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I became an ardent beetle hunter since my childhood. The diversity in size, shape, 

and color of beetles always amazes me; it seems like there are always new forms to be 

found in beetles. The question about how to designate species to different life forms and 

why are they so different has always puzzled me. Questions such as how many different 

beetles are there in my collection and what are the relationships between these beetles (in 

short, how to place different beetles in the same box that makes sense to me) have been 

important yet difficult to me. It has been a great experience for me to use the biological 

system, that I fancy for a long time to tackle the two long lasting challenges in biology in 

my thesis. I will explain more detail why the two Rhinoceros beetle groups are chosen to 

test different sets of questions in each of the following chapter more explicitly and 

discuss what my results mean and their broader impacts on the field of biological study. 
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ABSTRACT 

My thesis study focuses on systematic biology, biogeography, and more generally 

evolutionary biology. Specifically, I address two grand challenges in biology – species 

delimitation and speciation process. Furthermore, I also attempt to bridge the gap 

between macro- and micro-evolutionary studies. The characteristics of two groups of 

rhinoceros beetles (genus Dynastes and Xylotrupes) I study make them ideal for 

addressing these questions – geographically widespread taxa with local morphological 

forms – also make them challenging to study. These groups exhibit inconsistency in 

taxonomic designations and the their geographic distributions imply complex historical 

processes in their diversification process. My research highlights both the power, but also 

the necessity, of an integrative framework that considers different data types, as well as 

quantitative approaches to test different hypotheses about species boundaries and the 

diversification process. For example, my first chapter revealed the arbitrariness in 

taxonomic decisions, even between closely related taxa from the same lineage, by 

demonstrating that species boundaries were statistically equivalent among taxa even 

though some were assigned as subspecies by previous taxonomic treatments. By 

establishing this taxonomic foundation, my studies on the effects of ecological and 
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geographic isolation on species diversification in the following chapters avoid the biases 

introduced by taxonomic ambiguity and inconsistency.  

In my second chapter, I show that the effects of habitat stability/instability (e.g., 

changes in the geographic distribution and size of the habitats) outweighs the 

contributions of geological events that connect previously isolated biotas (e.g., the rise of 

the Isthmus of Panama) in promoting rapid diversification in Hercules beetles. Following 

the general theme of the contribution of different barriers to divergence, in Chapter 3 I 

extend the investigation to consider whether their effects are similar across different 

levels of biological organization – that is, in the structuring of patterns of genetic 

diversity among population, species, and faunal communities. This work shows that 

oceanic barriers between landmasses in the Indo-Australian Archipelago delineates 

zoological regions by structuring distinct faunal communities and promotes population 

subdivision in Xylotrupes beetles. However, the rate of species diversification appears to 

be associated with shifts in forest fragmentation across geological times (i.e., between 

Miocene and Pliocene). As such, this work highlights the decoupling of processes 

contributing to micro- and macro- evolutionary patterns, which only became evident 

because of my integrative approach to research that involves consideration of alternative 

mechanisms and study of divergence at multiple levels of biodiversity. 
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CHAPTER 1: Introduction 

 The diversity of life is a spectacular, and arguably the most fascinating, features 

of our planet. Generations of scientists have been pursuing not only the logic of the 

hierarchical structure among, but also the origin and maintenance of the endless forms of 

biodiversity (Howard & Berlocher 1998). However, after generations of studies, 

disagreement about how species should be designated persists (de Queiroz 2007). 

Moreover, because different speciation processes may proceed from divergence along 

different possible axes (e.g., along the ecological preference and/or the morphological 

axes) (Coyne & Orr 2004; Nosil et al. 2009), recognized species may differ depending 

upon the type of data used to delimit taxa (e.g., genetic versus phenotypic data). 

Differences in delimited taxa in turn may significantly affect our interpretation of the 

diversification history of lineages (Smith et al. 2013). That is, the studies of speciation 

and diversification processes are dependent on the results of species delimitation. 

My dissertation research addresses two of the grand challenges in biology: species 

delimitation and speciation. Although individual chapters focus predominantly on one of 

the two conceptual areas, my research is motivated by the links between these areas. For 

example, I test whether currently designated species and subspecies can be statistically 
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supported under coalescent by integrating information from multiple datasets (molecular, 

phenotypic and ecological data). If not, can such inconsistencies be identified based on 

statistical results (Chapter 2). I then use the statistical species delimitation results to test 

predictions from hypothesized historical processes that might have shaped the current 

species diversity pattern in order to understand what could be the driving and maintaining 

forces of biological diversification (Chapter 3). Finally, I investigate the effects of 

different types of barriers on genetic, species, and faunal diversities. Specifically, I test 

whether the predominate mechanism that structures biodiversity can be not only 

evolutionary lineage specific, but also biodiversity level specific (Chapter 4). My 

dissertation study thus demonstrates how to achieve a comprehensive understanding on 

the origin and maintenance of biodiversity pattern by integrating studies of species 

delimitation and diversification process in the same system. 

My system of interest, the Rhinoceros beetle (Dynastinae), is a speciose lineage that 

comprises more than 1,000 species widely distributed throughout the world (Rowland & 

Miller 2012). The Rhinoceros beetle system provides a great opportunity to study species 

delimitation by integrating multiple types of data and diversification process at different 

biodiversity levels. For example, in addition to using neutral molecular dataset that 

represents demographic effects on the observed divergences between taxa, the male horn 

structure is highly diverse in size and shape among species and populations of the same 

species, which represents an divergence axis potentially reacts to the strength of sexual 

and/or natural selection. Additionally, the diverse geographic forms, e.g., island endemic 
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taxa, found in Rhinoceros beetles are great candidates to investigate effects of various 

historical/macroevolutionary processes on structuring the current day biodiversity 

patterns – population genetic structure, species diversity, and regional specific fauna.  
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CHAPTER 2: The species versus subspecies conundrum: 
quantitative delimitation from integrating multiple data types 
within a single Bayesian approach in Hercules beetles 

 

2.1 Abstract 

With the recent attention and focus on quantitative methods for species delimitation, 

an overlooked but equally important issue regards what has actually been delimited. This 

study investigates the apparent arbitrariness of some taxonomic distinctions, and in 

particular how species and subspecies are assigned. Specifically, I use a recently 

developed Bayesian model-based approach to show that in the Hercules beetles (genus 

Dynastes) there is no statistical difference in the probability that putative taxa represent 

different species, irrespective of whether they were given species or subspecies 

designations. By considering multiple data types, as opposed to relying exclusively on 

genetic data alone, I also show that both previously recognized species and subspecies 

represent a variety of points along the speciation spectrum (i.e., previously recognized 

species are not systematically further along the continuum than subspecies). For example, 

based on evolutionary models of divergence, some taxa are statistically distinguishable 

on more than one axis of differentiation (e.g., along both phenotypic and genetic 
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dimensions), whereas other taxa can only be delimited statistically from a single data type. 

Because both phenotypic and genetic data are analyzed in a common Bayesian 

framework, my study provides a framework for investigating whether disagreements in 

species boundaries among data types reflect (i) actual discordance with the actual history 

of lineage splitting, or instead (ii) differences among data types in the amount of time 

required for differentiation to become apparent among the delimited taxa. I discuss what 

the answers to these questions imply about what characters are used to delimit species, as 

well as the diverse processes involved in the origin and maintenance of species 

boundaries. With this in mind, I then reflect more generally on how quantitative methods 

for species delimitation are used to assign taxonomic status. 

 

2.2 Introduction 

The importance of species delimitation extends beyond immediate taxonomic goals 

in systematics (Mayr 1942; de Queiroz 2007; Wiens 2007) – that is, it is not simply a 

semantic issue. Taxonomic treatments have profound implications for other fields, 

ranging from studies in evolution and ecology to conservation biology (Wiens 2007). For 

example, conservation priorities that focused on a widespread and abundant lineage left a 

separate endangered lineage of the Preble’s meadow jumping mouse unprotected 

(Malaney & Cook 2013). Likewise, whether ecological isolation is viewed as important 

in speciation can be dependent upon how species are delimited (e.g., Smith et al. 2013), 
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and differences in taxonomic practices can bias patterns of species diversity, making 

comparisons among taxa difficult (Isaac et al. 2004). However, species delimitation is 

itself a challenging endeavor. The actual biological properties used in identifying species 

have evolved with shifts in the availability of different data types and with recognition of 

the limitations of different species concepts. As a consequence, putative taxa may differ 

depending on not only the data used in analyses, but also the criteria used to delimit taxa 

(e.g., Edwards & Knowles 2014). For example, multiple species might be recognized 

based on the monophyly of mitochondrial gene trees, whereas only one species may be 

delimited based on morphological differences (Hebert et al. 2004a; 20004b). The 

expansion of genetic data to multiple loci has also highlighted the impact of decisions 

about data choice on inferences about species boundaries. For example, unrecognized 

taxa might be detected from consideration of multiple loci, even when there has not been 

enough time for the random sorting of gene lineages to produce monophyletic gene trees 

at any individual locus (Carstens & Knowles 2007). In other words, even for a given 

species concept (e.g., that species are independently evolving lineages; de Queiroz 2007), 

a critical question remains—how do we practically identify species, and what information 

do we need to consider to confidently delimit different species?  

This quagmire is in many ways exemplified by the use of subspecies designations in 

systematic study. Subspecies conventionally have been used to denote geographic forms 

of polytypic species under the biological species concept (Mayr 1942; Mayr 1963), 

perhaps with additional evidence provided by a region’s geological history (Mayr 1942). 
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Yet many subspecies delimitations more often than not appear to be arbitrary (Wilson & 

Brown 1953; Mayr & Ashlock 1991). This is especially evident when we consider that 

the use of species versus subspecies designations not only differs across taxonomic 

groups (Table 2.1), but may also show pronounced differences within taxa depending 

upon the region where the described taxa were collected. Such differences are highlighted 

in the charismatic Hercules beetles (genus Dynastes MacLeay, 1819), which are the focus 

of this study, where species versus subspecies designations appear to reflect differences 

in systematic/taxonomic practices, rather than differences in actual biological entities 

being delimited (Fig. 2.1). Specifically, the Hercules beetles are composed of two major 

groups: (i) the Giant Hercules group (which refers to its large body size of up to 15cm), 

which includes multiple subspecies within a single species D. hercules distributed across 

the Neotropics, and (ii) the White Hercules group (which refers to a general whitish body 

coloration), which has five recognized North American species (Ratcliffe 2003; Moron 

2009). In both the Giant and White Hercules groups, species and subspecies delimitations 

are based on differences in elytral coloration and horn shape in adult males (Chalumeau 

& Reid 2002; Ratcliffe 2003; Moron 2009), given a general lack of variation in genitalic 

structures.  
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Table 2.1. Summary of different usages of species versus subspecies designations among 

animal clades. 

 #Species #Subspecies #Subspecies/Species 

Birds 11312 18969 2.677 

Mammals 4811 6704 2.393 

Reptile 10486 4325 1.412 

Insects 622424 70515 1.113 

Fishes 30015 513 1.017 
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Fig. 2.1. Representative major males of each of the white Hercules (upper five images) 

and Giant Hercules (lower ten images) beetle taxa with the corresponding abbreviations 

used throughout the text and other tables and figures. Images of D. h. paschoali and D. h. 

trinidadensis courtesy of Jonathan Lai (2008).  
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In this chapter I evaluate whether the statistical support for taxonomic 

distinctiveness differs between species and subspecies of Hercules beetles as an example 

of how such analyses can be used to reveal whether different taxonomic units are justified 

biologically. Moreover, unlike all the other model-based statistical approaches for species 

delimitation that rely exclusively on genetic data to identify independently evolving 

evolutionary lineages (e.g., Carstens & Knowles 2007; Yang & Rannala 2010; Fujita et al. 

2012), I apply an approach that integrates expectations for genetic distinctiveness derived 

from the coalescent with those for patterns of morphological divergence under a 

Brownian motion model of continuous quantitative traits (Solis-Lemus et al. 2015). 

Although quantitative methods for species delimitation have become dominated by an 

exclusive reliance upon genetic data in recent systematic studies (Fujita et al. 2012; 

Carstens et al. 2013), consideration of multiple data types can increase the accuracy of 

inferences (Dayrat 2005), especially under divergence scenarios where expectations for 

species distinctiveness under the coalescent can be compromised, such as when 

divergence occurs with gene flow or when selectively driven differentiation outpaces the 

resolution of neutral markers (Solis-Lemus et al. 2015). By accommodating multiple data 

types, the newly developed iBPP method (Solis-Lemus et al. 2015) also provides a 

context for delimiting species when divergence proceeds along different axes (Nosil et al. 

2009) without sacrificing the benefits of model-based approaches – genetic and 

phenotypic data can be analyzed in a common Bayesian framework with iBPP. In 

additional to evaluating whether divergence between species versus subspecies of 
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Hercules beetles is statistically equivalent, I also consider the extent to which taxa within 

the Giant Hercules and White Hercules groups represent different levels of divergence 

along the speciation continuum (de Quiroz 2007). Specifically, I assess divergence 

patterns along different possible axes of differentiation (e.g., ecological, morphological, 

and geographical isolations; Nosil et al. 2009).  

Although there has been some advocacy for seeking consensus across multiple 

genetic-based delimitation methods (Carstens et al. 2013), this approach is not adopted 

here because such a criterion imposes a very conservative, and in my view, inappropriate 

rationale for species delimitation. Both the power and sensitivities to violations of 

underlying model assumptions are known to differ among methods (Solis-Lemus et al. 

2015). Seeking consensus therefore comes at the expense of decreasing our ability to 

recognize taxa. Not only can divergence proceed by different processes (e.g, with or 

without gene flow, and perhaps via selection, which are modes of divergence that are not 

accommodated by any of the methods reviewed in Carstens et al. 2013), but because 

recent speciation is associated with low levels of genetic distinctiveness, taxa may also go 

undetected by methods with limited power to distinguish taxa until they have 

accumulated appreciable levels of genetic differences (Hudson & Coyne 2002; Knowles 

& Carstens 2007).  
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2.3 Materials and Methods 

Sample collection and DNA sequencing 

Specimens were field collected, with a subset of tissues obtained from local 

collectors or insect dealers (Table 2.2). A total of 173 specimens were studied across five 

White Hercules and ten Giant Hercules taxa (Fig. 2.1 & Table 2.2), corresponding to an 

average of about 10 specimens per putative taxon. Three samples from two species of the 

subgenus Theogenes (genus Dynastes; Hwang 2011) were included as outgroups. 

Samples are vouchered in the Insect division of the Museum of Zoology at the University 

of Michigan (UMMZ). 

 

Table 2.2. Samples used for molecular analyses. 
Group Scientific name (abr.) Collection sites (sample size) 

White D. granti (gr) Arizona (2)2, Star Valley, Payson, Arizona (15), 

Reserve, New Mexico (9) 

 D. hyllus (hy) Mexico (3)2, El Palmito, Sinaloa, Mexico (1)1, 

Chiapas, Mexico (1)1, Poterillo, Sinaloa, Mexico (2)1, 

Puebla, Mexico (2)2 

 D. maya (ma) Honduras (4)1, El Cosuco, Cortez, Honduras (1)2 

 D. moroni (mo) Volcan San Martin, Sierra de Los Tuxtlas, Veracruz, 

Mexico (4)1, Sierra de Los Tuxtlas, Veracruz, Mexico 

(2)2 

 D. tityus (ty) North Carolina (2)2, Fort White, Florida (2), 

Lexington, Fayette, Kentucky (1), Chase, Maryland 

(1), Franklin, North Carolina (2), Montgomery, 
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Tennessee (1), Rock Island, Tennessee (2), Suburb 

Atlanta, Georgia (1) 

Giant (D. 

hercules) 

D. h. occidentalis (occ) Rio Chuchuvi, Esmeraldas, Ecuador (4), Los Bancos, 

Pichincha, Ecuador (5)1 

 D. h. septentrionalis (sep) Near Chiripo, Costa Rica (1)1, Finca La Firmeza, 

Sierra de Coral, Guatemala (4)1, Santa Barbara, 

Honduras (3)1, El Cosuco, Cortez, Honduras (3)1, 

Cerro Azul, Panama (1)1 

 D. h. paschoali (pas) Bahia, Brazil (4)2 

 D. h. reidi (rei) Martinique (1), Soufriere, Saint Lucia (2) 

 D. h. hercules (her) Dominique (3), Saint-Claude, Guadeloupe (3), 

Guadeloupe (1)2 

 D. h. lichyi (lic) Cosanga, Napo, Ecuador (8), Cosanga, Napo, Ecuador 

(1)1, Cayagama, Sucumbios, Ecuador (3), La Bellela, 

Santander, Colombia (2)1, Selva Central, Peru (1)1, 

Satipo, Junin, Peru (4)1, El Reventador, Ecuador (3), 

La Bonita, Sucumbios, Ecuador (2), Surrounding 

mountains/hills near Lumbaqui, Ecuador (2), Santa 

Clara, Ecuador (4), Near Sumaco Park Entrance, 

Ecuador (6), San Pablo (45 minutes drive N. from 

Tena), Ecuador (6), Cabañas San Isidro, Cosanga, 

Ecuador (1), Yanayacu Station, Ecuador (1) 

 D. h. trinidadensis (tri) Morne Bleu, Trinidad (6), Trinidad (2)1 

 D. h. bleuzeni (blu) Venezuela (1)2, Cerro Sarisariñama, Bolivar, 

Venezuela (1)1 

 D. h. ecuatorianus (ecu) Colombia (3)1, Misahualli, Napo, Ecuador (1)1, 

Misahualli, Napo, Ecuador (5), Iquitos, Loreto, Peru 

(5)1, Oso G Petrolane station, Loreto, Ecuador (1), 

Pompeya, Orellana, Ecuador (1), Yasuni Station, 

Ecuador (2) 

 D. h. morishimai (mor) Bolivia (2)2 

Outgroup D. neptunus (Dn) Cosanga, Napo, Ecuador (1), Los Bancos, Pichincha, 
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Ecuador (2) 

Outgroup D. satanas (Ds) Bolivia (1)2 
1Samples obtained from online insect specimen dealers 
2Samples from pet stores 

 

Tissues were preserved in 100% EtOH and stored at -80°C at the Museum of 

Zoology, University of Michigan. Genomic DNAs were extracted from either thoracic or 

leg muscles using the DNeasy Blood & Tissue kit (Qiagen, Germany). One mitochondrial 

and four nuclear regions were amplified: COI, argK, cad, h3, and its1 (Folmer et al. 1994; 

Richards et al. 1997; Colgan et al. 1998). I designed four Dynastes specific primers for 

argK and cad: DyAKF: 5’- GACATCCACCAAAGAACTGGGGC -3’, DyAKR: 5’- 

CCTTGTTGGAGGCTAATTTGGGC -3’, DyCDF: 5’- 

GCCGTTGGTCCCGGAATATGTAG -3’, DyCDR: 5’- 

GCTGGGTTCGAAGCAAGCTGTTG -3’. Each reaction contained 0.5µl of extracted 

DNA, 1µl of 10x buffer, 0.75µl of MgCl2, 0.5µl of 10mM dNTPS, 0.2µl of 1% BSA, 

0.4µl of each primer, 0.04µl of Tag DNA polymerase (Invitrogen, USA), and ddH2O to 

make a total of 10µl reaction. A standard PCR profile with one-minute duration for each 

step, a total of 35 cycles, and a finally extension of 10 minutes at 72°C was followed. The 

annealing temperatures for COI, argK, cad, h3, and its1 were 52°C, 58°C, 60°C, 60°C, 

and 52°C, respectively. PCR products were sequenced on a ABI3700 sequencer by the 

Sequencing Core, University of Michigan. Sequences were checked using SeqMan 

(DNAStar Inc., USA) and edited sequences were imported into MegAlign (DNAStar Inc., 

USA) for multiple sequence alignment using clustalW. Aligned sequences were 
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converted into both NEXUS and PHYLIP formats using Mesquite (Maddison & 

Maddison 2011). 

 

Morphological divergence 

The shape of the cephalic and thoracic horns was characterized using 

landmark-based geometric morphometrics (Fig. 2.2; digital images for the specimens are 

available from Dryad: doi: 10.5061/dryad.8p6m0). Note that differences in horn shape 

and elytra coloration are typically used to distinguish the taxa. However, elytral 

coloration was not analyzed here because it is not only sensitive to the background 

humidity when specimens are dried, but also how the specimens were preserved (dried 

versus in alcohol). Additionally, specimens from historical collections often have lighter 

body coloration, which may reflect how the specimens were initially preserved and/or 

degradation of pigments. 

Landmarks were identified from digital images and analyzed using the R package 

geomorph (Adams et al. 2013). Specifically, generalized Procrustes analysis was 

performed to remove the effects of location, size, and rotation of the relative positions of 

landmarks among specimens. This superimposition method minimizes the 

sum-of-squared distances between landmarks across samples (Rohlf & Slice 1990). The 

residuals from the mean shape of the cephalic and thoracic horns were used for analyses 

of shape differences among the taxa. Specifically, an analysis of variance (ANOVA) was 
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conducted based on the Euclidean distances separating taxa. Pairwise comparisons were 

used as post hoc tests to investigate if significantly different horn shapes are found 

between pairs of taxa. For both ANOVA and pairwise analyses, I used 999 permutations 

to test for statistical significance.  

 

Fig. 2.2. Landmarks used for thoracic (blue) and cephalic (red) horns, where the numbers 

refer to homologous points that within the three distinct types of cephalic horns of the 

White and the Giant Hercules beetles (shape differences are not compared between 

species groups given the obvious distinctiveness of the two groups; the numbered 

landmarks differ between the White and the Giant Hercules taxa). 

 

The data from the geometric morphometric analyses were also used in joint 
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Bayesian inference of species boundaries with the genetic data in the program iBPP 

(Solis-Lemus et al. 2015). Specifically, I extracted the values from PC1 score from the 

Geometric Morphometric analyses for both cephalic and thoracic horns, and used these 

values as input for the iBPP analyses. 

Species delimitation 

Species trees obtained from *BEAST version 2.0.2 (Drummond et al. 2012) were 

used as the guide tree for BPP (Yang & Rannala 2010) and iBPP (Solis-Lemus et al. 

2015) analyses discussed below, with traditional taxonomic criteria used to assign 

individuals to putative taxa (e.g., species designations were based on distinguishing 

morphological characters and geographic information about taxonomic distributions 

based on Chalumeau & Reid 2002, Hwang 2011, and Ratcliffe et al. 2013; see Yeates et 

al. 2010). The species tree was estimated from 1x109 generations with species trees 

sampled every 1 x 105 generations and parameters sampled every 1 x 104 generations. 

The first 20% of trees were discarded as burnin and the remaining trees were imported 

into TreeAnnotator to reconstruct a Majority Clade Credibility (MCC) tree. A Yule 

speciation model with a linear and constant root population model was specified. A 

mutation rate of 0.0115 per site per million years was set for COI (following Brower 

1994), with other locus-specific rates estimated relative to COI, to estimate divergence 

times, and models of nucleotide evolution were identified for each locus using the Akaike 

Information Criterion in jModelTest 2 (Darriba et al. 2012). Heterozygous sites were kept 
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in the analyses; the IUPAC nucleotide ambiguity code was used for heterozygous sites.  

The program BPP (version 2.2, Yang & Rannala 2010) was used to delimit taxa 

using genetic data only. BPP analyses were conducted for Giant and White Hercules 

beetle clades separately to avoid sensitivities to potentially different demographic 

histories between the clades that can affect the program’s performance (see Zhang et al. 

2011). For example, the opportunities for gene flow differ given the allopatric 

distribution among White Hercules beetle taxa compared to the parapatry found among 

certain taxa of Giant Hercules beetles. Because different combinations of parameter 

values can produce similar levels of discord among loci, four different demographic 

scenarios corresponding to relatively large (or small) ancestral population sizes with 

relatively deep (or shallow) divergence times were used to estimate the support of 

putative taxa. Specifically, the parameter setting used were: θ = G(1, 10) and τ = G(1, 10), 

θ = G(1, 10) and τ = G(2, 2000), θ = G(2, 2000) and τ = G(1, 10), and θ = G(2, 2000) and 

τ = G(2, 2000), where θ and τ refers to the ancestral population sizes and divergence 

times, respectively, and G specifies a gamma distribution for the prior. Locus-specific 

rates of evolution were estimated and default settings for parameter tuning and scaling 

were used in the analyses. The MCMC chains for these (and the analyses described 

below with iBPP) were run for 5 x 105 generations with parameters sampled every five 

generations and a burnin period of 5 x 104 generations. Likewise, both algorithms 0 and 1 

(tuning parameter of 1 and 5) of reversible-jump MCMC searches (rjMCMC) were used 

to determine if the results were robust to different searching algorithms. Because the 
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results were not significantly different, only the results from the runs with the algorithm 0 

setting are presented.  

Because the relationships among Giant Hercules beetles are not well resolved from 

the *BEAST analysis (see result section), which could affect the taxa delimited with BPP 

(McKay et al. 2013; but see Zhang et al. 2014), uncertainty in the species-tree estimate 

was considered by integrating across possible species trees when evaluating the 

probability of different putative taxa (see BPP version 3, Yang & Rannala 2014). I 

employed both algorithm 0 and 1 for rjMCMC searches with the same set of four 

different demographic scenarios used in the previous section. A burnin period of 5 x 104 

generations was used and each of the MCMC searches were run for 5 x 105 generations 

with trees sampled every 5 generations. The probabilities of different numbers of 

delimited species and the frequency of identified putative taxa were calculated. 

A joint Bayesian inference based on genetic and phenotypic data was also used to 

delimit species using the newly developed program iBPP (Solis-Lemus et al. 2015). This 

integrative program is an expansion of the original program BPP (hence, the name iBPP), 

and differs in that it incorporates models of evolution for continuous quantitative traits 

under a Brownian motion process (Solis-Lemus et al. 2015). As with the analyses based 

exclusively on the genetic data, I confirmed the robustness of the results to different 

algorithms (e.g., we analyzed the data with both the fine tune setting of 0 and 1, with the 

algorithm 0 for rjMCMC searches). The λ-value for each continuous trait and 

locus-specific rates of evolution were estimated for each trait and locus, respectively; 
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note that the λ-value can differ among phenotypic traits, thereby accommodating 

different rates of evolution among continuous quantitative traits (Solis-Lemus et al. 2015). 

The same four different demographic settings corresponding to relatively large (or small) 

ancestral population sizes with relatively deep (or shallow) divergence times described 

above for the analyses of the genetic data alone were also used in independent runs of 

iBPP based on the combined genetic and phenotypic data. I also conducted an analysis 

based just on the phenotypic data with similar run times and settings as those used for the 

joint inference based on genetic and phenotypic data. Note that given the role of the 

beetle horns in male fighting, the horns may not have evolved according to the 

assumptions of a Brownian motion model; however, see Solis-Lemus et al. (2015) for a 

discussion of the robustness of results from iBPP when characters were simulated under 

non-Brownian motion models.  

As with the analyses of the genetic data alone, I also accounted for uncertainty in the 

species relationships among the Giant Hercules beetles in iBPP analyses. Specifically, all 

species tree topologies among the 8,000 post-burnin *BEAST species trees, and their 

probabilities of being observed, were summarized using the trprobs function from the 

SumTrees program of the DendroPy package (Sukumaran & Holder 2010). A total of 

1739 unique topologies were imported as guide trees for 1739 independent iBPP analyses 

each with a pre-burnin of 1 x 105 generations. The probability of a specific topology and 

the probability of different delimited taxa were calculated across the 1 x 106 retained 

post-burnin samples. 
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Tests of niche divergence and assessments of geographic 

overlap 

Species occurrence data were obtained from my field collections and local 

researcher Hector Gasca for taxa from Colombia, published records (Grossi & Arnaud 

1993; Ratcliffe & Cove 2006; Ratcliffe et al. 2013), and the GBIF database for D. 

hercules septentrionalis (a complete list can be found from Dryad 

doi:10.5061/dryad.8p6m0). Ecological niche models (ENMs) were projected for each 

taxon from selected bioclimatic layers (see below) at a spatial resolution of 2.5 arc 

minutes for the present (WorldClim database: http://www.worldclim.org/) using 

MAXENT (version 3.3.3k, Phillips 2006) with the following parameters: regularization 

multiplier = 1, max number of background points = 10,000, replicates = 20, replicated 

run type = cross-validate. I used a spatial scale of 2.5 arc minutes instead of a finer scale 

(e.g., 30 arc seconds) to accommodate spatial uncertainty in some historical records (e.g., 

collection records reported at a spatial scale of a town or village). To generate a predicted 

distribution during the last glacial maximum (LGM), paleoclimatic data for the same 

selected bioclimatic layers were used (Paleoclimate Modelling Intercomparison Project 

Phase II: Community Climate System Model [CCSM]). Jackknife analyses for testing the 

robustness of models and area under the ROC curve (AUC) was used to investigate 
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model performance for each ENM. Note that ENMs were not estimated for all subspecies 

of the Giant Hercules because of a scarcity of collection records (i.e., no ENMs were 

estimated for blu, her, mor, rei, and tri; see Fig. 2.1 for full subspecies names). 

To guard against the inherent difficulties involved in extrapolating distributions 

into novel climates (reviewed in Alvarado-Serrano & Knowles 2014), an iterative 

approach was used to generate ENMs for the LGM (see also Knowles et al. 2015). 

Specifically, multivariate environmental similarity surfaces (MESS maps) were used to 

identify which of the 19 bioclimatic variables resulted in areas of low-reliability 

predictions due to the variables being outside of the range present in the present-day 

environmental data (Elith et al. 2010). MAXENT was rerun excluding these out of range 

variables, and this process of analysis with MESS maps was repeated until no LGM 

variables were out-of-range compared to present-day bioclimatic variables. Additionally, 

a present-day ENM was generated using the subset of variables with greater than 10% 

importance (determined by jackknifing) across at least five different taxa (greater than 

5% for all taxa included for ENMs). Based on these analyses, a reduced number of 

variables were used to generate present-day and LGM ENMs (specifically, the 5 

bioclimatic variables: annual mean temperature, Bio1, isothermality,Bio3, temperature 

seasonality, Bio4, mean temperature of the coldest quarter, Bio11, and precipitation of 

the warmest quarter, Bio18). Note that it is possible that the procedures used here based 

on statistical rational, while guarding against inaccuracies with the modeling (see 

Alvarado-Serrano & Knowles 2014), might nonetheless mask aspects of the species' 
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ecologies relevant to identifying suitable geographic areas.   

Geographic overlap between parapatric taxa was assessed using the threshold of a 

10% training presence (average across 20 replicates) to create binary maps calculated in 

ENMTools (Warren et al 2010). A 10% training presence threshold was used, which 

always yielded the highest cutoff value. Note that geographic overlap in both the present 

and past (i.e., based on the ENM for the LGM) was used because I wanted to assess 

whether taxa that are distributed allopatrically today might have overlapped in the past. 

Genetic distinctiveness among taxa that either overlap today (or in the past) represents 

one axis of the speciation continuum that is relevant for evaluating whether species and 

subspecies designations are biologically justified (e.g., species overlap in distribution, 

whereas subspecies remain allopatric). 

To measure the niche similarity between ENMs across taxa (Warren et al. 2008), 

background similarity tests (based on Index D; Warren et al. 2008) were used to 

statistically assess if the niches were significantly more or less or similar between taxa 

than expected based on geographic aspects of their ranges (i.e., whether despite allopatric 

distributions, the similarity/differences of the niches exceed expectations based on 

expectations from geography alone)(Warren et al. 2008; McCormack et al. 2010). 

Specifically, climatic variables associated with the predicted niche of one species were 

compared to 50 randomly selected points from the other species’ geographic distribution 

estimated from the ENM; significance was assessed from 100 permutations using 

ENMTools. Tests were done between sister taxa as well as geographically proximate taxa; 
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geographically distant taxa are not presented because the similarity index for such 

comparisons were 0 or nearly 0. Note that predicted geographic areas of suitable habitat 

that were not actually part of a target taxon's known range because of barriers posed by 

environmentally inhospitable intervening geographic regions (Monon 2009; Ratcliffe et 

al. 2013) were not included in niche similarity tests. That is, the distribution map used for 

the background similarity test corresponds to the actual geographic range species occupy 

given barriers to dispersal (see Glor & Warren 2010). 

 

2.4 Results 

DNA sequence data 

Of the 173 specimens, sequences were successfully generated for COI, argK, cad, 

h3, and its1 regions in 173, 73, 114, 134, and 98 specimens respectively. Aligned 

sequences contain 659, 575, 789, 353, and 653 sites, respectively for each locus 

(GenBank accession # KT183708-184299). The numbers of parsimony-informative sites 

are 170, 14, 34, 8, and 32, respectively (Summarized using PAUP* ver. 4.0a146; 

Swofford 2002). Average uncorrected pairwise sequence divergence for White Hercules 

beetles ranged from 0.37% (± 0.10 SE) within putative taxa to 1.12% (± 0.19 SE) 

between putative taxa; average pairwise sequence divergence for Giant Hercules beetles 

ranged from 0.43% (± 0.13 SE) within putative taxa to 1.06% (± 0.08 SE) between 
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putative taxa (Fig. 2.3). Note that with multiple individuals sequenced per putative taxa 

(Knowles 2010), and even with low levels of variation (Lanier et al. 2014), accurate 

species tree can be estimated without large numbers of loci (McCormack et al. 2009), 

especially when uncertainty in estimates of the gene trees of individual loci is taken into 

account (Huang et al. 2010). 

 

 

Fig. 2.3. Pairwise sequence divergence (K2P distances) between (grey) and within (white) 

putative taxa of White and Giant Hercules beetles. 
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Geographic overlap and niche similarity 

Geographic overlap differs among taxa and between the White and Giant Hercules 

groups (Fig. 2.4). None of the taxa within the White Hercules group overlap. Several taxa 

within the Giant Hercules group, in contrast, have overlapping distributions (i.e., those 

distributed throughout the Andes and the adjoining region of the Amazon; Fig. 2.4).  

 

 
Fig. 2.4. Projected distributions that contrasts the allopatry of all White Hercules taxa (i.e., 

gr, ty, hy, mo, and ma) to the parapatrically distributed taxa within the Giant Hercules 

group of South and Central America (i.e., names in bold and distributions shown in color: 

lic, ecu, sep, and occ) and the island endemics or allopatric Giant Hercules taxa (blu, tre, 

her, rei, mor, and pas). Circles indicate actual collection records used to estimate 
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distributions of each taxon using the program MAXENT (see methods). Abbreviations 

and their corresponding taxonomic names can be found in Fig. 2.1. 

 

In contrast to the current allopatric distributions of taxa within the White Hercules 

group, ENMs based on climatic conditions during the LGM suggests that some taxa may 

have come into contact. However, the degree of overlap varied among species (e.g., 

projected geographic overlap of 0.4 % between gr and hy, 34.9% between hy and ma, 

8.3% between hy and mo, and 37.4%b between ma and mo). Within the Giant Hercules 

group, in addition to the present geographic overlap among taxa (i.e., among occ, lic, and 

ecu; see Fig. 2.4), overlap during the LGM is predicted as well (i.e., 54.4% between ecu 

and lic, 61.3% between lic and occ, and 5.7% between occ and sep). 
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Fig. 2.5. Comparison of predicted current and past distributions for the White Hercules 

taxa. Light grey: gr, dark grey: hy, green: ty, orange: mo, and dark red: ma. 
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Fig. 2.6. Comparison of predicted current and past distributions for the Giant Hercules 

taxa. Green: sep, light green: occ, dark red: lic, yellow: ecu, and dark grey: pas. mor and 

blu, and island endemic her, rei, and tri are excluded from this map. 

 

The observed niche similarity among most taxa (Fig. 2.7) did not differ any more 

than expected based on their geographic distribution, or it supported niche conservatism, 

irrespective of whether putative sister taxa of White or Giant Hercules beetles were 

compared. In two cases there was marginal evidence for significant niche divergence (i.e., 

occ and lic, and ty and ma). In both cases, significant divergence was only detectable 

when observed similarity indices were compared with random samples of environmental 

variables from one of the two backgrounds (e.g., niche divergence is apparent between 
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occ and lic when the environmental data at collection localities of lic are compared to 

those from random samples across the projected distribution of occ, but not when 

environmental data at collection localities of occ is compared to those from random 

samples across the projected distribution of lic; Fig. 2.7).  

As with any study based on ENMs, the projected distributions, and hence, tests of 

niche overlap, depend on the extent to which the models accurately capture the variables 

relevant to determining a species' distribution. For example, different models might 

capture aspects of the species' ecologies that might impact a species' past distribution. For 

the models used here, statistical criteria were considered to minimize errors (e.g., 

removing non-analog sets of climate conditions for LGM modeling; see details in 

methods) and for consistency across taxa (e.g., non-analog climatic conditions were not 

used in the ENMs for any taxa), which is critical given that comparisons of taxa are 

integral for assessing whether taxa in the White and Giant groups are consistently more 

of less advanced along the speciation continuum, where geographic overlap of 

distributions (either in the present or past), as opposed to strict allopatry, would provide 

evidence that taxa have achieved sufficient reproductive isolation to maintain genetic 

distinctiveness.  
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Fig. 2.7. Results from niche background similarity tests. In most taxa the observed niche 

similarity, calculated by the index D (and shown as the thin vertical line), did not differ 

among putative sister taxa (see Fig. ) any more than expected from the difference in niche 

similarity that can be attributed to differences in the geographic distribution of taxa, or 

tended towards supporting niche conservatism, based on a similarity index that was 

higher than expected (where the histograms show the expected frequency distribution of 
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niche similarity scores based on random samples of background points across the 

projected distribution of the taxon involved in the pairwise comparison). Only two cases 

of significant niche divergence were identified (marked as *Div). In both cases, 

significant divergence was only evident when the observed niche similarity was 

compared against one of the two backgrounds (e.g., niche divergence is apparent between 

occ and lic when the environmental data at collection localities of lic are compared to 

those from random samples across the projected distribution of occ, but not when 

environmental data at collection localities of occ is compared to those from random 

samples across the projected distribution of lic). Also note that the lic and occ 

comparison represents divergence between highland Andean cloud forest and the Choco 

ecoregion, and the other case of niche divergence involves comparison of taxa between 

subtropical Southeast United States and neotropical Central America (i.e., ty and ma). 

Abbreviations and the corresponding taxonomic names are listed in Fig. 2.1. 

 

Morphological differences 

Taxa within both the White and Giant Hercules groups exhibit significant 

morphological differences in both cephalic and thoracic horn shapes (Fig. 4; P < 0.01). 

Even though individuals from the same taxon cluster together in morphospace, there is 

some overlap between most taxa in both groups (Fig. 2.8), as is also evident in pairwise 

comparison of mean morphological Euclidean distances among taxa (Tables 2.3 and 2.4).  
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Table 2.3. Mean morphological Euclidean distance between White Hercules taxa. 

Taxa gr hy ma mo ty 

gr  0.046 0.375** 0.075 0.265** 

hy 0.094  0.374** 0.059 0.254** 

ma 0.189** 0.136*  0.343** 0.208** 

mo 0.078 0.066 0.165*  0.219** 

ty 0.226** 0.177** 0.097 0.218**  

Results for the cephalic horn and thoracic horn shapes are shown above and below the 

diagonal, respectively. 

* means P < 0.05 and ** means P < 0.01 based on 999 permutations. 

 

Table 2.4. Mean morphological Euclidean distance between White Hercules taxa. 
Taxa blu ecu her lic mor occ pas sep tri 

blu  0.069 0.114 0.119* 0.121 0.102 0.088 0.117 0.099 

ecu 0.092  0.087* 0.118** 0.090* 0.099** 0.112* 0.113** 0.081 

her 0.140 0.206**  0.160** 0.104 0.141** 0.108 0.122** 0.098 

lic 0.121 0.150** 0.102*  0.168** 0.056 0.142** 0.129** 0.152** 

mor 0.072 0.088 0.148* 0.128*  0.140** 0.146* 0.095* 0.051 

occ 0.166* 0.085* 0.288** 0.228** 0.161**  0.125* 0.100** 0.121** 

pas 0.110 0.152* 0.093 0.051 0.109 0.230**  0.133* 0.118 

sep 0.169* 0.100* 0.290** 0.241** 0.154* 0.054 0.233**  0.085 

tri 0.071 0.116* 0.113 0.101 0.065 0.190** 0.074 0.185**  

Results for the cephalic horn and thoracic horn shapes are shown above and below the 

diagonal, respectively. 

* means P < 0.05 and ** means P < 0.01 based on 999 permutations. 
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Fig. 2.8. Position of taxa in morphospace based on geometric morphometric analyses of 

the cephalic and thoracic male horn shape based on the first two PCs, which explained 

most of the differences in shape among taxa (i.e., between 60 and 82% of the variance). 

Landmarks in tangent space are shown for the most extreme shapes on upper left and 

lower right corners of each PCA. Permutation tests based on Euclidean distances between 

samples from PC space indicate significant differences in horn shape across taxa in all 

four analyses (P < 0.01). Different taxa of White Hercules beetles are shown with black = 

gr, red = hy, blue = mo, green = ma, and cyan = ty, and different taxa of Giant Hercules 

beetles (excluding rei because of its extremely divergent morphology) are shown with 

dark green = blu, red = ecu, blue = lic, green = her, cyan = mor, yellow = pas, magenta = 

occ, black = sep, and orange = tri. Taxonomic abbreviations and the species names can be 

found in Fig. 2.1. 
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Species tree  

The *BEAST MCMC run reached a likelihood plateau soon after generation 

10,000,000 and all estimated parameters had effective sample sizes (ESS) larger than 

2,000. The estimated rates of evolution for argK, cad, h3, and its1 are 0.00047 (0.00025 – 

0.00072), 0.00149 (0.00089 – 0.00216), 0.00034 (0.00017 – 0.00053), and 0.00060 

(0.00035 – 0.00086) per site per million years, respectively. Nodal support (Fig. 2.9) is 

strong for all taxa within the White Hercules group and among six of the taxa from the 

Giant Hercules group, whereas support is low among some of the non-allopatric Andean 

and Amazonian taxa and the allopatric coastal Brazilian taxa (i.e., lic, ecu, mor, pas; see 

Fig. 2.4). Note that low support values are not necessarily associated with the recency of 

diversification, nor are they strictly associated with parapatric taxa. For example, the 

sister relationship of the recently derived putative taxa blu and tri within the Giant 

Hercules group has strong support, as does the sister relationship of the putative taxa occ 

and sep, both of which overlap with other taxa (Fig. 2.9).   
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Fig. 2.9. Species tree of Dynastes estimated from *BEAST; posterior probabilities above 

50% are shown on nodes. Divergence times with confidence intervals estimated using a 

rate of 0.0115/site/million years are shown at each node. Note that outlines of major male 

horn shape are not drawn to scale (see Fig. 2.1 for relative sizes). 

 

Species delimitation 

Irrespective of whether genetic data alone, phenotypic data alone, or genetic and 
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phenotypic data combined are analyzed, all the analyses agree on the number of taxa: 5 

species of White Hercules and 10 species of Giant Hercules beetles (Figs. 2.10, 2.11, and 

2.12; with the exception of the gr-hy divergence based on morphological data alone). The 

results are also robust to uncertainty in species-tree estimates for the Giant Hercules 

beetles (Table 2.5).  

 

 
Fig. 2.10. Results from iBPP analyses using combined genetic and morphological 

datasets; note that outlines of major male horn shape shown adjacent to the abbreviated 

taxonomic names are not drawn to scale (see Fig. 2.1 for relative body sizes). Support 

values reported for each node are based on the algorithm setting 0 for the rjMCMC, the 

algorithm setting 1 for the Brownian motion model, and for four different priors 

corresponding to large (versus small) ancestral population sizes with relatively deep 

(versus shallow) divergence times. Specifically, the support values in each box 

correspond to analyses with the following different priors: upper left, θ = G(1, 10) and τ 

= G(1, 10); lower left, θ = G(1, 10) and τ = G(2, 2000); upper right, θ = G(2, 2000) and τ 
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= G(1, 10); lower right, θ = G(2, 2000) and τ = G(2, 2000). Taxonomic abbreviations and 

the corresponding names can be found in Fig. 2.1. 
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Fig. 2.11. Comparison of BPP results for molecular data using both 0 and 1 rjMCMC 

algorithms and a reconstructed species tree from *BEAST as guide tree. Splits without 

absolute supports (<1.0) are shown in red boxes. 

 

Fig. 2.12. Comparison of iBPP results for analyses based on morphological data only 

using rjMCMC algorithm 0 and a fine tune setting of 0 and 1 for BM model and a 

reconstructed species tree from *BEAST as guide tree. Splits without absolute supports 

(<1.0) are shown in red boxes. 
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Table 2.5. Results from BPP v.3 analyses of molecular data that integrate over 

uncertainty in the species tree. 

Algorithm 

(rjMCMC) 

Demographic 

settings 

#Topologies 

(95% Cum) 

P(10sp) P(9sp) P(blu) P(tri) P(blu+tri) 

0 θ = G(1,10) 

τ = G(1,10) 

8091 0.945 0.054 0.962 0.962 0.037 

0 θ = G(1,10) 

τ = G(2,2000) 

8779 0.935 0.063 0.966 0.966 0.034 

0 θ = G(2,2000) 

τ = G(1,10) 

15303 0.941 0.058 0.944 0.947 0.053 

0 θ = G(2,2000) 

τ = G(2,2000) 

15042 0.950 0.049 0.954 0.957 0.043 

1 θ = G(1,10) 

τ = G(1,10) 

9629 0.954 0.045 0.974 0.975 0.025 

1 θ = G(1,10) 

τ = G(2,2000) 

13760 0.923 0.077 0.961 0.966 0.033 

1 θ = G(2,2000) 

τ = G(1,10) 

14806 0.901 0.089 0.933 0.935 0.057 

1 θ = G(2,2000) 

τ = G(2,2000) 

14503 0.955 0.045 0.960 0.963 0.037 

 

Results from iBPP that jointly analyze genetic and phenotypic data, however, show 

increased support for taxa compared to analyses based only on genetic or phenotypic data 

alone. Moreover, the results from the combined genetic and phenotypic data are robust to 

different priors on the demography of species divergence (i.e., large versus small 

ancestral population sizes with relatively deep versus shallow divergence times; Fig. 2.10) 
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and under different algorithms for the rjMCMC (results not shown), with the exception of 

the taxonomic split of blu and tri within the Giant Hercules group, whose posterior 

support varied from 0.88 to 0.94 (Fig. 2.10). Based on results from the ibpp analyses that 

incorporated the effect of uncertainty in the species tree of the Giant Hercules group, 

78.87 % of analyses from the sampled species trees support 10 delimited species, while 

20.59 % support 9 species. Among the analyses that favor the 9 delimited species, 99.45 

% of the sampled species trees collapsed blu and tri into one species. The results were 

generally robust (e.g., based on analyses of either the genetic and phenotypic data alone, 

and across different priors and algorithms for the rjMCMC and/or algorithms for 

modeling trait evolution) with any differences being limited to slight changes in the 

posterior probabilities of a few splits (Figs. 2.11 and 2.12).   

 

2.5 Discussion 

My study not only highlights the arbitrariness associated with some species and 

subspecies designations, but also demonstrates how a quantitative framework can be used 

to identify such taxonomic practices and evaluate the statistical equivalency of different 

taxonomic designations. The results confirm that an integrative species delimitation 

approach can more effectively and objectively identify evolutionarily independent 

lineages, compared to relying upon a single data type. Moreover, by analyzing different 

data types under a common statistical framework, I am able to accommodate the 
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multidimensional and continuous aspects of the speciation processes when delimiting 

species. Divergences between putative taxa of Hercules beetles are found to represent 

different positions along the speciation continuum. When coupled with estimates of 

relative divergence times, the findings highlight differences in the rates of divergence 

along genetic, morphological, ecological and geographic axes. Referring specifically to 

the results for the Hercules beetles, below I discuss the ramification of inconsistent 

taxonomy on biodiversity studies. I also discuss why inconsistencies in delimited species 

may arise because of the speciation process, and why relying upon single data type for 

species delimitation can be particularly problematic. Lastly, I reflect more generally on 

how quantitative methods for species delimitation are used to assign taxonomic 

designations when taxa are statistically distinguishable, but exhibit differing degrees of 

divergence. 

 

Species and subspecies are statistically equivalent 

Although both subspecies and biological species are defined as evolutionarily 

independent lineages (Mayr 1963), the subspecies designation (as opposed to species) is 

presumed to reflect evolutionary ephemerality (e.g., incipient divergences will be lost if 

secondary contact occurs between subspecies). Nevertheless, my results show that 

putative taxa in both Giant Hercules (subspecies) and White Hercules (species) beetles 

are equivalent in terms of being statistically distinguishable from patterns of character 
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divergence. Moreover, instead of reflecting some underlying biological difference, 

assignments of subspecies status to the South American Giant Hercules taxa versus 

species status to the North American White Hercules taxa most likely reflect differences 

in taxonomic practices (Wilson & Brown 1953). For example, despite the dichotomy of 

species versus subspecies designations, taxa from the respective groups do not appear to 

consistently represent points early or later on the speciation continuum (Nosil et al. 2009) 

when I consider divergence along morphological, ecological and genetic axes (Fig. 2.7, 

2.10). Moreover, only the Giant Hercules taxa from South America overlap 

geographically (Fig. 2.4), despite being designated as subspecies. As such, the taxonomic 

designations given to the White and Giant Hercules taxa are inconsistent with the view 

that geographic overlap is indicative of reproductive isolation (Mayr 1963). Because all 

the taxa, irrespective of being given species versus subspecies, are statistically 

identifiable as independent lineages (Fig. 2.10), and based on divergence across multiple 

dimensions considered here, all the putative Hercules beetle taxa arguably merit distinct 

species status (a taxonomic revision that formally raises all the subspecies to species 

status is in review [Huang 2015]; also see below for discussion).  

Failure to recognize independently evolving biological lineages as species can have 

profound effects on evolutionary and conservation studies. For example, currently all 

putative taxa of Giant Hercules beetles are synonymized according to the Catalogue of 

Life database (http://www.catalogueoflife.org/). As a consequence, it might be inferred 

that speciation rate in Hercules beetles, which have a South American origin (Dutrillaux 
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& Dutrillaux 2013), has increased drastically after the colonization of North America 

because of the five recognized species in North America. However, my results show that 

there are potentially at least twice as many species (but see discussion below) in South 

America as in North America (Fig. 2.10), indicating that evidence for an increased 

speciation rate associated with the colonization of North America is an artifact of biases 

in taxonomic practice, given equivalent times for species to accumulate within the two 

lineages (Fig. 2.9). Likewise, without recognizing the statistical equivalency of taxa 

previously assigned as species versus subspecies, misguided conservation priorities can 

result. For example, the decrease in population size of an endemic Brazilian Atlantic 

Forest species (e.g., D. hercules paschoali; see pas in Figs. 2.1, 2.4, & 2.10) due to 

habitat loss (Ribeiro et al. 2009) may go unrecognized, or viewed as the loss of a 

geographic population. Understanding potential biases in species delimitation within and 

between groups of organisms (Table 2.1) is therefore urgently needed for biodiversity 

studies.  

 

Different positions along the speciation continuum 

Speciation can proceed along different possible axes with different rates depending 

on the cause of speciation (Mayr 1963; Nosil et al. 2009). For example, allopatric 

speciation with niche conservatism can result in genetically distinct, but morphologically 

similar evolutionary lineages, whereas ecological speciation can lead to rapid divergence 
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in phenotypes, without appreciable differentiation at neutral loci (Coyne & Orr 2004). 

The degree of divergence among the Hercules taxa does differ. However, White Hercules 

taxa are not consistently more differentiated than the Giant Hercules taxa, despite the 

taxonomic designation of species versus subspecies, respectively, which again suggests 

the dichotomy simply reflects differences in taxonomic practices.  

As noted above, divergence in morphology (Fig. 2.8) and ecology (as captured by an 

ENM; Fig. 2.7) varies across taxa. Geographic overlap among taxa isn’t observed until 

taxa are diverged along both morphological and genetic axes, supporting the speciation 

continuum hypothesis. Moreover, the position of taxa along multiple dimensions of 

divergence (Warren et al. 2008; Nosil et al. 2009) suggests that allopatric divergence 

predominates in the Hercules beetles. Most taxa are allopatricly distributed (Fig. 2.4), and 

there is little support of niche divergence (Fig. 2.7). Divergence in morphology also does 

not simply reflect an accumulation over time. Instead, some taxa show high levels of 

morphological differentiation or very little (as evidenced by the support or lack thereof 

for independent lineages when delimiting taxa based on morphology alone; Fig. 2.12), 

despite similarly high degrees of genetic differentiation (based on delimited lineages 

from analyses of genetic data; Fig. 2.11). This suggests that processes other than drift, 

and most likely sexual or natural selection (Jarman & Hinton 1974; Emlen et al. 2005), 

are governing rates of divergence in horn shape (Fig. 2.8).  
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Insights from integrating genetic and phenotypic data 

Incorporating multiple data types to delimit species boundaries has had a long 

tradition (Wiens & Graham 2005; Wiens 2007), although it has been questioned recently 

given the relative ease of collecting genetic data (e.g., Carstens et al. 2014; but see 

Edwards and Knowles 2014; Solis-Lemus et al. 2015). One complication of analyzing 

multiple data types arises when different data types give apparently conflicting results, 

which can lead to delimitation decisions that can be arbitrary (McKay et al. 2013). 

However, as my study demonstrates, by accommodating different rates of evolution 

within a model-based framework, tests of distinguishable species lineages can be made, 

even if genetic divergences exceed those in morphological data (or vice versa; see 

Solis-Lemus et al. 2015). It has been known that geographically well-differentiated 

lineages may show few morphological differences due to similar selective regime, or 

niche conservatism (allopatric sibling species; Mayr 1963). 

My genetic data does clearly support the delimited species in both White and Giant 

Hercules beetles (Fig. 2.11), without the addition of morphological data (Fig. 2.10), 

which might be used to argue for genetic species delimitation, as has been recently 

promoted (Fujita et al. 2012; Carstens et al. 2013; but see Olave et al. 2014). However, I 

also demonstrate that delimitation based solely on genetic data does not always result in 

better support compared to phenotypic data (e.g., see the divergence between White 

Hercules species ma and mo; Fig. 2.11 & 2.12). Moreover, integrative species 
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delimitation starts with assigning individuals by ecological, behavioral, morphological or 

geographic cohesiveness (Edwards & Knowles 2014) to putative taxa, whereas mistakes 

in this initial assignment when based on genetic data will compound downstream 

analyses (Olave et al. 2014; but see Zhang et al. 2014). Likewise, by estimating the 

probability of divergence using data from all possible axes along which speciation can 

proceed, independent lineages arising by diverse speciation processes will be better 

accommodated (Solis-Lemus et al. 2015). 

 

Quantitative delimitation methods and taxonomic 

designations 

Several aspects of this study raise some critical issues regarding the practical 

implications of the results from quantitative delimitation methods more generally (i.e., to 

methods other than, and including, iBPP). The accuracy of delimiting lineages may differ 

for several reasons. For example, the accuracy of delimited lineages may differ 

depending upon whether a method has sufficient power to delimit lineages (see Carmargo 

et al. 2012) and is robust to violations of the assumptions of a model (see Solis-Lemus et 

al. 2015), or whether the assignment of individuals to putative candidate taxa are accurate 

prior to analyses of delimitation (see O'Meara 2010; Olave & Knowles 2014). However, 

these factors all pertain to just one (albeit important) dimension to consider when 



	
   48	
  

applying quantitative species delimitation methods - statistical accuracy of a method for 

delimiting lineages. An equally important, and often under emphasized, aspect is the 

relationship between delimited lineages and taxonomic designation - that is, what has 

actually been delimited by a statistical delimitation method?  

 The findings of particular relevance, which are documented in the Hercules beetles 

but are no doubt common to many other taxa, regarding the relationship between 

delimited lineages and taxonomic designations are that (i) species exhibit divergences 

that suggest they are positioned along different points of the speciation continuum, as 

identified by differing degrees of divergence among taxa in genetic, morphological, 

ecological and geographic data (past and present), and (ii) taxa assigned as species are 

not consistently more divergent across the different axes of divergence than taxa assigned 

to subspecies; (iii) nevertheless, all taxa are equivalent (whether assigned species or 

subspecies status) with respect to being statistically distinguishable.  

 The interpretation of differing degrees of divergence among data types and across 

taxa is directly relevant to assigning a particular taxonomic designation, but several 

different interpretations might be justified. For example, such differences are not only 

acceptable, but are also expected, under the general lineage concept for a species (de 

Queiroz 2007), in which case, an argument can be made for assigning all the statistically 

distinguishable taxa as species. However, many populations within species are also 

distinguishable with genetic data, and with the increasing availability of genomic data 

ever more fine geographic structuring of genetic variation is possible (e.g., Spinks et al. 
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2014). Consequently, without the reliance on some arbitrary threshold (such as the 10× 

rule of DNA barcoding; Hebert 2004a), analyses of genetic data by themselves are not 

sufficient to evaluate whether a statistically distinguishable lineage is a population versus 

species. Even when applying coalescent methods (including BPP or iBPP applied here), 

whether the genetically distinguishable lineage corresponds to a population or species is 

not discernable because what these methods distinguish are groups of individuals that 

have remained without (or with very little) gene flow among them for a sufficient amount 

of time for divergence in neutral genetic markers to accumulate. At least by considering 

multiple data types, and demonstrating their significant contribution to species 

delimitation (e.g., many of the beetle taxa can be distinguished using morphological data 

alone) it can be shown that differentiation has progressed beyond the inherent property of 

any isolated population - divergence in neutral genetic markers. Moreover, when coupled 

with evidence that some taxa overlap geographically (or are projected to have overlapped 

in the past based on ENMs for the LGM), the genetic distinctiveness of such taxa implies 

they have diverged sufficiently to be reproductively isolated. That is, only with 

consideration of multiple data types can we assess whether divergence is above and 

beyond what is expected when populations are geographically isolated. One caveat with 

respect to the Hercules beetles is that geographic overlap between sister taxa (when it 

exists) tends to be low compared to the amount of geographic overlap observed between 

non-sister taxa. This observation too is subject to different interpretations (see also 

Pontarp et al. 2015). It may reflect either insufficient time for taxa to achieve 
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reproductive isolation (which would imply allopatric taxa should not be interpreted as 

species), or it may reflect that candidate species have not had sufficient time to become 

sympatric (which would imply that allopatric taxa may indeed warrant species 

designation). I note that with the delimited taxa here being separated by inhospitable 

environments (Fig. 2.4) and a general lack of evidence for frequent niche divergence (Fig. 

2.7), the allopatric distribution of taxa itself is not evidence for the lack of appreciable 

reproductive isolation. Again, note that such a determination would not have been 

possible if I had relied upon genetic data alone to delimit taxa.  

 While not everyone may accept that I have sufficient evidence to argue that all the 

subspecies of Giant Hercules should be elevated to species status, or even that all the 

White Hercules taxa actually warrant the species status they have been granted 

(especially if someone choses to focus on one data type, such as Fig. 2.8, which I caution 

against), I would like to close by discussing another critical aspect of quantitative species 

delimitation that has not received sufficient attention (and applies here even if you think 

that only some of the taxa warrant species status). What comes next? 

 Irrespective of whether researchers accept all the results from a study that applies 

quantitative methods for species delimitation there are two points to consider: (i) the 

delimited taxa are often used as the input for addressing ecological and evolutionary 

questions (e.g., Bond et al. 2001; Pons et al. 2006; Esselstyn et al. 2012), yet (ii) the 

results from delimitation analyses are rarely used in formal treatments on taxonomic 

status (e.g., for monographic revision and/or species description)(as reviewed in Carstens 
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et al. 2013). This poses a number of problems. For example, the data used in analyses of 

biodiversity patterns will differ depending upon whether a researcher adheres to formally 

described species or relies upon the lineages distinguished from a quantitative 

delimitation method. Given that the practitioners of such delimitation approaches are 

typically not the same researchers conducting taxonomic revisionary work, it also means 

that calls for "future study" are unlikely to impact the actual taxonomy of a particular 

focal group. This is distressingly ironic when quantitative species delimitation methods 

are viewed unequivocally as superior or preferred to traditional taxonomic description. 

This is not to discount the cases where the practicalities of delimitation justify analyses of 

genetic data alone (e.g., large-scale biodiversity assessments of exceptionally diverse, yet 

unstudied groups). Nevertheless, for quantitative delimitation methods to realize their full 

potential, the field needs to come to terms with how the results from quantitative 

delimitation studies more generally should be applied to advance the systematics of focal 

taxa (e.g., revisionary study on Hercules beetles based on the results presented here; 

Huang 2015).  

 

2.6 Conclusion 

My finding from chapter 2 highlights how the potential for arbitrary taxonomic 

decision regarding species/subspecies designations can be identified using an objective 

statistical framework. Specifically, by analyzing multiple data types within the common 
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Bayesian framework of the program iBPP, I show that taxa of Hercules beetles are 

statistically equivalent as distinguishable independent lineages, even though the degree of 

differentiation between genetic and morphological data varies among taxa. I argue that all 

the Hercules beetles studied merit distinct species status. By reference to some specific 

examples, I highlight how inconsistent taxonomic practices across the genus would also 

result in erroneous interpretation of the factors affecting their rates of diversification. My 

study also highlights how the apparent conflict of different types of data when delimiting 

taxa may simply represent variation in the rates that such differences accumulate between 

species. Moreover, I show that multiple data types can not only be effective for 

quantitative tests of independently evolving lineages when delimiting species, but can 

also reveal where taxa lie along the speciation continuum, better capturing the species 

divergence as a continuous process that occurs across multiple axes. With these points in 

mind, it is clear that the methods used for quantitative species delimitation (especially 

those based on genetic data alone) need to consider carefully how results from such 

methods are used to inform taxonomic status, but that the results from such analyses also 

need to be incorporated into formal taxonomic treatments if such work is going to have a 

lasting impact on the systematics and ecological and evolutionary study of the focal taxa.  
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CHAPTER 3: The Great American Biotic Interchange and 
diversification history in Dynastes beetles (Scarabaeidae; 
Dynastinae)   

 

3.1 Abstract 

Biotic interchange between geographic regions can promote rapid diversification. 

However, what are the important factors that determine the rate of diversification vary 

between study systems. The evolutionary history of Dynastes beetles, which can be found 

in both North and South Americas and exhibit two different altitudinal preferences 

(highland and lowland) is tested for the effects of biotic interchange between continents 

and different ecological preferences on the rate of species diversification. Additionally, 

the hypotheses of geological time-dependent and lineage specific diversification rate are 

tested. My results indicate that in Dynastes beetles a pre-landbridge dispersal hypothesis 

from South to North America is preferred and that the speciation rates are similar 

between lineages of different geographic origins and different altitudinal preferences. On 

the other hand, my result from marcoevolutionary cohort analysis reveals that the rate of 

speciation in Dynastes beetles is, instead of trait (geographic and ecological) dependent, 

lineage specific. Furthermore, a steadily increasing speciation rate can be found in 
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Pliocene and Pleistocene, which implies that geological and climatic events, i.e., 

colonizing North America, habitat reformation in the Amazonia, and forest contraction in 

Pleistocene, have together shaped the current biodiversity pattern in Dynastes beetles. 

 

3.2 Introduction 

Biotic interchange between geographic realms creates opportunities for species 

diversification (Wallace 1876; Cody et al. 2010; Gillespie et al. 2012). However, how did 

intercontinental biotic interchange occur differ significantly between taxa. Closely related 

lineages found in both North and South Americas characterize the Great American Biotic 

Interchange (GABI), which provide excellent candidates for studying the effects of biotic 

interchange on generating biodiversity. It is hypothesized that the closure of the Isthmus 

of Panama around 3.5 million years ago initiated GABI (Marshall 1988). Many terrestrial 

lineages expanded their geographic ranges into previously unreachable region by 

traveling through the newly emerged landbridge (H1). However, recent studies have 

revealed additional events that can also account for, and may have more significant 

effects on, GABI – they are traveling (e.g., rafting) across the marine barrier before the 

closure of the Isthmus of Panama (H2 [Bacon et al. 2015]) and island hopping via the 

Antilles Archipelago (H3 [e.g., Ali 2012]). Currently lineage diversification patterns 

across different groups of organisms living in both North and South Americas differ 

significantly (Cody et al. 2010), which may reflect different historical contingencies 
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resulted from colonization via different routes.  

In addition to the colonization history, different species diversification patterns 

associated with GABI also intrigue generations of evolutionary biologists. For example, 

multiple mammalian lineages of North American origin experienced radiation after 

colonizing South America (Simpson 1950; Marshall 1988), while plant lineages of South 

American origin diversified after colonizing North America (Cody 2010; Bacon et al. 

2015). The colonization into a new geographic area could have resulted in a sudden 

increase in species number simply because of the newly founded habitats containing 

multiple open niches. In addition, multiple forest ecoregions emerged contemporaneously 

with GABI in South America could also promote species diversification. Specifically, 

habitat reformation occurred in Amazonia, where the Andean mountain extent northward 

and distinct forest ecoregions were formed in Pliocene (Morrone 2006; Hoorn et al. 2010). 

Furthermore, forest contraction during Pleistocene could further accelerate allopatric 

divergence between forest dwelling taxa (Garzón-Orduña et al. 2014). However, the 

answer to if species diversification is trait dependent (geographical and ecological), 

geological time dependent (Miocene vs. Pliocene-Pleistocene), or evolutionary lineage 

specific (which are not mutually exclusive and can be analyzed under the same 

framework; Rabosky 2014; Rabosky et al. 2014), although has been tested intensively in 

macroevolutionary studies, can vary significantly depending on the studied systems. 

The evolutionary history of a group of Giant beetles (genus Dynastes 

MacLeay,1819; Table 3.1) with a hypothesized South American origin (Dutrillaux & 
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Dutrillaux 2013), from the Americas is utilized in this study to investigate the 

biogeographic history of GABI and to test the effects of different macorevolutionary 

processes that may drive species diversification. There are two major lineages in this 

genus: (1) Subgenus Theogenes, Burmeister 1847, which includes Neptune, D. neptunus, 

and Satan, D. satanas, beetles. These two species are restricted to the highland Andes of 

South America and can be distinguished from species of the other subgenus by 

completely black elytral coloration and distinct tarsal morphology (Hwang 2011); and (2) 

Subgenus Dynastes, which is the Hercules beetle (Fig. 3.1). The Hercules beetles are 

distributed throughout North and South Americas and composed of two major groups that 

can be found in both highland and lowland forest habitats: (2.1) the Giant Hercules group, 

which includes at least ten evolutionarily independent lineages and can be found in the 

Neotropics and the Lesser Antilles islands (Chalumeau & Reid 2002; Huang & Knowles 

2015); (2.2) The White Hercules group, which includes five evolutionarily independent 

lineages and can be found in forested habitats of North and Central America (Moron 

2009, Huang & Knowles 2015).  

 

 

 

 

 

 

 

 



	
   57	
  

Table 3.1. Studied taxa. 

Subgenus Taxa Abbr. States* Geographic distribution 

Dynastes D. granti Dg 0,1 Highland of the southern edge 

of the Rockies 

 D. hyllus Dhy 1,1 Sierra Madre of Mexico 

 D. moroni Dmo 0,1 Sierra de Los Tuxtlas 

 D. maya Dma 1,1 Central American rainforest 

 D. tityus Dty 1,1 Southeast of North America 

 D. h. hercules Dhh 1,0 Guadeloupe and Dominique 

 D. h. reidi Dhr 1,0 Saint Lucia and Martinique 

 D. h. paschoali Dhp 1,0 Northern Atlantic Forest of 

Brazil 

 D. h. occidentalis Dho 0,0 The Chocó-Darién 

 D. h. septentrionalis Dhs 0,1 Cloud forests of Central 

America 

 D. h. lichyi Dhl 0,0 Highland cloud forest of the 

Andes 

 D. h. bleuzeni Dhb 1,0 Orinoco delta 

 D. h. trinidadensis Dht 1,0 Trinidad and Tobago 

 D. h. morishimai Dhm 0,0 The Yungas of Bolivia 

 D. h. ecuatorianus Dhe 1,0 Lowland Amazonian rain 

forest 

Theogenes D. neptunus Dn 0,0 Highland cloud forest of the 

Andes 

 D. satanas Ds 0,0 The Yungas of Bolivia 

*Altitudinal (before comma) and geographic (after comma) states of each taxon are 

represented by 0 (highland or South America) or 1 (lowland or North America). 
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Fig. 3.1. Results from BAMM and LAGRANGE analyses. Branch color represents 

estimated speciation rate, where a warmer color indicates a faster rate. A red dot on the 

branch leading to subgenus Dynastes indicates a speciation rate shift event. Black and 

white squares denote geographic states of South and North America, respectively. Black 

and white squares located on branches denote reconstructed ancestral geographic area, 

while those that next to the taxon abbreviations current geographic states (Note that, the 

reconstructed ancestral state for the common ancestor of subgenus Dynastes can be either 

South America or widespread). White triangles indicate inferred dispersal events into 

North America. A grey shaded area indicates the time frame when the Isthmus of Panama 

was completely formed (3.4 – 3.6 MYA). Representative samples of D. neptunus 

(subgenus Theogenes) and D. hercules ecuatorianus (subgenus Dynastes) are shown with 

a scale bar of 1 cm. 
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The difference in preferring lowland or highland habitats is important because 

intercontinental dispersal is most likely via the newly emerged lowland landbridge or 

rafting between lowland coastal regions, while highland distribution can be associated 

with restricted geographic distribution and local endemism (Hoorn et al. 2010). 

Furthermore, changes in lowland and highland forest habitats are found drastically in the 

recent geological history (Hoorn et al. 2010, Garzón-Orduña et al. 2014), which may 

have impacted the associated diversification rates differently. Therefore, the geographic 

distribution and the difference in altitudinal preference make Dynastes beetles an 

excellent system to study how species diversification proceeds when intercontinental 

biotic interchange occurred. Additionally, rafting (H2), island hopping (H3), and walking 

across the Isthmus of Panama (H1) are all possible explanations for the current 

distribution of Dynastes beetles. For example, the ability to raft across oceans on drifting 

wood has been demonstrated in arthropods (Coulson et al. 2002). In addition to having a 

mobile adult stage, Hercules beetles have larval periods where they are constrained to 

rotten wood, which may serve as overwater dispersal vessels for Dynastes beetles. The 

Hercules beetles nevertheless have the highest species diversity in Central America 

(Moron 2009), which implies that Central America might be the first colonized region 

and favors H1 and H2 over H3. This study hence focuses on testing whether the complete 

formation of the Isthmus of Panama had promoted the colonization of North America 

(H1), or did Hercules beetles travel across narrow oceanic strait before 3.5 MYA (H2). 

The reconstructed species trees of Dynastes beetles (Fig. 2.9; Huang & Knowles 
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[2015]), where the evolutionary independence of each tip taxon is quantitatively tested 

using multiple data types, is used in this chapter to study the biogeographic and 

diversification history. Ancestral area reconstruction and macroevolutionary comparative 

methods are utilized to answer the following questions: (1) Does the closure of the 

Isthmus of Panama promote the colonization of North America? (2) Do North American 

taxa have a higher diversification rate? (3) Does speciation rate differ according to 

different altitudinal preferences? And (4) what are the major factors affecting the 

diversification history in Dynastes beetles? 

 

3.3 Materials and Methods 

 

Species trees 

A reconstructed Dynastes species tree, the majority clade credibility tree (Fig. 2.9), 

generated by *BEAST analysis was used in this chapter. Taxa included in this study and 

their associated geographic areas and ecoregions are summarized in table 3.1. Note that 

species and subspecies in Dynastes beetles can be statistically equivalent based on 

molecular, morphological, and ecological data (Chapter 2; Huang & Knowles 2015). In 

this chapter, species and subspecies are all treated as different species (they all merit 

different species status following general lineage concept). 
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Reconstructing biogeographic history 

A geographic state, North or South America, was assigned to each taxon (Table 

3.1). Central American taxa were assigned into the North America category, while taxa 

from the Lesser Antilles Islands were assigned with the South America category. The 

dispersal, extinction, and cladogenesis model (DEC, Ree & Smith 2008) was utilized to 

reconstruct the biogeographic history for Dynastes beetles. Unconstrained dispersal rate 

was first used to reconstruct the biogeographic history. I further tested two additional 

models to investigate if dispersal happened after the closure of the Isthmus of Panama. 

The first alternative model assumed that the dispersal rate between North and South 

America was 50% less before the closure (3.5 MYA) than after; the second alternative 

model assumed that there was no dispersal prior to the completion of the landbridge. To 

account for uncertainty in molecular dating, two additional sets of analyses that applied 

different times of rate switch (specifically, 4 and 5 MYA) were also performed. 

Differences in fitting these models to explain the diversification pattern of the species 

tree were directly compared using the estimated likelihood values between models.  

 

Estimating speciation/diversification rate 

 The net-diversification, speciation and extinction rates based on the Dynastes 

species tree were estimated using the program BAMM (Rabosky 2014; Rabosky et al. 
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2014). Specifically, a total of 2 × 108 generations of rjMCMC searches with samples 

stored every 1 × 105 generations was performed using the speciation-extinction analyses 

via BAMM. A total of 1000 post burnin samples (50%) were retained. Note that a 

separate BAMM analysis that incorporated the information about possible missing taxa, 

specifically one in the Theogenes group and three in the Giant Hercules beetles (i.e., D. 

neptunus rouchei, D. hercules takakuwai, and D. hercules tuxtlaensis [Hwang 2011] and 

an genetically distinct D. h. reidi lineage from the island of Martinique [Huang 2015]), 

resulted in a similar pattern of diversification rate through time (Fig. 3.2); therefore, only 

the results that assume complete taxon sampling from the current species tree were 

shown. The estimated speciation rate of the Dynastes species tree was plotted using the 

plot.bammdata function from the R package BAMMtools (Rabosky et al. 2014). 

Additionally, the number of post burnin MCMC samples that support a significant rate 

shift on the species tree was calculated using a Bayes factor threshold of 3. The estimated 

net-diversification and speciation rates through time were then plotted using the 

plotRateThroughTime function. Furthermore, a macroevolutionary cohort analysis 

(Rabosky et al. 2014) was utilized to test if the estimated speciation rate is highly 

correlated between closely related lineages using the function getCohortMatrix and 

cohorts from BAMMtools. Although the extinction rate was estimated as a model 

component in BAMM, extinction rate was not reported in this study and the interpretation 

of changes in extinction rate was avoided due to controversies regarding estimating 

extinction rates from molecular phylogenies (Rabosky 2010). 
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Figure 3.2. BAMM results from analysis incorporating information about possible 

missing taxa in the data. (A) The Dynastes species tree with branches colored according 

to estimated speciation rate. (B) Distinct rate shift patterns and their frequencies 

determined by applying a threshold of Bayes factor = 3. A grey circle on the branch 

indicates the position where rate shift occurred. 
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Testing the effects of different geographic distributions 

and altitudinal preferences on species diversification 

 Because speciation rate can not only change through time, but also correlated with 

phylogenetic relatedness, trait dependent evolutionary analyses that do not take these 

factors into consideration can result in erroneous inferences (Rabosky & Goldberg 2015). 

The structured rate permutations on phylogenies (STRAPP) analysis was developed to 

cope with such problems by comparing the observed difference in speciation rate 

between species that exhibit different trait states to a background speciation rate through 

randomizing the estimated tip speciation rates from the BAMM outputs (Rabosky & 

Huang 2015). STRAPP analyses for testing trait dependent speciation rate in this study 

were performed using the traitDependentBAMM function from BAMMtools. 

Specifically, if speciation rate in Dynastes beetles is correlated with different altitudinal 

preferences or with different geographic origins was accessed by 1 × 104 permutations. 
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3.4 Results 

Biogeographic history reconstruction 

The model without setting any dispersal constraint performs best among all three 

models (-lnL = 9.453; alternative models: –lnLs = 9.545 & 9.868 for 50% & 100% less 

dispersal prior to 3.5 MYA, respectively), implying that the closure of the Isthmus of 

Panama may not have significant effect on the colonization of North America in 

Dynastes beetles. Analyses that assumed different times of rate switch lead to the same 

results. The ML reconstructed ancestral area for each branch is shown based on results 

from the best (unconstrained) model (Fig. 3.1). South America is inferred as the ancestral 

state. The ancestral state for the lineage leading to Hercules beetles (subgenus Dynastes) 

can either be South America (lnL = -10.18, P = 0.4837) or widespread (lnL = -10.35, P = 

0.4076) (Fig. 3.1). Two inferred dispersal events can be found on branches leading to the 

White Hercules taxa and to Dhs (Fig. 3.1). The estimated dispersal and extinction rates 

are 0.03285 and 4.285 x 10-9, respectively.  

 

Changes in diversification rates 

 The rjMCMC searches in the BAMM analysis reached plateau soon after the first 

1000 generations. By using a Bayes factor of 3 as threshold, 33 % of the post burnin 
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samples indicate a significant rate shift, and this rate shift, which is an increase in 

diversification rate, is located on the branch leading to subgenus Dynastes (Fig. 3.1). The 

RTT plots unveil steadily increasing speciation and net-diversification rates through time, 

where a sudden increase in rates can be found around 4 MYA (Fig. 3.3). The results from 

macroevolutionary cohort analysis reveal that the phylogenetic distance between taxa is 

highly correlated with the estimated speciation rate. For example, species from the White 

Hercules beetles share a highly similar speciation rate, whereas the estimated speciation 

rates between species from White and Giant Hercules beetles are less similar (Fig. 3.4). 
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Fig. 3.3. Results from rate through time plots. The x-axis is in a scale of million years. 

Solid lines indicate the mean rates, while the grey areas represent the 5% to 95% 

Bayesian credible regions for the distributions of the rates. 
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Fig. 3.4. Results from macroevolutionary cohort analysis. A correlation matrix based on 

speciation rates between tip lineages of the phylogeny is plotted, where each correlation 

is a posterior frequency that the two compared species are found in the same 

macroevolutionary rate regime. A warmer color represents a higher correlation than a 

colder color. The correlation between any two species can be found by locating their 

intersection in the matrix. 
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The effects of different geographic distributions and 

altitudinal preferences 

 The estimated speciation rates for North and South American taxa are 0.75 ± 0.006 

(SE) and 0.71 ± 0.043, respectively (Fig. 3.5). A t-test assuming unequal variance shows 

insignificant difference in estimated speciation rates (t = -0.9226, df = 10.403, P = 

0.3771). In addition, the STRAPP result also indicates that the estimated speciation rate is 

not significantly dependent on the geographic states (P = 0.919). Similarly, the estimated 

speciation rates between taxa of different altitudinal preferences (0.76 ± 0.006 and 0.68 ± 

0.057 for lowland and highland species, respectively [Fig. 3.5]) are not statistically 

different (t = 1.4672, df = 7.146, P = 0.1849). The STRAPP result also reveals 

insignificant support for altitudinal preference dependent speciation rate (P = 0.9105). 
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Fig. 3.5. Comparisons of estimated speciation rates between trait states. Left panel: the 

estimated rates between South (black) and North (white) American Dynastes beetles. 

Right panel: the estimated tip rates between lowland living (black) and highland living 

(white) species. 

 

3.5 Discussion 

A recently reconstructed Dynastes phylogeny, where all taxa are statistically 

supported as evolutionary independent lineages, is used in this study to test 

biogeographic hypotheses about processes that may promote species diversification. It 
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has been shown that fail to recognize true biological entities in a macroevolution study 

can severely affect the interpretation of mechanisms that lead to the current biodiversity 

(Smith et al. 2013). Given a fairly complete sampling of taxa that are statistically 

delimited as different species (see chapter 2; Huang & Knowles 2015), results and 

inferences made from this study should be robust. It is unraveled here that Dynastes 

beetles have a South American origin and that the GABI in Hercules beetles predates the 

closure of the Isthmus of Panama. The estimated speciation rate is highly lineage specific 

and a rate increase can be identified on the branch leading to Hercules beetles. My results 

from RTT plots further indicate an increase, although slightly, in diversification rate in 

Pliocene and Pleistocene, which corresponds to a slowing down in geological activity and 

an increased frequency in climatic fluctuation and reformation of ecoregions in the 

Amazonia (Hoorn et al. 2010, Garzón-Orduña et al. 2014). Furthermore, I show that the 

geographic states of North and South America have similar effect on species 

diversification and that different ecological states of preferring lowland and highland 

habitats also have similar effect on speciation rate. The biogeographic history and factors 

affecting the diversification in Dynastes beetles are discussed in the following sections. 

 

Biogeography 

A South American origin with subsequent dispersal events into North America is 

inferred for the Dynastes beetles using the DEC model. My finding is in congruence with 
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a recent study done by investigating karyotypes (Dutrillaux & Dutrillaux 2013). In their 

study, ancestral and derived chromosomal types are found in Dynastes taxa from South 

America, but the ancestral type is absent in North American taxa. It is also true that both 

subgenus Dynastes and Theogenes are distributed in South America, while there is no 

Theogenes taxa in North America. A South American origin of the genus Dynastes is 

thus a favored hypothesis and supported by multiple lines of evidence.  

Although the reconstructed time calibrated species tree of Dynastes beetles 

reveals that lineages leading to North American taxa originated after the closure of the 

Isthmus of Panama (Fig. 3.1), my DEC results indicate that a model assuming constant 

dispersal rate between the Americas through time fits the species tree better. My results 

presented here may suffer from the effect of low statistic power to discriminate between 

models because of a small sampling size (only 17 tip taxa), but the clear trend of 

decreasing likelihood value for models assuming constrained dispersals before 3.5 MYA 

implies that the completion of the Isthmus of Panama may not be a major driving force 

for GABI in Dynastes beetles. Two Giant Hercules taxa (Dhh and Dhr) have successfully 

colonized islands of the Lesser Antilles, i.e., Saint Lucia, Martinique, Dominique, and 

Guadeloupe (Chalumeau & Reid 2002). A historical record indicates that they might have 

made it to Hispaniola as well (Wetherbee 1985). The mobile adult stage, which could fly 

for a decent geographic distance, and a potential dispersing larval stage via drifting wood 

could have enabled Hercules beetles to travel across the narrow oceanic strait before the 

closure of the Isthmus of Panama (see Leigh et al. [2014] for a map of the Isthmus 
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between 12 and 6 MYA). Such inference has also been reported in many terrestrial 

organisms, where specifically a South to North America biotic introduction became 

apparent around 6 MYA (Bacon et al. 2015). Given the fact that Central America has the 

highest species diversity from the Hercules beetle lineage and a pre-landbridge dispersal 

model is favored, the most likely historical scenario explaining the biogeography of 

Dynastes is H2: pre-landbridge dispersal through rafting across Central America.  

Conventional molecular biogeographic studies focusing on similar question tend 

to infer a predominate role of landbridge in inter-continental biotic dispersal if the 

estimated age of the common ancestor between North and South American lineages are 

found generally less than or close to 3.5 MYA based on a dated phylogeny. While 

pre-landbridge dispersal are inferred if the estimated common ancestor between lineages 

of North and South America significantly predates 3.5 MYA. Few studies have tried 

fitting different models on the reconstructed phylogeny and compared the goodness of 

fits between models before making inferences (Bacon et al. 2013). My results from 

studying Dynastes beetles presented here indicate that interpreting deterministic process 

by observing molecular phylogenetic patterns in a biogeographic study without applying 

statistic tests between alternative explanations should be taken with cautions. 

 

Diversification process 

 It is revealed in this chapter that speciation rate in Dynastes beetles is not trait 
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dependent. An interesting finding here is that the geographic state of living in North 

America is not correlated with a higher speciation rate. Although rapid diversification is 

commonly observed after successful biotic introduction, it has been shown that mammal 

species having a South American origin tend to have limit success to diversify in North 

America (Simpson 1950; Marshall 1988; Webb 1991). The rain forest habitat, for 

example, only covers a small proportion of North America, allowing only a small area for 

species of South American origin to successfully diversify assuming phylogenetic niche 

conservatism. Additionally, repeated glaciations during Pleistocene in North America 

may have exterminated decedents from lineages of tropical South American origin. It is 

also intriguing to point out that according to my results here the evolution of different 

ecological preferences does not correlate to differences in speciation rate. Although 

lowland living may have facilitated the colonization into previously isolated continents, 

speciation rate can be dependent on other factors, which may not be associated with the 

specific trait state that facilitate dispersal. Specifically, the number of available niches 

that may promote speciation in Dynastes beetles can be highly correlated to the number 

of allopatrically/parapatrically distributed forest ecoregion (speciation predominated by 

allopatric process; see Chapter 2 [Huang & Knowles 2015]), which can be independent 

from being a highland or lowland geographic state. That is, both highland and lowland 

regions have many distinct ecoregions. 

Colonizing North America however did result in biological diversification in 

White Hercules beetles (i.e., five species are generated within 3 million years), and thus 
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the lack of opportunity, which is often invoked to explain the lack of successful 

diversification in mammals of South American origin after GABI, can not fully explain 

my result of similar speciation rates between Dynastes lineages from North and South 

Americas. Speciation rate in White Hercules beetles is not comparable to that of its South 

American counter part, Giant Hercules beetles (i.e., at least 10 species are generated 

within 3 million years; Fig. 2.9 & 3.1). Whereas speciation rate in White Hercules beetles 

is faster than that in the subgenus Theogenes (Fig. 3.1). Because South American lineages 

are composed of fast diverging Giant Hercules beetles and slow diverging Theogenes 

taxa (Fig. 3.1 & 3.4), the estimated speciation rate for all South American lineages as a 

whole can be misleading. Colonization into a new continent indeed resulted in species 

diversification in Hercules beetles; however, there were contemporaneous events 

occurring in South America (Hoorn et al. 2010; Garzón-Orduña et al. 2014), which could 

have resulted in an even faster speciation rate. Specifically, the recent formation of a 

variety of ecoregions in Amazonia (Hoorn et al. 2010) and subsequently the forest 

contraction because of a drier climate condition in Pleistocene (Garzón-Orduña et al. 

2014) could together lead to an increase in speciation rate in the South American Giant 

Hercules lineage. This inference can be further supported by my results from RTT plots, 

where an increased species diversification rate can be found in Pliocene and Pleistocene. 

Additionally, my results from macorevolutionary cohort analysis clearly suggest that 

speciation rate is highly lineage specific and that the fastest diverging lineage in Dynastes 

is composed of taxa that live in ecoregions that are geographically very close to the 
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northern Andes (Dhl, Dhb, Dhm, Dhe, Dho, and Dhs; table 3.1; Fig. 2.4, 3.1, & 3.4), 

where the habitats changed most drastically in the recent history. Comparing to 

geographical and ecological explanations of different diversification patterns found 

between biological systems in the Americas, the importance of lineage specific properties 

and the formation of ecoregions in Pliocene and forest contraction during Pleistocene 

(Garzón-Orduña et al. 2014) have received less attention. However, it is clear based on 

my results that geological and climatic events play important roles in shaping different 

diversity patterns in different Dynastes beetle lineages.  

 

3.6 Conclusion 

In chapter 3, the biogeographic and diversification history of Dynastes beetles is 

studied and a potential problem of inferring historical process by observing divergence 

patterns and times from a reconstructed phylogeny is revealed. Although all North 

American lineages are formed after 3.5 MYA, dispersals between Americas do not 

necessarily have to occur after 3.5 MYA. In fact, a model assuming a constant dispersal 

rate before and after the closure of the Isthmus of Panama fits better the reconstructed 

Dynastes species tree according to my results. Thus, for historical biogeographic studies, 

cautions should be undertaken should alternative scenarios that can explain the observed 

phylogenetic patterns were not tested and compared statistically. I also show that 

speciation rate in Dynastes beetles may not be dependent on specific geographic or 
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ecological trait states. Instead, it changes in a lineage specific manner, which could be 

resulted from different lineage specific historical processes. Specifically, the determinant 

of diversification in Dynastes beetles is likely the availability of different forest 

ecoregions, which is the result of changes in climatic condition and geological activity 

and varies across geological times. It is clear that, although conventionally trait- 

dependent, lineage- specific, and time- dependent evolutionary patterns have been 

investigated as independent subjects of interest, an integrative model that can investigate 

the effects from all these potential diversification drivers can help us understand the 

biodiversity pattern more comprehensively. Studies that only investigate the effect of one 

specific factor can result in biased interpretations. 
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CHAPTER 4: Tests of divergence across multiple levels of 
biodiversity in Xylotrupes beetles: impact of oceanic and forest 
barriers on diversification dynamics across the 
Indo-Australian Archipelago 

 

4.1 Abstract 

The effect of different barriers on genetic divergence, and whether the impact is 

similar on multiple levels of biodiversity, is investigated using Xylotrupes beetles from 

Indo-Australasian Archipelago. Specifically, tests of the role of oceanic barriers and 

forest fragmentation in promoting population subdivision, species diversification, and 

community differences are conducted. Two mitochondrial (COI and 16S in 304 and 275 

individuals, respectively) and two nuclear (ITS1 and ITS2 in 128 and 251 individuals, 

respectively) loci were sequenced from 81 populations sampled across all taxa from 8 

species groups of Xylotrupes beetles. A phylogenetic history of divergence was estimated 

using the program *BEAST, as well as speciation duration under a protracted birth-death 

model, and the timing of divergence using a molecular clock. The role of vicariance and 

dispersal in structuring the beetle communities was investigated using a 

dispersal-extinction-cladogenesis model. A correspondence between shifts in 
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diversification rates associated with historical changes in oceanic barriers and forest 

fragmentation was tested using the Geographic State Speciation and Extinction model, 

lineage-through-time plots, and tests of competing models of evolutionary diversification 

using stepwise AIC. At the population level, pairwise FST were used to test for 

divergence within species associated with the different barrier types. My results show 

that different zoological regions isolated by oceanic trenches are characterized by 

endemic lineages and rare dispersal between regions. Isolation by oceanic barriers 

correlates with significant population subdivision, but not with speciation rate, whereas 

historical increases of forest fragmentation due to past climatic change are associated 

with an increase in diversification rate. The effects of barriers on divergence across the 

multiple levels of biodiversity differ and depend upon the barrier type. These differences 

may relate to the duration of speciation and the time required for species to evolve 

coexistence in sympatry, which may mediate the effects of processes contributing to 

divergence and species diversity. 

 

4.2 Introduction 

Although it is clear that different types of barriers can impact species divergence, the 

effects of a specific barrier type on differentiation at multiple levels of biodiversity has 

rarely been investigated (Wiens 2012). Because of this knowledge gap, it is unclear the 

extent to which biogeographic patterns of species diversity at the macroevolutionary level 
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can be informed by phylogeographic studies of microevolutionary phenomena and vice 

versa. For example, although physical barriers often promote population subdivision, this 

incipient divergence may not persist long enough to become new species (Sukumaran & 

Knowles 2016), or populations may merge upon secondary contact, such that the effects 

of barriers on speciation rate may vary depending upon the persistence of within-species 

lineages (Dynesius & Jansson 2014). Moreover, the links between speciation rate, and 

hence, macroevolutionary patterns, and processes operating at the microevolutionary 

scale may also depend on factors that influence the number of divergent populations 

within species (Dynesius & Jansson 2014). For example, with multiple types of barriers, 

a higher number of divergent populations might contribute to increased diversification. 

However, differences in the persistence of populations under different barrier types might 

also mean that a barrier only contributes to microevolutionary divergence (Papadopoulou 

& Knowles 2016).  

Both physical barriers (e.g., oceanic barriers) and changes in climatic conditions that 

alter island connectivity are hypothesized as main forces that structure both 

phylogeographic and biogeographic patterns (particularly in island/archipelago systems; 

Lohman et al. 2011; Papadopoulou & Knowles 2015). However, the relative contribution 

of different barrier types at a given level of biodiversity (i.e., population versus species 

divergence) and whether they will have a concerted impact on divergence across levels 

remains poorly understood. 

Here I present an integrative biogeographic and phylogeographic study to 
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investigate (i) the effects of different barrier types on divergence in rhinoceros beetles 

(genus Xylotrupes, Dynastinae, Scarabaeidae) from the Indo-Australian Archipelago 

(IAA), and (ii) whether their impact is similar on multiple levels of biodiversity. The IAA 

encompasses multiple zoological regions of high biodiversity (Lohman et al. 2011). The 

highly fragmented distribution of islands, as well as the complex history of repeated 

connections during its dynamic climatic and geological history, is hypothesized to drive 

diversification in the region (Lohman et al. 2011; Hall 2012). In addition to geographic 

explanations, forest fragmentation during drier climatic conditions has also been 

hypothesized to promote diversification (e.g., Bendiksby et al. 2010; Morley 2012). Six 

Xylotrupes, species groups, which are restricted to forests, are widely distributed 

throughout the IAA (Fig. 4.1)(Rowland 2011). Within the species groups, morphological 

systematic studies have revealed localized geographic subspecies (Rowland 2003; 2011), 

suggesting the potential importance of geographic isolation as a driver of diversification 

in Xylotrupes. However, given that the taxa are associated with forests, it is also possible 

that habitat fragmentation has contributed to divergence in the beetles. In this study, I test 

the effects of oceanic barriers and forest fragmentation associated with past climatic 

change on divergence at three different biodiversity levels: tests of the role of oceanic 

barriers and forest fragmentation in promoting population subdivision, species 

diversification, and community differentiation. I also estimate the speciation duration 

(Etienne & Rosindell 2012) in Xylotrupes, which provides a context for interpreting why 

the barriers might (or might not) act in a concerted manner in terms of the effects of 
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divergence at different levels of biodiversity (as discussed above). 

 

 

Fig. 4.1. The map of Indo-Australian Archipelago and representatives of major males 

from six Xylotrupes species groups. Solid lines indicate geographic breaks between 

zoological regions and colored dashed lines show the geographic distributions of each 

species groups. Geographic areas that would have connected isolated landmasses during 

glacial periods (Hall 2012) are shown in light greyish blue color. 
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4.3 Material and Methods 

DNA extraction, sequencing and alignment 

DNA was extracted from thoracic muscles using the DNeasy Blood & Tissue Kit 

(QIAGEN, USA) in 304 beetles sampled from multiple populations of 30 species 

(including seven un-described species) and six subspecies from all the eight Xylotrupes 

species groups (Table 4.1). Species and subspecies nomenclature used here follows J. M. 

Rowland (2003, 2011, and personal communication); all currently recognized species 

were included in this study. Voucher specimens were deposited in the Insect division of 

the Museum of Zoology at the University of Michigan (UMMZ), the University of New 

Mexico (UNM), and Tunghai University (THU).  

 

Table 4.1. Summaries of taxa studied in this chapter. 
Species Group Species/Subspecies Collection Localities (CODE#) Zoological Region 

Florensis X. florensis Wetar Island (WET-F), Flores Island (XF), Pantar Island 

(XFP), Sangeang Island (XFS), Mt. Gumitir, E. Java? 

(GUM-F) 

Sundaland/Wallacea 

 X. florensis tanimbar Larat Island (XFL), Tanimbar Island (XFT) Wallacea 

Meridionalis  X. meridionalis Mudigere, India (XME), Kerala, India (KER-M) India 

Mniszechii X. mniszechii Pallandri/Mang Azad/Rawalakot, Kashmir (XMN), Mt. 

Gaoligong, Yunnan (XMNYN), Medog, Tibet (XMNT) 

Himalaya 

Siamensis/ 

Beckeri 

X. siamensis Hainan Island (HAI-T), Kanchanaburi (KAN-S), Sri 

Sawat, Kanchanaburi (KAN-T), Kho Chang Island 

(KHO-S), Xieng Khouang, N. Laos (LAO-S), Chiang 

Indo-China 
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Mai (SIA), Hong Kong (SIAHK), Xishuangbanna, 

Yunnan (SIAYN), Shaoguang, Guangdong (TON), 

Ngoc Linh Mt., Kon Tum (TONKT), Ba Nam, Ba To, 

Quang Ngai (TONQG), Tr’hy, Tay Giang, Quang Nam 

(TONQN), Captive breed from Vietnam (TONV) 

 X. beckeri Cameron Highlands (XB) Sundaland 

 X. beckeri 2  

(Lowland species) 

Pagai Island (PAG-B), Siberut Island (SIB-B), Kluang 

(KLU-B) 

Sundaland 

 X. wiltrudi Central Kalimantan (XWIK), Sambas, W. Kalimantan, 

Indonesia (XWIS) 

Sundaland 

 X. sp.1 E. Java (EJA-X) Sundaland 

 X. inarmatus Mt. Semeru, E. Java (SEM-I/XINS), Mt. Argopuro 

(XIN) 

Sundaland 

Gideon X. gideon Mt. Argopuro, E. Java (G), Bali (GB), Lombok (GL), 

Lampung, S. Sumatra (LAM-G), W. Java (WJA-G), 

Gunung Halimun, W. Java (XGH*) 

Sundaland/Wallacea 

 X. damarensis Yamdena (GY), Tanimbar Island (XGI) Wallacea 

 X. tadoana 1 Wetar Island (GW/WET-G), Timor Island (SOT/TIM-T) Wallacea 

 X. tadoana 2 Sumba Island (SOB), Flores Island (SOF), Sangeang 

Island (SOS), Sumbawa Island (SOW) 

Wallacea 

 X. pachycera Kalimantan, Borneo (BO) Sundaland 

 X. sumatrensis Maninjau Lake, Sumatra (SU) Sundaland 

 X. sumatrensis tanahmalayu Cameron Highlands (BE) Sundaland 

Ulysses X. lorquini Buton Island (BUT-L), Captive breed sample from 

Sulawesi (BAUS), Muna Island (MUNA) 

Wallacea 

 X. rindaae Selayar Island (SEL-R) Wallacea 

 X. falcatus Sanghir Island (XFA) Wallacea 

 X. telemachos Makian Island, Maluku (MAK-T), Halmahera (XST) Wallacea 

 X. clinias 1 Ceram Island (CER-C), Ambon Island (AMB-G) Wallacea 

 X. ulysses Duke of York Island (YOR-U), Kimbe (KIM-U) Australasia 

 X. clinias 2 Kei Islands (BAU) Wallacea 

 X. australicus Garradunga, Queensland (AUS/XAA), Brisbane, Australasia 
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Queensland (XAB) 

 X. australicus darwinia Darwin, Northern Territory (XAD) Australasia 

 X. carinulus Fak-Fak, W. Irian (U), Wau, Morobe, Papua New 

Guinea (LA) 

Australasia 

 X. macleayi Misima Island (MIS-M), Trobriand Island (TRO-M) Australasia 

 X. macleayi szekessyi Buin District, PNG (BOU-S), Buka Island (BUK-S), 

Guadalcanal, Solomon (MA) 

Australasia 

Pubescens X. pubescens Mt. Apo, Mindanao (XP), Mt. Musuan, Mindanao 

(XPM)  

Philippines 

 X. pubescens beaudeti Mt. Balocane, S. Leyte (XPUL) Philippines 

 X. sp.2 Luzon (XSP) Philippines 

Philippinensis X. philippinensis Dinalungan, Aurora, Luzon (XPHA), St. Thomas, Luzon 

(PHEST), Marinduque Island (PHM), Maripipi Island, 

Leyte (PLE), Bulacan, Luzon (BUL-P) 

Philippines 

 X. philippinensis peregrinus Green Island, Taiwan (PHG), Orchid Island, Taiwan 

(PHO) 

Philippines 

 X. pauliani Cameron Highlands (CAM-P) Sundaland 

 X. sp.3 Malaysia (MAL-X) Sundaland 

 

Mitochondrial COI (C1-J-1718/C1-N-2454; Bell et al. 2004) and 16S (16Sar/16Sbr; 

Simon et al. 1994), as well as nuclear ITS1 (TW81/HITR; Richards et al. 1997) and ITS2 

(FB5.8SFWD/FB28SREV; Jenkins et al. 2007) loci, were amplified on an Ependorf 

thermocycler (Mastercycler Gradient, Hamburg, Germany) with Taq DNA polymerase 

(Invitrogen, USA). The PCR profile for all amplifications involved denaturing at 94°C 

for three minutes, followed by 35 cycles of a 94°C one minute denature step, a 52°C one 

minute annealing, and a 72°C one minute extension, and a final 10 minute 72°C 

extension. PCR products were purified using a QIAquick PCR Purification Kit (QIAGEN, 
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USA) or ExoSap (Affymetrix, USA).  

DNA was sequenced on an ABI PRISMTM 377 automatic sequencer (Perkin Elmer, 

USA) at the University of Michigan sequencing core (see Table 4.2 for details about 

sequences; GenBank accession # xxxxx-xxxxx [not publically available yet]). Initial 

multi-sequence alignments from ClustalW (implemented in MegAlign; DNAStar package, 

Madison, USA) were imported into SeaView (version 4.4.0; Gouy et al. 2010) for 

alignment using the program Muscle (Edgar 2004). COI sequences were translated into 

amino acid sequences using a mitochondrial genetic code of Drosophila in Mesquite 

(version 2.75, Maddison & Maddison 2011) to confirm the absence of stop codons.  

 

Table 4.2. Summary of sequenced loci, sample sizes, and DNA variation.  

Loci # individuals Alignment length # PI* sites 

COI 304 604 192 

16S 275 496 100 

ITS1 128 957 203 

ITS2 251 541 96 

*Parsimony informatics sites 

 

Estimates of phylogenetic relationships and divergence 

times 

To account for genealogical discord arising from random gene-lineage coalescence, 

a species-tree approach was used to estimate a history of divergence for the beetles. With 
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a taxonomic revision of Xylotrupes in progress (personal communication with J.M. 

Rowland), I considered both Xylotrupes species and subspecies as terminal units in the 

species-tree analysis (see Carstens & Knowles, 2007, for application of species-tree 

approaches below the species level). A species tree was estimated using the Bayesian 

program *BEAST (Heled & Drummond 2010) implemented in BEAST2 (version 2.0.1; 

Bouckaert et al. 2014) under a relaxed lognormal clock. A GTR + I + Γ model of 

nucleotide substitution was parameterized for COI, 16S, and ITS1, and a HKY + I + Γ for 

ITS2; for estimates of gene trees, the mitochondrial loci COI and 16S were treated as a 

single locus independent of the nuclear locus comprised of the linked ITS1 and ITS2 

regions. A stepwise linear model with a constant root under a Yule speciation process 

was used in initial species-tree analyses to optimize prior and operator settings. A species 

tree was estimated from a run with 1×109 generations, in which parameters and trees 

were stored every 1×104 generation, and the first 20% of the runs discarded as burn-in, 

using the BEAGLE library (Ayres et al. 2012). The Effective Sampling Sizes (ESSs) for 

estimated parameters and convergence between runs was determined using Tracer 

(version 1.50). Species trees were resampled every 1×105 generations using 

LogCombiner and a maximum clade credibility tree (hereafter referred to simply as the 

species tree) was generated from the 8,000 sampled trees, as implemented in 

TreeAnnotator. 

To estimate the timing of divergence, I used a molecular clock calibrated 

specifically for beetles with a rate of 0.0177 (per site per million year; Papadopoulou et al. 
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2010). While factors impacting estimates of absolute divergence times have been studied 

and discussed extensively (e.g., Arbogast et al. 2002), justification for the rate of 

substitution applied here include: (1) the estimated clock rate of COI is consistent across 

multiple lineages of beetles, (2) the geological events used for clock calibration have 

been well studied, and (3) the generation times and population sizes of taxa used to 

estimate the substitution rate are similar to our study system (see details in Papadopoulou 

et al. 2010). While some of the analyses and inferences depend upon the molecular clock, 

others are not (e.g., the estimation of speciation duration), which I highlight in the 

discussion. 

 

Regional differentiation and dispersal 

 The IAA and nearby regions was partitioned into seven regions for estimating 

ancestral areas, dispersal, and extinction rates – specifically, India, Himalaya, Indo-China, 

Sundaland, Wallacea, Australasia, and the Philippines (Figs. 1 & 2). A dispersal, local 

extinction, and cladogenesis model (DEC) was estimated in the program LAGRANGE 

(ver. 20130526; Ree & Smith 2008) with the species tree using two different dispersal 

parameters to account for pronounced differences in the degree of forest fragmentation in 

the region during different geologic periods (Morley 2012). Specifically, a scaling factor 

of 0.5 on dispersal between adjacent regions was used to reflect the relative isolation of 

fragmented forests for the recent past, whereas no constraint on dispersal was used for the 
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period 5-20 MYA when a widely distributed forest is hypothesized to have covered the 

entire region during the Miocene Thermal Maximum (Morley 2012). Likewise, a 

constraint of 0 dispersal between India and Sundaland during the last 5 million years was 

used, in contrast to prior periods when a connection between Sundaland and India was 

possible (although debated; Hall 2002; Replumaz & Tapponnier 2003). No disjunct 

distributions were considered as potential ancestral ranges and a maximum of five 

geographic regions for the 7 regions studied were allowed for ancestral area 

reconstruction. 

 

Diversification models  

 To test if diversification rates differed when divergence occurred across oceanic 

islands or within continents, a maximum likelihood method Geographic State Speciation 

and Extinction (GeoSSE; Goldberg et al. 2011) was used. Each taxon in the species tree 

was assigned a geographic state – island or continent; taxa from islands of the Sunda and 

the Sahul Shelves were assigned an intermediate state, because connections among these 

islands formed major landmasses throughout most of the Pleistocene (i.e., divergence 

may be driven by both island and continental states). Although our sampling included all 

current Xylotrupes taxa, I caution against the direct interpretation of estimated speciation 

and extinction rates because a significant rate shift can be detected (see the results 

section), and rate shifts may effect inferences from trait-dependent speciation model 
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(Rabosky & Goldberg 2015). Instead, I rely on inferences about the relative differences 

in estimated diversification rates to assess if speciation rate is statistically higher in one 

state than the other (i.e., across islands or within continents). In particular, the likelihood 

of a constraint model, which assumes no difference in speciation, extinction, and 

transition rates between states (i.e., islands versus continents), was compared with the 

likelihoods of additional models, which include free parameters to estimate state specific 

speciation and extinction rates, using likelihood ratio tests (calculations were made using 

the R package diversitree; FitzJohn 2012). Estimates of the probability distribution of 

speciation, extinction, and transition rates for each of the different states were also 

obtained from an un-constrained full parameterized model run for 1 × 105 generations of 

MCMC searches. 

 To test for a significant increase in speciation rate around 5 MYA (at the 

Pliocene-Miocene boundary; Lohman et al. 2011; Morley 2012), which is predicted if 

forest fragmentation promoted diversification, lineage through time (LTT) plots were 

estimated from all the post-burnin Xylotrupes species trees (8,000 trees) to accommodate 

phylogenetic uncertainty, and was implemented in the laser package in R (Rabosky 2006). 

The trees were fit to models assuming one constant versus two or three different 

diversification rates and the fit of the models were compared using AIC. In addition, 

maximum likelihood estimates of the point of a diversification rates shift (i.e., switch 

points; see Rabosky 2006) was calculated for models with multiple diversification rates, 

as was the probability of a specific rate shift at 5 MYA for only those trees that support a 
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rate switch model (because trees that fit a constant diversification rate model cannot be 

used to evaluate the probability of a rate shift). 

 Lastly, I tested if patterns of diversification where similar across all clades using 

estimates of lineage specific diversification rate and rate shifts as estimated using 

MEDUSA (Alfaro et al. 2009) and implemented in the R package geiger (version 2; 

Harmon et al. 2008). Specifically, a model assuming a single diversification rate across 

the species tree was fit and then stepwise comparisons between models assuming more 

and more complex patterns in rate shift(s) at different nodes and stems on the species tree 

were calculated and compared using AIC. The best-fit model was chosen based on an 

AIC threshold (see Alfaro et al. 2009).  

 

Speciation duration 

I estimated the speciation duration (the time required for an isolated lineage to 

become an independent species; Dynesius & Jansson 2014) under a protracted speciation 

model (Etienne & Rosindell 2012) for all taxa in the estimated species tree, except Indian 

and Himalayan taxa, which were excluded because only the IAA taxa are relevant to 

evaluating the role the speciation duration may play in mediating the effects of oceanic 

and forest barriers on Xylotrupes diversification dynamics. Specifically, the speciation 

initiation rate (how often are new isolated lineages formed), the speciation completion 

rate (how often the isolated lineages become evolutionarily independent species), and the 
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extinction rates of the incipient lineages and independent species were estimated and 

these four parameters were used to calculate the speciation duration. The analysis was 

performed using the R package PBD (Etienne et al. 2014). In our case it refers to an 

independently evolving lineage including both species and subspecies). 

 

Estimates of population divergence 

 Pairwise FST-values were calculated using the program DnaSP (version 5.10.1; 

Librado & Rozas 2009) from the concatenated mitochondrial dataset (insufficient 

sequencing of multiple individuals across all populations precluded analysis of the two 

nuclear ITS regions). Average FST -values were calculated for the different oceanic 

barriers for the different types of landmasses, namely, oceanic island, temporary island 

(those that were connected to other landmasses during glacial periods), and continental 

areas. Analysis of variance (ANOVA; implemented in R) was also used to test for 

significant difference in FST-values among populations associated with the different 

landmass types, as was a pattern of IBD for each of the landmass types, separately, using 

linear regression (implemented in R with geographic distance calculated using Google 

Earth, version 6.2). 
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4.4 Results 

Species-tree estimate  

The estimated species tree shows a good correspondence with the current taxonomy 

of Xylotrupes based on morphological characters (Rowland 2003; 2011), except not all 

the species groups are monophyletic (Fig. 4.2). Although the lack of monophyly is 

relevant to future systematic investigations (the genus is under revision; J. M. Rowland 

personal communication), with respect to the analyses on the biogeographic history and 

diversification rates, the lack of monophyly does not necessarily represent a problem (i.e., 

analyses focus on geographic regions, as opposed to clade specific measures) 

Posterior support is generally high among taxa within species groups, compared with 

moderate support for relationships among certain species groups (Fig. 4.2); note that 

phylogenetic uncertainty was accommodated by including all the post-burnin Xylotrupes 

species trees (i.e., 8,000 trees) in the LTT analyses. 
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Fig. 4.2. Distribution of ancestral areas (shown above nodes and color coded by region) 

across the estimated species tree (with posterior probabilities given for nodes with greater 

than 50%); the names of Xylotrupes taxa color coded according to their distribution 

across regions (Wallacea in black, Sundaland in red, Australasia in blue, Indo-China in 

orange, the Philippines in green, India in grey, and the Himalayan region in brown; see 

Fig. 4.1 for names of species groups). Branches with multiple color squares represent 

composite ancestral areas and curved arrows mark inferred dispersal events. Estimated 

divergence times for the nodes, as well as 95% confidence intervals, for each node are 

shown, where the corresponding time of divergence in shown by the legend (in mya). A 

red arrow identifies the branch where a diversification rate shift is inferred using 

MEDUSA.  

  



	
   95	
  

Regional differentiation and dispersal 

The species tree revels clear geographic structuring of lineages, with taxa within a region 

generally being closely related and the DEC analyses show that vicariance events 

predominate the diversification history, with only two inferred dispersal events (Fig. 4.2).  

The estimated global dispersal and extinction rates are 0.01722 and 0.006541, 

respectively (-lnL = 54.98). In contrast to the recent diversification history, there is 

considerable uncertainty surrounding the ancestral state reconstruction during the initial 

diversification of the taxa (Fig. 4.2). 

 

Changes in diversification rates through space and time 

 There was no detectable significant difference in diversification rate between 

lineages associated with and without oceanic barriers, given the similar likelihoods across 

models with constrained parameters (e.g., those equal speciation, extinction, and 

dispersal rates between geographic states) and those without constraints (Table 4.3). In 

fact, the estimated probability densities of speciation, extinction, and transition rates 

between geographic states overlap (Fig. 4.3).  
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Table 4.3. Comparison of the fit of different models from ML GeoSSE analyses. 

Specifically, models that assume equal or different speciation (λ), extinction (µ), and 

transition (δ) rates between geographic states are tested. 

 d.f. lnL AIC χ2* P value* 

Full model 7 -123.28 260.57   

Constrained 3 -125.49 256.97 4.4012 0.35 

Equal λ 6 -123.84 259.69 1.1162 0.29 

Equal µ 6 -123.98 259.96 1.3888 0.24 

Equal δ 6 -124.58 261.16 2.5851 0.11 

*these values are derived by comparing to the full model.  

 

 

 



	
   97	
  

 
Fig. 4.3. Posterior probability densities of estimated diversification parameters 

(speciation rate, extinction rate, and transition rate, which refers to the frequency of 

transitions between geographic states) for the two geographic states – islands (shown in 

white) versus continents (shown in black) – using GeoSSE speciation  

 

Estimates of the diversification rate from the LTT plots suggest that the 

diversification rate in Xylotrupes may have shifted, with a rate increase around the 

Miocene-Pliocene boundary (Fig. 4.4). Of the 8,000 post-burnin species trees analyzed, 

172 trees (2.2%) favor a two-diversification-rates model and 7805 (97.5%) trees favor a 
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three-rates model. Only 23 trees (≈ 0.3%) fit a single-rate model. From the 172 trees 

favoring a two-rate diversification model, a decrease in diversification rate within the last 

1 million years (mean = 0.79 and sd = 0.18) is suggested (Fig. 4.4), whereas for the trees 

supporting a three-rate diversification model, a decrease in diversification is estimated 

around 2 MYA (mean = 1.85 and sd = 1.18), and an increase in diversification rate about 

6 MYA (mean = 5.82 and sd = 2.04) relative to the initial diversification rate of taxa in 

the region (Fig. 4.4). The probability of 5MYA as the time point of rate increase is 0.344 

based on probability density estimated from the trees supporting a three rate 

diversification model.  
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Fig. 4.4. Lineage through time plots (lower panel) and estimations of switch points 

between diversification rates under a model that favors two diversification rates (upper 

panel) and three diversification rates (middle panel). For the LTT plot (lower panel) the 

median (solid line) and 95% intervals (grey area) of LTT plot from 8,000 post-burnin 

species trees are shown.  
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The result from the MEDUSA analysis supports a significant shift in diversification 

rate. This rate shift model fits the species tree significantly better than a constant 

diversification rate model (lnL = -85.7751, AICc = 173.608; AICc threshold for a tree of 

36 tips = 1.927). The diversification rate estimated from the best model before the rate 

shift is 0.2166046 and is 0.4389856 after the shift. The position of the rate shift on the 

branch leading to the common ancestor of the Pubescens, Philippinensis, Siamensis, 

Gideon, and Ulysses species groups (lnL = -78.6854, AICc = 163.729; Fig. 4.2), is 

consistent with the predicted pattern if climatic events were a major driver of 

diversification (i.e., the rate shift would be global and affect all contemporaneous 

lineages). Specifically, if climatic events were a major driver of diversification, then 

shifts in diversification rate should be global and observed across all contemporaneous 

lineages. 

 

Speciation duration 

The maximum likelihood estimates based on the protracted speciation model for the 

speciation initiation rate, the speciation completion rate, and the extinction rates of 

independent species and incipient lineages are 1.232, 0.379, 1.098, and 1.098, 

respectively (lnL = -72384). The expected duration of speciation calculated from the 

above parameters is 0.929.  
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Population subdivisions 

 The existence of an oceanic barrier is associated with a significantly higher pairwise 

FST-value (Table 4.4; Fig. 4.5A). This correlation is consistent regardless of different 

types of landmass. The effect of geographic distance on population subdivision is not 

significant for any of the three groups of geographic categories (F = 2.589, 0.262, and 

3.677; P = 0.129, 0.629, and 0.071; and N = 17, 10, and 19 for continental, temporary 

island, and island, respectively) (Fig. 4.5B). The results presented here are robust to both 

logarithm and square root transformations of geographic distance (results not shown).  

 

Table 4.4. Results from ANOVA for isolation by oceanic barrier. Specifically, the 

pairwise FST-values between populations isolated without oceanic barrier and those with 

oceanic barriers (both temporal and oceanic, see materials and methods) are compared. 

 d.f. S.S. F P value 

groups 2 2.158 20.6 4.09 x 10-7 

Residuals 46 2.409   
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Fig. 4.5. Degree of population subdivision (as measured by FST) associated with (A) 

oceanic barriers (for each type of landmass; see methods for details) and (B) and 

geographic distance. FST values estimated between continental populations are shown in 

black, temporary island is in light grey, and island state is in dark grey.  

 

4.5 Discussion 

My study not only highlights that different types of geographic barrier may have 

their own biodiversity level specific effects, but also demonstrates how phylogeographic 

and biogeographic patterns can be studied simultaneously and how such integrative study 

can help us bridging the gap between microevolutionary and macroevolutionary studies. I 

show that evolutionary lineages in Xylotrupes beetles are geographically structured, 

where closely related taxa are often found in the same zoological region and dispersal 

events between regions are rare. Nevertheless, while an oceanic barrier can effectively 

structure populations into local genetic clusters (Table 4.4), the diversification rate in 
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Xylotrupes beetles is only correlated to different hypothesized levels of forest 

fragmentation across geological times (Fig. 4.4). I further reveal prolonged speciation 

duration estimated from the Xylotrupes species tree that uncovers an ephemeral, albeit 

strong, effect of oceanic barrier on genetic differentiation within zoological region. 

Below, I discuss why different types of geographic barrier may have different effects on 

structuring patterns of genetic diversity at different biodiversity levels and the implication 

from an integrative phylogeographic and biogeographic study. 

 

Differences in the processes structuring population versus 

species-level divergence 

 My results clearly demonstrate that the effect of a barrier type is not consistent on 

patterns of genetic variation across multiple levels of biodiversity. The effect of an 

oceanic barrier on population subdivision is significant irrespective to different types of 

islands (i.e., temporary versus true oceanic islands; Fig. 4.5A). It has also been shown 

that distinct island forms, especially in male horn morphology, can rapidly evolve within 

the same Xylotrupes species (Rowland 2003; 2011). Together these findings indicate that 

isolation by an oceanic barrier can be a main mechanism promoting biological 

diversification as hypothesized in previous studies (Mayr 1942; Lohman et al. 2011; 

Wiens 2012). On the contrary, however, the GeoSEE results reveal that isolation by an 
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oceanic barrier is not correlated with a higher rate of biological diversification at species 

level (table 4.3; Fig. 4.3). Note that, although the BiSSE model family has been shown 

prone to result in false positive inference of trait-dependent speciation (Rabosky & 

Goldberg 2015), especially when there were significant rate shift in the past, my result of 

non-significant difference in speciation rate between geographic states is less likely to be 

affected.  

The rate of species diversification in Xylotrupes beetles on the other hand is 

correlated with different hypothesized levels of forest fragmentation between geological 

times (Fig. 4.4). This pattern is also found in many other studies using forest associated 

species (e.g., Bendiksby et al. 2010), where an increase in diversification rate is 

associated with a geological time period that drastic decrease in forest distribution in IAA 

is hypothesized (Morley 2012). My results not only significantly support an increase in 

diversification rate from more than 95% of the post burnin species trees, but also 

confidently place the time of rate increase at the Miocene-Pliocene boundary (Fig. 4.4). 

The increase in diversification rate however is only shared among the five most speciose 

groups of Xylotrupes beetles from IAA based on our MEDUSA result (Fig. 4.2), which 

implies a major effect of forest fragmentation specific to lineages from IAA. This lineage 

specific rate shift can be due to the specific geographic and geological features of IAA 

(Lohman et al. 2011) – i.e., it might not be a global event. Additionally, life history 

features such as the evolution of a shorter generation time or a smaller population size 

due to smaller habitat size (e.g., islands) may also contribute to this pattern of lineage 
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specific rate shift. Unfortunately, based on my current data and limited information about 

the natural history of Xylotrupes beetles, the relative contribution between climate and 

geography and the evolution in life history traits on lineage specific diversification rates 

can not be properly evaluated. 

The Indo-Australian Archipelago has conventionally been subdivided into multiple 

zoological regions because of distinct faunal communities (Lohman et al. 2011), which 

are delineated by oceanic trenches. My results support this long history in systematic 

studies by showing that species from the same zoological region are more closely related 

to one another than species from distant regions (Fig. 4.2; except for those from Wallacea, 

which appears to accommodate taxa from multiple distinct lineages). Vicariance and rare 

dispersal events out of Sundaland and Wallacea can result in the formation of 

independently evolving lineages that will be isolated from its sister lineage for millennia 

because landbridges have rarely been formed between these zoological regions. My 

results here indicate that even for the same type of geographic barrier, different effects on 

phylogeographic and biogeographic patterns can result because of differences in the 

evolutionary time scale that different barriers can endure – i.e., oceanic barriers that 

separate islands versus those delineating zoological regions. 
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The duration of speciation as a filter for the processes 

that contribute to species diversity patterns 

I demonstrate in the previous section that oceanic barrier between landmasses can 

promote population subdivision between oceanic islands and lead to faunal community 

differentiation between zoological regions, but does not correlate with the proliferation of 

new species. It has been hypothesized that the persistence of an isolated population that 

may become a new species can be determined by the rate of extinction and the frequency 

of secondary contact (Dynesius & Jansson 2014). Since my GeoSSE result shows that 

extinction rates are similar between lineages of island and continental states (table 4.3; 

Fig. 4.3), the complete formation of a new species is likely controlled by the duration of 

the physical barrier. In my study system, lowered sea level during glacial periods could 

result in frequent secondary contacts between island populations (Lohman et al. 2011). 

For example, the relative time for islands being disconnected in the Sunda Shelf is short 

comparing to the time of being connected to other larger landmasses during Pleistocene, 

because a large proportion of the Sunda Shelf is only 50 meters below current sea level 

(Lohman et al. 2011; Hall 2012). Since the estimated speciation duration based on the 

protracted speciation model is around one myr, the isolation time provided by sea level 

rise during interglacial periods of Pleistocene (usually tens of or maybe hundreds of 

thousands of years) may be insufficient for recent divergence to be completed.  
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 Additionally, the time required for evolving coexistence in sympatry can also has 

significant implication on current biodiversity patterns. As expected for speciation driven 

predominantly by geographic isolation, closely related Xylotrupes taxa do not coexist on 

the same island. For example, on Flores Island there are X. florensis and X. tadoana that 

have been diverged from each other for more than 19 myrs based on our reconstructed 

species tree; surrounding the Cameron Highland of Malay Peninsular there are X. 

sumatrensis, X. beckeri, and X. pauliani, which are species from three different species 

groups diverged from one another for at least 5 myrs. In other words, I find that the 

minimum time for evolving coexistence between Xylotrupes species can be as long as 5 

myrs. A recent decrease in diversification rate revealed from 99% of the post burnin 

species trees from our LTT results (Fig. 4.4) further support the importance of the 

evolution of coexistence. Specifically, this decrease in diversification rate may reflect 

that the available niches for evolving new species have been depleted (Rabosky 2013). 

Xylotrupes beetles that feed on all kinds of fruit plant as well as native tree species and 

are commonly recognized as rampant plant pests (Firake et al. 2013) are expected to 

exhibit little niche partitions between species. Since almost every island, no matter how 

small the island size, from IAA has been occupied by species of Xylotrupes beetles 

(Rowland 2003) the recent decrease in diversification rate implies that the current species 

number of Xylotrupes beetles may have reached the carrying capacity (Rabosky 2013). 

The fact that incipient species (Mayr 1942) can only be found on different oceanic islands 

from our results supports the idea that strong physical barrier, e.g, oceanic barrier, can 
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maintain the genetic differentiation between recently diverged evolutionarily independent 

lineages. On the other hand, my results also reveal that divergence initiated by physical 

barrier without ecological/biological differentiation can hardly be completed once the 

barrier no longer exists. 

 

Implications from an integrative phylogeographic and 

biogeographic study 

 The transition between microevolutionary and macroevolutionary patterns has been 

a study focus in evolutionary biology (Etienne & Rosindell 2012) – i.e., if these patterns 

are results of the same process, but differ in the evolutionary time that process has 

proceeded. For example, if there are fundamental differences between populations and 

biological species (Mallet 2008). The Darwinian view of species implies that population 

subdivision is the initial phase of speciation (Mallet 2008), but Mayr’s view of species 

hypothesizes that a distinct process, i.e., the evolution of reproductive isolation, separates 

species level diversification from population level subdivision. My results imply that an 

additional filter may exist (speciation duration) that determines how many of the 

structured populations can become distinct biological species (as discussed in the 

previous section). Therefore, species and populations can be fundamentally different 

evolutionary hierarchies in the Xylotrupes beetle system. 
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 My findings from an integrative phylogeographic and biogeographic study not only 

have significant implications on philosophical arguments such as the population-species 

relationship, but also empirical practices such as species delimitation and conservation. 

Island endemic taxa, populations or species, often exhibit distinct genetic property that 

can easily be distinguished from other such taxa (e.g., based on a monophyletic 

mitochondrial gene tree). Island populations in addition to species can be recognized as 

distinct species with very high statistical supports when molecular species delimitation 

methods are applied (e.g., GMYC; Papadopoulou et al. 2008). I caution against such 

taxonomic practice, which can obscures biodiversity patterns governed by different 

evolutionary processes. Additionally, detrimental effects on biological conservation can 

result because of taxonomic over splitting (see Frankham et al. 2012 and Zachos 2013). 

 

4.6 Conclusion 

 I demonstrate the apparent biodiversity level dependent effects of different 

biogeographic processes on structuring genetic diversity. Specifically, while population 

subdivision is evidently enhanced by the existence of oceanic barrier, the rate for the 

proliferation of different species is only correlated to the hypothesized level of forest 

fragmentation. However, oceanic barriers that delineate zoological regions, which are 

effective and persistent, result in regional biological communities. I uncover a great merit 

to study intraspecific and interspecific genetic diversities in the same system when testing 
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phylogeographic and biogeographic hypotheses that although can be achieved by many 

studies has seldom been applied. Future studies focusing on bridging the gap between 

mechanisms for microevolutionary and macroevolutionary patterns are needed to 

understand how biodiversity is geographically generated and structured. 
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CHAPTER 5: Conclusion 

My thesis provides an integrative way of combining information from multiple data 

types to investigate the consistency in defining different biological hierarchies, and the 

evolutionary and biological differences between the levels of biodiversity. My work also 

bridges micro- and macroevolutionary study by testing whether the same processes drive 

patterns at different levels of biodiversity. The major implications drawn from my study 

are that (i) species designations can be statistically evaluated and consistently applied 

across multiple evolutionary lineages, and (ii) such statistical evaluation is important 

because population versus species levels of divergence, at least in the rhinoceros beetle 

systems, can be generated and maintained by different processes. This finding reinforces 

the general (and debated) view that populations and biological species are fundamentally 

different evolutionary units.  

My results have broader significance on conservation, systematics and biogeography, 

and evolutionary biology in general. For example, geographic overlap occurs between 

certain independently evolving lineages, where their divergence times can be used as a 

yard-stick for species level divergence and are strong evidence in supporting the merit of 

naming and protecting allospecies. On the other hand, my finding cautions against the 
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naming of allospecies based solely on molecular data. For example, island endemic 

Xylotrupes taxa may acquire genetic distinctiveness, but such divergence, can be erased 

easily when the physical barrier no longer exists. 

For systematics and biogeography, my study results imply that different practice in 

defining operational taxonomic units (OTUs) and the resulted differences in evolutionary 

inferences (e.g., whether ecological differentiation is viewed as diversification driver) 

bare evolutionary significances. For example, if geographic populations are sampled as 

OTUs, the historical processes that lead to the divergences of recently formed taxa, which 

are microevolutionary processes, will be revealed as diversification drivers. On the other 

hand, if only distinct biological species are represented as OTUs, only those mechanisms 

that pertain to macroevolutionary processes will be recognized as diversification drivers. 

It is therefore critical to understand what level of diversity pattern is the focus (used as 

OTU) of a study and compare only results from using the same level of biodiversity as 

OTUs between studies. 

Finally, my study results adhere to the classic view of speciation in evolutionary 

biology, where species and populations are fundamentally different evolutionary 

hierarchies (Mayr 1942). Speciation is decoupled from adaptation and neutral population 

subdivision – i.e., they can be driven and maintained by different evolutionary processes. 

In some cases, mechanisms that are responsible for speciation and population subdivision 

can be the same (e.g., distinct female mate choices lead to reproductive isolation between 

color morphs/species in lake Victoria cichlids), but it does not always have to be the case. 
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Some contemporary theories utilize mechanisms underlying population subdivision to 

explain species diversity and to test macroevolutionary patterns (e.g., speciation rate 

depends on the evolution of new traits or population sizes). However, although these 

mechanisms can indeed facilitate the emergence of new evolutionary entities (populations 

and local forms – whatever these taxa are called), how do these mechanisms help to 

complete the speciation process is still poorly known (e.g., Nosil et al. 2009). My study 

findings suggest that extrapolations between micro- and macroevolutionary patterns 

should be undertaken with caution. Furthermore, by recognizing structured populations as 

species at the early stage of speciation, the definition of species is arbitrary – species are 

simply populations that have proceeded further along the speciation continuum. 

Additionally, if structured populations are species, then genetic exchange between 

species or during the process of speciation (e.g., speciation with gene flow and 

introgression), and hybridization between species can become a widespread and common 

phenomenon. These patterns could have been recognized as gene flows between 

populations if species are defined differently. 

  



	
   114	
  

 

	
  
	
  

	
  

BIBLIOGRAPHY 

Adams D.C., Otárola-Castillo E. 2013. Geomorph: an R package for the collection and 

analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 

4: 393-399. 

Alfaro M.E., Santini F., Brock C.D., Alamillo H., Dornburg A., Rabosky D.L., Carnevale 

G., Harmon L.J. 2009. Nine exceptional radiations plus high turnover explain 

species diversity in jawed vertebrates. Proceedings of the National Academy of 

Science, USA, 106: 13410-13414. 

Ali J.R. 2012. Colonizing the Caribbean: is the GAARlandia land-bridge hypothesis 

gaining a foothold? Journal of Biogeography 39: 431-433. 

Alvarado-Serrano D.F., Knowles L.L. 2014. Ecological niche models in phylogeographic 

studies: applications, advances and precautions. Molecular Ecology Resources, 14: 

233-248. 

Arbogast B.Sl., Edwards S.V., Wakeley J., Beerli P., Slowinski J.B. 2002. Estimating 

divergence times from molecular data on phylogenetic and population genetic 

timescales. Annual Reviews in Ecology and Systematics, 33: 707-740. 

Ayres D.L., Darling A., Zwickl D.J., Beerli P., Holder M.T., Lewis P.O., Huelsenbeck 

J.P., Ronquist F., Swofford D.L., Cummings M.P., Rambaut A., Suchard M.A. 2012. 

BEAGLE: an application programming interface and high-performance computing 

library for statistical phylogenetics. Systematic Biology, 61: 170-173. 

Bacon C.D., Mora A., Wagner W.L., Jaramillo C.A. 2013. Testing geological models of 

evolution of the Isthmus of Panama in a phylogenetic framework. Botanical Journal 

of the Linean Society 171: 287-300. 



	
   115	
  

Bacon C.D., Silvestro D., Jaramillo C., Smith B.T., Chakrabarty P., Antonelli A. 2015. 

Biological evidence supports an early and complex emergence of the Isthmus of 

Panama. Proceedings of the National Academy of Sciences USA 112: 6110-6115. 

Bell K.L., Yeates D.K., Moritz C., Monteith G.B. 2004. Molecular phylogeny and 

biogeography of the dung beetle genus Temnoplectron Westwood (Scarabaeidae: 

Scarabaeinae) from Australia’s wet tropics. Molecular Phylogenetics and Evolution, 

31: 741-753. 

Bendiksby M., Schumacher T., Gusarova G., Nais J., Mat-Salleh K., Sofiyanti N., 

Madulid D., Smith S.A., Barkman T. 2010. Elucidating the evolutionary history of 

the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: Pliocene vicariance, 

morphological convergence and character displacement. Molecular Phylogenetics 

and Evolution, 57: 620-633. 

Bond J.E., Hedin M.C., Ramirez M.G., Opell B.D. 2001. Deep molecular divergence in 

the absence of morphological and ecological change in the Californian coastal dune 

endemic trapdoor spider Aptostichus simus. Molecular Ecology, 10: 899-910. 

Bouckaert R., Heled J., Kühnert D., Vaughan T.G., Wu C-H., Xie D., Suchard M.A., 

Rambaut A., Drummond A.J. 2014. BEAST2: a software platform for Bayesian 

evolutionary analysis. PLoS Computational Biology, 10: e1003537. 

Brower A.V.Z. 1994. Rapid morphological radiation and convergence among races of the 

butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. 

Proceedings of the National Academy of Sciences, USA, 91: 6491-6495. 

Camargo A., Morando M., Avila L.J., Sites Jr. J. W. 2012. Species delimitation with 

ABC and other coalescent-based methods: a test of accuracy with simulations and an 

empirical example with lizards of the Liolaemus darwini complex (Squamata: 

Liolaemidae). Systematic Biology, 66: 2834-2849. 

Carstens B.C., Knowles L.L. 2007. Estimating species phylogeny from gene-tree 

probabilities despite incomplete lineage sorting: an example from Melanoplus 

grasshoppers. Systematic Biology, 56: 400-411. 

Carstens B.C., Pelletier T.A., Reid N.M., Satler J.D. 2013. How to fail at species 

delimitation. Molecular Ecology, 22: 4369-4383. 

Chalumeau F., Reid W. 2002. Aperçus sur le complexe hercules et statut du Dynastes 

alcides (Coleoptera, Dynastidae). Nouvelle Revue d’Entomologie, 19: 83-91. 



	
   116	
  

Cody S., Richardson J.E., Rull V., Ellis C., Pennington R.T. 2010. The Great American 

Biotic Interchange revisited. Ecography 33: 326-332. 

Colgan D.J., McLauchian A., Wilson G.D.F., Livingston S., Macaranas J. Edgecombe 

G.D., Gassis G., Gray M.R. 1998. Molecular phylogenetics of the Arthropoda: 

relationships based on histone H3 and U2 snRNA DNA sequences. Australian 

Journal of Zoology, 46: 419-437. 

Coulson S.J., Hodkinson I.D., Webb N.R., Harrison J.A. 2002. Survival of terrestrial 

soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. 

Functional Ecology 16: 363-356. 

Coyne J.A., Orr H.A. 2004. Speciation. Sinaur Associates, MA. 

Davis M.P., Midford P.E., Maddison W. 2013. Exploring power and parameter 

estimation of the BiSSE method for analyzing species diversification. BMC 

Evolutionary Biology, 13: 38. 

Darriba D., Taboada G.L., Doallo R., Posada D. 2012. jModelTest 2: more models, new 

heuristics and parallel computing. Nature Methods, 9: 772. 

Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean 

Society, 85: 407-415. 

Drummond A.J., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with 

BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29: 1969-1973. 

Dutrillaux B., Dutrillaux A.M. 2013. A South American origin of the genus Dynastes 

(Coleoptera: Scarabaeidae: Dynastinae) demonstrated by chromosomal analyses. 

Cytogenetic and Genome Research, 141:37-42. 

Dynesius M., Jansson R. 2014. Persistence of within-species lineages: a neglected control 

of speciation rates. Evolution, 68: 923-934. 

Edgar R.C. 2004. MUSCLE: a multiple sequence alignment method with reduced time 

and space complexity. BMC Bioinformatics, 5: 113. 

Edwards D.L., Knowles L.L. 2014. Species detection and individual assignment in 

species delimitation: can integrative data increase efficacy? Proceedings of the 

Royal Society B: Biological Sciences, 281: 20132765. 

Elith J., Kearney M., Philips S. 2010. The art of modeling range-shifting species. 

Methods in Ecology and Evolution, 1: 330-342. 



	
   117	
  

Emlen D.J., Marangelo J., Bell B., Cunningham C.W. 2005. Diversity in the weapons of 

sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: 

Scarabaeidae). Evolution, 59: 1060-1084. 

Esselstyn J.A., Evans B.J., Sedlock J.L., Khan F.A.A., Heaney L.R. 2012. Single-locus 

species delimitation: a test of the mixed Yule-coalescent model, with an empirical 

application to Philippines round-leaf bats. Proceedings of the Royal Society, B, 279: 

3678-3686. 

Etienne R.S., Rosindell J. 2012. Prolonging the past counteracts the pull of the present: 

Protracted speciation can explain observed slowdowns in diversification. Systematic 

Biology, 61: 204-213. 

Etienne R.S., Morlon H., Lambert A. 2014. Estimating the duration of speciation from 

phylogenies. Evolution, 68: 2430-2440. 

Firake D.M., Deshmukh N.A., Behere G.T., Azad Thakur N.S., Ngachan S.V., Rowland 

J.M. 2013. First report of elephant beetles in the genus Xylotrupes Hope (Coleoptera: 

Scarabaeidae) attacking guava. The Coleopterists Bulletin, 67: 608-610. 

FitzJohn R.G. 2012. Diversitree: comparative phylogenetic analyses of diversification in 

R. Methods in Ecology and Evolution, 3: 1084-1092. 

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. DNA primers for 

amplication of mitochondrial cytochrome c oxidase subunit I from diverse metazoan 

invertebrates. Molecular Marine Biology and Biotechnology, 3: 294-299. 

Frankham R., Ballou J.D., Dudash M.R., Eldridge M.D.B., Fenster C.B., Lacy R.C., 

Mendelson III J.R., Porton I.J., Ralls K., Ryder O.A. 2012. Implications of different 

species concepts for conserving biodiversity. Biological Conservation, 153: 25-31. 

Fujita M.K., Leaché A.D., Burbrink F.T., McGuire J.A., Moritz C. 2012. 

Coalescent-based species delimitation in an integrative taxonomy. Trends in 

Ecology and Evolution, 27: 480-488. 

Garzón-Orduña I.J., Benetti-Longhini J.E., Brower A.V.Z. 2014. Timing the 

diversification of the Amazonian biota: butterfly divergences are consistent with 

Pleistocene refugia. Journal of Biogeography 41: 1631-1638. 

Gillespie R.G., Baldwin B.G., Waters J.M., Fraser C.I., Nikula R., Roderick G.K. 2012. 

Long-distance dispersal: a framework for hypothesis testing. Trends in Ecology and 

Evolution 27: 47-56. 



	
   118	
  

Glor R.E., Warren D. 2010. Testing ecological explanations for biogeographic 

boundaries. Evolution, 65: 673-683. 

Goldberg E.E., Lancaster L.T., Ree R.H. 2011. Phylogenetic inference of reciprocal 

effects between geographic range evolution and diversification. Systematic Biology, 

60: 451-465. 

Gouy M., Guindon S., Gascuel O. 2010. SeaView version 4: a multiplatform graphical 

user interface for sequence alignment and phylogenetic tree building. Molecular 

Biology and Evolution, 27: 221-224. 

Grossi E., Arnaud P. 1993. Description d’une nouvelle sous-espece de Dynastes hercules. 

Bulletin de la Société Sciences Nat, 78: 13-14. 

Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW 

Pacific: computer-based reconstructions, models and animations. Journal of Asian 

Earth Sciences, 20: 353-431. 

Hall R. 2012. Sundaland and Wallacea: geology, plate tectonics and palaeogeography. 

Biotic Evolution and Environmental Change in Southeast Asia (ed. by D.J. Gower, 

J.E. Richard, B.R. Rosen, L. Rüber & S.T. Williams), pp. 32-78. Cambridge 

University Press, UK. 

Harmon L., Weir J.T., Brock C.D., Glor R.E., Challenger W. 2008. GEIGER: 

investigating evolutionary radiations. Bioinformatics, 24: 129-131. 

Hebert P.D.N., Stoeckle M.Y., Zemlak T.S., Francis C.M. 2004a. Identification of birds 

through DNA barcodes. PLoS Biology, 2: e312. 

Hebert P.D.N., Penton E.H., Burns J.M., Janzen D.H., Hallwachs W. 2004b. Ten species 

in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly 

Astraptes fulgerator. Proceedings of the National Academy of Sciences, USA, 101: 

14812-14817. 

Heled J., Drummond A.J. 2010. Bayesian inference of species trees from multilocus data. 

Molecular Biology and Evolution, 27: 570-580. 

Hoorn C., Wesselingh F.P., ter Steege H., Bermudez M.A., Mora A., Sevink J., 

Sanmartín I., Sanchez-Meseguer A., Anderson C.L., Figueiredo J.P., Jaramillo C., 

Riff D., Negri F.R., Hooghiemstra H., Lundberg J., Stadler T., Särkinen T., 

Antonelli A.. 2010. Amazonia through time: Andean uplift, climate change, 

landscape evolution, and biodiversity. Science 330: 927-931. 



	
   119	
  

Howard D.J., Berlocher S.H. 1998. Endless Forms: Species and Speciation. Oxford 

University Press, Oxford. 

Huang H., He Q., Kubatko L.S., Knowles L.L. 2010. Sources of error for species-tree 

estimation: Impact of mutational and coalescent effects on accuracy and 

implications for choosing among different methods. Systematic Biology, 59: 

573-583. 

Huang J.-P. 2014. Évaluation génétique du statut taxonomique des populations de 

dynaste hercule des Petites Antilles (Coleoptera, Dynastinae). Coléoptères des 

Petites Antilles Tome 2: 30-36. 

Huang J-P. 2015. Hercules Beetles (Genus Dynastes, Dynastidae): a revisionary study 

based on molecular, morphological, ecological differences, and geographic 

distribution. University of Michigan Museum of Zoology Miscellaneous 

Publications, in review. 

Huang J.-P., Knowles L.L. 2015. The species versus subspecies conundrum: quantitative 

delimitation from integrating multiple data types within a single Bayesian approach 

in Hercules beetles. Systematic Biology in press. 

Hudson, R. R., Coyne J. A. 2002. Mathematical consequences of the genealogical species 

concept. Evolution, 56:1557-1565. 

Hwang, S-M-R. 2011. The Dynastini of the World. Nature & Ecology, Seoul, Korea. 

Isaac N.J.B., Mallet J., Mace G.M. 2004. Taxonomic inflation: its influence on 

macroecology and conservation. Trends in Ecology and Evolution, 19: 464-469. 

Jarman G.M., Hinton H.E. 1974. Some defence mechanisms of the Hercules beetle, 

Dynastes hercules. Journal of Entomology Series A, General Entomology, 49: 

71-80. 

Jenkins T.M., Jones S.C., Lee C-Y., Forshler B.T., Chen Z., Lopez-Martinez G., 

Gallagher N.T., Green G., Neal M., Thistleton B., Kleinschmidt S., Harvey C. 2007. 

Phylogeography used to illuminate maternal origins of exotic invasions of 

Coptotermes gestori (Isoptera: Rhinotermitidae). Molecular Phylogenetics and 

Evolution, 42: 612-621. 

Knowles L.L. 2010. Sampling strategies for species-tree estimation. In: Estimating 

Species Trees: Practical and Theoretical Aspects (L. L. Knowles and L. S. Kubatko, 

eds.), pp. 163-172. Wiley-Blackwell. 



	
   120	
  

Knowles L.L., Carstens B.C. 2007. Delimiting species without monophyletic gene trees. 

Systematic Biology, 56:887-895. 

Knowles, L.L., Massatti R., He Q., Olson L.E., Lanier H.C. 2015. Quantifying the 

similarity between genes and geography across Alaska’s alpine small mammals. 

Journal of Biogeography, in revision. 

Lai J., Ko H-P. 2008. For the Love of Rhinoceros and Stag Beetles. 2nd Ed., Morning Star 

Publisher, Taipei, TW. 

Lanier H.C., Huang H., Knowles L.L. 2014. How low can you go? The effects of 

mutation rate on the accuracy of species-tree estimation. Molecular Phylogenetics 

and Evolution, 70: 112-119. 

Leigh E.G., O’Dea A., Vermeij G.J. 2014. Historical biogeography of the Isthmus of 

Panama. Biological Reviews 89: 148-172. 

Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA 

polymorphism data. Bioinformatics, 25: 1451-1452. 

Lohman D.J., de Bruyn M., Page T., von Rintelen K., Hall R., Ng P.K.L., Shih H-T., 

Carvalho G.R., von Rintelen T. 2011. Biogeography of the Indo-Australian 

Archipelago. Annual Review of Ecology, Evolution, and Systematics, 42: 205-226. 

Maddison W.P., Maddison D.R. 2011. Mesquite: a modular system for evolutionary 

analysis. Version 2.75 http://mesquiteproject.org 

Malaney J.L., Cook J.A. 2013. Using biogeographical history to inform conservation: the 

case of Preble’s meadow jumping mouse. Molecular Ecology, 22: 6000-6017. 

Mallet J. 2008. Mayr’s view of Darwin: was Darwin wrong about speciation? Biological 

Journal of the Linnean Society, 95: 3-16. 

Marshall L.G. 1988. Land mammals and the Great American Interchange. American 

Scientist 76: 380-388. 

Mayr E. 1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist. 

Columbia University Press, NY. 

Mayr E. 1963. Animal Species and Evolution. Harvard University Press, MA. 

Mayr E., Ashlock P. D. 1991. Principles of Systematic Zoology. 2nd Ed., McGraw-Hill, 

inc., NY. 



	
   121	
  

McCormack J.E., Huang H., Knowles L.L. 2009. Maximum-likelihood estimates of 

species trees: how accuracy of phylogenetic inference depends upon the divergence 

history and sampling design. Systematic Biology, 58: 501-508. 

McCormack J.E., Zellmer A.J., Knowles L.L. 2010. Does niche divergence accompany 

allopatric divergence in Aphelocoma jays as predicted under ecological speciation? 

Insights from tests with niche models. Evolution, 64: 1231-1244. 

McKay B.D., Mays Jr. H.L., Wu Y., Li H., Yao C-T., Nishiumi I., Zou F. 2013. An 

empirical comparison of character-based and coalescent-based approaches to species 

delimitation in a young avian complex. Molecular Ecology, 22: 4943-4957. 

Morley R.J. 2012. A review of the Cenozoic palaeoclimate history of Southeast Asia. 

Biotic Evolution and Environmental Change in Southeast Asia (ed. by D.J. Gower, 

J.E. Richard, B.R. Rosen, L. Rüber & S.T. Williams), pp. 79-114. Cambridge 

University Press, UK. 

Morón M.Á. 2009. El género Dynastes MacLeay, 1819 en la zona de transición 

Mexicana (Coleoptera: Melolonthidae: Dynastinae). Boletín Sociedad Entomológica 

Aragonesa, 45: 23-38. 

Morrone J.J. 2006. Biogeographic areas and transition zones of Latin America and the 

Caribbean islands based on panbiogeographic and cladistics analyses of the 

entomofauna. Annual Review of Entomology 51: 467-494. 

Nosil P. 2008. Speciation with gene flow could be common. Molecular Ecology, 17: 

2103-2106. 

Nosil P., Harmon L.J., Seehausen O. 2009. Ecological explanations for (incomplete) 

speciation. Trends in Ecology and Evolution, 24: 145-156. 

Olave M., Solà E., Knowles L.L. 2014. Upstream analyses create problems with 

DNA-based species delimitation. Systematic Biology, 63: 263-271. 

Papadopoulou A., Bergsten J., Fujisawa T., Monaghan M.T., Barraclough T.G., Vogler 

A.P. 2008. Speciation and DNA barcodes: testing the effects of dispersal on the 

formation of discrete sequence clusters. Philosophical Transactions of the Royal 

Society, B: Biological Sciences, 363: 2987-2996. 

Papadopoulou A., Knowles L.L. 2015. Genomic tests of the species-pump hypothesis: 

recent island connectivity cycles drive population divergence but not speciation in 

Caribbean crickets across the Virgin Islands. Evolution, 69: 1501-1517. 



	
   122	
  

Papadopoulou A., Knowles L.L. 2016. Refined hypotheses based on taxon-specific traits 

in comparative phylogeography. Proceedings of the National Academy Sciences, 

USA, in review. 

Papadopoulou A., Anastasiou I., Vogler A.P. 2010. Revisiting the insect mitochondrial 

molecular clock: the mid-Aegean Trench calibration. Molecular Biology and 

Evolution, 27: 1659-1672. 

Pons J., Barraclough T.G., Gomez-Zurita J., Cardoso A., Duran D.P., Hazell S., Kamoun 

S., Sumlin W.D., Vogler A.P. 2006. Sequence-based species delimitation for the 

DNA taxonomy of undescribed insects. Systematic Biology, 55: 595-609. 

Pontarp M., Ripa J., Lundberg P. 2015. The biogeography of adaptive radiations and the 

geographic overlap of sister species. The American Naturalist, 186: 565-581. 

Pyron R.A., Hsieh F.W., Lemmon A.R., Lemmon E.M., Hendry C.R. 2016. Integrating 

phylogenomic and morphological data to assess candidate species-delimitation 

models in brown and red-bellied snakes (Storeria). Zoological Journal of the 

Linnean Society, advance access: doi: 10.1111/zoj.12392. 

de Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology, 56: 

879-886. 

Rabosky D.L. 2006. LASER: a maximum likelihood toolkit for detecting temporal shifts 

in diversification rates from molecular phylogenies. Evolutionary Bioinformatics 

Online, 2: 247-250. 

Rabosky D.L. 2010. Extinction rates should not be estimated from molecular phylogenies. 

Evolution 64: 1816-1824. 

Rabosky D.L. 2013. Diversity-dependence, ecological speciation, and the role of 

competition in macroevolution. Annual Review of Ecology, Evolution, and 

Systematics, 44: 481-502. 

Rabosky D.L. 2014. Automatic detection of key innovations, rate shifts, and diversity 

dependence on phylogenetic trees. PLoS One 9: e89543. 

Rabosky D.L., Donnellan S.C., Grundler M., Lovette I.J. 2014. Analysis and 

visualization of complex macroevolutionary dynamics: an example from Australian 

Scincid Lizards. Systematic Biology 63: 610-627. 

Rabosky D.L., Goldberg E.E. 2015. Model inadequacy and mistaken inferences of 

trait-dependent speciation. Systematic Biology 64: 340-355. 



	
   123	
  

Rabosky D.L., Huang H. 2015. A robust semi-parametric test for detecting 

trait-dependent diversification. Systematic Biology in press. 

Ratcliffe B.C. 2003. The Dynastine Scarab Beetles of Costa Rica and Panama. Bulletin 

UNSM, Vol. 16, Lincoln, NE. 

Ratcliffe B.C., Cave R.D. 2006. The Dynastine Scarab Beetles of Honduras, Nicaragua 

and El Salvador. Bulletin UNSM, Vol. 21, Lincoln, NE. 

Ratcliffe B.C., Cave R.D., Cano E.B. 2013. The Dynastine Scarab Beetles of Mexico, 

Guatemala, and Belize. Bulletin UNSM, Vol. 27, Lincoln, NE. 

Ree R.H., Smith S.A. 2008. Maximum likelihood inference of geographic range 

evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57: 

4-14. 

Replumaz A., Tapponnier P. 2003. Reconstruction of the deformed collision between 

India and Asia by backward motion of lithospheric blocks. Journal of Geophysical 

Research, 108: 2285. 

Ribeiro M.C., Metzger J.P., Martensen A.C., Ponzoni F.J., Hirota M.M. 2009. The 

Brazilian Atlantic Forest: how much is left, and how is the remaining forest 

distributed? Implications for conservation. Biological Conservation, 142: 

1141-1153. 

Richards N.K., Glare T.R., Hall D.C.A. 1997. Genetic variation in grass grub, Costelytra 

zealandica, from several regions. Proceedings of the 50th New Zealand Plant 

Protection Conference: 338-343. 

Rohlf F.J., Slice D. 1990. Extensions of the Procrustes method for the optimal 

superimposition of landmarks. Systematic Zoology, 39: 40-59. 

Rowland J.M. 2003. Male horn dimorphism, phylogeny and systematics of rhinoceros 

beetles of the genus Xylotrupes (Scarabaeidae, Coleoptera). Australian Journal of 

Zoology, 51: 213-258. 

Rowland J.M. 2011. Notes on nomenclature in Xylotrupes Hope (Scarabaeidae: 

Dynastinae: Dynastini). Insecta Mundi, 0176: 1-10. 

Rowland J.M., Miller K.B. 2012. Phylogeny and systematics of the giant rhinoceros 

beetles (Scarabaeidae: Dynastini). Insecta Mundi, 0236: 1-15. 

Simon C., Frati F., Beckenback A., Crespi B., Liu H., Flook P. 1994. Evolution, 

weighting and phylogenetic utility of mitochondrial gene sequences and compilation 



	
   124	
  

of conserved polymerase chain reaction primers. Entomological Society of America, 

87: 651-701. 

Simpson G.G. 1950. History of the fauna of Latin America. American Scientist 38: 

361-389. 

Smith R.T., Ribas C.C., Whitney B.M., Hernández-Baños B.E., Klicka J. 2013. 

Identifying biases at different spatial and temporal scales of diversification: a case 

study in the Neotropical parrotlet genus Forpus. Molecular Ecology, 22: 483-494. 

Solis-Lemus C., Knowles L.L., Ané C. 2015. Bayesian species delimitation combining 

multiple genes and traits in a unified framework. Evolution, 69: 492-507. 

Spinks P.Q., Thomson R.C., Shaffer B. 2014. The advantages of going large: 

genome-wide SNPs clarify the complex population history and systematics of the 

threatened western pond turtle. Molecular Ecology, 23: 2228-2241. 

Sukumaran J., Holder M.K. 2010. DendroPy: a Python library for phylogenetic 

computing. Bioinformatics, 26: 1569-1571. 

Sukumaran J., Knowles L.L. 2016. Species vs. structure delimitation under the 

multispecies coalescent. Proceedings of the National Academy of Sciences, USA, in 

review. 

Swofford D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony. (*and Other 

Methods). Version 4. Sinaur Associates, Sunderland, MA. 

Wallace A.R. 1876. The Geographical Distribution of Animals. Harper & Brothers, NY, 

USA. 

Warren D.L., Glor R.E., Turelli M. 2008. Environmental niche equivalency versus 

conservatism: quantitative approaches to niche evolution. Evolution, 62: 2868-2883. 

Warren D.L., Glor R.E., Turelli M. 2010. ENMTools: a toolbox for comparative studies 

of environmental niche models. Ecography, 33: 607-611. 

Webb S.D. 1991. Ecogeography and the Great American Interchange. Paleobiology 17: 

266-280. 

Wetherbee D.K. 1985. The former occurrence of the endangered giant beetle, Dynastes 

hercules in Hispaniola. Caribbean Journal of Science 211: 83-84. 

Wiens J.J., Graham C.H. 2005. Niche conservatism: integrating evolution, ecology, and 

conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36: 

519-539. 



	
   125	
  

Wiens J.J. 2007. Species delimitation: new approaches for discovering diversity. 

Systematic Biology, 56: 875-878.  

Wiens J.J. 2012. Why biogeography matters: historical biogeography vs. phylogeography 

and community phylogenetics for inferring ecological and evolutionary processes. 

Frontiers of Biogeography, 4.3: 128-135. 

Wilson E.O., Brown W.L. 1953. The subspecies concept and its taxonomic application. 

Systematic Zoology, 2: 97-111. 

Yang Z., Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. 

Proceedings of the National Academy of Sciences, 107: 9264-9269. 

Yang Z., Rannala B. 2014. Unguided species delimitation using DNA sequence data from 

multiple loci. Molecular Biology and Evolution, 31: 3125-3135. 

Yeates D.K., Seago A., Nelson L., Cameron S.L., Joseph L., Trueman J.W.H. 2010. 

Integrative taxonomy, or iterative taxonomy? Systematic Entomology, 36: 209-217. 

Zachos F.E. 2013. Taxonomy: species splitting puts conservation at risk. Nature, 494: 35. 

Zhang C., Rannala B., Yang Z. 2014. Bayesian species delimitation can be robust to 

guide-tree inference errors. Systematic Biology, 63: 993-1004. 

Zhang C., Zhang D-X., Zhu T., Yang Z. 2011. Evaluation of a Bayesian coalescent 

method of species delimitation. Systematic Biology, 60: 747-761. 


