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CHAPTER I

Introduction

1.1 Missing Data Background

In many statistical studies, especially in large complex studies with many types

of variables, data can be missing due to various reasons such as attrition, refusal,

partial response (Little and Rubin, 2002), and study designs such as matrix sampling

(Raghunathan and Grizzle, 1995) and data merging (Wang, Song and Wang, 2015).

The missing values often create statistical challenges for analysts in obtaining valid

inferences.

One challenge is raised by different missingness patterns. When data are presented

in a wide format (rows correspond to subjects and columns correspond to variables),

the data matrix displays three missingness patterns: 1. univariate pattern, 2. mono-

tone pattern and 3. arbitrary pattern (Schafer and Graham, 2002). In a univariate

pattern, missing values occur only on one variable and all other variables are fully

observed; in a monotone pattern with ordered variables, once a variable is missing,

then all succeeding variables are missing; the arbitrary pattern is the most general

pattern in which different sets of variables can be missing for different subjects. This

thesis focuses on the arbitrary pattern in multivariate datasets. In addition, we

consider a single variable missing pattern, a special case of the arbitrary pattern in

1



2

which data are missing on up to one variable in any row and the missing variable

may be different across subjects. Unlike the first two patterns, which can be han-

dled by simple methods, the arbitrary pattern and its special case may require more

sophisticated approaches.

Another challenge is raised by different mechanisms that generate the missing

values. Take a naive analysis approach for example, which restricts the analysis

to subjects providing complete data on variables relevant for the analysis. This

approach is the default method in many statistical software packages, and it is valid

if the complete cases or available cases are representative of all cases. However, this

strong assumption may not be true in general, and, even if true, this approach may

lead to loss of efficiency. It is more likely that the inferences from the complete-case

analysis will not be valid; for example, the parameter estimates may be biased.

Rubin (1976), a groundbreaking paper, proposed a missing data analysis frame-

work with the definition of three types of missingness mechanisms: missing com-

pletely at random (MCAR), missing at random (MAR) and not missing at ran-

dom (NMAR). Furthermore, when data are MAR and the population or substantive

model parameters are distinct from the parameters in the missingness mechanism,

the likelihood-based inferences do not require the exact form of missingness mecha-

nism. Within this framework, researchers have developed many methods to properly

analyze incomplete data.

The likelihood-based methods generally adopt either frequentist maximum likeli-

hood (ML) methods or fully Bayesian approaches. The Expectation-Maximization

(EM) algorithm (Dempster, Laird and Rubin, 1977), and Monte Carlo simulation

techniques have made implementation of these methods computationally possible for

a selected set of models. The frequentist-based ML methods usually rely on large
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sample size whereas the fully Bayesian methods can handle small sample sizes. The

parameters of interest can be drawn from the joint posterior distribution along with

the missing values by rejection sampling methods or Monte Carlo Markov Chain

(MCMC) algorithms such as Gibbs sampler (Geman and Geman, 1984).

Inverse probability weighting (Little and Rubin, 2002) is another way to adjust

the complete case analysis, and is especially useful for unit non-response in survey

settings. An alternative is the propensity prediction method (Little and An, 2004),

which uses the propensity score as a covariate instead of weights.

Both maximum likelihood and Bayesian-based methods are computationally in-

tensive and require development of specialized codes. On the other hand, inverse

probability methods can handle special patterns of missing data (such as univariate

pattern or monotone pattern). Rubin (1977, 1987) proposed the multiple impu-

tation approach, which capitalizes on the complete data software programs. The

multiple imputation approach uses the observed data to estimate the distribution of

the missing data, and imputes the missing values from the predictive distribution. To

properly estimate the uncertainty due to filling in the missing values, multiple com-

pleted data sets are created by the same imputation algorithm, and analysis results

from each completed data set are combined to obtain the final inference following

Rubin’s (1977) formula.

An advantage of this approach, especially when data are missing arbitrarily in

a complex study, is that once the missing data are imputed, one can analyze the

completed datasets as if there were no missing values by simply using existing soft-

ware packages. If the same data are analyzed by various researchers, a well-imputed

data source can ensure that analysis results by different researchers are consistent.

This approach also can be viewed as a small simulation approximation for the fully
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Bayesian analysis when the model used for the imputation is also the model for the

analysis.

Numerous approaches have been developed for creating multiple imputations.

Some common imputation methods include nonparametric methods such as Hot Deck

imputation (Andridge and Little, 2010), and model-based methods based on a joint

distribution of all variables with missing values conditional on all the variables that

have no missing values. However, when a study has a complex data structure with

many types of variables, skip patterns, structural dependencies etc., both Hot-deck

and joint model approaches are difficult, if not impossible, to implement.

1.2 Sequential Regression Multivariate Imputation (SRMI)

When joint modeling becomes difficult in practice, an alternative is to use a se-

quential regression multivariate imputation (SRMI) algorithm. This approach as-

sumes a set of univariate regression models for each missing variable and has gained

popularity due to its flexibility and ease of implementation. First proposed in Ken-

nickell (1991), this approach is also commonly known as multiple imputation by

chained equations (MICE) or multiple imputation by fully conditional specification

(FCS).

The algorithm can be described as follows. Let the data set on n subjects consist of

q variables with no missing values arranged in an n×q matrix, U . Let Y1, Y2, . . . , Yp be

p variables with some missing values. Sequential regression multivariate imputation

is an iterative approach for imputing the missing values in Yj through random draws

based on fitting a regression model Pr(Yj|U, Y[−j]) where Y[−j] is all the variables with

missing values except Yj (Van Buuren and Oudshoorn, 1999, Raghunathan et al.,

2001). Specifically, imputations for Yj at iteration t are drawn from the predictive
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distribution, Pr(Yj|U, Y (t)
1 , Y

(t)
2 , . . . , Y

(t)
j−1, Y

(t−1)
j+1 , . . . , Y

(t−1)
p ) where Y

(s)
l is the filled

in Yl at iteration s (observed or imputed). Each predictive distribution corresponds

to an appropriate regression model.

At each iteration, imputation involves two steps: (1) the regression model is fit to

the observed values of the variable being imputed and all other variables (observed or

imputed), and the parameters are drawn from the approximate posterior distribution;

and (2) the draws from the regression model given the drawn parameters and all other

variables are used as imputations for the missing values. The software IVEWARE

(Raghunathan et al., 2001) implements this approach using a fully Bayesian approach

(that is, Steps 1 and 2). Several other additional features such as placing bounds

on the imputed values, restricting the sample to accommodate skip patterns, model

tuning, and diagnostics are built into the software. A similar approach has been

implemented in PROC MI in SAS (2008), MICE (Van Buuren and Oudshoorn, 1999)

and MI (Su et al., 2011) in R, STATA (Royston, 2005) and SPSS (SPSS, 2009).

The sequential regression approach has two major practical advantages over other

model-based imputation methods. Firstly, it enables handling of complex data struc-

tures by focusing on a set of regression models with a univariate outcome. The flexi-

ble selection of regression models also enables better prediction of the missing values

based on other variables, and the regression models are more intuitive to analysts

than a joint model. Secondly, individual regression models can easily account for

study designs such as skip patterns, logical constraints, bounds for imputed values

and consistency requirements.

1.2.1 Issues

A theoretical weakness of this approach is that the specifications of fully condi-

tional distributions for a set of variables do not guarantee the existence of a joint



6

distribution. Theoretical assessment of SRMI is limited in the literature. In Liu et al.

(2014), the convergence properties were studied when the joint distribution exists;

however, this may not be the case for general SRMI by common GLMs. Empirical

studies have shown that a few iterations are sufficient to utilize the predictive power

of the observed covariates in creating imputations (Van Burren, 2007), but such

examples are often limited to linear regression models. Similar simulation studies

(Collins, Schafer and Kam, 2001) have proposed guidance for SRMI such as rec-

ommending the use of the most inclusive policy; therefore, careful examination for

general model specification is needed.

When the missingness is general and models other than linear regression models

are used, SRMI may not work well in some cases. Li, Yu and Rubin (2012) have

demonstrated the need for caution through the use of some theoretical examples.

This thesis studies one motivating trivariate count variable example extensively. In

particular, a simulation study shows that with poorly fit model sequences, one SRMI

algorithm for this example may diverge. Therefore, the regular SRMI needs to be

modified to avoid such behavior.

1.3 Thesis Layout

In order to address the issues above, this thesis work investigates the convergence

properties of SRMI in various cases, and proposes modifications for improvement. It

consists of the following chapters.

Chapter 2 assesses the convergence properties of SRMI for the simple case where

each subject may be missing a value on at most one variable. We define several

classes of generalized linear regression model sequences according to their model

compatibility and validity properties. We also establish two sufficient conditions that
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allow the algorithm to perform well. For all types of compatible and incompatible

model sequences, we conduct simulation studies to evaluate their convergence and

performance. We then use the results to develop criteria for the choice of imputation

models. This chapter was published as Zhu and Raghunathan (2015).

Chapter 3 proposes a modified block sequential regression multivariate imputa-

tion (BSRMI) approach to divide the data into blocks when imputing each variable

based on missing data patterns and tune the regression models through compatibil-

ity restrictions. This is extremely helpful to avoid divergence when it is difficult to

get well-fitting models across all records with missing values for a general pattern

of missing data. We establish two sufficient conditions for the convergence of the

algorithm, and study the repeated sampling properties of inferences using several

simulated data sets.

Chapter 4 extends the imputation model selection to quasi-likelihood regression

models in both SRMI and BSRMI, when it is difficult to identify a well-fitting gener-

alized linear model sequence. We examine the performance of the modified approach

through simulation studies. We demonstrate that the new approach can be used to

improve repeated sampling properties due to their improved model prediction.

Finally, Chapter 5 summarizes the findings and discusses limitations and future

work.



CHAPTER II

Convergence Properties of SRMI for Single Variable Missing
Patterns

Abstract

A sequential regression or chained equations imputation approach uses a Gibbs

sampling type iterative algorithm which imputes the missing values using a sequence

of conditional regression models. It is a flexible approach for handling different types

of variables and complex data structures. Many simulation studies have shown that

the multiple imputation inferences based on this procedure have desirable repeated

sampling properties. However, a theoretical weakness of this approach is that the

specification of a set of conditional regression models may not be compatible with a

joint distribution of the variables being imputed. Hence, the convergence properties

of the iterative algorithm are not well understood. This chapter develops conditions

for convergence and assesses the properties of inferences from both compatible and

incompatible sequence of regression models. The results are established for the miss-

ing data pattern where each subject may be missing a value on at most one variable.

The sequence of regression models are assumed to be empirically good fit for the

data chosen by the imputer based on appropriate model diagnostics. The results are

used to develop criteria for the choice of regression models.

8
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Key Words: Bayesian analysis; Chained equations, Compatible conditionals;

Conditional specifications; Exponential family; Gibbs sampling; Missing data; Mul-

tiple imputation

2.1 Introduction

Consider a data set with p variables, Y1, . . . , Yp, with some missing values. The

sequential regression (or chained equations, flexible conditional specifications) impu-

tation approach uses a Gibbs sampling style iterative algorithm where, at iteration

t = 1, . . . , T , the imputations for missing values in variable Yi are drawn from the

posterior predictive distribution,

p(Yi | Y (t)
1 , . . . , Y

(t)
i−1, Y

(t−1)
i+1 , . . . , Y (t−1)

p ),

where Y
(t)
j equals the observed value, if available, or an imputed value at iteration t, if

missing. Denoting Y
(t)
[−i] = {Y (t)

1 , . . . , Y
(t)
i−1, Y

(t−1)
i+1 , . . . , Y

(t−1)
p }, the posterior predictive

distribution corresponds to a parametric regression model, p(Yi | θi, Y (t)
[−i]) and a prior

distribution π(θi). Denoting Yi,obs and Yi,mis as the observed and missing values of

Yi, the following two step procedure is used to draw the missing values:

Step 1: Draw a value of θi, say, θ
∗
i , from its posterior density π(θi | Yi,obs, Y (t)

[−i]).

Step 2: Draw the set of missing values Yi,mis from the model p(Yi | θ∗i , Yi,obs, Y
(t)
[−i]).

For large samples, the first step may be skipped and the maximum likelihood or

any other consistent estimate of θi may be used in the second step. This approach

is not Bayesianly proper and may result in understating the variability among the

imputed values but may be negligible for large samples. Since our interest is in

establishing the asymptotic convergence properties, we skip the draw in Step 1 and
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use a consistent estimate of θi obtained from the data {Yi,obs, Y (t)
[−i]} (typically the

maximum likelihood estimate θ̂
(t)
i ) in Step 2.

The sequential regression approach was first used by Kennickel (1991) for imputing

the missing values in continuous variables in the Survey of Consumer Finances using

a sequence of linear regression models. Brand (1999), Van Buuren and Oudshoorn

(1999) and Raghunathan et al. (2001) generalized this approach by considering linear

regression for continuous, logistic for binary, multinomial logit for more than two

categories, Poisson for count and a two-stage model (logistic and then conditional

normal) for semi-continuous variables which are generally continuous but have a

spike at 0 (For example, real estate income, it is zero for a sizable fraction of the

population and a continuous value for the rest).

The sequential regression approach has two major practical advantages over other

model-based imputation methods. It enables handling of complex data structures

by focusing on a set of regression models with a univariate outcome. The flexible

selection of regression models enables better prediction of the missing values based

on other variables, and the regression models are more intuitive to analysts than a

joint model. Also, individual regression models can easily account for study designs

such as skip patterns, logical constraints, bounds for imputed values and consistency

requirements. The software IVEWARE (Raghunathan et al., 2001) implements this

approach using a fully Bayesian approach (that is, Steps 1 and 2). Several other

additional features such as placing bounds on the imputed values, restricting the

sample to accommodate skip patterns, model tuning and diagnostics are built into

the software. A similar approach has been implemented in PROC MI in SAS (2008),

MICE in the R package(Van Buuren and Oudshoorn, 1999) and in STATA (Royston,

2005). The recent issue of the Journal of Statistical Software (2012) has published
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several articles on this approach.

A theoretical weakness of this approach is that the specifications of conditional dis-

tributions for a set of variables do not guarantee the existence of a joint distribution,

and hence, it is not clear whether the iterative algorithm will achieve any stability.

The convergence results established for the standard Gibbs sampling algorithms or

its variations may not be applicable. This problem was also discussed in the context

of spatial analysis (Besag, 1974), and the necessary and sufficient conditions for the

existence of a joint model were given by Arnold and Press (1989) for bivariate con-

ditional densities. Gelman and Speed (1993) also discussed the existence of a unique

joint distribution given a set of conditional and marginal distributions. Arnold et

al. (2001) gave a thorough introduction to the problem in general, and Gelman

and Raghunathan (2001) joined the discussion regarding the effect of incompatible

conditionally specified models in missing data analysis.

In the sequential regression imputation context, Van Buuren et al. (2006) showed

through simulations that incompatibility caused minimal effects in some cases. Drech-

sler and Rassler (2008) showed that choosing poorly fitting incompatible models may

lead to biased estimation. From a theoretical perspective, Li et al. (2012) used incom-

patible regression models with fixed parameters to illustrate that model incompati-

bility may or may not necessarily imply algorithmic incompatibility (convergence).

However, they fix the parameters across all the iterations but in the sequential regres-

sion approach parameters change with iterations. That is, the sequential regression

approach is a Markov type process. Liu and Gelman (2013) established technical

conditions for the convergence of the sequential regression approach if the station-

ary joint distribution exists. In practice, however, the models may be chosen where

the stationary joint distribution may not exist. Hence, we need to investigate the
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convergence properties under more general conditions.

The incompatibility may not lead to divergence can be illustrated using the follow-

ing bivariate example. Suppose that the data set with two variables (X,Y ) can be di-

vided into three groups: the nXY individuals with both (X,Y ) observed, the nX indi-

viduals with missing Y and the nY individuals with missingX. Assume that the miss-

ing data mechanism is ignorable as defined in Rubin (1976). After an empirical in-

vestigation, suppose that an imputer decides to use m1(y | x, θ1) ∼ exponential(θ1x)

and m2(x | y, θ2) ∼ exponential(θ2y) as conditional regression models. There is

no joint distribution with these two conditional distributions. At iteration t, the

imputation of missing Y is drawn from exponential(θ̂
(t)
1 x) where

θ̂
(t)
1 = (nXY + nY )/(

∑
i∈RXY

xiyi +
∑
i∈RY

x
(t−1)
i yi),

and the imputed values for the missing X is drawn from exponential(θ̂
(t)
2 y) where

θ̂
(t)
2 = (nXY + nX)/(

∑
i∈RXY

xiyi +
∑
i∈RX

xiy
(t)
i ).

Let ρXY , ρX and ρY be the limiting values of nXY /n, nX/n and nY /n, respectively,

as n→ ∞. The above two equations, in the limit, are

θ
(t)
1 = (ρXY + ρY )/(ρY /θ

(t−1)
2 + ρXYEo),

and

θ
(t)
2 = (ρXY + ρX)/(ρX/θ

(t)
1 + ρXYEo).

where Eo is the expected value of the product XY for the complete cases. It is easy

to show that the limiting case of the iterative algorithm given above converges to

θ∗1 = θ∗2 = 1/Eo. Thus asymptotically, as the sample size, n, the number of itera-

tions, t, and the number of imputations, m, all tend to infinity, the completed-data
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joint density function (X,Y ) averaged over infinite number of imputations, fMI(x, y),

tends to ρXY fo(x, y) + (ρY yf1(y) + ρXxf2(x)) exp(−xy/Eo)/Eo where fo(x, y) is the

joint density of (X,Y ) for complete cases, f1(y) is the marginal density of Y for sub-

jects with missing X and f2(x) is the marginal density of X for subjects with missing

Y . Thus, the practical validity of the multiple imputation inferences depends on the

closeness of m1(y | x, θ1) and m2(x | y, θ2) to the corresponding true conditional

distributions f1(y | x) and f2(x | y). Under the missing at random assumption,

if the model diagnostics based on the observed data indicate a good fit of the two

conditional exponential distributions then the incompatibility may have a very little

practical impact on the inferences. For example, if the true joint density function of

(X,Y ) is f(x, y) ∝ exp(−xy/Eo − εx − εy) where ε is an arbitrarily small positive

number, then an imputer is likely to choose the two conditional models given above.

In this case, fMI(x, y) is nearly the same as f(x, y) depending upon the ε.

On the other hand, suppose that the true joint density function of (X,Y ) is

f(x, y) ∝ exp(−αxy − βx − γy) with α > 0, β > 0 and γ > 0. The two conditional

distributions are exponential distributions with αx+ β as the parameter for f(y | x)

and αy+ γ as the parameter of f(x | y) (Arnold and Strauss, 1988) . Again, assume

that the missing data mechanism is ignorable and that the imputations are carried

out under the following sequence of regression models, m(x | y) ∼ exponential(φ1 +

φ2y) and m(y | x) ∼ exponential(φ3 + φ4x). These two conditional distributions are

not compatible with any joint distribution unless φ2 = φ4. Note that the functional

form of the two conditional densities match the true densities, and the two conditional

densities are compatible when (φ2 = φ4 > 0, φ1 > 0 and φ3 > 0), a subspace of

the joint parameter space (φi > 0, i = 1, 2, 3, 4) used by the imputer. We may

view these two conditionals as ”over parameterized” where the joint distribution is
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embedded within the joint parameter space of the conditional distributions used in

the imputation process. For such situations, Theorem 2.1 given in the next section

provides sufficient conditions for the sequential regression imputation approach to

yield a consistent estimator of the joint density function of (x, y). In fact, many

standard conditional regression models satisfy the sufficient conditions.

The rest of the chapter is organized as follows. Section 2.2 provides definition

of incompatibility and model validity to classify regression models in the sequen-

tial regression approach. Section 2.3, focusing on bivariate scenario, provides two

sufficient conditions for the convergence of the sequential regression approach and

obtain consistent estimators. Section 2.4 enhances the analytical results given in

Sections 3 through a simulation study for incompatible but approximately valid or

well fitting model sequences. Section 2.5 considers the convergence properties under

nonignorable missing data mechanisms. Section 2.6 extends the results for multi-

variate missing data with single variable missing data pattern (that is, any subject

is missing at most one variable). Section 2.7 summarizes the findings, discusses ex-

tensions for arbitrary pattern of missing data and the limitation of the sequential

regression algorithm.

2.2 Classification of Regression Model Sequences

Before we establish the convergence and consistency properties, we define the de-

gree or types of incompatibility among the conditionally specified regression model

in the sequential regression algorithm. We consider two types of incompatible mod-

els, one with reference to the true or actual distribution and another without any

reference to the true distribution. The former is of more theoretical interest or when

the posited joint distribution is too complicated and an imputer would like to find
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an approximately valid sequential regression model. The latter is tuned towards

selecting the kind of sequential regression models that will lead to convergence.

Definition 1 (Weakly Incompatible Model Sequence): Supposes that the

joint density function, f(y1, . . . , yp) has the conditional densities f(yi | y[−i], ψi),

i = 1, 2, . . . , p. A regression model mi(yi | y[−i], θi) with θi ∈ Θi is defined to

be validly specified for f(yi | y[−i], ψi) if the following condition holds: for any

ψi, θi can be expressed as (g(ψi), ξi), and there exists θ0i = (g(ψi), 0) ∈ Θi such

that mi(yi | y[−i], θ0i ) = f(yi | y[−i], ψi).

A sequence of regression models is defined to be weakly incompatible if each

regression model in the sequence is validly specified.

For example, both m(y | x, θ) ∼ N(θ10+θ11x, σ
2) and m(y | x, θ) ∼ N(θ10+θ11x+

θ12x
2, σ2) are validly specified models for the conditional density y | x ∼ N(2+x, 1).

The former is exactly specified, and the latter has an extra term with the parameter

ξ = θ12.

Definition 2 (Possibly Compatible Models): A sequence of regression

models mi(yi | y[−i], θi), θi ∈ Θi is defined to be possibly compatible, if there

exists a target joint density function p(y1, . . . , yp | θ) with conditional density

functions, pi(yi | y[−i], θYi|Y[−i]
) for i = 1, 2, . . . , p such that the exact functional

form of mi is the same as pi for some subspace ΘC ⊆ Θ1 × Θ2 × · · · × Θp and

(θY1|Y[−1]
, . . . , θYp|Y[−p]

) can be functionally expressed in terms of (θ1, θ2, . . . , θp).

Two linear regression models, m1(y|x, θ1) ∼ N(θ1o + θ11x, σ
2
12) and m2(x|y, θ2) ∼

N(θ20 + θ21y, σ
2
21) are weakly compatible if θ11/σ

2
12 − θ21/σ

2
21 = 0, θ211 6= σ2

12/σ
2
21 and

θ221 6= σ2
21/σ

2
12, where the first equation ensures that m1(y | x, θ1)/m2(x | y, θ2) can be

expressed as m(y)/m(x) and the latter two inequalities ensure that m(y) and m(x)



16

are integrable. They are also possibly compatible if the target joint distribution is a

bivariate normal distribution.

A subclass of possibly compatible model sequence with separate parameters for

marginal and conditional distributions is defined below. Anderson (1958) used the

separable parameters to develop maximum likelihood estimates for the mean and the

covariance matrix of the multivariate normal distribution with a monotone pattern

of missing data.

Definition 3 (Possibly Compatible Model Sequence With Separable

Marginal Parameters): A joint density function p(y1, . . . , yp | θ) is defined

to have separable marginal parameters if for any subset YM of Y = {y1, . . . , yp},

θYC |YM is distinctive from θYM , where YC = Y − YM , θYC |YM is from the condi-

tional distribution p(YC | YM , θYC |YM ) and θYM is from the marginal distribution

p(YM | θYM ). Equivalently, separable marginal parameters imply that for the

parameterization (θYM , θYC |YM ), the parameter space is the product of two inde-

pendent parameter spaces Θ = ΘYM ×ΘYC |YM .

A sequence of possibly compatible regression models is defined to have separable

marginal parameters if the target joint density function has separable marginal

parameters.

As an example, suppose that (Y1, . . . , Yp) is a p-dimensional continuous variable,

and the model sequence consists of

mi(yi | y[−i], θi) ∼ N(θi0 +
∑
j 6=i

θijyj, σ
2
i ), i = 1, . . . , p.

The target joint distribution is a multivariate normal distribution and the nec-

essary compatibility condition is that for any i 6= j, θij/σ
2
i − θji/σ

2
j = 0. The

marginal parameters are separable as follows: for any subset YM of Y = {y1, . . . , yp},
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mM(yM) ∼ MVN(µM ,ΣM) and for any yi ∈ YC = Y − YM , mi(yi | y[−i], θi) ∼

N(θi0 +
∑

j 6=i θijyj, σ
2
i ).

Suppose that (Y1, . . . , Yp) is a p-dimensional binary variable, and model sequence

consists of

mi(yi | y[−i], θi) ∼ Bernoulli

(1 + exp

(
−θi0 −

∑
j 6=i

θijyj −
∑

j 6=i,k 6=i,k<j

θijkyjyk

))−1
 ,

where i = 1, 2, . . . , p. The target joint distribution is a multivariate Bernoulli distri-

bution and the compatibility condition is that for any different i, j and k, θij = θji

and θijk = θjik = θkij. The marginal parameters are separable as follows: for any

subset YM of Y = {y1, . . . , yp}, YM follows a multivariate Bernoulli distribution and

for any yi ∈ YC = Y − YM ,

mi(yi | y[−i], θi) ∼ Bernoulli

(1 + exp

(
−θi0 −

∑
j 6=i

θijyj −
∑

j 6=i,k 6=i,k<j

θijkyjyk

))−1
 .

In summary, Definition 1 classifies all regression model sequences into valid and

invalid sequences with reference to the true joint density function of the variables

being imputed; Definition 2 classifies model sequences into possibly compatible and

incompatible sequences regardless of the true underlying joint distribution of the

variables. The possibly compatible sequence has a target joint density function

within the parameter space; Definition 3 defines a subclass of possibly compatible

sequences based on the property of the target joint distribution’s marginal parameter

property.

2.3 Bivariate Missing Data

Before we consider the multivariate imputation problem, we consider the bivari-

ate case, mostly for notational simplicity and ease of presentation. For now, we

assume that the missing data mechanism is ignorable as in Rubin (1976) and all
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the conditional distributions belong to the exponential family. We consider non-

ignorable missing data mechanisms in Section 2.5. The convergence and consistency

are asymptotic properties as the sample size, the number of imputation and the

number of iterations or sequential updates all tend towards ∞.

Suppose that (X,Y ) follows a joint distribution with the joint density fXY (x, y |

ψ), the marginal densities fX(x | ψX) and fY (y | ψY ), and the conditional densities

fY |X(y | x, ψ1) and fX|Y (x | y, ψ2). Let R denote the response pattern where R = 0

consists of complete cases {(x0i, y0i)}, i = 1, . . . , n0; R = 1 consists of cases with

missing X but observed Y , {y1j, j = 1, . . . , n1}; and R = 2 consists of cases with

missing Y but observed X, {x2k, k = 1, . . . , n2}. The missing data to be imputed

consists of {x1j, j = 1, . . . , n1} when R = 1 and {y2k, k = 1, . . . , n2} when R = 2.

The total sample size is n = n0 + n1 + n2. We also assume that the proportion of

missing data will be nontrivial in a sense that as n→ ∞, n0/n→ ρ and n1/n→ ρ1,

where 0 < ρ < 1 and 0 < ρ1 < 1 − ρ. We denote Pr(R = 1 | X,Y ) = g1(y),

Pr(R = 2 | X,Y ) = g2(x) and Pr(R = 0 | X,Y ) = 1 − g1(y) − g2(x), where

parameters in g1 and g2 are distinct from ψ, the parameters in the complete data

model. It is easy to show that f(x | y,R = 1) = f(x | y,R 6= 1) = fX|Y (x | y, ψ2),

and f(y | x,R = 2) = f(y | x,R 6= 2) = fY |X(y | x, ψ1).

The sequential regression imputation algorithm assumes a regression modelm1(y |

x, θ1) for y given x and m2(x | y, θ2) for x given y respectively. We assume that the

regression models are generalized linear models from the exponential family:

m1(y | φ1, δ1, x) = exp
{[
T1(y)

Tφ1 − b1(φ1)
]
/a1(δ1) + c1(y, δ1)

}
,

m2(x | φ2, δ2, y) = exp
{[
T2(x)

Tφ2 − b2(φ2)
]
/a2(δ2) + c2(x, δ2)

}
,

where θi = (φi, δi), i = 1, 2 and the link functions h1 and h2 connect the condi-
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tional means and predictor variables through h−1
1 (
∑U

u=0 θ1uh1u(x)) = b′1(φ1) and

h−1
2 (
∑V

v=0 θ2vh2v(y)) = b′2(φ2).

At iteration t, the algorithm is executed in two steps:

Step 1: θ1
(t) is estimated by regressing {y0i, y1j} on {x0i, x(t−1)

1j } with modelm1,

and the missing values of y, {y(t)2k }, are drawn from the conditional distribution

m1(y | {x2k}, θ(t)1 );

Step 2: θ2
(t) is estimated by regressing {x0i, x2k} on updated {y0i, y(t)2k } with

modelm2, and the missing values ofX, {x(t)1j }, are drawn fromm2(x | {y1j}, θ(t)2 ).

To be specific, the above two steps calculate the log-likelihood functions at itera-

tion t for the two models:

l1(θ1 | Xobs, Yobs, X
(t−1)
mis ) =

∑
i

logm1(y0i | x0i, θ1) +
∑
j

logm1(y1j | x(t−1)
1j , θ1),

l2(θ2 | Xobs, Yobs, Y
(t)
mis) =

∑
i

logm2(x0i | y0i, θ2) +
∑
k

logm2(x2k | y(t)2k , θ2),

and estimate the parameters (θ
(t)
1 , θ

(t)
2 ) by solving the score equations:

s1(θ1 | Xobs, Yobs, X
(t−1)
mis ) = ∂l1(θ1 | Xobs, Yobs, X

(t−1)
mis )/∂θ1 = 0,

s2(θ2 | Xobs, Yobs, Y
(t)
mis) = ∂l2(θ2 | Xobs, Yobs, Y

(t)
mis)/∂θ2 = 0.

The completed data set at iteration T consists of {(x0i, y0i), (x(T )1j , y1j), (x2k, y
(T )
2k )}.

Suppose θ
(T )
1 and θ

(T )
2 are the estimates of θ1 and θ2 respectively. We wish to study

the properties of these estimates as n and T tends to ∞.

When the sample size is large and with infinite number of imputations, the score
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equations given above can be approximated by (or tend to) the following equations:

s̃1(θ1 | θ2(t−1), ψ) = n0

∫∫
∂ logm1(y | x, θ1)

∂θ1
fXY (x, y | R = 0)dxdy

+n1

∫∫
∂ logm1(y | x, θ1)

∂θ1
m2(x | y, θ2(t−1))dxfY (y | R = 1)dy.

s̃2(θ2 | θ1(t), ψ) = n0

∫∫
∂ logm2(x | y, θ2)

∂θ2
fXY (x, y | R = 0)dxdy

+n2

∫∫
∂ logm2(x | y, θ2)

∂θ2
m1(y | x, θ1(t))dyfX(x | R = 2)dx.

Then both s̃1(θ
(t)
1 | θ(t−1)

2 , ψ) and s̃2(θ
(t)
1 | θ(t)2 , ψ) converge to 0 in probability as

n → ∞, which lead to an approximate iterative algorithm s̃1(θ
(t)
1 | θ(t−1)

2 , ψ) =

0 and s̃2(θ
(t)
2 | θ(t)1 , ψ) = 0. Therefore, the implicit recursive algorithm θ

(t)
1 =

s̃−1
1 (θ

(t−1)
2 , ψ), θ

(t)
2 = s̃−1

2 (θ
(t)
1 , ψ) has the convergence property similar to that of the

imputation algorithms asymptotically.

Theorem 2.1. Suppose that the imputation models are weakly incompatible

as defined in the previous section and the conditional distributions satisfy the

following usual regularity conditions:

1. The density functions m1 and m2 are differentiable with respect to θ1 and θ2

respectively and the differentiation and integration are interchangeable with

respect to (x,θ1) for m1 and (y, θ2) for m2 respectively

2. The mean and the variance of the score functions given above exist under

both the posited (m1,m2) and the true models (fX|Y , fY |X).

Then as the sample size n, the number of imputations m and the number of

iterations t tend to ∞, the regression models m1(y | x, θ(t)1 ) → fY |X(y | x, ψ1)

and m2(x | y, θ(t)2 ) → fX|Y (x | y, ψ2).

The proof of the Theorem is given in Appendix 2.1. To illustrate further, we
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consider two examples to assess the convergence properties of the asymptotic iterative

algorithm.

Example 2.1 (Two Linear Regression Models): Suppose the data (X,Y )

are generated from a bivariate normal distribution BVN(µ,Σ) with the condi-

tional distributions y | x ∼ N(α10 + α11x, τ
2
12) and x | y ∼ N(α20 + α21y, τ

2
21).

where α11/τ
2
12 = α21/τ

2
21. Suppose data are missing completely at random:

π0 = pr(R = 0), π1 = pr(R = 1) and π2 = pr(R = 2). The asymptotic iterative

algorithm is calculated in Appendix 2.2. The estimated regression parameters

are shown to converge to θ∗1 = (α10, α11, τ
2
12)

T , and θ∗2 = (α20, α21, τ
2
21)

T . The

rate of convergence for the iterative algorithm is π1π2/{(π0 + π1)(π0 + π2)}.

Example 2.2 (Two Logistic Regression Models): Suppose the data (X,Y )

are generated from a bivariate Bernoulli distribution with pr(X = 0, Y = 0) =

p00, pr(X = 0, Y = 1) = p01, pr(X = 1, Y = 0) = p10 and pr(X = 1, Y = 1) =

p11 = 1− p00 − p01 − p10, with conditional distributions y | x ∼ Bernoulli{(1 +

exp(−α10 − γ12x))
−1} and x | y ∼ Bernoulli{(1 + exp(−α20 − γ21y))

−1}, where

γ12 = γ21. Suppose data are missing completely at random: π0 = pr(R = 0),

π1 = pr(R = 1) and π2 = pr(R = 2). The asymptotic iterative algorithm is

calculated in Appendix 2.2. The estimated regression parameters are shown to

converge to θ∗1 = (α10, γ)
T , and θ∗2 = (α20, γ)

T where γ12 = γ21 = γ.

We now show the results for the possibly compatible models, where the posited

conditional models may not agree with the true distributions but may be compatible

with some joint distribution in a subset of the parameter space. The following theo-

rem provides conditions for the convergence of the sequential regression imputation

algorithm.
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Theorem 2.2. Suppose a sequential regression imputation algorithm uses pos-

sibly compatible models m1(y | x, θ1) and m2(x | y, θ2), with pXY (x, y | θ1, θ2)

as the joint distribution only when θ = (θ1, θ2) ∈ ΘC ⊂ Θ1 × Θ2. If pXY (x, y |

θ1, θ2, θ ∈ ΘC) has separable marginal parameters and (θ∗1, θ
∗
2) is the maximum

likelihood estimate of (θ1, θ2) from the joint model, then under the same regular-

ity conditions in Theorem 2.1 with respect to differentiation/integration and the

existence of the mean/variance of the score functions , m1(y | x, θ(t)1 ) → p(y |

x, θ∗1) and m2(x | y, θ(t)2 ) → p(x | y, θ∗2) as n, t→ ∞.

The proof of this theorem is given in Part 2 of Appendix 2.1. Note that if the

compatibility condition is strictly imposed when θ1 and θ2 are estimated at each

iteration, then the imputation algorithm is a simplified version of a standard Markov

chain with convergence to a stationary joint distribution. However, the sequential re-

gression imputation does not estimate θ1 and θ2 simultaneously within one iteration,

and the compatibility condition is ignored in the estimation process. For sequences

with separable marginal parameters such as Example 2.1 and Example 2.2, since

(θ1
∗, θ2

∗) ∈ ΘC holds inherently, according to Theorem 2.2, the compatibility con-

dition is approximately satisfied for (θ1
(t), θ2

(t)) after a certain number of iterations.

However, we will show that this is not always true for possibly compatible sequences

without separable marginal parameters.

When a possibly compatible model sequence does not have separable marginal

parameters, the marginal distributions p(x | θ1, θ2) and p(y | θ1, θ2) from the target

joint distribution also depend on regression parameters, and, hence, the log-likelihood

functions from the sequential regression imputation and joint modeling imputation

differ. For an heuristic explanation, consider θ1 from m1 as an example. For any

single observation, the log-density function involving θ1 is log(m1(y | x, θ1)) from
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the sequential regression model, where as it is log(m1(y | x, θ1)p(x | θ1, θ2)) from

the joint model. Because the distribution of observed X involves θ1, in general, the

log-likelihood functions of θ1 from the joint model and the sequential regression differ.

Therefore, the two algorithms yield different parameter estimates and imputation

results.

To clarify this aspect further, consider the following simulation examples:

Example 2.3 (Two Poisson Regression Models): Consider, m1(y|x, θ1) ∼

Poisson(exp(θ10 + θ11x)) and m2(x|y, θ2) ∼ Poisson(exp(θ20 + θ21y)). The

compatibility condition requires that θ11 = θ21 < 0, and the corresponding joint

distribution is m(x, y | θ1, θ2, θ11 = θ21 < 0) = c(θ10, θ20, θ11) exp(θ10y + θ20x +

θ11xy), where c(θ10, θ20, θ11) is the normalizing constant. The log-density func-

tion involving (θ10, θ11) is − exp(θ10+θ11x)+(θ10+θ11x)y from the conditionally

specified model m1, and log(c(θ10, θ20, θ11))+(θ10+θ11x)y from the joint model.

For three different bivariate count data sets, we applied the same sequential

regression imputation algorithm assuming two conditional Poisson regression

models (T , the number of iterations, is set as 10000):

(1) We generated the complete data from Y ∼ Poisson(2.5) and X | Y ∼

Poisson(exp(3 − 0.3Y )), and the data are missing completely at random with

n0 = n1 = n2 = 10000. Sequential regression imputation estimates are ap-

proximately θ
(T )
11 = −0.1 and θ

(T )
21 = −0.2. Although both slope estimates are

negative, they are not equal, and the compatibility condition is not satisfied.

(2) We generated the complete data from Y ∼ Poisson(2.5) and X | Y ∼

Poisson(exp(−1 + 0.3Y )), and the data are missing completely at random with

n0 = n1 = n2 = 10000. Sequential regression imputation estimates are approx-

imately θ
(T )
11 = 0.2 and θ

(T )
21 = 0.25. They are neither negative nor equal, and
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the compatibility condition is not satisfied.

(3) We generated the complete data from a bivariate Poisson distribution ∝

exp(2y + x − 0.3xy), with conditionals Y | X ∼ Poisson(2 − 0.3X) and X |

Y ∼ Poisson(exp(1 − 0.3Y )), and the data are missing completely at random

with n0 = n1 = n2 = 10000. Sequential regression imputation estimates are

θ
(T )
11 = −0.3 and θ

(T )
21 = −0.3. The imputation results are compatible since both

models are correctly specified.

The simulations show that in general the possibly compatible regression model se-

quences with non-separable marginal parameters do not converge to the joint models

(Situations (1) and (2)), unless the conditional distributions are correctly specified

(Situation(3)). The practical consequence of these findings is that to yield approx-

imately unbiased results, both conditional distributions have to be as close to the

corresponding true conditional distributions as possible to achieve convergence, re-

gardless of compatibility with respect to any joint distribution. This underscores the

importance of model diagnostics to check the conditional regression model fit to the

data.

Suppose X is a binary variable and Y is a continuous variable, and sequen-

tial regression imputation assumes the following regression models:m1(y | x, θ1) ∼

N (θ10 + θ11x, σ
2
12) and, m2(x | y, θ2) ∼ Bernoulli

[
(1 + exp(−θ20 − θ21y))

−1] .
The target joint distribution exists under the compatibility condition θ11/σ

2
12 −

θ21 = 0. Although the parameter of the marginal distribution of X can be separated

from the conditional distribution of Y |X, the parameters of the marginal distribution

of Y cannot be separated from the conditional distribution of X|Y . Therefore, this

is a possibly compatible model sequence with non-separable marginal parameters.

We generated 100 replicates of data of sample size 1000 from a population with
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x ∼ Bernoulli(p = 0.7), y|x ∼ N(1 − 2x, 1). To generate the missing values, we

divided the data into two random halves. In the first group, y is observed and the

probability of x being observed is pr(x is observed | y) = [1 + exp(−0.45y + 2)]−1

and in the second group, x is observed and the probability of y being observed is

pr(y is observed | x) = [1 + exp(−0.5x− 0.3)]−1. SRMI algorithm using linear and

logistic regression model sequence is applied on each replicate to obtain 10 multiply

imputed data sets. For each regression parameter, for instance θ10, the average of the

estimate, θ10(r) =
∑10

m=1

∑1000
t=501 θ

(t)
10 (m, r)/500/10, after a burn-in of 500 iterations

is calculated for the rth replicate, and then the mean of the 100 averaged estimates

parameters and the corresponding standard deviation are obtained. These values

for various parameters are θ̄10 = 1.01(sd = 0.08), θ̄11 = −2.00(sd = 0.10), σ̄12 =

1.00(sd = 0.03), θ̄20 = 0.88(sd = 0.17), θ̄21 = −2.04(sd = 0.21). Most importantly

the left side of the compatibility condition θ11/σ
2
12 − θ21 has a mean of 0.03 and

standard deviation of 0.07 from the 100 replicates. The results show that since

linear and logistic regression model sequence is validly specified for the data set,

unbiased estimates of the regression parameters and compatibility conditions are

asymptotically reached during SRMI procedure as implied by Theorem 2.1.

When the model sequence is neither weakly incompatible or possibly compatible,

then there is no joint model for the sequence to converge to. However, as we showed

in Section 2.1, the sequential regression algorithm can still converge. In general,

the estimates from sequential regression imputation algorithms with incompatible

models depend on the population distribution, the missing data mechanism and the

regression models. It is difficult, if not impossible, to obtain analytical results about

the convergence except for some examples. We now describe the results from simu-

lation study designed to study the properties of the sequential regression algorithm
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for such incompatible but empirically well-fitting regression models.

2.4 Simulation Studies for a Bivariate Missing Data

One approach to define a well-fitting regression model is through Kullback-Leibler

divergence measure. For example, the maximum likelihood estimates of the param-

eters in the regression model m1(y | x, θ1) can be viewed as an asymptotic equiva-

lent to those obtained by minimizing the relative entropy of the regression model,∫∫
log[f(y | x)/m1(y | x, θ1)]f(x, y)dxdy or the Kullback-Leibler divergence between

the regression model and the true conditional density. Since it is asymmetric and

does not satisfy the triangle inequality, it is not a metric. However, the divergence

is always positive unless the two distributions are the same, therefore it is often

used to describe the discrepancy between the two distributions. We calculate the

divergence between the fitted regression model and the true conditional distribution∫
log[f(y | x)/m1(y | x, θ1)]f(y | x)dy at different values of x, and use the diver-

gence curve to describe the model fitness regarding the true model. For a well-fitting

model sequence, when the divergence curve between each regression model and the

true conditional model is approximately 0, draws from the fitted regression model

can be approximately treated as draws from the true model.

We now use an example to show that a well-fitting incompatible model sequence

can be approximately validly specified:

Example 2.4 (Two Gamma Regression Models):

y | x, θ1 ∼ Γ(K)−1(θ10 + θ11x)
−KyK−1 exp{−y(θ10 + θ11x)

−1},

x | y, θ2 ∼ Γ(J)−1(θ20 + θ21y)
−JxJ−1 exp{−x(θ20 + θ21y)

−1}.

For the simulation study, we generated data from the following population distri-
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bution:

fX(x | ψx) = βKΓ(K)−1x−K−1 exp(−β/x),

fY |X(y | x, ψ1) = Γ(J)−1(αx)−JyJ−1 exp{−y(αx)−1}.

Then X follows a marginal inverse Gamma distribution and Y given X follows a

conditional Gamma distribution. The corresponding conditional distribution of X

given Y is

fX|Y (x | y, ψ2) = Γ(K + J)−1(β + y/α)K+Jx−(K+J)−1 exp{−(β + y/α)x−1}.

The following parameters are chosen for the distributions: K = 3, β = 3, J = 5,

and α = 0.25.

We generated 500 data sets of sample size n=50, 100, 200, 500, 1000 and 10,000

from the bivariate distribution defined by fX and fY |X described as above. Some

values were set to missing based on the following missing at random mechanism:

first, data are divided equally into two random groups. In the first group, y is

fully observed and the probability of x being observed is pr(x is observed | y) =

[1 + exp(−1− 0.4y)]−1; In the second group, x is fully observed and the probability

of y being observed is pr(y is observed | x) = [1 + exp(−.5− 0.2x)]−1. This sets

about 25% of the values of each variable to be missing.

Based on empirical examination of this single data set, we determined the follow-

ing four sequential regression imputation methods using different sets of reasonable

regression models with varying degree of incompatibility to impute the missing val-

ues:
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1. Sequence 1 uses a possibly compatible regression model set:

m11(y
1/3 | x1/3, θ1) =

1√
2πσ2

12

exp

{
− (y1/3 − θ10 − θ11x

1/3)2

σ2
12

}
,

m12(x
1/3 | y1/3, θ2) =

1√
2πσ2

21

exp

{
− (x1/3 − θ20 − θ21y

1/3)2

σ2
21

}
.

2. Sequence 2 uses an incompatible regression model set:

m21(y
1/3 | x1/3, θ1) =

1√
2πσ2

12

exp

{
− (y1/3 − θ10 − θ11x

1/3)2

σ2
12

}
,

m22(x
1/3 | y1/3, θ2) =

1√
2πσ2

21

exp

{
− (x1/3 − θ20 − θ21y

1/3 − θ22/y)
2

σ2
21

}
.

3. Sequence 3 uses the incompatible regression model set:

m31(y | x, θ1) =
yθ12−1 exp(−y(θ10 + θ11x)

−1)

Γ(θ12)(θ10 + θ11x)θ12
,

m32(x | y, θ2) =
xθ22−1 exp(−x(θ20 + θ21y)

−1)

Γ(θ22)(θ20 + θ21y)θ22
.

4. Sequence 4 uses a weakly incompatible regression model set:

m41(y | x, θ1) =
yθ12−1 exp(−y(θ10 + θ11x)

−1)

Γ(θ12)(θ10 + θ11x)θ12
,

m42(x | y, θ2) =
(θ20 + θ21y)

θ22

Γ(θ22)
x−θ22−1 exp((θ20 + θ21y)/x).

Sequences 1 and 2 impute the missing values on the cube root scale, and then

transformed to the original scale.

We calculated the Kullback-Leibler divergence curves for all regression models

based on the complete data, or the “Before Deletion” data. The plots in Figure 2.1

show the divergence curves for each model from the four sets corresponding to fX|Y

and fY |X . From Sequence 1 to Sequence 4, the model fitting is gradually improved

since the divergence curve is gradually closer to 0 for both conditional densities, and

both divergence curves reach 0 for Sequence 4 as it uses a validly specified model
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set. In particular, the Kullback-Leibler divergence between fitted m32 and the true

conditional density ∫∫
log

fX|Y (x | y)
m32(x | y, θ̂BD2 )

fXY (x, y)dxdy

from Sequence 3 is uniformly close to 0 (less than 0.05 given any y); Furthermore,

in the neighborhood of θ∗1,∫∫
∂ logm31(y | x, θ1)

∂θ1

[
fY (y)m32(x | y, θ̂BD2 )− fXY (x, y)

]
dxdy = o(1),

which means that fitted m31 (based on Y and imputed X from fitted m32) is also

close to the true distribution. Therefore, we regard m31 and m32 in Sequence 3 as a

well-fitting model sequence for (X,Y ). The choice of these 4 sequences enables us

to demonstrate that better fitting model sequences yield better imputation results

regardless of model compatibility/incompatibility.
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Figure 2.1: Kullback-Leibler divergence curves between fitted regression models and true condi-
tional densities of four sets of models for Example 2.4.

All these models are reasonably well fitting models and cover the span of incom-

patibility that includes: (1) Possibly compatible sequence with separable marginal
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parameters; (2) Possibly compatible sequence with non-separable marginal parame-

ters; (3) Incompatible model sequence; and, finally, (4) Specified possibly compatible

sequence with non-separable marginal parameters; Model sequence 3 is a very well-

fitting but incompatible model sequence that can be chosen by imputers because of

the skewness of the residuals. The last model sequence may not likely to be cho-

sen in practice but it is from the true conditional distributions; This enables us to

demonstrate that convergence can be reached for all types of model sequences.

We also want to illustrate a gradual improvement strategy for practical purpose

through the first two algorithms: after conducting proper transformation such as

Box-Cox transformation determined by the available data, imputers may start with a

simple linear regression model sequence for the transformed data, and then gradually

improve the linear model sequence by fine-tuning it based on further model diagnosis,

such as adding extra nonlinear terms in the models; in our example, residual plots

suggest that the extra non-linear term 1/y in model m22 improves model fitting

compared to model m12.

Our primary evaluation criterion for imputation performance is the maximum

of absolute difference between the empirical joint distribution based on the “Before

Deletion” data and the “After Imputation” data at iteration T :
∥∥∥F̂ n,T

MI (x, y)− F̂ n
BD(x, y)

∥∥∥
∞
.

We evaluated this conservative distance measure at T=5, 10, 20, 100, 500 and 1000

iterations. We fixed the number of imputations at 100. For each of 500 data sets,

the distance measure was computed to form a function of n and T .

The averaged empirical joint distribution differences over 500 data sets from all

four algorithms with different sample sizes and T=100, 500 and 1000 iterations are

summarized in Figure 2.2. All sequences using fewer iterations T=5, 10, 20 yielded

larger differences with similar patterns, so we excluded them in the figure to achieve
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better visual effect. The simulation results show that as T and n increases, the

empirical joint distribution difference from each sequence stabilizes. When T and n

are sufficiently large, the average (SD) of the differences between the before deletion

and multiple imputation empirical distributions is 0.0288 (0.006) for Sequence 1;

0.0257 (0.006) for Sequence 2; 0.0188 (0.005) for Sequence 3 and 0.0155 (0.004) for

Sequence 4. The empirical joint distribution difference decreases from Sequence 1

to Sequence 4, indicating that as the model fitting is improved, the performance is

improved as well. Both incompatible but better fitting sets from Sequences 2 and

3 outperform the possibly compatible set with separable marginal parameters from

Sequence 1. The simulation study suggests that the validity of the inferences depends

more on the reasonableness of the model fit rather than the model compatibility.
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Figure 2.2: Maximum of absolute difference between empirical distributions based on multiply im-

puted data and before deletion data,
∥∥∥F̂n,T

MI (x, y)− F̂n
BD(x, y)

∥∥∥
∞
, from four imputation

algorithms plotted as a function of sample size n=50, 100, 200, 500, 1000 and 10000
and the number of iterations T = 100, 500, 1000 for Example 2.4.
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2.5 Non-ignorable Missing Data Mechanism

The sequential regression approach discussed earlier in this chapter ignores the

missing data mechanism and, hence, we limited our discussion to missing at random

mechanism. Nonetheless, it may be important to know what would happen if a user

were to use this approach when the mechanism is nonignorable.

• When data are missing not at random, the meaning of the validly specified

model is not clear and the modeling task will be different than the usual se-

quential regression approach. Theorem 2.1 clearly requires a validly specified

model and we believe that with a nonignorable missing data mechanism, the

sequential regression model ignoring the missing data mechanism cannot be a

validly specified model.

• It should be noted that even if one were to formulate a joint distribution for the

variables, ignore the missing data mechanism when actually it is nonignorable

then the algorithm (for example, Gibbs Sampling) may converge to something

that has very little meaning. This may be true also for SRMI. We investigate

further through a simulation study described later.

• Theorem 2.2 on the other hand is valid, as the construction and proof of Theo-

rem 2.2 do not rely on missing data mechanism but depend only on the separable

marginal parameter property of the target joint distribution.

To investigate further, we extended our simulation study in section 2.4 by chang-

ing only the missing data mechanism. We divided data into two equal random

groups. In the first group, y is fully observed and the probability of x being ob-

served is pr(x is observed | y) = [1 + exp(15 + 0.1y − 5x)]−1; In the second group, x

is fully observed and the probability of y being observed is pr(y is observed | x) =
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[1 + exp(12− 6y + 0.1x)]−1. This results in about 45% of x values and 35% of the y

values to be missing. Both x and y are missing Not at Random. Figure 2.3 shows a

plot of the maximum difference between before deletion and after imputation empiri-

cal CDFs; while the difference measure still converges for all algorithms as the sample

size and number of iterations increase, none of the difference measures is close to 0,

indicating biased imputation results due to ignoring the missing data mechanism.
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Figure 2.3: Maximum of absolute difference between empirical distributions based on multiply im-

puted data and before deletion data,
∥∥∥F̂n,T

MI (x, y)− F̂n
BD(x, y)

∥∥∥
∞
, from four imputation

algorithms plotted as a function of sample size n=50, 100, 200, 500, 1000 and 10000 and
the number of iterations T = 100, 500, 1000 when the data are not missing at random
in Example 2.4.

2.6 Multivariate Missing Data

The appeal of sequential regression is the ability to handle missing values in

complex multivariate data structure. The sequential regression imputation approach

for the p-dimensional data Y1, . . . , Yp, assumes mi(yi | y[−i], θi), and θ(t)i is estimated
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based on Yi,obs and Y
(t)
[−i]. Although the imputation procedure is similar to bivariate

algorithms, complications arise due to complex missingness patterns.

Consider the situation with three variables, (Y1, Y2, Y3), with all possible item

missing data patterns. The estimate θ
(t)
1 of θ1 in m1(Y1 | Y2, Y3, θ1) is obtained

by regressing the observed values of Y1 on the corresponding subset of Y2 and Y3.

The predictor subset consists of (Y2, Y3) in four missingness groups: 1. both are

observed, 2 & 3: one is observed and the other is imputed, and 4: both are imputed.

The predictor variables in the four groups are generally distributed differently, and

then each group plays a different role in estimating θ
(t)
1 . For a data set with p

variables, there are 2p − 1 possible missingness groups, including the complete cases

Ycc. It is difficult to establish results in generality given the complexity of the joint

distribution of the predictors.

2.6.1 Single Variable Missingness

We consider single variable missingness pattern where there is at most one variable

missing in any record. There are up to p+1 missingness groups, and we denote R = i

for subjects with Yi missing and R = 0 for the fully observed group.

During the estimation of each regression model, the subset of Y
(t)
[−i] form up to p

patterns, and the log-likelihood is

li(θi | Yi,obs, Y (t)
[−i]) = li(θi | Ycc) +

∑
j<i

li(θi | Y[−j], Y (t)
j ) +

∑
j>i

li(θi | Y[−j], Y (t−1)
j ).

If there is no missingness in Yj, li(θi | Y[−j], Y (t)
j ) is absorbed into li(θi | Ycc), therefore

we assume for simplicity that there is missingness in each variable.

The parameter estimate θ
(t)
i is obtained by solving the score equation

si(θi | Yi,obs, Y (t)
[−i]) = si(θi | Ycc) +

∑
j<i

si(θi | Y[−j], Y (t)
j ) +

∑
j>i

si(θi | Y[−j], Y (t−1)
j ) = 0.
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Based on θ
(t)
i , Yi,mis is drawn from mi(Yi,mis | Y[−i],obs, θ(t)i ), where Y[−i],obs are fully

observed. We now show that in terms of convergence properties, sequential regression

imputation algorithms for multivariate missing data with single variable missingness

are similar to those for bivariate missing data, and conclusions in Section 2.3 can be

extended. The following theorems are a generalization of Theorems 2.1 and 2.2 for

the bivariate case.

Theorem 2.3. Suppose p-dimensional data follow a joint population distribu-

tion f(y1, . . . , yp | ψ) with conditional densities {fi(yi | y[−i], ψi), i = 1, . . . , p}.

If the sequential regression imputation algorithm uses a weakly incompatible

model sequence {mi(yi | y[−i], θi), i = 1, . . . , p} and satisfies the regularity condi-

tions for the differentiation/integration and the mean/variance of the score func-

tions, then for i = 1, . . . , p,mi(yi | y[−i], θ(t)i ) → fi(yi | y[−i], ψi), as n, m, t→ ∞.

Theorem 2.4. Suppose that the sequential regression imputation algorithm

uses possibly compatible models {mi(yi | y[−i], θi), i = 1, . . . , p} and satisfies the

regularity conditions in Theorem 2.3, with θ ∈ ΘC as the subspace of Θ1×Θ2×

. . . xΘp where p(y1, . . . , yp | θ1, . . . , θp, θ ∈ ΘC) defines the joint distribution. If

the model sequence has separable marginal parameters and (θ∗1, . . . , θ
∗
p) ∈ ΘC is

the maximum likelihood estimate of (θ1, . . . , θp) based on the joint likelihood,

then mi(yi | y[−i], θ(t)i ) → p(yi | y[−i], θ∗i ), as n, m, t→ ∞.

Proof of both theorems are extensions of proofs for Theorems 2.1 and 2.2 and

these are included in the supplementary material available on the website or from

the authors.
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2.7 Discussion

Multiple imputation through specifications of a sequence of conditional regression

models is a convenient approach for handling complex data structures with differ-

ent types of variables. Several software packages have been developed to implement

this approach and are being used in several substantive analyses in various disci-

plines. However, theoretical properties of this method have not been systematically

investigated. One key question is whether using a set of incompatible conditional

distributions leads to convergence or stability of the infinite imputation completed

data statistics. Recently, Li, Yu and Rubin (LYR) (2012) have raised caution using

some theoretical examples. However, these examples differ from the usual sequential

regression setup in many ways. We address these examples in light of the results

given in this chapter.

Example 1 in LYR uses a deterministic set of incompatible conditional normal

distributions (that is, the same parameters are used across all updating iterations)

to show that different ordering of updating the iterations leads to different results.

However, the sequential regression does not use deterministic set of conditionals but

the parameters themselves are updated at each iteration. We conducted a simu-

lation study with the complete data (before deletion data sets) of size n = 7000

on 3 variables, Y = (Y1, Y2, Y3), from a multivariate normal distribution with mean

(−1, 0, 1) and the covariance matrix (1 − ρ)I3 + ρJ3 where I3 is an identity matrix

of order 3 and J3 is a 3 × 3 matrix of ones. Some values were deleted such that

all possible 7 patterns are represented in the after deletion data. The number of

subjects in each pattern was 1000. The missing values were imputed using the fol-

lowing weakly incompatible models: (1) Y1|Y2, Y3 ∼ N(αo + α1Y2 + α2Y3, σ
2
1); (2)
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Y2|Y1, Y3 ∼ N(βo + β1Y1 + β2Y3, σ
2
2); and (3) Y3|Y1, Y2 ∼ N(γo + γ1Y1 + γ2Y2, σ

2
3).

The imputations were carried out in three different orders (Y1, Y2, Y3), (Y2, Y1, Y3)

and (Y3, Y1, Y2). The number of imputations was fixed at 100 and the number of

iterations considered were T = 20, 50, 200, 500 and 1000. Our results show that the

multiple imputation estimates of the mean and the covariance matrix are unbiased

for each of the three orders in which imputations were carried out. This shows that

order of the imputation may be irrelevant and incompatibility does not result in bias

as long as each conditional model is validly specified.

Example 3 in LYR uses a grossly misspecified model sequence in the imputation

for a bivariate normal data. When the imputation models are misspecified or the

missing data mechanism is not ignorable, it is difficult to assess whether it is the

property of the method or the effect of misspecification. Even in this case, consider

the following situation: suppose the data are missing at random and the imputer

uses the model Y1|Y2 ∼ N(αo + α1Y2, σ
2
1) and Y2|Y1 ∼ N(βo + β1Y1 + β2Y

2
1 , σ

2
2) then

Theorem 2.1 applies and the sequential regression imputation algorithm results in

the consistent estimator of the joint distribution of (Y1, Y2). The key, therefore, is not

to fix the parameters across the iterations but revise the estimates based on updating

of the imputed values. Thus asymptotically, the observed data tend to pull towards

the consistent model when the joint distribution is embedded in the parameter space

of the conditional distributions. Thus, our investigations suggest that the sequential

regression approach may yield valid results if the conditional distributions fit the

data well even though they may not be compatible with any joint distribution.

There are number of limitations in this study. The investigation was restricted

to a missing data pattern with any subject missing values on at most one variable.

This was mainly to restrict the number of missing data patterns to a manageable
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number. Further investigations are necessary to assure that the algorithm will con-

verge and provide valid results for more complex missing data pattern. We have

performed a limited simulation study to consider more complex pattern of missing

data where well fitting incompatible models were used to impute the missing values.

The multiple imputation inferences had desirable repeated sampling properties even

in this situation. However, establishing the exact conditions for convergence seems

to be more complicated and further research is necessary. On the contrary, using

a poorly fitting but compatible model sequence led to inferences with undesirable

properties. Even this simulation study suggests that an imputer has to choose the

models carefully to ensure that each conditional model fits the data well.

Appendix 2.1

Part 1: Proof of Theorem 2.1

Proof: Since weakly incompatible model sequences include two cases, we first

prove the theorem for exactly specified sequences, and assume that the functional

forms of m1(y | x, θ1) and m2(x | y, θ2) correspond to the true conditional densities

fX|Y (x | y, ψ1) and fY |X(y | x, ψ2) respectively. The asymptotic score functions

defining the iterative algorithm can be rewritten as below:

s̃1(θ1 | θ2(t−1)) =

∫∫
∂ logm1(y | x, θ1)

∂θ1
{n0fXY (x, y | R = 0)

+n1m2(x | y, θ2(t−1))fY (y | R = 1)}dxdy;

s̃2(θ2 | θ(t)1 ) =

∫∫
∂ logm2(x | y, θ2)

∂θ2
{n0fXY (x, y | R = 0)

+n2m1(y | x, θ1(t))fX(x | R = 2)}dxdy.
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Since the missingness is ignorable, we have

n0fXY (x, y | R = 0) + n1m2(x | y, ψ2)fY (y | R = 1)

= (n0 + n1)fXY (x, y | R 6= 2)

= (n0 + n1)m1(y | x, ψ1)fX(x | R 6= 2)

and

n0fXY (x, y | R = 0) + n2m1(y | x, ψ1)fX(x | R = 2)

= (n0 + n2)fXY (x, y | R 6= 1)

= (n0 + n2)m2(x | y, ψ2)fY (y | R 6= 1).

It is then easy to show that (ψ1, ψ2) satisfies the asymptotic score equations

s̃1(ψ1 | ψ2) = (n0 + n1)

∫∫
∂ logm1(y | x, θ1)

∂θ1
m1(y | x, ψ1)fX(x | R 6= 2)dxdy

∣∣∣∣
θ1=ψ1

= 0;

s̃2(ψ2 | ψ1) = (n0 + n2)

∫∫
∂ logm2(x | y, θ2)

∂θ2
m2(x | y, ψ2)fY (y | R 6= 1)dxdy

∣∣∣∣
θ2=ψ2

= 0.

Therefore, as n, t → ∞, (θ
(t)
1 , θ

(t)
2 ) → (ψ1, ψ2), which leads to m1(y | x, θ(t)1 ) →

fY |X(y | x, ψ1) and m2(x | y, θ(t)2 ) → fX|Y (x | y, ψ2).

We now prove the theorem for validly specified model sequences with extra terms

compared to the true conditional densities. Suppose that without loss of any gener-

ality we introduce a parameterization θ1 = (ζ1, ξ1) and θ2 = (ζ2, ξ2) such that m1(y |

x, ζ1 = ψ1, ξ1 = 0) = fY |X(y | x, ψ1) and m2(x | y, ζ2 = ψ2, ξ2 = 0) = fX|Y (x | y, ψ2).

We need to show that θ∗1 = (ψ1, 0) and θ
∗
2 = (ψ2, 0) are the convergent point of the

asymptotic iterative algorithm.

Given θ∗2 = (ψ2, 0),

s̃1(θ1 | θ∗2) = (n0 + n1)

∫∫
∂ logm1(y | x, θ1)

∂θ1
fY |X(y | x, ψ1)fX(x | R 6= 2)dxdy.
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Since maximizing the likelihood is equivalent to minimizing the relative entropy of the

regression model regarding the true distribution, to find the solution to s̃1(θ1 | θ∗2) = 0

is equivalent to minimize
∫∫

log[fY |X(y | x, ψ1)/m1(y | x, θ1)]fY |X(y | x, ψ1)fX(x |

R 6= 2)dxdy. Since the relative entropy has non-negative values and its minimum

0 is reached if and only if m1(y | x, θ1 = (ψ1, 0)) = fY |X(y | x, ψ1). Therefore, the

asymptotic score equation s̃1(θ1 | θ2) = 0 holds at (θ∗1, θ
∗
2). The similar arguments

apply to m2, and we also have s̃2(θ
∗
2 | θ∗1) = 0.

Part 2: Proof of Theorem 2.2

Proof: To determine the target to which the approximate algorithm converges, we

first apply the joint model mXY (x, y | θXY ) to analyze the incomplete data, where

θXY = (θ1, θ2, θ ∈ ΘC). Since the joint model has separable marginal parameters,

suppose that without loss of generality we have two parameterizations θXY = (θ1, θX)

and θXY = (θ2, θY ) for the joint model. We use Expectation-Maximization algorithm

to obtain the maximum likelihood estimate θ∗XY = (θ∗1, θ
∗
2). The expectation step

calculates

Q(θXY | θ(t−1)
XY ) =

∑
i

logmXY (x0i, y0i | θXY ) +
∑
j

∫
logmXY (x1j, y1j | θXY )m2(x | y1j, θ(t−1)

XY )dx

+
∑
k

∫
logmXY (x2k, y2k | θXY )m1(y | x2k, θ(t−1)

XY )dy,

and the maximization step finds the parameter which maximizes the expected log-

likelihood:

θ
(t)
XY = argmaxθXY

Q(θXY | θ(t−1)
XY ).
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The expected step can be approximated by an asymptotic quantity

Q̃(θXY | θ(t−1)
XY ) = lim

n→∞
Q(θXY | θ(t−1)

XY )

= n0

∫∫
logmXY (x, y | θXY )fXY (x, y | R = 0)dxdy

+ n1

∫∫
logmXY (x, y | θXY )m2(x | y, θ(t−1)

XY )dxfY (y | R = 1)dy

+ n2

∫∫
logmXY (x, y | θXY )m1(y | x, θ(t−1)

XY )dyfX(x | R = 2)dx,

and the maximization step maximizes the asymptotic quantity.

Since θXY
∗ is the convergent point to the asymptotic Expectation-Maximization

algorithm, for both parameterizations, score equations hold at the convergent point

because the marginal parameters are separable:

∂Q̃(θ1, θX
∗ | θXY ∗)

∂θ1

∣∣∣∣
θ1

∗
= 0,

∂Q̃(θ1
∗, θX | θXY ∗)

∂θX

∣∣∣∣
θX

∗
= 0;

and

∂Q̃(θ2, θy
∗ | θXY ∗)

∂θ2

∣∣∣∣
θ2

∗
= 0,

∂Q̃(θ2
∗, θy | θXY ∗)

∂θy

∣∣∣∣
θY

∗
= 0.

We now show that the maximum likelihood estimate θXY
∗ is also the fixed point

of the asymptotic sequential regression imputation algorithm by demonstrating

s̃1(θ1
∗ | θ2∗) = 0,

s̃2(θ1
∗ | θ2∗) = 0.

From the Expectation-Maximization algorithm, we assume that the probability

functions are absolute continuous, and we interchange the differential and integral
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sign. Then

∂Q̃(θ1, θX
∗ | θXY ∗)

∂θ1

= n0

∫∫
∂ logmXY (x, y | θ1, θ∗X)

∂θ1
fXY (x, y | R = 0)dxdy

+n1

∫∫
∂ logmXY (x, y | θ1, θ∗X)

∂θ1
m2(x | y, θ2∗)dxfY (y | R = 1)dy

+n2

∫∫
∂ logmXY (x, y | θ1, θ∗X)

∂θ1
m1(y | x, θ1)dyfX(x | R = 2)dx

= n0

∫∫ (
∂ logm1(y | x, θ1)

∂θ1
+
∂ logmX(x, θ

∗
X)

∂θ1

)
fXY (x, y | R = 0)dxdy

+n1

∫∫ (
∂ logm1(y | x, θ1)

∂θ1
+
∂ logmX(x, θ

∗
X)

∂θ1

)
m2(x | y, θ2∗)dxfY (y | R = 1)dy

+n2

∫∫ (
∂ logm1(y | x, θ1)

∂θ1
+
∂ logmX(x, θ

∗
X)

∂θ1

)
m1(y | x, θ1)dyfX(x | R = 2)dx

= n0

∫∫
∂ logm1(y | x, θ1)

∂θ1
fXY (x, y | R = 0)dxdy

+n1

∫∫
∂ logm1(y | x, θ1)

∂θ1
m2(x | y, θ2∗)dxfY (y | R = 1)dy

+n2

∫∫
∂ logm1(y | x, θ1)

∂θ1
m1(y | x, θ1)dyfX(x | R = 2)dx

= s̃1(θ1 | θ2∗) + n2

∫∫
∂ logm1(y | x, θ1)

∂θ1
m1(y | x, θ1)dyfX(x | R = 2)dx.

Then the asymptotic score equations holds at θXY
∗:

s̃1(θ1
∗ | θ2∗)

=
∂Q̃(θ1, θX

∗ | θXY ∗)

∂θ1

∣∣∣∣
θ1

∗
− n2

∫∫
∂ logm1(y | x, θ1)

∂θ1
m1(y | x, θ1)dyfX(x | R = 2)dx

∣∣∣∣
θ1

∗

= 0.

Similarly, s̃2(θ2
∗ | θ1∗) = 0 can also be obtained.

Appendix 2.2

Examples

Example 2.1 (Two Linear Regression Models revisited): Suppose the

data follow a bivariate normal distribution (x, y)T ∼ N(µ,Σ), where µ =
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(µx, µy)
T and

Σ =

 τ 2x ρτxτy

ρτxτy τ 2y


and its conditional distributions are

y | x ∼ N(α10 + α11x, τ
2
12),

x | y ∼ N(α20 + α21y, τ
2
21)

with α11/τ
2
12 = α21/τ

2
21. The missing data mechanism is assumed to be missing

completely at random: π0 = Pr(both X and Y are observed), π1 = Pr(Y is

observed and X is missing) and π2 = Pr(X is observed and Y is missing).

The estimated regression parameters converge to θ∗1 = (α10, α11, τ
2
12)

T , and θ∗2 =

(α20, α21, τ
2
21)

T . Based on the approximate iterative algorithm(
θ
(t)
11 , θ

(t)
10 , σ

2
12

(t)
)T

= s̃−1
1

(
θ
(t−1)
21 , θ

(t−1)
20 , σ2

21
(t−1)

)
,(

θ
(t)
21 , θ

(t)
20 , σ

2
21

(t)
)T

= s̃−1
2

(
θ
(t)
11 , θ

(t)
10 , σ

2
12

(t)
)
,

the Jacobian matrices Ds̃−1
1 and Ds̃−1

2 are calculated as follows:

Ds̃−1
1 (θ∗2) = r1



α11

α21
− 2α2

11 0 −α11

τ2x

−α11

α21
µx + 2α2

11µx − α11µy −α11 −α11

τ2x
µx

−2(1− α11α21)α11τ
2
y 0 α2

11


,

Ds̃−1
2 (θ∗1) = r2



α21

α11
− 2α2

21 0 −α21

τ2y

−α21

α11
µy + 2α2

21µy − α21µx −α21 −α21

τ2y
µy

−2(1− α21α11)α21τ
2
x 0 α2

21


,
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where r1 = π1(π0 + π1)
−1 and r2 = π2(π0 + π2)

−1.

The eigenvalues of r−1
1 r−1

2 Ds̃−1
1 ×Ds̃−1

2 can be solved by the following charac-

teristic equation:

(λ− 1)
(
λ− ρ2

) (
λ− ρ4

)
= 0.

The eigenvalues of the rate matrix Ds̃−1(θ∗) are r1r2, r1r2ρ
2 and r1r2ρ

4. Since

0 ≤ ρ2 ≤ 1 holds for any bivariate normal data, the largest eigen-value of

Ds̃−1(θ∗) is π1π2(π0 + π1)
−1(π0 + π2)

−1, which is the global rate of convergence

for the iterative algorithm.

• Example 2.2 (Two Logistic Regression Models revisited) Suppose the data (X,Y )

come from a bivariate Bernoulli distribution with pr(X = 0, Y = 0) = p00,

pr(X = 0, Y = 1) = p01, pr(X = 1, Y = 0) = p10 and pr(X = 1, Y = 1) =

p11 = 1− p00 − p01 − p10, where the corresponding conditional distributions are

y | x ∼ Bernoulli
[
(1 + exp(−α10 − γ12x))

−1] ,
x | y ∼ Bernoulli

[
(1 + exp(−α20 − γ21y))

−1] .
The parameters from the conditional distributions satisfy the compatibility con-

dition γ12 = γ21. The missing data mechanism is assumed to be missing com-

pletely at random: π0 = Pr(bothX and Y are observed), π1 = Pr(Y is observed

and X is missing) and π2 = Pr(X is observed and Y is missing).

The estimated regression parameters converge to θ∗1 = (α10, γ12)
T , and θ∗2 =

(α20, γ21)
T . Based on the approximate iterative algorithm

(
θ
(t)
12 , θ

(t)
10

)T
= s̃−1

1

(
θ
(t−1)
21 , θ

(t−1)
20

)
,(

θ
(t)
21 , θ

(t)
20

)T
= s̃−1

2

(
θ
(t)
12 , θ

(t)
10

)
,
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the Jacobian matrices Ds̃−1
1 and Ds̃−1

2 are calculated as follows:

Ds̃−1
1 (θ∗2) =

π1
π0 + π1



1 0

− p11
p01+p11

p00
p10+p00

− p11
p01+p11


,

Ds̃−1
2 (θ∗1) =

π2
π0 + π2



1 0

− p11
p10+p11

p00
p00+p01

− p11
p10+p11


.

The eigenvalues of Ds̃−1
1 ×Ds̃−1

2 are π1π2(π0 + π1)
−1(π0 + π2)

−1 and

π1
π0 + π1

π2
π0 + π2

[
p00

p10 + p00
− p11
p01 + p11

] [
p00

p00 + p01
− p11
p10 + p11

]
.

Then the eigenvalue ofDs̃−1(θ∗) with largest absolute value is π1π2(π0 + π1)
−1(π0 + π2)

−1,

which is the asymptotic global rate of convergence for the iterative algorithm.

2.8 Supplemental Materials

Proof of Theorem 2.3

Proof: As in Theorem 2.1, we first prove the theorem for exactly specified model

sequences, where mi(yi | y[−i], θi = ψi) = fi(yi | y[−i], ψi) for i = 1, . . . , p. We need

to show that for each regression model, the asymptotic score equation s̃i(ψi | ψ[−i])

holds.

Denoting ui(yi | y[−i]) = ∂ log(mi(yi | y[−i], θi))/∂θi and ni the sample size of each

missingness group, then the asymptotic function for the ith model given θ∗[−i] = ψ[−i]

is as

s̃i(θi | ψ[−i]) = s̃i(θi | R = 0) +
∑
j 6=i

s̃i(θi | ψj, R = j),
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where

s̃i(θi | R = 0) =

∫
· · ·
∫
ui(yi | y[−i])n0f(y1, . . . , yp | R = 0)dy1 · · · dyp,

and for j 6= i,

s̃i(θi | ψj, R = j) =

∫
· · ·
∫
ui(yi | y[−i])njmj(yj | y[−j], ψj)f(y[−j] | R = j)dy1 · · · dyp

=

∫
· · ·
∫
ui(yi | y[−i])njf(y1, . . . , yp | R = j)dy1 · · · dyp.

Since the missingness is ignorable, we have

p∑
j=0,j 6=i

njf(y1, . . . , yp | R = j) = (n−ni)f(y1, . . . , yp | R 6= i) = (n−ni)mi(yi | y[−i], ψi)f(y[−i] | R 6= i),

and the asymptotic function can be rewritten as below:

s̃i(θi | ψ[−i]) = (n− ni)

∫
· · ·
∫
ui(yi | y[−i])mi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp,

and it is easy to show that the asymptotic score equation holds:

s̃i(ψi | ψ[−i]) = (n−ni)
∫

· · ·
∫
ui(yi | y[−i])mi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp

∣∣∣∣
θi=ψi

= 0.

Therefore, as n, t → ∞, θ
(t)
i → ψi, which leads to that mi(yi | y[−i], θ(t)i ) → fi(yi |

y[−i], ψi), for i = 1, . . . , p.

We now prove the theorem for validly specified model sequences with extra terms

compared to the true conditional densities. As in Theorem 2.2, suppose that without

loss of any generality we introduce a parameterization θi = (ζi, ξi) such that mi(yi |

y[−i], ζi = ψi, ξi = 0) = fi(yi | y[−i], ψi). We need to show that {θ∗i = (ψi, 0), i =

1, . . . , p} is the convergent point of the asymptotic iterative algorithm.

Given that θ∗j = (ψj, 0) for j 6= i,

s̃i(θi | θ∗[−i]) = (n− ni)

∫
· · ·
∫
ui(yi | y[−i])fi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp.
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As in Theorem 2.2, to find the solution to s̃i(θi | θ∗[−i]) = 0 is equivalent to minimize∫
· · ·
∫
log[fi(yi | y[−i], ψi)/mi(yi | y[−i], θi)]fi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp.

Since the relative entropy has non-negative values and its minimum 0 is reached if

and only if mi(yi | y[−i], θi = (ψi, 0)) = fi(yi | y[−i], ψi). Therefore, the asymptotic

score equation s̃i(θi | θ[−i]) = 0 holds at (θ∗1, . . . , θ
∗
p) for any i = 1, . . . , p.

Proof of Theorem 2.4

Proof: As in Theorem 2.2, we first apply the joint model p(y1, . . . , yp | θ) to

analyze the incomplete data to determine the convergent point. Denote Q̃(θ | θ(t−1))

the expected log-likelihood from the Expectation-Maximization algorithm, where

θ = (θ1, . . . , θp) ∈ ΘC . For i = 1, . . . , p, denote θM,[−i] the parameter of the marginal

joint model of Y[−i] from the joint model, then because of the separability of marginal

parameters, θM,[−i] is distinctive from θi and θ = (θi, θM,[−i]) is a parameterization

of the joint model. Since θ∗ = (θ∗1, . . . , θ
∗
p) is the maximum likelihood estimate,

∂Q̃(θ | θ∗)/∂θ|θ=θ∗ = 0. On the other hand, because marginal separability ensures

that

∂ log p(y1, . . . , yp | θi, θM,[−i])/∂θi = ∂(log(mi(yi | y[−i], θi)))/∂θi = ui(yi | y[−i]),

we have

∂Q̃(θi, θ
∗
M,[−i] | θ∗)/∂θi =

∫
· · ·
∫
ui(yi | y[−i])n0f(y1, . . . , yp | R = 0)dy1 · · · dyp

+

∫
· · ·
∫
ui(yi | y[−i])

p∑
j=1

[
njmj(yj | y[−j], θ∗j )f(y[−j] | R = j)

]
dy1 · · · dyp

= s̃i(θi | θ∗[−i])

+ni

∫
· · ·
∫
ui(yi | y[−i])mi(yi | y[−i], θ∗i )f(y[−i] | R = i)dy1 · · · dyp.
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Therefore, the asymptotic score equations hold at θ∗ as for all i = 1, . . . , p,

s̃i(θ
∗
i | θ∗[−i])

=

[
∂Q̃(θi, θ

∗
M,[−i] | θ∗)/∂θi − ni

∫
· · ·
∫
ui(yi | y[−i])mi(yi | y[−i], θ∗i )f(y[−i] | R = i)dy1 · · · dyp

] ∣∣∣∣
θ∗i

= 0.

Therefore, as n, t→ ∞, θ
(t)
i → θ∗i , which leads to that mi(yi | y[−i], θ(t)i ) → pi(yi |

y[−i], θ
∗
i ), for i = 1, . . . , p.



CHAPTER III

Block Sequential Regression Multivariate Imputation
Algorithm (BSRMI)

Abstract

Multiple imputation using sequential regression (chained equations, fully condi-

tional specifications) is a popular approach for handling missing values in a complex

data structure with many types of variables, structural dependencies among the vari-

ables and bounds on plausible imputation values. The sequential regression approach

is a Gibbs style algorithm with iterative draws from the posterior predictive distri-

bution of missing values for any given variable, conditional on all observed values

and imputed values of all other variables. As this approach only requires the con-

ditional distribution of each variable with missing values, this collection may not be

compatible with any joint distribution of the variables with missing values. However,

many theoretical investigations and empirical studies have shown that this approach

produces valid inferences (from the repeated sampling perspective) if the regression

models fit the data well and convergence is obtained under a broad set of regularity

conditions. Sometimes it is not possible to get well-fitting models across all missing

data patterns, which leads to difficulties in implementing this approach. We propose

a modification where the data is divided into blocks for each variable based on miss-

49
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ing data patterns and the regression models are tuned through a set of compatibility

restrictions. This increases the number of models to be fit but reduces the model

complexity. We establish regularity conditions for the convergence of the algorithm,

and study the repeated sampling properties of inferences using several simulated data

sets. Throughout, we assume that the missing data mechanism is ignorable.

Key Words: Missing data; Multiple imputation; Chained equations, Compatible

conditionals; Conditional specifications; Block specifications;

3.1 Introduction

Let the data set on n subjects consist of q variables with no missing values ar-

ranged in an n×q matrix, U (if all variables in the data set have missing values then U

is considered as a column of 1s, representing the intercept term). Let Y1, Y2, . . . , Yp be

p variables with some missing values. The sequential regression (chained equations,

fully conditional specifications) imputation approach, first proposed in Kennickell

(1991), is an iterative approach for imputing the missing values in Yj through ran-

dom draws based on fitting a regression model Pr(Yj|U, Y[−j]) where Y[−j] is all the

variables with missing values except Yj (Van Buuren and Oudshoorn, 1999, Raghu-

nathan et al., 2001). Specifically, imputations for Yj at iteration t are drawn from the

predictive distribution, Pr(Yj|U, Y (t)
1 , Y

(t)
2 , . . . , Y

(t)
j−1, Y

(t−1)
j+1 , . . . , Y

(t−1)
p ) where Y

(s)
l is

the filled in Yl at iteration s (observed or imputed). Each predictive distribution

corresponds to an appropriate regression model. At each iteration, imputation in-

volves two steps: (1) the regression model is fit to the observed values of the variable

being imputed and all other variables (observed or imputed), and the parameters

are drawn from the approximate posterior distribution; and (2) the draws from the

regression model given the drawn parameters and all other variables are used as im-
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putations for the missing values. We assume that the regression models are a good

fit determined by appropriate model diagnostics.

The sequential regression approach has two major practical advantages over other

model-based imputation methods. It enables handling of complex data structures

by focusing on a set of regression models with a univariate outcome. The flexible

selection of regression models enables better prediction of the missing values based

on other variables, and the regression models are more intuitive to analysts than a

joint model. Also, individual regression models can easily account for study designs

such as skip patterns, logical constraints, bounds for imputed values and consis-

tency requirements. Empirical studies, however, have shown that a few iterations

are sufficient to utilize the predictive power of the observed covariates in creating

imputations.

A theoretical weakness of this approach is that the specifications of conditional

distributions for a set of variables do not guarantee the existence of a compatible joint

distribution. The convergence properties of these algorithms have been investigated

in Liu et al. (2014), Hughes et al. (2014) and Chapter 2 (Zhu and Raghunathan,

2015). Ultimately, developing well-fitting regression models is critical for obtaining

valid inferences using this procedure.

Finding a set of well-fitting regression models (within the parametric framework)

may be a challenging task when several variables are simultaneously missing. Con-

sider the following trivariate count data generated using the following model assump-

tions,
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y1 ∼ Poisson(λ = exp(α10)),

y2 | y1 ∼ Poisson(λ = exp(α20 + α21y1)),

y3 | y1, y2 ∼ Poisson(λ = exp(α30 + α31y1 + α32y2)),

where α10 = log(2), α20 = −1, α21 = 0.3, α30 = −2, α31 = 0.5 and α32 = 0.1.

Suppose that the variables are missing at random with a general pattern of missing

data mechanism, which creates 7 possible missing data patterns as follows (X denotes

observed and ? denotes missing):

P Y1 Y2 Y3

1 X X X

2 X X ?

3 X ? X

4 X ? ?

5 ? X X

6 ? X ?

7 ? ? X

Given the count type of variables, one might attempt to use an SRMI approach

assuming the following three Poisson regression models:

m1(y1 | y2, y3) ∼ Poisson(λ = exp(θ10 + θ12y2 + θ13y3)),

m2(y2 | y1, y3) ∼ Poisson(λ = exp(θ20 + θ21y1 + θ23y3)),

m3(y3 | y1, y2) ∼ Poisson(λ = exp(θ30 + θ31y1 + θ32y2)).

It is easy to verify that the algorithm quickly breaks down due to extremely large

values imputed within the first few iterations. It is also easy to check that these
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are very poor fitting models for certain conditional distributions. Specifically, the

model diagnostics will show that m1 and m2 are very poor fitting models(especially

m1). It is not easy to improve the model fitting within this Poisson family, given the

constraint that the mean and the variance functions are the same. It is also not easy

to find other members of the Generalized Linear Model (GLM) family that fits the

data well. It is desirable, therefore, to modify the algorithm to ensure convergence

even for poor-fitting models, and then gradually improve the model fit to achieve

better imputation results without concerns about convergence.

Li et al. (2012) distinguish between model and algorithm incompatibilities. The

former does not necessarily lead to the latter, which is directly linked to divergence.

When data are missing simultaneously for several variables, the poor-fitting models

can become algorithmically incompatible. To be specific, suppose that only Y1 and

Y2 are missing among all the records. The two imputation models (Y1 given Y2 and

Y3) and (Y2 given Y1 and Y3) are poorly chosen so that they are algorithmically in-

compatible for all values of the parameters, and hence at any iteration, jointly, the

drawn values of Y1 and Y2 in those records may become incompatible with observed

values of Y3, reaching to divergence. This issue does not arise for data missing up

to one variable in any record, since the drawn values to complete any record are

always from univariate conditional models given observed values of all other vari-

ables, and in that case model incompatibility does not necessarily lead to algorithm

incompatibility (Zhu and Raghunathan, 2015).

We propose a modification of the algorithm where previously imputed variables

obtained under poorly fitting models have less influence on the subsequent variables.

Difficulties in getting well-fitting models are due to differences in the information

base across the patterns for developing models. For instance, to obtain missing
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values in Y1, for the subjects in Pattern 5, the information is in the regression model

Pr(Y1|Y2, Y3), for the subjects in Pattern 6, it is Pr(Y1, Y3|Y2) and, for Pattern 7,

Pr(Y1, Y2|Y3). The modified algorithm proposes imputation of missing values in Y1 in

Pattern 5 usingm1.23(Y1|Y2, Y3), usingm1.2(Y1|Y2) for Pattern 6 and usingm1.3(Y1|Y3)

for Pattern 7. For imputing the missing Y2 values, we need three models, m2.13 for

Pattern 3, m2.1 for Pattern 4 and m2.3 for Pattern 7. Although this increases the

number of models, it allows for fine tuning the model to the available information

and, thus, reducing the chances of algorithmic incompatibility. Note that under the

MAR mechanism, the data across all patterns with observed values of the variable

being imputed are used to fit the models, though models used to impute the missing

values in each pattern can be different.

The proposed block sequential multivariate imputation (BSRMI) algorithm can

be viewed as a generalization of the ordered monotone blocks approach in Li et al.

(2014), which reorganizes observations to obtain ordered monotone blocks in the pat-

tern of missing data and then uses compatible models to obtain imputations. BSRMI

enforces compatibility conditions for convergence described in Zhu and Raghunathan

(2015) within each missingness block and leads to overall convergence, as proved later.

The rest of the chapter is organized as follows. Section 3.2 introduces the proposed

algorithm for a general pattern of missing data. Section 3.3 provides some theoret-

ical results of the proposed algorithm convergence and validity, especially when the

model sequence is validly specified. Section 3.4 revisits the motivation example, and

examines performance of the proposed algorithm through a simulation study. Sec-

tion 3.5 summarizes the findings, and discusses the advantages and limitations of the

proposed sequential regression algorithm.
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3.2 BSRMI Algorithm

Without loss of any generality, we assume that all imputation models include

the set of fully observed variables U as predictors and suppress this hereafter to

simplify notations. Suppose the data set consists of p variables, Y1, . . . , Yp, with

missing values to be imputed in that order. This is an arbitrary order and we later

show that the algorithm is invariant with respect to the choice of the order provided

all are well-fitting models. Denote j− = {1, . . . , j − 1}, j+ = {j + 1, . . . , p}, and

[−j] = {1, . . . , j − 1, j + 1, . . . , p} as subsets of the indices {1, 2, . . . , p}. A missing

data pattern P is a made-up group of subjects with data records where a set of

variables are completely missing and others are fully observed. Suppose the data

set has a total of K unique missing patterns (the maximum possible value of K is

2p−1 where subjects missing all the values are the unit non-respondents and are not

considered here). In pattern P = k, k = 1, . . . , K, let pk be the number of missing

variables, with ordered indices

Mk = {I1, . . . , Ipk} ⊂ {1, . . . , p}.

The corresponding observed set is an ordered set

Ok = {1, . . . , p}\Mk.

Let Y[Mk] = {Yi}i∈Mk
and Y[Ok] = {Yi}i∈Ok

denote the sets of missing and observed

variables in pattern P = k respectively, and (Y mis
[Mk]

,Y obs
[Ok]

) denote the missing and

observed data sets in that pattern.

To impute missing values in the pattern P = k, we need to specify a sequence

of pk regression models, mI1.Ok
, mI2.I1,Ok

, . . . , mIpk .I1,I2,...,Ok
. Though these are the

models used in imputing the missing values for the subjects in the particular pattern,
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each model is fit using all the observed values of the dependent variable across all

patterns, and predictors may be observed or imputed. Thus, some imputed values

of other variables enter into the model fitting process.

In general, for any variable Yj, if it is missing in pattern k, (that is, {k = 1, . . . , K |

j ∈ Mk}) then the imputations are draws from the regression model

mj.Mk(j+) = m(Yj | Y[Mk(j+)], θj.Mk(j+)),

where

Mk(j+)
.
= {Ii ∈ Mk, Ii > j}

defines the indices of missing variables succeeding Yj,

Mk(j+)
.
= [−j]\Mk(j+)

defines the indices of all other variables excluding missing variables succeeding Yj and

θj.Mk(j+)
is the parameter in the regression model with prior density π(θj.Mk(j+)

)1 The

model index subscript j.Mk(j+) indicates that each model regresses Yj on all other

variables except the set of missing variables after Yj; in other words, imputation of

Yj depends on all preceding variables and all succeeding observed variables in the

sequence.

Note that when the values of Y[Mk] are drawn from the above ordered models

with some draw of the parameter values {θ∗
Ii.Mk(Ii+)

}, the observed and drawn values

follow a joint distribution defined by

d(Y[Mk],Y[Ok] | P = k) =

(
pk∏
i=1

m
(
YIi | Y[Mk(Ii−)],Y[Ok], θ

∗
Ii.Mk(Ii+)

))
×f(Y[Ok] | P = k).

The number of models needed may be reduced if multiple patterns with missing Yj

share the same missing variable set M∗(j+) after Yj. To be specific, such patterns

1The bar is slightly different from a complement sign in set theory and the defined set does not include j. If a
complement sign is used then j will be included.
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can be combined to create one imputation block for Yj:

Bj.M∗
k(j+) = {k | Mk(j+) = M∗(j+)},

and only one model needs to be specified. We also define an estimation block for Yj

combining all patterns with observed Yj: Bj0 = {k | Mk ⊂ [−j]}. The combination

of similar patterns into blocks can reduce the total number of models needed to im-

plement the algorithm.

Given the above notations, the Block-Specific Sequential Regression Imputation

algorithm is executed as follows:

Iteration t = 1: The first iteration of the block-specific SRMI algorithm fills in

the missing values with initial values. We choose a conditionally specified model

sequence, m(Y1 | θ1) and m(Yj | Y[j−], θj.[j−]), for j = 2, . . . , p, to determine the

initial values. Let Y
(t)
j = {Yj,obs, Y (t)

j,mis}, for j = 1, . . . , p.

For the first variable Y1 :

1. m(Y1 | θ1) is fit to Y1,obs, and θ̂1 is drawn from its approximate posterior

distribution;

2. Y
(1)
1,mis is drawn from m(Y1 | θ̂1).

For the jth variable Yj, j = 2, . . . , p :

1. m(Yj | Y[j−], θj.[j−]) is fit to the data in Y
(1)
[Bj0]

, and θj.[j−] is drawn from

its approximate posterior distribution;

2. Y
(1)
j,mis is drawn from m(Yj | {Y (1)

i }j−1
i=1 , θ̂j.[j−]).

For t = 2, . . . , T :
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For the jth variable Yj, j = 1, . . . , p − 1, patterns with missing Yj are

grouped to form different blocks Bj.M∗
k(j+) determined by the missing pat-

tern M∗
k(j+) for variables after Yj.

1. Imputation models specified for each corresponding block

mj.M∗
k(j+) = m(Yj | Y[M∗

k(j+)], θj.M∗
k(j+))

are fit to the data in Bj0, which is

D
(t)
j0 = {Y (t)

1 , . . . , Y
(t)
j−1, Yj, Y

(t−1)
j+1 , . . . , Y (t−1)

p | Yj is observed},

and each θ
(t)

j.M∗
k(j+)

is drawn from its approximate posterior distribution;

2. In each block Bj.M∗
k(j+) , Y

(t)
j,mis is drawn fromm(Yj | Y (t)

[M∗
k(j+)]

, θ
(t)

j.M∗
k(j+)

),

where Y
(t)

[M∗
k(j+)]

= {Y (t)
[j−],Y[Ok(j+)]}.

Note that only values from the previous iterations are involved in the esti-

mation and imputation for Y1; only one model needs to be specified for the

pth variable Yp, since there is no missing variable after it in any pattern.

Unlike SRMI, BSRMI is not fully conditionally specified. The key advantage of

BSRMI over SRMI is that within one iteration, the imputed values for any record are

drawn from a compatible joint distribution but not fully conditional specifications.

To be concrete, consider the motivating example; index sets are displayed next to

their corresponding missing patterns as follows:
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P Y1 Y2 Y3 M O

1 X X X ∅ {1,2,3}

2 X X ? {3} {1,2}

3 X ? X {2} {1,3}

4 X ? ? {2,3} {1}

5 ? X X {1} {2,3}

6 ? X ? {1,3} {2}

7 ? ? X {1,2} {3}
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P Y1 Y2 Y3

1   

2   ？

3  ？ 

4  ？ ？

P Y1 Y2 Y3

1   

2   Y3(t-1)

3  Y2(t-1) 

4  Y2(t-1) Y3(t-1)

Estimation Block

Block P Model

B1.23 5 m1.23(Y1|Y2, Y3)

Imputation blocks for Y1

Data used for
fitting all
models

Data are sorted by the
missing status of Y1

4  ？ ？

5 ？  

6 ？  ？

7 ？ ？ 

P Y1 Y2 Y3 M(1+) M(1+)

5 ？   Ø {2,3}

6 ？  ？ {3} {2}

7 ？ ？  {2} {3}

Patterns with missing Y1

B1.23 5 m1.23(Y1|Y2, Y3)

B1.2 6 m1.2(Y1|Y2)

B1.3 7 m1.3(Y1|Y3)

Models to
impute the

missing
values of Y1

in each
corresponding

pattern

Figure 3.1: Imputing missing values for Y1 at iteration t.

To impute Y1 at iteration t = 2, . . . , T :

Imputation models are specified for all missing patterns with missing Y1. Each

pattern belongs to an imputation block determined by predictor index set

M(1+) in that pattern. The models are fit to the estimation block B10, which

consists of completed data in patterns 1−4, and Y
(t)
1 is drawn from the approx-

imate posterior distribution in each imputation block.
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P Y1 Y2 Y3

1   

2   ？

5 ？  

6 ？  ？

P Y1 Y2 Y3

1   

2   Y3(t-1)

5 Y1(t)  

6 Y1(t)  Y3(t-1)

Estimation Block

Block P Model

m2.13(Y3|Y1, Y2)

Imputation blocks for Y2

Data used for
fitting both

models

Data are sorted by the
missing status of Y2

6 ？  ？

3  ？ 

4  ？ ？

7 ？ ？ 

P Y1 Y2 Y3 M(2+) M(2+)

3  ？  Ø {1,3}

4  ？ ？ {3} {1}

7 Y1(t) ？  Ø {1,3}

Patterns with missing Y2

B2.13 3,7 m2.13(Y3|Y1, Y2)

B2.1 4 m2.1(Y2|Y1)

Models to
impute the

missing
values of Y2

in each
corresponding

pattern

Figure 3.2: Imputing missing values for Y2 at iteration t.

To impute Y2: Similarly, imputation models are specified for all missing pat-

terns with missing Y2. Each pattern belongs to an imputation block determined

by predictor index set M(2+) in that pattern. The models are fit to the esti-

mation block B20, which consists of completed data, and Y
(t)
2 is drawn from the

approximate posterior distribution in each imputation block.
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To impute Y3:

Since Y3 is the last variable to be imputed in the sequence, all patterns with

missing values of Y3 are grouped into one imputation block for Y3:

Block P Model

B3.12 2, 4, 6 m3.12(Y3 | Y1, Y2)

The model is fitted to the completed data in the estimation block B30:

P Y1 Y2 Y3

1 X X X

3 X Y
(t)
2 X

5 Y
(t)
1 X X

7 Y
(t)
1 Y

(t)
2 X

Y
(t)
3 is drawn from the approximate posterior distribution in the imputation

block given Y
(t)
1 and Y

(t)
2 .

Note that if a different imputation order is chosen then all imputation blocks and

corresponding models will differ. An example with four variables is provided in the

Appendix.

3.3 Convergence Properties

3.3.1 Notation

Suppose that the actual data generation mechanism for Y1, . . . , Yp is a joint distri-

bution f(y1, . . . , yp | ψ). The corresponding marginal and conditional distributions

are denoted as follows: ∀ I,J ⊂ {1, . . . , p} and I ∩ J = 0,

f(Y[I] | ψI),

f(Y[I] | Y[J ], ψI|J ).
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Without loss of any generality, we assume that the data set consists of all possible

missing patterns, and that the missingness is non-trivial in any pattern; that is, for

any pattern P = k, the pattern sample size ratio nk/n tends to a non-zero fraction

as total sample size n tends to infinity. We assume that the missing data mechanism

is ignorable as in Rubin (1976); that is, ∀ Mk1 ⊆ Mk, conditioning on the observed

variables Y[Ok], the response probability does not depend on the missing variables

Y[Mk1] :

Pr(P = k | Y[Mk1],Y[Ok], φ) = Pr(P = k | Y[Ok], φ),

where φ is distinct from population parameter ψ.

The following two properties for an ignorable missing data mechanism are useful

in discussing the convergence properties of BSRMI.

1. The the complete data model in pattern P = k follows the conditional distri-

butions given below: For any Mk1,Mk2 ⊂ Mk and Mk1 ∩Mk2 = 0,

Pr(Y[Mk1] | Y[Mk2],Y[Ok], P = k)

=
Pr(P = k | Y[Mk1],Y[Mk2],Y[Ok])× Pr(Y[Mk1],Y[Mk2],Y[Ok])

Pr(P = k | Y[Mk2],Y[Ok])× Pr(Y[Mk2],Y[Ok])

= f(Y[Mk1] | Y[Mk2],Y[Ok]).

As a special case, ∀ j ∈ Mk,

Pr(Yj | Y[Mk(j−)],Y[Ok], P = k) = f(Yj | Y[Mk(j−)],Y[Ok]).

2. Given the complete data, ∀ j = 1, . . . , p and I ⊆ {1, . . . , j − 1, j + 1, . . . , p},

Pr(Yj is observed | Yj,Y[I]) = 1− Pr(Yj is missing | Yj,Y[I])

= 1− Pr(Yj is missing | Y[I]) = Pr(Yj is observed | Y[I]).
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Therefore,

Pr(Yj | Y[I], Yj is observed)

=
Pr(Yj is observed | Yj,Y[I])× Pr(Yj,Y[I])

Pr(Yj is observed | Y[I])× Pr(Y[I])

= f(Yj | Y[I]).

Under Property 1, all subsequent conditional imputation model specifications are

the same across all patterns. Under property 2, the block with the observed values

of a variable can be used to estimate its correctly specified conditional distribution,

provided that the missing values of other variables are generated from the actual

population conditional distributions.

3.3.2 Asymptotic Approximation of BSRMI

For any variable Yj, j = 1, . . . , p, patterns with missing Yj are grouped to form dif-

ferent blocks Bj.M∗
k(j+) that are determined by the missing pattern, M∗

k(j+), for vari-

ables after Yj. Imputation models mj.M∗
k(j+) = m(Yj | Y[M∗

k(j+)], θj.M∗
k(j+)) are fit to

the data in Bj0, and each θ
(t)

j.M∗
k(j+)

is drawn from its approximate posterior distribu-

tion. Then in each block Bj.M∗
k(j+) , Y

(t)
j,mis is drawn from m(Yj | Y (t)

[M∗
k(j+)]

, θ
(t)

j.M∗
k(j+)

).

We simplify the algorithm by using maximum likelihood estimates instead of

draws for the parameter estimates in the regression models. This may underestimate

the variability but will not affect consistency of the estimates or the convergence

properties of the estimates based on the infinite number of imputations.

The estimation block Bj0 = {b | b ⊆ [−j]} consists of all patterns where Yj is

observed. We use
∑

P=b to denote summation across all records in pattern P = b;

then the above procedure calculates the log-likelihood function at iteration t for



65

model mj.Mk(j+) defined for pattern P = k:

l(θj.Mk(j+) | Yj,obs,Y
(t)
[j−],Y

(t−1)
[Ok(j+)]) =

∑
Bj0

log[m(Yj | Y (t)
[j−],Y

(t−1)
[Ok(j+)], θj.Mk(j+))]

=
∑
b∈Bj0

∑
P=b

log[m(Yj | Y (t)
[j−],Y

(t−1)
[Ok(j+)], θj.Mk(j+))]

and estimate the parameter θ
(t)

j.Mk(j+)
by solving the score equation

s(θj.Mk(j+) | Yj,obs,Y
(t)
[j−],Y

(t−1)
[Ok(j+)]) = ∂l(θj.Mk(j+) | Yj,obs,Y

(t)
[j−],Y

(t−1)
[Ok(j+)])/∂θj.Mk(j+) = 0.

Note that the set of variables Y[Ok(j+)] are fully observed in pattern P = k, but they

may be partially missing in patterns from the estimation block; hence Y
(t−1)
[Ok(j+)] is

used to denote the values of those variables in the estimation block.

The algorithm stops at the T th iteration, and the completed data set consists of

{Y (T )
j } with {θ(T )

j.Mk(j+)
}. Convergence and consistency are asymptotic properties of

these estimates as the sample size, the number of imputations and the number of

iterations or sequential updates all tend towards ∞.

When both the sample size and number of imputations are large, components in

the score equation given above can be approximated by their asymptotic functional

forms. Data in any pattern b in Bj0 of sample size nb at iteration t consists of the

observed values Y[Ob] including Yj and imputed values Y
(t)
[Mb(j−)] and Y

(t−1)
[Mb(j+)], where

∀ i ∈ Mb(j−),

Y
(t)
i ∼ m(Yi | Y (t)

[Mb(i−)],Y[Ob], θ
(t)

i.Mb(i+)
),

and ∀ s ∈ Mb(j+),

Y (t−1)
s ∼ m(Ys | Y (t−1)

[Mb(s−)],Y[Ob], θ
(t−1)

s.Mb(s+)
).
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The joint distribution of Y[Ob] and Y
(t−1)
[Mb(j+)] in pattern P = b is

d(Y[Ob],Y
(t−1)
[Mb(j+)] | θ

(t−1)
[−j] , P = b)

=

∫
d(Y

(t−1)
[Mb(j+)] | Y

(t−1)
[Mb(j−)],Y[Ob], P = b)× d(Y

(t−1)
[Mb(j−)] | Y[Ob], P = b)

×f(Y[Ob] | P = b) dY
(t−1)
[Mb(j−)]

=

∫ ∏
i∈Mb(j−)

m(Y
(t−1)
i | Y (t−1)

[Mb(i−)],Y[Ob], θ
(t−1)

i.Mb(i+)
)

×
∏

s∈Mb(j+)

m(Y (t−1)
s | Y (t−1)

[Mb(s−)],Y[Ob], θ
(t−1)

s.Mb(s+)
)

×f(Y[Ob] | P = b) dY
(t−1)
[Mb(j−)]

Based on the property that d(Y
(t)
[Mb(j−)] | Y[Ob], P = b) ⊥⊥ d(Y

(t−1)
[Mb(j+)] | Y[Ob], P = b),

the overall density function for data in that pattern for Yi at iteration t is

d(Y
(t)
[Mb(j−)],Y[Ob],Y

(t−1)
[Mb(j+)] | θ

(t)
[j−], θ

(t−1)
[−j] , P = b)

=

 ∏
i∈Mb(j−)

m(Y
(t)
i | Y (t)

[Mb(i−)],Y[Ob], θ
(t)

i.Mb(i+)
)

× d(Y[Ob],Y
(t−1)
[Mb(j+)] | θ

(t−1)
[−j] , P = b)

Hence, the component in the score function can be approximated by

s̃b(θj.Mk(j+) | θ
(t)
[j−], θ

(t−1)
[−j] )

= nb

∫ ∂logm(Yj | Y (t)
[j−],Y

(t−1)
[Ok(j+)], θj.Mk(j+))

∂θj.Mk(j+)

×d(Y (t)
[Mb(j−)],Y[Ob],Y

(t−1)
[Mb(j+)] | θ

(t)
[j−], θ

(t−1)
[−j] , P = b) d{Y (t)

[Mb(j−)],Y[Ob],Y
(t−1)
[Mb(j+)]},

and the score function can be approximated by

s̃(θj.Mk(j+) | θ
(t)
[j−], θ

(t−1)
[−j] ) =

∑
b∈Bj0

s̃b(θj.Mk(j+) | θ
(t)
[j−], θ

(t−1)
[−j] ).

Let θj denote the vector of model parameters across all the models of Yj in all

blocks. The score vector function s̃(θ
(t)
j | θ(t)[j−], θ

(t−1)
[−j] ) converges to 0 in probability

as n → ∞, which leads to an approximate iterative algorithm s̃(θ
(t)
j | θ(t)[j−], θ

(t−1)
[−j] ) =
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0. Therefore, the implicit recursive algorithm θ
(t)
j = s̃−1(θ

(t)
[j−], θ

(t−1)
[−j] ) has the same

convergence property as that of the imputation algorithm.

Theorem 3.1. Suppose ∀ k = 1, . . . , K, j = 1, . . . , p, all BSRMI imputation

models mj.Mk(j+) : m(Yj | Y[Mk(j+)], θj.Mk(j+)) are validly specified conditional

distributions satisfying the following regularity conditions:

1. The density functions are differentiable with respect to θil and the order of

differentiation and integration are interchangeable.

2. The mean and the variance of the score functions given above exist under

both the posited {mil} and the true population density f(Y1, . . . , Yp).

Then as the sample size n, the number of imputations M and the number of

iterations t tend to ∞, the regression models m(Yj | Y (t)
[j−],Y

(t−1)
[Ok(j+)], θ

(t)

j.Mk(j+)
) →

f(Yj | Y[j−],Y[Ok(j+)], ψ).

The proof of the theorem is given in Appendix 3.1.

Chapter 2 (Zhu and Raghunathan, 2015) defined a class of fully conditionally

specified models as possibly compatible model sequence with separable marginal

parameters. For SRMI in the single variable missingness settings, such sequences

yield consistent results similar to the imputation under the target joint model. We

now extend this in the context of BSRMI.

Theorem 3.2. Suppose ∀ k = 1, . . . , K, j = 1, . . . , p, all BSRMI imputa-

tion models mj.Mk(j+) : m(Yj | Y[Mk(j+)], θj.Mk(j+)) follow the exact functional

forms of conditional distributions derived from a joint distribution with separa-

ble marginal parameters. Suppose the following regularity conditions are met:

1. The density functions are differentiable with respect to θil and the order of

differentiation and integration are interchangeable.
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2. The mean and the variance of the score functions given above exist under

both the posited {mil} and the true population density f(Y1, . . . , Yp).

Then as the sample size n, the number of imputations M and the number of

iterations t tend to ∞, the regression models m(Yj | Y (t)
[j−],Y

(t−1)
[Ok(j+)], θ

(t)

j.Mk(j+)
)

converge to the corresponding conditional distributions from the estimated joint

distribution.

The proof of the theorem is given in Appendix 3.1.

3.4 Simulation Studies

3.4.1 Trivariate Poisson Case

Consider the trivariate count data generated from the trivariate Poisson distribu-

tion discussed in Section 3.1. We generated 500 data sets of sample size n = 500,

1,000, 5,000 and 10,000. To create missing values, each data set was divided into six

random groups:

1. In the first group of size n1, y2 and y3 are observed and

pr(y1 is set to be missing | y2, y3) = [1 + exp(1.6− 0.8y2 − 0.7y3)]
−1 ;

2. In the second group of size n2, y1 and y3 are observed and

pr(y2 is set to be missing | y1, y3) = [1 + exp(2.1− 0.8y1 − 0.8y3)]
−1 ;

3. In the third group of size n3, y1 and y2 are observed and

pr(y3 is set to be missing | y1, y2) = [1 + exp(2.3− 0.9y1 − 0.8y2)]
−1 ;

4. In the fourth group of size n4, y3 is observed and

pr(y1 and y2 are set to be missing | y3) = [1 + exp(1− 1.2y3)]
−1 ;
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5. In the fifth group of size n5, y1 is observed and

pr(y2 and y3 are set to be missing | y1) = [1 + exp(1.7− 1.5y1)]
−1 ;

6. In the sixth group of size n6, y2 is observed and

pr(y1 and y3 are set to be missing | y2) = [1 + exp(1.8− 1.4y2)]
−1 .

We consider the following two regression modeling specifications:

1. Poor/Linear Imputation Algorithms: Poisson regression models with lin-

ear predictors without any interaction.

2. Improved Imputation Algorithms: We generated a single complete data set

of size 500 and set the values to missing using the above mechanism. Based on

empirical examination of this data set, we determined several reasonably fitting

models for each variable for each of the six orders of imputation (permutations

of (1,2 3)). This may be considered as a real analysis of a single data set. The

models developed were then used on the 500 data sets.

3. For comparison purposes, we also consider SRMI using the correctly specified

model sequences, through deriving and drawing from the actual conditional

distributions f(y1|y2, y3), f(y2|y1, y3) and using the correct f(y3|y1, y2).

The following are the reasonably fitting models for all conditional distributions

needed, if the order of the variables is Y1, Y2 and Y3.

1. For y1, we need three regression models, m1.23, m1.2 and m1.3. Our data analysis

of the single data set suggested the following models would be a good fit:

(a) m1.23(y1 | y2, y3, θ10) ∼ Poisson(λ = exp(θ100 + θ101y
1/3
2 + θ1021/(1 + y2)

3 +

θ103y
(1/3)
3 + θ1041/(1 + y3)

3 + θ105 log(y3 + 1) ∗ 1(y3<5) + θ106y
1/3
2 ∗ y1/33 ));
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(b) m1.2(y1 | y2, θ12) ∼ Poisson(λ = exp(θ120 + θ121y
1/3
2 + θ1221/(1 + y2)

3))

(c) m1.3(y1 | y3, θ13) ∼ Poisson(λ = exp(θ130 + θ131y
(1/3)
3 + θ1321/(1 + y3)

3 +

θ133 log(y3 + 1) ∗ 1(y3<5)));

2. For y2, the two models were m2.13(y2 | y1, y3, θ20) ∼ Poisson(λ = exp(θ200 +

θ201y1 + θ203y3)); and m2.1(y2 | y1, θ21) ∼ Poisson(λ = exp(θ210 + θ211y1));

3. For y3, m3.12(y3 | y1, y2, θ3) ∼ Poisson(λ = exp(θ30 + θ31y1 + θ32y2)).

We createdM = 20 multiple imputations for each data set using iteration numbers

T = 10, 100 and 1000. To monitor the convergence status of each algorithm, we

compare the multiple imputation estimates of (α10, α20, α21, α30, α31, α32) for each

of the three imputation algorithms (poor-fitting, well-fitting and actual). We also

compare the Kullback-Leibler divergence between the “before deletion data” estimate

and “after imputation data” estimates of the joint distribution of (Y1, Y2, Y3).

Table 3.1 provides the Monte-Carlo biases, differences between the means of the

500 parameter estimates (from 500 data sets) and the true values for each parameter.

We use the means of estimates from the before-deletion data as the reference. The

maximum biases are in the estimates of α31 (about 25%) and α30 (about 16%),

and others are relatively small. However, for each parameter, the biases are similar

across all orders. This indicates that given reasonably fitting models, the effect of

imputation order is small.

The Kullback-Leibler divergence between before-Deletion and after-imputation

data distributions also shows that the algorithms converge to the same results as

the sample size, number of iterations and number of imputations increase. It further

shows that better results are obtained using the improved imputation model results.

In this problem, it is often difficult to obtain well-fitting models within the Poisson
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Table 3.1: Bias in the parameter estimates based on BSRMI using the improved algorithm under
different orders, Replicates=500, Imputations=20, Sample size=10,000

Order
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,2,1) (3,1,2)

α10 = log(2) -0.017 -0.019 -0.016 -0.015 -0.029 -0.026
α20 = −1 0.061 0.102 0.071 0.092 0.113 0.082
α21 = 0.3 -0.019 -0.018 -0.041 -0.038 -0.022 -0.021
α30 = −2 0.331 0.357 0.312 0.333 0.321 0.324
α31 = 0.5 -0.115 -0.121 -0.135 -0.142 -0.113 -0.112
α32 = 0.1 0.012 0.013 0.024 0.026 0.022 0.024

family because the model diagnostics indicate that mean and variance functions are

not the same for many conditional distributions.

3.4.2 Complex Case

For our second simulation study, we consider the situation discussed in Chen et al.

(2011) where SRMI based on routinely chosen (and rather poor-fitting) imputation

models performed badly compared to some other imputation methods, such predic-

tive mean matching. The simulated data has the following fully observed variables:

a normal variable Y1, a binary variable Y2 related to Y1, and a normal variable Y3

related to Y1 and Y2. The partially missing variables are a Poisson count variable

Y4 related to Y2, a normal variable Y5 related to {Y2,Y3,Y4}, and a binary variable

Y6 related to {Y1,Y2,Y4}. Some values were deleted using an ignorable missing data

mechanism. We used the same parameters as in Chen et al. (2011) to compare

the bias, mean square error and confidence coverage. As in the trivariate Poisson

case, we used a simulated data set with missing values to develop well-fitting models

for both SRMI and BSRMI. For poor-fitting models, we used the standard GLM

models (linear, logistic or Poisson with just main effects). Table 3.2 provides the

results for SRMI and BSRMI using poor- and improved- fitting models. Clearly,

improved model results are markedly better than the corresponding routine or poor-
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Figure 3.3: Kullback-Leibler divergence between empirical distributions, based on multiply imputed
data F̂n,T

MI (x, y) and before deletion data F̂n
BD(x, y) and averaged over 500 replicates

of data sets, from three imputation algorithms plotted as a function of sample size
n=500, 1000, and 5000 and the number of iterations T = 50, 100, 1000 when the data
are missing at random. The three imputation algorithms impute the missing values
in the order of Y1, Y2 and Y3: the poor sequence assumes linear predictors only, the
improved sequence assumes appropriate non-linear terms of the predictors, and the
validly specified sequence assumes true conditional models from the data population.

fitting models. Furthermore, the repeated sampling properties of BSRMI estimates

are better than the SRMI estimates.

While it is difficult to find the perfectly fitting imputation models in some cases,

including this example, we believe that proper model diagnostics are always needed

for any imputation procedure.
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Table 3.2: Performance of four multiple imputation algorithms on the example in Chen et al. (2011), R=500, M=5

MICE2 SRMI BSRMI SRMI BSRMI
Poor Poor Improved Improved

Bias SE CR Bias SE CR Bias SE CR Bias SE CR Bias SE CR

β41 = 0 -0.02 0.09 94 -0.03 0.08 96 -0.04 0.08 93 0.01 0.11 96 0.00 0.09 94
β42 = 1 -0.08 0.16 93 -0.04 0.15 94 -0.01 0.15 100 -0.14 0.18 88 -0.11 0.17 97
β43 = 0 0.04 0.04 86 0.00 0.04 94 0.00 0.04 96 -0.05 0.06 72 -0.01 0.04 94
β51 = 0 -0.08 0.22 99 -0.11 0.26 92 -0.16 0.26 93 0.01 0.23 98 0.01 0.24 100
β52 = −1 -1.07 0.53 72 -0.48 0.53 92 -0.39 0.54 100 -0.43 0.50 96 -0.42 0.49 100
β53 = 1 1.13 0.32 5 0.79 0.21 6 0.78 0.22 14 0.15 0.22 94 0.18 0.20 94
β54 = 0 0.15 0.13 90 -0.01 0.13 98 -0.03 0.13 86 0.03 0.13 100 0.02 0.11 100
β55 = 1 -0.44 0.13 15 -0.35 0.07 2 -0.36 0.07 7 -0.15 0.09 76 -0.14 0.08 84
β61 = −1 -0.01 0.27 94 0.00 0.27 94 0.03 0.27 93 -0.00 0.28 92 0.00 0.27 94
β62 = 0 -0.11 0.56 97 -0.02 0.23 94 -0.04 0.24 93 0.03 0.24 94 0.07 0.24 97
β63 = 0 -0.00 0.20 97 -0.23 0.64 92 -0.19 0.63 86 -0.01 0.66 94 -0.02 0.66 90
β64 = 1 0.02 0.30 96 -0.15 0.29 88 -0.18 0.30 96 -0.14 0.30 88 -0.14 0.30 97
β65 = 0 -0.00 0.05 98 -0.02 0.06 96 0.02 0.06 96 0.00 0.06 92 -0.01 0.07 94
β66 = −1 0.01 0.30 97 0.23 0.32 90 0.25 0.33 93 0.13 0.34 92 0.12 0.35 90

2Results from Chen et al. (2011)
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3.5 Discussion

When several variables have missing values, then poorly fitting models used in a

regular SRMI may lead to algorithmic incompatibility, resulting in divergence of the

algorithm and invalid multiple imputation estimates. We used the trivariate Poisson

example to illustrate such a situation. Thus, a modification to assure convergence

leads to BSRMI, which models a collection of the joint distribution of the subset

of variables (within blocks), and thus assures compatibility within patterns. This

approach retains the flexibility in SRMI but avoids its pitfalls.

Similar to regular SRMI, the performance of block SRMI algorithms depends

on the model fit. Our simulation examples show that better fitting imputation

models lead to better inference. It allows an imputer to focus on improving the

goodness-of-fit and predictive power of the imputation models. The trade-off is the

increase in the number of models to be specified and estimated in the sequence.

The increase in the number of models specified in the sequence also has its advan-

tage, as it allows imputers to further improve the imputation models to get better

imputation results. The block SRMI is also order dependent if model specification

varies dramatically in different sequences. One may choose an order that results in

the best fitting models. However, if the model sequences are well fitting for both

sequences, our simulation results also show that the effect of ordering is minimal.

We assume an ignorable missing data mechanism. The Block SRMI applied on

nonignorable missing data will also converge but the performance is hard to assess

due to the influence of the missing mechanism. However, the block-specific SRMI

can easily adapt the nonignorable missing data into its framework due to its flexi-

bility of specification. For example, by formulating models that differ by pattern, a
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pattern mixture model analog of BSRMI could be developed. We suspect that if the

imputation models and missingness mechanism are validly specified in the nonignor-

able block-specific SRMI, it will yield valid inferences. Further research is needed to

extend BSRMI for nonignorable missing data mechanisms.
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Appendix 3.1

Part 1: Proof of Theorem 3.1

Proof: First, consider the case where the BSRMI imputation models are exactly

specified. That is, the regression models mj.Mk(j+) : m(Yj | Y[Mk(j+)], θj.Mk(j+))

follow the exact functional forms of corresponding f(Yj | Y[Mk(j+)], ψj.Mk(j+)), where

ψj.Mk(j+) is the corresponding conditional parameter set derived from the population

parameter ψ.

When the BSRMI imputation models are validly specified, there exists a param-

eterization for all models: θj.Mk(j+) = (ζj.Mk(j+), ξj.Mk(j+)) such that the regression

models mj.Mk(j+) : m(Yj | Y[Mk(j+)], ζj.Mk(j+), ξj.Mk(j+) = 0) follow the exact func-

tional forms of corresponding f(Yj | Y[Mk(j+)], ψj.Mk(j+)).

The proof for correctly specified models is divided into two steps. First, we show

that given θ
(t−1)

j.Mk(j+)
= ψj.Mk(j+), ∀ 1 ≤ j ≤ p, ∀ 1 ≤ k ≤ K, the completed data

follow the asymptotic distribution as the before deletion values in any pattern. At

iteration t− 1, ∀ b with Mb = {I1, . . . , Ipb}, the missing pattern P = b is completed

with observed values of Y[Ob] and imputed values of Y[Mb] drawn from below:

f
(
Y

(t−1)
I1

| Y[Ob], ψI1.Mb(I1+)

)
,

. . .

f
(
Y

(t−1)
Ii

| Y (t−1)
I1

, . . . , Y
(t−1)
Ii−1

,Y[Ob], ψIi.Mb(Ii+)

)
,

. . .

f
(
Y

(t−1)
Ipb

| Y (t−1)
I1

, . . . , Y
(t−1)
Ipb−1

,Y[Ob], ψIpb .Mb(Ipb+)

)
.
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Then the asymptotic density function for Y
(t−1)
[Mb]

| Y[Ob] is

∏
1≤i≤pb

f
(
YIi | YI1 , . . . , YIi−1

,Y[Ob], ψIi.Mb(Ii+)

)
,

and the overall asymptotic joint density function for the completed data in pattern

b is

m(Y[Mb],Y[Ob] | P = b)

= f(Y[Ob] | P = b)×
∏

1≤i≤pb

f
(
YIi | YI1 , . . . , YIi−1

,Y[Ob], ψIi.Mb(Ii+)

)
= f(Y[Ob] | P = b)× f(Y[Mb] | Y[Ob]).

As a special case of property 1,

f(Y[Mb] | Y[Ob], P = b) = f(Y[Mb] | Y[Ob]),

then the asymptotic distribution for completed and before-deletion are the same:

m(Y[Mb],Y[Ob] | P = b) = f(Y[Mb],Y[Ob] | P = b).

Next, we prove by induction that given the imputed values based on {θ(t−1)

j.Mk(j+)
=

ψj.Mk(j+)} as described above, the parameter estimation of the imputation model

m(Yj | Y[Mk(j+)], θj.Mk(j+))) based on values from the estimation block Bj0 yields

θ
(t)

j.Mk(j+)
= ψj.Mk(j+). For j = 1, at iteration t, step 1 above indicates that the com-

pleted data in the estimation block D
(t)
10 = {Y1, Y (t−1)

2 , . . . , Y
(t−1)
p | Y1 is observed}

follow the same distribution as the before-deletion data in B10 which is f(Y |

Y1 is observed); then the asymptotic score vector function for Y1 specified for any
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pattern P = k with missing Y1 is

s̃(θ1.Mk(1+) | θ
(t−1)
[−1] )

= nB10

∫ ∂logm(Y1 | Y (t−1)
[Ok(1+)], θ1.Mk(1+))

∂θ1.Mk(1+)

× d(Y (t−1) | Y1 is observed) dY (t−1)

= nB10

∫ ∂logf(Y1 | Y[Ok(1+)], θ1.Mk(1+))

∂θ1.Mk(1+)

× f(Y | Y1 is observed) dY

= nB10

∫ [∫ ∂logf(Y1 | Y[Ok(1+)], θ1.Mk(1+))

∂θ1.Mk(1+)

× f(Y1 | Y[Ok(1+)], ψ1.Mk(1+))dY1

]
×f(Y[Ok(1+)] | Y1 is observed) dY[Ok(1+)],

and therefore s̃(θ
(t)

1.Mk(1+)
= ψ1.Mk(1+) | θ

(t−1)
[−1] ) = 0 for all k.

Following a similar approach as in step 1, it can be shown that D
(t)
20 also follows

the before-deletion distribution in B20, which is f(Y | Y2 is observed). Then for

j = 2, . . . , p, assume s̃(θ
(t)
j−1 = ψj−1 | θ(t)[(j−1)−], θ

(t−1)
[−(j−1)]) = 0 and D

(t)
j0 follows the

before-deletion distribution; we now show that s̃(θ
(t)
j = ψj | θ(t)[j−], θ

(t−1)
[−j] ) = 0.

Note that,

s̃(θj.Mk(j+) | θ
(t)
[j−], θ

(t−1)
[−j] )

= nBj0

∫ ∂logm(Yj | Y (t)
[j−],Y

(t−1)
[Ok(j+)], θj.Mk(j+))

∂θj.Mk(j+)

× d(Y
(t)
[j−],Y

(t−1)
[Ok(j+)] | Bj0) d{Y (t)

[j−],Y
(t−1)
[Ok(j+)]}

= nBj0

∫ ∂logf(Yj | Y[j−],Y[Ok(j+)], θj.Mk(j+))

∂θj.Mk(j+)

× f(Y | Yj is observed) dY ,

= nBj0

∫ [∫ ∂logf(Yj | Y[j−],Y[Ok(j+)], θj.Mk(j+))

∂θj.Mk(j+)

× f(Yj | Y[j−],Y[Ok(j+)], ψj.Mk(j+))dYj

]
×f(Y[j−],Y[Ok(j+)] | Yj is observed) d{Y[j−],Y[Ok(j+)]},

and then s̃(θ
(t)

j.Mk(j+)
= ψj.Mk(j+) | θ

(t)
[j−], θ

(t−1)
[−j] ) = 0.

We now consider the validly specified model sequences with extra terms compared

to the true conditional densities. We need to show that θ∗
j.Mk(j+)

= (ψj.Mk(j+), ξj.Mk(j+) =
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0) is the convergent point for each θj.Mk(j+). Given θ∗[−j] = (ψ[−j], 0),

s̃(θj.Mk(j+) | (ψ[j−], 0), (ψ[−j], 0))

= s̃(ζj.Mk(j+), ξj.Mk(j+) | (ψ[j−], 0), (ψ[−j], 0))

= nBj0

∫ [∫ ∂logmj.Mk(j+)(Yj | Y[j−],Y[Ok(j+)], θj.Mk(j+))

∂θj.Mk(j+)

× f(Yj | Y[j−],Y[Ok(j+)], ψj.Mk(j+))dYj

]
×f(Y[j−],Y[Ok(j+)] | Yj is observed) d{Y[j−],Y[Ok(j+)]}.

Since maximizing the likelihood is equivalent to minimizing the relative entropy

of the posited regression model relative to the true distribution, finding the solution

for s̃(θj.Mk(j+) | (ψ[j−], 0), (ψ[−j], 0)) = 0 is equivalent to minimizing∫∫
log[f(Yj | Y[j−],Y[Ok(j+)], ψj.Mk(j+))/mj.Mk(j+)(Yj | Y[j−],Y[Ok(j+)], θj.Mk(j+))]×f(Yj |

Y[j−],Y[Ok(j+)], ψj.Mk(j+))dYj × f(Y[j−],Y[Ok(j+)] | Yj is observed) d{Y[j−],Y[Ok(j+)]}.

The relative entropy has non-negative values and its minimum 0 is reached if and

only ifmj.Mk(j+)(Yj | Y[j−],Y[Ok(j+)], θj.Mk(j+) = (ψj.Mk(j+), 0)) = f(Yj | Y[j−],Y[Ok(j+)], ψj.Mk(j+)).

Therefore, the asymptotic score equation s̃(θj.Mk(j+) | (ψ[j−], 0), (ψ[−j], 0)) = 0 holds

at (θ∗
j.Mk(j+)

, θ∗[−j]). Similar arguments apply to all other models.

Part 2: Proof of Theorem 3.2

Proof: To determine the target to which the approximate algorithm converges,

we first apply the target joint model m(y1, . . . , yp | θ) to analyze the incomplete data,

where θ ∈ ΘC is the compatible condition and θ = (θ1.[−1], . . . , θp.[−p], θ ∈ ΘC).

Since the joint model has separable marginal parameters, for any pattern k and

variable j, we can reparametrize

θ = (θ[−Mk(j+)], θMk(j+).[−Mk(j+)]) = (θj.Mk(j+), θMk(j+), θMk(j+).[−Mk(j+)]).

We use the expectation-maximization algorithm to obtain the maximum likelihood
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estimate θ∗. The expectation step calculates

Q(θ | θ(t−1)) =
∑
P=0

logm(y1, . . . , yp | θ)

+
K∑
p=1

∑
P=p

∫
logm(y1, . . . , yp | θ)m(y[Mp] | y[Op], θ

(t−1))dy[Mp],

and the maximization step finds the parameter that maximizes the expected log-

likelihood:

θ(t) = argmaxθ Q(θ | θ(t−1)).

The expected step can be approximated by an asymptotic quantity

Q̃(θ | θ(t−1)) = n0

∫
logm(y1, . . . , yp | θ)f(y | P = 0) dy

+
K∑
p=1

np

∫ {∫
logm(y1, . . . , yp | θ)m(y[Mp] | y[Op], θ

(t−1)) dy[Mp]

}
f(y[Op] | P = p) dy[Op],

and the maximization step maximizes the asymptotic quantity.

Since θ∗ is the convergent point for the asymptotic expectation-maximization

algorithm, for any parameterization

θ = (θ[−Mk(j+)], θMk(j+).[−Mk(j+)]) = (θj.Mk(j+), θMk(j+), θMk(j+).[−Mk(j+)]),

score equations hold at the convergent point because the marginal parameters are

separable:

∂Q̃(θj.Mk(j+), θ
∗
Mk(j+)

, θ∗Mk(j+).[−Mk(j+)] | θ∗)
∂θj.Mk(j+)

∣∣∣∣
θ∗
j.Mk(j+)

= 0.

We now show that the maximum likelihood estimate θ∗ is also the fixed point of

the asymptotic sequential regression imputation algorithm. From the expectation-

maximization algorithm, we assume that the probability functions are absolute con-

tinuous, and we interchange the differential and integral sign. Then
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∂Q̃(θj.Mk(j+), θ
∗
Mk(j+)

, θ∗Mk(j+).[−Mk(j+)] | θ∗) / ∂θj.Mk(j+)

= n0

∫
∂ logm(y1, . . . , yp | θ)

∂θj.Mk(j+)

f(y | P = 0) dy

+
∑
j /∈Mp

np

∫ {∫
∂ logm(y1, . . . , yp | θ)

∂θj.Mk(j+)

m(y[Mp] | y[Op], θ
∗) dy[Mp]

}
f(y[Op] | P = p) dy[Op]

+
∑
j∈Mp

np

∫ {∫
∂ logm(y1, . . . , yp | θ)

∂θj.Mk(j+)

m(y[Mp] | y[Op], θ
∗) dy[Mp]

}
f(y[Op] | P = p) dy[Op]

= n0

∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

f(y | P = 0) dy

+
∑
j /∈Mp

np

∫ {∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

m(y[Mp] | y[Op], θ
∗) dy[Mp]

}

× f(y[Op] | P = p) dy[Op]

+
∑
j∈Mp

np

∫ {∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

m(y[Mp] | y[Op], θ
∗) dy[Mp]

}

× f(y[Op] | P = p) dy[Op]

= n0

∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

f(y | P = 0) dy

+
∑
j /∈Mp

np

∫ {∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

m(y[Mp] | y[Op], θ
∗) dy[Mp]

}

× f(y[Op] | P = p) dy[Op]

+
∑
j∈Mp

np

∫ {∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

m(yj | y[Mk(j+)], θ
∗
j.Mk(j+)

) dyj

}

×m(y[Mk(j−)] | y[−Mk(j−)])×m(y[Mk(j+)] | y[−Mk(j+)])× f(y[Op] | P = p) dy[−j]

= s̃(θj.Mk(j+) | θ
∗
[j−], θ

∗
[−j])

+
∑
j∈Mp

np

∫ {∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

m(yj | y[Mk(j+)], θ
∗
j.Mk(j+)

) dyj

}

×m(y[Mk(j−)] | y[−Mk(j−)])×m(y[Mk(j+)] | y[−Mk(j+)])× f(y[Op] | P = p) dy[−j].
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Then the asymptotic score equations holds at θ∗:

s̃(θ∗
j.Mk(j+)

| θ∗[j−], θ
∗
[−j])

= ∂Q̃(θj.Mk(j+), θ
∗
Mk(j+)

, θ∗Mk(j+).[−Mk(j+)] | θ∗) / ∂θj.Mk(j+)

∣∣∣∣
θ∗
j.Mk(j+)

−
∑
j∈Mp

np

∫ {∫ ∂ logm(yj | y[Mk(j+)], θj.Mk(j+))

∂θj.Mk(j+)

m(yj | y[Mk(j+)], θ
∗
j.Mk(j+)

) dyj

}∣∣∣∣
θ∗
j.Mk(j+)

×m(y[Mk(j−)] | y[−Mk(j−)])×m(y[Mk(j+)] | y[−Mk(j+)])× f(y[Op] | P = p) dy[−j]

= 0.
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Supplementary Materials

A Four-Variable Example

We hereby demonstrate how BSRMI is executed for a four-variable case with the

most general missing pattern for t = 2, . . . , T . There are 15 combinations of missing

indicators of four variables, excluding the combination where all four variables are

missing: 1, . . . , 15:

Pattern Y1 Y2 Y3 Y4

1 X X X X

2 X X X ?

3 X X ? X

4 X X ? ?

5 X ? X X

6 X ? X ?

7 X ? ? X

8 X ? ? ?

9 ? X X X

10 ? X X ?

11 ? X ? X

12 ? ? X X

13 ? X ? ?

14 ? ? X ?

15 ? ? ? X

For general purposes, we assume the imputation algorithm uses the sequence

ordering of Y1, Y2, Y3 and Y4.
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To impute Y1: The filled-in block B10 consisting of patterns 1− 8 is used to

fit all the following models:

Block Pattern Model

B1.234 9 m1.234(Y1 | Y2, Y3, Y4)

B1.23 10 m1.23(Y1 | Y2, Y3)

B1.24 11 m1.24(Y1 | Y2, Y4)

B1.34 12 m1.34(Y1 | Y3, Y4)

B1.2 13 m1.2(Y1 | Y2)

B1.3 14 m1.3(Y1 | Y3)

B1.4 15 m1.4(Y1 | Y4)

In each block, the corresponding model is fitted using the filled-in block, and

Y
(t)
1 is drawn from the approximate posterior distribution.

To impute Y2: The filled-in block B20 is used to fit all the following models:

Block Pattern Model

B2.134 5, 13 m2.134(Y2 | Y1, Y3, Y4)

B2.13 6, 14 m2.13(Y2 | Y1, Y3)

B2.14 7, 15 m2.14(Y2 | Y1, Y4)

B2.1 8 m2.1(Y2 | Y1)

In each block, the corresponding model is fitted using the filled-in block, and

Y
(t)
2 is drawn from the approximate posterior distribution.

To impute Y3: The filled-in block B30 is used to fit the following models:
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Block Pattern Model

B3.124 3, 7, 11, 15 m3.124(Y3 | Y1, Y2, Y4)

B3.1 4, 8, 12 m3.1(Y3 | Y1)

In each block, the corresponding model is fitted using the filled-in block, and

Y
(t)
3 is drawn from the approximate posterior distribution.

To impute Y4: The filled-in block B40 is used to fit the following model:

Model m4.123(Y4 | Y1, Y2, Y3) is specified for block B4.123.

The model is fitted using the filled-in block, and Y
(t)
4 is drawn from the approx-

imate posterior distribution.

Additional Tables

Table 3.3: Bias in the parameter estimates based on BSRMI using the poor fitting models under
different orders, Replicates=500, Imputations=20, Sample size=10,000

Order
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,2,1) (3,1,2)

α10 = log(2) 0.057 0.031 0.073 0.052 0.043 0.071
α20 = −1 0.430 0.442 0.404 0.446 0.438 0.393
α21 = 0.3 -0.197 -0.195 -0.189 -0.192 -0.195 -0.195
α30 = −2 0.835 0.855 0.888 0.842 0.858 0.858
α31 = 0.5 -0.270 -0.272 -0.355 -0.404 -0.407 -0.432
α32 = 0.1 -0.487 -0.494 -0.180 0.043 0.039 0.093

Table 3.4: Bias in the parameter estimates based on BSRMI using the actual conditional models
under different orders, Replicates=500, Imputations=20, Sample size=10,000

Order
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,2,1) (3,1,2)

α10 = log(2) -0.014 -0.013 -0.014 -0.015 -0.014 -0.015
α20 = −1 0.031 0.042 0.040 0.046 0.038 0.0391
α21 = 0.3 0.019 0.015 0.013 0.016 0.014 0.013
α30 = −2 0.045 0.051 0.048 0.044 0.048 0.052
α31 = 0.5 0.037 0.033 0.035 0.034 0.041 0.032
α32 = 0.1 0.013 0.014 0.012 0.014 0.013 0.012



CHAPTER IV

Sequential Quasi-Likelihood Regression Multivariate
Imputation (SQLRMI)

Abstract

The sequential regression multivariate imputation (SRMI) approach (also known

as chained equations, fully conditional specifications, or flexible conditional specifi-

cations) imputes missing values using a sequence of conditional univariate regression

models. The predictive power of the regression model sequence has been shown to

determine its performance. Currently almost all software packages adopting this

approach use parametric regression models within the generalized linear regression

framework. However, it can be difficult to identify a well-fitting parametric model

sequence for some common types of variables. This paper extends the sequential

and the block sequential approach by using a quasi-likelihood approach to better

capture the structure of the prediction model for the missing values. We examine

the performance of the modified approach through simulation studies. We show that

quasi-likelihood regression models make it easier to choose better-fitting model se-

quences to yield desirable repeated sampling properties of the multiple imputation

estimates.
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Key Words: Missing data; Multiple imputation; Chained equations; Conditional

specifications; Quasi-likelihood regression

4.1 Introduction

4.1.1 SRMI Background

The sequential regression imputation approach (Kennickel, 1991, Raghunathan

et al., 2001), also called imputation with chained equations or fully conditional

specifications (Van Buuren and Oudshoorn, 1999), uses a Gibbs sampling style it-

erative algorithm. For each missing variable, the algorithm assumes a univariate

regression model using all other variables as predictors. Let U be variables with

no missing values. Let Y1, Y2, . . . , Yp be p variables with missing values and let

Pr(Yj|U, Y1, Y2, . . . , Yj−1, Yj+1, . . . , Yp, θj) be the conditional distribution of Yj given

Y−j = {U, Y1, . . . , Yj−1, Yj+1, . . . , Yp}, and some unknown parameters θj. Let π(θj)

denote the prior density for θj. At iteration t, let Y
(t)
−j = {U, Y (t)

1 , Y
(t)
2 , . . . , Y

(t)
j−1, Y

(t−1
j+1 , . . . , Y

(t−1)
p }

where Y
(s)
k is the filled-in data for variable Yk at iteration s. At iteration t, the im-

putation of the variable Yj involves two steps: (1) the observed values Yj and the

corresponding Y
(t)
[−j] are used to construct the approximate posterior density of θj and

a value is drawn; and (2) the imputations are drawn from the regression model using

the predictors and the drawn value of the parameters.

This approach has two major practical advantages over joint model-based impu-

tation methods. It enables handling of complex data structures by focusing on a

set of regression models with a univariate outcome. Compared to a joint model,

the flexible selection of regression models enables improved prediction of the missing

values based on other variables, and the regression models are more intuitive to ana-

lysts. Furthermore, individual regression models can easily account for study designs

such as skip patterns, logical constraints, bounds for imputed values and consistency
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requirements.

A theoretical weakness of the sequential regression approach, however, is that the

specifications of the conditional distributions for a set of variables do not guarantee

the existence of a joint distribution, and hence, the algorithm may not converge. Liu

et al. (2014), Hughes et al. (2014) and Zhu and Raghunathan (2015) examined the

convergence properties through both analytical and simulation investigations. One of

the key findings was that if the regression models fit the data well, one obtains valid

inferences. This assumption can be challenging for certain types of variables, such

as grouped binary or count variables. The generalized linear model usually imposes

certain restrictions on the mean and variance of the distributions. A review of current

statistical software packages indicates that although features in SRMI applications

account for data structures (logic constraints, bounds, censoring, etc.), the packages

only use generalized linear regression models. However, the following motivating

example will show that it can be difficult to identify a well-fitting generalized linear

regression model sequence even for some common variables.

4.1.2 Motivating Example: SRMI for Trivariate Poisson

Consider the trivariate Poisson case discussed in Zhu and Raghunathan(2016),

where the complete data are generated from the joint population distribution defined

as follows:

y1 ∼ Poisson(λ = exp(α10)),

y2 | y1 ∼ Poisson(λ = exp(α20 + α21y1)),

y3 | y1, y2 ∼ Poisson(λ = exp(α30 + α31y1 + α32y2)),

where α10 = log(2), α20 = −1, α21 = 0.3, α30 = −2, α31 = 0.5 and α32 = 0.1.

Suppose variables are missing at random with a general pattern of missingness.
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The seven possible missing data patterns are listed below, where X denotes observed

and ? denotes missing:

P Y1 Y2 Y3

1 X X X

2 X X ?

3 X ? X

4 X ? ?

5 ? X X

6 ? X ?

7 ? ? X

Suppose that an SRMI approach assumes three conditional generalized linear

regression models:

m1(y1 | y2, y3) ∼ Poisson(λ = exp(θ10 + θ12y2 + θ13y3)),

m2(y2 | y1, y3) ∼ Poisson(λ = exp(θ20 + θ21y1 + θ23y3)),

m3(y3 | y1, y2) ∼ Poisson(λ = exp(θ30 + θ31y1 + θ32y2)).

The algorithm breaks down due to extremely large values imputed within the first

few iterations. A quick diagnostic also shows that these models are poor fits for the

regression of Y2 on (Y1, Y3) and Y1 on (Y2, Y3). This behavior indicates that, when

data are missing simultaneously within a record at the same time that sequential

regression imputation models are not good fits, the algorithm may not generate con-

vergent results, let alone valid analysis. In response, Chapter 3 proposes a modified

algorithm, Block Sequential Regression Multivariate Imputation (BSRMI), to ensure

convergence. However, the modified algorithm still relies on parametric generalized

linear models, which may not be well fitting.
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Figure 4.1: The relation between mean and variance of y1 | y2, y3

We show through model diagnostics that the Poisson regression models can be

poorly fitting. Figure 4.1 provides a scatter plot of the variance of the conditional

distribution of Y1 given Y2 and Y3 against the mean, distinguished by the joint prob-

ability distribution of (Y2, Y3). The variance is smaller than the mean and suggests

a quadratic relationship between the mean and variance. A similar plot of Y2 given

(Y1, Y3) shows that Y2 is zero-inflated (compared to a Poisson distribution), and

the Poisson model is a poor fit. One alternative is to use linear regression models

based on transformation methods (such as the Box-Cox transformation), but for this

example they do not yield desirable results either.

In this paper, we use quasi-likelihood regression models to accommodate such

complexities where the mean and variance function can be modeled to fit the data

better and introduce the notion of imputations as draws from a quasi-predictive
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distribution. Section 4.2 introduces the proposed algorithm. Section 4.3 revisits

the motivating example, and examines the performance of the proposed algorithm

through an extensive simulation study. Section 4.4 summarizes the findings, and

discusses the advantages and limitations of the proposed sequential regression algo-

rithm.

4.2 Methods

At any given iteration, let Y be the variable to be imputed andX be the remaining

variables to be used as predictors. The objective is to fit a regression model,

E(Y |X) = µ = g(X tβ, a),

where g is a known function, β is a p-dimensional vector of unknown parameters, and

a represents known constants-e.g., the “off-set” term in the Poisson regression or the

denominator in the grouped binomial outcome. The variance function is modeled as

V (Y |X) = V (φ, µ, b),

where V is a known function, b represents known constants, and φ is a vector of

unknown parameters.

A particular form of the variance function is V (Y |X) = φ2V (µ, b), which is useful

for handling under- or over-dispersion in the variance relative to the mean. Specifi-

cation of the mean and variance functions may be enough for many common distri-

butions, but it is not sufficient. We introduce the notion of a pseudo-density,

p(y|x, φ, β) = K(φ, β) exp

(∫ µ

y

y − t

φ2V (t, b)
dλ(t)

)
,

which can be viewed as a saddlepoint approximation of the density based on the first

two moments with respect to the appropriate measure, λ (McCullagh and Nelder,

1983, and Butler, 2007).
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Treating Y and X as an n × 1 vector and an n × p matrix, respectively (for n

individuals), the parameter β for a given φ is estimated by solving the equation,

DtW−1(Y − µ) = 0,

where D = ∂µ/∂β is an n× p matrix, and W is a diagonal matrix with variances as

the entries. The estimation of φ requires an additional objective function,

h(φ, µ) + (Y − µ)tW−1(Y − µ),

to be minimized with respect to φ, where h is a known function. One iterates

between estimating β and φ with these two functions to jointly estimate the unknown

parameters (β, φ).

If V (φ, µ, b) = φ2V (µ, b), where V is a known function, β can be estimated without

knowing φ. For a given β, φ2 can be estimated as φ̂2 = (Y − µ̂)tW−1(Y − µ̂)/(n−p),

where W is the diagonal matrix with V (µ, b) as entries.

4.2.1 A Quasi-Predictive Distribution

For a regular SRMI using a parametric model sequence, imputed values are natu-

rally drawn from the posterior predictive distribution. Since quasi-likelihood regres-

sion models do not specify the distributions, we need an alternative way to draw

values for the missing variables.

It is possible to use the estimated mean function to predict the missing values for

imputation. However, this strategy ignores the sampling variability in the estimated

parameters and the inherent variability in the actual observations even when the ac-

tual or true values of the parameters are known. Therefore, we suggest a modification

as follows:

1. Approximate (n − p)φ̂2/φ2 by a chi-square distribution with n − p degrees of
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freedom. This approximation may be viewed as the saddlepoint approxima-

tion (Barndorff-Nielsen and Cox, 1979) of the posterior distribution under the

pseudo-probability distribution with mean µ and variance φ2V (µ, b) and a non-

informative prior π(φ) ∝ φ−1. Define φ2
∗ = (n− p)φ̂2/u, where u ∼ χ2

n−p.

2. Define T = (DtW−1D)−1, and C such that CCt = T . Let z be a p × 1 vector

of standard normal deviates. Define β∗ = β̂ + φ∗Cz. This also can be viewed

as a draw from the saddlepoint approximation of the posterior density of β

conditional on data and φ∗ under the pseudo-probability distribution and a

non-informative prior π(β|φ) ∝ 1.

3. The missing value for subject i is drawn from a quasi-predictive distribution

with the density,

f(yi | φ∗, β∗) = K(φ∗, β∗)exp

[∫ µ∗i

yi

yi − t

φ2
∗V∗(t, b)

dλ(t)

]
,

where K(φ∗, β∗) is a normalizing constant with respect to the appropriate mea-

sure λ. The rejection sampling technique or the inversion of the distribution

function can be used to create imputations. Again, this step can be viewed as

creating draws from a saddlepoint approximation of the density function with

the mean and variance functions.

4. In the sequential or block-sequential regression framework, some or all univariate

regression models can be quasi-likelihood regression models.

In the trivariate Poisson example, the following mean

E(Y1 | Y2, Y3) = µ1(β1, Y2, Y3) = β10 + β11Y2 + β12Y3 + β13Y2Y3,

and variance

V ar(Y1 | Y2, Y3) = φ2µ1(β, Y2, Y3)[1− 0.16µ1(β1, Y2, Y3)]
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fit the data reasonably well, where β = (β10, β11, β12, β13). Without specifying the

distribution, the quasi-maximum likelihood estimation of β based on the above mean-

variance specification is equivalent to solving the following estimating equations:

∑
s

(
∂µ1s

∂β1

)T
V ar(Y1s | Y2s, Y3s)−1(Y1s − µ1s) = 0.

For a given β, φ2 can be estimated using the method described above.

Given the estimated parameters β and φ, the quasi-predictive distribution of Y1

given Y2 and Y3 is

Pr(Y1 = y | Y2, Y3) ∝ exp

(∫ µ

y

y − t

φ2t(1− 0.16t)
dt

)
.

4.3 Simulation Studies

To evaluate repeated sampling properties of the multiple imputation estimates

derived using the quasi-likelihood regression models, we use the trivariate Poisson

data as the motivating example. The following steps describe the simulation study:

1. Data Generation: 500 data sets of sample size n = 1000 are generated.

2. Missing Data Mechanism: Missing values are created based on the following

missing at random mechanism; data are divided into six random groups:

(a) In the first group of size 100, y2 and y3 are observed and

pr(y1 is set to be missing | y2, y3) = [1 + exp(1.6− 0.8y2 − 0.7y3)]
−1 ;

(b) In the second group of size 100, y1 and y3 are observed and

pr(y2 is set to be missing | y1, y3) = [1 + exp(2.1− 0.8y1 − 0.8y3)]
−1 ;

(c) In the third group of size 100, y1 and y2 are observed and

pr(y3 is set to be missing | y1, y2) = [1 + exp(2.3− 0.9y1 − 0.8y2)]
−1 ;
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(d) In the fourth group of size 300, y3 is observed and

pr(y1 and y2 are set to be missing | y3) = [1 + exp(1− 1.2y3)]
−1 ;

(e) In the fifth group of size 200, y1 is observed and

pr(y2 and y3 are set to be missing | y1) = [1 + exp(1.7− 1.5y1)]
−1 ;

(f) In the sixth group of size 200, y2 is observed and

pr(y1 and y3 are set to be missing | y2) = [1 + exp(1.8− 1.4y2)]
−1 .

3. Parameters of Interest: We choose the true values of population parameters

α10, α20, α21, α30, α31, and α32. We consider several multiple imputation

algorithms, and compare the MI inference to those based on before-deletion

data and complete cases, respectively.

4. Methods Considered:

(a) BSRMI with GLM: We consider all six permutations of orders, (1,2,3);

however, we only show the details and results for the first imputation order

since the order effect is minimal if the models for all imputation orders

are reasonably well fitting. The improved algorithm is developed based on

the first simulated data set with missing values, just like in any practical

application. The following specifications provide well-fitting models:

i. For y1: Based on y1,obs, y
(t−1)
2 and y

(t−1)
3 , θ

(t)
10 is estimated from m10(y1 |

y2, y3, θ10) ∼ Poisson(λ = exp(θ100+θ101y
1/3
2 +θ1021/(1+y2)

3+θ103y
(1/3)
3 +

θ1041/(1 + y3)
3 + θ105 log(y3 + 1) ∗ 1(y3<5) + θ106y

1/3
2 ∗ y1/33 )); θ

(t)
12 are es-

timated from m12(y1 | y2, θ12) ∼ Poisson(λ = exp(θ120 + θ121y
1/3
2 +

θ1221/(1+y2)
3)) and θ

(t)
13 is estimated fromm13(y1 | y3, θ13) ∼ Poisson(λ =

exp(θ130 + θ131y
(1/3)
3 + θ1321/(1 + y3)

3 + θ133 log(y3 + 1) ∗ 1(y3<5)));
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• for records with y1 missing and y2 and y3 observed, values of y
(t)
1,mis

are drawn from the Poisson distribution m10(y1 | y2,obs, y3,obs, θ(t)10 );

• for records with y1 and y3 missing and y2 observed, values of y
(t)
1,mis

are drawn from the Poisson distribution m12(y1 | y2,obs, θ(t)12 );

• for records with y1 and y2 missing and y3 observed, values of y
(t)
1,mis

are drawn from the Poisson distribution m13(y1 | y3,obs, θ(t)13 );

ii. For y2: Based on y2,obs, y
(t)
1 and y

(t−1)
3 , θ

(t)
20 is estimated from m20(y2 |

y1, y3, θ20) ∼ Poisson(λ = exp(θ200 + θ201y1 + θ203y3)); θ
(t)
21 is estimated

from m21(y2 | y1, θ21) ∼ Poisson(λ = exp(θ210 + θ211y1));

• for records with y2 missing and y3 observed, values of y
(t)
2,mis are drawn

from the Poisson distribution m20(y2 | y(t)1 , y3,obs, θ
(t)
20 );

• for records with y2 and y3 missing, values of y
(t)
2,mis are drawn from

the Poisson distribution m21(y2 | y(t)1 , θ
(t)
21 );

iii. For y3: θ
(t)
3 is estimated from m3(y3 | y1, y2, θ3) ∼ Poisson(λ = exp(θ30+

θ31y1 + θ32y2)) based on y3,obs, y
(t)
1 and y

(t)
2 . Values of y

(t)
3,mis are drawn

from the Poisson distribution m3(y3 | y(t)1 , y
(t)
2 , θ

(t)
3 ).

(b) SRMI using quasi-likelihood regression (SRMI-QLR): Based on model di-

agnostics, SRMI assumes

i. For Y1:

E(Y1 | Y2, Y3) = µ1(β1, Y2, Y3) = β10 + β11Y2 + β12Y3 + β13Y2Y3

and

V ar(Y1 | Y2, Y3) = φ1µ1(β1, Y2, Y3)[1− 0.16µ1(β1, Y2, Y3)].

ii. For Y2: The model is a two part specification due to the zero inflation

in Y2. First of all, a logistic regression model is assumed to fit whether
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Y2 is 0:

logit[Pr(Y2 = 0 | Y1, Y3)] = η20 + η21Y1 + η22Y3 + η23Y1Y3.

If Y2 is predicted to be positive, a second quasi-likelihood regression is

assumed:

E(Y2 | Y1, Y3) = µ2(β2, Y1, Y3) = β20 + β21Y1 + β22Y3 + β23Y1Y3

and

V ar(Y2 | Y1, Y3) = φ2µ2(β2, Y1, Y3)[1− 0.01µ2(β2, Y1, Y3)].

iii. For Y3:

E(Y3 | Y1, Y2) = µ3(β3, Y1, Y2) = β30 + β31Y1 + β32Y2

and

V ar(Y3 | Y1, Y2) = φ3µ3(β3, Y1, Y2).

(c) BSRMI using quasi-likelihood regression (BSRMI-QLR): Similarly to BSRMI

by GLM, we impute the missing values in the order of Y 1, Y2 and Y3. In

addition to the models used in SRMI, three additional models are assumed

for the following patterns:

• for records with Y1 and Y3 missing and Y2 observed, the quasi-likelihood

regression model assumes

E(Y1 | Y2) = µ12(β1, Y2) = β102 + β112Y2

and

V ar(Y1 | Y2) = φ12µ12(β1, Y2)[1− 0.23µ12(β1, Y2)].
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• for records with Y1 and Y2 missing and Y3 observed, the quasi-likelihood

regression model assumes

E(Y1 | Y3) = µ13(β1, Y3) = β103 + β113Y3

and

V ar(Y1 | Y3) = φ13µ13(β1, Y3)[1− 0.31µ13(β1, Y3)].

• for records with Y2 and Y3 missing, the quasi-likelihood regression model

assumes

E(Y2 | Y1) = µ21(β2, Y1) = β201 + β211Y1

and

V ar(Y1 | Y3) = φ21µ21(β2, Y1).

5. Other factors: For each imputation algorithm, M=5 completed data sets are

generated with T = 100 iterations for each data set, and analysis results are

combined using Rubin’s (1976) formula.

Table 4.1 provides the Monte-Carlo bias for each parameter, which is the differ-

ence between the mean of the averaged parameter estimates from 500 data sets and

the true value. We use the estimation based on before deletion data as the refer-

ence. Table 4.1 also includes the root mean squared error (RMSE) and the coverage

rates of the 95% confidence interval for each parameter. The table shows that both

SRMI-QLR and BSRMI-QLR perform better than BSRMI-GLM, and BSRMI-QLR

is better than SRMI-QLR.



99

Table 4.1: Biases, RMSE and 95% confidence interval coverage rates of parameter estimates using various approaches, R=500, M=5

BD CC BSRMI
GLM

SRMI
QLR

BSRMI
QLR

Bias RMSE CR(%) Bias RMSE CR(%) Bias RMSE CR(%) Bias RMSE CR(%) Bias RMSE CR(%)

α10 = log(2) 0.008 0.022 95.4 -0.354 0.356 24.2 -0.017 0.034 94.7 -0.013 0.042 95.1 -0.012 0.042 95.2
α20 = −1 -0.018 0.072 95.5 -0.326 0.351 31.1 0.061 0.117 91.1 0.092 0.151 92.1 0.072 0.131 93.7
α21 = 0.3 0.008 0.061 94.3 -0.052 0.079 84.3 -0.019 0.063 92.9 0.017 0.064 94.5 0.013 0.066 94.5
α30 = −2 0.017 0.092 95.2 -0.390 0.443 45.2 0.331 0.359 64.3 0.142 0.180 79.1 0.105 0.175 91.4
α31 = 0.5 0.011 0.032 94.7 -0.132 0.154 40.8 -0.115 0.125 83.8 0.082 0.096 93.4 0.065 0.088 93.9
α32 = 0.1 0.003 0.030 95.3 -0.315 0.353 2.1 0.012 0.061 91.5 0.013 0.061 92.8 0.013 0.061 93.6
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The Kullback-Leibler divergences between before-deletion and after-imputation

data distributions for each algorithm are summarized in Figure 4.2. Each algorithm

converges to the same results as the sample size, number of iterations and number

of imputations increase. Figure 4.2 further shows that better results are obtained

using the improved imputation models.

4.4 Discussion

The sequential regression multivariate imputation algorithm is a popular approach

for imputing missing values in a data set with a complex structure, where developing

a joint distribution is difficult, if not impossible. Several studies have shown that the

properties of the multiple imputation estimates have desirable sampling properties

provided the models were good fits for each conditional distribution. However, this

approach can break down if the models are not good fits. The trivariate Poisson

example is one such instance. Interestingly, it is difficult to find well-fitting mod-

els within the exponential family for this example. Thus, we extended the SRMI

approach by using the quasi-likelihood regression (QLR) models.

The QLR imputation approach can be used in either regular SRMI or modified

BSRMI for data with general missing patterns. Since both SRMI and BSRMI adopt

univariate regression models, it is easier to specify and fit the quasi-likelihood models

for each variable on a case-by-case basis; more importantly, it is simple to draw

imputed values from a quasi-predictive distribution defined by the mean and variance

structures. Study features such as bounds and logical constraints can be accounted

for similarly, as in parametric SRMI algorithms. The preservation of these features

indicates that the extension will only require minimal modification to the current

software packages.
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Figure 4.2: Kullback-Leibler divergence between empirical distributions, based on multiply imputed
data F̂n,T

MI (x, y) and before deletion data F̂n
BD(x, y) and averaged over 500 replicates

of data sets, from three imputation algorithms plotted as a function of sample size
n=500, 1000, and 5000 and the number of iterations T = 50, 100, 1000 when the data
are missing at random. The three imputation algorithms impute the missing values
in the order of Y1, Y2 and Y3: the poor sequence assumes linear predictors only, the
improved sequence assumes appropriate non-linear terms of the predictors, and the
validly specified sequence assumes true conditional models from the data population.

Our simulation study shows that quasi-likelihood models with validly specified

mean structures and mean-variance relations yield reasonably good inferences. One

limitation is the loss in predictive power using the saddlepoint approximation, when

one may be able to draw from the actual predictive distribution whenever the mean

and variance structures correspond to an actual predictive distribution. This differ-

ence may not be large for large samples. Since the QLR models do not specify the

conditional distributions, the proposed approach does not assume compatibility of

the models in the sequence, and existing theoretical frameworks do not apply for this

method. Further research is needed to develop regularity conditions for convergence

of SRMI using QLR for some or all variables.

In order to evaluate the imputation performance, we have assumed the missingness

to be ignorable in this paper. Further research is needed to modify this approach
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for non-ignorable missing data. One area of further research will be to use the

univariate selection or mixture model together with the model for variables subject

to non-ignorable missing data mechanisms.



CHAPTER V

Discussion

5.1 Conclusions and Discussions

The sequential regression multivariate imputation algorithm, a Gibbs sampling

type iterative approach, is perhaps the most viable method for creating imputa-

tions in a complex data set with many types of variables, structural dependencies,

skip patterns, and bounds for imputed values, etc. However, one of the theoretical

limitations of this approach stems from the fact that specifications of conditional

distributions do not guarantee the existence of a joint distribution, and, therefore,

the Gibbs style iterative algorithm may not converge. Past simulation studies on

SRMI mostly considered linear regression models only, and their conclusions may

not extend to general cases. Limited theoretical work on the convergence properties

of SRMI required strong assumptions such as the existence of a joint distribution for

the algorithm, and tended not to separate compatibility and model fitting issues. In

order to avoid these limitations, this thesis work considered many types of regression

models for general missing data without assuming the existence of a joint distribu-

tion. The effects of model compatibility and model fitting on SRMI convergence and

performance were also studied separately. The major findings of this thesis work are

summarized as follows.

103
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In Chapter 2, we focused on single variable missingness. We determined sev-

eral types of model compatibility. Theoretical and simulational results indicate that

SRMI algorithms converge under some regulatory conditions. However, eve strongly

incompatible specifications tend to converge to a fixed point without achieving any

overall compatibility. While it is analytically impossible to determine the fixed point

in general, through special cases and simulation studies, we showed that the impu-

tation performance can be evaluated depending on how well the model sequences fit

the data. These findings suggest that for this special case, imputers need to focus

on improving imputation model fitting instead of enforcing model compatibility.

For SRMI, algorithmic incompatibility may occur and result in algorithm di-

vergence when poorly chosen models are used. This problem was motivated by a

trivariate Poisson data set. To reduce the risk of such behavior, we introduced the

block sequential multivariate imputation algorithm by modifying the SRMI algorithm

through compatible block specification in Chapter 3. A set of regularity conditions

for the convergence were developed and repeated sampling properties were evaluated

through simulations. Again, after modification, the most important factor is the

goodness of fit of the regression models used in the model sequence.

For outcomes such as the count variables, parametric regression models are not

rich enough to handle over- or under-dispersion as well as the complex relationship

between the mean and variance functions. In Chapter 4, we extended the paramet-

ric GLM framework to quasi-likelihood regression models to accommodate complex

mean and variance structures without specifying the model distribution. We demon-

strated that by choosing a reasonable mean-variance structure in the regression mod-

els, the imputation performance can be significantly improved.

Throughout, we assumed that the missing data mechanism is ignorable. Future
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work includes extending the sequential regression framework to the nonignorable

missing data mechanism. Selection models for variables in the SRMI can be devel-

oped to create imputations under the nonignorable missing data mechanism. For

the block-specific SRMI, a pattern mixture model can easily adapt the nonignorable

missing mechanism into its framework. For quasi-likelihood regression models, the

variance can be assumed to be an unknown function of the mean instead of a fixed

function.
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