

settlement through circa 1970, a diversity of land uses, including cultivated farms, pasture,

and woodlands, provided a variety of habitat patches, corridors, and matrix (e.g., Turner and

Ruscher 1988, Warner 1994, Boren et al. 1999, Pan et al. 1999, Ramankutty and Foley 1999).

Patches included high quality habitat (e.g., remnant woodlots used for harvesting firewood

and unmanaged regions between field borders); corridors consisted of fencerows, field

boundaries, and riparian vegetation; and the agricultural matrix consisted of active fields

growing a diversity of crops, fallow areas, and pasture. Since roughly the 1970s, industrial
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farming techniques have tended to minimize or eliminate most patches and corridors in

order to facilitate mechanized farming, and have converted the landscape into a relatively

uniform matrix of corn and soybeans (Matson et al. 1997, Tilman et al. 2001). However,

industrial agriculture as currently practiced has led to a variety of environmental problems

including soil loss, biodiversity loss, water quality degradation, and many other concerns

(e.g., Matson et al. 1997, Tilman et al. 2001, Balmford and Bond 2005, Vandermeer 2011).

As these consequences of industrial agriculture are becoming widely apparent,

researchers are exploring opportunities to develop and design perennial agricultural systems

that may be able to balance agricultural commodity production with the enhancement of

ecosystem services. Two methods stand out in particular. One method is the inclusion of

small patches of perennial bioenergy crops within fields to develop multifunctional

agricultural systems and minimize nutrient losses (Ssegane et al. 2015, Ssegane and Negri

2016). A second method is temperate agroforestry: the development of agricultural systems

Figure 1.1.Participatory scenario planning, using future landscape patterns. Alternative scenarios
express plausible stories about future conditions, which are represented as one or more future
landscape patterns for each corresponding scenario. Transdisciplinary groups of researchers and
stakeholders go through an iterative process of developing scenarios and FLPs, which inform each
other. During this process, boundary objects can be developed from three forms of landscape:
landscapes as real places, landscape visualizations, and spatially explicit datasets (a). After revision,
each FLP can be subjected to a series of assessment tools, which can be combined into an
integrated assessment of all the FLPs (b).

a b

Assessment 1 Assessment 2 Assessment 3

Integrated Assessment

Future Landscape PatternsAlternative Scenarios

Future Landscape Patterns

Scenario 1

FLP 1a

FLP 1b

Scenario 4

FLP 4a

Scenario 3

FLP 3a

FLP 3b
FLP 3c

Scenario 2

FLP 2a

Transdisciplinary participation and iteration 

Landscape emerges as boundary object

Real places Visualizations
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that involve trees and shrubs in multi-storied agroforestry systems, frequently using prairie,

savanna, or closed canopy forest as a model (Jose 2009, Jose et al. 2012, Smith et al. 2012).

Interest in bioenergy has increased over the last decade, as demonstrated by the

“Biofuels Mandate” of the Energy Independence and Security Act of 2007 (USA Public Law

110-140), which amended the Energy Policy Act of 2005 to require domestic production

capacity for transportation biofuels to be 36 billion gallons per year by 2022, with 21 billion

gallons from so-called “advanced biofuels” (e.g., cellulosic ethanol). Though much of the

emphasis has focused on biofuels produced from annual crops (particularly ethanol from

corn starch or stover and biodiesel from soybeans), some researchers have also explored

opportunities for perennial bioenergy crop production in monocultures, for example using

switchgrass or miscanthus (e.g., Nelson et al. 2006, Ng et al. 2010, Love and Nejadhashemi

2011) or in polycultures (e.g., Tilman et al. 2006, Love and Nejadhashemi 2011). Some,

including low-input, high-diversity perennial bioenergy crops (e.g., prairie-based

polycultures), can be grown on abandoned or degraded lands, potentially reducing the

conflicts among food, fuel, and biodiversity (Tilman et al. 2006). These options increase the

opportunity to enhance ecosystem services while minimizing resource conflicts.

Temperate agroforestry is an application of science that aims to create an integrative

and sustainable land use, draws from ecology, forestry, agronomy, landscape ecology, and

other disciplines (Lassoie et al. 2009), and has been proposed as a means of reconciling

environmental protection with the production of necessary goods and services for humans

(Jose et al. 2012, Smith et al. 2012). As a relatively new land use in the Upper Midwest,

agroforestry presents an opportunity to design an agricultural system that may circumvent

many of the environmental problems associated with annual, industrial agriculture.

Potentially, temperate agroforestry systems could be used to reestablish high-quality patches

and corridors, changing the landscape to have a vegetation structure more similar to pre-

settlement, thus restoring some degree of wildlife habitat (Gordon et al. 2009).

Recent scientific classification of agroforestry (particularly in North America) uses

four criteria to determine whether a management system can be considered “agroforestry”:

intentionality, intensiveness, integration, and interactions (Gold and Garrett 2009). To
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qualify as “agroforestry” a system must be intentionally designed, intensively managed for

structural and physical integration, and allow for biophysical interactions between the various

components of the system (Gold and Garrett 2009). Temperate agroforestry is classified

into five major types: riparian/upland buffers, windbreaks, alley cropping, silvopasture, and

forest farming (Gold and Garrett 2009). Riparian buffers include forested strips between

cropland (frequently featuring conventional crops) and streams or waterways. Windbreaks

are forested strips or thickets positioned to reduce in-field wind velocity and resulting wind

erosion. Alley cropping intersperses rows of nut or timber trees in between row crops,

which are frequently conventionally managed. Silvopasture integrates livestock and tree

crops to produce animal products and timber. Forest farming involves cultivating high-value

(and frequently non-traditional, e.g. medicinal) crops under an intact forest canopy. Though

not typically recognized as a separate classification in agroforestry, innovative multi-story

cropping (for instance, using oak savanna as a holistic ecological model (e.g., Shepard 2013))

is an additional way of engaging in ecologically innovative agroforestry, and is beginning to

gain recognition in the scientific literature(e.g., Ferguson and Lovell 2013).

Although the development of bioenergy or agroforestry systems has the potential to

increase the ecosystem services provided by agricultural land, it also has the potential to

decrease the production of food. This tradeoff raises a continuing challenge for

agroecologists and landscape ecologists: identifying appropriate placement and management

regimes to optimize a suite of ecosystem services, not just food production. This challenge

is ripe for transdisciplinary synthesis.

My dissertation contributes to the resolution of this challenge by demonstrating a

transdisciplinary, PSP approach aimed at partially resolving the dilemma of bioenergy crops,

agroforestry, and industrial agriculture in the American Midwest. In Chapter 2, I develop a

framework for using the landscape as a boundary object in transdisciplinary research, and

demonstrate such use in an Illinois watershed to engage farmers in the design of FLPs that

include perennial bioenergy crops planted in subfield patterns. In Chapter 3, I assess these

FLPs based on their potential impact on wild bee habitat, and explore the different effects of

bioenergy crop composition, landscape configuration, and bioenergy crop area. In Chapter
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4, I expand the FLPs to include entire-field patterns and multi-story crops, to represent the

effects of agroforestry, and to evaluate the effects of agroforestry composition, landscape

configuration, and agroforestry area on wild bee habitat. I conclude in Chapter 5 with

remarks about the overall, transdisciplinary process developed in my dissertation, and I

suggest future research directions for this work.
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Chapter II

Landscape boundary objects in socio-ecological research:
engaging stakeholders to investigate production alternatives for

perennial bioenergy crops

Submitted: Graham JB, JI Nassauer, MC Negri, and H Ssegane. Landscape boundary objects in socio-

ecological research: engaging stakeholders to investigate production alternatives for perennial bioenergy crops.

Ecology and Society.

Abstract

The development and use of landscapes as boundary objects allows the synthesis of ecology,

culture, and human action on the environment, and should be a fundamental method in

socio-ecological research. The representative flexibility of landscapes and the iterative design

process of participatory scenario planning (PSP) are particularly helpful in facilitating the

development of landscape boundary objects, particularly when used at the scale of a specific

landscape. Three forms of landscape representation frequently emerge as boundary objects:

use of landscapes as real places, landscape visualizations, and spatially explicit datasets. PSP

studies can take advantage of the boundary role of landscapes by including these three forms

of landscape representation in an iterative design process. Despite the potential for

employing landscape boundary objects in PSP studies, relatively few studies have examined

their use in this way. We examine the Indian Creek Bioenergy Futures project as a case

study in purposefully using a local landscape as a boundary object throughout a

transdisciplinary research project. Our results suggest that employing all three forms of

landscape boundary objects in an iterative design process is an effective means of involving

stakeholders and incorporating their knowledge.



8

Introduction

Society faces many complex socio-ecological challenges related to agricultural landscape

intensification, including that of restoring balance among ecosystem services. Unlike natural

ecosystems, intensively cropped landscapes exhibit dramatic short-term increases in crop

production, but drastic long-term losses in supporting, regulating, and cultural ecosystem

services (Foley et al. 2005). Intensification sets up a conflict between food production and

the conservation or maintenance of a suite of ecosystem services. Addressing this conflict

requires a landscape-scale transdisciplinary approach involving the participation of farmers,

governing bodies, and researchers in order to develop agricultural systems that effectively

balance ecosystem services (Geertsema et al. 2016). This effort can be enhanced by use of

the landscape as a boundary object.

Boundary objects were originally described by Star as items that facilitate

communication and collaboration among groups without requiring participants to come to

consensus about specific ideas or definitions (Star and Griesemer 1989, Star 1989). They are

tangible devices or methods that allow groups to communicate and interact in situations of

incomplete knowledge (Mollinga 2010), and they allow flexible, iterative discussion about an

ill-defined concept and enhance diverse participation during group projects (Star 2010). The

development and use of boundary objects can effectively assist in communication,

translation, and mediation of knowledge, enhancing discussion and communication among

research participants (Cash et al. 2003).

Researchers have noted that landscapes can function as excellent boundary objects in

transdisciplinary research by providing visible evidence of social and ecological policies and

processes that can be directly experienced by researchers and stakeholders. The use of

landscapes as boundary objects allows the synthesis of ecology, culture, and human action

on the environment, and should thus be a fundamental method in socio-ecological research,

as described and advocated by landscape ecologists, designers, and planners (e.g., Nassauer

and Opdam 2008, Termorshuizen and Opdam 2009, Nassauer 2012, Opdam et al. 2013,

2015). However, despite these insights, few studies examine how landscapes have been

intentionally developed as boundary objects.
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In facilitating the development and emergence of landscape boundary objects, the

iterative design process of participatory scenario planning (PSP) can be particularly helpful,

particularly when used at the scale of a specific landscape. This transdisciplinary process of

designing landscapes can function in a boundary role between science and practice by

introducing interactive and creative methodologies not typically employed in traditional

research, and by encouraging research participants to consider novel, previously unimagined

solutions (Nassauer and Opdam 2008). Furthermore, involving stakeholders throughout the

research process effectively produces outcomes that can be simultaneously viewed as salient,

credible, and legitimate (Geertsema et al. 2016).

At the scale of a local landscape, PSP involves the iterative development of

alternative scenarios, combined with the development of one or more future landscape

patterns (FLPs) for each alternative scenario (Figure 2.1). Alternative scenarios are stories

about plausible social, technical, or policy conditions that allow researchers to explore how

the future could or should appear at the landscape level (Nassauer and Corry 2004). FLPs

depict landscape patterns at a given point in time, as derived from a scenario trajectory

(Nassauer and Corry 2004, Shearer 2005), and allow research participants to examine a single

shared vision of the future but assess its performance for different social and environmental

functions. FLPs can be represented in several ways, including as GIS data layers or

photorealistic visualizations of the resulting landscape, and are evaluated individually or

comparatively.

PSP is a powerful tool for exploring uncertain futures and for challenging traditional

predictions. As plausible, internally coherent, and logically consistent stories about the

future (Nassauer and Corry 2004), scenarios provide a dynamic simulation of future

conditions for scientific modeling and exploration of the potential outcomes of changes in

policy, social or environmental conditions, or economics (Shearer 2005, Mahmoud et al.

2009, Thompson et al. 2012). Plausible scenarios should be consistent with current

ecological understanding, while invoking insightful, imaginative change (Carpenter 2002).

Ideally, they facilitate the integration of scientific knowledge with on-the-ground decision

making (Coreau et al. 2009).
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When used as part of transdisciplinary research into socio-ecological challenges, PSP

encourages social-learning (Albert et al. 2012), societal action (Carpenter 2002, Means et al.

2005), and enhances education and dissemination of information to the public (Thompson

et al. 2012). A recent analysis of 23 studies found that “PSP enhance[s] stakeholder

engagement, and support[s] the diversity, equity, and legitimacy of environmental decision

making… [while] support[ing] creativity and social innovation, creat[ing] new understanding

… [and] enhanc[ing] complexity thinking among participants” (Oteros-Rozas et al. 2015 p.

13). PSP supports decision making and strategic planning about the future (Albert 2008,

Thompson et al. 2012), can have a strong influence on policy adoption and the eventual

outcome of policy on ecosystem services (Gregory et al. 2012), and can integrate well with

other ecosystem management efforts including large-scale ecological restoration (Manning et

al. 2006). By engaging stakeholders in planning for management of socio-ecological systems,

Figure 2.1. Landscape boundary objects emerging in participatory scenario planning. Alternative
scenarios express plausible stories about future conditions, which are represented as one or more
future landscape patterns for each corresponding scenario. Transdisciplinary groups of researchers
and stakeholders go through an iterative process of developing scenarios and FLPs, which inform
each other. During this process, boundary objects can be developed from three forms of landscape:
landscapes as real places, landscape visualizations, and spatially explicit datasets.

Alternative Scenarios

Future Landscape Patterns

Scenario 1

FLP 1a

FLP 1b

Scenario 4

FLP 4a

Scenario 3

FLP 3a

FLP 3b

FLP 3c

Scenario 2

FLP 2a

Transdisciplinary participation and iteration 

Landscape emerges as boundary object

Real places Visualizations
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PSP allows the integration of transdisciplinary research with policy expectations (Tress et al.

2005a) as well as the cooperative creation of formerly unimagined landscape patterns

(Nassauer and Corry 2004).

Researchers have used PSP to effectively incorporate stakeholder perceptions and

viewpoints into research at a variety of scales. Perhaps best known are scenarios developed

during studies of global change including the Millennium Ecosystem Assessment (2005), the

Intergovernmental Panel on Climate Change (Parry et al. 2007), and the future of

biodiversity (Cumming 2007, Ehrlich and Pringle 2008). At local scales, PSP has been used

in many studies throughout the world (Table 2.1). These include: the exploration of

stakeholder preferences for the Danish countryside (Tress and Tress 2003); the assessment

of policy for the future of ecosystems in the Willamette Valley of Oregon, USA (Baker et al.

2004, Hulse et al. 2004, 2009); federal agricultural policy as it relates to water quality and

biodiversity in Iowa, USA, (Santelmann et al. 2004, Nassauer et al. 2007b); green networks

designed to enhance various ecosystem services in the Netherlands (Steingröver et al. 2010);

the development of sustainable, multiple use landscapes in Switzerland (Schroth et al. 2011);

rural development in Portugal (Van Berkel et al. 2011); community-developed forest

management planning in Laos (Bourgoin et al. 2012, Castella et al. 2014); and novel

biodiversity futures in Tasmanian agricultural landscapes (Mitchell et al. 2016).

Several aspects of landscapes are well suited to their function as boundary objects in

PSP. Landscapes allow the examination and design of a shared, visible setting that is the

expression of human actions on the environment (Nassauer 2012). In addition to their

design, services provided by landscapes can function as boundary objects between science

and society, enhancing the credibility of research by identifying important or necessary

scientific knowledge (Termorshuizen and Opdam 2009). Specifically, local landscapes

function as transdisciplinary boundary objects by merging social and environmental sciences

(Opdam et al. 2013), allowing the reframing of scientific concepts and terminology at the

place and scale relevant to stakeholders, which enhances the application of science to socio-

environmental problems.

Empirical development of FLPs or identification of real landscapes to explicitly act as
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boundary objects is infrequent, but promising. In their social and ecological research in

Uzbekistan, Orberkircher and colleagues (2011) found that using the local landscape as a

focal piece for the research allowed for cooperative analysis from socio-cultural and

ecological viewpoints, and that “the diversity of understandings” held by participants

enhanced the functioning of the landscape as a boundary object. Similarly, Robinson and

Wallington (2012) used data on feral animal behavior as a boundary object in co-

management of an Australian national park, and argued that the use of boundary objects

enhances meaningful participation, interaction, and collaboration. By developing joint site

assessments, joint landscape mapping, and multiple field exercises, they were able to include

researchers and community members, and incorporate indigenous knowledge with scientific

management principles to develop co-management plans for feral animals.

Within PSP-based studies, three forms of landscape representation frequently emerge

as boundary objects: use of landscapes as real places, landscape visualizations of FLPs, and

spatially explicit datasets of FLPs or real landscapes (Table 2.1, Table 2.2). PSP research

uses real places when studies occur in a specific landscape and employ field exercises or

participants’ knowledge of the landscape to integrate social and ecological inquiries.

Participants are able to gain firsthand observations and experiences, tethering research to the

tangible complexities of place. Landscape visualizations can include including photorealistic

visualizations and physical models, and simulate placing an individual directly within or

above a landscape. Participants are able to see a visual representation of alternative FLPs,

and assess their appearance on multiple dimensions, including apparent function or

preferences for specific functions. Spatially explicit datasets can include GIS data, maps, and

digital data. GIS data layers provide visual and data-rich representations of different features

of the landscape, which can be assessed by transdisciplinary participants for various

environmental and social functions, according to their priorities or expertise.

Despite the promise of developing landscape boundary objects in PSP studies,

relatively few studies have intentionally done so. We posit that studies that use FLPs can

take advantage of the boundary role of landscapes by consciously planning to include the

three forms of landscape representation listed above. Next, we examine the three forms in
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Form  Examples Effects 
Landscapes as real places  Centering research around a 

specific landscape, known to 
participants 
Field exercises conducted in the 
actual landscape  

Allow participants to experience 
the landscape as it is, using all 
senses 
Sense the scale at which effects 
occur 
Ground research in locations that 
people know and can experience 
 

Landscape visualizations Photorealistic visualizations 
Three dimensional models 

Illustrate the landscape as it 
could be.   
Compare different alternatives 
and interpret preferences 
 

Spatially explicit data layers GIS datasets, maps Allow participants to consider the 
spatial dependencies or 
associations of one or more 
types of data 

 

 

  
more detail and explicate a case study showing how we used all three forms of landscape

representation to intentionally employ landscapes to develop boundary objects.

Forms of landscape representation

One landscape boundary object that frequently emerges is the use of landscapes as real

places. Grounding alternative scenario research in real places allows participants to

experience the landscape first hand, and apply their own observations and knowledge to the

research. The use of a real landscape has been shown to be successful in many PSP projects.

For example, researchers in Iowa, USA developed alternative agricultural policy

scenarios intended to enhance water quality and biodiversity (Santelmann et al. 2004,

Nassauer et al. 2007b). They found that centering the project on two agricultural watersheds

increased the relevance to stakeholders, and provided literal common ground for participants

to collaborate, particularly within the setting of a field exercise. Field exercises with small

interdisciplinary groups of 4-6 participants allowed participants to share ideas and see the

agricultural landscape through each other’s eyes. Essential to their research process and

public engagement was locating the research in a real place. Similarly, Baker, Hulse, and

colleagues (Baker et al. 2004, Hulse et al. 2004, 2009) used the landscape of the Willamette

Table 2.2. Forms of landscape representation that facilitate development and emergence of
landscape as a boundary object in alternative scenario for future landscape projects.
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River watershed in Oregon, USA, to engage citizen groups that included lay and

professional members. Although the landscape functioned as a boundary object in both of

these projects, it was not explicitly defined as such by the researchers.

Elsewhere, researchers in Laos found that villagers’ intimate and extensive knowledge

of village boundaries and typical land uses was a vital component of enhancing the salience

of their research; for each participant, the landscape was a very real place that provided their

livelihood (Bourgoin et al. 2012, Castella et al. 2014). Participating villagers were intimately

knowledgeable about the landscape, and were able to use their daily experiences as a basis

for their opinions and decisions about land use planning. Similarly, local farmers’ knowledge

of and concerns about threats to an agricultural floodplain was a driving force for landscape

planning in the Hoeksche Waard region of the Netherlands (Steingröver et al. 2010).

Landscapes as real places have also been successfully used in research that did not

develop alternative scenarios. For instance, both Orberkircher and colleagues (2011) and

Robinson and Wallington (2012) recognized that stakeholder engagement was enhanced by

exposing workshop participants to a real landscape, during “transect walks” (Oberkircher)

and repeated group walks through the country (Robinson). These examples show that in

field exercises, participants can engage with the landscape and consider a variety of aspects

that may have been less obvious from other forms of landscape representation.

A second landscape boundary object that frequently emerges is landscape

visualizations. Landscape visualizations allow participants to see a simulation of the

landscape as it could be, enhancing the dialectical process between landscape representation

and interpretation (Foo et al. 2015). This experience can foster thoughts about the potential

of landscape change that may not have arisen from solely verbal descriptions, though

descriptive text or GIS maps typically augment landscape visualizations. Within PSP studies,

visualizations can be both a “method for invention” as well as “medium for

synthesis” (Nassauer 2015 p. 170). Two types of landscape visualizations that have been

successfully used are photorealistic visualizations (Downes and Lange 2015) and physical

models (Bourgoin et al. 2012).

Photorealistic visualizations have been regularly used in alternative scenario studies of
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landscapes to address topics including public participation in land management in

Switzerland (Schroth et al. 2011), climate change in Canada (Sheppard 2012) stakeholders’

preferences in Denmark (Tress and Tress 2003), rural development in Portugal (Van Berkel

et al. 2011), sprawl and fragmentation in Oregon (Hulse et al. 2004), and water quality from

agriculture in Iowa (Nassauer et al. 2007a). Photorealistic visualizations help expand

participants’ views about landscape change, and reduce participants’ inherent tendencies to

prefer the status quo (Tress and Tress 2003), while promoting understanding and awareness

of scenario perspectives (Schroth et al. 2015). However, visualizations “simplify observed

phenomena in order to distill meaning from landscapes … [And] do not express universal

conditions but rather particular standpoints” (Foo et al. 2015 p. 80). Veracity is essential to

their utility and validity is essential to their result.

The specific requirements for effective photorealistic visualizations can differ among

projects. In research of landscape preferences, photorealistic visualizations generally have

been found to be valid representations of the visual experience of landscapes, and

increasingly, dynamic visualizations are used in some applications (Lange 2011). Ground-

level visualizations have been paired with bird’s eye aerial visualizations to simulate future

landscapes in many studies (e.g., Tress and Tress 2003, Baker et al. 2004, Nassauer et al.

2007a, Schroth et al. 2011, Van Berkel et al. 2011), and the recent development of video-

immersive simulations has opened up possibilities for mobile, smartphone or tablet-based

visualizations (Bishop 2015). For some questions, outcomes can also be improved by

pairing photorealistic visualizations with text or maps. For example, Schroth and colleagues

(2011) found that Swiss farmers wanted both photorealistic visualizations and abstract

conceptual diagrams to assess sustainable solutions for landscape planning.

Recent developments have expanded the ability of researchers to create photorealistic

visualizations, but “best practice” guidelines for how, when, and what to show are still being

developed (Lovett et al. 2015). Downes and Lange (2015) warned that photorealistic

visualizations do not always accurately depict real landscapes: transparency in production

and presentation is an important consideration for effective use in scenario studies. Schroth

and colleagues (2015) recommended that researchers develop visualizations that can be
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reused in later stages of projects, as one means of ensuring long-term support for

participatory outcomes. Similarly, Lovett and colleagues (2015) advised that visualizations be

used through PSP projects and developed in collaboration with participants.

In addition to photorealistic visualizations, physical models can function as landscape

visualizations, and can be developed as boundary objects in PSP research. In a study in

Australia exploring stakeholders’ visions about future land- and seascapes, Bohnet (2010)

reported that some stakeholders (one school group) jointly built a three-dimensional model

of their collective understanding of a future landscape that balanced agriculture, biodiversity,

water quality improvements, cultural diversity, and quality of life. Bourgoin and colleagues

(2012) used role playing games to engage stakeholders in the creation of physical three-

dimensional models made out of cardboard, of a multiple-village landscape in Laos. They

encouraged village representatives to label and draw landscape features on the model in

order to reach agreement regarding village boundaries and allowable land uses. They argued

that physical models, in contrast to GIS-based maps and models, provide a low-tech method

of modeling the landscape that can be quickly created, that doesn’t require specialized

computer skills, and that is more accessible and understandable to those stakeholders

unfamiliar with technological modeling methods. In both cases, the physical, three-

dimensional medium allowed participants to collectively view and manipulate a tactile

representation of the landscape, and to consider the spatial relationships from multiple

perspectives.

A third landscape boundary object that complements real places and visualizations is

spatially explicit datasets. Spatially explicit datasets can include GIS datasets, maps, and

computerized models. GIS datasets are used in many of the PSP studies presented in Table

2.1 (e.g., Santelmann et al. 2004, Hulse et al. 2009, Schroth et al. 2011, Castella et al. 2014),

whereas maps (Van Berkel et al. 2011) or landscape networks (Steingröver et al. 2010) are

used in others. Spatially explicit modeling techniques can be adapted to explore the impact

of many different landscape variables, with the results used to enhance communication and

discussions between participants. They can be particularly helpful when combined with

visualizations (Lovett et al. 2015), as discussed above.
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Next, we present a case study wherein we use FLPs within a PSP framework to

consider a spatially explicit socio-ecological challenge: perennial bioenergy cropping systems.

In the case study we use the three forms of landscape representation as boundary objects in

order to engage stakeholders in the iterative process of designing alternative landscapes.

Case study: using landscape as a boundary object in three phases of a

transdisciplinary project

The Indian Creek Bioenergy Futures project (ICBF) is an exploration of the environmental

services potentially provided by perennial bioenergy crops (PBC) in the American Corn Belt.

Throughout the project, we used a real place, landscape visualizations, and spatially explicit

datasets as boundary objects to enhance stakeholder participation, within a PSP framework

where we developed and iteratively revised four alternative future scenarios and resulting

FLPs.

The purpose of the participatory, mixed-method research project was to identify

potential options for incorporating PBC within the agricultural matrix, and to learn from

local farmers about their perceptions of PBC feasibility, placement on the landscape, and

impacts on field and farm management. Since farmers’ perceptions about PBC are likely to

influence their decisions as to whether to adopt PBCs, considering their opinions is an

important step in creating feasible policy intended to encourage adoption. To enhance

communication with local farmers, we centered the research on the local, agricultural

landscape, and developed landscape boundary objects to engage farmers. Next, we provide

a brief overview of the challenges and opportunities for PBC in the Corn Belt, and

emphasize the relevance of a landscape perspective.

Perennial bioenergy crops

A combination of policy and technical advances is increasing opportunities for bioenergy

crop production from perennial herbaceous or woody plants. Recent policy in the USA

requires additional production of advanced liquid biofuels over the next decade, in addition
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to corn ethanol mandates. Simultaneously, advances in bioenergy production technologies

promise efficient conversion of cellulosic material in the near future (e.g., Qureshi et al.

2013). Thoughtful development of PBC has the potential to enhance ecosystem services

provided by agricultural landscapes, but the ecological effects will depend on the choice of

bioenergy crop and agricultural management practices, the extent and placement of PBC on

the landscape, and the adoption level on individual farms and across agricultural landscapes

(e.g., Biala et al. 2003, Nelson et al. 2006, 2009, Gopalakrishnan et al. 2009, Fletcher et al.

2011, Love and Nejadhashemi 2011, Wiens et al. 2011, McBride et al. 2011, Dale et al. 2013).

PBC adoption faces unique challenges that are well suited to FLPs, and to the use of

landscape boundary objects in research. First, PBC adoption strategies are likely to involve

multiple farmers and require a landscape perspective over multi-year timeframes. Unlike

traditional commodity crops, cellulosic PBC are bulky, reducing viable transportation to

relatively short distances, meaning that bioenergy production will involve a local economy:

processors will obtain PBC from local farmers and farmers will sell PBC to local processors.

Second, PBC are necessarily managed across longer timeframes than are traditional row

crops. Establishment of PBC can take several years before the plants are at full maturity.

Once mature, harvesting schedules are flexible (Bonner et al. 2014) and they can be

harvested over a period spanning several years or decades, which is clearly outside the typical

timeframe of current agricultural systems. Third, selectively placing PBC in subfield areas

selected to enhance ecosystem services (e.g., in specific edaphic conditions located within

conventional commodity production systems, where PBC can minimize decreases to the net

production of commodity crops and improve environmental outcomes), will result in PBC

being dispersed across the landscape. Such edaphic conditions are spread across the

agricultural landscapes, frequently in small or isolated pockets within fields otherwise suitable

for row crops (Hamada et al. 2015, Ssegane et al. 2015, Ssegane and Negri 2016)

Because of these challenges, engaging farmers in research investigating the design of

PBC systems is important to revising and validating policies intended to encourage PBC.

We approached PBC adoption from a landscape perspective, with the goal of engaging

stakeholders in the research and considering the landscape-level impacts over decades. We
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developed a series of FLPs, and evaluated their impact on a specific agricultural landscape.

By using a real place, landscape visualizations, and spatially explicit datasets as boundary

objects, we engaged farmers in the research, enhancing the salience, credibility, and

legitimacy of resulting recommendations. Next, we describe the study setting and methods.

Methods

The study area was the Indian Creek watershed located in Livingston, McLean, and Ford

Counties, Illinois (Figure 2.2), an area of approximately 20,749 ha with the vast majority

(89.8%) in annually cultivated crops (Table 2.3) (Jin et al. 2013). The Indian Creek

watershed was chosen because a pilot study in PBC placement and cultivation was already

underway (Ssegane et al. 2015).

Working across the disciplines on the research team and with informal consultation

with local farmers and agricultural consultants, we developed four alternative future

scenarios and resulting FLPs (Table 2.4, Appendix A). Then, we planned an intensive, two-

day workshop in which real landscapes, visualizations, and GIS data layers were used by local

farmers and other stakeholders to revise the FLPs.

Figure 2.2. The Indian Creek watershed, Illinois, USA. Located in Livingston, McLean, and Ford
counties, the watershed is ~20,700 ha, with ~90% of the area in annual cultivation (Jin et al. 2013).

Indian Creek Watershed

0 6 km4.531.5

Livingston County

McLean County Ford County

Illinois
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Land use Approximate area (ha) Percentage of total watershed (%) 

Cultivated crops 18640 89.8 

Developed 1488 7.2 

Forested 389 1.9 

Perennial crops 203 1.9 

Open water 29 0.1 

Total 20749  

 
  

To develop the initial scenarios and FLPs, we used GIS datasets (including soils and

geomorphological conditions) and results from the pilot study’s test field to develop a GIS

layer classifying edaphic conditions that are potentially unsuitable for row crop agriculture

(Hamada et al. 2015, Ssegane et al. 2015, Ssegane and Negri 2016). Using this dataset as a

basis, we informally interviewed experts and stakeholders regarding where and how PBC

might be appropriate in the watershed, and developed the initial alternative scenarios and

FLPs. The scenarios were designed to represent alternative agricultural intensities and policy

conditions, and to produce four substantially different FLPs. They illustrate shifts in

agricultural practice ranging from PBC being grown on 10% of the agricultural land to

alternative perennial agriculture being conducted across 80% of the agricultural land (Table

2.4). We derived the acreage goals based on the total acreage in the watershed of each

scenario’s targeted conditions, then refined it to account for farming convenience be

reducing the acreage by 20% in Scenario 1, and increasing the total acreage by 20% in

Scenarios 2-4.

In developing the initial scenarios, using landscape boundary objects helped us work

iteratively across disciplines within our research team to narrow the assumptions to fit our

goals for each scenario. Our research team included ecologists, landscape designers,

geospatial modelers, and agronomists. By grounding the research in the Indian Creek

watershed, we were able to coordinate between team members, and constrain our individual

disciplinary views regarding PBC. Combining the edaphic conditions with the management

assumptions allowed us to produce GIS layers that reflected one possible FLP for each

Table 2.3. Indian Creek watershed land use and land cover, based on the 2011 National Land Cover
Database (Jin et al. 2013).
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scenario. We then produced photorealistic visualizations of each FLP for four different

fields in the watershed (Figure 2.3). These images provided a representative sample of the

visual impact of each FLP, and allowed stakeholders in subsequent activities to consider the

aesthetic implications and the relationship to their perceptions of PBC feasibility, placement,

and impact on field and farm management.

Next, we used PSP methods to revise and iterate the FLPs during a two-day

stakeholder workshop. The workshop consisted of five activities that used the landscape as

a real place, photorealistic visualizations, and GIS datasets throughout (Table 2.5). In

designing the workshop, we intentionally developed activities that used all three forms of

landscape boundary objects, and allowed participants to interact with each other while

iteratively developing a shared vision for PBC in the Indian Creek watershed. The activities

used the FLPs as an entry point into the topic, and encouraged participants to consider the

Figure 2.3. Examples of photorealistic visualizations of future landscape patterns for fields in the
Indian Creek watershed, Illinois, USA. Images show simulated conditions in August 2030 for three
sites with a corn/soy baseline (a-c), Scenario 1 (d-f), Scenario 2 (g), Scenario 3 (h) and Scenario 4 (i).
The visualizations were created using base images taken in early May 2014, from several roadside
vantage points within the watershed. They show an agricultural field, as it would be seen when
passing in a car or walking along the road.
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real place, the photorealistic visualizations, and the GIS datasets.

The first activity occurred prior to the workshop. Participants received a packet

illustrating the current land cover and FLPs for the Indian Creek watershed. This included

detailed verbal descriptions of the four scenarios, baseline images of the five field sites, the

photorealistic visualizations of each FLP, and a map of the Indian Creek watershed showing

the approximate locations of the field sites. We asked participants to review the scenario

descriptions and photorealistic visualizations so that they would become familiar with the

scenarios and begin to reflect on management considerations, aesthetics, and preferences.

The other four activities occurred in person, at several locations in the watershed.

These included formal presentations, field-based design exercises, discussions, and synthesis

that continually gave participants opportunities to react to the scenario conditions and FLPs.

The formal presentation ensured that all participants had the same basic understanding of

the assumptions behind each alternative. During the field exercise, interdisciplinary groups

of two to four participants were assigned to specific agricultural fields in the watershed.

With the assistance of a facilitator, each group reacted to two of the scenarios, using the real

place, photorealistic visualizations, and GIS datasets to combine their knowledge and

experience into a management plan–a revised FLP–of that agricultural field. During the

design presentation and facilitated discussion, we examined the revised FLPs with the goal

of synthesizing common design ideas that we then used to revise the scenario conditions

(Table 2.6).

Results

Throughout these activities, we used interactive methods to develop and access landscape

boundary objects consisting of the landscape as a real place, photorealistic visualizations, and

GIS datasets. The informational packet and formal presentation introduced and clarified the

scenario conditions for the participants, and encouraged them to think about the feasibility

of the scenarios. The field exercise allowed participants to directly experience the landscape

as a real place. The design presentation and facilitated discussion allowed everyone to share

their designs, and begin to formulate an overall synthesis. We encouraged open discussion
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Scenario  Revised policy assumption Revised management methods 

1 Policy assumptions from original scenario, plus 
maintenance of economic incentives for PBC.   

Management techniques from original scenario, 
plus perennial plantings min 0.4 ha.  Minimum strip 
width 11 m, running parallel to normal field 
operations.  
 

2 Policy assumptions from original scenario, plus 
inclusion of economic incentives for PBC production.  
Policy incentives for 3+ year leases of ag land.     

Management techniques from original scenario, 
plus PBC plantings min 0.4 ha. Minimum strip 
width 11 m.   
 

3 Policy assumptions from original scenario, plus 
economic incentives for PBC production.  Policy 
incentives for 5+ year leases of ag land.   

Management techniques from original scenario, 
plus perennial bioenergy crop plantings min 1.2 ha.  
Minimum strip width 30.5 m, running along 
contours and drainage areas.  Perennial plantings 
encouraged in headwaters and upslope.   
 

4 Policy assumptions from original scenario, plus 
economic incentives.  Policy incentives for 5+ year 
leases of ag land and additional incentives for 10+ year 
leases.   

Management techniques from original scenario, 
plus windbreaks encouraged.     

 
  and questions between all participants, in order to identify particular landscape

characteristics and overarching themes to shape scenario revisions. Participants used their

knowledge of the landscape and considered features that were present on their field site.

Through the use of a real place, the Indian Creek watershed, the descriptions and

visualizations encouraged participants to consider their knowledge and interpretation of the

actual landscape. The visualizations provided visual cues that helped the participants to

think about real opportunities and constraints for PBC in the watershed. The GIS datasets

allowed participants to consider different variables and assessment techniques that could

inform their individual assumptions.

Revisions were focused on the management methods embedded within the four

alternative future scenarios, rather than on the policy assumptions per se. The only

commonly discussed matter of policy was that each scenario should encourage PBC through

volunteer, incentive-based programs. Participants commented that markets are crucial, and

that they would be willing to grow PBC if they had reliable access to markets. Participants

also repeatedly mentioned land tenure as a potential barrier to adoption of PBC. They also

indicated a general preference for entire-field management, instead of subfield management.

Table 2.6. Revised policy assumptions and management methods for the Indian Creek Bioenergy
Futures project, Illinois, USA.
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So that these concerns would be addressed in revisions, the revised alternative scenarios

include assumptions that policy would actively encourage longer-term leases to

accommodate perennial cropping. They also include altered management methods in each

scenario that better-reflect the farmers’ perceptions of management viability. For instance,

we included more-specific recommendations for PBC patch size and shape to account for

farm equipment and management methods commonly used by farmers in the watershed.

Discussion

Our work illustrates how landscapes function as excellent boundary objects in PSP research.

The representative flexibility of landscapes as well as the iterative design process of PSPs

help to make this approach successful. This approach also facilitates transdisciplinary groups

in developing boundary objects consisting of landscapes as real places, landscape

visualizations, and spatially explicit datasets. Representative flexibility allows multiple

boundary objects to be developed from the same landscape, while the iterative design

process promotes reevaluation, revision, and the synthesis of ecological, cultural, and societal

perspectives on the environment. Together, the representative flexibility and the iterative

design process introduce interactive and creative methodologies, encourage research

participants to consider novel, previously unimagined solutions, and enhance the salience,

credibility, and legitimacy of results. By consciously employing landscape boundary objects

throughout the project, we expect to enhance the plausibility, acceptance, and applicability of

the resulting scenarios. Plausible scenarios provide testable hypotheses about the specific

effects of PBC production on the variety of services provided by agricultural landscapes.

One critical feature of ICBF was the representative flexibility provided by viewing

the landscape as a real place, as photorealistic visualizations, and as GIS datasets. ICBF was

intended to explore the impact of alternative future scenarios on the development of PBC

systems, with the goal of identifying options for incorporating PBC within the agricultural

matrix and overcoming the challenges of farmer adoption. By intentionally developing

boundary objects consisting of landscapes as real places, landscape visualizations, and

spatially explicit datasets, we were able to engage farmers in the work, and incorporate a
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diversity of opinions regarding plausible agricultural futures that may be effective in

balancing ecosystem services. In developing boundary objects from the agricultural

landscape, we found that the representative flexibility was an essential factor in enhancing

communication and collaboration between participants without requiring everyone to agree

on specific criteria or on an operationalization for each scenario, and without having to share

competencies and proficiencies.

Using all three forms of landscape representation allowed us to anchor discussions in

a plausible future of the landscape. The field exercise was a key activity, as participants had

simultaneous access to the real landscape, the photorealistic visualizations, and the GIS

datasets. They considered all three types of boundary objects together, and were able to

discuss their ideas with other participants in small groups. This improved participants’

appreciation of the complexities of designing a PBC management regime, and required them

to share ideas with other participants who had different backgrounds, experiences, and

expertise. The field exercise complemented the participants’ prior familiarity with the

landscape, and enhanced their comfort with, acceptance of, and engagement in the research

goals.

Our finding, that anchoring the scenario conditions in the future of the specific, local

landscape allowed stakeholders to bring their personal experiences into the discussion, is

consistent with previous PSP studies. For instance, Hulse and colleagues (2004) reported

similar results in Oregon where they incorporated stakeholders throughout the entire

scenario development process. However, identifying the scale of the appropriate local

landscape can be a challenge: they reported a tension between identifying a landscape large

enough to be representative, but small enough for participants’ experiences to be relevant to

the planning goals. Similarly, in Laos, researchers found that personal, daily knowledge

improved villagers’ interest and engagement in village planning exercises (Bourgoin et al.

2012, Castella et al. 2014). The scale of our project, a ~20,000 ha watershed, was large

enough to include some diversity in field conditions, yet small enough that participants were

intimately familiar with the landscape. This scale worked well in Illinois and was similar to

the areas studied in the Netherlands and Laos, but was a smaller area than in many PSP
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projects (Table 2.1). The idea scale will depend on participants’ mobility and familiarity with

a landscape, and on the topographic and ecological diversity of a study area.

In our experience, when participants considered the combination of the real

landscape, the photorealistic visualizations, and the GIS datasets, they were able to comment

on potential barriers to adoption that may not have been considered in the initial scenario

development. For example, they identified current annual land tenure arrangements as a

substantial barrier to the management of perennial crops. Discussions expanded to address

how policies could alter land tenure arrangements in order to encourage the use of perennial

crops through extending leases of agricultural lands.

The effect of focusing our research on a real place, the Indian Creek watershed, was

that participants grounded their observations and opinions in the current and future

agricultural landscape. As participants discussed a FLP, they were able to consider and

comment on features that they individually considered relevant. For example, while

discussing planting PBC in strips, one participant commented on the management

implications of a specific strip width and orientation; another participant discussed the

impact of species composition within the strip. Together, the two participants evaluated the

landscape pattern, without needing to explicitly agree on the width, orientation, or species

composition. Discussion of the boundary object brought to light the issues that needed to be

further evaluated from environmental, economic, and policy perspectives.

A second critical feature of our approach was the iterative design process. The five

different activities required participants to consider each scenario in multiple ways: visually,

spatially, aurally, and textually. By considering the alternative scenarios and associated FLPs

multiple times throughout the project, participants revisited ideas, allowing a synthesis to

emerge. The iterative process was effective at enhancing stakeholder engagement and social

learning outcomes, and allowed for the expression of diverse individual reactions to the

scenarios.

Throughout the project, we continued to refer to the alternative scenarios, FLPs, and

landscape boundary objects in order to encourage participants to revise their opinions about

the future of the Indian Creek watershed. In considering the future of the watershed,
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participants were encouraged to make specific comments about management feasibility,

personal preferences, and aesthetics related to the conditions presented in each scenario or

the operationalization of each FLP. For instance, the group provided general

recommendations for size and layout of PBC that they considered feasible, given farm

management protocols common in the watershed. These recommendations were then

incorporated into later iterations, and the final scenarios (Table 2.6).

By using a range of scenarios, we hoped to encourage participants to consider

options for the Indian Creek watershed that were different from the status quo. In

particular, we intended the agroforestry focus of Scenario 4 to encourage participants to

think about options outside of their current agricultural experiences. In exploring this

scenario, participants had to consider the rationale and assumptions behind all of the

scenarios, and we encouraged them to shift their thinking toward how they would like

agriculture to be in 15 years, rather than how they expect that it will be. Participants

expressed a variety of opinions about the aesthetics of woody plants in the agricultural

system – some participants were skeptical whereas others welcomed the idea of growing

woody crops. As the workshop progressed, participants grew to understand the different

options for the landscape, with later iterations reflecting these new understandings.

The lessons from ICBF can be applied to other PSP projects. For example,

landscape boundary objects emerge in all of the studies outlined in Table 2.1. Forms of

landscape representation range from the landscape alone (e.g., Mitchell et al. 2016), to all

three forms (e.g., Baker et al. 2004, Santelmann et al. 2004). Notably, Mitchell and

colleagues (2016) recognize that visualization techniques and spatially explicit datasets would

have helped increase iterative interactions and engagement with stakeholders in their study,

and recommend that future work incorporate visualizations. We extend these conclusions:

our results suggest that to effectively involve stakeholders and incorporate their knowledge,

it is important to intentionally develop all three forms of landscape boundary objects and use

them throughout an iterative design process.
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Chapter III

Assessing wild bee abundance in perennial bioenergy landscapes:

effects of bioenergy crop composition, landscape configuration,

and bioenergy crop area

Submitted: Graham JB, JI Nassauer, WC Currie, H Ssegane, and MC Negri. Assessing wild bee

abundance in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration,

and bioenergy crop area. Landscape Ecology.

Abstract

Context. Wild bee populations are currently under threat, which has led to recent efforts to

increase pollinator habitat in North America. Simultaneously, USA federal energy policies

are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the

potential to support native bee populations. Objectives. Our objective was to explore the

potentially interactive effects of crop composition, total PBC area, and PBC patches in

different landscape configurations. Methods. Using a spatially-explicit modeling approach,

the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC:

willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5%

and 28.8% of agricultural land converted to PBC) and two types of landscape configurations

(PBC in clustered landscape patterns that represent realistic future configurations or in

dispersed neutral landscape models) on a bee abundance index in an Illinois landscape.

Results. Our results indicate that crop composition and PBC area are particularly important

for bee abundance, whereas landscape configuration is associated with bee abundance at the

local level, but less so at the landscape level. Conclusions. Strategies to enhance wild bee

habitat should therefore emphasize the crop composition and amount of PBC.
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Introduction

Wild bee populations are currently under threat, with agricultural intensification as one

recognized cause of measured declines in wild bee populations (Grixti et al. 2009, Potts et al.

2010, Deguines et al. 2014). A recent assessment of the status of wild bees in the United

States found a decline in bee abundance across 23% of the United States from 2008 to 2013

as estimated via a spatially explicit model (Koh et al. 2016). This decline is particularly

evident in agricultural areas reliant on conventional commodity crops, including Illinois,

which has experienced a substantial reduction in wild bee richness and diversity as measured

by museum collections of bumble bees (Bombus sp.) (Grixti et al. 2009), and which exhibits a

very low modeled bee abundance and a relatively high demand for pollination services (Koh

et al. 2016).

In light of recent declines in bee populations, national and international strategies to

enhance pollinator habitat are underway. In the United States, a “National Strategy to

Promote the Health of Honey Bees and Other Pollinators,” was adopted in May 2015

(Pollinator Health Task Force 2015), which includes collaborative strategies with Canada and

Mexico to develop a “pollinator corridor” throughout the Mississippi River basin and restore

or enhance 7 million acres for pollinators over the next 5 years. Additionally, USA federal

energy policies are beginning to promote the development of perennial crops for use in

bioenergy production (e.g., the “biofuel mandate” in the Energy Independence and Security

act of 2007, Public Law 110-140). Since most cropped land in the central USA is under

annual cultivation, switching some land to perennial crops could potentially increase

available habitat for wild bees on agricultural land.

Even small increases in perennial vegetation can lead to increases in wild bees.

Recent research has demonstrated that creating relatively small (e.g., 300 to 500 m)

hedgerows can increase bee species richness (Morandin and Kremen 2013) and promote

community spatial heterogeneity (beta diversity) of wild bees (Ponisio et al. 2016).

Hedgerows can also increase the occurrence (Kremen and M’Gonigle 2015) and persistence

(M’Gonigle et al. 2015) of specialist pollinators, including wild bees. Hedgerows can also

promote crop pollination, sometimes leading to enhanced pollinator presence in neighboring
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crop fields (e.g., canola, Morandin and Kremen 2013). However, these positive effects on

pollinators do not always occur (e.g., sunflowers, Sardiñas and Kremen 2015). The diversity

of land cover types can also influence bee populations. Land cover diversity at the scale of

the surrounding 1 to 2 km is positively correlated with bee abundance and richness, likely

due to variation in floral resources throughout the season when bees are active (Mallinger et

al. 2016).

In north central Illinois, researchers are developing cropping systems that

incorporate perennial bioenergy crops (PBC) in small subfield patches (e.g.,~1-10 ha) within

larger commodity crop fields (~10-100 ha), with the goal of enhancing landscape

multifunctionality by reducing field nutrient loss and enhancing ecological benefits, including

biodiversity (Chapter 2) (Hamada et al. 2015, Ssegane et al. 2015, Ssegane and Negri 2016).

These efforts take into account both subfield edaphic conditions (soil type, slope, nutrient

leaching, etc.) and farmers’ management preferences (Chapter 2) (Ssegane et al. 2015,

Ssegane and Negri 2016). However, depending on which edaphic conditions are targeted,

planting PBC in subfield patches within fields of row crops can result in different landscape

configurations and different total PBC area within the landscape. Similarly, the specific

perennial crop chosen may vary from herbaceous monocultures (e.g., switchgrass, Panicum

virgatum), to woody monocultures (e.g., willow, Salix sp.), to polycultures (e.g., mixed prairie

species).

Understanding how the specific crop composition, the relative PBC area, and its

configuration in the landscape influence bee abundance is important to assess the potential

impacts of PBC cropping systems on wild bees. This can be investigated by using a spatially

explicit model to predict the impact of landscape conditions on native bee abundance and

diversity, such as one recently developed by Lonsdorf and colleagues (2011). The model

(hereafter called the “Lonsdorf model”) is available as the Crop Pollination module, readily

accessible and adaptable as part of the InVEST program (Kareiva et al. 2011), a standalone

software package available from the Natural Capital Project (www.naturalcapitalproject.org/

invest). The Lonsdorf model evaluates the abundance of bees visiting and nesting in each

pixel of a landscape by using a land cover raster, a table of land cover attributes for each land
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cover class, and a table of bee species or guilds with nesting and foraging requirements and

foraging distances.

The Lonsdorf model has been used to evaluate pollination services in landscape

scenarios of bioenergy in Wisconsin (Meehan et al. 2013), and has been compared to

empirical data on bees in coffee plantations in Costa Rica and watermelon fields in

Pennsylvania and New Jersey (Lonsdorf et al. 2009). Kennedy and colleagues (2013) found

that the model correlated with empirical results in coarse grained, homogeneous landscapes,

but lacks some clarity in fine grained or complex landscapes. Olsson and colleagues (2015)

explored the results of the model in simple and complex hypothetical landscapes, and found

that incorporating bee behavioral preferences enhanced the viability of the model results;

however their revision has yet to be incorporated within the InVEST package. The

Lonsdorf model was also the basis for Koh and colleagues’ (2016) evaluation of wild bees in

the United States.

The Lonsdorf model can be used with existing landscape characteristics or with one

or more alternative future landscapes. Alternative future landscapes can be described in

future landscape patterns (FLPs) that might result from hypothetical changes to policy,

technology, or society under alternative future scenarios (Nassauer and Corry 2004). FLPs

are not meant to predict future landscape patterns. Rather, they allow researchers to explore

ranges or sets of landscape characteristics that could be produced as plausible, normative

outcomes of participatory scenario planning, and that probe drivers of landscape

configuration (Nassauer and Corry 2004; Alcamo 2008; Das et al 2012). For instance, FLPs

that alter the amount or type of PBC can be compared with one another to assess the

relative differences in bee abundance produced under each set of conditions. FLPs can also

be compared to neutral landscape models (NLMs). NLMs mimic the characteristics (size,

shape, etc.) of patches in corresponding FLPs, but with random distribution across the

landscape. Instead of having patterns driven by the selection of specific edaphic conditions,

NLMs represent quantitatively derived patterns. This random distribution separates the

effects of spatial configurations of PBC patches from total PBC area in a landscape. The

development of normative FLPs and associated, quantitatively derived NLMs allows for
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comparisons between clustered and randomly distributed landscapes (e.g., by comparing one

FLP to its corresponding NLM), between different PBC composition (e.g., by comparing

one landscape configuration with willow to the same landscape configuration with prairie),

and between different total areas of PBC (e.g., by comparing a NLM created from one set of

scenario conditions to a NLM created with a different set of scenario conditions). Together,

the series of FLPs and NLMs allows for the evaluation of the impact of the three variables,

all within the setting of one real landscape.

The goal of our work is to comparatively assess impacts on wild bee habitat in an

Illinois landscape designed to vary these key factors for introduction of bioenergy crops in

the Corn Belt: different bioenergy crops (prairie, switchgrass, and willow), different

landscape configurations, and different total PBC area. We aim to explore the impact of

each variable on wild bee habitat, as measured by the visiting bee abundance index (BAI)

provided by the Lonsdorf model, with the ultimate goal of informing policymakers

interested in developing PBC cropping strategies. We propose the following hypotheses:

H0: There will be no significant difference in modeled BAI between FLPs, and
between FLPs and NLMs

Ha: There will be a significant difference in modeled BAI between FLPs, and
between FLPs and NLMs.

Prediction 1 (Composition): BAI will be greater in landscapes with switchgrass or
prairie than in landscapes with willow.

Prediction 2 (Composition): BAI will be greater in landscapes with prairie than in
landscapes with switchgrass.

Prediction 3 (Area): BAI will be greater in landscapes with more PBC than in
landscapes with less PBC.

Prediction 4 (Configuration): BAI will be greater in landscapes with a uniform
distribution of PBC than in landscapes with a clustered distribution of PBC.
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Methods

As part of earlier work exploring the possibilities for perennial bioenergy crops in an Illinois

landscape (Chapter 2), we developed three scenarios that incorporate PBC in the Indian

Creek watershed, Illinois. The Indian Creek watershed covers ca. 20,700 ha and is located in

Livingston, McLean, and Ford counties, Illinois (Figure 2.2). The National Land Cover

Database shows that in 2011 nearly 90% of the watershed was cultivated in annual crops and

7% was developed (Jin et al. 2013).

To test the hypotheses described above, we developed alternative landscapes that

varied according to landscape configuration (two levels; NLM vs. FLP), PBC composition

(three levels; switchgrass, prairie, and willow), and total PBC area (three levels; 11.7%,

23.5%, and 28.8% of the agricultural land in the watershed) (Table 3.1). Starting with three

scenarios, hypothetical stories about the future, that target placement of PBC to subfield

locations that exhibit specific edaphic conditions (see below), we developed one base FLP

and one corresponding NLM for each set of scenario conditions. NLMs mimic the patch

characteristics of each FLP, but remove the spatial correlation and clustering that is present

in the FLPs due to their association with existing edaphic conditions. We then evaluated

each FLP and NLM with the bioenergy crops of switchgrass (S), prairie (P), and willow (W).

This resulted in a total of nine FLPs and nine NLMs, which we will refer to according to

their model type, scenario number, and bioenergy crop (e.g., FLP 1 P is the FLP resulting

from Scenario 1 with prairie, while NLM 1 P is the corresponding NLM) (Table 3.1).

The three initial FLPs are based on scenarios that place PBC in small patches within

fields where edaphic conditions (soil type, topography, frequent flooding, nutrient leaching,

etc.) are less-suitable for annual row crops (Ssegane et al. 2015) as confirmed by local

stakeholders (Chapter 2). Edaphic conditions used to develop each scenario are presented in

Table 3.1. For FLP 1, PBC are allocated to areas where crop productivity limitations or

nitrate leaching are concerns (11.7% of the agricultural land in the Indian Creek watershed).

For FLP 2, PBC are allocated to areas where crop productivity limitations, nitrate or

pesticide leaching, combined ponding and drainage, or combined frequent flooding and

drainage are concerns (23.5% of the agricultural land). For FLP 3, PBC are allocated to
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   Perennial bioenergy crop 
Scenario Edaphic conditions1 Agricultural 

land (%) 
Switchgrass Prairie Willow 

Scenario 1 Crop productivity limitations 
Nitrate leaching 

11.7 FLP 1 S 
NLM 1 S 

FLP 1 P 
NLM 1 P 

FLP 1 W 
NLM 1 W 

 
Scenario 2 Nitrate leaching 

Pesticide leaching 
Crop productivity limitations 
Ponding and drainage 
Frequent flooding and 
drainage 
 

23.5 FLP 2 S 
NLM 2 S 

FLP 2 P 
NLM 2 P 

FLP 2 W 
NLM 2 W 

 

Scenario 3 Nitrate leaching 
Pesticide leaching 
Crop productivity limitations 
Frequent flooding 
Runoff 
30 m stream buffers 
 

28.8 FLP 3 S 
NLM 3 S 

FLP 3 P 
NLM 3 P 

FLP 3 W 
NLM 3 W 

1Edaphic conditions for each scenario include soil type, topography, areas with frequent flooding, nutrient 
leaching, and landscape conditions that are less suitable for cultivation of row crops, as discussed in 
Ssegane and colleagues (2015) and refined in a participatory scenario planning process with local 
stakeholders (Chapter 2). 
  
  areas in which crop productivity limitations, nitrate or pesticide leaching, frequent flooding,

or run-off are of concern, and 30 m buffer zones around streams (28.8% of the agricultural

land). All alternative landscapes were based on 30 m resolution land cover data showing the

3-year crop rotation history as of 2012 (Ssegane and Negri 2016).

We then developed NLMs with PBC patch shapes that corresponded to each FLP,

so that patch shapes were approximately equivalent between each FLP-NLM pair. The

metric we used for patch shapes was a “related circumscribing circle,” which measures the

ratio between patch area and the smallest circumscribing circle, and provides a metric of

overall patch elongation (McGarigal 2015). Bailey and colleagues (2007) examined 13

different landscape-level metrics and found that the mean related circumscribing circle best

correlated with wild bee abundance in European agricultural landscapes. In cases where two

or more potential NLMs had related circumscribing circle values close to those of the

corresponding FLP, we chose the NLM that best matched the landscape means in “edge

Table 3.1. Factorial experimental design for modeling bee abundance in the Indian Creek watershed,
Livingston County, Illinois. A future landscape pattern (FLP) and neutral landscape model (NLM) are
developed for each combination of scenario conditions and perennial bioenergy crops. Edaphic
conditions show areas where food crops are replaced with perennial bioenergy crops. The
percentage of agricultural land refers to the percent in perennial bioenergy crops.
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density” or “Euclidean nearest neighbor distance,” which have also been found to correlate

with wild bee abundance (Bailey et al. 2007).

We created NLMs with the NLMpy PYTHON software package (Etherington et al.

2015) using the random cluster nearest-neighbor function. To control patch sizes, this

function uses a proportional value (p: 0-1) determined by the proportion of elements

randomly selected to form clusters. To define the clusters, the function uses a neighborhood

value (n: 4-neighbor, 8-neighbor, or 6-neighbor diagonal), which controls the patch shapes.

We chose p and n values to create NLMs that exhibit mean values for the class-level related

circumscribing circle that were most similar to those exhibited in the corresponding FLPs, as

calculated in Fragstats 4.2 (McGarigal and Ene 2013). For NLM 1, we used p = 0.45 and the

4-neighbor clustering value. For NLM 2, we used p = 0.10 and the 4-neighbor clustering

value. For NLM 3, we used p = 0.10 and the 8-neighbor clustering value. Landscape and

PBC-class metrics potentially relevant for wild bees (Bailey et al. 2007) are provided for each

FLP and NLM (Table 3.2).

In total, we evaluated the Lonsdorf bee abundance index for 19 landscapes: nine

representing the three bioenergy crops for each of the three FLPs, nine representing the

three bioenergy crops for each of the three NLMs (Figure 3.1), and the current landscape

that does not include PBC. The Lonsdorf model requires three inputs: a land cover map, a

table of bee species, and a table of land cover attributes. Each FLP or NLM corresponds to

a land cover map for that set of conditions. The bee species attribute table (Appendix B)

contains information on bee species, including species-specific nesting requirements,

seasonal foraging activity, and maximum foraging distance. The land cover attribute table

(Appendix C) contains information for each land cover class present in the land cover map,

including values for the relative availability of different categories of nesting habitat and

values for the relative availability of floral resources in each season.

The bee species attribute table (Appendix B) includes values recorded by Wolf and

Ascher (2008) or used by Meehan and colleagues (2013) in prior Lonsdorf modeling in

southern Wisconsin. To determine the species to use in the analysis, we reviewed the Illinois

Natural History Survey records (wwx.inhs.illinois.edu/collections/insect), and identified 70
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bee species that have been previously collected in Livingston, Ford, or McLean counties,

Illinois, where the Indian Creek watershed is located. Of those, we selected the 50 species

for which we were able to categorize nesting and foraging season (reported by Wolf and

Ascher (2008) or Meehan and colleagues (2013)), and to obtain foraging distances. We

calculated foraging distance estimates using an allometric equation (Greenleaf et al. 2007)

based on the intertegular distance (distance between left and right wing bases) we measured

from specimens in the University of Michigan Museum of Zoology Insect Collection. We

were able to measure intertegular distances for 45 species; for the other five species, we used

foraging distance estimates published by Meehan and colleagues (2013).

The land cover attribute table was based on work by Meehan and colleagues (2013).

Nesting scores range from 0 to 1 and indicate the relative availability of particular nesting

strata (soil, cavity, hive, or wood) in each land cover class. Foraging scores range from 0 to 1

and indicate the relative availability of floral resources during spring, summer, and fall for

each land cover class. We used their values for land cover classes that were included both in

their data and in ours. For land cover classes not represented in their published table, we

used values for the individual nesting or foraging scores that were most comparable to the

unrepresented cover class. For instance, for our land cover class of willow, we used the

Meehan scores for soil nesting and spring foraging from their deciduous forest land cover

class, the scores for cavity, hive, and wood nesting from their wetland land cover class, and

the summer and fall foraging scores from their corn land cover class. Although these scores

may not be perfect, they represent the general conditions present in each of the land cover

classes not present in Meehan and colleagues (2013).

In order to compare the differences between FLPs, FLPs and NLMs, and NLMs, we

calculated the 30 m pixel-level percent difference between different pairwise combinations of

landscape configurations, and between alternative landscapes and the current landscape.

Pixel-level percent difference illustrates the degree of difference between two alternative

landscapes, aggregated at the landscape level (via the mean percent difference) or at the fine

scale (for instance, by highlighting areas with positive or negative percent difference on a

map of the watershed). Pixel-level percent difference has been previously used to explore
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the impacts of different land use change scenarios on pollinators in the Upper Midwest

(Meehan et al. 2013, Bennett et al. 2014), and provides an easily-interpreted metric.

In order to assess the three variables of landscape configuration (FLP or NLM), PBC

area (Scenario 1, 11.7%, Scenario 2, 23.5%, or Scenario 3, 28.8% of agricultural land), and

PBC composition (willow, switchgrass, or prairie) at the landscape scale, we conducted

analysis of variance with post hoc Tukey tests on the landscape level mean for the Lonsdorf

bee abundance index values in the R Statistical Computing Environment, version 3.2.3 (R

Core Team 2015). Analysis of variance identifies which independent variables are significant

influences on the overall landscape mean, and the post hoc Tukey tests conduct corrected

pairwise comparisons to determine which treatment groups show significant differences.

 
 
 5 
 

 

Configuration Mean Median Minimum Maximum Standard 
Deviation 

Range 

Current landscape 0.0759 0.0662 0.0081 0.2957 0.0407 0.2876 
       
NLM1S 0.1303 0.1187 0.0505 0.3210 0.0396 0.2705 
NLM1P 0.1491 0.1377 0.0576 0.3382 0.0424 0.2806 
NLM1W 0.1145 0.1024 0.0445 0.3110 0.0379 0.2665 
NLM2S 0.1865 0.1814 0.0817 0.3417 0.0416 0.2600 
NLM2P 0.2368 0.2335 0.1047 0.4112 0.0483 0.3065 
NLM2W 0.1498 0.1426 0.0642 0.3236 0.0381 0.2594 
NLM3S 0.2158 0.2122 0.0836 0.3634 0.0429 0.2798 
NLM3P 0.2851 0.2842 0.1113 0.4643 0.0518 0.3530 
NLM3W 0.1676 0.1615 0.0637 0.3321 0.0383 0.2684 
       
FLP1S 0.1342 0.1091 0.0328 0.3603 0.0683 0.3275 
FLP1P 0.1580 0.126 0.0355 0.436 0.0876 0.4005 
FLP1W 0.1166 0.096 0.0311 0.3202 0.0551 0.2891 
FLP2S 0.1900 0.1569 0.0642 0.4427 0.0880 0.3785 
FLP2P 0.2471 0.199 0.0817 0.6065 0.1260 0.5248 
FLP2W 0.1507 0.1259 0.0516 0.3496 0.0653 0.2980 
FLP3S 0.2092 0.1754 0.0683 0.4801 0.0967 0.4118 
FLP3P 0.2853 0.2304 0.0815 0.6869 0.1510 0.6054 
FLP3W 0.1601 0.1369 0.0593 0.3616 0.0661 0.3023 
       

 

  

Table 3.3. Descriptive statistics for pixel-level bee abundance index, aggregated at the scale of the
landscape for each alternative landscape1.
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Figure 3.2. Pixel-level percent difference comparison in bee abundance index, when comparing
alternative landscapes to the current agricultural landscape.
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Analysis of variance 

 Df Sum Sq Mean Sq  F value Pr(>F) 
Configuration1 1 0.000014 0.000014 0.044 0.838 
Area2 2 0.024 0.012 37.47 6.92e-06 
Composition3 2 0.021 0.011 33.669 1.20e-05 
Residual 12 0.0038 0.00032 

        Tukey multiple comparisons of means, 95% confidence level 
Comparisons Difference Lower Upper p adjusted 

Area 2-1 0.060 0.032 0.087 0.0002 
 3-1 0.087 0.059 0.11 0.0000 

 
3-2 0.027 -0.0003 0.054 0.0529 

Composition S-P -0.049 -0.077 -0.022 0.0012 
 W-P -0.084 -0.11 -0.056 0.0000 
 W-S -0.034 -0.062 -0.0071 0.0145 

1 Neutral landscape model or future landscape pattern  
2 11.7% of ag land in PBC (1), 23.5% of ag land in PBC (2), or 28.8% of ag land in PBC (3) 
3 Switchgrass (S), prairie (P), or willow (W) 

 
  

Results

The spatial arrangement of PBC for the three basic FLPs and corresponding NLMs are

shown in Figure 3.1. In total, the percentage of the agricultural land in the watershed

converted to PBC ranged from 11.7 to 28.8% (Table 3.1, Figure 3.1).

We calculated descriptive statistics for each FLP or NLM (Table 3.3). In all cases,

alternative landscapes had greater BAI than the current landscape, which does not include

PBC (Figure 3.2). At the landscape level, crop composition was a significant predictor of

BAI mean (Table 3.4). Specifically, landscapes with prairie have greater mean BAI than

landscapes with switchgrass or willow, and landscapes with switchgrass have greater mean

BAI than landscapes with willow. Assessed at the pixel level and aggregated over the

landscape, BAI was always lower for willow as a perennial bioenergy crop than for either

switchgrass or prairie (Figure 3.3a, Table 3.5). These results support prediction 1, that

simulated landscapes with switchgrass or prairie exhibited a greater BAI than landscapes

with willow. Comparing landscapes with switchgrass to landscapes with prairie shows an

increase BAI at the pixel level and at the landscape level for both FLP (Figure 3.3b) and

NLM configurations. This supports prediction 2: that simulated landscapes with prairie

Table 3.4. Analysis of variance and Tukey comparisons for mean bee abundance index, aggregated
at the scale of the landscape. Landscape configuration, bioenergy crop composition, and bioenergy
crop area were evaluated for the effect on bee abundance index.
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exhibit a greater BAI than landscapes with switchgrass.

For the entire landscape, in scenarios with greater bioenergy crop area, bee

abundance index was greater (Table 3.4). Specifically, Scenario 2 and Scenario 3 landscapes

have greater mean BAI than Scenario 1 landscapes. Scenario 3 landscapes do not have a

significantly greater mean BAI than Scenario 2 landscapes, though Tukey results are nearly

significant for this comparison (Table 3.4). Comparing landscapes with less PBC to

landscapes with more PBC (e.g., FLP 1 S to FLP 2 S, FLP 1 S to FLP 3 S, and FLP 2 S to

FLP 3 S, etc.) shows that more total PBC was associated with greater modeled BAI for

NLMs (Table 3.5, Figure 3.4a-c) and for FLPs (Table 3.5, Figure 3.4d-f). However, a map of

the comparison between FLP 2 and FLP 3 highlights lower BAI in some areas of FLP 3

a FLP 1 Switchgrass to Willow

FLP 1 Switchgrass to Prairieb

Figure 3.3. Percent difference in bee abundance index for Composition. Pixel level percent difference
and distribution for Lonsdorf bee abundance index (Lonsdorf et al. 2011) when comparing a) FLP 1
with switchgrass to FLP 1 with willow, and b) FLP 1 with switchgrass to FLP 1 with prairie. The mean
value (long dash) and one standard deviation (short dash) are shown for each distribution.
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Starting Ending Mean Standard Deviation 
FLP1S FLP1P 15.3 8.3 
FLP2S FLP2P 27.8 7.9 
FLP3S FLP3P 33.3 11.8 
FLP1S FLP1W -11.4 6.4 
FLP2S FLP2W -19.6 4.6 
FLP3S FLP3W -21.9 6.0 
FLP1P FLP1W -22.4 10.9 
FLP2P FLP2W -36.7 7.3 
FLP3P FLP3W -40.6 9.4 
FLP1S FLP2S 46.0 20.8 
FLP1P FLP2P 62.5 27.5 
FLP1W FLP2W 32.0 14.3 
FLP1S FLP3S 79.6 107.3 
FLP1P FLP3P 119.2 169.4 
FLP1W FLP3W 52.3 69.1 
FLP2S FLP3S 19.4 53.5 
FLP2P FLP3P 28.5 74.0 
FLP2W FLP3W 13.3 39.7 
NLM1S NLM2S 45.0 15.0 
NLM1S NLM3S 68.4 19.8 
NLM1P NLM2P 60.8 19.3 
NLM1P NLM3P 94.2 26.1 
NLM1W NLM2W 32.6 11.1 
NLM1W NLM3W 49.0 14.7 
NLM2S NLM3S 16.3 9.8 
NLM2P NLM3P 21.1 12.0 
NLM2W NLM3W 12.5 7.7 
FLP1S NLM1S 9.0 33.1 
FLP1P NLM1P 11.7 41.6 
FLP1W NLM1W 5.5 24.2 
FLP2S NLM2S 9.0 33.9 
FLP2P NLM2P 11.3 42.1 
FLP2W NLM2W 6.6 26.3 
FLP3S NLM3S 16.4 43.8 
FLP3P NLM3P 20.1 54.0 
FLP3W NLM3W 12.6 34.5 
1Neutral landscape model (NLM) or future landscape pattern 
(FLP); 11.7% of ag land in PBC (1), 23.5% of ag land in PBC (2), 
or 28.8% of ag land in PBC (3); Switchgrass (S), prairie (P), or 
willow (W). 

 
 
 
 
 

Table 3.5. Mean and standard deviation for pixel level percent difference in bee abundance index
when comparing alternative landscapes1 to other alternative landscapes using the Lonsdorf model
(Lonsdorf et al. 2011). For each comparison, “starting” refers to the alternative landscape used as the
basis for the comparison, and “ending” refers to the alternative landscape compared
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than FLP 2 (Figure 3.4f, red regions). This association is likely related to differences in the

spatial configuration of FLP 2 and FLP 3: although FLP 3 has an overall greater total PBC

area, the distribution of PBC is different between these two FLPs. Some areas of the

landscape in FLP 2 have patches of PBC that are not present in FLP 3 (Figure 3.1 h-i). As

we expected (Prediction 3), simulated BAI was greater in landscapes with more PBC than in

landscapes with less PBC. This was supported in both the neutral and clustered landscapes,

with the caveat that the distribution of PBC can confound the effect of PBC area on BAI.

Prediction 4 addresses this confounding factor, as discussed next.

Figure 3.4. Percent difference in bee abundance index for Area. Pixel level percent difference and
distribution for Lonsdorf bee abundance index (Lonsdorf et al. 2011) when comparing a) NLM 1 with
switchgrass to NLM 2 with switchgrass, b) NLM 1 with switchgrass to NLM 3 with switchgrass, c)
NLM 2 with switchgrass to NLM 3 with switchgrass, d) FLP 1 with switchgrass to FLP 2 with
switchgrass, e) FLP 1 with switchgrass to FLP 3 with switchgrass, and f) FLP 2 with switchgrass to
FLP 3 with switchgrass. The mean value (long dash) and one standard deviation (short dash) are
shown for each distribution.
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b

c

Switchgrass FLP 1 to NLM 1

Prairie FLP 2 to NLM 2

Willow FLP 3 to NLM 3

a

Figure 3.5. Percent difference in bee abundance index for Configuration. Pixel level percent
difference and distribution for Lonsdorf bee abundance index (Lonsdorf et al. 2011) when comparing
a) FLP 1 with switchgrass to NLM 1 with switchgrass, b) FLP 2 with prairie to NLM 2 with prairie, and
c) FLP 3 with willow to NLM 3 with willow. The mean value (long dash) and one standard deviation
(short dash) are shown for each distribution.



49

As we expected (Prediction 4), bee abundance index was lower in landscapes with a

more clustered or spatially uneven distribution of PBCs, which occurred more frequently in

simulated FLPs versus neutral landscape models with the equivalent composition. However,

this difference was not statistically significant (Table 3.3, Table 3.4). These results indicate

that FLPs have more variability in BAI throughout the landscape than do NLMs. When

comparing FLP configurations with NLM configurations, there is a positive mean percent

difference in BAI for all FLP to NLM comparisons (Table 3.5). However, the mean values

lie relatively close to 0, and the standard deviation for these comparisons is quite large,

overlapping 0 in all cases. Furthermore, there are areas of the landscape that exhibit positive

percent difference (Figure 3.5, blue regions) and areas that exhibit negative percent

difference (Figure 3.5, red regions). This variability is due to the clustered nature of PBC in

the three FLPs. The concentration of PBC varies such that some regions have greater PBC

concentrations in a FLP, and some regions have greater PBC concentrations in a NLM

(Figure 3.1g-l). Greater PBC concentrations tend to increase BAI in those regions of an

alternative landscape, indicating that the effects of PBC distribution are scale dependent.

Across the landscape, the uniform distribution of PBC in each NLM is associated with

slightly greater BAI than the clustered distribution of each FLP. Together, these results

support prediction 4 at the landscape level. However, prediction 4 is not supported at the

pixel level, where the clustered distribution of the FLPs enhances BAI in areas with more

PBC and reduces BAI in areas with less PBC.

Discussion

The results of our simulation indicate that crop composition and the total area of PBC may

shape the influence of PBC patches on native bee populations at both the fine scale (e.g.,

pixel) and landscape scale. Our results also indicate that the impact of spatial configuration

will be important at the fine scale, but not necessarily at the landscape scale.

Bioenergy crop composition

Our simulation has several implications for the design and implementation of PBC
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landscapes. One implication is that the specific bioenergy crop will likely be an important

factor in determining the impacts on wild bees. The model predicts that prairie may be

associated with greater BAI than switchgrass, and both may be associated with greater BAI

than willow. These results are similar to the findings of an empirical study of PBC plantings

in Iowa, which found greater bee abundance in more diverse prairie plantings than in

switchgrass (Ridgeway et al. 2015). This is perhaps not surprising, since diverse prairie

plantings provide a greater variety of floral resources and nesting habitats, both of which are

important for wild bees (Wray et al. 2014). Similarly, Stanley and Stout (2013) found that

solitary bee abundance and species richness were greater in plantings of miscanthus

(Miscanthus x giganteus) than in conventional wheat. These results are also consistent with the

results of Lonsdorf modeling of PBC scenarios in Wisconsin (Meehan et al. 2013), and with

empirical regression modeling of PBC scenarios in southern Michigan (Bennett and Isaacs

2014, Bennett et al. 2014). Although the Lonsdorf model may not predict the precise effects

of each crop, the differences in floral resources, nesting habitat, and seasonality are

important characteristics of PBC and should be investigated further.

However, it should be noted that the Lonsdorf model parameters might not fully

simulate the nesting or foraging resources provided by different types of PBC. Although we

based the land cover attribute table on previously published data (Meehan et al. 2013), these

values may not reflect the actual impacts of any one type of PBC or land cover. For

instance, given earlier findings, it is surprising that the model predicts a reduced BAI in

landscapes with willow, as compared to landscapes with switchgrass. Willow has been

shown to be an important source of high quality pollen and nectar for wild bees, particularly

early in the season when other floral resources are not yet present (Ostaff et al. 2015), and

short-rotation willow coppice systems have been demonstrated to have relatively high

diversity and richness of arthropods, including wild bees (Rowe et al. 2011). Willow could

also provide an early season pollen and nectar boost that complements later season floral

resources in other land cover classes. Riedinger and colleagues (2014) reported that

landscapes with both early- and late-season crops exhibited a “temporal spillover” that

enhanced Bombus sp. density. The presence of willow could produce a similar effect in PBC
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landscapes. It is therefore conceivable that the impact of willow was underestimated in the

model, resulting in a lower BAI for simulated willow landscapes than would occur in a

biological system. Similarly, the nesting or floral resources provided by switchgrass or prairie

could be over- or underrepresented in the model. In their study in Iowa, Ridgeway and

colleagues (2015) assessed bee abundance and diversity under three types of PBC:

switchgrass monoculture, a 16 species prairie mix, and a 32 species prairie mix. Their results

showed that the 16 species prairie mix had greater bee abundances than switchgrass, and that

the 32 species prairie mix resulted in substantially greater bee abundances than either the 16

species mix or the switchgrass. This was likely related to there being consistently high floral

resources in the high diversity treatment, fewer early-season floral resources in the 16 species

mix, and the fewest floral resources in the switchgrass treatments. The model parameters

used in our study may simulate what could occur in some prairie plantings (e.g., a more

diverse species mix), but not in others (e.g., a less diverse mix). Thus, if policies are intended

to promote prairie as a PBC, they should consider the diversity and composition of the

species because not all polycultures provide the same range of flower morphological

diversity and temporal patterning of blooming.

Area

A second implication of our simulation is that the area in the landscape converted to PBC

likely influences wild bee abundance, particularly when moving from a landscape with less

PBC (Scenario 1) to a landscape with medium (Scenario 2) or high (Scenario 3) levels of

PBC. Aggregated at the landscape, the difference between the BAI from S2 and S3 was

nearly significant at the 95% confidence level (p=0.0529). This may be due to the fact that

the actual difference in the percentage of the landscape was relatively minimal (23.5% for S2

and 28.8% for S3). The difference in area devoted to PBC between either S1 and S2 or S1

and S3 was substantially greater than the difference in PBC area between S2 and S3.

However, at the fine scale, there are substantial differences in specific regions, with some

areas showing higher BAI under S2 than under S3. This may be related to the specific

configuration of the landscape, or it may be related to the landscape reaching a BAI
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threshold. The Lonsdorf model gives more weight to floral resources in nearby cells than to

those in more distant cells – given the foraging distances of the bee species used in this

study, the landscape may have reached a critical threshold for bee foraging. Indeed, empirical

research on wild bee visitation rates in California almond fields has shown a threshold in bee

visitation rates, with substantial increases when more than ~30% of the surrounding

landscape at a 1 km radius is in natural or semi-natural habitat (Klein et al. 2012).

Regardless, policies aimed at maximizing wild bee abundance need to consider the

proportion of the landscape in PBC, with the general assumption that more is better, while

considering socially acceptable levels of land use change.

Configuration

A third implication of our simulation is that the PBC configuration (NLM vs. FLP) is not

particularly important to BAI at the landscape level, (i.e., across the Indian Creek watershed)

but is important at the fine scale. The greater variability in pixel-level BAI for FLPs than for

NLMs (Table 3.3, Figure 3.5) indicates that configuration is important at the local level (i.e.,

at the scale of 10s to 100s of meters), a finding that is consistent with empirical studies in

German agricultural fields, where wild bee abundance decreased with the distance of the

field to semi-natural grasslands (Jauker et al. 2009). The impact of landscape configuration is

thus a scale-dependent phenomenon – at the scale of a 50 or 100 ha field, the presence or

absence of nearby PBC is an important factor to bee abundance. However, at the scale of

the landscape, the Lonsdorf model indicates that the specific arrangement of PBC is

relatively unimportant to the overall impact on bee abundance. This has implications for

pollination services provided by wild bees to individual farmers, and for the overall impact

of PBC on bee abundance and diversity. If policies are intended to maximize pollination

services across a landscape, then distributing PBC throughout the entire area will be

necessary. In contrast, if policies are intended to enhance wild bee abundance or diversity,

irrespective of pollination services, then the spatial distribution of PBC will be less critical.

However, farmers may prefer to plant PBC in different configurations than those modeled

by the FLPs. For instance, in a prior workshop in the Indian Creek watershed, farmers
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indicated that they tend to prefer managing whole fields under one management regime

rather than subfields, like those represented in the FLPs (Chapter 2). As such, comparing

the effects of entire-field PBC plantings with the effects of subfield PBC planting (as in the

FLP) may show different results, and should be explored further.

Model limitations, future research, and management implications

There are several important caveats to our findings. First, the model assumes that the bee

species included in the simulation are currently present in the landscape or have the potential

to disperse into the region. The Indian Creek watershed has been subjected to many

decades of intensive agriculture, and now ~90% of the watershed is in agricultural land use.

Wild bee visitation rates have been shown to be lower when there is less natural or semi-

natural habitat in the surrounding landscape (Klein et al. 2012), as confirmed by Lonsdorf

modeling of the current landscape (Table 3.3, Appendix X), and other studies of bee

populations in the Corn Belt have shown that bee diversity is lower when maize and soy

compose a greater portion of the surrounding landscape (Ridgeway et al. 2015). Possibly,

few bee species remain in the landscape, and consequently, few species would be able to

disperse into the landscape. Therefore, our model results should be taken as an estimate of

what the different landscapes could provide, not what they necessarily would provide if PBC

were developed in the watershed. Similarly, the model results indicate the relative effects of

crop composition, area, and configuration on a bee abundance index, not the actual effects

of a real landscape on bees. However, in studies that have reported reductions in bee

abundance or diversity with increasing agricultural intensification, bees were still found to be

present in the landscape, even in relatively small PBC plantings in an otherwise agricultural

landscape (Ridgeway et al. 2015).We recommend that future studies evaluate the current

wild bee richness and diversity in the region, in order to better predict the effects of current

conditions and bee populations.

A second caveat is that the Lonsdorf model does not directly evaluate bee mortality.

If management techniques for either maize/soybeans or PBC include use of pesticides or

herbicides, there may be high bee mortality. In the worst case, PBC patches could
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potentially function as population sinks, attracting bees from more protected areas but then

exposing them to biocides. Systemic pesticides, such as neonicotinoids, that are currently

widely used as seed treatments (Douglas and Tooker 2015) have been found to have lethal

and sub-lethal effects on honeybees (Chensheng et al. 2014) and presumably wild bees as

well. These pesticides are quite persistent in the landscape, and have the potential of

concentrating in bee nests, causing eventual colony death or hive abandonment (Chensheng

et al. 2014, Sanchez-Bayo 2014). For herbicides or pesticides that are sprayed at ground

level, incorporating 20’ spray buffers can ameliorate some of the impacts on wild bees

(Bentrup 2008). Efforts to enhance habitat for bees or other pollinators should consider the

potential effects of biocides, and should be combined with efforts to reduce the use of

biocides or mitigate their effects. We recommend that future research evaluate the specific

effects of biocides on wild bees in a PBC landscape, and that future revisions to the

Lonsdorf model consider the possibility of including a measure of mortality.

Finally, the current version of the Lonsdorf model does not incorporate behavioral

patterns or preferences of bees. Unlike other pollinators, including hoverflies (Jauker et al.

2009), bees are “central-place foragers,” foraging across the landscape and then returning

with pollen and nectar to a central nest location. In the Lonsdorf model, bees are assumed

to diffuse across the landscape based solely on foraging distances and pixel-level floral

resources, though the model does give more weight to floral resources that are closer to the

pixel being evaluated. In reality, bees exhibit some degree of preference, selecting floral

patches based on landscape context and neighboring floral resources (e.g., Steffan-Dewenter

et al. 2002, Heard et al. 2007, Olsson et al. 2015). This behavior, according to Olsson and

colleagues (2015), may explain why the Lonsdorf model does not perform as well in complex

landscapes. To account for landscape complexities, they developed a revised model that

incorporates central-place foraging theory by assessing loading capacity, travel time, and

harvesting rate to determine the metabolic costs of foraging and relative patch quality

(Olsson et al. 2015). Although their revised model may improve predictions of pollination

services in complex landscapes, the additional required inputs (e.g., loading capacity

measurements for each bee species) may be difficult to determine, or may involve complex
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calibration for each species. The revised model is not yet widely available, but we

recommend that it be included in future editions of the InVEST package. We expect that if

our system were modeled with this revised edition, the results regarding landscape

configuration could be revealing. We predict that the complexities of the NLM and FLP

landscapes could lead to different results using the Olsson revision. Specifically, we would

expect to see greater separation in mean BAI between NLM and FLP landscapes, since the

spatial clustering of PBC in FLP landscapes could tend to concentrate bees in areas near

PBC. In the NLM landscapes, PBC are dispersed throughout the landscape, which may lead

to an increased modeled BAI across the entire study area.

Summary

The results of our modeling study indicate that perennial bioenergy cropping systems could

be effective strategies to promote wild bee populations. Additional modeling techniques and

revisions to the Lonsdorf model (e.g., Olsson et al. 2015) may provide more precise

estimates of bee abundance, and we recommend further analysis with these revisions to

InVEST. In light of international efforts to develop a pollinator corridor in the Mississippi

River basin, developing PBC that support wild bees is an important endeavor. Our results

indicate that, although the configuration of PBC is important to bee abundance at the fine

scale, it is less important at the landscape level, unless the goal is to maximize pollination

services across the entire landscape. At the landscape scale, the composition of bioenergy

crops and the amount of PBC habitat are important considerations for the effects on wild

bees, with diverse plantings (e.g., prairie) being particularly valuable for wild bees. As such,

we recommend further research into the impacts on bee abundance of using different

bioenergy crops, including more diverse, realistic combinations of multiple bioenergy crops.

We also recommend research into the effects of different landscape configurations, such as

those resulting from entire-field PBC planting strategies in contrast to the subfield plantings

represented by the FLPs.
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Chapter IV

Wild bee abundance in temperate agroforestry landscapes:

assessing effects of alley crop composition, landscape

configuration, and agroforestry area

Submitted: Graham JB and JI Nassauer. Wild bee abundance in temperate agroforestry landscapes:

assessing effects of alley crop composition, landscape configuration, and agroforestry area. Agroforestry

Systems.

Abstract

Agroforestry has the potential to provide multiple products and services from agricultural

land, including bioenergy feedstock and habitat for wild bees. The goal of our research is to

assess how variation in specific alley crop composition (willow alone, switchgrass alone, or

mixed alley cropping), configuration of the landscape, and total area converted to

agroforestry affects wild bee habitat in Illinois. Specific perennial crops, configuration of the

landscape, and total area converted to agroforestry may affect the abundance of wild bees.

For example, different agroforestry crops may provide different floral and nesting resources

for bees than would single-type herbaceous crops. Additionally, policy and economic factors

may affect the total area and configuration of land devoted to agroforestry within a

landscape. In addition, farmers’ operational preferences will influence area and

configuration; they may be more willing to convert entire fields to agroforestry than to

convert small patches within fields. We use the InVEST Crop Pollination module, a spatially

explicit assessment of bee abundance, to model how wild bee habitat in hypothetical

alternatives to an Illinois landscape is affected by the alley crop composition (prairie alone,

willow alone, or alley cropping using prairie and willow), landscape configuration (perennial
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crops planted in subfield patches or in entire fields), and bioenergy crop total area (12%,

24%, or 29% of the agricultural land). Our results indicate that the alley crop composition

and agroforestry area are important influences on the bee abundance index at the scale of

both the landscape and the field. Although the configuration of agroforestry plantings

significantly affects bee abundance at the field scale, it is not an important factor when

assessing bee abundance at the level of the landscape.

Introduction

Drawing from the principles of ecology, forestry, agronomy, and landscape ecology (Lassoie

et al. 2009), temperate agroforestry has been proposed as a means of reconciling

environmental protection with production of necessary goods and services. Integrating

techniques of agroforestry can enhance the sustainability of existing agricultural landscapes

(Jose 2009, Smith et al. 2012a). Many studies have examined the characteristics and

ecosystem services provided by individual agroforestry practices; however, most studies have

examined a single agroforestry practice on an individual site, with only a few studies

exploring agroforestry ecosystem services from a landscape perspective (e.g., Lovell et al.

2010, Larcher and Baudry 2013). This leaves a gap in knowledge regarding the landscape-

level impacts of agroforestry. In order to fill this gap, we seek to assess how wild bee habitat

in an Illinois watershed could be influenced by different alley crop compositions, different

landscape configurations, and variation in the total area devoted to agroforestry.

To date, much agroforestry research has focused on tropical systems (Nair et al.

2005). But increasingly, studies are exploring the impacts of temperate agroforestry on

measures of ecosystem services or function, such as insect diversity in short-rotation willow

coppice systems and alley cropping in the UK (Rowe et al. 2011, Varah et al. 2013), avian

biodiversity and water quality in riparian buffers in Iowa (Schultz et al. 2004, Berges et al.

2010), carbon storage and vascular plant diversity in hedgerows in Italy (Alessandro and

Marta 2012), and wildlife habitat in windbreaks and alley cropping in North America

(Brandle et al. 2004, Christoffel 2013). Generally, these studies suggest that agroforestry has

the potential to enhance ecosystem services supplied by agricultural landscapes. Considering
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recent declines in native bee populations (Potts et al. 2010, Koh et al. 2016), one potential

benefit of agroforestry may be in its potential to serve as habitat for wild bees. Establishing

agroforestry systems would increase the presence and diversity of perennial cover, thereby

potentially increasing the amount and quality of habitat for wild bees.

Agroforestry systems also have the potential to provide biomass as a bioenergy

feedstock (Holzmueller and Jose 2012). Until recently, domestic production of biofuels in

the USA primarily focused on annual agricultural crops (in particular, ethanol from corn and

biodiesel from soybeans). However, USA legislation requires increased production of

advanced liquid biofuels from cellulosic sources in addition to ethanol from corn (e.g., the

“Renewable Portfolio Standard,” Public Law 110-140). When combined with recent

advances in biofuel technology (e.g., Qureshi et al. 2013), emphasis on increasing cellulosic

biofuels could support the viability of biomass production from agroforestry (Robertson et

al. 2008, Kline et al. 2009, Jose et al. 2012). Designing agroforestry systems with the goal of

providing cellulosic feedstock for bioenergy may have the potential to enhance ecosystem

services provided by agricultural landscapes, particularly if environmentally sensitive areas

are targeted for perennial crops (Gopalakrishnan et al. 2009).

We suggest that three variables will influence the benefits of agroforestry on wild bee

habitat: the specific crop composition chosen for use in agroforestry systems, the

configuration of agroforestry plantings across the landscape, and the total area of

agroforestry. These three variables may individually influence wild bee habitat, or could have

interactive effects.

The first variable, composition, refers to the type of perennial bioenergy crops (PBC)

chosen by farmers. PBC could be planted in either monocultures or polycultures and

include herbaceous and woody species. In the American Corn Belt, investigations of

monocultural PBC production have examined herbaceous plants, including switchgrass

(Panicum virgatum L.), and miscanthus (Miscanthus × giganteus), and woody plants, including

willow (Salix sp.), and poplar (Populus sp.) (e.g., Love and Nejadhashemi 2011, Holzmueller

and Jose 2012, Ssegane et al. 2015). Polycultural production of perennial biofuels could take

the form of herbaceous prairie-based systems (Tilman et al. 2006, Love and Nejadhashemi
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2011), or agroforestry systems incorporating a variety of woody species including willows,

black locust (Robinia pseudoacacia L.), honey locust (Gleditsia triacanthos L.), maples (Acer sp.), or

poplars (Grünewald et al. 2009, Holzmueller and Jose 2012) combined with either

commodity row crops or herbaceous PBC. Prior research assessed the effects of single-type

plantings of prairie, switchgrass, and willow on an index of bee abundance in an Illinois

landscape, and found that crop composition was an important factor for bee abundance

(Chapter 3). However, the project did not assess the effects of multiple PBC planted

together, as would be likely under agroforestry. Since woody and herbaceous crops have

different physical and biological characteristics and provide different ecosystem services,

studies of PBC should explore the different potential effects of both herbaceous and woody

crops, as well as their effects when planted alone versus together.

We also suggest that the landscape-level configuration of agroforestry plantings will

influence the outcomes of agroforestry for wild bees. Agroforestry may be particularly well

suited to “entire-field” (EF) rather than “subfield” (SF) planting strategies, since the multiple

strata and woody components of agroforestry make it more complex than herbaceous-only

PBC. As indicated by an earlier investigation of PBC in Illinois, farmers tend to prefer field-

scale plantings, which give them the ability to maintain the same management regime over

entire fields (Chapter 2). Alternatively, low-input, high-diversity PBC (e.g., mixed planting of

prairie species) can be grown on abandoned or degraded lands, which may reduce the

competing interests among food, fuel, and ecosystem services (Tilman et al. 2006) while

reducing the chance for disease to infest monocultures (Smith et al. 2015). In addition, PBC

can be grown in small patches within fields of annual commodity crops, for example in areas

where soil, topography, or other conditions are less suitable for annual row crops.

Selectively placing PBC within commodity crop fields could allow PBC to take on a

phytoremediation role, enhancing agricultural multifunctionality by reducing within-field

nutrient loss, erosion, or other environmental harms (Ssegane et al. 2015) while providing

additional sources of income for farmers. Since farmers may prefer to manage agroforestry

systems at the scale of whole fields, rather than managing small agroforestry patches within

fields, landscape-level investigations of the impacts of agroforestry on wild bees are needed
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in order to examine the impacts of both SF and EF configurations.

The amount of available habitat will likely influence the impact of agroforestry

landscapes on wild bees, and could vary dramatically depending on policy and levels of

adoption by farmers. The addition of perennial vegetation within an annual commodity crop

matrix will provide habitat for native bees, but bee populations may not respond linearly to

increases in PBC. For example, research on pollination services in California almond fields

found a threshold where wild bee abundance increased dramatically when more than ~30%

of the surrounding landscape was natural or semi-natural habitat (Klein et al. 2012).

Similarly, models predicted a substantial increase in bee abundance in an Illinois landscape

when comparing differences in PBC betweeen ~12% and ~24% cover, but no significant

increase in mean bee abundance when comparing differeinces in PBC between ~24% and

~29% PBC cover (Chapter 3). Meanwhile, the proportion of land devoted to agroforestry

can be limited by economic, cultural, commercial, and technical factors (Gold and Hanover

1987, Arbuckle Jr. et al. 2008, Valdivia et al. 2009, Lin 2011, Tomich et al. 2011, Smith et al.

2012b). Since the impact of agroforestry area on wild bees may not be linear, and since the

realisitic area of land devoted to agroforestry may vary, predictions of the effect of

agroforestry on wild bees should consider a range in total area devoted to agroforestry.

To predict the combined impacts of alley crop composition, configuration, and total

agroforestry area, we used a spatially explicit model that relates landscape conditions to wild

bee abundance. Specifically, the Lonsdorf model (Lonsdorf et al. 2011) assesses the pixel-

level bee abundance for bees visiting and nesting in each grid cell of a real or hypothetical

landscape using species and landscape attributes as inputs. The Lonsdorf model can be

downloaded at no cost as the Crop Pollination module of the InVEST software package

(Kareiva et al. 2011) from the Natural Capital Project (www.naturalcapitalproject.org/invest),

and can be easily calibrated for specific landscapes and bee species or guilds. Prior research

has tested the Lonsdorf model against empirical data of pollination in coffee plantations in

Costa Rica and watermelons in New Jersey and Pennsylvania (Lonsdorf et al. 2009). It has

also previously been used to assess the impact of bioenergy crops on pollinators in

Wisconsin (Meehan et al. 2013) and Illinois (Chapter 3). These studies indicate that the
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model performs well in coarse grained or homogeneous landscapes, but its predictions are

sometimes less precise in complex landscapes (Kennedy et al. 2013), likely due to the central-

place foraging behavior of wild bees, a factor that is not evaluated in the model (Olsson et al.

2015). Although the model may be less precise in more complex landscapes, it is easily used

and readily available, and provides land managers with an easy tool to assess different

management regimes.

Our goal was to model the impact of different bioenergy crop compositions,

different landscape configurations, and differences in the total area of agroforestry on wild

bee habitat. To assess the influence of alley crop composition, we examine willow alone

(W), prairie alone (P), and mixed alley cropping with willow and prairie (MX). To assess the

influence of landscape configuration, we compare EF and SF configurations of each of these

alley crop composition options. Finally, we assess the impact of the total area of land

devoted to agroforestry by comparing three scenarios that place PBC on 11.7% to 29.2% of

the agricultural land in the watershed. We use the visiting bee abundance index (BAI) from

the Lonsdorf model (Lonsdorf et al. 2009, Kareiva et al. 2011) to measure how these three

variables relate to bee abundance at each pixel of the landscape, and propose the following

hypotheses:

H0: there will be no significant difference in modeled BAI between future landscape
patterns (FLPs) at the landscape scale regardless of alley crop composition, landscape
configuration, and agroforestry area.

Ha: there will be significant differences in modeled BAI between FLPs based on
composition, configuration, and/or area.

Prediction 1 (Composition): BAI will be greater in FLPs with MX than in FLPs with
W alone.

Prediction 2 (Composition): BAI will be greater in FLPs with MX than in FLPs with
P alone.

Prediction 3 (Configuration): BAI will be greater in FLPs with SF placement of PBC
than in FLPs with EF placement of PBC.

Prediction 4 (Area): BAI will be greater in FLPs with a larger area in agroforestry.
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 Perennial bioenergy crop  

Scenario 

Willow and 
prairie 

alley 
cropping 

Prairie    Willow
 

Total agroforestry 
area (% of ag land 

in watershed) 

1 SF1MX 
EF1MX 

SF1P 
EF1P 

SF1W 
EF1W 

 

11.7 
11.8 

2 SF2MX 
EF2MX 

SF2P 
EF2P 

SF2W 
EF2W 

 

23.5 
23.6 

3 SF3MX 
EF3MX 

SF3P 
EF3P 

SF3W 
EF3W 

28.8 
29.2 

 
  Methods

Our study was conducted in the Indian Creek watershed, Illinois, USA (Figure 2.2). The

watershed covers approximately 20,700 ha, and is primarily cultivated in annual row crops.

The 2011 National Land Cover Database classified nearly 90% of the watershed as annual

row crops, 7% as developed, and the remainder of the watershed as forest or perennial crops

(Jin et al. 2013).

In order to test our hypotheses, we developed FLPs that combine a series of three

alley crop compositions, two landscape configurations, and three scenarios leading to

different levels of total agroforestry area (Table 4.1, Figure 4.1). We compared all

combinations of the three variables, resulting in 18 FLPs that allowed us to predict the

effects of each variable as well as their combined effects on wild bee habitat.

To assess the impact of alley crop composition on bees, we developed FLPs with W,

P, and MX. Mixed alley cropping included 10 m wide willow rows at 40 m spacing, with

prairie grown in the alleys. Alley cropping layout was aligned with the existing general

direction of management operations for each farm field. We assessed W, P, and MX as the

PBC component for all combinations of configuration and area.

Table 4.1. Experimental design for modeling wild bee abundance under agroforestry and future
landscape patterns (FLP) in the Indian Creek watershed, Livingston County, Illinois. Subfield FLPs
(SF) were based on edaphic conditions presented by Ssegane and colleagues (2015), and developed
from Chapter 2. Entire-field FLPs (EF) were developed by including all fields where >33.3% of the
individual field area was categorized as PBC in the corresponding SF configuration.
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The two configurations were SF, where PBC are located in small patches within

fields that are otherwise planted in row crops, and EF, where PBC are planted as the sole

crop in individual fields. SF configurations were developed in Chapter 3 based on scenarios

developed with input from farmers (Chapter 2). Individual patch location and extent were

based on edaphic conditions that are less-suitable for annual row crops and intended to

enhance landscape multifunctionality (Ssegane et al. 2015), while accounting for management

considerations and aesthetic preferences. The three scenarios led to three different levels of

Figure 4.1. Landscape layout of perennial bioenergy crop placement in subfield (SF: a-c) and entire-
fields (EF: d-f) for Scenario 1 (~12%, a,d), Scenario 2 (~24%, b,e), and Scenario 3 (~29%, c,f).
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Analysis of variance 

 
Df Sum Sq Mean Sq F value Pr(>F) 

Configuration  1 0 0 0 0.987 
Area 2 0.0252 0.0126 37.27 7.11e-06 
Composition 2 0.0248 0.0124 36.66 7.74e-06 
Res 12 0.00405 0.000338   
      

Tukey multiple comparisons of means, 95% confidence level 
FLP Comparisons Difference Lower Upper p adjusted 

Area 2-1 0.0668 0.03853 0.09514 0.00011 
 3-1 0.08767 0.05937 0.11598 0.0000075 
 3-2 0.02084 -0.007465 0.04915 0.16 
Composition P-MX 0.04087 0.01257 0.06918 0.0060 
 W-MX -0.04983 -0.07813 -0.02152 0.0014 
 W-P -0.09070 -0.1190 -0.06240 0.0000053 

 
  

total agroforestry area, varying from 12% to 29% of the agricultural land in the watershed.

We designed EF configurations to approximate the percentage and distribution of PBC in

the corresponding SF landscapes (Table 4.1, Figure 4.1). PBC coverage is 0.1% to 0.3%

more in EF than in corresponding SF landscapes.

We evaluated the BAI for all 18 landscapes outlined above. The Lonsdorf model uses

landscape configuration and species-specific characteristics to estimate the ability of the

landscape to support wild bee populations. Model inputs include: 1) a land cover map, 2) a

table of land cover attributes containing the relative habitat quality values (0 to 1) for bee

nesting habitat types and the relative abundance (0 to 1) of floral resources provided by each

land cover class, and 3) a table of bee species containing each species’ nesting requirements

(0 or 1, for nesting in soil, cavity, hive, or wood substrates), foraging activity by season (0 or

1 for foraging in spring, summer, and fall), and typical foraging distances (m). The model

produces two indexes for each pixel of the landscape. The nesting bee abundance index indicates

the likely abundance of all species of bees nesting in each pixel of the landscape. The visiting

bee abundance index indicates the likely abundance of bees of any species visiting each pixel of

the landscape. We used bee species and landscape attribute tables developed in Chapter 3

(Appendix B, Appendix C).

To differentiate the effects of each variable, we conducted analysis of variance with

Table 4.2. Analysis of variance and Tukey comparisons for mean bee abundance index using the
variables of Configuration: entire-field (EF) or patches in subfields (SF); Area: ~12% (1), ~24% (2), or
~29% (3) of agricultural land in PBC; and Composition: willow (W), prairie (P), or mixed prairie and
willow alley cropping (MX).
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Starting Ending Mean SD 
EF1P EF1M -10.6 6.6 
EF2P EF2M -16.7 7.0 
EF3P EF3M -18.0 9.0 
SF1P SF1M -8.7 4.4 
SF2P SF2M -13.7 3.6 
SF3P SF3M -14.6 5.8 
EF1W EF1M 15.3 12.7 
EF2W EF2M 28.0 17.4 
EF3W EF3M 29.3 18.4 
SF1W SF1M 18.6 11.1 
SF2W SF2M 36.9 10.2 
SF3W SF3M 44.4 12.9 
EF1M EF2M 44.5 38.3 
SF1M SF2M 52.6 19.7 
EF1M EF3M 78.9 149.2 
SF1M SF3M 84.6 98.8 
EF2M EF3M 35.7 133.2 
SF2M SF3M 18.4 49.3 
SF1P EF1P -0.4 24.8 
SF1W EF1W -1.4 14.5 
SF1M EF1M -3.4 19.2 
SF2P EF2P -4.5 30.0 
SF2W EF2W -3.7 19.5 
SF2M EF2M -9.1 24.6 
SF3P EF3P -7.5 32.1 
SF3W EF3W -3.7 21.2 
SF3M EF3M -12.9 25.6 

 

  

post hoc Tukey tests on the mean BAI (Table 4.2) in R version 3.2.3 (R Core Team 2015).

Independent variables were: Composition (three levels: W, P, or MX), Configuration (two

levels: SF or EF), and Area (three levels, 1, 2, or 3, which correspond with ~12%, ~24%,

and ~29% of the agricultural land in PBC). Since the Lonsdorf model produces a spatially

explicit evaluation

of pixel-level BAI based on the surrounding conditions, we used a 1000 m buffer inside the

watershed boundary to reduce potential edge effects.

To compare FLPs resulting from different compositions, configuration, and total

agroforestry area, we calculated the mean and standard deviation of the pixel-level percent

difference in BAI for comparisons between EF landscapes, comparisons between SF

Table 4.3. Mean and standard deviation for pixel level percent difference in bee abundance index
when comparing alternative future landscapes to each other, using the Longsdorf model (Lonsdorf et
al. 2011). For each comparison, “starting” refers to the alternative landscape used as the basis for
the comparison, and “ending” refers to the alternative landscape compared
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landscapes, and comparisons between SF and EF landscapes (Table 4.3). As in the analysis

of variance, we excluded pixels from within an internal 1000 m buffer. Pixel-level percent

difference has been used to evaluate outcomes of different FLPs in prior studies of PBC in

the upper Midwest (Meehan et al. 2013, Bennett et al. 2014), including earlier analysis of wild

bees in the Indian Creek watershed (Chapter 3). Percent difference provides a reasonable

assessment of the “pairwise” comparisons of FLPs, and an estimate of the overall difference

between two FLPs; images of the actual values for each comparison provide an indication of

the effects of each comparison aggregated at the scale of the landscape and at the pixel level.

Results

We calculated descriptive statistics for each FLP (Table 4.4), and the mean and standard

deviation for pixel-level percent difference, aggregated at the scale of the landscape, for

comparisons between EF landscapes, between SF landscapes, and between SF and EF

landscapes (Table 4.3).

Wild bees have significantly greater modeled abundance in landscapes with P than in

landscapes with either W or MX, and significantly greater modeled abundance in landscapes

with MX than in landscapes with W alone, as modeled by BAI (Table 4.2). A comparison of

modeled BAI between W and MX shows greater BAI for MX (positive percent difference)

at the pixel level and across the landscape for both EF and SF landscapes (Table 4.3, Figure

4.2a). A comparison between P and MX shows reduced BAI for MX (negative percent

difference) at the pixel level and across the landscape for both EF and SF landscapes (Table

4.3, Figure 4.2b). These results support prediction 1, that landscapes with MX will exhibit

greater BAI than landscapes with W, but they do not support prediction 2, that landscapes

with MX will exhibit greater BAI than landscapes with P.

In all cases, the Lonsdorf model predicts that mean BAI would be slightly greater in

SF landscapes than in corresponding EF landscapes (Table 4.3), though in all cases, the

standard deviation is large and the mean percent change values are relatively close to 0.

Unsurprisingly, this difference is not statistically significant (Table 4.2). A comparison of the

SF and EF landscapes shows the variability throughout the landscape: some regions have
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Future landscape 
pattern Minimum  Maximum Mean  

Standard 
deviation Range 

SF1P 0.036 0.436 0.158 0.088 0.400 
SF1W 0.031 0.32 0.117 0.055 0.289 
SF1MX 0.034 0.388 0.142 0.075 0.355 
SF2P 0.082 0.607 0.247 0.126 0.525 
SF2W 0.052 0.350 0.151 0.065 0.298 
SF2MX 0.069 0.511 0.21 0.102 0.442 
SF3P 0.082 0.687 0.285 0.151 0.605 
SF3W 0.059 0.362 0.160 0.066 0.302 
SF3MX 0.073 0.577 0.237 0.114 0.503 
EF1P 0.044 0.548 0.159 0.105 0.503 
EF1W 0.034 0.313 0.115 0.059 0.279 
EF1MX 0.039 0.427 0.138 0.083 0.388 
EF2P 0.053 0.836 0.261 0.199 0.782 
EF2W 0.039 0.385 0.153 0.089 0.347 
EF2MX 0.045 0.625 0.208 0.146 0.579 
EF3P 0.054 0.962 0.290 0.230 0.908 
EF3W 0.047 0.370 0.161 0.089 0.323 
EF3MX 0.050 0.616 0.221 0.150 0.565 

 
  

Table 4.4. Descriptive statistics for bee abundance index mean, minimum, maximum, standard
deviation, and range for future landscape patterns based on: entire-field (EF) or subfields (SF)
patterns, occurring on ~12% (1), ~24% (2), or ~29% (3) of agricultural land in PBC, and consisting of
willow (W), prairie (P), or mixed prairie and willow alley cropping (MX) as the PBC.

Figure 4.2. Percent difference for Composition. In both cases, the Scenario 3, entire-field
configuration, with mixed alley cropping with willow and prairie is the ending condition, while the
starting conditions are Scenario 3, entire-field configuration using willow (a) and prairie (b) as the
starting condition.

Starting: Entire field, scenario 3, willow 
Ending: Entire field, scenario 3, alley cropping

Starting: Entire field, scenario 3, prairie 
Ending: Entire field, scenario 3, alley cropping

a b



68

Fi
gu
re
4.
3.
Pe
rc
en
td
iff
er
en
ce

fo
rC

on
fig
ur
at
io
n,
us
in
g
su
bf
ie
ld
co
nf
ig
ur
at
io
n
as

th
e
st
ar
tin
g
co
nd
iti
on

an
d
en
tir
e-
fie
ld
co
nf
ig
ur
at
io
n
as

th
e

en
di
ng

co
nd
iti
on
.
W
illo
w
(a
-c
),
pr
ai
rie

(d
-f)
,a
nd

m
ix
ed

al
le
y
cr
op
pi
ng

w
ith

w
illo
w
an
d
pr
ai
rie

(g
-i)
ar
e
sh
ow

n,
fo
rS

ce
na
rio

1
(~
12
%
,a
,d
,g
),

Sc
en
ar
io
2
(~
24
%
,b
,e
,h
),
an
d
Sc
en
ar
io
3
(~
29
%
,c
,f,
i).

Pe
rc

en
t c

ha
ng

e,
 s

ub
fie

ld
 to

 e
nt

ire
 fi

el
d 

pa
tte

rn

d
e

f

MixPrairieWillow

g
h

i

a
b

c

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3



69

greater BAI in the EF landscape (blue regions, indicating positive percent change), whereas

other regions have reduced BAI in the EF landscape (red regions, indicating negative

percent chance) (Figure 4.3).

This finding is likely due to the “clustering” of PBC in EF landscapes – sections of

the landscape with more (less) PBC in the EF than in the corresponding SF exhibit greater

(lesser) BAI. In light of the large standard deviations for the percent difference

comparisons, and the lack of configuration as a significant predictor for mean BAI, these

results do not statistically support prediction 3, that landscapes with SF placement of PBC

will exhibit greater BAI than landscapes with the same amount of PBC grown in entire

fields. However, they suggest that configuration might be ecologically important for wild

bees. At the pixel-level, the results vary – BAI is greater under EF conditions in some areas

of the landscape (e.g., where whole fields provide continuous habitat for bees) but lower in

others (e.g., where PBC are absent because they are concentrated elsewhere in the

landscape). This indicates that the effects of configuration are dependent on scale.

Overall, wild bees have significantly greater modeled abundance in landscapes with

more PBC than in landscapes with less PBC (Table 4.2). Modeled BAI is greater for

landscapes derived from Scenario 2 (with 24% of the landscape in PBC) or Scenario 3 (with

29% of the

landscape in PBC) than for landscapes derived from Scenario 1 (with 12% of the landscape

in PBC). Additionally, BAI is greater for Scenario 3 landscapes than for Scenario 1

landscapes. However, BAI is not statistically greater for Scenario 3 landscapes than for

Scenario 2 landscapes. Visual comparisons between the landscapes confirm these findings:

Scenario 2 and Scenario 3 landscapes have greater BAI than Scenario 1 landscapes (Figure

4.4a-b), but the difference in BAI varies throughout the landscape when comparing Scenario

3 and Scenario 2 landscapes (Figure 4.4c). These results generally support prediction 4, that

landscapes with more PBC will exhibit greater BAI than landscapes with less PBC, with the

caution that there is no significant difference in BAI between Scenario 2 and Scenario 3

landscapes.
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Figure 4.4. Percent difference for Area. Starting conditions are entire-field configuration, Scenario 1,
mixed alley cropping (a-b), and entire-field configuration, Scenario 2, mixed alley cropping (c).
Ending conditions are entire-field configuration, Scenario 2, mixed alley cropping (a), and entire-field
configuration, Scenario 3, mixed alley cropping (b-c).
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Discussion

Our results indicate that, in some instances, the agroforestry practice of alley cropping can

enhance habitat for wild bees. In situations where mixed PBC alley cropping replaces

sections of willow with prairie, alley cropping will likely enhance BAI. In situations where

mixed alley cropping replaces sections of prairie with willow, the opposite effect will occur.

However, alley cropping provides more structural complexity than either prairie or willow

alone, which should enhance biodiversity of arthropods (Stamps and Linit 1998). We note

that structural complexity is not incorporated in the calculation of BAI, and our calibration

of the Lonsdorf model emphasizes ground-nesting bees and prairie habitat.

The Lonsdorf model evaluates alley cropping as representing a net decrease in floral

resources when compared to prairie alone, because willow (included in the alley cropping

regime) provides fewer floral resources during the summer than does prairie (Chapter 3).

Similarly, the majority of bee species used in the model (39 of 50) are soil-nesting bees, with

few (3 of 50) being wood-nesting bees (Appendix B). The Lonsdorf model classifies prairie

as having a greater soil nesting score than willow, enhancing BAI scores from prairie habitat.

Three potential means of increasing model validity for agroforestry are: 1) include alley

cropping as a separate land cover class in the habitat attribute table, with the nesting and

floral resource values reflecting the combination of the herbaceous and woody layers, 2)

investigate alley cropping systems that use a different tree species that might provide more

floral resources during the summer season when willows are not flowering, or 3) determine

whether the bee species used in the assessment represent those currently found in, or

plausibly recruited to, the watershed.

Including alley cropping as a separate land cover class would allow the model to

assess the effect of the structural complexity of the alley cropping system. The habitat

attribute table was originally derived from values Meehan and colleagues (2013) developed

for PBC scenarios in Wisconsin. To derive the original values, they averaged habitat quality

scores provided by a panel of five insect ecologists. In Chapter 3, we adapted the values to

include willow and prairie by considering the structural and biological components of the

original land cover classes, and how they might compare to willow or prairie land cover
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classes. An expert assessment of nesting and foraging scores specifically developed for alley

cropping may produce higher values than for willow or prairie alone. If this were the case,

mean BAI would be greater for landscapes with alley cropping than for landscapes with

either willow or prairie alone.

Alley cropping systems that use different tree species might provide more floral

resources throughout the year than do willows. Other species recommended for woody

PBC production have different flowering characteristics and times than do willows,

including: black locust, honey locust, maples, and poplars (Grünewald et al. 2009,

Holzmueller and Jose 2012). The choice of tree species that enhance floral resources later in

the season, when more of the bee species included in the study need nectar and pollen

resources, could increase bee habitat benefits from PBC. Alternatively, a mixture of multiple

woody species could be planted to enhance floral diversity and seasonality, depending on the

preferred and feasible management techniques. For our study, we employed willow as the

woody component for several reasons. First, it provides valuable early-season nectar and

pollen, at a time when many other species are not yet flowering (Ostaff et al. 2015), and has

been shown to provide habitat for bee species, even when managed as short-rotation

coppice (Rowe et al. 2011). Second, willows are adapted to wet soil conditions and are

relatively efficient at bioremediation of nutrients that would otherwise be lost from the

system (Ssegane et al. 2015). Finally, willows grow quickly and can be harvested on relatively

short rotations, a potentially important consideration for choosing PBC varieties.

The bee species used in the assessment were based on records in the Illinois Natural

History Survey (wwx.inhs.illinois.edu/collections/insect) for the three counties surrounding

the Indian Creek watershed (Chapter 3). Potentially, these records could over represent

ground-nesting species, or underrepresent wood-nesting species. Similarly, they may include

species that are no longer extant in the Indian Creek watershed, or that are adapted to

habitats not present in the watershed. In that case, the bee species attribute table could

overemphasize the effects of prairie-like habitats. However, prior to European colonization

most of north central Illinois was prairie or oak savanna. Thus, it is reasonable to expect

that the native bee fauna would be adapted to grassland ecosystems, and that prairie would
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in reality lead to higher bee abundances than would willow.

At the landscape level, the configuration (subfield vs. entire-field) is not a significant

predictor of BAI mean (Table 4.3, Figure 4.3). This finding corresponds with prior work in

the Indian Creek watershed where a comparison between clustered placement and dispersed

neutral model placement of PBC indicated that configuration was relatively unimportant to

mean BAI when it was aggregated at the scale of the landscape (Chapter 3). This is an

important consideration for management, as farmers are likely to prefer whole field

methods, particularly for management techniques that include woody species or long-lived

perennials. This result is also particularly important for the design and assessment of

landscape multifunctionality – the configuration of PBC is relatively unimportant for the

overall, landscape-level impact on wild bee abundance, but relatively important for the local

impact on wild bee abundance. This characteristic allows for flexibility in landscape design,

an important feature for developing multifuntional landscapes.

Our results also indicate that the total amount of PBC at the landscape level is an

important variable for BAI, particularly when comparing ~12% and ~24% of the

agricultural land in PBC. Comparing ~24% and ~29% of the agricultural land in PBC does

not produce a significant difference in mean BAI. These results are consistent with prior

research in the Indian Creek watershed. See Chapter 3 for further discussion of the

implications of PBC area on bee abundance.

As with the earlier modeling work in the Indian Creek watershed, several caveats

exist and caution must be taken when considering the application of the model results to the

landscape. The Lonsdorf model does not necessarily produce a “true” reflection of the

conditions affecting bee abundance in the landscape. First, the model does not explicitly

evaluate potential causes of bee mortality including biocide use in adjoining cropland.

Second, it provides an estimate of what bee abundance could potentially be, not necessarily

what it would be if any of the PBC scenarios were enacted. Third, it does not assess the

central place foraging behavior of bees, but instead uses a diffusion model format, which is

less accurate at predicting bee foraging behavior. Fourth, the calibration of the bee species

attributes and the bee habitat attributes may not accurately reflect the actual attributes of the
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Chapter V

Conclusion

My dissertation provides a model of transdisciplinary research within a PSP framework, with

the goal of resolving a wicked problem facing society. My research strives to contribute to

the application of ecological knowledge, and ultimately influence the environmental impact

of society.

Key lessons of Chapter 2 are that 1) the landscape can be intentionally developed as a

boundary object to effectively engage stakeholders, and 2) the representative flexibility of the

landscape enhances its use as a boundary object, particularly the capacity to use the

landscape as a real place, as landscape visualizations, and as spatially explicit datasets.

Key lessons of Chapter 3 are that 1) crop composition and PBC area are particularly

important for modeled wild bee abundance, whereas landscape configuration is associated

with modeled wild bee abundance at the local level, but less so at the landscape level, and

that 2) strategies to enhance wild bee habitat should therefore emphasize the crop

composition and PBC area.

Key lessons of Chapter 5 are that 1) alley crop composition and agroforestry area are

important influences on modeled wild bee abundance at the scale of both the landscape and

the field, and that 2) the configuration of agroforestry plantings predicts modeled wild bee

abundance at the field scale, but is not an important factor at the level of the landscape.

Together, the three main chapters of my dissertation provide guidance for the

development of perennial bioenergy cropping systems that may be acceptable to Illinois

farmers, and that may provide ecosystem services above and beyond the provisioning

services of commodity crop production.
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Future research directions should include assessing the impact of the different FLPs

on other social and ecological components (e.g., soil erosion, water quality, financial return

to the land, carbon sequestration, recreational or aesthetic preferences, etc.), and then

compiling multiple measures into an integrated assessment (Figure 1.1b). Results of an

integrated assessment can then be used to design policy intended to encourage particular

outcomes at the scale of the landscape or region, with the hope of improving the future for

us all.
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Appendix A

Description of scenario conditions.

Scenario 1 (Table 2.4, Figure 2.3d-f) emphasizes commodity production of row crops with

strategic placement of perennial bioenergy crops. Agricultural policy continues to support

conventional commodity production with crop insurance and minimal changes to the

renewable portfolio standard. This scenario targets areas susceptible to reduced crop

productivity and nitrate leaching because leached nitrate is a major surface water impairment

in the watershed. This scenario affects approximately 10% of the agricultural land in the

Indian Creek watershed. The scenario explores conditions near to business-as-usual (a

“surprise free” future, Shearer 2005) while including perennial bioenergy crops primarily as

an additional revenue source for farmers by planting on areas with reduced crop productivity

and areas where fertilizers are being lost from the system.

Scenario 2 (Table 2.4, Figure 2.3g) emphasizes herbaceous, perennial bioenergy crops.

Agricultural policy sharply reduces crop insurance but makes minimal changes to the

renewable portfolio standard. The scenario targets areas susceptible to nitrate and pesticide

leaching, reduced crop productivity, ponding and drainage, and frequent flooding and

drainage. Land use change is capped at 20% of the agricultural land in the watershed to

mitigate concerns over land use change. We intended this scenario to explore the effects of

substantial changes to the current incentives included as federal crop insurance policies.

Scenario 3 (Table 2.4, Figure 2.3h) emphasizes water quality and soil conservation.

Agricultural policy sharply reduces subsidies to crop insurance, and federal regulation of

agricultural water quality begins under the Clean Water Act to mitigate non-point pollution
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sources. The renewable portfolio standard is expanded to emphasize perennial biomass.

The scenario targets areas susceptible to nitrate and pesticide leaching, reduced crop

productivity, flood frequency, runoff, and 100-foot stream buffers. The scenario affects

approximately 35% of the agricultural land in the watershed. We intended this scenario to

explore the effects of agricultural water quality mandates combined with support for

perennial biomass production.

Scenario 4 (Table 2.4, Figure 2.3i) emphasizes woody agroforestry for bioenergy and food

production. Strong carbon market incentives for agroforestry combine with policy incentives

to maintain regional biodiversity. Industrial food processors have begun using nut crops in

place of conventional grains, while woody material produced by the nut-bearing trees and

shrubs are used as bioenergy feedstock. Woody crops are grown in areas susceptible to

reduced crop productivity, nitrate and pesticide leaching, water ponding, frequent flooding,

and runoff. Alternative perennial agriculture is practiced on approximately 80% of the

agricultural land in the watershed. We intended this scenario to explore opportunities for

woody bioenergy and food crops, in combination with policy shifts directed at biodiversity

and climate change, as a test of extreme changes to land use and agricultural practices. In this

scenario we were purposefully looking for an extreme case and were not preoccupied of it’s

being realistic or even possible at this time.
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Species Nesting habitat Active season Travel distance (m) 

 Soil  Cavity Hive Wood Spring Summer Fall  
Agapostemon sericeus 1 0 0 0 1 1 1 864 
Agapostemon virescens 1 0 0 0 1 1 1 1317 
Andrena arabis 1 0 0 0 1 0 0 864 
Andrena carlini 1 0 0 0 1 0 0 967 
Andrena commoda 1 0 0 0 1 1 0 844 
Andrena crataegi 1 0 0 0 1 1 0 824 
Andrena cressonii 1 0 0 0 1 1 0 730 
Andrena erigeniae 1 0 0 0 1 0 0 515 
Andrena forbesii 1 0 0 0 1 1 0 1122 
Andrena geranii 1 0 0 0 1 1 0 486 
Andrena helianthi 1 0 0 0 0 1 1 2206 
Andrena hippotes 1 0 0 0 1 1 0 767 
Andrena nasonii 1 0 0 0 1 1 0 430 
Andrena perplexa 1 0 0 0 1 0 0 967 
Andrena rudbeckiae 1 0 0 0 0 1 0 2007 
Andrena simplex 1 0 0 0 0 1 1 1146 
Andrena wilkella 1 0 0 0 1 1 1 1193 
Andrena ziziae 1 0 0 0 1 0 0 286 
Apis mellifera 0 0 1 0 1 1 1 *2233 
Augochlora pura 0 0 0 1 1 1 1 767 
Augochlorella aurata 1 0 0 0 1 1 1 530 
Augochlorella persimilis 1 0 0 0 1 1 1 226 
Bombus fervidus 0 0 1 0 1 1 1 5929 
Bombus griseocollis 0 0 1 0 1 1 1 7873 
Bombus impatiens 0 0 1 0 1 1 1 10135 
Bombus pensylvanicus 0 0 1 0 1 1 1 10961 
Bombus vagans 0 0 1 0 1 1 1 4595 
Calliopsis andreniformis 1 0 0 0 1 1 1 472 
Ceratina calcarata 0 0 0 1 1 1 1 319 
Ceratina dupla 0 0 0 1 1 1 1 410 
Coelioxys octodentata 0 1 0 0 1 1 1 1217 
Halictus confusus 1 0 0 0 1 1 1 348 
Halictus ligatus 1 0 0 0 1 1 1 712 
Halictus rubicundus 1 0 0 0 1 1 1 593 
Lasioglossum albipenne 1 0 0 0 1 1 1 *346 
Lasioglossum coriaceum 1 0 0 0 1 1 1 914 
Lasioglossum forbesii 1 0 0 0 1 1 1 1021 
Lasioglossum paraforbesii 1 0 0 0 1 1 1 914 
Lasioglossum pilosum 1 0 0 0 1 1 1 *397 
Lasioglossum pruinosum 1 0 0 0 1 1 1 *322 
Lasioglossum versatum 1 0 0 0 1 1 1 *397 
Megachile latimanus 0 1 0 0 1 1 1 3811 
Melissodes agilis 1 0 0 0 1 1 1 2415 
Melissodes bimaculata 1 0 0 0 1 1 1 1881 
Melissodes denticulata 1 0 0 0 1 1 1 1217 
Melissodes desponsa 1 0 0 0 0 1 1 1881 
Nomada articulata 1 0 0 0 1 1 0 515 
Sphecodes confertus 1 0 0 0 1 1 0 814 
Svastra obliqua 1 0 0 0 1 1 1 3450 
Triepeolus lunatus 1 0 0 0 1 1 1 1317 

  

Appendix B

Bee species used in the Lonsdorf model
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Species list generated from Illinois Natural history survey data for Livingston, Ford, and McLean
counties. Data for species was adapted from Meehan et al (2013) and Wolf and Ascher (2008). Bee
foraging travel distances were calculated using an allometric equation (Greenleaf et al. 2007), and
based on IT distances measured in May 2015 on 5 specimens of each species in the University of
Michigan Museum of Zoology Insect Collection. For five species, indicated with an asterisk in the
travel distance column, IT distances were not measured and travel distances published by Meehan et
al (2013) were used.
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Land Use Land Cover Nesting score Foraging score 

 Soil Cavity Hive Wood Spring Summer Fall 
Continuous corn 0.13 0 0 0.03 0.1 0.07 0.1 
Corn-soy rotation 0.15 0 0 0.03 0.07 0.45 0.07 
Corn-alfalfa rotation 0.37 0 0 0.03 0.12 0.35 0.17 
Continuous soybeans 0.17 0 0 0.03 0.03 0.83 0.03 
Corn-wheat rotation 0.13 0 0 0.03 0.1 0.07 0.1 
Soy-wheat rotation 0.15 0 0 0.03 0.07 0.45 0.07 
Other annual crops 0.17 0 0 0.03 0.03 0.83 0.03 
Small grains 0.13 0 0 0.03 0.1 0.07 0.1 
Continuous alfalfa 0.6 0 0 0.03 0.13 0.63 0.23 
Orchards 0.8 0.47 0.5 0.33 0.93 0.2 0.13 
Open water 0 0 0 0 0 0 0 
Suburbs 0.83 0.73 0.83 0.7 0.6 0.63 0.63 
City 0.43 0.37 0.43 0.37 0.34 0.35 0.35 
Barren 0.03 0 0.03 0.03 0.07 0.07 0.07 
Deciduous forest 0.73 0.9 0.9 0.57 0.83 0.43 0.3 
Conifer forest 0.47 0.67 0.67 0.07 0.2 0.13 0.17 
Grassland 1 0.03 0.03 1 0.63 0.9 0.93 
Wetland 0.1 0.17 0.17 0.63 0.4 0.47 0.37 
Willow 0.73 0.17 0.17 0.63 0.83  0.07 0.1 
Switchgrass 1 0.03 0.03 1 0.365 0.485 0.515 
Prairie 1 0.03 0.03 1 0.63 0.9 0.93 
        

 

Appendix C

Land cover classes used in the Lonsdorf model

Nesting scores range from 0 to 1 and indicate the relative availability of particular nesting strata (soil,
cavity, hive, or wood) in each land cover class. Foraging scores range from 0 to 1 and indicate the
relative availability of floral resources during spring, summer, and fall for each land cover class.
Values were adapted from those used by Meehan and colleagues (Meehan et al. 2013) in southern
Wisconsin, and are used in Lonsdorf modeling of wild bees (Lonsdorf et al. 2011).
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