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ABSTRACT

Substantial progress has been made in identifying single genetic variants predispos-

ing to common complex diseases. Nonetheless, the genetic etiology of human diseases

remains largely unknown. Since these traits are likely influenced by the joint effect of

multiple variants in a gene/region, a joint analysis of these variants considering linkage dis-

equilibrium (LD) may help to explain additional phenotypic variation. In this dissertation,

we present several set-based tests for genetic association/gene-environment interaction in

both cross-sectional and longitudinal studies.

In the first project, we propose a new statistical model based on the random field theory,

referred to as a genetic random field model (GenRF), for gene/region based association

analysis in a cross-sectional study. Using a pseudo-likelihood approach, a GenRF test for

the joint association of multiple genetic variants is developed, which has the following

advantages: 1. accommodating complex interactions for improved performance; 2. nat-

ural dimension reduction; 3. boosting power in the presence of LD; 4. computationally

efficient. Simulation studies are conducted under various scenarios. Compared with the

sequence kernel association test (SKAT), as well as other more standard methods, GenRF

shows overall comparable performance and better performance in the presence of complex

interactions. The method is further illustrated by an application to the Dallas Heart Study.

In the second project, we propose a longitudinal genetic random field model (LGRF), to

test the association between a phenotype measured repeatedly during the course of an ob-

servational study and a set of genetic variants. Generalized score type tests are developed,

which we show are robust to misspecification of within-subject correlation. In addition,
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a joint test incorporating gene-time interaction is further proposed. Computational ad-

vancement is made for scalable implementation of the proposed methods in large-scale

genome-wide association studies (GWAS). The proposed methods are evaluated through

extensive simulation studies and illustrated using data from the Multi-Ethnic Study of

Atherosclerosis (MESA).

In the third project, we propose a generalized score type test for set-based inference

for gene-environment interaction with longitudinally measured quantitative traits. The

test is robust to misspecification of within subject correlation structure and has enhanced

power compared to existing alternatives. Unlike tests for marginal genetic association,

set-based tests for gene-environment interaction face the challenges of a potentially mis-

specified and high-dimensional main effect model under the null hypothesis. We show that

our proposed test is robust to main effect misspecification of environmental exposure and

genetic factors under the gene-environment independence condition. When genetic and

environmental factors are dependent, the method of sieves is further proposed to eliminate

potential bias due to a misspecified main effect of a continuous environmental exposure.

A weighted principal component analysis approach is developed to perform dimension re-

duction when the number of genetic variants in the set is large relative to the sample size.

The methods are motivated by an example from the Multi-Ethnic Study of Atherosclerosis

(MESA), investigating interaction between measures of neighborhood environment and

genetic regions on longitudinal measures of blood pressure over a study period of about

seven years with 4 exams.
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CHAPTER I

Introduction

With the advance of high-throughput technologies, high-dimensional genetic data have

been widely used in association studies for the identification of genetic variants contribut-

ing to common complex diseases. While a large number of genetic variants have been

revealed today to be individually associated with complex diseases, they only explain a

small proportion of heritability (Manolio, et al., 2009).

Complex diseases are likely influenced by the joint effect of genetic variants through

complex biology pathways, given the fact that genes are the functional sets. To improve

power and to reduce the burden of multiple comparisons, many genetic association stud-

ies have now considered an alternate or supplementary analytic approach towards jointly

testing the effect of all SNPs in a biologically defined set, such as a gene, pathway or spe-

cific genomic region as opposed to a one-at-a-time single SNP analysis. Aggregation of

SNPs is particularly critical for studies of rare variants. A number of methods have gained

popularity including kernel machine regression methods (Wu et al. (2011)), similarity re-

gression (Tzeng et al. (2011)) and sum of squared score test (Pan (2009)). Recent studies

showed the advantages of these multi-marker tests over individual SNP analyses. First,

the genetic markers in LD with the causal SNP(s) carry additional information and may

enhance the power of identifying the true effect. Second, gene-based tests considerably
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reduce the burden of multiple comparisons. Third, Region-based methods are appealing

for multi-ethnic cohorts due to differences in LD structure across ethnic groups and thus

meta-analysis of a region-based statistic is likely to be more consistent than meta-analysis

of single marker tests across ethnicities. Last, gene-based tests enhance the power of iden-

tifying rare-variant association in next generation sequencing studies (Morris and Zeggini,

2010).

For genetic studies of cardiovascular disease risk factors, such as the Mulit-Ethnic

Study of Atherosclerosis (MESA), observations at multiple time points are available for

each individual (Bild, et al., 2002). The longitudinal nature of these studies results in more

precise phenotypic characterization, enhancing the ability to associate genes or chromoso-

mal regions with the phenotypes and assess gene-time interaction. However, current sta-

tistical methods for testing genetic association in longitudinal studies, in the presence of

effect heterogeneity across time are limited, even for one single-nucleotide polymorphism

(SNP) at a time analysis (Fan, et al., 2012; Furlotte, Eskin and Eyheramendy, 2012). In-

vestigators often take a simple approach of collapsing the repeated measurements into a

single value and hence the method is not able to harness the power of the complete in-

formation that is contained in the longitudinal trajectory. One can also apply the standard

methods available for correlated outcome models to better utilize the longitudinal data,

namely, random effects models (Fitzmaurice, Laird and Ware, 2011) and generalized esti-

mating equations (GEE) (Zeger and Liang, 1986). These methods are primarily proposed

for modeling and testing a limited number of SNPs, and cannot be directly applied to

assess the joint association of a longitudinally varying outcome with an entire gene or a

region with hundreds of SNPs without further modifications.

In addition to genetic association, most complex traits have a multifactorial etiology in-

volving the dynamic interplay of genes and environmental exposures over the life course.
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Studies of gene-environment interaction (GEI) often suffer from single one time measure-

ment of exposure or a crude proxy thereof, without proper characterization of lifetime his-

tory of cumulative exposure. Longitudinal studies with time varying measures of outcome

and exposure data help with characterizing the temporal features of exposure and out-

comes, handling exposure measurement error and often enhance power when compared to

a cross-sectional analysis. In the context of testing gene-gene/gene-environment interac-

tion for cross-sectional studies, Tzeng et al. (2011), Li et al. (2012), Lin et al. (2013), Chen

et al. (2014), Marceau et al. (2015) and Lin et al. (2016) extended the set-based tests for

marginal associations to testing interactions. These papers demonstrated superior power

of set-based tests for gene-environment interaction by aggregating signals across multiple

SNPs. However, no set-based test for gene-environment interaction has been proposed

for longitudinal studies where improved power regarding gene-environment interaction is

possible by using longitudinally varying outcome and exposure trajectories.

In Chapter II, we propose a random field framework for modeling and testing for the

joint association of multiple genetic variants. We view outcomes as stochastic realizations

of a random field on a genetic space and propose to use a random field model, referred to

as a genetic random field model (GenRF), to model the joint association. This approach

is motivated by development in spatial statistics where outcomes are viewed as stochastic

realizations of a random field on a Euclidean space (Cressie, 1993). This perspective

leads to a very distinctive model from the aforementioned methods; specifically, GenRF

regresses the response of one subject on responses of all other subjects. GenRF can be

understood from the intuition that genetic similarity leads to trait similarity if variants

are associated with the trait. Under the GenRF model, testing for the joint association

reduces to a test involving a scalar parameter. Using the pseudo-likelihood method, a test

for the joint association is developed, which enjoys many appealing features as SKAT
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and can achieve comparable or better performance than existing methods. Much of the

development is focused on quantitative traits and robustness of the test to other traits, e.g.,

binary traits, is also discussed.

In Chapter III, we propose a longitudinal genetic random field model (LGRF) and de-

velop generalized score type tests to study the association between repeatedly measured

phenotypes and a set of genetic variants in a gene or region. The methods are evaluated

through extensive simulation studies and illustrated by analyzing the association between

blood pressure and 29 candidate genomic regions across four ethnic groups in MESA.

In Chapter IV, we propose a new statistical approach to test for gene-environment inter-

actions with a set of genetic variants and longitudinally measured outcome and exposure

data. The test is robust to misspecification of within subject correlation and is substantially

more powerful than an analysis that uses subject-specific averages/summaries of outcome

and exposure data. We show that the proposed test is robust to the misspecification of E

and G main effects under the gene-environment independence condition. We further pro-

pose using the method of sieves to flexibly model the main effect of E for improved type I

error control when the gene-environment independence condition does not hold, and bet-

ter power. We also proposed a weighted principal component analysis (PCA) to remedy

the curse of dimensionality when the number of SNPs in the tested set is close or larger

than the sample size. We illustrate the proposed methods by both an analysis of targeted

GEI (restricted to genetic regions defined around previous GWAS hits) and an agnostic

genome-wide gene-based GEI search, with novel time-varying neighborhood features of

the environment as exposure, with blood pressure as the longitudinally measured outcome

in MESA. Extensive simulation studies, designed to mimic the data structure of MESA

are conducted to assess the operating characteristics of the different methods.
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CHAPTER II

Set-based Tests for Genetic Association in Cross-sectional Studies

2.1 Introduction

With the advance of high-throughput technologies, high-dimensional genetic data have

been widely used in association studies for the identification of genetic variants contribut-

ing to common complex diseases. While a large number of genetic variants have been

revealed today to be individually associated with complex diseases, they only explain a

small proportion of heritability (Manolio et al. (2009)). Complex diseases are likely in-

fluenced by the joint effect of genetic variants through complex biology pathways, given

the fact that genes are the functional sets. However, the multiple testing problem occurs

when one considers a set of single locus analyses, which dramatically diminishes power.

Therefore, the joint analysis of a functional set of genetic variants simultaneously can fur-

ther enhance the discovery process, leading to the identification of new genetic variants

associated with complex diseases (Chatterjee et al. (2006)).

Several new statistical methods have been recently developed for joint association anal-

ysis, including the kernel machine based method (well known as SKAT)(Wu et al. (2010);

Wu et al. (2011)) and the similarity regression (SIMreg) (Tzeng et al. (2009)). Both

methods significantly reduce the number of regression parameters, making it feasible and

computationally efficient to handle high-dimensional variants. In addition, they account
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for linkage disequilibrium (LD) and potential interactions, which further improve perfor-

mance. Both SKAT and SIMreg can be thought of as being developed from the general

idea that, if genetic association exists, then genetic similarity leads to trait similarity, which

is also the intuition behind our method.

In this project, we propose a random field framework for modeling and testing for the

joint association of multiple genetic variants. We view outcomes as stochastic realizations

of a random field on a genetic space and propose to use a random field model, referred to

as a genetic random field model (GenRF), to model the joint association. This approach

is motivated by development in spatial statistics where outcomes are viewed as stochastic

realizations of a random field on a Euclidean space (Cressie (2015)). This perspective

leads to a very distinctive model from the aforementioned methods; specifically, GenRF

regresses the response of one subject on responses of all other subjects. GenRF can be

understood from the intuition that genetic similarity leads to trait similarity if variants

are associated with the trait. Under the GenRF model, testing for the joint association

reduces to a test involving a scalar parameter. Using the pseudo-likelihood method, a test

for the joint association is developed, which enjoys many appealing features as SKAT

and can achieve comparable or better performance than existing methods, as demonstrated

by simulation studies in Section 3 and a real data application in Section 4. Much of the

development is focused on quantitative traits and robustness of the test to other traits, e.g.,

binary traits, is also discussed.

2.2 Method

2.2.1 Genetic Random Field Model

Consider a study where n subjects are sequenced in a region of interest. For subject

i, i = 1, . . . , n, let Gi denote the genotype for the p variants within the region, Yi the
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trait or phenotype, and X i the other covariates including, for example, demographic and

environmental factors. We are interested in studying the joint association between variants

Gi and trait Yi, possibly adjusted for the effect ofX i.

As SKAT and SIMreg, our method is also motivated by the general idea that, if the ge-

netic variants are jointly associated with a trait, then the genetic similarity across subjects

will contribute to the trait similarity. To put it in another way, if variants are jointly asso-

ciated with the trait, then the response of a subject would be close to the response of other

subjects who share similar genetic and possibly other variables. Based on this key idea, we

propose to directly model the response of each subject as a function of all other responses

and the contribution of other responses to Yi is weighted by their genetic similarity.

For simplicity, we temporarily assume Yi’s are centered (have mean zero) and there are

no other adjustment covariates. Specifically, based on the idea discussed above, we model

the conditional distribution of Yi given all other responses as

(2.1) Yi|Y −i ∼ γ
∑
j 6=i

s(Gi,Gj)Yj + εi,

whereY −i denotes responses for all other subjects except Yi ; s(Gi,Gj) is known weights,

weighting the contribution of Yj on approximating (or predicting) Yi via their genetic sim-

ilarity; γ is a non-negative coefficient measuring the magnitude of the overall contribution,

further discussed below; and εi’s are random errors. A proper weight function s(Gi,Gj)

gives higher value when the two subjects are more similar in terms of genetic variants

and, as discussed below, can be viewed as a measure for proximity of two subjects in a

genetic space. The random errors εi’s are assumed to be independent and identically dis-

tributed with Normal(0, ζ2); extension to distributions other than normal is discussed in

Section 2.2.2.

A main distinction between model (2.1) and the usual regression is that (2.1) models the

conditional distribution of Yi given traits of other subjects, whereas in the usual regression

7



one models the conditional distribution of a subject’s traits given his/her genetic variants.

Intuitively, model (2.1) states that the trait of a subject can be approximated by traits

of other subjects who are similar in genetic variants, if variants are associated with the

trait. The coefficient γ indicates the magnitude of the trait similarity as a result of genetic

similarity. Thus, γ can also be interpreted as a measure for the magnitude of the joint

association of Gi with Yi. Specifically, if Gi is not associated with Yi, then regardless

of how similar subject i is to other subjects in terms of their genetic variants, the trait

Yi is independent of all other Yj’s for j 6= i; that is, γ = 0. On the contrary, if Gi is

strongly associated with Yi, then one may expect Yi can largely be predicted by traits of

subjects having the same or similar genetic variants and a large γ indicates a strong joint

association. Therefore, we can test the joint association of genetic variants with the trait

by testing a null hypothesis involving a single parameter, i.e., H0 : γ = 0.

We have yet to define a measure for “closeness” in the genetic space. Suppose each

component of Gi records the number of minor alleles in a single locus and takes on val-

ues {0, 1, 2}, respectively, corresponding to {AA,Aa, aa}. Then a sensible measure for

closeness or similarity is the so called identity-by-state (IBS) (Wu et al. (2010)), defined

as

s(Gi,Gj) =

p∑
k=1

{2− |Gik −Gjk|}.

That is, the IBS measures the number of alleles in the region of interest shared by two

individuals; for example, for p = 1, s(AA,AA) = 2, s(Aa, aa) = 1, s(AA, aa) = 0.

Other measures for closeness in the genetic space rather than IBS are also possible, e.g.,

the other kernel functions discussed in Wu et al. (2010), providing flexibility in our GenRF

model. Similar to SKAT, our GenRF model can also incorporate weights to increase the

importance of rare variants. Specifically, one can define s(Gi,Gj) =
∑p

k=1wk{2−|Gik−

Gjk|}, where wk is a prespecified weight for variant k; see Wu et al. (2010) for more
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discussions on wk.

So far we have focused on the situation where no covariate adjustment is required. If

adjustment for other factors is needed a natural extension of model (2.1) is given by

(2.2) Yi|Y −i,X i ∼ βTX i + γ
∑
j 6=i

s(Gi,Gj)(Yj − βTXj) + εi.

An intercept term is included in X i and, as a result, in (2.2) Yi’s are not required to be

centered. Under this model, testing for the joint association of Gi with Yi after adjusting

for other factors is also equivalent to testing H0 : γ = 0. We will mainly focus on this

more general form of the GenRF model in the development of a testing procedure. For

simplicity, the matrix form of the GenRF model is given by

(2.3) Y |Y −,X = Xβ + γS(Y −Xβ) + ε,

where Y is (Y1, . . . , Yn)T ; Y − is (Y −1, . . . ,Y −n)T ; X is an n × q matrix defined as

(XT
1 , . . . ,X

T
n )T ; ε ∼ Normal (0, ζ2In×n); and S is an n×n symmetric matrix with zeros

on the diagonal and the (i, j)-th element s(Gi,Gj) for i 6= j.

According to the factorization theorem of Besag (1974), our GenRF model in (2.2)

uniquely determines the following joint distribution of Y , i.e.,

Y |X ∼Xβ + v, v ∼ N(0, ζ2(I − γS)−1),(2.4)

where v is an n-dimensional random column vector. Note, the coefficient γ used for de-

scribing the conditional expectation of Yi given others in model (2.1) actually describes

the correlations among Yi’s. It is clear that, under the null hypothesis that there is no as-

sociation betweenGi and Yi, i.e., γ = 0, Yi’s are uncorrelated, but if γ > 0, GenRF states

that Yi’s are positively correlated as a result of having similar genetic variants associated

with the trait.
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2.2.2 Genetic Random Field Test

In this subsection, we focus on developing a test for the null hypothesis H0 : γ =

0 based on model (2.2). Model (2.2) states that, given responses from all other sub-

jects and covariates X i, the conditional distribution of Yi is normal with mean βTX i +

γ
∑

j 6=i s(Gi,Gj)(Yj − βTXT
j ) and variance ζ2. We construct the pseudo-likelihood ac-

cording to Besag (1975) as

Lpd =
n∏
i=1

{
1√
2πζ2

exp
[
− 1

2ζ2
{
Yi − βTX i − γ

∑
j 6=i

s(Gi,Gj)(Yj − βTXj)
}2]}

,

which is a product of the conditional densities of Yi across i. Also according to Besag

(1975), assuming β is known, one may estimate γ by the maximum pseudo-likelihood

method. The estimator for γ can be obtained by minimizing

n∑
i=1

{
Yi − βTX i − γ

∑
j 6=i

s(Gi,Gj)(Yj − βTXj

}2
,

which in matrix notation is equal to

{(I − γS)(Y −Xβ)}T (I − γS)(Y −Xβ).

The minimization leads to an estimator for γ given by

(2.5) ⇒ γ̃ =
(Y −Xβ)TS(Y −Xβ)

(Y −Xβ)TS2(Y −Xβ)
.

Intuitively one expects that a large value of γ̃ would give us evidence to reject the null

hypothesis that γ = 0. In practice, β in unknown. We propose to replace β by its least

square estimator β̂ under the null hypothesis, i.e., β̂ = (XTX)−1XTY which is unbiased

for β. Substitute β̂ into the expression for γ̃ and straightforward algebra leads to the final

test statistic:

(2.6) γ̂ =
Y TBSBY

Y TBS2BY
,
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where B = I −X(XTX)−1XT . Again a large value of γ̂ supports the rejection of the

null hypothesis.

We next show how the p-value for testing γ = 0 can be obtained based on the test

statistic γ̂; i.e., we would like to calculate the probability of γ̂ greater than the observed

value of the statistic under the null hypothesis. Suppose η is the observed value of the test

statistic γ̂. SinceBS2B is positive-definite, we have

PH0

(
Y TBSBY

Y TBS2BY
> η

)
= PH0

(
(BY )T (S − ηS2)BY > 0

)
As it is assumed that εi ∼ N(0, ζ2), i.i.d. across i, it follows that BY ∼ N(0, ζ2B2)

under the null hypothesis. On the other hand, the statistic γ̂ in (2.6) is ancillary to ζ2

because ζ2 in the numerator and denominator cancels out. Therefore, the above equation

becomes

PH0

(
(BY )T (S − ηS2)BY > 0

)
= P

(
ZT (S − ηS2)Z > 0

)
,

where Z is an n× 1 random vector following N(0,B2). Applying standard results on the

distribution of quadratic form in normal random variables, we have

ZT (S − ηS2)Z ∼
n∑
i

λiΦi,

where Φi’s are i.i.d random variables with χ2
1 distribution, and {λi} are the eigenvalues

of B(S − ηS2)B. The final p-value can be obtained by Davies’ exact method (Davies

(1980)) for the weighted summation of independent Chi-square variables.

The proposed test has several appealing properties. First, due to the analytical form of

the test statistic, the computational burden is well controlled. Second, as γ̂ in (2.6) is an-

cillary to ζ2, unlike SKAT, there is no need to plug in a consistent estimator for ζ2. Third,

the proposed method improves power by exploiting LD and allowing for possible com-

plex interactions among variants. Linkage disequilibrium can cause correlations between
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variants, especially when we consider nearby loci. Considering similarity in variants can

naturally reduce the degree of freedom. In the extreme case where components of Gi

are “perfectly correlated”, the similarity argument will consider the whole set as a single

variable. Finally, as SKAT, the GenRF test can boost power of testing rare variants by

increasing their weights by specifying wk appropriately for variant k.

2.2.3 Robustness to Other Distributions

The derivation of the GenRF test given above is built on the normal distribution as-

sumption. Asymptotically, the proposed test is robust to distributions other than normal

with slight modification. Consider PH0

(
(BY )T (S − ηS2)BY > 0

)
, where it is now

assumed Y follows an arbitrary distribution with mean zero and possibly heteroscadas-

tic variances. The random quantity (BY )T (S − ηS2)BY is a quadratic form in BY

(with mean 0) with matrix A = S − ηS2. Rotar (1974) proved that under sufficiently

weak conditions on matrix A and for large n, PH0

(
(BY )T (S − ηS2)BY > 0

)
is

close to PH0(Z̃
T

(S − ηS2)Z̃ > 0), where Z̃ follows N(0,Σ) with Σ being the covari-

ance matrix of BY . In addition, Gotze and Tikhomirov (1999) gave an upper bound on

supx
∣∣PH0

(
(BY )TABY < x

)
−PH0(Z̃

T
AZ̃ < x)

∣∣. These properties lead to the robust-

ness of the GenRF test, with minor modification, as long as BY has expectation zero un-

der the null hypothesis, which is true since the least squares estimatorX(XTX)−1XTY

is unbiased for the mean of Y regardless of the distribution of Y . For example, for binary

traits, Σ = BWB, whereW = diag(µ1(1−µ1), . . . , µn(1−µn)) and µi = βTX i. Then

Z̃
T

(S − ηS2)Z̃ ∼
n∑
i

λ̃iΦi,

where Φi’s are i.i.d random variables with χ2
1 distribution, and {λ̃i} are the eigenvalues of

W
1
2B(S − ηS2)BW

1
2 . The final p-value can be also obtained by Davies’ exact method

(Davies (1980)). We comment that, as the score test in SKAT is of similar quadratic form,
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one would expect that SKAT may share this property as well.

Therefore, one can directly use the test statistic in (2.6) for binary traits or traits that

have distributions other than normal and the test, with a minor modification on the null dis-

tribution considering heteroscedastic variances, would be asymptotically valid. Note, this

test corresponds to a model where the trait mean is related to a linear predictor through an

identity link and may seem unnatural for binary traits. However, we argue that the model

is mostly viewed as a mean leading to a sensible test. We also note that the commonly used

trend test for testing genetic associations in an additive genetic model can be developed

from a linear model for the mean of a binary trait (Laird and Lange (2010)), and a linear

model is used for testing genetic associations for a binary trait in Ballard et al. (2010) as

well. We note that a possible practical issue for binary traits may arise in practice, i.e., the

estimated means {µ̂i} may be outside of [0,1] and consequently Ŵ
1
2 is not well defined.

In this case, a remedy is to truncate the predictions {µ̂i} at 0 or 1. The practical issue

may arise when covariates have a wide support and a very strong effect and is less of a

concern otherwise, for example, when covariates are categorical. Certainly, studying other

link functions, e.g., the logit link, to avoid this practical problem is important in the future.

The validity of the test, corresponding to an identity link, is further studied by simulations

shown in sections 1 and 2 of the Supplementary Materials (Appendix A).

2.3 Application: Dallas Heart Study

We applied our method to the Dallas Heart Study (Browning et al. (2004)), a population-

based, multi-ethnic study on 3551 subjects whose Lipids and glucose metabolism were

measured. In this study, 348 sequence variations in the coding regions of the four genes,

ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 were discovered. Most of these vari-

ants (86%) are rare with MAF less than 1%. More information regarding the number of
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rare variants is shown in the Supplementary Materials (Appendix A).

Individuals who have diabetes mellitus, alcohol dependency or have taken lipids lower-

ing drugs were excluded as these factors may confound the interpretation of associations.

Our final analysis was based on data on 2812 subjects after quality control steps.

We assessed the association between ANGPTL gene families and two traits, specifi-

cally high-density lipoprotein (HDL) and triglyceride, using the proposed GenRF test and

SKAT, both with and without weighting. As in the simulation studies, the IBS kernel and

the Beta (1, 25) weight were applied. Analyses were also carried out using the more tra-

ditional methods including PCR, MinSNP, VT and F-test. Our analysis were done for the

non-synonymous variants, adjusted for gender and ethnicity.

The association between ANGPTL4 gene and the level of HDL and triglyceride was

previously discovered by Romeo et al. (2007). In our analysis, both weighted GenRF

and SKAT gave evidence for the ANGPTL4 and triglyceride association (p-values: 0.019

and 0.006). Among all the methods considered, only weighted SKAT showed marginal

evidence for the association between ANGPTL4 and HDL (p-value: 0.040). One possible

explanation is that the causal proportion of ANGPTL4 is low and SKAT performs better

in this case as shown in simulation studies. Note that the weighted GenRF and SKAT

uncovered these associations while the unweighted tests did not, possibly indicating the

causal variants in ANGPTL4 might be rare (MAF < 5%), or the effect size is negatively

correlated with allele frequency. As for ANGPTL5, our analysis using GenRF provided

evidence to support the association with HDL (p-value: 0.009 and 0.036 for weighted

and unweighted analyses) while SKAT provided marginal evidence (p-value: 0.035 and

0.050). Note the unweighted tests gave larger p-values. Since all variants in ANGPTL5

are rare (MAF< 5%), the result suggests that the causal variants might be the rare variants

with relatively higher allele frequency. This finding was supported by standard approaches
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Table 2.1: Application to Dallas Heart Study for non-synonymous variants. GenRF: the unweighted genetic random field test; SKAT:
the unweighted sequential kernel association test of Wu, et al. (2011); PCR: the princeple component regression test of
Guaderman et al. (2007); MinSNP: the MinSNP test considered by Ballard et al. (2010); F-test: the F-test in linear
regression; GenRF.w: the genetic random field test with Beta (1, 25) weight of Wu, et al. (2011); SKAT.w: the sequential
kernel association test with Beta (1, 25) weight; VT: the variable-threshold test of Price et al. (2010). ∗ indicates p-value
is less than or equal to α = 0.05.

Method P-value

HDL
ANGPTL3 ANGPTL4 ANGPTL5 ANGPTL6

GenRF 0.487 0.181 0.009∗ 0.417
SKAT 0.981 0.423 0.035∗ 0.504

PCR 0.980 0.775 0.197 0.434
MinSNP 0.178 0.329 0.033∗ 0.729

F-test 0.331 0.148 0.051 0.786

GenRF.w 0.345 0.218 0.036∗ 0.496
SKAT.w 0.965 0.040∗ 0.050∗ 0.535

VT 0.393 0.111 0.051 0.488

Triglyceride
ANGPTL3 ANGPTL4 ANGPTL5 ANGPTL6

GenRF 0.025∗ 0.221 0.428 0.857
SKAT 0.050∗ 0.312 0.936 0.755

PCR 0.129 0.780 0.787 0.762
MinSNP 0.562 0.219 0.921 0.713

F-test 0.587 0.380 0.904 0.530

GenRF.w 0.100 0.019∗ 0.180 0.466
SKAT.w 0.075 0.006∗ 0.906 0.756

VT 0.993 0.905 0.968 0.050∗

like MinSNP (p-value: 0.033), F-test (p-value: 0.051) and VT test (p-value: 0.051). More

results are shown in table 4. Overall, for this study, GenRF performs comparably to SKAT

and seems to perform better than the other more standard methods.

2.4 Simulation Studies

We report results of several simulations, each based on 1000 Monte Carlo (MC) repli-

cates, to evaluate the performance of the GenRF test, relative to existing methods including

SKAT. Four sets of simulations are conducted to evaluate 1) type-1 error rates under dif-

ferent minor allele frequencies (MAF) and sample sizes, 2) power for common variant

analysis under different LD, interaction effect, and proportions of causal SNPs, 3) power

under scenarios where the causal SNPs include rare variants, and 4) robustness of the

GenRF test to different distributions of the response variable.

In the first set of simulations, we evaluated type-I error rates using sample size n = 50,
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100, 200 and 500 . Genotypes for p = 20 loci without LD were simulated, with MAF for

each locus 0.005, 0.01, 0.1, or 0.2. Responses were generated according to

Yi = εi, where εi ∼ N(0, 1),

so that no genetic variant is associated with the trait.

In the second set of simulations, we evaluated power under scenarios varying in LD,

interaction effects, or the proportions of causal SNPs, setting p = 20 and n = 500. To

simulate LD, the 20 loci were evenly divided into two regions. For each region, the haplo-

type allele was simulated one by one with MAF 0.2 and correlation coefficient (ρ) between

adjacent pair of alleles equal to 0, 0.2, 0.4, 0.8 respectively for each scenario. Genotypes

were then generated by summing up two haplotype vectors. This way, all the loci are

positively correlated with others in the same region. Responses were generated according

to

Yi = 0.2Gi,5 + 0.2Gi,15 + εi, where εi ∼ N(0, 1).

That is, variants 5 and 15, belonging to different LD regions, are associated with the trait.

To generate data with complex interactions, we set MAF 0.2, and the LD parameter

ρ = 0.4. Data were generated such that two-way interactions exist betweenK (K = 1, 2, 3

or 4) pairs of alleles, with alleles in each pair belonging to the two different LD regions as

described above. Responses were then generated according to the following model,

(2.7) Yi = 0.2
K∑
k=1

Gi,4+kGi,14+k + εi, where εi ∼ N(0, 1).

We see that these models contain only interactions but no main effect of each locus.

To examine the effect of causal proportion, we set MAF 0.2 and ρ = 0.4. For each MC

data set, K causal SNPs were randomly selected with K = 1, 2, 3, or 4, each correspond-
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ing to 5%, 10%, 15% and 20% causal SNPs. Responses were then generated according

to

(2.8) Yi = 0.15
K∑
k=1

Gi,Bk + εi, where εi ∼ N(0, 1),

where (GB1 , . . . , GBK ) are the selected causal SNPs.

Simulation set 2 has focused on common variants. The third set of simulations con-

sidered scenarios involving rare variants and the scenarios vary in proportions of causal

variants. We set p = 20, n = 500, and ρ = 0. The 20 SNPs were divided into two

regions, one with 16 rare variants (MAF 0.008) and one with 4 common variants (MAF

0.1). Note, the proportion of rare variants is chosen according to the Dallas Heart Study

. Two scenarios were considered where traits were associated with: 1) rare variants only

or 2) both common and rare variants. For each scenario, K rare SNPs were causal with

K = 1, 2, 4, 6, 8, 10, 12 or 14, i.e., K × 6.25% SNPs in the rare region are causal. In the

scenario that both rare and common variants are causal, we set one of the common SNP

as causal additionally. The effect size β was set to be a decreasing function of MAF with

β = 0.2× | log10 MAF| as in Wu et al. (2011). Responses were generated according to the

following model,

Yi = β1

K∑
k=1

Gi,k + β2Gi,20 + εi, where εi ∼ N(0, 1),

where β1 = 0.2× | log10 0.008|, β2 = 0 for scenario 1 and β1 = 0.2× | log10 0.008|, β2 =

0.2× | log10 0.1| for scenario 2.

We considered one additional scenario where the 500 subjects’ genotypes were sim-

ulated based on data from the Dallas Heart Study. For each MC data set, we randomly

selected one gene, then we randomly choose 10%, 20%, . . . , 80% causal variants from

those rare variants with true MAF less than 1%. Traits were simulated by

Yi =
K∑
k=1

βBkGi,Bk + εi, where εi ∼ N(0, 1),
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where (GB1 , . . . , GBK ) are the selected causal variants and βBk = 0.2× | log10 MAFBk |.

In the fourth set of simulations, we further evaluated the robustness of the GenRF test

to distributions other than normal, specifically, exponential, binary and mixture normal

distributions. Details on the simulation setup is described in the Supplementary Materials

(Appendix A).

In terms of type-I error rates, we only evaluated the proposed GenRF test and SKAT.

In both GenRF and SKAT, we adopted the IBS kernel and considered both weighted and

unweighted (i.e., wk = 1) versions; in the weighted version, Beta (1, 25) weight as in

Wu et al. (2011) was used. In addition to SKAT, we compared GenRF test to other more

standard methods. For common variant scenarios, we included the principle component

regression test (PCR) (Gauderman et al. (2007)); the MinSNP test (Ballard et al. (2010))

and the F-test in linear regression model including only main effects. For scenarios in-

volving rare variants, the variable-threshold (VT) test (Price et al. (2010)) was included.

Table 1 shows results for the first set of simulations with different MAF and sample

sizes. The GenRF test achieves the type I error rate close to the nominal level. However,

SKAT is conservative in some scenarios due to the estimation of nuisance parameters,

especially when the sample size is small. Since the GenRF test is an exact test without

asymptotic approximation under normal assumption, the type I error rate is better con-

trolled.

Table 2 shows the power of various methods under common variant scenarios. The first

part shows the effect of LD on power. When LD does not exist or is low, e.g., ρ < 0.4,

the three linear regression based tests, PCR, MinSNP and F-test , are more powerful as

expected because the data were generated exactly from a linear model. Among them, the

PCR and MinSNP can exploit LD and have increasing power when LD is higher. When

LD is moderate or high, both the GenRF test and SKAT have higher or even substantially
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higher power than the other tests by borrowing information from other loci. The power of

the GenRF test is comparable to that of SKAT.

The second part shows results when there are complex interactions between variants

but no main effects. Note the LD structure is the same as that in part 1 with ρ = 0.4 in

which the five methods have comparable power. Therefore, the power difference is mainly

due to the complex interactions. In these scenarios, the linear regression based methods

has low power in detecting the joint association. Both GenRF test and SKAT attain much

larger power. Moreover, the proposed GenRF test has larger power than SKAT in detecting

the joint association effect when complex interactions exist.

The third part shows results when the causal proportion varies. Similarly, the LD pa-

rameter ρ is set to be 0.4 to eliminate the impact of factors other than the causal proportion.

Because MinSNP is based on single SNP analysis, the test is less powerful especially when

causal proportion is high, i.e. 15% or 20%. GenRF and SKAT show comparable power in

general, but GenRF performs better as causal proportion gets higher.

Table 3 shows results for scenarios involving rare variants . When the trait is only

associated with rare variants, the weighted GenRF and SKAT have significantly larger

power as we expected because the weights favor the rare variants. The weighted GenRF

has lower power than SKAT when the causal proportion is low, e.g.,≤ 25%, but has larger

power then the proportion is greater than 25%. Both weighted GenRF and SKAT have

comparable or larger power relative to the VT test and F-test. The scenario based on the

Dallas Heart Study shows similar results, i.e. GenRF performs better under higher causal

proportion (≥ 20%).

When causal variants include both common and rare variants and the effect size is a

decreasing function of MAF, the unweighted GenRF and SKAT have comparably larger

power than the weighted tests when the rare causal proportion is low (≤ 37.5%). This is
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not surprising as the effect of the common variant is relatively large but down-weighted in

the weighted GenRF and SKAT. As the rare causal proportion increases and the number

of common variants is fixed at one, the results change dramatically. When the rare causal

proportion is higher than 37.5%, the weighted GenRF and SKAT show higher power than

the unweighted counterpart. Overall, for scenarios considered here, the GenRF test has

very good performance relative to others.

Table 2.2: Type I error rate simulation results under different levels of MAF and sample size (1000 replicates). Each cell contains
the type I error rate, i.e., rejection rate when data are generated under the null model. GenRF: the unweighted genetic
random field test; SKAT: the unweighted sequential kernel association test of Wu, et al. (2011); GenRF.w: GenRF with
Beta(1,25) weight as in Wu, et al. (2011); SKAT.w: SKAT with Beta(1,25) weight.

Methods Different Levels of MAF and Sample Size (n)
MAF 0.005 0.01

n 50 100 200 500 50 100 200 500

GenRF 0.043 0.049 0.050 0.045 0.040 0.043 0.061 0.048
GenRF.w 0.048 0.056 0.051 0.045 0.043 0.046 0.060 0.046

SKAT 0.035 0.051 0.057 0.057 0.034 0.046 0.050 0.039
SKAT.w 0.034 0.050 0.053 0.059 0.029 0.042 0.046 0.035

MAF 0.1 0.2
n 50 100 200 500 50 100 200 500

GenRF 0.051 0.049 0.055 0.044 0.050 0.058 0.055 0.049
GenRF.w 0.052 0.052 0.053 0.048 0.047 0.051 0.052 0.046

SKAT 0.022 0.039 0.041 0.041 0.016 0.030 0.041 0.043
SKAT.w 0.041 0.035 0.043 0.054 0.045 0.043 0.046 0.041

Table 2.3: Power simulation results for common variant analysis under different levels of linkage disequilibrium (LD), interaction
effects and causal proportion (1000 replicates). GenRF: the unweighted genetic random field test; SKAT: the unweighted
sequential kernel association test of Wu, et al. (2011); PCR: the princeple component regression test of Guaderman et al.
(2007); MinSNP: the MinSNP test considered by Ballard et al. (2010); F-test: the F-test in linear regression.

Method Different Level of LD Number of Two-way Interactions Different Causal Proportion
0 0.2 0.4 0.8 1 2 3 4 5% 10% 15% 20%

GenRF 0.462 0.472 0.566 0.816 0.119 0.364 0.652 0.862 0.124 0.321 0.539 0.776
SKAT 0.491 0.487 0.545 0.764 0.100 0.299 0.546 0.746 0.150 0.324 0.506 0.727

PCR 0.495 0.467 0.518 0.676 0.119 0.268 0.470 0.657 0.159 0.308 0.473 0.679
MinSNP 0.570 0.507 0.543 0.656 0.098 0.252 0.408 0.576 0.180 0.342 0.463 0.624

F-test 0.545 0.514 0.524 0.538 0.112 0.231 0.394 0.562 0.145 0.278 0.471 0.665
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Table 2.4: Power simulation results under scenarios involving rare variants with different proportion of causal variants (1000 repli-
cates). Rare Causal Variants: causal variants are rare only; Common & Rare Causal Variants: causal variants are both
rare and common; DHS: scenario based on the Dallas Heart Study. GenRF.w: the genetic random field test with Beta
(1, 25) weight as in Wu, et al. (2011); SKAT.w: the sequential kernel association test with Beta (1, 25) weight; VT: the
variable-threshold test of Price et al. (2010); Other entries as in Table 2.

Method Different Proportion of Causal Variants
Rare Causal Variants

6.25% 12.5% 25% 37.5% 50% 62.5% 75% 87.5%

GenRF 0.045 0.073 0.139 0.209 0.305 0.466 0.593 0.739
SKAT 0.048 0.052 0.066 0.073 0.086 0.100 0.111 0.126

GenRF.w 0.062 0.087 0.212 0.429 0.660 0.848 0.950 0.980
SKAT.w 0.083 0.125 0.252 0.368 0.515 0.654 0.736 0.814

VT 0.065 0.082 0.128 0.209 0.314 0.487 0.680 0.852
F-test 0.080 0.113 0.190 0.302 0.449 0.556 0.670 0.765

Common & Rare Causal Variants

6.25% 12.5% 25% 37.5% 50% 62.5% 75% 87.5%

GenRF 0.191 0.259 0.380 0.501 0.625 0.761 0.861 0.927
SKAT 0.274 0.281 0.287 0.313 0.331 0.359 0.387 0.416

GenRF.w 0.061 0.097 0.232 0.434 0.646 0.853 0.939 0.981
SKAT.w 0.078 0.155 0.277 0.386 0.523 0.631 0.732 0.818

VT 0.217 0.306 0.418 0.504 0.603 0.720 0.845 0.930
F-test 0.163 0.270 0.354 0.477 0.618 0.701 0.779 0.843

DHS

10% 20% 30% 40% 50% 60% 70% 80%

GenRF 0.080 0.140 0.169 0.247 0.329 0.414 0.507 0.600
SKAT 0.071 0.089 0.114 0.117 0.153 0.191 0.205 0.271

GenRF.w 0.100 0.204 0.321 0.434 0.588 0.696 0.796 0.875
SKAT.w 0.118 0.196 0.294 0.330 0.433 0.544 0.600 0.688

VT 0.095 0.159 0.254 0.359 0.498 0.612 0.721 0.827
F-test 0.147 0.239 0.355 0.423 0.528 0.653 0.721 0.795
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CHAPTER III

Set-based Tests for Genetic Association in Longitudinal Studies

3.1 Introduction

Genome-wide association studies (GWAS) have been successful in identifying sus-

ceptibility loci for risk factors of chronic diseases. For genetic studies of cardiovascular

disease risk factors, such as the Mulit-Ethnic Study of Atherosclerosis (MESA), obser-

vations at multiple time points are available for each individual (Bild et al. (2002)). The

longitudinal nature of these studies results in more precise phenotypic characterization,

enhancing the ability to associate genes or chromosomal regions with the phenotypes and

assess gene-time interaction. However, current statistical methods for testing genetic as-

sociation in longitudinal studies, in the presence of effect heterogeneity across time are

limited, even for one single-nucleotide polymorphism (SNP) at a time analysis (Fan et al.

(2012); Furlotte et al. (2012)). Investigators often take a simple approach of collapsing

the repeated measurements into a single value and hence the method is not able to harness

the power of the complete information that is contained in the longitudinal trajectory. One

can also apply the standard methods available for correlated outcome models to better

utilize the longitudinal data, namely, random effects models (Fitzmaurice et al. (2012))

and generalized estimating equations (GEE) (Liang and Zeger (1986)). These methods

are primarily proposed for modeling and testing a limited number of SNPs, and cannot be
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directly applied to assess the joint association of a longitudinally varying outcome with an

entire gene or a region with hundreds of SNPs without further modifications.

Recent studies showed the advantages of multi-marker tests over individual SNP anal-

yses. First, the genetic markers in LD with the causal SNP(s) carry additional information

and may enhance the power of identifying the true effect. Second, gene-based tests con-

siderably reduce the burden of multiple comparisons. Third, Region-based methods are

appealing for multi-ethnic cohorts due to differences in LD structure across ethnic groups

and thus meta-analysis of a region-based statistic is likely to be more consistent than meta-

analysis of single marker tests across ethnicities. Last, gene-based tests enhance the power

of identifying rare-variant association in next generation sequencing studies (Morris and

Zeggini (2010)). Two notable existing approaches are the sequence kernel association tests

(SKAT) (Wu et al. (2011)) and similarity regression (SIMreg) (Tzeng et al. (2009)). From

a random field framework and borrowing ideas from spatial statistics, the genetic random

field model (GenRF) was recently developed for modeling and testing joint associations

(He et al. (2014); Li et al. (2014)). So far, however, extensions of these methods are not

available for longitudinal data.

It is desirable to have a multi-marker test for longitudinal studies that can incorporate

the time-dependent variation in outcome, utilize all the variants in a gene or region and

boost power in the presence of effect heterogeneity across time. Extending the GenRF

method to the longitudinal setting, we propose a longitudinal genetic random field model

(LGRF) and develop generalized score type tests to study the association between repeat-

edly measured phenotypes and a set of genetic variants in a gene or region. The methods

are evaluated through extensive simulation studies and illustrated by analyzing the associ-

ation between blood pressure and 29 candidate genomic regions across four ethnic groups

in MESA.
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3.2 Method

Consider a study population of m subjects, and the i-th subject has ni repeated ob-

servations. Each subject is sequenced in a region of interest with q variants, and mea-

sured on p additional non-genetic covariates such as age, gender and other potential con-

founders. Let Yi,l be the phenotypic value for the l-th observation on the i-th subject,

measured at time ti,l; Gi = (Gi,1, Gi,2, . . . , Gi,q)
T be the genotypes for the q variants

within the region where Gi,h ∈ {0, 1, 2} for any 1 ≤ h ≤ q, which does not change

over time; X i,l = (Xi,l,1, . . . , Xi,l,p)
T be the covariates corresponding to the l-th obser-

vation on the i-th subject, either time-varying or time-invariant. We denote n =
∑

i ni,

Y n×1 = (Y1,1, . . . , Y1,n1 , Y2,1, . . .)
T and define Xn×p, Gn×q similarly for covariates and

genotypes. We are interested in investigating the association between phenotype Y n×1

and variantsGn×q, adjusted for the effect ofXn×p.

3.2.1 Longitudinal Genetic Random Field Model

The GenRF method (He et al. (2014)) is a gene-based association test motivated by the

general idea that, if the genetic variants in a region are jointly associated with the phe-

notype, then subjects having similar genotypes in that region will have similar phenotype

(Tzeng et al. (2009)). Motivated by development in spatial statistics (Cressie (2015)) and

random field theory (Besag (1974); Adler and Taylor (2009)), GenRF views phenotypic

values as a random field on a genetic space where the vector of genotype sequences deter-

mines the location in the space; i.e., the phenotype at each location is a random variable

and these random variables are possibly correlated depending on their spatial location, e.g.,

the closer the more similar. It directly regresses the phenotype of a given subject on that of

all others, where the contribution of other subjects is weighted by their genotype similarity

with the given subject. This leads to a conditional autoregressive model commonly used
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in spatial statistics to study spatial dependence.

With repeated measurements, one has to appropriately account for the within-subject

correlation between outcomes to obtain valid inference and improve efficiency. Extending

the GenRF model to the longitudinal setting, we propose a longitudinal GenRF (LGRF)

model, where the conditional mean of each observation is modeled as a weighted sum of all

other observations, including those from the same subject. In a longitudinal setting, one

may expect that phenotypes from the same subject may be more similar due to reasons

other than the shared genetic variants of interest. To capture this, we define a within-

subject similarity, which depends on the time between two measurements on the same

subject; for example, if two observations are measured closer in time, their within-subject

similarity may be larger. Formally LGRF model is written as:

(3.1)

Yi,l|Y −(i,l) = XT
i,lβ+

∑
k 6=l

w(ti,k, ti,l;η)(Yi,k−XT
i,kβ)+γ

∑
(j,k)6=(i,l)

si,j(Yj,k−XT
j,kβ)+εi,l,

where Y −(i,l) denotes all other phenotypic values except Yi,l;X i,l and β are, respectively,

covariates and the corresponding regression coefficients, and thus XT
i,lβ is the contribu-

tion to outcome mean from non-genetic covariates; εi,l ∼ i.i.d. N(0, σ2); w(ti,k, ti,l;η)

is the within-subject similarity between Yi,k and Yi,l with parameters η playing the role

of introducing within-subject correlation between repeated measurements, similar to pa-

rameters in a correlation matrix in a GEE framework; si,j is the genetic similarity be-

tween subjects i and j. Possible forms can be si,j =
∑q

h=1(Gi,h − 2ph)(Gj,h − 2ph)

referred to as genetic relationship (GR) (Yang et al. (2011)) where ph is the population

allele frequency of h-th SNP in the region, and the identity-by-state (IBS) similarity:

si,j =
∑q

h=1(2 − |Gi,h − Gj,h|). Parameter γ measures the magnitude of the joint as-

sociation between genetic variants and the phenotype. If none of the genetic variants are

associated with the phenotype, the phenotype of subject i will be irrelevant to the phe-
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notypes of others regardless of their proximity in the genetic space, i.e., γ = 0. On the

contrary, a large positive γ indicates a strong spatial dependence or equivalently genetic

association. Thus, γ can be interpreted as the magnitude of the joint association between

the q genetic variants and the phenotype. Briefly, the conditional autoregressive model

relates each observation to others measured on the same subject by within-subject simi-

larity w(ti,k, ti,l;η), and all other observations (including other measurements on the same

subject) in the study by genetic similarity si,j .

According to the factorization theorem of Besag (1974), the conditional model (3.1)

uniquely determines a joint distribution of Y :

(3.2) Y |X = Xβ + v,v ∼ N(0, σ2{I −W (η)− γS}−1),

where I is an n × n identity matrix; W (η) and S are matrices (n × n) composed

of w(ti,k, ti,l;η) and si,j , respectively. Specifically, the within-subject similarity matrix

W (η) is block diagonal with block i (ni× ni) corresponding to subject i and the (k, l)-th

element of block i is w(ti,k, ti,l;η) except for diagonal elements of W (η). The genetic

similarity matrix S is composed of m×m block matrices with dimension ni × nj, i, j =

1, . . . ,m, and all elements in the (i, j)-th block are si,j except for the diagonal elements

of S. The diagonal elements of W (η) and S are 0 as in model (3.1) observations are not

compared with themselves. To evaluate the joint association of multiple genetic variants

with the phenotype we can test the null hypothesisH0 : γ = 0 involving a single parameter

in the precision matrix (or equivalently in the variance matrix).

With respect to the within-subject similarity, the random field model focuses on how the

observations are related, regardless of the direction (past or future) as opposed to transition

models which condition each observation only on the past observations. However, they can

result in very similar marginal correlation structures such as the first-order auto-regressive

(AR1) correlation. Examples of plausibleW (η) are given below.
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Example 1. One might assume observations from the same subject to be equally similar

and sets w(ti,k, ti,l;η) = η for ∀i, k, l, and in matrix notation, W (η) = ηT , where T

is a block diagonal matrix with block i, i = 1, . . . ,m, an ni × ni matrix with 0’s in

the diagonal and 1’s off-diagonal. Under H0 : γ = 0, the corresponding covariance

matrix is σ2(I−ηT )−1. This specification is equivalent to the usual compound symmetric

correlation.

Example 2. One might assume each observation conditionally depends on only the nearest

observations before and after it (Markov property): w(ti,k, ti,l;η) = η if |k − l| = 1, and

0 otherwise. This is an approximation of the usual AR1 correlation by ignoring the edge

effect (Qu, et al., 2000). Again W (η) = ηT for a block diagonal matrix T , where the

(k, l)-th element of the i-th block is 1 if |k − l| = 1 and 0 otherwise.

In addition, multiple within-subject similarities can be combined for a better working

precision matrix, adaptively approximating the underlying structure. Taking W (η) to be

linear in η, e.g., the two examples given above and their linear combinations, can lead

to a rich class to accommodate many commonly used working correlation structures. A

similar idea has been studied by Qu et al. (2000) to improve efficiency of estimation over

GEE method.

As in the GEE framework, the within-subject similarity matrix W (η), or equivalently

the correlation matrix {I −W (η)}−1 under the null, is only a working assumption that

is not required to be correct for valid inference. Thus we present our test using a working

within-subject similarity matrix that is of the form ηT , as in the two examples, and note

the method applies to more generalW (η). For simplicity, the matrix representation of the

LGRF model is given by:

(3.3) Y |Y − = Xβ + (ηT + γS)(Y −Xβ) + ε,
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where Y is the n dimensional vector of all observations; Y |Y − stands for that each obser-

vation Y(i,l) is conditional on all other observations Y −(i,l); Matrices T and S have diago-

nal elements equal to zero, to reflect that the mean of each element of Y only depends on

other elements but not on itself; ε = (ε1,1, . . . , ε1,n1 , ε2,1, . . .)
T is the residual vector. Since

the genetic similarities are compared across all observations, the model does not have the

Markov property, i.e., each observation has finite neighbors, typically assumed in a con-

ditional auto-regressive model in spatial statistics. Thus the regular likelihood-ratio test

or score test used in spatial statistics for testing spatial auto-correlation cannot be applied

directly. Also, because of the within-subject similarly, the pseudo-likelihood approach de-

veloped by He et al. (2014) does not apply. Instead, we propose a set of generalized score

type tests.

3.2.2 Association Test under the Longitudinal Genetic Random Field Model

In this subsection we focus on developing a generalized score type test for testing

H0 : γ = 0 under model (3.3). The inference procedure is developed by treating the

within-subject correlation as a working model, leading to a test that is robust to mis-

specification of the correlation structure. Model (3.3) states, given all other observations,

the conditional mean of each observation is linearly related to others, i.e., E(Y |Y −) =

Xβ + (ηT + γS)(Y −Xβ). Adopting the similar argument for the usual GEE method

(Liang and Zeger (1986)) to our conditional auto-regressive model, we construct the fol-

lowing generalized estimating function:

(3.4)

Uγ(β, η, γ) =
∂E(Y |Y −)

∂γ

T

{Y − E(Y |Y −)} = (Y − µ)TS(I − ηT − γS)(Y − µ),

where µ = Xβ. The estimating equation is quadratic in Y because γ is a coefficient in

an auto-regressive model and corresponds to a parameter in the marginal variance as in
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(3.2). In the Supplementary Materials (Appendix B) section 1.1, we show that the above

estimating function is unbiased in the sense that its expectation is zero under the truth.

Therefore, following Boos (1992), we refer to it as a “generalized” score and the score

evaluated at γ = 0, i.e., Uγ(β, η, 0) = (Y − µ)TS(I − ηT )(Y − µ), can be used to

construct a generalized score type test. Due to the unbiasedness, we show that Uγ(β, η, 0)

has mean 0 under H0 and positive mean γE{(Y − µ)TS2(Y − µ)} under H1 : γ > 0.

This rationale leads to constructing a generalized score statistic

(3.5) QG =
Uγ(β̂, η̂, 0)

m
=

(Y − µ̂)TS(I − η̂T )(Y − µ̂)

m

and rejecting H0 when it is sufficiently large. In (3.5), µ̂ = Xβ̂ and η̂ are estimates under

the null hypothesis that γ = 0. Specifically, β̂ and η̂ are the solution to the following

estimating equations: Uβ(β, η, 0) = XT (I − ηT )(Y − µ) = 0

Uη(β, η, 0) = (Y − µ)TT (I − ηT )(Y − µ) = 0.

The first equation is the usual estimating equation for estimating β in GEE based on the

the joint distribution (2) as I − ηT is proportional to the inverse of a working correlation

matrix under H0. The second equation is derived by considering the estimating function

∂E(Y |Y −)
∂η

T
{Y − E(Y |Y −)} under H0. It is worth noting that the second estimating

equation is linear in η. Thus the estimators β̂ and η̂ can be calculated by iteratively solving

linear equations. This property remains when we linearly combine multiple within-subject

similarities, leading to an efficient way to estimate the correlation structure.

We derive an asymptotically equivalent representation of QG under H0 and show that

this representation allows us to achieve theoretical protection against the misspecification

of within-subject correlation as well as facilitating computationally efficient implemen-

tation suitable for large-scale studies. Specifically, we show in Supplementary Materials
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(Appendix B) sections 1.2 and 1.3 that for all the genetic similarity metrics introduced

previously, under H0, QG can be represented as

QG =
1

2m
R1(η0, β̂)T

 Odq Idq

Idq Odq

R1(η0, β̂) + c+ op(1),

where η0 is the true parameter under H0; Idq is a dq× dq identity matrix andOdq is a zero

matrix;R1(η,β) = Z̃(η)T (Y −µ) and Z̃(η) = {(I − ηT )Z,Z}; Z is an n× dq matrix

for some integer d, and c is a constant. The exact form or value of Z, d and c depend

on the chosen genetic similarity and the details are given in the Supplementary Materials

(Appendix B) sections 1.2 and 1.4. For example, for GR similarity, Z, (n × q), is the

centered genotype matrix, i.e., each column of the genotype matrix G is now centered by

the genotype population mean 2ph. Note that R1(η0, β̂) =
∑m

i=1{Z̃i(η0)
T (Y i − µ̂i)},

which is a summation of m terms each with expectation zero under the null regardless

of the specified working correlation structure. Therefore, the summand is an unbiased

estimating function for β, and according to the theory of M-estimators (Stefanski and

Boos (2002)), 1√
m
R1(η0, β̂) is asymptotically normal with a covariance matrix that can

be robustly estimated by some sandwich covariance estimates, leading to robustness to

misspecification of working correlation.

In Results 2 and 3 of Supplementary Materials (Appendix B), using the theory of M-

estimation as well as distributions for quadratic forms, we show thatQG has an asymptotic

distribution

1

2

2dq∑
k=1

λkχ
2
k + c

under H0, where c is a constant which does not affect the inference; χ2
k’s are i.i.d. Chi-

square distributions with degree of freedom one; λk are eigenvalues of a 2dq× 2dq matrix
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 Odq Idq

Idq Odq

Σ,

where Σ can be consistently estimated by a sandwich covariance estimate Σ̂, defined in

Result 2 of the Supplementary Materials (Appendix B). Moreover, the null distribution of

QG only depends on the eigen-values of a 2dq × 2dq matrix. As the number of variants

in a target gene q is relatively small, it is computationally efficient and hence suitable for

large scale GWAS. To obtain the p-value, Davies’ method (Davies (1980)) can be used as

a computationally efficient way to analytically calculate the tail probability of a mixture

of chi-squares by inverting the corresponding characteristic function.

3.2.3 Testing for the Joint Effect of Gene and Gene-time Interaction

As in a regression framework interaction effect is typically modeled using new vari-

ables defined as the product of two interacting factors, similarly, we can define interaction

terms, Giti,l = (Gi,1ti,l, Gi,2ti,l, . . . , Gi,qti,l)
T , and treat them the same way asGi. There-

fore the modified LGRF is given by:

Yi,l|Y −(i,l) = XT
i,lβ +

∑
k 6=l

w(ti,k, ti,l;η)(Yi,k −XT
i,kβ) + γ1

∑
(j,k) 6=(i,l)

si,j(Yj,k −XT
j,kβ)

+ γ2
∑

(j,k)6=(i,l)

sGTil,jk(Yj,k −XT
j,kβ) + εi,l,

where sGTil,jk is the similarity generated by gene-time interaction terms, similar to the ge-

netic similarity; and γ1 and γ2 represent the genotype main effect and gene-time inter-

action effect, respectively. The IBS similarity is not suitable for the interaction terms

because it is specifically designed for genetic variants/imputed dosage lying between 0

and 2. In the spirit of genetic relationship similarity, we define sGTil,jk = ψ(Giti,l,Gjtj,k) =∑q
h=1(Gi,hti,l−Ght)(Gj,htj,k −Ght), where Ght = 1

n

∑
(i,l)Gi,hti,l. Considering a work-

ing within-subject similarity matrix ηT as before, in matrix form the model is written
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as

(3.6) Y |Y − = Xβ + (ηT + γ1S + γ2SGT )(Y −Xβ) + ε,

where SGT is the similarity matrix of the interaction terms with the (l, k)-th element of the

(i, j)-th block (ni×nj) equal to sGTil,jk except for the diagonal ofSGT . Under this model, we

can evaluate the joint effect of gene and gene-time interaction by testingHJ
0 : γ1 = γ2 = 0.

Denoting γ = (γ1, γ2)
T , following previous development, we construct two estimating

function with respect to γ1 and γ2: Uγ1(β, η,γ) = (Y − µ)TS(I − ηT − γ1S − γ2SGT )(Y − µ)

Uγ2(β, η,γ) = (Y − µ)TSGT (I − ηT − γ1S − γ2SGT )(Y − µ).

As before, evaluating the corresponding estimating functions at HJ
0 : γ1 = γ2 = 0 leads

to the following generalized score statistics QG = Uγ1(β̂, η̂,O)/m = (Y − µ̂)TS(I − ηT )(Y − µ̂)/m

QGT = Uγ2(β̂, η̂,O)/m = (Y − µ̂)TSGT (I − ηT )(Y − µ̂)/m.

We propose to combine these two by:

QJ = αGQG + αGTQGT = (Y − µ̂)T (αGS + αGTSGT )(I − ηT )(Y − µ̂)/m,

where αG =
√

v2GT
v2GT+v

2
G

and αGT =
√

v2G
v2GT+v

2
G

; v2G = 2tr(S2) and v2G = 2tr(S2
GT ) are pro-

portional to the variance of Uγ1 and Uγ2 respectively. Though the choice of weights can be

arbitrary depending on the need of assessing marginal or interaction effect, our weights are

defined such that αGQG and αGTQGT have approximately equal variance. Defining ZGT

as the centered gene-interaction matrix, i.e., each gene-interaction term Gi,hti,l is centered

by the its mean Ght, Z̃J(η) = {α
1
2
G(I − ηT )Z, α

1
2
GT (I − ηT )ZGT , α

1
2
GZ, α

1
2
GTZGT} and
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RJ1(η,β) = Z̃J(η)T (Y − µ), we can rewrite the joint test statistic as a quadratic form:

QJ =
1

2m
RJ1(η0, β̂)T

 O(d+1)q I(d+1)q

I(d+1)q O(d+1)q

RJ1(η0, β̂) + cJ + op(1),

where d is a constant depending on the chosen genetic similarity for the marginal genetic

effect as in Section 2.4 and cJ is a constant similar to c. Although more complex, QJ

has an identical form as QG in Section 2.4. The inference follows directly from previous

development and therefore we omit the details. The proposed method does not test the

gene-time interaction separately; instead, it improves the power of LGRF test by exploiting

the potential interaction effect if exists.

3.3 Application: Multi-Ethnic Study of Atherosclerosis

We refer to the LGRF test for the marginal effect of a gene as LGRF-G and the joint test

as LGRF-J. We illustrate the proposed methods using data from the Multi-Ethnic Study

of Atherosclerosis (MESA). MESA is a collaborative longitudinal study initiated in July

2000 to investigate the prevalence, correlates, and progression of subclinical cardiovascu-

lar disease (CVD) (Bild et al. (2002)). From 2000 to 2007, four examinations of blood

pressure (BP) were conducted over 18- to 24-month periods. We aimed to replicate the

findings (29 significant SNPs associated with blood pressure) of the International Con-

sortium for Blood Pressure (ICBP) (ICBP (2011)) by a region based analysis. A total

of 6361 subjects consisting of 2526 Caucasians (CAU), 1611 African Americans (AFA),

1449 Hispanics (HIS) and 775 Asian of Chinese descent (CHN) with genome-wide geno-

type data, systolic blood pressure (sBP) and diastolic blood pressure (dBP) outcomes were

considered in the current analysis. The longitudinal summaries and characteristics of the

study population, descriptive statistics are provided in Supplementary Tables B.8 - B.11.

For this analysis, we used SNPs that have been directly genotyped using the Affymetrix
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Genome-Wide Human SNP Array 6.0 or imputed as per MESA protocol. Imputation was

performed using the IMPUTE 2.1.0 program (Marchini et al. (2007)) in conjunction with

HapMap Phase I and II reference panels (CEU+YRI+CHB+JPT, release 22 - NCBI Build

36 for African-, Chinese- and Hispanic-American participants; CEU, release 24 - NCBI

Build 36 for European Americans). We selected genomic regions around the 29 index

SNPs that have demonstrated significant (p-value < 10−9) by the ICBP. Each genomic

region was defined according to the following criteria: when the index SNP fell within a

gene, we selected all SNPs within the gene +/- 5kb and adopted the gene’s name. When

the index SNP fell outside of a gene, we selected the index SNP plus all SNPs +/- 50kb

and name the region after the index SNP. All SNPs are included in the analysis without

any minor allele frequency filters. We applied LGRF-G and LGRF-J using longitudinal

outcomes and SKAT using the average value of repeated measures to test the associa-

tion between each candidate region and BPs (sBP and dBP) for the four ethnic groups

separately, adjusting for age, gender, BMI and top two principal components (PCs) to

correct for potential within-ethnicity stratification. Since only the first two principal com-

ponents were associated with either systolic or diastolic blood pressure in any ethnicity at

p < 0.01 (Supplementary Table B.7), we only included these two principal components

as adjustment variables. We adjusted the measured blood pressures for participants tak-

ing anti-hypertension medications using the standard procedure of adding 10 mmHg to

systolic blood pressure and 5 mmHg to diastolic blood pressure (Cui et al. (2003)). The

SKAT was implemented with a linear kernel and equal weights on the SNPs. Based on the

p-values of the stratified analysis, a meta-analysis was done by Fisher’s method.

We analyzed 29 regions with details summarized in the Supplementary Tables B.12 -

B.21. The LGRF-G test results in comparable or smaller p-values than SKAT using aver-

age outcomes in most cases. We expect LGRF-J to have higher power than LGRF-G when
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Table 3.1: Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data: top two regions associated with systolic blood pres-
sure/diastolic blood pressure. Each cell shows the p-value. CAU: Caucasians; AFA: African Americans; HIS: Hispanics;
CHN: Asians of Chinese descent. Meta: Meta-analysis combining the results of four ethnic groups using Fisher’s com-
bined probability test. LGRF-G: the LGRF test for the marginal effect of a gene. LGRF-J: the LGRF test for the joint
effect of gene and gene-time interaction. The working correlation assumed in LGRF is compound symmetric. SKAT-Avg.:
cross-sectional SKAT using the average value of repeated measurements as the outcome.The column “SNPs” shows the
total number of typed and imputed SNPs in each ethnic group.

Systolic Blood Pressure
Region Indexed by rs13082711 Region Indexed by rs1378942

SNPs LGRF-G LGRF-J SKAT-Avg. SNPs LGRF-G LGRF-J SKAT-Avg.

CAU 111 0.0052 0.0078 0.0047 84 0.0019 0.0023 0.0019
AFA 82 0.6750 0.6315 0.6806 70 0.1894 0.2047 0.1929
HIS 82 0.0267 0.0453 0.0307 70 0.5269 0.3446 0.4094

CHN 79 0.0191 0.0496 0.0302 70 0.8798 0.9364 0.8969

Meta - 0.0009 0.0036 0.0013 - 0.0258 0.0248 0.0222

Diastolic Blood Pressure
Region Indexed by rs13082711 C10orf107

SNPs LGRF-G LGRF-J SKAT-Avg. SNPs LGRF-G LGRF-J SKAT-Avg.

CAU 111 0.1774 0.1185 0.1704 190 0.0283 0.0412 0.0202
AFA 82 0.0263 0.0222 0.0233 157 0.0129 0.0106 0.0152
HIS 82 0.0086 0.0349 0.0058 157 0.0104 0.0081 0.0234

CHN 79 0.0292 0.0713 0.0308 154 0.5361 0.4998 0.4757

Meta - 0.0006 0.0024 0.0004 - 0.0010 0.0009 0.0015

there exists gene-time interaction, but lower power when there is no such interaction. In

the MESA example, the LGRF-J test has smaller p-values than LGRF-G in relatively few

instances (for example association of C10orf107 with diastolic blood pressure in Table 1),

but larger p-values than LGRF-G in general. This may indicate that gene-time interaction

does not have sufficient contribution to the marginal gene-level association in most cases.

Table 3.1 shows the results of the top two associations between sBP/dBP and candidate

regions. The top two regions were selected according to the p-values of LGRF-G in meta-

analysis using Fisher’s combined probability test. The region indexed by rs13082711

emerged as the most strongly associated region. The meta-analysis p-values of LGRF-G

are 8.69×10−4 for sBP and 6.25×10−4 for dBP. Another suggestive association identified

by LGRF-G that is consistent with the ICBP analysis is between dBP and C10orf107 (p-

value= 9.71×10−4), and LGRF-J exhibited a smaller p-value for this association (p-value=

8.64× 10−4).
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3.4 Simulation Studies

We evaluated three classes of methods: (a) the proposed multi-marker tests for longitu-

dinal data: LGRF-G, LGRF-J; (b) a multi-marker test in cross-sectional studies using the

average of the repeated measures as a single outcome: SKAT; and (c) single-marker tests

for longitudinal outcomes: namely, GEE, adjusted by the Bonferroni correction. Specif-

ically, in LGRF-G, LGRF-J and GEE, a working compound symmetric correlation struc-

ture was used, and SKAT was implemented with equal weights on the SNPs. Classes (b)

and (c) represent two commonly used strategies in practice as currently no multi-marker

tests are available for longitudinal data and the specific method (SKAT and GEE) is cho-

sen to be the representative in each class, recognizing that multiple other alternatives in

each class exist. Additional simulation studies with respect to the impact of different ge-

netic similarity measures, further evaluation of the power gain using a longitudinal design,

use of LGRF in a meta-analysis, and evaluation of type-I error rate and power at lower

significance levels are showed in the Supplementary Tables B.2 - B.7.

For each replicated dataset, subjects were randomly selected from the Caucasian (CAU)

ethnic group in MESA, and the variants commonly existing in all four ethnicities (154

SNPs) in genotype region C10orf107 are included as the target region. We varied the

number of repeated measurements to be 4, 6 and 8, and number of subjects 600, 400 and

300 respectively, keeping total number of observations as 2400. Assuming missing com-

pletely at random, we first simulated the complete data, and then a missingness indicator

with fixed drop-out rate of 4% at each exam was applied approximating what is observed

in the MESA study.

We evaluated the type-I error rate at level α = 0.05, 0.01, and 0.001 using 100000
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replicates. Data are generated from the model:

(3.7) Yi,l = α0ti,l + εi,l, ti,l = 1, . . . , r,

where α0 = 12
r

; r is the number of measurements per subject; εi = (εi,1, . . . , εi,r)
T inde-

pendently follows multivariate normal distribution with four types of covariance matrices:

• Independent (Ind.): εi ∼ N(0, σ2
indIr).

• Auto-regressive of order 1 (AR1): εi ∼ N(0,ΣAR), where ΣAR is an r × r matrix

and its (l, k) element is ρ|l−k|σ2
AR.

• Compound symmetry (CS): εi,l = bi+ε
∗
i,l, ε

∗
i,l ∼ N(0, σ2

error), bi ∼ N(0, σ2
CS), where

ε∗i,l and bi are independent.

• Mixed model with a random intercept and a random slope (RR): εi,l = b1i+b2iti,l/r+

ε∗i,l, ε
∗
i,l ∼ N(0, σ2

error), b1i, b2i ∼ N(0, σ2
RR), where ε∗i,l, b1i and b2i are independent.

Where σ2
ind=16; σ2

AR = 6, ρ = 0.6; σ2
error = 2.25; σ2

CS = 2.25; σ2
RR = 1. The missingness

indicator was then applied to the simulated data with 4% drop-out rate. The empirical type-

I error rates are presented in Table B.5. LGRF-G and LGRF-J both have well controlled

type-I error rates under all scenarios, even if the true correlation is not the assumed working

correlation “CS”. The tests also have valid type-I error rates at low α-levels (0.01 and

0.001). The simulation results demonstrate that, consistent with the asymptotic result,

the proposed methods are robust to misspecification of within-subject correlation in finite

samples. We note that the proposed methods tend to be slightly conservative at lower

significance levels (Supplementary Table B.5) due to the use of sandwich estimator as in

regular GEE.

In the first set of power simulations, one out of 154 SNPs was randomly set to be causal.

We evaluated two distinct scenarios where the effect of the single causal SNP is manifested
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through: 1. its marginal association with outcome, without any gene-time interaction; 2.

its interaction with time (SNP × Time interaction). The data was generated respectively:

1. Gene marginal effect : Yi,l = α0ti,l + α1Gi + εi,l, ti,l = 1, . . . , r,(3.8)

2. Gene-time interaction : Yi,l = α0ti,l + α2Giti,l + εi,l, ti,l = 1, . . . , r,(3.9)

where Gi is the genotype of subject i for the randomly selected causal SNP; α0 = 12/r,

α1 = 0.4 and α2 = 0.6/r; r is the number of measurements per subject. To mimic

the real data scenario, α1 and α2 were elicited based on fitting single SNP models with

and without gene-time interaction to MESA data. We chose a large α0 in our simulation

studies to illustrate the power gain that can be expected from a longitudinal design with

strong time trend in the mean outcome levels compared to using the average of repeated

measures. We recognize that smaller values of α0 will lead to smaller power differences.

In the second set of simulations, ten out of 154 were randomly set to be causal each

time. Among them, six SNPs have only marginal effects, three have both marginal and

interaction effects and the remaining one has only an interaction effect. The true model is

of the form:

Yi,l = α0ti,l + α∗1
∑

1≤k≤9

Gi,k + α∗2
∑

7≤k≤10

Gi,kti,l + εi,l, ti,l = 1, . . . , r.

Where Gi,k is the genotype of subject i on the k-th randomly selected causal SNP. The

coefficients are proportional to α1 and α2: α∗1 = α1/10 = 0.04 and α∗2 = α2/10 = 0.06/r,

such that the empirical powers are differentiable.

Two important points are illustrated by this simulation: 1. the advantage of incor-

porating longitudinal information over using only the average outcome; 2. The use of

multi-marker tests over single-marker tests. The proposed multi-marker tests using the

longitudinal outcome have larger power than SKAT using the average of outcomes, as the
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proposed tests use the whole trajectory of longitudinal outcomes as opposed to only infor-

mation contained in the average. When the number of repeated measurements increases,

the power becomes more distinct. Not surprisingly, LGRF-J test has slightly lower power

than LGRF-G because gene-time interaction does not exist in these scenarios.

When the causal SNP has only an interaction effect (Table 3.4), the relative perfor-

mance of the methods using repeated measures compared with the one using average out-

come is more distinct. In addition, the joint test LGRF-J is able to further enhance power

in these scenarios because it incorporates the gene-time interaction explicitly. We note

that the power difference between LGRF and SKAT using average outcome is mainly at-

tributed to the longitudinal design rather than the difference between genetic random field

model and SKAT (Supplementary Table B.4).

We also note that the proposed multi-marker tests have larger power than single-marker

tests using GEE with Bonferroni correction (Tables 3.3-3.5), consistent with results found

in cross-sectional studies where advantages of multi-marker tests over single-marker tests

have been demonstrated repeatedly. The advantage in power is more substantial when

there are multiple causal SNPs (Table 3.5) than when there is only one causal SNP (Tables

3.3-3.4).
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Table 3.2: Type-I Error Rate Corresponding to Different Within-Subject Correlation Structures. Each cell represents the empirical
type-I error rate evaluated at α=0.05, 0.01 and 0.001 based on 100000 replicates. The total number of observations
is 2,400 and repeated measurements per subject were generated in the same follow-up period according to different
correlation structures. Ind.: the repeated measurements are independent. CS: the correlation is compound symmetric.
AR1: the repeated measurements follow a first-order auto-regressive model. RR: observations follow a mixed model with
a random intercept and a random slope. LGRF-G: the LGRF test for the marginal effect of a gene. LGRF-J: the LGRF
test for the joint effect of gene and gene-time interaction. The working correlation assumed in LGRF is CS.

Type-I Error Rate
Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J
α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0495 0.0096 0.0008 0.0493 0.0097 0.0008
CS 0.0493 0.0099 0.0009 0.0491 0.0096 0.0009

AR1 0.0499 0.0097 0.0009 0.0507 0.0097 0.0009
RR 0.0497 0.0094 0.0009 0.0498 0.0096 0.0008

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J
α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0501 0.0096 0.0009 0.0501 0.0093 0.0010
CS 0.0501 0.0097 0.0009 0.0488 0.0089 0.0008

AR1 0.0485 0.0093 0.0009 0.0494 0.0097 0.0008
RR 0.0497 0.0096 0.0010 0.0500 0.0095 0.0009

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J
α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0488 0.0091 0.0008 0.0483 0.0091 0.0007
CS 0.0484 0.0092 0.0010 0.0488 0.0090 0.0007

AR1 0.0474 0.0090 0.0008 0.0471 0.0089 0.0009
RR 0.0492 0.0095 0.0008 0.0485 0.0091 0.0008
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Table 3.3: Power comparisons when one randomly selected SNP is causal and has a marginal effect. Each cell represents the em-
pirical power from 500 replicates at level α=0.05. The total number of observations is 2,400 and repeated measurements
were recorded in the same follow-up period. Ind.: the repeated measurements are independent. CS: the correlation is
compound symmetric. AR1: the repeated measurements follow a first-order auto-regressive model. RR: observations
follow a mixed model with a random intercept and a random slope. LGRF-G: the LGRF test for the marginal effect of
a gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. The working correlation assumed
in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the average value of repeated measurements as the outcome.
GEE-G: test the marginal association by GEE. GEE-J: jointly test the marginal association and gene-time interaction by
GEE. These single-marker tests were implemented by testing every SNP in the region and adjusting the minimum p-value
by the Bonferroni correction.

Power: Single SNP Marginal Effect
Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.42 0.39 0.34 0.26 0.19
CS 0.53 0.49 0.43 0.41 0.33

AR1 0.46 0.45 0.38 0.32 0.28
RR 0.58 0.55 0.46 0.50 0.43

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.48 0.47 0.31 0.29 0.26
CS 0.40 0.41 0.28 0.28 0.23

AR1 0.41 0.38 0.29 0.26 0.21
RR 0.51 0.48 0.35 0.42 0.37

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.40 0.39 0.25 0.29 0.23
CS 0.36 0.35 0.25 0.22 0.18

AR1 0.36 0.36 0.22 0.23 0.21
RR 0.49 0.45 0.24 0.34 0.30
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Table 3.4: Power comparisons when one randomly selected SNP is causal and has only a gene-time interaction effect. Each
cell represents the empirical power from 500 replicates at level α=0.05. The total number of observations is 2,400 and
repeated measurements were recorded in the same follow-up period. Ind.: the repeated measurements are independent.
CS: the correlation is compound symmetric. AR1: the repeated measurements follow a first-order auto-regressive model.
RR: observations follow a mixed model with a random intercept and a random slope. LGRF-G: the LGRF test for the
marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. The working
correlation assumed in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the average value of repeated measurements
as the outcome. GEE-G: test the marginal association by GEE. GEE-J: jointly test the marginal association and gene-time
interaction by GEE. These single-marker tests were implemented by testing every SNP in the region and adjusting the
minimum p-value by the Bonferroni correction.

Power: Single SNP×Time Effect
Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.38 0.39 0.29 0.21 0.20
CS 0.48 0.54 0.36 0.33 0.46

AR1 0.41 0.49 0.34 0.27 0.34
RR 0.53 0.57 0.39 0.42 0.50

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.38 0.43 0.20 0.21 0.23
CS 0.33 0.44 0.19 0.17 0.37

AR1 0.31 0.39 0.21 0.16 0.21
RR 0.42 0.50 0.25 0.27 0.38

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.32 0.36 0.16 0.16 0.19
CS 0.25 0.36 0.16 0.12 0.30

AR1 0.25 0.35 0.14 0.13 0.16
RR 0.35 0.44 0.16 0.16 0.31
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Table 3.5: Power comparisons when randomly selected multiple SNPs are causal and have both marginal and interaction effects.
Each cell represents the empirical power from 500 replicates at level α=0.05. The total number of observations is 2,400
and repeated measurements were recorded in the same follow-up period. Ind.: the repeated measurements are independent.
CS: the correlation is compound symmetric. AR1: the repeated measurements follow a first-order auto-regressive model.
RR: observations follow a mixed model with a random intercept and a random slope. LGRF-G: the LGRF test for the
marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. The working
correlation assumed in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the average value of repeated measurements
as the outcome. GEE-G: test the marginal association by GEE. GEE-J: jointly test the marginal association and gene-time
interaction by GEE. These single-marker tests were implemented by testing every SNP in the region and adjusting the
minimum p-value by the Bonferroni correction.

Power: Multiple SNPs Combined Effect
Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.36 0.36 0.25 0.13 0.09
CS 0.50 0.49 0.37 0.19 0.18

AR1 0.43 0.42 0.35 0.19 0.17
RR 0.60 0.60 0.46 0.36 0.29

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.37 0.36 0.21 0.15 0.11
CS 0.33 0.35 0.21 0.12 0.10

AR1 0.32 0.32 0.22 0.13 0.10
RR 0.46 0.43 0.24 0.22 0.15

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.30 0.30 0.17 0.11 0.11
CS 0.27 0.29 0.18 0.09 0.11

AR1 0.26 0.28 0.14 0.08 0.08
RR 0.40 0.41 0.20 0.19 0.15
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CHAPTER IV

Set-Based Tests for Gene-Environment Interaction in Longitudinal
Studies

4.1 Introduction

Most complex traits have a multifactorial etiology involving the dynamic interplay of

genes and environmental exposures over the life course. Studies of gene-environment in-

teraction (GEI) often suffer from single one time measurement of exposure or a crude

proxy thereof, without proper characterization of lifetime history of cumulative exposure.

Longitudinal studies with time varying measures of outcome and exposure data help with

characterizing the temporal features of exposure and outcomes, handling exposure mea-

surement error and often enhance power when compared to a cross-sectional analysis.

While environmental factors considered in an epidemiological analysis are often behav-

ioral factors like diet, physical activity, use of tobacco or alcohol, in recent years, there

has been an increasing interest in measuring the neighborhood environment that the in-

dividual lives in. For example, the MESA neighborhood Study, an ancillary study to the

Multi-Ethnic Study of Atherosclerosis (MESA), includes a set of novel time varying mea-

sures of healthy food availability and access to recreational facilities. Previous studies

have shown that individuals living in neighborhoods with better food and physical activity

environments are less likely to develop hypertension (Kaiser et al. (2015)). In the present

analysis, we are primarily interested in investigating whether a set of single nucleotide
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polymorphisms (SNPs) measured in a genome-wide association study modifies the effect

of neighborhood exposures on longitudinal measures of blood pressure.

Gene-environment interaction is often statistically assessed by fitting a regression model

for the quantitative outcome (Y ) by including the main effects and a product between a

genetic variant (G) and an environmental exposure (E), adjusting for covariates (X). A

typical genome-wide interaction search repeats the test for interaction under this model

for millions of SNPs, adjusting for multiple comparison. Although numerous single SNP

based analyses for gene-environment interaction have been conducted, relatively few of

the findings have been replicated because of various reasons such as: limited statistical

power due to the burden of multiple comparison; measurement error and misclassification

of exposure; detection of spurious interactions due to not properly adjusting for main effect

of E and G (for example due to missing a non-linear terms in a continuous exposure E)

(Thomas (2010); Tchetgen Tchetgen and Kraft (2011); Mukherjee et al. (2012); Cornelis

et al. (2012); Boonstra et al. (2016)).

To improve power and to reduce the burden of multiple comparison, many genetic

association studies have now considered an alternate or supplementary analytic approach

towards jointly testing the effect of all SNPs in a biologically defined set, such as a gene,

pathway or specific genomic region as opposed to a one-at-a-time single SNP analysis.

Aggregation of SNPs is particularly critical for studies of rare variants (Derkach et al.

(2014); Basu and Pan (2011)). A number of methods have gained popularity including

kernel machine regression methods (Wu et al. (2011)), similarity regression (Tzeng et al.

(2011)), sum of squared score test (Pan (2009)) and genetic random field model (He et al.

(2014); He et al. (2015)). In the context of testing gene-gene/gene-environment interaction

for cross-sectional studies, Tzeng et al. (2011), Li et al. (2012), Lin et al. (2013), Chen

et al. (2014), Marceau et al. (2015) and Lin et al. (2016) extended the set-based tests for
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marginal associations to testing interactions. These papers demonstrated superior power

of set-based tests for gene-environment interaction by aggregating signals across multiple

SNPs. However, no set-based test for gene-environment interaction has been proposed

for longitudinal studies where improved power regarding gene-environment interaction is

possible by using longitudinally varying outcome and exposure trajectories.

Most GEI studies consider a linear main effect of E. A growing body of literature

has shown that a misspecified main effect of E can lead to type I error inflation in tests

for gene-environment interaction, and gene-environment independence in the underlying

population plays an important role in reducing the detection of spurious gene-environment

interactions (Tchetgen Tchetgen and Kraft (2011); Voorman et al. (2011); Cornelis et al.

(2012)). However, the theoretical justification for this result has not been established (Van-

derWeele et al. (2013)). Also, there is no method proposed for handling misspecified E

effect when G and E are dependent, particularly for set-based analysis. For the main ef-

fect of G, Lin et al. (2013) pointed out that single SNP analyses for gene-environment

interaction can be biased due to ignoring SNPs in the same region that are in linkage dis-

equilibrium (LD) with the tested SNP. Set-based analysis can serve as a potential remedy

to this issue, but one practical challenge that is new to deriving set-based tests for GEI

is that the null model contains main effects of multiple SNPs and fitting the null model

could potentially be problematic when the number of SNPs in a region is large relative to

the sample size. The tests can suffer from type I error inflation as the asymptotic distribu-

tional properties of the reference test statistic may not hold under such situations.

In this article, we propose a new statistical approach to test for gene-environment inter-

actions with a set of genetic variants and longitudinally measured outcome and exposure

data. The test is robust to misspecification of within subject correlation and is substantially

more powerful than an analysis that uses subject-specific averages/summaries of outcome
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and exposure data. We show that the proposed test is robust to the misspecification of E

and G main effects under the gene-environment independence condition. We further pro-

pose using the method of sieves to flexibly model the main effect of E for improved type

I error control when the gene-environment independence condition does not hold, and for

better power. We also proposed a weighted principal component analysis (PCA) to remedy

the curse of dimensionality when the number of SNPs in the tested set is close to or larger

than the sample size. We illustrate the proposed methods by both an analysis of targeted

GEI (restricted to genetic regions defined around previous GWAS hits) and an agnostic

genome-wide gene-based GEI search, with novel time-varying neighborhood features of

the environment as exposure, and blood pressure as the longitudinally measured outcome

in MESA. Extensive simulation studies, designed to mimic the data structure of MESA

are conducted to assess the operating characteristics of the different methods.

4.2 Application: Multi-Ethnic Study of Atherosclerosis

MESA was initiated in the year 2000 with the goal of investigating the prevalence,

correlates and progression of subclinical cardiovascular disease (Bild et al. (2002)). A to-

tal of 6360 MESA subjects who consented to genetic analyses, including 2526 European

Americans (EUR), 1611 African Americans (AFA), 1448 Hispanics (HIS) and 775 Asian

of Chinese descent (CHN), were included in the current analysis. From 2000 to 2007,

four examinations were conducted at approximately 1.5-2 year intervals for participants

residing at six study sites: New York, New York; Baltimore, Maryland; Forsyth County,

North Carolina; Chicago, Illinois; St Paul, Minnesota; and Los Angeles, California. Blood

pressure measurements were available at each MESA exam. An ancillary study of MESA,

the MESA neighborhood study, collected longitudinal information on neighborhood char-

acteristics in the four examinations, including four time varying measures of healthy food
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availability and physical activity resources (Moore et al. (2008); Christine et al. (2015)).

These neighborhood environments may influence individual diet and exercise levels, and

therefore influence risk factors for chronic diseases, e.g. systolic/diastolic blood pressure

(Mujahid et al. (2008)).

The four neighborhood measures include two geographic information system (GIS)

based measures and two survey based measures: 1. Density of favorable food stores (GIS-

based); 2. Density of recreational facilities (GIS-based); 3. Perceived healthy foods avail-

ability (survey-based); 4. Perceived walkability (survey-based). The GIS measures were

constructed using the National Establishment Time Series (NETS) database from Wall and

Associates for 2000 to 2007 on food stores and commercially-available recreational facil-

ities for every ZIP code within a 5 miles radius of MESA participant households. The

survey based measures of healthy food availability and walkability were obtained from

questionnaires administered to MESA participants and supplementary sample of other

community residents. The detailed description of these neighborhood features can be

found in section 4.1 the Supplementary Materials (Appendix C). A growing body of liter-

ature has suggested that altering these neighborhood environments may foster behavioral

changes and may aid in prevention of chronic diseases (Papas et al. (2007); Sallis et al.

(2012); Christine et al. (2015)). Our interest lies in understanding whether an individual’s

genomic profile modifies the effect of neighborhood features on blood pressure.

We conducted both a targeted GEI analysis and a gene-based genome-wide GEI anal-

ysis. Our targeted GEI analysis studied 29 candidate genomic regions which were se-

lected around 29 index SNPs that are significantly associated with blood pressures (p-value

< 10−9) by the International Consortium for Blood Pressure Genome-Wide Association

Studies, ICBP (2011). The criteria of determining each genomic region is same as He

et al. (2015): when the index SNP fell within a gene, we selected all SNPs within the
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gene +/- 5kb and adopted the gene’s name to label the region. When the index SNP fell

outside of a gene, we selected the index SNP plus all SNPs +/- 50kb and name the re-

gion after the index SNP. Number of SNPs in these regions ranges from 10 to 840 SNPs.

Our genome-wide gene-based analysis studied 24743 protein coding genes +/- 5kb de-

fined by the UCSC genome browser (Karolchik et al. (2003)). The SNPs in the regions

were directly genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0 or

imputed as per MESA protocol. Imputation was performed using the IMPUTE 2.1.0 pro-

gram by Marchini et al. (2007) in conjunction with HapMap Phase I and II reference panels

(CEU+YRI+CHB+JPT, release 22 - NCBI Build 36 for African-, Chinese- and Hispanic-

American participants; CEU, release 24 - NCBI Build 36 for European Americans). All

common and rare variants are included in our analysis without any minor allele frequency

filters.

4.3 Model and Inference

Consider a study population with m independent subjects where the i-th subject has

ni longitudinal observations, n =
∑m

i=1 ni. When ni = 1 for all 1 ≤ i ≤ m, this

corresponds to a cross-sectional study. Let Yi,j be the quantitative outcome value, X i,j =

(X1
i,j, ..., X

p
i,j)

T be the p covariates which can include age, gender, education, etc., Ei,j be

the environmental exposures for the j-th observations on the i-th subject measured at time

ti,j; Ḡi = (G1
i , ..., G

q
i )
T be the q time-invariant genetic variants in the target region, where

Gk
i ∈ {0, 1, 2}. We define Y i = (Yi,1, ..., Yi,ni)

T as a vector of all observations and Gi =

(Ḡi, ..., Ḡi)
T as an ni×q matrix of genetic variants where Ḡi is repeated ni times;X i,Ei

are defined as the matrix forms of covariates and environmental exposure similarly. We

are interested in the statistical interaction between Ei,j and Ḡi on outcome Yi,j , adjusting

for X i,j in addition to the main effect of Ei,j and Ḡi. Ei,j can be a summary statistic of
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measures of environmental exposure prior or up to exam j if the investigators believe the

outcome not only depends on the current values of exposure but also the previous exposure

history. For example, Ei,j can be the cumulative average of repeated exposure measures

up to exam j. The statistical interaction between the environmental exposure and the k-th

genetic variant is characterized by Ei,jGk
i . We define Ei,j ∗ Ḡi = (Ei,jG

1
i , ..., Ei,jG

q
i )
T

and its matrix form is denoted by Ei ∗Gi, an n× q matrix.

One popular approach for analyzing longitudinal genetic data is a single SNP analysis,

repeated for each of the Gk
i separately, k = 1, ..., q, based on a generalized estimating

equation (GEE) approach,

E(Yi,j|X i,Ei, G
k
i ) = XT

i,jβX + Ei,jβE +Gk
i βG,k + Ei,jG

k
i γk,

where βX = (βX,1, ..., βX,p)
T , βE and βG,k are the coefficients for covariates, main effect

of exposure and the k-th SNP respectively; γk is the gene-environment interaction pa-

rameter of interest. Both the main effects (βX , βE, βG,k) and the interaction effect γk are

modeled as fixed effects. The null hypothesis is H0 : γk = 0. To extend it to a set-based

analysis, a natural multivariate model includes all SNPs in the same region simultaneously,

(4.1) µi,j = E(Yi,j|X i,Ei,Gi) = XT
i,jβX + Ei,jβE + Ḡ

T
i βG + (Ei,j ∗ Ḡi)

Tγ,

where βG = (βG,1, ..., βG,q)
T ; γ = (γ1, ..., γq)

T . The null hypothesis jointly tests the

entire interaction vector of length q, namely, H0 : γ = 0. The working covariance matrix

of Y i is denoted as V −1i (ζ), which is of size ni×ni and depends on a vector of parameters

ζ. For cross-sectional studies, Lin et al. (2013) considered βG as fixed effects and assumed

that each coefficient γk follows i.i.d N(0, τ 2) and proposed a variance component score

test for H0 : τ 2 = 0. Instead of the mixed effect model, we propose a GEE approach

based on the unified fixed effect model (4.1), where the parameters have a more natural

interpretation.
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The classical approach for testing H0 : γ = 0 is a q-degree of freedom likelihood

ratio/wald/score test. However, Goeman et al. (2006) showed the power of such tests tend

to diminish rapidly when the dimensionality q is large, which is common when the region

considered consists of hundreds of variants. To address this, we develop a generalized

score type test that can exploit the LD among the SNPs to reduce the test degrees of

freedom under model (4.1). The score vector from model (4.1) with respect to γ is:

Sγ(β, ζ,γ) =
m∑
i=1

Sγ ,i(β, ζ,γ) =
m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)(Y i − µi),

where µi = (µi,1, ..., µi,ni)
T . By M-estimation theory, the score statistic 1√

m
Sγ(β̂, ζ̂, 0)

asymptotically follows a multivariate normal distribution with mean zero and covariance

Σ under H0, where β̂ and ζ̂ are the estimators under H0 : γ = 0 obtained by using the

usual GEE proposed by Liang and Zeger (1986). Each element 1√
m
Skγ(β̂, ζ̂, 0) follows an

asymptotic normal distribution with mean zero. The classical score test summarizes the

vector 1√
m
Sγ(β̂, ζ̂, 0) into a scalar by considering 1

m
Sγ(β̂, ζ̂, 0)T Σ̂

−1
Sγ(β̂, ζ̂, 0) where

Σ̂ is an estimator of Σ. In this case, the test statistic follows a chi-square distribution with

q degrees of freedom, i.e., a sum of q squared independent normal random variables. This

approach involves the inversion of Σ̂, which is not stable when q is large relative to m,

and cannot be applied to scenarios when q > m. To address this, we define a test statistic

Q for testing H0 : γ = 0 by aggregating the score statistics in a different way,

Q =
1

m
STγ(β̂, ζ̂, 0)Sγ(β̂, ζ̂, 0) =

1

m

q∑
k=1

{Skγ(β̂, ζ̂, 0)}2,

where Skγ(β̂, ζ̂, 0) corresponds to the k-th interaction term. The statistic can be understood

as the overall deviation from 0 of all score statistics where each of them measures the

strength of a specific interaction effect. Let Sβ(β, ζ,γ) denote the score vector with

respect to β.
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Result 3.1: Under model (4.1) and H0 : γ = 0, if q is fixed and m → ∞, Q is

asymptotically distributed as

(4.2)
q∑

k=1

λkχ
2
k

where χ2
ks are i.i.d. Chi-square distributions with degree of freedom one; λ1 ≥ . . . ≥ λq

are the eigen-values of Σ and can be estimated by {λ̂k}1≤k≤q,

max
1≤k≤q

|λ̂k − λk| = op(1), m→∞;

λ̂1 ≥ . . . ≥ λ̂q are the ordered eigen-values of Σ̂. Specifically, Σ̂ = ÂD̂Â
T

,

Â = {Iq,−[
m∑
i=1

(Ei∗Gi)
TV −1i (ζ̂)(X i,Ei,Gi)][

m∑
i=1

(X i,Ei,Gi)
TV −1i (ζ̂)(X i,Ei,Gi)]

−1},

D̂ =
1

m− p− q − 1

m∑
i=1

Si(β̂, ζ̂, 0)Si(β̂, ζ̂, 0)T , Si(β̂, ζ̂, 0) = [Sγ ,i(β̂, ζ̂, 0)T , Sβ,i(β̂, ζ̂, 0)T ]T .

Result 3.1 shows the asymptotic behavior of the test statistic Q as m goes to infinity.

The proof is given in the supplemental materials. The variance component test proposed

by Lin et al. (2013) also follows a similar weighted summation of chi-square distributions,

but their weights are estimated using a model based inference. Instead, we estimate the

weights using the “sandwich estimators”. The empirical estimated weights make the test

robust against misspecification of within-subject correlation, which is a desirable property

in longitudinal studies with repeated measurements. This sandwich estimation also plays

a role in reducing spurious gene-environment interactions caused by potential main effect

misspecification of E when G and E are independent, as observed by Voorman et al.

(2011) and Cornelis et al. (2012). The rigorous result that explains these observations will

be left to the next section.

The proposed test statistic belongs to the class of quadratic test statistics of the form

Q = STAS as described in Derkach et al. (2014), where S is the score vector. Other
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examples of test statistics which belong to this class include the ones used in the methods

rareGE (Chen et al. (2014)), iSKAT (Lin et al. (2013); Lin et al. (2016)) and the classical

q d.f. score test. For our proposed test, rareGE and iSKAT, A equals I . For the classical

score test, A equals Σ̂
−1

where Σ̂ is the estimated covariance matrix of S. Since SNPs

in a region can be strongly correlated due to linkage disequilibrium, many eigen-values

of Σ are close to 0, and the effective test degrees of freedom is less than q. Therefore

the proposed test implicitly reduces the test degrees of freedom compared to the classical

score test. It is worth noting that the power of a test not only depends on the test degrees

of freedom, but also the non-centrality parameter. Since both the effective test degrees

of freedom and non-centrality parameter may change across various scenarios, there is no

theoretical result for a uniformly optimal choice for constructing a test statistic achieving

the highest power in the class of quadratic test statistics. However, many empirical studies

have demonstrated the tests with A = I , such as rareGE, iSKAT and our proposed test,

has superior power than classical score test in genetic association studies (Wu et al. (2010);

Tzeng et al. (2011); He et al. (2014)). Basu and Pan (2011) also pointed out that these tests

can be regarded as modified score test by ignoring the non-diagonal elements ofA, which

is known to be advantageous for high-dimensional data.

RareGE, iSKAT and our test statistic differ in three aspects, even for cross-sectional

data. First, they adjust for the main effect of G differently. RareGE assumes the coef-

ficients βG ∼ N(0, τ1I), iSKAT uses ridge regression, our method uses the weighted

PCA approach. Second, each of these methods defines the score vector S differently.

They all consider a score vector of the form S = GTV −1(ζ̂)(Y − µ̂), but rareGE defines

V (ζ̂) = τ̂1GG
T + σ̂2I , µ̂ = Xβ̂X+Eβ̂E; both iSKAT and our test defines V (ζ̂) = σ̂2I ,

µ̂ = Xβ̂X + Eβ̂E + Gβ̂G. Third, they estimate the covariance of S differently. Both

rareGE and iSKAT use model based inference, our test uses robust variance estimation.
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In addition, we note that rareGE and iSKAT were proposed only for cross-sectional data,

whereas our test is applicable to both cross-sectional and longitudinal studies. Moreover,

our method proposes flexible modeling of main effects of G & E (Section 4.4), leading

to improved power and Type 1 error properties under misspecification of the main effect

model.

4.4 Main Effect Adjustment

So far, we have discussed inference under a correctly specified main effect model under

H0. Unlike set-based tests for genetic association, set-based tests for gene-environment in-

teraction face the unique challenge of having a potentially misspecified and high-dimensional

null model. In this section, we consider potential strategies when the main effect of E may

be misspecified and the dimension of G, namely q, is large relative to m. A key step for

implementing the proposed generalized score type test is fitting the following main effect

model under the null hypothesis

µi,j = EH0(Yi,j|X i,Ei,Gi) = XT
i,jβX + Ei,jβE + Ḡ

T
i βG.

There are two challenges with respect to this step. First, a misspecified main effect of Ei,j

can lead to a biased score (EH0 [Sγ ,i(β, ζ, 0)] 6= 0) and severe type I error inflation. This

may happen when the underlying main effect of the environmental exposure is nonlinear

but a linear model is specified. Second, the dimension of Ḡi can be large relative to the

sample size, such as the MECOM region in MESA which includes 821 SNPs but the

Chinese Americans only have 775 subjects. The estimates of β = (βTX , βE,β
T
G)T are not

consistent and the approximation to the asymptotic distribution ofQ as presented in Result

3.1 does not hold anymore. To address these challenges, we first ensure the robustness

of the proposed test to main effect misspecification by exploiting the gene-environment

independence condition, then develop methods to handle the main effect misspecification
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of E and high-dimensionality of G when the gene-environment independence condition

does not hold.

4.4.1 Gene-environment independence condition

Gene-environment independence plays a crucial role in the main effect adjustment.

We show in Result 4.1 that the test proposed in Section 4.3 will be robust to main effect

misspecification under the gene-environment independence condition, by centering Ei

andGi using weighted average as described in section 1.2 of the Supplementary Materials

(Appendix C).

Result 4.1: If the following two assumptions hold:

C1. X i can be separated as (XE
i ,X

G
i ) where (XE

i ,Ei) is independent ofGi and (XG
i ,Gi)

is independent of Ei,

C2. cov(XG
i,l,Gi) is time invariant,

then the expectation of the score vector equals zero, i.e.,EH0 [Sγ ,i(β, ζ, 0)] = 0, regardless

of the main effect model of E and G when Ei andGi are centered appropriately.

Condition C1 can be seen as the more commonly used condition of gene-environment

independence with additional requirement on the covariatesX i. For instance, time and age

are likely to be correlated with the time varying environmental exposure but independent of

the time invariant SNPs. It reduces to the gene-environment independence condition in the

special case of no covariates. Condition C2 is specifically for longitudinal studies, and it

always holds for cross-sectional studies. It is also satisfied in the special case whenXG
i is

time invariant, which is common in a genetic study, e.g. whenXG
i consists of the leading

principal components to control for population stratification. The weighted average used

to center E and G are proposed to take into account of the within-subject correlation

among observations on the same subject (see section 1.2 of the Supplementary Materials
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(Appendix C)). For cross-sectional studies, this approach reduces to simply centering E

and G by the usual average.

Under C1 and C2, the proposed test is robust to a misspecified main effect model, if

Σ is estimated using the sandwich covariance estimator and E and G are weighted and

centered. This is because the score statistic 1√
m
Sγ(β̂, ζ̂, 0) will asymptotically follow a

mean zero multivariate normal distribution, whose covariance matrix is empirically esti-

mated by sandwich estimators. Therefore the asymptotic distribution of Q, as a function

of 1√
m
Sγ(β̂, ζ̂, 0), can be correctly estimated. Under C1 and C2, this result shows us-

ing a linear model for E is sufficient for controlling type I error rate regardless of the

true functional form of the main effect of E. The problem of inconsistency due to high-

dimensionality of G can be simply solved by excluding the main effects of all SNPs in

the model. However, these strategies are not adequate, especially when C1 and C2 are

violated. We further develop methods for main effect adjustment of E and G in the subse-

quent sections that are appropriate under violations of C1 and C2.

This result also explains the findings in Voorman et al. (2011) and Cornelis et al. (2012),

where the authors showed that using sandwich estimators can reduce the detection of spu-

rious gene-environment interactions in cross-sectional studies. Specifically, the simulation

studies conducted by Voorman et al. (2011) did not observe any type I error inflation un-

der misspecification of main effect of E when a sandwich estimator was used, because

no association between G and E was simulated; The genome-wide analysis for gene-

environment interactions conducted by Cornelis et al. (2012) used QQ-plots to show that

using a sandwich estimator can reduce the type I error inflation. This is likely due to the

fact that a vast majority of the SNPs are usually not correlated with the environmental ex-

posure. Using sandwich estimators for variance will eliminate the inflation for these SNPs

as gene-environment independence is effectively true in these situations.
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4.4.2 Main effect misspecification of E

Most GEI studies consider a linear main effects model as described in (4.1). When C1

and C2 do not hold, ignoring a nonlinear main effect can result in a biased score function

and lead to severe type I error inflation. Even if C1 and C2 hold and type I error is not a

concern, a misspecified main effect model for E can significantly reduce power for testing

interaction. Examples include the cases when the main effect of E has a quadratic effect,

or E is a log-transformed exposure but the true effect is on the original scale. In this

subsection, we make further effort to control the bias in the scores due to a misspecified

main effect of E when C1 and C2 do not hold, and improve the power. Since the true main

effect hE(·) is unknown, we propose to approximate it non-parametrically by the method

of “sieves”: expand hE(·) by a sequence of finite dimensional models ΦU (sieves), then

allow the model complexity U to grow slowly with the sample size (Grenander (1981)).

Numerous sieve estimators have been proposed such as the polynomial sieves and the

spline sieves:

ΦP
U = {hE,U : hE,U(x,βE) =

U∑
u=1

xuβE,u}; ΦS
U = {hE,U : hE,U(x,βE) =

U∑
u=1

BU
u (x)βE,u},

where BU
u (·) is the u-th spline basis function. So the function hE(·) can be approximated

by a series of sieves. The uniform convergence rate of hE,U(x, β̂E) asm→∞ depends on

the smoothness of hE(x). The details of asymptotic results can be found in Newey (1997).

The main effect model based on the sieve representation can be written as

(4.3) µi,j = EH0(Yi,j|X i,Ei,Gi) = XT
i,jβX + hE,U(Ei,j;βE) + Ḡ

T
i βG,

where hE,U(·) is a finite dimensional model using spline/polynomial sieves. Result 4.2

shows that, under C1 and C2, a test for gene-environment interaction based on a main

effect model (4.3) will be asymptotically equivalent to using the true model. Thus the test

not only has correct type I error rate, but also is as powerful as using the true model.
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Result 4.2: If C1 and C2 hold and hE,U(x; β̂E) uniformly converges to hE(x) for ∀ x

as m→∞,

1√
m
Sγ(β̂, ζ̂, 0) =

1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)(Y i − µ0

i ) + op(1).

where µ0
i is the stacked vector of conditional means in (4.3) with true main effect hE(·).

This includes a scenario where U is larger than the underlying model complexity. For

example, if the underlying main effect of E is linear but we model it using cubic-spline

sieves with U > 1, the test will be asymptotically equivalent to a linear model and will not

be less powerful under C1 and C2. When C1 and C2 do not hold, introducing unnecessary

model complexity can reduce the power. However, we note that the proportion of total

variation of an exposure explained by a single genomic region is usually not expected to

be very large. With this weak dependency, our simulation studies demonstrate that type I

error inflation due to main effect misspecification of E can be severe, but the power loss

due to using more complex model is negligible (Table 4.1). In summary, flexibly modeling

the main effect of E does not substaintially hurt power for tests of gene-environment

interaction, and greatly helps in controlling type I error rate. This is a very important

observation for practice. However, we note that this is different from using more flexible

models for the GEI terms in the alternative hypothesis, which certainly entail substantial

loss of power.

Result 4.2 also helps to choose the model complexity U , which plays a crucial role

in the method of sieves. The common criteria include cross-validation that minimizes

the integrated mean square error, the Mallows criterion by Mallows (1973), the Akaike

information criterion described in Akaike (1998) and the Bayesian information criterion

by Schwarz (1978). Although these methods are still reasonable, Result 4.2 indicates that

the ideal criteria for main effect adjustment can be different, because the primary focus is
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to test another set of variables (the interactions terms). Based on Result 4.2, a larger U

allowed by sample size is recommended for better controlling type I error rate and will

not hurt power. In this paper, we specifically illustrate the proposed test with a sufficiently

rich main effect model for E with U = m
1
2 . The choice of U is driven by existing results

that ensure the asymptotic estimation of the coefficients by GEE is reliable. The detailed

discussion can be found in Wang (2011).

4.4.3 High-dimensionality of G

When a large genomic region is considered in a set-based analysis, the number of pa-

rameters can be large relative to the sample size. The top panel in Supplementary Figure

C.1 shows an example in MESA where region MECOM includes 821 SNPs but the Chi-

nese Americans only have 775 subjects. When C1 and C2 do not hold, the main effect

of G cannot be ignored because its confounding effect can lead to bias and type I error

inflation. Lin et al. (2013) proposed to use ridge regression for handling the main effect

of G, but their test is still based on the assumption that q is fixed and m → ∞, same as

the method presented in Section 4.3. These methods work well when the dimension of

G is moderate, but suffer from severe type I error inflation when the number of SNPs is

close to or larger than the sample size (Table 4.2; Supplementary Table C.1). This is a

curse of dimensionality and some form of dimension reduction in the G space is needed.

In this subsection, we make further effort to deal with both the high-dimensionality and

the confounding effect of G.

To deal with the high-dimensionality of G, one natural choice is taking advantage of

the LD structure in genetic regions, and use some form of PCA. The first panel in Sup-

plementary Figure C.1 shows a typical genome region that contains several LD blocks

and SNPs within each block are correlated. Therefore eigen-values corresponding to the

principal components (PC) decrease to zero very quickly as a function of the leading num-
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ber of components (Supplementary Figure C.1). This enables us to use a small number

of PCs to explain most variation in G. A standard PCA results in orthogonal compo-

nents {P s
i }1≤s≤q ranked by the corresponding eigen-values κ1 ≥ . . . ≥ κq, E(P s

i ) = 0,

var(P s
i ) = κs. Each component is a linear combination of {Gk

i }1≤k≤q. We usually fit the

leading PCs:

(4.4) µi,j = EH0(Yi,j|X i,Ei,Gi) = XT
i,jβX + Ei,jβE +

S∑
s=1

P s
i βP,s,

where 1 ≤ S ≤ q. The PCA approach with a well chosen S is a plausible remedy for the

curse of dimensionality, but not ideal for adjusting the confounding effect of G because

there can be low-rank PCs that has non-zero effect on the outcome. When C1 does not

hold, it is subject to bias because the model ignores the missed set of q − S PCs so that,

now, the main effect of G is misspecified. Let P s
i = (P s

i , ..., P
s
i )T be the stack of PCs

corresponding to subject i. Result 4.3 explicitly gives the bias expression due to missing

q − S PCs.

Result 4.3 The bias due to fitting model (4.4) is given by

EH0 [Sγ ,i(β, ζ, 0)] =

q∑
s=S+1

{E[(Ei ∗Gi)
TV −1i (ζ)P s

i − φs}β0
P,s,

where β0
P,s is the coefficient in the full model where all PCs are included;

φs = E{(Ei ∗Gi)
TV −1i (ζ)[X i,Ei,P

1
i , . . . ,P

S
i ]}A−1bs

A = E{[X i,Ei,P
1
i , . . . ,P

S
i ]TV −1i (ζ)[X i,Ei,P

1
i , . . . ,P

S
i ]}

bs = E{[X i,Ei,P
1
i , . . . ,P

S
i ]TV −1i (ζ)P s

i}.

The result shows that the bias due to a PC that was not included is proportional to its

association with the outcome conditional on (X i,Ei). This is also closely related to the

definition of confounders discussed by VanderWeele and Shpitser (2013).
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To reduce the bias due to the confounding effect ofG, a better approach should consider

the correlation between the outcome and the PCs in addition to the eigenvalues. A well-

known method that takes this correlation into account is the partial least squares regression

(PLS). PLS generates orthogonal components by sequentially optimizing their correlation

with the outcome and correlation with G (Boulesteix and Strimmer (2007)). However,

when the sample size is small and the region is large, PLS components are constructed by

overfitting an outcome regression model, which makes the test for the interaction terms

less powerful (Supplementary Table C.2). Instead, we propose to use the components

{P s
i }1≤s≤q from PCA but rank them by

corr(Yi,j, P
s
i |X i,Ei)

2var(P s
i ) = R2

sκs,

where R2
s stands for the variation of Yi,j explained by P s

i conditional on (X i,Ei). It is

reasonable to assume R2
s is not likely to vary across visits j under model (4.1) because

G is time invariant and we do not consider the situation that the association between G

and Y may vary by visit j under the null hypothesis. This weighted PCA approach uses a

criterion that is close to the objective function of PLS, but the selected PCA components

are not constructed by fitting an outcome regression model. Similar approach of using

correlation-selected PCs was also successfully used in GWAS to find PCs for population

stratification adjustment (Lee et al. (2011)). To adjust for the effect of the exposure and

covariates, we first regress Y i on (X i,Ei), then use the residuals to estimate R2 for each

principal component. To reduce the dimension of the fitted model (4.4), we again suggest

to use S = m
1
2 in practice to have reliable asymptotic estimation of β and illustrate it

using extensive simulation studies (Wang (2011)).
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4.5 Numerical Studies

We evaluated type I error rate and power of the proposed test using simulation stud-

ies for both cross-sectional and longitudinal data, and compared our method with existing

choices: 1. set based tests for GEI using a single average or baseline outcome and expo-

sure measure: iSKAT with ρ = 0 and rareGE assuming a random main effect of G (Lin

et al. (2013); Lin et al. (2016); Chen et al. (2014)); 2. a single SNP based test for longi-

tudinal outcomes and exposures: the minimum p-value test (MinP) using GEE. For each

simulated dataset, we directly sampled SNPs from gene regions in MESA and then con-

ditionally simulated the phenotype and environmental exposure. When there are repeated

measurements, we first simulated the complete data, and then applied a missingness in-

dicator with 4% fixed drop-out rate at each exam assuming data missing completely at

random. The coefficients in the simulation studies were chosen such that each variable

explains a reasonable variation in the outcome as in real data scenarios. For example, the

variation in the outcome explained by the main effect of E or G (a set of SNPs) ranges

from 5% to 15% in the longitudinal settings. We simulated top four principal components

as covariates directly from MESA genome-wide data to retain its correlation with the tar-

get region, and their coefficients were elicited based on the analysis of the corresponding

ethnic group. The simulation studies are structured into three scenarios where each part

empirically evaluates both type I error and power based on 1000 replicates.

Scenario 1: Role of main effect specification of E. In the first simulation setting, we

evaluated the proposed method when the main effect ofE is linear/nonlinear in both cross-

sectional and longitudinal settings. We focused on cubic-spline sieves generated by knots

at equally spaced quantiles of all observations. We used all SNPs from region indexed

by rs10850411 (190 SNPs) in European Americans (2526 subjects), and simulated one
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environmental exposure independent/dependent of the SNPs. To focus on the effect of E,

this region was chosen such that the sample size is sufficiently large relative to the number

of SNPs. The true model is of the form:

Ei,j = αE,0ti,j + αE,1Xi +
5∑

k=1

αE,2G
k
i + bE,i + εE,i,j, j = 1, . . . , d,

Yi,j =
4∑
s=1

αPC,sPC
s
i +α0ti,j +α1Xi+α2hM(Ei,j)+

5∑
k=1

α3G
k
i +α4Ei,j

5∑
k=1

Gk
i +bi+εi,j,

where d = 1 is for cross-sectional data and d = 4 is for longitudinal data; ti,j = j − 1

(0, 1, 2, 3 standing for visits); Xi ∼ N(0, 1) is a time-invariant covariate; PCs
i is the

s-th principal component of subject i directly from the MESA genome-wide data; five

out of the 190 SNPs (2.6%) are causal and Gk
i is the genotype of subject i for the k-

th randomly selected causal SNP; (αPC,1, αPC,2, αPC,3, αPC,4) = (−4.7,−0.9, 13.1, 1.3);

αE,0 = αE,1 = α0 = α1 = 1, α2 = 0.5, α3 = 2; αE,2 measure the association between

E and G. αE,2 = 0 when E is independent of G and αE,2 = 0.5 when E is dependent

of G (e.g., ∼ 3% variation in E is explained by G in the longitudinal setting); α4 =

0.10/0.05 for evaluating cross-sectional/longitudinal power and α4 = 0 for evaluating

type I error rate; bE,i ∼ N(0, 4), εE,i,j ∼ N(0, 4), bi ∼ N(0, 9), εi,j ∼ N(0, 9) and

they are all independent. hM is the main effect function specified as “E”, “0.3E2”, “E +

0.2E2” or “exp(0.4E)” for cross-sectional data, and “0.8E”, “0.2E2”, “0.5E + 0.1E2”

or “exp(0.3E)” for longitudinal data. The functions were scaled such that they explain

similar variation of Yi,l as compared to the linear model (e.g., ∼ 10% in the longitudinal

setting). Table 4.1 presents the results.

Type I error rate. Even when C1 holds, iSKAT using a model based inference has

inflated type I error rate (e.g., 0.172, 0.113 and 0.185 where the true models are E2,

E + E2 and exp(E) respectively, cross-sectional setting). rareGE has inflated type I er-

ror rate when the main effect of E is nonlinear, similar to iSKAT. However, the proposed
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method using the sandwich estimator is robust regardless of the main effect misspecifica-

tion; When C1 does not hold, only assuming a linear main effect does have type I error

inflation even if sandwich estimation is used (e.g., 0.906, 0.729 and 0.869 for E2, E +E2

and exp(E), longitudinal setting). However, the proposed method using the method of

sieves still has robust type I error rate.

Power. When C1 holds, the proposed method using the method of sieves always has

similar power as the method based on the true model, even if the true effect is linear and

additional model complexity was assumed for the main effects (e.g., 0.786 vs. 0.789,

longitudinal setting). When C1 is violated, the method of sieves results in slightly lower

power than using the true model (e.g., 0.774 vs. 0.796, longitudinal setting), but the power

difference is small. Moreover, the method of sieves often leads to improved power com-

pared with the method assuming a linear main effect when the true effect is nonlinear (e.g.,

0.786 vs. 0.606 when the true main effect is E2, longitudinal setting).

Scenario 2: Role of main effect specification of G. In the second simulation setting,

we evaluated the proposed method for the main effect adjustment of G in both cross-

sectional and longitudinal settings. We varied the number of SNPs (400 - 700) sim-

ulated from genotype region MECOM (821 SNPs) in Chinese Americans (775 sub-

jects), and simulated one environmental exposure independent/dependent of the SNPs.

The region was chosen to reflect a scenario where the number of SNPs is large relative

to the sample size. The model is same as that in Scenario 1 with a linear main effect

of E, so we omit the detailed equations and only present the parameters that are dif-

ferent from Scenario 1. In this scenario, five out of the 400/700 SNPs (1.3%/0.7%) are

causal; (αPC,1, αPC,2, αPC,3, αPC,4) = (−2.3,−24.9, 5.6,−13.3); αE,2 = 0 when E is

independent of G and αE,2 = 2 when E is dependent of G (e.g., ∼ 25% variation in E

is explained by G in the longitudinal setting). We chose a large αE,2 to observe the type
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I error inflation due to main effect misspecification of G. α4 = 0.2/0.1 for evaluating

cross-sectional/longitudinal power and α4 = 0 for evaluating type I error rate. The results

are summarized in Table 4.2.

Type I error rate. The MinP test based on single SNP analyses has inflated type

I error rate when C1 does not hold (e.g., 0.088/0.108 for 400/700 SNPs, longitudinal

setting). This result is consistent with the results in Lin et al. (2013). iSKAT using a

ridge regression has type I error inflation when the number of SNPs is large, especially

when the number is close to the sample size (0.089 for 700 SNPs, cross-sectional setting).

Supplementary Table C.1 further shows an example where iSKAT has type I error rate

close to one when the number of SNPs exceed the sample size. rareGE has slightly inflated

type I error rate when the number of SNPs is greater than the sample size (0.072 for 700

SNPs, cross-sectional setting, Supplementary Table C.1). The proposed method has well

controlled type I error rate for all scenarios considered in this stimulation setting. We

further evaluated PCA, PLS and weighted PCA as other possible approaches to reduce

dimension of G and summarized the results in Supplementary Table C.2. When C1 holds

and the number of adjusted components is five, type I error rates of PLS and weighted PCA

are well controlled, but that of PCA is inflated (e.g., 0.033/0.057/0.094 for PLS/weighted

PCA/PCA, 700 SNPs, longitudinal setting). When the number of components increases

to m
1
2 , all three have well controlled type I error rate. The proposed methods tend to be

slightly conservative due to the use of sandwich estimator as in regular GEE, even if a

correct mean model is used.

Power. The proposed method has similar power as using the true model and it is more

powerful than the MinP test (e.g., 0.588 vs. 0.472, 400 SNPs, longitudinal setting when E

andG are independent). We also evaluated the proposed test using a model based inference

for estimating Σ that is typically used for cross-sectional data. It has slightly higher power
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than using the sandwich estimation (e.g., 0.626 vs. 0.588, 400 SNPs, longitudinal setting

when C1 holds). The power of rareGE is comparable to our proposed test using a model

based inference in situations when there are no Type 1 error inflation (for example, in

Table 2, both are equal (0.561) when C1 holds and the number of SNPs is 700). Moreover,

Supplementary Table C.2 shows that PLS has lower power than the proposed method when

the number of SNPs is close to the sample size (e.g., 0.381 vs. 0.483, 700 SNPs, cross-

sectional setting when C1 holds), although its type I error rate is well controlled.

Scenario 3: Role of longitudinal data. In the third simulation setting, we aimed to il-

lustrate that the proposed method is robust to misspecification of within-subject correlation

when there are repeated measurements, and show the advantage of using full trajectory

of the longitudinal outcome and exposure. When more than one repeated measures are

involved, we compare our method with iSKAT using the average/baseline value of the re-

peated measurements on both Y and E. We used all SNPs from genotype region indexed

by rs10850411 (190 SNPs) in European Americans (2526 subjects), and simulated one

environmental exposure independent of the SNPs. The model is same as the longitudinal

setting in Scenario 1 with an linear main effect of E, so we omit the detailed equations and

only present the parameters that are different from Scenario 1. In this scenario, α4 = 0.05

for evaluating power and α4 = 0 for evaluating type I error rate; bE,i ∼ N(0, 0.25),

εE,i,j ∼ N(0, 4), bi ∼ N(0, 9/16), εi,j ∼ N(0, 9) and they are all independent. We note

that we simulated a large magnitude of within-subject variation to show the type I error in-

flation due to using the average value of repeated measures. The relative power difference

remains the same when a smaller within-subject variation is simulated. Table 3 presents

the results.

Type I error rate. The proposed method using the first order autoregressive correlation

structure still has valid type I error rate, when the true correlation structure is compound
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symmetric. iSKAT and rareGE using the average value of repeated measurements has

inflated type I error rate because of their model based inference and the heterogeneous

variance due to unbalanced data structure (e.g., 0.092 for iSKAT and 0.078 for rareGE,

d = 4).

Power. The tests using the full trajectory of longitudinal outcome and exposure have

much higher power than using the average values, as the number of repeated measurements

increases (e.g., 0.805 vs. 0.414, d = 4). This is because averaging the environmental ex-

posure reduces its variance and therefore decreases the power of testing gene-environment

interaction. The results demonstrate the advantage of using the longitudinal information.

Table 4.1: Simulation study evaluating the main effect adjustment of E (2526 subjects, 190 SNPs). iSKAT: set based test proposed
by Lin et al. (2013). rareGE: rareGE test proposed by Chen et al. (2014) assuming a random main effect of G. GE-linear:
the proposed test with a linear main effect of E. GE-spline: the proposed test using natural cubic-spline smoothing for
E with

√
m basis functions. GE-true: the proposed test with the correct model, which correctly specifies the main effect

of E. The GE methods were implemented using the weighted PCA approach for the main effect of G. Each cell presents
type I error rate or power based on 1000 replicates evaluated at α = 0.05. Power is empirically calibrated to α = 0.05
and marked as “*” when a method has type I error rate > 0.07. The calibrated powers with value zero correspond to very
high type I errors.

Cross-sectional data
Type I error rate

C1 holds C1 does not hold
hM (E) E E2 E + E2 exp(E) E E2 E + E2 exp(E)
iSKAT 0.055 0.170 0.109 0.181 0.054 0.899 0.751 0.947
rareGE 0.057 0.174 0.108 0.195 0.050 0.905 0.762 0.951

GE-linear 0.055 0.046 0.046 0.032 0.050 0.780 0.663 0.618
GE-spline 0.053 0.053 0.054 0.057 0.050 0.051 0.048 0.051
GE-true 0.053 0.053 0.052 0.055 0.051 0.050 0.048 0.053

Power
C1 holds C1 does not hold

hM (E) E E2 E + E2 exp(E) E E2 E + E2 exp(E)
iSKAT 0.751 0.549* 0.666* 0.553* 0.761 0* 0* 0*
rareGE 0.760 0.565* 0.681* 0.553* 0.771 0.329* 0.445* 0.185*

GE-linear 0.746 0.556 0.669 0.572 0.754 0.949 0.932 0.829
GE-spline 0.745 0.745 0.750 0.741 0.733 0.726 0.727 0.721
GE-true 0.750 0.747 0.754 0.743 0.756 0.740 0.739 0.744

Longitudinal data (d = 4)
Type I error rate

C1 holds C1 does not hold
hM (E) E E2 E + E2 exp(E) E E2 E + E2 exp(E)
GE-linear 0.045 0.042 0.040 0.039 0.049 0.906 0.729 0.869
GE-spline 0.043 0.042 0.043 0.042 0.048 0.048 0.048 0.048

Power
C1 holds C1 does not hold

hM (E) E E2 E + E2 exp(E) E E2 E + E2 exp(E)
GE-linear 0.793 0.606 0.731 0.681 0.796 0* 0* 0*
GE-spline 0.786 0.786 0.786 0.784 0.774 0.774 0.775 0.769
GE-true 0.789 0.788 0.788 0.789 0.796 0.780 0.780 0.782
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Table 4.2: Simulation study evaluating the main effect adjustment of G (775 subjects). A linear main effect of E was fitted. Each
cell presents the type I error rate/power based on 1000 replicates. MinP: single SNP analysis using GEE adjusted by the
effective number of independent tests (Gao et al., 2008). iSKAT: region based test proposed by Lin et al. (2013). rareGE:
rareGE test proposed by Chen et al. (2014) assuming a random main effect of G. GE-none: the proposed test adjusting
for none of the SNPs. GE-wPCA/wPCAM-

√
m: the proposed test adjusting for the leading

√
m components using the

weighted PCA and robust(wPCA)/model-based(wPCAM) inference. GE-true: the proposed test with the correct model,
which correctly correctly includes all SNPs with non-zero main effects. Type I error rate and power were both evaluated
at α = 0.05. Power is empirically calibrated to α = 0.05 and marked as “*” when a method has type I error rate> 0.07.

Cross-sectional data
Type I error rate Power

C1 holds C1 does not hold C1 holds C1 does not hold
q 400 700 400 700 400 700 400 700

MinP 0.052 0.047 0.116 0.129 0.426 0.355 0.676* 0.636*
iSKAT 0.050 0.066 0.055 0.060 0.557 0.505 0.780 0.747
rareGE 0.054 0.055 0.072 0.059 0.634 0.561 0.821* 0.810

GE-none 0.025 0.038 0.189 0.181 0.446 0.402 0.769 0.778
GE-wPCA -

√
m 0.030 0.038 0.040 0.030 0.540 0.514 0.771 0.741

GE-wPCAM-
√
m 0.041 0.038 0.048 0.048 0.591 0.561 0.805 0.785

GE-true 0.036 0.038 0.045 0.041 0.584 0.509 0.797 0.759

Longitudinal data
Type I error rate Power

C1 holds C1 does not hold C1 holds C1 does not hold
q 400 700 400 700 400 700 400 700

MinP 0.028 0.033 0.088 0.108 0.472 0.462 0.568* 0.575*
GE-none 0.045 0.039 0.187 0.173 0.560 0.564 0.477* 0.435*

GE-wPCA -
√
m 0.033 0.034 0.031 0.034 0.588 0.569 0.687 0.682

GE-wPCAM-
√
m 0.034 0.037 0.032 0.040 0.626 0.589 0.736 0.708

GE-true 0.040 0.034 0.038 0.039 0.615 0.589 0.724 0.707

Table 4.3: Simulation study evaluating the use of longitudinal data. GE-CS/AR1: the proposed test with different working correlation
(compound symmetric/first order autoregressive). GE-avg.: the proposed test using the average/baseline value of repeated
measurements. iSKAT-avg.: cross-sectional iSKAT using the average value of repeated measurements. rareGE-avg.:
rareGE test proposed by Chen et al. (2014) using the average value of repeated measurements, and assuming a random
main effect of G. The GE methods were implemented using the weighted PCA approach for the main effect of G and
natural cubic-spline for the main effect of E adjusting for

√
m terms. Each cell presents type I error rate or power based

on 1000 replicates evaluated at α = 0.05. Power is empirically calibrated to α = 0.05 and marked as “*” when a method
has type I error rate > 0.07.

Type I error rate
Methods using full trajectory Methods using average value

d GE-CS GE-AR1 GE-avg. iSKAT-avg. rareGE-avg.
1 0.047 0.047 0.047 0.047 0.048
2 0.046 0.046 0.041 0.050 0.050
3 0.048 0.048 0.058 0.072 0.063
4 0.039 0.041 0.052 0.092 0.078

Power
Methods using full trajectory Methods using average value

d GE-CS GE-AR1 GE-avg. iSKAT-avg. rareGE-avg.
1 0.379 0.379 0.379 0.387 0.400
2 0.581 0.581 0.390 0.415 0.430
3 0.722 0.719 0.431 0.422* 0.466
4 0.805 0.803 0.414 0.409* 0.456*
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4.6 Data Analysis

We illustrate the proposed set-based test using data from the Multi-Ethnic Study of

Atherosclerosis (MESA) to test the interaction between each neighborhood variable and

each SNP set on blood pressure (systolic and diastolic blood pressure) for the four ethnic

groups separately, followed by a meta-analysis. Supplementary Tables C.3 - C.8 present

the summary statistics and the marginal association analysis of E/G in MESA. Density

of favorable food stores, density of recreational facilities and perceived healthy foods

availability are marginally significantly associated with systolic blood pressure (p-value =

3.65×10−3, 4.69×10−4 and 8.74×10−7 respectively); Perceived healthy foods availabil-

ity is also associated with diastolic blood pressure (p-value = 4.21× 10−3). The marginal

effects of the environmental exposures appear to be mostly linear. We conducted both a

targeted GEI analysis for the 29 candidate regions and a set-based genome-wide GEI anal-

ysis as described in section 4.2. We adjusted for age, gender, body mass index (BMI), a

socioeconomic status variable (SES) and top four ethnicity-specific principal components

(PCs) to correct for potential within-ethnicity stratification. BMI was calculated from di-

rect measurements of weight (kg) and height (meters) available for all MESA exams. The

socioeconomic status variable was obtained by performing a principal component analysis

on a set of housing, residential stability, education, employment, occupation and income

variables. We adjusted for the first leading component which is more highly weighted on

education, occupation and income. We adjusted the measured blood pressures for par-

ticipants taking anti-hypertension medication using the standard procedure of adding 10

mmHg to systolic blood pressure and 5 mmHg to diastolic blood pressure as in Cui et al.

(2003). Based on the p-values of the ethnicity-stratified analysis, a meta-analysis was done

by Fisher’s combined probability test (Fisher (1925)). The vast majority of SNPs in our
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dataset are common variants with MAF greater than 1%, therefore the genetic principal

components calculated for each region in the weighted PCA approach mostly capture the

genetic variation in common variants.

Targeted GEI analysis. We conducted a set-based analysis for the 29 candidate ge-

nomic regions and compared our method with GEE-based MinP test and iSKAT using

either the average or baseline value of repeated measurements. This set-based analysis led

to 29 sets × 4 exposures = 116 tests. We also conducted a single SNP analysis for all

SNPs in the 29 regions that led to 5622 SNPs× 4 exposures = 22488 tests and present the

results using the locus-zoom plots (Supplementary Figure C.2) (Pruim et al. (2010)).

Set-based analysis. Table 4.4 presents the most significant region identified by the set-

based analysis. The proposed methods exhibit highly suggestive p-value (0.0005 using a

linear main effect of E, 0.0009 using the natural cubic-spline) for the interaction between

perceived healthy food availability and the region indexed by rs10850411 on systolic blood

pressure in European Americans. These p-values are very close to the Bonferroni thresh-

old (0.05/(4× 29) = 0.00043). MinP test also results in a suggestive p-value (0.0047) but

iSKAT and rareGE using average/baseline value fail to identify this interaction (p-value =

0.8205 and 0.4331 for iSKAT, 0.7542 and 0.5336 for rareGE respectively). This interac-

tion is also suggestive for its GIS counterpart (density of favorable food stores) by using

the proposed method (p-value = 0.0427 using a linear main effect of E, 0.0570 using the

natural cubic-spline). The most significant SNP in this region is the index SNP rs10850411

(p-value = 4.08×10−5). The locus-zoom plot (the left panel in Supplementary Figure C.2)

shows there are multiple other SNPs with small p-values uniformly distributed in the re-

gion and they are in linkage disequilibrium with the index SNP. We conducted sensitivity

analysis additionally adjusting for site and present the results for this region in Supple-

mentary Table C.9. The results with and without adjusting for study site are qualitatively
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similar with some small numerical differences. We also conducted additional analyses to

compare strategies using different forms of longitudinal exposures and present results in

Supplementary Table C.10. The results show that using repeated longitudinal measures

appear to be a better strategy in general.

Single-SNP analysis. The most significant SNP identified by the single-SNP analysis

is the interaction between density of recreational facilities and a SNP in regionCACNB2,

namely rs7085587, on systolic blood pressure in Hispanic Americans (p-value = 2.17 ×

10−6). This p-value is still significant after the Bonferroni correction (Bonferroni thresh-

old: 0.05/22488 = 2.22× 10−6). The locus-zoom plot (the right panel in Supplementary

Figure C.2) shows the signals are concentrated in a small area around rs7085587. This is

also a situation where the MinP test results in a smaller p-value (0.0012) than the proposed

test (GE-linear p-value = 0.0753) in the corresponding set-based analysis of CACNB2

(Supplementary Table C.11).

In summary, the set-based test performs better in the first example where the signals are

dispersed across many SNPs in the region, while the single SNP based test performs better

in the second example where the signals are concentrated. For the significant interactions

noted with systolic blood pressure as outcome in Table 4, we also observed suggestive

p-values (0.0844 using a linear main effect of E, 0.0537 using the natural cubic-spline for

the main effect of E) for diastolic blood pressure (Supplementary Table C.12). These in-

teractions that appear to be noteworthy in the European Americans in the MESA analysis

are ethnicity specific and are not significant in the other three ethnic groups. The present

finding will require replication in other cohorts and need to be followed up in future stud-

ies. The genes nearest to rs10850411 are two members of the phylogenetically conserved

T-box family of genes, TBX3 and TBX5. Proteins encoded by T-box family genes act

as transcription factors, and have been shown to play a role in development of the heart
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and limbs (McKusick (1998); OMIM 601620, 601621). Genome-wide association stud-

ies have identified variants in the TBX3-TBX5 gene region that influence heart rate and

cardiac electrical activity (Pfeufer et al. (2010); Sotoodehnia et al. (2010)). CACNB2 en-

codes the beta-2 subunit of a voltage-dependent calcium channel protein, and is expressed

in the heart. Mutations in CACNB2 have been shown to cause Brugada syndrome, char-

acterized by cardiac electrical abnormalities and sudden cardiac death (OMIM 600003,

611876). The detailed analysis of the top SNPs in these two identified regions can be

found in section 4.7 of the Supplementary Materials (Appendix C, Supplementary Figure

C.3).

Genome-wide GEI analysis. We applied the proposed test to 24743 genes (Section 2)

for a set-based analysis and compared it with a single SNP analysis of 1011876 SNPs in

these sets via GEE. Supplementary Figures C.4 - C.5 presents the QQ-plots summarizing

the results of the set-based analysis using our proposed method. The set based analysis

identified a highly suggestive interaction between region LOC100129138 and perceived

walkability on systolic blood pressure (p-value = 2.04 × 10−6, Bonferroni threshold =

2.02 × 10−6). However, the single SNP analysis did not identify any interaction between

any SNP and perceived walkability. The smallest p-value equals 8.12 × 10−6 which is

much higher than the Bonferroni threshold = 4.94 × 10−8. This illustrates the potential

advantage of a genome-wide set-based GEI analysis compared to a genome-wide single

SNP-based GEI analysis. In addition, we observed that iSKAT QQ plots are substantially

inflated for a genome-wide analysis in MESA (Supplementary Figures C.6 - C.7), which is

consistent with our simulation studies. This is because the CHN ethnic group only has 775

subjects, but there are many large regions in the genome-wide analysis. The performance

of iSKAT with m < q is less than optimal.
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Table 4.4: Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data: interactions between neighborhood variables and the
region indexed by rs10850411 on systolic blood pressure. Each cell shows the p-value. EUR: European Americans; AFA:
African Americans; HIS: Hispanics; CHN: Asians of Chinese descent. Meta: Meta-analysis combining the results of
four ethnic groups using Fisher’s combined probability test. GE-linear: the proposed test with a linear main effect of E.
GE-spline: the proposed test using

√
n natural cubic-spline basis functions for the main effect of E. MinP: minimum

p-value test based on GEE. The assumed working correlation is compound symmetric. iSKAT-avg./base.: cross-sectional
iSKAT using the average/baseline value of repeated measurements as the outcome. rareGE-avg./base.: cross-sectional
rareGE using the average/baseline value of repeated measurements as the outcome, where a random main effect of G is
assumed. Bonferroni correction threshold is 0.00043.

Systolic Blood Pressure - Region Indexed by rs10850411 (190 -214 SNPs)
Density of favorable food stores Density of recreational facilities

EUR CHN AFA HIS Meta EUR CHN AFA HIS Meta
GE-linear 0.0427 0.0890 0.8651 0.6256 0.1353 0.7857 0.9631 0.4937 0.8130 0.9670
GE-spline 0.0570 0.0544 0.9320 0.7231 0.1366 0.8480 0.9640 0.5405 0.8891 0.9848

MinP 0.0602 0.5753 1.0000 1.0000 0.5664 1.0000 1.0000 1.0000 1.0000 1.0000
iSKAT-avg. 0.2416 0.3695 0.7435 0.9257 0.6942 0.5134 0.3400 0.3869 0.5226 0.5707
iSKAT-base. 0.3953 0.2459 0.7200 0.9298 0.7070 0.7215 0.3239 0.5886 0.7561 0.8068
rareGE-avg. 0.2421 0.3144 0.9448 0.7851 0.6754 0.5281 0.5386 0.5169 0.3989 0.6839
rareGE-base. 0.4524 0.1045 0.9670 0.8334 0.5875 0.8591 0.3717 0.5458 0.7175 0.8426

Perceived Healthy Food Availability Perceived walkability
EUR CHN AFA HIS Meta EUR CHN AFA HIS Meta

GE-linear 0.0005 0.9736 0.7591 0.9270 0.0446 0.2812 0.3235 0.3384 0.1678 0.2297
GE-spline 0.0009 0.9067 0.8241 0.9034 0.0608 0.2127 0.3746 0.3166 0.2058 0.2303

MinP 0.0047 1.0000 1.0000 1.0000 0.2177 1.0000 1.0000 1.0000 1.0000 1.0000
iSKAT-avg. 0.8205 0.4296 0.4285 0.6091 0.7817 0.9028 0.6702 0.6318 0.7490 0.9617
iSKAT-base. 0.4331 0.5049 0.4503 0.5283 0.6571 0.8422 0.8531 0.6441 0.6475 0.9658
rareGE-avg. 0.7542 0.3500 0.5124 0.2821 0.5878 0.8363 0.4632 0.6999 0.6264 0.8956
rareGE-base. 0.5336 0.2642 0.3120 0.2036 0.3073 0.9141 0.7050 0.6569 0.3873 0.8900
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CHAPTER V

Summary and Discussion

Chapter II presents a novel framework for modeling and testing for the joint associ-

ation of genetic variants with a trait from the perspective of viewing traits as a random

field on a genetic space. The development has been focused on quantitative traits with a

normal distribution. Based on the GenRF model, a test for genetic associations was devel-

oped and this test enjoys many appealing features. The GenRF test is based on testing a

null hypothesis involving a single parameter, allowing it to exploit LD to improve power.

When LD is moderate or high, our simulations showed that the GenRF test achieves much

higher power than the more traditional regression-based methods. The GenRF model is

flexible to allow for complex interaction effects and, as demonstrated by simulations, the

GenRF test is even much more powerful than SKAT in the presence of complex interac-

tion effects. Moreover, as SKAT, prespecified variant-specific weights can be incorporated

to boost power for rare variants. Unlike SKAT, the GenRF test is an exact test under the

normal assumption and thus not overly conservative in finite samples. Finally, the test is

computationally easy to implement since an analytical form is available. In summary, the

GenRF test is an appealing alternative to SKAT and other existing methods for testing the

joint association of variants with a trait. It can achieve overall comparable performance

and sometimes even much better performance relative to SKAT as well as other methods.
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Although we focus on quantitative traits, we note that the GenRF test is robust to dis-

tributions other than normal as discussed previously and demonstrated by simulation stud-

ies. Specifically for binary traits, although the GenRF model with an identity link function

may seem a bit unnatural, the resulting test with a minor modification is still valid and can

achieve good power. However, due to the conceptual difficulty associated with modeling

binary traits using a linear model and the possible practical issue that can arise, it would

be interesting to study, within the framework of random field model, other link functions

for binary traits as well as other distributions in the future.

Chapter III extended the genetic random field model to the longitudinal setting and

developed generalized score type tests to test the joint association between a set of genetic

variants and a repeatedly measured phenotype. Besides the advantages of region-based

tests over single-marker tests in cross-sectional studies, the LGRF model is able to utilize

all the repeated measurements, incorporate gene-time interaction explicitly and result in

higher power. As in GenRF, LGRF models the joint association using a single parameter

by considering the similarity in phenotype induced by genetic similarity. A main challenge

in modeling longitudinal data is to account for within-subject correlation and correlation

is conceptually viewed and modeled in a unified way as the joint genetic association in

LGRF. Furthermore, the specified correlation structure is treated as a working assumption

in inference and the resulting LGRF tests are robust to misspecification.

LGRF tests are generalized score tests that only need to fit the model under the null

hypothesis, which is irrelevant to the target region. Users can fit the null model once and

test all regions without repeatedly fitting the model. In addition, the computational cost

of LGRF mainly depends on the fixed number of variants in the region but not the sample

size. This property improves the computational efficiency dramatically (see Supplemen-

tary Table B.1) especially when the target region is small, for example if investigators are
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only interest in the exon.

Chapter IV focuses on set-based inference for testing gene-environment interaction

with quantitative traits in both cross-sectional and longitudinal studies. We showed that

a generalized score test similar to the tests derived from more sophisticated approaches

(e.g., kernel machine regression, similarity regression and genetic random field model)

could be postulated using the most commonly used fixed effect model for multivariate

regression. Instead of a hybrid model like iSKAT where the main effects are considered as

fixed effects but the interactions are considered as random effects, the proposed fixed effect

model presents a direct unified framework. We also demonstrated improved properties of

a set-based test compared to a single SNP analysis when multiple causal SNPs exist.

Although many set-based tests have been proposed for evaluating genetic association,

our test is the first set-based test for GEI that is able to utilize the rich time varying outcome

and exposure data. Our numerical studies show that substantial power gain can be achieved

by using the proposed test, compared to methods only using a single outcome/exposure

measure (e.g., average/baseline value). The test is also robust to misspecification of within-

subject correlation, which is a desirable property in studies with longitudinal measures.

We studied the role of gene-environment independence, and developed methods for

main effect adjustment ofE andG that permits more robust and powerful inference. Under

the independence condition, we showed that the proposed test is robust to misspecification

of main effect of E by simply using a sandwich estimator and weighted centered E and

G. When the independence condition does not hold, we proposed the method of sieves

to model the main effect of E correctly. An interesting finding is that flexibly modeling

the main effect does not hurt power for tests of GEI significantly. To remedy the curse of

dimensionality in the potentially high dimensional G space, we developed the weighted

PCA approach for dimension reduction that allows us to apply the test to large regions
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where the number of SNPs is close to or larger than the sample size.

We illustrated the method by a targeted GEI analysis and a genome-wide GEI analysis

of MESA neighborhood study, where both time varying outcome and exposure data are

available. The application illustrates that the longitudinal approach utilizing the full trajec-

tory of longitudinal outcome and exposure measures is substantially more powerful than

the approach using a single measurement. It also shows the advantage of a genome-wide

set-based GEI analysis compared to a genome-wide single SNP-based GEI analysis. The

application is novel in its rich longitudinal neighborhood data and the findings may aid in

prevention of chronic diseases by modifying the built environment around us and creat-

ing new healthy food resources and recreational facilities and provide public health rec-

ommendations for susceptible genetic sub-groups in terms of their neighborhood choice.

More importantly, neighborhood interventions or changes in the built environment can

impact many people at the same time instead of recommending changes towards lifestyle

factors of an individual.

There are several limitations of the proposed method. First, the weighted PCA method

is an ad-hoc method proposed for dimension reduction of G, only studied through simu-

lation and data analyses. The optimality of this method has not been established in this

paper. It will be desirable to develop an optimal method for the main effect adjustment of

G in the future and establish its theoretical properties more rigorously. Second, we only

considered linear GEI terms in this paper. Directly adding more flexible non-linear GEI

terms will certainly lead to loss of power, which is different from flexibly modeling the

main effects. It will be interesting to investigate efficient strategies for modeling non-linear

interaction terms. Third, the method was proposed for quantitative traits. Future extension

to generalized linear models will be important to develop. Moreover, we note that our

result is closely related to the work by Vansteelandt et al. (2008), where they proposed
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multiply robust inference for statistical interactions by not only modeling the main effect

of E, but also the conditional distribution of E given X and G. Future work that develops

a multiply robust set-based inference for GEI boosted with dimension reduction in the G

space will be of great interest.

78



APPENDICES

79



APPENDIX A

Supplementary Materials for Chapter II

1. Robustness to other distributions

We evaluated the robustness of the GenRF test to distributions other than normal. The

GenRF test for traits with distributions other than normal is described in Section 2.3 of the

main manuscript. The simulation setup is otherwise similar to the first set of simulations,

described in Section 3 of the main manuscript, with only one region, p = 10, ρ = 0.4 and

n = 100. Responses Yi were generated according to generalized linear models using the

canonical link function, i.e.,

g(µi) = aGi,5,

where a was set to be 1.1 and 2.5 respectively for exponential and binary distributions. For

Mixture Normal, we generated two normal distributions with mean difference 10, equal

mixture proportions, and a = 2.7. We set a to be 0 in evaluating the type-I error rate. The

results are shown in Supplementary Table A.1.
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Table A.1: Simulation results under different distributions of the response variable (1000 replicates). ∗ indicates results are unavail-
able due to “sample size is small, need small sample adjustment” and SKAT has no small sample adjustment for IBS
kernel.

Method Distribution
Exponential Mixture Normal Binary

GenRF Power 0.636 0.582 0.646
Type I 0.052 0.056 0.046

SKAT Power 0.655 0.582 ∗
Type I 0.046 0.046 ∗

F-test Power 0.572 0.568 0.559
Type I 0.056 0.054 0.050

2. Robustness to heteroscedastic variances of binary traits

We evaluated the robustness of the GenRF test to heteroscedasitc variances of binary

traits. Since the variance of a binary outcome is a function of its mean, the variance

is known to be heteroscedastic when the mean of outcome depends on covariates. The

modification of the GenRF test for binary traits is described in Section 2.3 of the main

manuscript. The simulation setup is otherwise similar to the first set of simulations, de-

scribed in Section 3 of the main manuscript, with p = 20, ρ = 0, minor allele frequency

0.2, and n = 100. Responses Yi were generated according to logistic models, i.e.,

logit(pi) = aGi,5 + bXi,

where a was set to be 3 in evaluating power and 0 in evaluating type I error rate; Xi was

a covariate generated from N(0, 1); and b was varying from 0 to 10 to generate different

levels of heteroscedastic variance. A larger coefficient b results in a wider range of the pre-

dicted mean and thus more heteroscedastic variance. When b = 5 or 10, which represents

unusually strong effect of X (probably unlikely in practice), some predicted means fall

outside of [0, 1] and truncation at 0 or 1 was used. The results are shown in Supplementary

Table A.2. We note that the power decreases as the coefficient b increases because the

noise becomes larger. The type I error is well controlled even if some predicted means

reached 0 or 1, indicating that the GenRF test with the minor modification is robust to
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heteroscedastic variances of binary traits.

Table A.2: Simulation results under different levels of heteroscedastic variances (500 replicates). Coefficient: the coefficient of the
covariate. ∗ indicates that some predicted means reached 0 or 1.

Method Coefficient
0 1 3 5∗ 10∗

GenRF Power 0.538 0.594 0.408 0.290 0.110
Type I 0.052 0.046 0.040 0.058 0.060

82



3. Application to Dallas Heart Study

We analyzed data from the Dallas Heart Study (Browning et al., 2004.), a population-

based, multi-ethnic study on 3551 subjects whose lipids and glucose metabolism are

measured. In this study, sequence variations in the coding regions of the four genes,

ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 are discovered. Supplementary Ta-

ble A.3 lists the number of non-synonymous variants in each gene and their MAFs.

Table A.3: Dallas Heart Study sequencing data information: number of non-synonymous variants in each gene. MAF: minor allele
frequency.

Number of Variants

ANGPTL3 ANGPTL4 ANGPTL5 ANGPTL6
All 21 25 18 25

MAF < 5% 21 24 18 25
MAF < 1% 20 23 17 24
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APPENDIX B

Supplementary Materials for Chapter III

1. Detailed Proofs

1.1 Unbiasedness of the Estimating Equations

We show that the estimating function

Uγ(β, η, γ) =
∂E(Y |Y −)

∂γ

T

{Y − E(Y |Y −)} = (Y − µ)TS(I − ηT − γS)(Y − µ)

is unbiased and the generalized score evaluated at γ = 0, Uγ(β, η, 0) = (Y − µ)TS(I −

ηT )(Y − µ) has mean 0 under H0 and positive mean γE{(Y − µ)TS2(Y − µ)} under

H1 : γ > 0. Below we denote Uγ(β, η, γ) =
∑

i,l Uγ,i,l(β, η, γ) where

Uγ,i,l(β, η, γ) =
∂E(Yi,l|Y −(i,l))

∂γ
{Yi,l − E(Yi,l|Y −(i,l))}.

Using an iterated expectation argument, we have

E{Uγ,i,l(β, η, γ)} = E[E{Uγ,i,l(β, η, γ)}|Y −(i,l)]

= E[
∂E(Yi,l|Y −(i,l))

∂γ
{E(Yi,l|Y −(i,l))− E(Yi,l|Y −(i,l))}] = 0,

where the second equality is because ∂E(Yi,l|Y −(i,l))

∂γ
is a function of Y −(i,l). Therefore,

under correct specification of the model, i.e., E(Y |Y −) = µ + (ηT + γS)(Y − µ), the

estimating function Uγ(β, η, γ) = (Y −µ)TS(I − ηT − γS)(Y −µ) is unbiased in the
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sense that it has expectation zero. Because of this unbiasedness, it follows that

E{Uγ(β, η, 0)} = E{Uγ(β, η, γ)}+γE{(Y −µ)TS2(Y −µ)} = γE{(Y −µ)TS2(Y −µ)}

which equals 0 under H0 and is positive under H1 : γ > 0. So a large value of Uγ(β, η, 0)

supports the alternative hypothesis. Furthermore, one can show that Uβ(β, η, γ) = XT (I − ηT − γS)(Y − µ) = 0

Uη(β, η, γ) = (Y − µ)TT (I − ηT − γS)(Y − µ) = 0

are both unbiased by similar argument.

1.2 Asymptotic Representation of QG

We note that, for both GR and IBS similarity, S can be written as ZZT + C, where

C = −diag(ZZT ) and is needed because in the definition ofS, subjects are not compared

to themselves in terms of genetic similarity. For example, for GR similarity, Z(n× q), is

the centered genotype matrix, i.e., each column of the genotype matrixG,G,h, is now cen-

tered by the genotype population mean 2ph, and for IBS similarity, Z is an n× 3q matrix

again with each element defined in terms of genotype, described in the next subsection.

Here we prove the following result.

Result 1.

QG =
(Y − µ̂)TS(I − η̂T )(Y − µ̂)

m
=

(Y − µ̂)TZZT (I − η0T )(Y − µ̂)

m
+c+op(1),

where µ̂ = Xβ̂; η̂ and β̂ are the solution to estimating equations Uβ(β, η, 0) = XT (I − ηT )(Y − µ) = 0

Uη(β, η, 0) = (Y − µ)TT (I − ηT )(Y − µ) = 0.

Proof. We first note that

(B.1)

QG =
(Y − µ̂)TZZT (I − η̂T )(Y − µ̂)

m
+

1

m

m∑
i=1

ci(Y i − µ̂i)T (Ini − η̂T i)(Y i − µ̂i),
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where ci is the (i, i)-th element ofC which equals−
∑q

h=1(Gi,h−2ph)
2 for GR similarity

and −2q for IBS similarity; T i is the (i, i)-th block of T ; Ini is an ni×ni identity matrix.

The first term in equation (B.1) is an inner product of 1√
m
ZT (I − η̂T )(Y − µ̂) and

1√
m
ZT (Y − µ̂). We show that

1√
m
ZT (I − η̂T )(Y − µ̂)

=
1√
m
ZT (I − η0T )(Y − µ̂)− 1√

m
ZTT (Y − µ̂)(η̂ − η0)

=
1√
m
ZT (I − η0T )(Y − µ̂)−

√
m(η̂ − η0){

1

m

m∑
i=1

ZT
i T i(Y i − µi) + op(1)}

=
1√
m
ZT (I − η0T )(Y − µ̂) + op(1), as m→∞,

where the second equality follows by Taylor expansion at β. Assuming that the number of

repeated measurements of each subject is bounded, the estimator η̂ is
√
m-consistent for

η under H0 by the property of generalized estimating equations. Hence the last equality

follows by the
√
m-consistency of η̂ and the weak law of large numbers. Therefore,

(Y − µ̂)TZZT (I − η̂T )(Y − µ̂)

m
=

(Y − µ̂)TZZT (I − η0T )(Y − µ̂)

m
+ op(1).

Next we show that the second term in equation (B.1) asymptotically converges to a

constant.

1

m

m∑
i=1

ci(Y i − µ̂i)T (Ini − η̂T i)(Y i − µ̂i)

=
1

m

m∑
i=1

ci(Y i − µ̂i)T (Ini − η0T i)(Y i − µ̂i)− (η̂ − η0)
1

m

m∑
i=1

ci(Y i − µ̂i)TT i(Y i − µ̂i)

=
1

m

m∑
i=1

ci(Y i − µi)T (Ini − η0T i)(Y i − µi)− (η̂ − η0)
1

m

m∑
i=1

ci(Y i − µi)TT i(Y i − µi) + op(1)

= c+ op(1),

where the second equality is again by Taylor expansion and the last equality by the weak

law of large numbers. Summarizing results, we have finished proving the result:

QG =
(Y − µ̂)TS(I − η̂T )(Y − µ̂)

m
=

(Y − µ̂)TZZT (I − η0T )(Y − µ̂)

m
+c+op(1).
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1.3 Robust Inference

We define Z̃(η) = {(I − ηT )Z,Z}, X̃(η) = (I − ηT )X , and

1√
m
R̃(η,β) =

1√
m

 R1(η,β)

R2(η,β)

 =
1√
m

 Z̃(η)T

X̃(η)T

 (Y − µ)

=
1√
m

m∑
i=1

 Z̃i(η)T

X̃ i(η)T

 (Y i − µi) =
1√
m

m∑
i=1

R̃i(η,β),

where Z̃i(η), X̃ i(η), Y i, µi = XT
i β and R̃i(η,β) are the components corresponding

to subject i respectively. We can rewrite (Y − µ̂)TZZT (I − η0T )(Y − µ̂)/m as the

quadratic form of 1√
m
R1(η0, β̂) by straightforward matrix algebra and have:

QG =
1

2m
R1(η0, β̂)T

 0dq Idq

Idq 0dq

R1(η0, β̂) + c+ op(1),

where Idq is a dq × dq identity matrix and 0dq is a dq × dq matrix with all elements 0. In

this subsection we prove the following and a directly followed results. We note that the

proof does not rely on the normality assumption of outcomes Y .

Result 2. Under the H0 : γ = 0,

1√
m
R1(η0, β̂) = A

1√
m
R̃(η0,β0) + op(1)⇒ N(0,Σ),

whereA = (I2dq,−E{
∂R1(η0,β0)

∂βT
}E−1{∂R2(η0,β0)

∂βT
}), Σ = ADAT , andD = var{R̃i(η0,β0)}.

And Σ can be consistently estimated by the sandwich variance estimator Σ̂ = ÂD̂Â
T

,

where Â and D̂ are the corresponding empirical counterpart defined below.

Proof. Note that β̂ is the solution to R2(η̂,β) = 0, i.e., 1√
m
R2(η̂, β̂) = 0. We first show
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that 0 = 1√
m
R2(η̂, β̂) = 1√

m
R2(η0, β̂) + op(1). It follows because, by Taylor expansion,

1√
m
R2(η̂, β̂) =

1√
m
R2(η0, β̂)− 1

m

m∑
i=1

XT
i T i(Y i −X iβ̂)

√
m(η̂ − η0),

and note
√
m(η̂−η0) is bounded in probability and 1

m

∑m
i=1X

T
i T i(Y i−X iβ̂) converges

in probability to E{XT
i T i(Y i −X iβ0)} = 0, where β0 is the true parameter under H0.

By Taylor expansion,

1√
m
R1(η0, β̂) =

1√
m
R1(η0,β0) +

1√
m

∂R1(η0,β0)

∂βT
(β̂ − β0) + op(1),

0 =
1√
m
R2(η0, β̂) + op(1) =

1√
m
R2(η0,β0) +

1√
m

∂R2(η0,β0)

∂βT
(β̂ − β0) + op(1),

Plugging the second equation into the first,

1√
m
R1(η0, β̂) =

1√
m
R1(η0,β0)−

∂R1(η0,β0)

∂βT
{∂R2(η0,β0)

∂βT
}−1 1√

m
R2(η0,β0) + op(1)

= (I2dq,−
∂R1(η0,β0)

∂βT
{∂R2(η0,β0)

∂βT
}−1) 1√

m
R̃(η0,β0) + op(1).

It is easy to see that

(B.2)
1

m

∂R1(η0,β0)

∂βT
{ 1

m

∂R2(η0,β0)

∂βT
}−1 = E{∂R1(η0,β0)

∂βT
}E−1{∂R2(η0,β0)

∂βT
}+ op(1).

Thus

1√
m
R1(η0, β̂) = (I2dq,−E{

∂R1(η0,β0)

∂βT
}E−1{∂R2(η0,β0)

∂βT
}) 1√

m
R̃(η0,β0) + op(1)

= A
1√
m

m∑
i=1

R̃i(η0,β0) + op(1),

which by the central limit theory converges to a multivariate normal distribution with mean

zero and covariance matrix Σ = ADAT . It is easy to check that, by the weak law of large

numbers and the
√
m-consistency of η̂ and β̂, Σ can be consistently estimated by the
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sandwich variance estimator ÂD̂Â
T

, where

D̂ =
1

m

m∑
i=1

R̃i(η̂, β̂)R̃i(η̂, β̂)T ,

Â = (I2dq,−
∂R1(η̂, β̂)

∂βT
{∂R2(η̂, β̂)

∂βT
}−1).

Specifically, R1(η̂, β̂)

∂βT
= −Z̃(η̂)TX and ∂R2(η̂, β̂)

∂βT
= −X̃(η̂)TX .

Result 3. Under regularity conditions, QG has an asymptotic distribution

(B.3)
1

2

2dq∑
i=1

λiχ
2
i + c,

where c is a constant which does not affect the inference; χ2
i s are i.i.d. Chi-square distri-

butions; λi are eigenvalues of a 2dq × 2dq matrix 0dq Idq

Idq 0dq

Σ =

 Σ21 Σ22

Σ11 Σ12

 ;

Σ is defined above and can be consistently estimated by Σ̂ as in Result 2; Σ11 is the first

dq × dq block of Σ and Σ12, Σ21, Σ22 can be defined similarly.

Proof. In the proof of Result 2, we have showed 1√
m
R1(η0, β̂) ⇒ N(0,Σ) under H0 :

γ = 0. Therefore,

QG =
1

2m
R1(η0, β̂)T

 0dq Idq

Idq 0dq

R1(η0, β̂) + c+ op(1)

is asymptotically distributed as
1

2

2dq∑
i=1

λiχ
2
i + c

by the property of quadratic form of normal random variables. In addition, Σ can be

consistently estimated by Σ̂ as we showed in Result 2.
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1.4 Use of IBS metric

As discussed in the main paper, the Identity-by-state (IBS) similarity: si,j = ρ(Gi,Gj) =∑q
h=1(2− |Gi,h −Gj,h|), which has been commonly used, e.g., in SKAT, is an alternative

choice to quantify genetic similarity in LGRF. However, the use of IBS kernel is limited

by its computational inefficiency (Wu, et al., 2011), though they have recognized that IBS

kernel usually has higher power than linear kernel in the presence of gene-gene interac-

tion. We hereby propose a fast implementation of IBS metric in LGRF, and as a result

both the robustness to misspecification of working correlation structure and computational

efficiency can be achieved. Recall the genotype of a single genetic variant of subject i can

be coded by {0, 1, 2}. We generate three pseudo-variables by

0 :

1 :

2 :


√

2 0 0
√
2
2

√
2
2

1

0
√

2 0

 =: B.

That is, the pseudo-variables are (
√

2, 0, 0) if the genotype is 0; (
√
2
2
,
√
2
2
, 1) if it is 1;

(0,
√

2, 0) if it is 2. The inner-product of two subjects’ pseudo-variables exactly equal the

IBS metric; that is,

BBT =


2 1 0

1 2 1

0 1 2

 .

If we denote the pseudo-variables with respect to p genetic variants as ZIBS , an n × 3q

matrix, the IBS metric between all pairs of subjects are ZIBSZ
T
IBS . Therefore, genetic

similarity in terms of the IBS metric can be represented as S = ZIBSZ
T
IBS − C, where

C = −diag(ZIBSZ
T
IBS); again note the term C is due to that in the definition of S,

subjects are not compared to themselves in terms of genetic similarity. By using peudo-

variables the computational efficiency increases dramatically, but is still slightly less com-
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pared with using the genetic relationship similarity because the number of variables in-

crease from q to 3q. This representation shows that the IBS metric corresponds to a linear

model in SKAT with 3q pseudo variables, which actually does not model the interaction

among genetic variants.
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2. Additional Simulations

2.1 LGRF Run-time Simulation

To evaluate the computational performance of LGRF, we varied the number of total

observations and recorded the running times for both fitting the null model and testing the

target region C10orf107 (154 SNPs). The numbers of total observations were set to be

3000, 6000 and 10000, mimicking the total number of observations in CHN, HIS/AFA

and CAU ethnic groups in MESA respectively. Supplementary Table B.1 shows the run-

ning times for testing a region with 154 SNPs on a 2.67GHz Linux PC with an Intel Xeon

X5650 processor. The numbers of total observations (n) are 3000, 6000 and 10000, akin to

those observed in the CHN, HIS/AFA and CAU ethnic groups respectively in MESA. For

a longitudinal study containing 3000 observations, like the CHN ethnic group in MESA,

LGRF-G requires 2.0 seconds to fit the null model and 0.6 seconds to calculate the p-value

for the entire target region. Since the null model only need to be fit once, the computa-

tional cost for testing K regions is approximately 0.6 × K seconds. We expect that the

computational cost will increase if number of SNPs in the region increases, but this num-

ber is usually bounded by the length of the region. For example, the largest candidate

region in our analysis has 1026 SNPs. The LGRF-J test requires longer time for calcu-

lating p-value because additional interaction terms are explicitly included. On the other

hand, the running time increases as the number of observations increases. If the number

of total observations is increased to 10000, such as the CAU ethnic in MESA, LGRF-G

requires 9.7 seconds to fit the null model and 1.9 seconds to compute the p-value.
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Table B.1: Running times corresponding to different number of total observations. The running times for both fitting the null model
and testing the target region C10orf107 (190 SNPs) on a 2.67GHz Linux PC with an Intel Xeon X5650 processor are
showed in this table. The numbers of total observations (n) are 3000, 6000 and 10000, approximating the numbers
corresponding to CHN, HIS/AFA and CAU ethnic groups respectively, as observed in MESA. CAU: Caucasians; AFA:
African Americans; HIS: Hispanics; CHN: Asians of Chinese descent.

Number of Total Fitting the Calculating the P-value
Observations (n) Null Model LGRF-G LGRF-J

3000 2.0 seconds 0.6 seconds 2.0 seconds
6000 4.9 seconds 1.1 seconds 3.4 seconds
10000 9.7 seconds 1.9 seconds 5.0 seconds

2.2 Simulations Investigating Meta/Mega-analysis Strategies with a Multi-Ethnic Cohort

We additionally simulated scenarios where four ethnic groups shared the same set of

causal variants versus different set of causal variants in the same target region to com-

pare meta and mega analysis, and show the advantage of gene-level meta-analysis over

single-SNP meta-analysis. The gene-level meta-analysis evaluated the region for each

race ethnicity by LGRF-G and combine the p-values by fisher’s method. The single-SNP

meta-analysis approach used the popular meta-analysis tool METAL proposed by Willer et

al. (2010). Each SNP was tested using GEE-G within each ethnicity and the four Z-scores

converted from the four ethnic groups’ p-values were then combined to provide overall

measures of significance. The minimum p-value was then adjusted for multiple testing by

the Bonferroni correction. The mega-analysis was pooling the ethnic groups together and

then applying LGRF-G and GEE-G using individual level data.

For each replicated dataset, four ethnic groups were randomly simulated from the CAU,

AFA, HIS and CHN ethnic groups correspondingly, and gene region C10orf107 was cho-

sen as the target region. The total number of subjects was 1000 and each subject had four

repeated measurements. The sample sizes corresponding to the simulated ethnic groups

were 400, 250, 220 and 130 respectively, proportional to those observed in MESA. A

different SNP was randomly chosen to be causal within each ethnic group in the case of

distinct effects, while four ethnic groups shared the same causal SNP in the common effect
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case. Specifically, the true model is of form:

Yi,l = α0ti,l + α1GE,i + εi,l, ti,l = 1, . . . , r,

where GE,i is the genotype of subject i for the randomly selected causal SNP of the eth-

nicity E that subject i belongs to; α0 = 12/r, α1 = 0.4; r is the number of measurements

per subject. The missingness indicators and other simulation parameters were almost the

same as the power simulation scenario I where we considered a single causal SNP that had

a marginal effect and the within-subject correlation structure was CS.

Supplementary Table B.2 presents the comparisons. When the four ethnic groups have

different causal variants, gene-level meta-analysis shows substantial higher power (0.832)

than single-SNP meta-analysis (0.520). This is intuitive because single-SNP meta-analysis

will dilute the signal of each causal variant as the strength is not uniform across each cohort

at the SNP level. Moreover, a gene-level meta-analysis is preferred here than a mega-

analysis using individual level data for the same reason that pooling the data together will

dilute the signal. When the four ethnic groups have the same causal variant, gene-level

meta-analysis achieves slightly lower power (0.724 vs. 0.782), because the signal was

accumulated on the same variant while combining the four groups.

Table B.2: Power Studies for Meta/Mega-analysis when Causal Variants are Distinct/Common across Four Ethnic Groups. Each cell
represents the empirical power from 500 replicates at level α=0.05. In each ethnic group, one randomly selected SNP is
causal and has a marginal effect. LGRF-meta: use LGRF-G to test the region within ethnicity and combine the p-values
by Fisher’s method. LGRF-mega: jointly tests the four ethnic groups by pooling the individual level data. GEE-meta:
use GEE-G to test each SNP within ethnicity and combine the p-values by METAL proposed by Willer, et al. (2010).
GEE-mega: test each SNP using the individual level data of four ethnic groups jointly.

Causal Variants Meta-analysis Mega-analysis
LGRF-meta GEE-meta LGRF-mega GEE-mega

Distinct across ethnic groups 0.832 0.520 0.614 0.558
Common across ethnic groups 0.724 0.782 0.754 0.820
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2.3 Impact of Genetic Similarity Metrics

We evaluated the impact of the genetic similarity metrics in three main scenarios con-

sidered in table 3-5 of the main text and summarize the result in Supplementary Table B.3.

The number of repeated measurements per subject is six, and there are 400 subjects in each

replicate. The correlation structure among repeated measurements is compound symmet-

ric. Detailed parameters are same as the three power simulation settings in the main text

respectively. The IBS similarity has analogous performance as genetic relationship in the

simulation studies considered in the paper.

Table B.3: Power Studies for evaluating the impact of the genetic similarity metric: Each cell represents the empirical power from
500 replicates at level α=0.05. The number of repeated measurements per subject is six, and there are 400 subjects in each
replicate. The correlation structure among repeated measurements is compound symmetric. The parameter configurations
are same as the three simulation settings (Tables 3-5) in the main text. LGRF-G: the LGRF test for the marginal effect of
a gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. Both LGRF and LGRF-J use the
genetic similarity metric. LGRF-G-IBS: the LGRF test for the marginal effect of a gene using the identity-by state (IBS)
similarity. LGRF-J-IBS: the LGRF test for the joint effect of gene and gene-time interaction. The genetic main effect is
modeled using IBS similarity.

Simulation Scenario Marginal Association Test Joint Association Test
LGRF-G LGRF-G-IBS LGRF-J LGRF-J-IBS

Single SNP Marginal Effect 0.426 0.438 0.417 0.364
Single SNP×Time effect 0.326 0.318 0.430 0.486

Multiple SNPs Combined Effect 0.330 0.324 0.354 0.344
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2.4 Further Evaluation of the Power Difference

Given the analogous quadratic form of the LGRF score test and SKAT test, we expect

they will have similar power if we have a longitudinal version of SKAT even if they are

developed from two different perspective. To confirm this, we applied the LGRF test to the

average of repeated measurements to three main scenarios considered in table 3-5 of the

main text and present the result in Supplementary Table B.4. We also included the GenRF

test for comparison. The number of repeated measurements per subject is six, and there

are 400 subjects in each replicate. The correlation structure among repeated measurements

is compound symmetric. Detailed parameters are same as the three simulation settings in

the main text respectively. We observed that GenRF, SKAT and LGRF have comparable

power in the scenarios considered here when they are all applied to the average of repeated

measurements. This shows that the longitudinal design is the main reason of the power

difference.

Table B.4: Power Studies including GenRF: Each cell represents the empirical power from 500 replicates at level α=0.05. The
number of repeated measurements per subject is six, and there are 400 subjects in each replicate. The correlation structure
among repeated measurements is compound symmetric. Detailed parameters are same as the three simulation settings
(Table 3-5) in the main text respectively. LGRF-G: the LGRF test for the marginal effect of a gene using longitudinal
dats. LGRF-Avg.: the LGRF test applied to the average of repeated measurements. GenRF-Avg.: the GenRF test applied
to the average of repeated measurements. SKAT-Avg.: the SKAT test applied to the average of repeated measurements.

Causal Effect Based on Average
LGRF-G LGRF-Avg. GenRF-Avg. SKAT-Avg.

Single SNP Marginal Effect 0.426 0.290 0.287 0.290
Single SNP×Time effect 0.326 0.196 0.174 0.186

Multiple SNPs Combined Effect 0.330 0.214 0.196 0.208
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2.5 Type - I Error Rate Evaluation at Lower Significance levels

We further evaluated LGRF-G (the LGRF test for the marginal effect of a gene) at a

lower α level using 2.5× 107 replicates. The smaller α level (2.5× 10−6) considered here

reflects the scenario of a genome-wide gene-level analysis where we have approximately

20,000 genes in total. Other parameters are held same as the type I error simulations in the

main text (with an α level of 0.001). We present the results in the Supplementary Table

5. As we expected, LGRF-G tends to be conservative in these scenarios due to the use of

sandwich estimator as in regular GEE, which has been known to be slightly conservative.

Table B.5: Type-I error rate evaluation at smallα level. Each cell represents the empirical type-I error rate of LGRF-G (the LGRF test
for the marginal effect of a gene) based on 2.5× 107 replicates. The total number of observations is 2,400 and repeated
measurements per subject were generated in the same follow-up period according to different correlation structures.
Ind.: the repeated measurements are independent. CS: the correlation is compound symmetric. AR1: the repeated
measurements follow a first-order auto-regressive model. The working correlation assumed in LGRF-G is CS.

Type-I Error Rate
Four Repeated Measurements (600 Subjects)

α = 0.05 10−3 10−4 10−5 2.5× 10−6 10−6

Ind. 0.0494 9.03× 10−4 7.79× 10−5 5.20× 10−6 9.20× 10−7 5.20× 10−7

CS 0.0493 8.98× 10−4 7.95× 10−5 5.20× 10−6 6.39× 10−7 4.33× 10−7

AR1 0.0494 8.98× 10−4 7.76× 10−5 5.12× 10−6 6.26× 10−7 4.63× 10−7
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2.6 Power Evaluation at Lower Significance levels

We evaluated how power changes at α = 0.001 and α = 2.5×10−6 when the number of

subjects increases from 1200 to 6000, and each subject has four repeated measurements.

The α level considered here either approximates the scenario in our data analysis, in which

we consider a replication study with 29 regions, or reflect the scenario of a genome-wide

gene-level analysis where we have approximately 20,000 genes in total. The simulation

scenario is similar to Table 5 in the main text, where 10 out of the 154 SNPs in the region

were randomly set to be causal each time. Among them, six SNPs have only marginal

effects, three have both marginal and interaction effects and the remaining one has only

an interaction effect. The parameters are held same as Table 5 in the main text except the

sample size, such that the total variation in the outcome explained by the SNPs (including

gene-time interaction) is approximately 1.5% - 2.0%. We present the results in Supple-

mentary Table 6 and 7. We observed that the relative power difference is similar to what

we showed in Table 5 of the main text.
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Table B.6: Power comparisons when the number of subjects ranges from 1,200 to 6,000 and four repeated measurements were
recorded. Randomly selected multiple SNPs are causal and have both marginal and interaction effects. Each cell repre-
sents the empirical power from 500 replicates at level α=0.001. Ind.: the repeated measurements are independent. CS:
the correlation is compound symmetric. AR1: the repeated measurements follow a first-order auto-regressive model.
RR: observations follow a mixed model with a random intercept and a random slope. LGRF-G: the LGRF test for the
marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. The working cor-
relation assumed in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the average value of repeated measurements
as the outcome. GEE-G: test the marginal association by GEE. GEE-J: jointly test the marginal association and gene-time
interaction by GEE. These single-marker tests were implemented by testing every SNP in the region and adjusting the
minimum p-value by the Bonferroni correction.

Power: Multiple SNPs Combined Effect
Ind.

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J
1200 0.18 0.17 0.10 0.08 0.06
1800 0.32 0.30 0.21 0.15 0.11
2400 0.40 0.42 0.26 0.25 0.20
3600 0.63 0.65 0.49 0.48 0.41
6000 0.82 0.82 0.71 0.71 0.65

CS
LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

1200 0.24 0.24 0.17 0.11 0.08
1800 0.37 0.37 0.23 0.19 0.15
2400 0.50 0.53 0.38 0.32 0.29
3600 0.70 0.70 0.58 0.54 0.50
6000 0.83 0.84 0.77 0.76 0.73

AR1
LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

1200 0.32 0.36 0.19 0.17 0.13
1800 0.52 0.54 0.35 0.32 0.28
2400 0.60 0.62 0.48 0.44 0.39
3600 0.80 0.84 0.65 0.67 0.65
6000 0.90 0.91 0.84 0.86 0.85

RR
LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

1200 0.49 0.47 0.28 0.31 0.23
1800 0.62 0.62 0.44 0.47 0.40
2400 0.75 0.74 0.55 0.59 0.53
3600 0.86 0.85 0.75 0.81 0.77
6000 0.94 0.93 0.88 0.91 0.91
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Table B.7: Power comparisons when the number of subjects ranges from 3,600 to 9,600 and four repeated measurements were
recorded. Randomly selected multiple SNPs are causal and have both marginal and interaction effects. Each cell repre-
sents the empirical power from 500 replicates at level α = 2.5×10−6. Ind.: the repeated measurements are independent.
CS: the correlation is compound symmetric. AR1: the repeated measurements follow a first-order auto-regressive model.
RR: observations follow a mixed model with a random intercept and a random slope. LGRF-G: the LGRF test for the
marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. The working cor-
relation assumed in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the average value of repeated measurements
as the outcome. GEE-G: test the marginal association by GEE. GEE-J: jointly test the marginal association and gene-time
interaction by GEE. These single-marker tests were implemented by testing every SNP in the region and adjusting the
minimum p-value by the Bonferroni correction.

Power: Multiple SNPs Combined Effect
Ind.

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J
3600 0.25 0.23 0.17 0.19 0.15
4800 0.44 0.45 0.31 0.37 0.31
6000 0.51 0.49 0.35 0.41 0.37
7200 0.62 0.62 0.48 0.57 0.53
9600 0.78 0.78 0.65 0.74 0.70

CS
LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

3600 0.31 0.32 0.21 0.26 0.22
4800 0.46 0.47 0.36 0.42 0.40
6000 0.58 0.57 0.47 0.53 0.51
7200 0.66 0.67 0.57 0.63 0.60
9600 0.80 0.79 0.74 0.78 0.76

AR1
LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

3600 0.42 0.46 0.31 0.38 0.35
4800 0.60 0.64 0.44 0.55 0.52
6000 0.72 0.74 0.60 0.67 0.66
7200 0.77 0.78 0.68 0.76 0.76
9600 0.84 0.86 0.77 0.83 0.82

RR
LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

3600 0.58 0.57 0.42 0.54 0.50
4800 0.71 0.71 0.54 0.70 0.65
6000 0.81 0.80 0.69 0.80 0.78
7200 0.89 0.89 0.79 0.88 0.86
9600 0.89 0.90 0.84 0.91 0.89
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3. Descriptive Statistics of MESA

Table B.8: Gender distribution of MESA subjects across site and race. Each cell represents the number of subject in the corre-
sponding category. WFU: Wake Forest University, Winston Salem, NC; COL: Columbia University, New York, NY;
JHU: Johns Hopkins University, Baltimore, MD; UMN: University of Minnesota, Twin Cities, MN; NWU: Northwestern
University, Chicago, IL; UCLA: University of California - Lost Angeles, Los Angeles, CA.

Gender
Site Female Male All

WFU 528 464 992
COL 536 434 970
JHU 556 488 1044

UMN 532 518 1050
NWU 551 508 1059
UCLA 666 648 1314

All 3369 3060 6429

Gender
Race Female Male All

White/Caucasian 1321 1206 2527
Chinese American 394 381 775

Black/African-American 906 771 1677
Hispanic 748 702 1450

All 3369 3060 6429

Table B.9: Longitudinal summary of blood pressure phenotypes and covariates we adjusted for in MESA across four exams. Sd:
standard deviation. N: number of subject. sBP: systolic blood pressure. dBP: diastolic blood pressure. BMI: body mass
index.

Exam 1 (24 months) Exam 2 (18 months) Exam 3 (18 months) Exam 4 (24 months)
Mean Sd N Mean Sd N Mean Sd N Mean Sd N

sBP (mm Hg) 126.51 21.55 6427 124.33 20.79 5898 123.16 20.58 5619 123.59 20.56 5399
dBP (mm Hg) 71.82 10.27 6427 70.37 10.09 5898 69.69 9.94 5619 69.61 10.05 5399
BMI (kg/m2) 28.3 5.47 6429 28.33 5.48 5889 28.28 5.51 5621 28.38 5.58 5402
Age (years) 62.22 10.24 6429 63.69 10.1 5900 64.99 9.99 5628 66.51 9.94 5505

Table B.10: Sensitivity analysis of the top 5 principal components (PCs) in MESA. Each cell represents the p-value. The analysis
was done by fitting a multivariate linear regression using exam 1 data in MESA.

Race PC1 PC2 PC3 PC4 PC5
White/Caucasian 0.0002 0.3502 0.2895 0.8484 0.0315

Chinese American < 0.0001 0.0439 0.7882 0.9913 0.1982
Black/African-American 0.0029 0.3976 0.1406 0.3066 0.3808

Hispanic 0.9428 0.0306 0.4939 0.1760 0.6313
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Table B.11: Chromosomal Region Information for the 29 regions considered in the MESA analysis.
Region Name Chromosome Start End Index SNP Nearest Gene Coded Allele Frequency

MOV10 1 113012286 113049891 rs2932538 MOV10 0.75
rs13082711 3 27462913 27562913 rs13082711 SLC4A7 0.78
MECOM 3 170278981 170869100 rs419076 MECOM 0.47
SLC39A8 4 103386221 103576438 rs13107325 SLC39A8 0.05
GUCY1A3 4 156802313 156877951 rs13139571 GUCY1A3,GUCY1B3 0.76
rs1173771 5 32800785 32900785 rs1173771 NPR3,C5orf23 0.6

rs11953630 5 157727980 157827980 rs11953630 EBF1 0.37
HFE 6 26190488 26211550 rs1799945 HFE 0.14

rs805303 6 31674345 31774345 rs805303 BAT2,BAT5 0.61
rs4373814 10 18409978 18509978 rs4373814 CACNB2 0.55

PLCE1 10 95738736 96083139 rs932764 PLCE1 0.44
rs7129220 11 10257114 10357114 rs7129220 ADM 0.89

ARHGAP42 11 100058594 100371866 rs633185 FLJ32810,TMEM133 0.28
FES 15 89222929 89245010 rs2521501 FURIN,FES 0.31

GOSR2 17 42350482 42465002 rs17608766 GOSR2 0.86
rs1327235 20 10867030 10967030 rs1327235 JAG1 0.46
rs6015450 20 57134512 57234512 rs6015450 GNAS,EDN3 0.12
MTHFR 1 11763367 11794564 rs17367504 MTHFR,NPPB 0.15
ULK4 3 41258094 41983926 rs3774372 ULK4 0.83

rs1458038 4 81333747 81433747 rs1458038 FGF5 0.29
CACNB2 10 18464612 18875804 rs1813353 CACNB2 0.68
C10orf107 10 63087725 63201530 rs4590817 C10orf107 0.84

NT5C2 10 104830930 104948046 rs11191548 CYP17A1,NT5C2 0.91
PLEKHA7 11 16751418 16997566 rs381815 PLEKHA7 0.26
ATP2B1 12 88500959 88632208 rs17249754 ATP2B1 0.84
SH2B3 12 110323135 110378810 rs3184504 SH2B3 0.47

rs10850411 12 113822179 113922179 rs10850411 TBX5,TBX3 0.7
rs1378942 15 72814420 72914420 rs1378942 CYP1A1,ULK3 0.35
ZNF652 17 44716567 44799834 rs12940887 ZNF652 0.38

4. Detailed Data Analysis of MESA

This section reports the full data analysis results of analyzing 29 candidate regions

using the data from MESA. In addition to LGRF tests and SKAT, we also carried out

an individual SNP based analysis (MinP) by testing every SNP in the region using GEE

and adjusting the minimum p-value for multiple testing correction by multiplying with

the effective number of independent tests explaining 99.95% variation (Gao, Starmer, and

Martin, 2008). This proportion was determined by simulation such that the type-I error

rate is neither inflated nor conservative (data not shown). We note that the preservation

of nominal type-I error levels cannot be ensured because the real data scenarios can be

very different from the simulated data due to the various effect sizes, proportions of causal

variants, LD structures and so on. Supplementary Table B.12 - B.19 show the results of

multi-ethnic groups analysis and table C.7 - C.8 show the results of meta-analysis.
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Table B.12: CAU ethnic group sBP (2526 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and
MinP. The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for
potential within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value
by the effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the
average value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 42 0.13535 0.07635 0.09202 0.23265
2 MTHFR 1 11763367 11794564 72 0.01945 0.05276 0.05533 0.12314
3 rs13082711 3 27462913 27562913 111 0.01381 0.00466 0.00520 0.00778
4 MECOM 3 170278981 170869100 1026 1.00000 0.06022 0.10837 0.17882
5 ULK4 3 41258094 41983926 1000 0.22846 0.71848 0.70611 0.71814
6 SLC39A8 4 103386221 103576438 249 1.00000 0.86085 0.80668 0.81795
7 GUCY1A3 4 156802313 156877951 134 1.00000 0.53377 0.44202 0.33637
8 rs1458038 4 81333747 81433747 145 0.96055 0.22415 0.10866 0.05626
9 rs1173771 5 32800785 32900785 212 1.00000 0.33519 0.43248 0.54914
10 rs11953630 5 157727980 157827980 181 1.00000 0.89904 0.71726 0.86028
11 HFE 6 26190488 26211550 36 0.54141 0.72512 0.71851 0.68847
12 rs805303 6 31674345 31774345 146 0.00190 0.13020 0.08986 0.07329
13 rs4373814 10 18409978 18509978 284 0.59315 0.17728 0.20288 0.59591
14 PLCE1 10 95738736 96083139 401 1.00000 0.58603 0.61264 0.82326
15 CACNB2 10 18464612 18875804 902 0.38080 0.07818 0.10274 0.18348
16 C10orf107 10 63087725 63201530 190 1.00000 0.88840 0.92763 0.97798
17 NT5C2 10 104830930 104948046 113 0.82815 0.07243 0.08205 0.12620
18 rs7129220 11 10257114 10357114 178 1.00000 0.36771 0.45173 0.66651
19 ARHGAP42 11 100058594 100371866 715 1.00000 0.78860 0.71982 0.82962
20 PLEKHA7 11 16751418 16997566 464 0.16019 0.16659 0.17554 0.19694
21 ATP2B1 12 88500959 88632208 169 1.00000 0.22803 0.29551 0.56748
22 SH2B3 12 110323135 110378810 45 0.48835 0.48136 0.34815 0.53985
23 rs10850411 12 113822179 113922179 260 1.00000 0.43682 0.44055 0.51080
24 FES 15 89222929 89245010 18 1.00000 0.18458 0.28370 0.54740
25 rs1378942 15 72814420 72914420 84 0.00797 0.00186 0.00185 0.00233
26 GOSR2 17 42350482 42465002 138 0.37358 0.34244 0.37069 0.35589
27 ZNF652 17 44716567 44799834 79 1.00000 0.49696 0.57930 0.61687
28 rs1327235 20 10867030 10967030 313 0.21181 0.30059 0.28128 0.33724
29 rs6015450 20 57134512 57234512 180 0.27332 0.61897 0.57733 0.66472

Table B.13: CAU ethnic group dBP (2526 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and
MinP. The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for
potential within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value
by the effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the
average value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 42 0.46110 0.30341 0.27777 0.46583
2 MTHFR 1 11763367 11794564 72 0.00661 0.00130 0.00103 0.00355
3 rs13082711 3 27462913 27562913 111 0.31048 0.17037 0.17740 0.11849
4 MECOM 3 170278981 170869100 1026 0.04833 0.00513 0.02790 0.02207
5 ULK4 3 41258094 41983926 1000 0.04744 0.96234 0.91018 0.88880
6 SLC39A8 4 103386221 103576438 249 0.34061 0.55479 0.53973 0.28137
7 GUCY1A3 4 156802313 156877951 134 1.00000 0.47233 0.56610 0.87517
8 rs1458038 4 81333747 81433747 145 1.00000 0.29768 0.18177 0.25125
9 rs1173771 5 32800785 32900785 212 1.00000 0.66696 0.85676 0.89440
10 rs11953630 5 157727980 157827980 181 0.63602 0.23363 0.26583 0.11110
11 HFE 6 26190488 26211550 36 0.54645 0.34051 0.44308 0.45808
12 rs805303 6 31674345 31774345 146 0.30204 0.06300 0.04414 0.05236
13 rs4373814 10 18409978 18509978 284 0.16493 0.29760 0.32476 0.62033
14 PLCE1 10 95738736 96083139 401 1.00000 0.80312 0.82058 0.79770
15 CACNB2 10 18464612 18875804 902 0.08906 0.16648 0.14358 0.15338
16 C10orf107 10 63087725 63201530 190 0.02939 0.02024 0.02833 0.04118
17 NT5C2 10 104830930 104948046 113 1.00000 0.33286 0.25671 0.28467
18 rs7129220 11 10257114 10357114 178 0.66707 0.07883 0.08443 0.30574
19 ARHGAP42 11 100058594 100371866 715 1.00000 0.71191 0.54805 0.68127
20 PLEKHA7 11 16751418 16997566 464 0.61074 0.07355 0.08251 0.13227
21 ATP2B1 12 88500959 88632208 169 0.43572 0.75429 0.75579 0.61656
22 SH2B3 12 110323135 110378810 45 0.04899 0.16641 0.11498 0.21386
23 rs10850411 12 113822179 113922179 260 1.00000 0.35572 0.32875 0.36983
24 FES 15 89222929 89245010 18 1.00000 0.70865 0.74509 0.82268
25 rs1378942 15 72814420 72914420 84 0.25829 0.04784 0.02814 0.03862
26 GOSR2 17 42350482 42465002 138 1.00000 0.82360 0.99022 0.99637
27 ZNF652 17 44716567 44799834 79 0.96038 0.65212 0.85261 0.84157
28 rs1327235 20 10867030 10967030 313 1.00000 0.40429 0.40808 0.57369
29 rs6015450 20 57134512 57234512 180 0.39288 0.10504 0.09364 0.16543
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Table B.14: AFA ethnic group sBP (1611 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and MinP.
The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for potential
within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value by the
effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the average
value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 25 0.41614 0.29182 0.24842 0.31362
2 MTHFR 1 11763367 11794564 60 1.00000 0.74027 0.76483 0.76851
3 rs13082711 3 27462913 27562913 82 1.00000 0.68060 0.67502 0.63146
4 MECOM 3 170278981 170869100 841 1.00000 0.92017 0.91854 0.95864
5 ULK4 3 41258094 41983926 740 1.00000 0.93804 0.92316 0.82468
6 SLC39A8 4 103386221 103576438 218 1.00000 0.56093 0.39974 0.67028
7 GUCY1A3 4 156802313 156877951 111 0.61661 0.05508 0.05925 0.07713
8 rs1458038 4 81333747 81433747 122 1.00000 0.42951 0.50710 0.42752
9 rs1173771 5 32800785 32900785 167 1.00000 0.97818 0.95217 0.96964
10 rs11953630 5 157727980 157827980 153 0.81745 0.25415 0.28025 0.41883
11 HFE 6 26190488 26211550 32 0.12438 0.03934 0.04456 0.08545
12 rs805303 6 31674345 31774345 132 1.00000 0.20036 0.19171 0.15740
13 rs4373814 10 18409978 18509978 235 1.00000 0.90417 0.88062 0.80690
14 PLCE1 10 95738736 96083139 313 0.00837 0.16311 0.31370 0.13983
15 CACNB2 10 18464612 18875804 741 1.00000 0.92649 0.85592 0.92046
16 C10orf107 10 63087725 63201530 157 1.00000 0.54669 0.55742 0.46793
17 NT5C2 10 104830930 104948046 89 0.12760 0.00497 0.00747 0.01635
18 rs7129220 11 10257114 10357114 147 1.00000 0.92541 0.90917 0.89739
19 ARHGAP42 11 100058594 100371866 580 0.86629 0.55717 0.40753 0.57759
20 PLEKHA7 11 16751418 16997566 386 0.20144 0.12597 0.12380 0.06895
21 ATP2B1 12 88500959 88632208 127 0.99723 0.33890 0.32429 0.34161
22 SH2B3 12 110323135 110378810 39 0.57348 0.12702 0.09567 0.19792
23 rs10850411 12 113822179 113922179 214 1.00000 0.94877 0.89189 0.84952
24 FES 15 89222929 89245010 14 0.64001 0.60704 0.59015 0.51314
25 rs1378942 15 72814420 72914420 70 1.00000 0.19290 0.18940 0.20472
26 GOSR2 17 42350482 42465002 121 1.00000 0.82218 0.80143 0.89642
27 ZNF652 17 44716567 44799834 60 1.00000 0.97062 0.96289 0.90895
28 rs1327235 20 10867030 10967030 187 1.00000 0.70146 0.70000 0.64716
29 rs6015450 20 57134512 57234512 101 0.31179 0.20503 0.23915 0.29266

Table B.15: AFA ethnic group dBP (1611 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and MinP.
The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for potential
within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value by the
effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the average
value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 25 0.64720 0.61927 0.53021 0.64604
2 MTHFR 1 11763367 11794564 60 0.88212 0.87692 0.96197 0.97343
3 rs13082711 3 27462913 27562913 82 0.33043 0.02325 0.02634 0.02223
4 MECOM 3 170278981 170869100 841 0.97042 0.59415 0.47938 0.43362
5 ULK4 3 41258094 41983926 740 0.65391 0.15723 0.21763 0.50748
6 SLC39A8 4 103386221 103576438 218 1.00000 0.62477 0.52559 0.77894
7 GUCY1A3 4 156802313 156877951 111 1.00000 0.08871 0.08911 0.16266
8 rs1458038 4 81333747 81433747 122 1.00000 0.31844 0.24816 0.17665
9 rs1173771 5 32800785 32900785 167 1.00000 0.76603 0.76637 0.81074
10 rs11953630 5 157727980 157827980 153 0.28363 0.28390 0.42828 0.49530
11 HFE 6 26190488 26211550 32 0.39060 0.08901 0.12339 0.10605
12 rs805303 6 31674345 31774345 132 0.05749 0.06843 0.08120 0.03396
13 rs4373814 10 18409978 18509978 235 1.00000 0.97314 0.80425 0.61203
14 PLCE1 10 95738736 96083139 313 1.00000 0.43693 0.44077 0.38918
15 CACNB2 10 18464612 18875804 741 0.54101 0.88589 0.82264 0.91039
16 C10orf107 10 63087725 63201530 157 0.09040 0.01524 0.01296 0.01055
17 NT5C2 10 104830930 104948046 89 1.00000 0.39532 0.41655 0.65896
18 rs7129220 11 10257114 10357114 147 0.26467 0.43629 0.36792 0.29269
19 ARHGAP42 11 100058594 100371866 580 0.58105 0.14785 0.26547 0.42156
20 PLEKHA7 11 16751418 16997566 386 1.00000 0.51775 0.59301 0.29514
21 ATP2B1 12 88500959 88632208 127 1.00000 0.09377 0.11849 0.14564
22 SH2B3 12 110323135 110378810 39 0.14582 0.58411 0.65584 0.25757
23 rs10850411 12 113822179 113922179 214 0.26957 0.86843 0.87413 0.90939
24 FES 15 89222929 89245010 14 1.00000 0.66729 0.64717 0.43090
25 rs1378942 15 72814420 72914420 70 1.00000 0.47473 0.49868 0.56505
26 GOSR2 17 42350482 42465002 121 0.39961 0.12266 0.17179 0.38108
27 ZNF652 17 44716567 44799834 60 1.00000 0.20299 0.21907 0.16900
28 rs1327235 20 10867030 10967030 187 1.00000 0.51377 0.72879 0.71563
29 rs6015450 20 57134512 57234512 101 0.32563 0.16282 0.17482 0.17651
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Table B.16: HIS ethnic group sBP (1449 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and MinP.
The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for potential
within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value by the
effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the average
value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 25 0.21720 0.19764 0.14669 0.22319
2 MTHFR 1 11763367 11794564 60 1.00000 0.30060 0.26727 0.05594
3 rs13082711 3 27462913 27562913 82 0.30355 0.03073 0.02657 0.04527
4 MECOM 3 170278981 170869100 841 0.19305 0.13142 0.12776 0.04830
5 ULK4 3 41258094 41983926 740 1.00000 0.82240 0.85875 0.63704
6 SLC39A8 4 103386221 103576438 218 1.00000 0.96378 0.97076 0.94457
7 GUCY1A3 4 156802313 156877951 111 0.05460 0.16260 0.19888 0.27068
8 rs1458038 4 81333747 81433747 122 0.18943 0.37949 0.31693 0.41744
9 rs1173771 5 32800785 32900785 167 0.06474 0.11461 0.06462 0.21419
10 rs11953630 5 157727980 157827980 153 1.00000 0.27397 0.31941 0.38667
11 HFE 6 26190488 26211550 32 0.94388 0.42017 0.28997 0.26090
12 rs805303 6 31674345 31774345 132 0.30084 0.32730 0.28558 0.45846
13 rs4373814 10 18409978 18509978 235 0.07423 0.05311 0.03130 0.03711
14 PLCE1 10 95738736 96083139 313 0.50239 0.13823 0.11782 0.06340
15 CACNB2 10 18464612 18875804 742 0.27413 0.12414 0.07441 0.09030
16 C10orf107 10 63087725 63201530 157 0.00208 0.00795 0.00330 0.00233
17 NT5C2 10 104830930 104948046 89 1.00000 0.49682 0.39424 0.59208
18 rs7129220 11 10257114 10357114 147 0.02707 0.21695 0.21966 0.25168
19 ARHGAP42 11 100058594 100371866 580 0.69250 0.45838 0.30851 0.13242
20 PLEKHA7 11 16751418 16997566 387 0.64844 0.25484 0.22700 0.08798
21 ATP2B1 12 88500959 88632208 127 1.00000 0.47628 0.68267 0.65226
22 SH2B3 12 110323135 110378810 39 1.00000 0.95814 0.95237 0.98013
23 rs10850411 12 113822179 113922179 214 1.00000 0.70291 0.56957 0.51005
24 FES 15 89222929 89245010 14 0.47022 0.28032 0.32165 0.34811
25 rs1378942 15 72814420 72914420 70 0.95797 0.40943 0.52693 0.34465
26 GOSR2 17 42350482 42465002 121 0.25193 0.50482 0.45614 0.48149
27 ZNF652 17 44716567 44799834 60 1.00000 0.39857 0.32511 0.48670
28 rs1327235 20 10867030 10967030 187 1.00000 0.55602 0.65414 0.61712
29 rs6015450 20 57134512 57234512 101 1.00000 0.62157 0.55568 0.18535

Table B.17: HIS ethnic group dBP (1449 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and MinP.
The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for potential
within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value by the
effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the average
value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 25 1.00000 0.74680 0.87073 0.63924
2 MTHFR 1 11763367 11794564 60 0.34353 0.08581 0.05394 0.02890
3 rs13082711 3 27462913 27562913 82 0.00459 0.00577 0.00861 0.03495
4 MECOM 3 170278981 170869100 841 0.33805 0.22671 0.25818 0.20534
5 ULK4 3 41258094 41983926 740 1.00000 0.90854 0.95999 0.90103
6 SLC39A8 4 103386221 103576438 218 1.00000 0.53937 0.36558 0.07364
7 GUCY1A3 4 156802313 156877951 111 0.11861 0.30924 0.36171 0.40988
8 rs1458038 4 81333747 81433747 122 0.47361 0.25443 0.24657 0.25349
9 rs1173771 5 32800785 32900785 167 0.02616 0.54847 0.38889 0.71940
10 rs11953630 5 157727980 157827980 153 1.00000 0.36324 0.37470 0.46645
11 HFE 6 26190488 26211550 32 1.00000 0.86865 0.92151 0.93876
12 rs805303 6 31674345 31774345 132 0.16574 0.37206 0.39796 0.52797
13 rs4373814 10 18409978 18509978 235 1.00000 0.47485 0.32155 0.39683
14 PLCE1 10 95738736 96083139 313 1.00000 0.54681 0.53568 0.41218
15 CACNB2 10 18464612 18875804 742 0.88106 0.32142 0.24189 0.51498
16 C10orf107 10 63087725 63201530 157 0.05212 0.02343 0.01039 0.00814
17 NT5C2 10 104830930 104948046 89 1.00000 0.89105 0.76728 0.60572
18 rs7129220 11 10257114 10357114 147 0.12894 0.04984 0.06132 0.07062
19 ARHGAP42 11 100058594 100371866 580 0.74441 0.13852 0.09680 0.15075
20 PLEKHA7 11 16751418 16997566 387 0.10437 0.60733 0.49726 0.23367
21 ATP2B1 12 88500959 88632208 127 0.24094 0.40082 0.45522 0.42751
22 SH2B3 12 110323135 110378810 39 1.00000 0.96279 0.96176 0.98044
23 rs10850411 12 113822179 113922179 214 1.00000 0.73359 0.55539 0.52110
24 FES 15 89222929 89245010 14 1.00000 0.80443 0.75815 0.84079
25 rs1378942 15 72814420 72914420 70 0.17513 0.40532 0.29054 0.17715
26 GOSR2 17 42350482 42465002 121 0.11577 0.52576 0.53297 0.42869
27 ZNF652 17 44716567 44799834 60 1.00000 0.45140 0.37263 0.64254
28 rs1327235 20 10867030 10967030 187 1.00000 0.77211 0.87579 0.94684
29 rs6015450 20 57134512 57234512 101 1.00000 0.86702 0.91764 0.80125
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Table B.18: CHN ethnic group sBP (775 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and MinP.
The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for potential
within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value by the
effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the average
value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 26 0.15059 0.36309 0.28488 0.24989
2 MTHFR 1 11763367 11794564 59 1.00000 0.60830 0.55853 0.71237
3 rs13082711 3 27462913 27562913 79 0.10178 0.03019 0.01908 0.04958
4 MECOM 3 170278981 170869100 822 0.64821 0.39291 0.54738 0.75053
5 ULK4 3 41258094 41983926 722 1.00000 0.44015 0.36834 0.49278
6 SLC39A8 4 103386221 103576438 213 1.00000 0.56075 0.50357 0.71217
7 GUCY1A3 4 156802313 156877951 107 0.22165 0.48432 0.46386 0.40801
8 rs1458038 4 81333747 81433747 120 0.36911 0.18223 0.24495 0.27591
9 rs1173771 5 32800785 32900785 159 1.00000 0.36743 0.18806 0.18593
10 rs11953630 5 157727980 157827980 150 1.00000 0.97636 0.94505 0.85109
11 HFE 6 26190488 26211550 31 0.59685 0.20983 0.26259 0.33061
12 rs805303 6 31674345 31774345 130 1.00000 0.88966 0.82054 0.73643
13 rs4373814 10 18409978 18509978 229 1.00000 0.31388 0.33109 0.39644
14 PLCE1 10 95738736 96083139 305 1.00000 0.72016 0.63652 0.82586
15 CACNB2 10 18464612 18875804 714 0.26030 0.02177 0.02603 0.00944
16 C10orf107 10 63087725 63201530 154 1.00000 0.46945 0.46612 0.38714
17 NT5C2 10 104830930 104948046 88 0.01400 0.81579 0.85689 0.93057
18 rs7129220 11 10257114 10357114 142 1.00000 0.50385 0.49822 0.32532
19 ARHGAP42 11 100058594 100371866 554 0.02062 0.16038 0.13582 0.17357
20 PLEKHA7 11 16751418 16997566 378 0.41303 0.24477 0.14763 0.27488
21 ATP2B1 12 88500959 88632208 122 0.63404 0.39300 0.36684 0.18625
22 SH2B3 12 110323135 110378810 36 0.21587 0.37482 0.41033 0.42779
23 rs10850411 12 113822179 113922179 211 0.89265 0.97007 0.92754 0.90111
24 FES 15 89222929 89245010 14 1.00000 0.22070 0.22339 0.32847
25 rs1378942 15 72814420 72914420 70 1.00000 0.89694 0.87975 0.93642
26 GOSR2 17 42350482 42465002 116 0.99234 0.17330 0.15325 0.23567
27 ZNF652 17 44716567 44799834 59 0.39036 0.24913 0.47506 0.58936
28 rs1327235 20 10867030 10967030 184 1.00000 0.20434 0.18397 0.24773
29 rs6015450 20 57134512 57234512 96 0.18157 0.07655 0.08302 0.08470

Table B.19: CHN ethnic group dBP (775 subjects) Analysis. Four ethnic groups were analyzed separately using LGRF, SKAT and MinP.
The analysis was done under the adjustment of age, gender, BMI and top two principle components to correct for potential
within-ethnicity stratification. MinP: testing every SNP with GEE in the region and adjusting the minimum p-value by the
effective number of variants explaining 99.95% of the genotype variation in the region. SKAT was applied to the average
value of repeated measurements.

name chr start end # of SNPs MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 26 0.17209 0.31239 0.26490 0.37278
2 MTHFR 1 11763367 11794564 59 1.00000 0.40381 0.36832 0.35052
3 rs13082711 3 27462913 27562913 79 0.03003 0.03078 0.02917 0.07132
4 MECOM 3 170278981 170869100 822 1.00000 0.48813 0.40892 0.44618
5 ULK4 3 41258094 41983926 722 0.06193 0.24029 0.18058 0.37429
6 SLC39A8 4 103386221 103576438 213 1.00000 0.78774 0.60471 0.68886
7 GUCY1A3 4 156802313 156877951 107 0.97396 0.29995 0.31670 0.38890
8 rs1458038 4 81333747 81433747 120 1.00000 0.41763 0.58483 0.58023
9 rs1173771 5 32800785 32900785 159 1.00000 0.40452 0.33038 0.29395
10 rs11953630 5 157727980 157827980 150 1.00000 0.99585 0.88124 0.85264
11 HFE 6 26190488 26211550 31 0.44131 0.13491 0.18534 0.32330
12 rs805303 6 31674345 31774345 130 0.53269 0.22116 0.21903 0.49052
13 rs4373814 10 18409978 18509978 229 0.83391 0.33075 0.30770 0.37043
14 PLCE1 10 95738736 96083139 305 0.90713 0.97003 0.93120 0.89614
15 CACNB2 10 18464612 18875804 714 0.12518 0.01679 0.01644 0.00552
16 C10orf107 10 63087725 63201530 154 1.00000 0.47566 0.53613 0.49981
17 NT5C2 10 104830930 104948046 88 1.00000 0.76354 0.70835 0.74797
18 rs7129220 11 10257114 10357114 142 1.00000 0.60813 0.64742 0.53630
19 ARHGAP42 11 100058594 100371866 554 0.10876 0.58452 0.58966 0.77740
20 PLEKHA7 11 16751418 16997566 378 1.00000 0.14965 0.08344 0.17324
21 ATP2B1 12 88500959 88632208 122 0.24554 0.21366 0.20688 0.06752
22 SH2B3 12 110323135 110378810 36 0.92189 0.73576 0.65778 0.61232
23 rs10850411 12 113822179 113922179 211 1.00000 0.80558 0.98446 0.98229
24 FES 15 89222929 89245010 14 1.00000 0.09102 0.09950 0.16090
25 rs1378942 15 72814420 72914420 70 1.00000 0.59380 0.70537 0.73863
26 GOSR2 17 42350482 42465002 116 0.82658 0.18860 0.18656 0.18634
27 ZNF652 17 44716567 44799834 59 0.23437 0.84935 0.94165 0.94194
28 rs1327235 20 10867030 10967030 184 1.00000 0.85964 0.78668 0.82811
29 rs6015450 20 57134512 57234512 96 0.38382 0.29070 0.35086 0.32896
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Table B.20: Meta-Analysis of sBP (6361 subjects) in MESA. Four ethnic groups were combined using Fisher’s method.
name chr start end MinP SKAT LGRF-G LGRF-J

1 MOV10 1 113012286 113049891 0.12662 0.11615 0.08422 0.20122
2 MTHFR 1 11763367 11794564 0.44532 0.27329 0.25608 0.19276
3 rs13082711 3 27462913 27562913 0.04979 0.00129 0.00087 0.00359
4 MECOM 3 170278981 170869100 0.84271 0.16447 0.26964 0.25385
5 ULK4 3 41258094 41983926 0.93729 0.94506 0.96538 0.90941
6 SLC39A8 4 103386221 103576438 1.00000 0.95245 0.88354 0.98117
7 GUCY1A3 4 156802313 156877951 0.27964 0.14522 0.14894 0.16461
8 rs1458038 4 81333747 81433747 0.71395 0.26335 0.20692 0.16141
9 rs1173771 5 32800785 32900785 0.70582 0.38030 0.22572 0.46261

10 rs11953630 5 157727980 157827980 0.99994 0.69307 0.69145 0.83252
11 HFE 6 26190488 26211550 0.58656 0.15250 0.14972 0.22746
12 rs805303 6 31674345 31774345 0.06037 0.28225 0.20031 0.19631
13 rs4373814 10 18409978 18509978 0.61972 0.15804 0.12702 0.27193
14 PLCE1 10 95738736 96083139 0.20492 0.31685 0.38811 0.24973
15 CACNB2 10 18464612 18875804 0.51404 0.02932 0.02661 0.02366
16 C10orf107 10 63087725 63201530 0.13607 0.12543 0.07493 0.04878
17 NT5C2 10 104830930 104948046 0.11075 0.02387 0.03046 0.09402
18 rs7129220 11 10257114 10357114 0.51322 0.58221 0.62433 0.64354
19 ARHGAP42 11 100058594 100371866 0.36079 0.55124 0.35965 0.34083
20 PLEKHA7 11 16751418 16997566 0.30172 0.10267 0.07077 0.04177
21 ATP2B1 12 88500959 88632208 0.99872 0.38877 0.48796 0.48406
22 SH2B3 12 110323135 110378810 0.69064 0.46967 0.36973 0.62359
23 rs10850411 12 113822179 113922179 0.99999 0.96044 0.92497 0.91949
24 FES 15 89222929 89245010 0.96616 0.26903 0.35591 0.55000
25 rs1378942 15 72814420 72914420 0.28300 0.02224 0.02575 0.02478
26 GOSR2 17 42350482 42465002 0.78478 0.49338 0.45838 0.57622
27 ZNF652 17 44716567 44799834 0.98444 0.63856 0.76786 0.88685
28 rs1327235 20 10867030 10967030 0.92765 0.48760 0.48532 0.55831
29 rs6015450 20 57134512 57234512 0.40123 0.24997 0.25722 0.17082

Table B.21: Meta-Analysis of dBP (6361 subjects) in MESA. Four ethnic groups were combined using Fisher’s method.
name chr start end MinP SKAT LGRF-G LGRF-J

1 MOV10 1 113012286 113049891 0.65418 0.61873 0.56224 0.72836
2 MTHFR 1 11763367 11794564 0.13322 0.00934 0.00557 0.00854
3 rs13082711 3 27462913 27562913 0.00434 0.00041 0.00063 0.00241
4 MECOM 3 170278981 170869100 0.40581 0.04256 0.10761 0.07974
5 ULK4 3 41258094 41983926 0.12987 0.55612 0.56460 0.87757
6 SLC39A8 4 103386221 103576438 0.97592 0.87205 0.69878 0.34243
7 GUCY1A3 4 156802313 156877951 0.82750 0.19607 0.24412 0.47640
8 rs1458038 4 81333747 81433747 0.99279 0.32604 0.26011 0.26061
9 rs1173771 5 32800785 32900785 0.50600 0.82381 0.76341 0.87893

10 rs11953630 5 157727980 157827980 0.90491 0.48791 0.58455 0.46902
11 HFE 6 26190488 26211550 0.78654 0.18630 0.31383 0.39228
12 rs805303 6 31674345 31774345 0.11321 0.04401 0.04039 0.05240
13 rs4373814 10 18409978 18509978 0.86003 0.62699 0.50342 0.67279
14 PLCE1 10 95738736 96083139 1.00000 0.90959 0.90494 0.82606
15 CACNB2 10 18464612 18875804 0.23328 0.07493 0.05311 0.04745
16 C10orf107 10 63087725 63201530 0.02302 0.00146 0.00097 0.00086
17 NT5C2 10 104830930 104948046 1.00000 0.77595 0.68184 0.76498
18 rs7129220 11 10257114 10357114 0.47707 0.08902 0.09892 0.18138
19 ARHGAP42 11 100058594 100371866 0.63454 0.44668 0.29560 0.56021
20 PLEKHA7 11 16751418 16997566 0.70240 0.18356 0.13426 0.11532
21 ATP2B1 12 88500959 88632208 0.50290 0.25040 0.29796 0.15524
22 SH2B3 12 110323135 110378810 0.26183 0.71943 0.63767 0.55636
23 rs10850411 12 113822179 113922179 0.95580 0.90671 0.88300 0.89773
24 FES 15 89222929 89245010 1.00000 0.56643 0.57727 0.63884
25 rs1378942 15 72814420 72914420 0.62576 0.23689 0.16497 0.16428
26 GOSR2 17 42350482 42465002 0.58833 0.32515 0.41807 0.53758
27 ZNF652 17 44716567 44799834 0.93545 0.65153 0.70855 0.76768
28 rs1327235 20 10867030 10967030 1.00000 0.86045 0.92321 0.97171
29 rs6015450 20 57134512 57234512 0.64413 0.20782 0.23223 0.28420
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APPENDIX C

Supplementary Materials for Chapter IV

1. Detailed Proofs

1.1 Proof of Result 3.1

To derive the asymptotic distribution of Q = 1
m
STγ(β̂, ζ̂, 0)Sγ(β̂, ζ̂, 0), the first step

is to show 1√
m
Sγ(β̂, ζ̂, 0) asymptotically follows a multivariate normal distribution with

mean zero.

1√
m
Sγ(β̂, ζ̂, 0) =

1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ̂)(Y i − µ̂i)

=
1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ̂)(Y i − µi)−

1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ̂)(µ̂i − µi)

By Taylor expansion at ζ, ζ̂ can be replaced by ζ except an op(1) term. It is easy to show

the score vector

1√
m
Sγ(β̂, ζ̂, 0) =

1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)(Y i − µi)(C.1)

− {E[(Ei ∗Gi)
TV −1i (ζ)(X i,Ei,Gi)] + op(1)}

√
m(β̂ − β) + op(1).(C.2)

Then we deal with the estimation of β. We note β̂ is the solution of an estimating

equation

1√
m
Sβ(β̂, ζ̂, 0) =

1√
m

m∑
i=1

(X i,Ei,Gi)
TV −1i (ζ̂)(Y i − µ̂i) = 0.
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By the Taylor expansion at (β, ζ), the convergence of (β̂, ζ̂) and the strong law of large

numbers, we have

√
m(β̂−β) = {E[(X i,Ei,Gi)

TV −1i (ζ)(X i,Ei,Gi)]+op(1)}−1[ 1√
m
Sβ(β, ζ, 0)+op(1)].

We plug
√
m(β̂ − β) into the equation (C.2), then the score vector

1√
m
Sγ(β̂, ζ̂, 0) = [A+ op(1)]

1√
m

[STγ(β, ζ, 0), STβ(β, ζ, 0)]T + op(1),

whereA = {Iq,−E[(Ei∗Gi)
TV −1i (ζ)(X i,Ei,Gi)]E−1[(X i,Ei,Gi)

TV −1(ζ)(X i,Ei,Gi)]}.

By the central limit theorem and the unbiasedness of score functions Sγ and Sβ ,

1√
m

[STγ(β, ζ, 0), STβ(β, ζ, 0)]T ⇒ N(0,D),

whereD = var[ 1√
m
S(β, ζ, 0)]. Thus,

1√
m
Sγ(β̂, ζ̂, 0) = N(0,Σ) + op(1)

where Σ = ADAT .

So far, we have proved 1√
m
Sγ(β̂, ζ̂, 0) asymptotically follows a multivariate normal

distribution with mean zero and covariance Σ = ADAT . By the property of quadratic

forms, Q = 1
m
STγ(β̂, ζ̂, 0)Sγ(β̂, ζ̂, 0) is asymptotically distributed as

(C.3)
q∑

k=1

λkχ
2
k

where χ2
ks are i.i.d. Chi-square distributions with degree of freedom one; λ1 ≥ . . . ≥ λq

are the ordered eigen-values of Σ. Next, we estimateA andD by

Â = {Iq,−[
m∑
i=1

(Ei∗Gi)
TV −1i (ζ̂)(X i,Ei,Gi)][

m∑
i=1

(X i,Ei,Gi)
TV −1i (ζ̂)(X i,Ei,Gi)]

−1},

D̂ =
1

m− p− q − 1

m∑
i=1

Si(β̂, ζ̂, 0)Si(β̂, ζ̂, 0)T , Si(β̂, ζ̂, 0) = [Sγ ,i(β̂, ζ̂, 0)T , Sβ,i(β̂, ζ̂, 0)T ]T ,
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and show that the weights in equation (C.3) can be estimated consistently by the eigen-

values of Σ̂ = ÂD̂Â
T

. First we show Â→ A. We note

1

m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ̂)(X i,Ei,Gi) =

1

m

∑
i

(Ei ∗Gi)
TV −1i (ζ)(X i,Ei,Gi)

+ (ζ∗l − ζl)
1

m

m∑
i=1

∑
l

(Ei ∗Gi)
T ∂V

−1
i (ζ)

∂ζl
(X i,Ei,Gi).

By the strong law of large numbers,

1

m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ̂)(X i,Ei,Gi) =

1

m

∑
i

(Ei ∗Gi)
TV −1i (ζ)(X i,Ei,Gi)+op(1).

Similar argument can be applied to 1
m

∑m
i=1(X i,Ei,Gi)

TV −1i (ζ̂)(X i,Ei,Gi). There-

fore,

Â = {Iq,−[
m∑
i=1

(Ei ∗Gi)
TV −1i (ζ̂)(X i,Ei,Gi)][

m∑
i=1

(X i,Ei,Gi)
TV −1i (ζ̂)(X i,Ei,Gi)]

−1}

= {Iq,−[
1

m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ̂)(X i,Ei,Gi)][

1

m

m∑
i=1

(X i,Ei,Gi)
TV −1i (ζ̂)(X i,Ei,Gi)]

−1}

= A+ op(1)

Then we show D̂ → D. It suffices to show sup‖c‖=1 |cT (D̂ −D)c| = op(1) where c

is an arbitrary vector with norm one;D = var[ 1√
m
S(β, ζ, 0)] and D̂ is defined as before.

Let

D̂ =
1

m

∑
i

BT
i V

−1
i (ζ̂)ε̂iε̂

T
i V

−1
i (ζ̂)Bi,

D̃ =
1

m

∑
i

BT
i V

−1
i (ζ)εiε

T
i V

−1
i (ζ)Bi,

D =
1

m

∑
i

BT
i V

−1
i (ζ)var(εi)V

−1
i (ζ)Bi,

whereBi = (Ei ∗Gi,X i,Ei,Gi), εi = Y i − µi and ε̂i = Y i − µ̂i. We have

|cT (D̂ −D)c| ≤ |cT (D̂ − D̃)c|+ |cT (D̃ −D)c|.
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|cT (D̂ − D̃)c| ≤ | 1
m

∑
i

cTBT
i [V −1i (ζ̂)− V −1i (ζ)]ε̂iε̂

T
i V

−1
i (ζ̂)Bic|

+ | 1
m

∑
i

cTBT
i V

−1
i (ζ)ε̂iε̂

T
i [V −1i (ζ̂)− V −1i (ζ)]Bic|

+ | 1
m

∑
i

cTBT
i V

−1
i (ζ)(ε̂iε̂

T
i − εiεTi )V −1i (ζ)Bic|

, Jn1 + Jn2 + Jn3,

where

sup
‖c‖=1

Jn1 ≤ sup
‖c‖=1

1

m

∑
i

‖BT
i c‖2‖V −1i (ζ̂)ε̂i‖‖[V −1i (ζ̂)− V −1i (ζ)]ε̂i‖

≤ sup
‖c‖=1

1

m

∑
i

‖BT
i c‖2Cop(1) ≤ λmax(

1

m
BTB)Cop(1) = op(1).

Similarly, sup‖c‖=1 Jn2 = op(1). With respect to the third term Jn3,

sup
‖c‖=1

Jn3 ≤ sup
‖c‖=1

| 1
m

∑
i

cTBT
i V

−1
i (ζ)ε̂i(ε̂i − εi)TV −1i (ζ)Bic|

+ sup
‖c‖=1

| 1
m

∑
i

cTBT
i V

−1
i (ζ)εi(ε̂i − εi)TV −1i (ζ)Bic|

≤ sup
‖c‖=1

1

m

∑
i

‖V −1i (ζ)‖2(‖εi‖+ ‖ε̂i‖)‖ε̂i − εi‖‖Bic‖

≤ C‖β̂ − β‖ sup
‖c‖=1

1

m

∑
i

‖Bic‖ = C‖β̂ − β‖λmax(
1

m
BTB) = op(1).

In addition, |cT (D̃ −D)c| = op(1) by the strong law of large numbers. Thus,

sup
‖c‖=1

|cT (D̂ −D)c| = op(1).

The final step is to show the weights in equation (C.3) can be estimated consistently by

the eigen-values of Σ̂ = ÂD̂Â
T

. Since Â→ A and D̂ →D,

max{|λmin(ÂD̂Â
T
−ADAT )|, |λmax(ÂD̂Â

T
−ADAT )|} = op(1).

By Weyl’s inequality (Franklin, 1993),

λmin(ÂD̂Â
T
−ADAT ) ≤ |λ̂k − λk| ≤ λmax(ÂD̂Â

T
−ADAT )
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Finally,

max
1≤k≤q

|λ̂k − λk| = op(1), n→∞.

1.2 Proof of Result 4.1

Let vij,ik be the (j, k)-th element of V −1i (ζ). We let

Eij = E∗ij −
∑

i,j E
∗
ijcij∑

i,j cij
, Gi = G∗i −

1

m

∑
i

G∗i

where cij =
∑

k vij,ik; E
∗
ij and G∗i are the original exposure and genetic variant. In prac-

tice, ζ is replaced by its estimator ζ̂.

Since Sγ(β, ζ, 0) is a vector where each element corresponds to one genetic variable,

we prove the result when there is only one genetic variable. Suppose the true main effects

are hE(Ei) and hG(Gi),

EH0 [Sγ ,i(β, ζ, 0)] = EH0 [(Ei ∗Gi)
TV −1i (ζ)(XE

i β
0
XE −XE

i βXE)]

+ EH0 [(Ei ∗Gi)
TV −1i (ζ)(XG

i β
0
XG −XG

i βXG)]

+ EH0{(Ei ∗Gi)
TV −1i (ζ)[hE(Ei)−EiβE]}

+ EH0{(Ei ∗Gi)
TV −1i (ζ)[hG(Gi)−GiβG]}

, KXE +KXG +KE +KG,

where β0
XE and β0

XE are the coefficients in the true model. We first note

KXE = EH0 [
∑
(j,k)

EijGivij,ik(X
E
i,kβ

0
XE −XE

i,kβXE)]

= EH0 [
∑
(j,k)

Eijvij,ik(X
E
i,kβ

0
XE −XE

i,kβXE)]EH0(Gi) = 0,

where the second equality is due to the independence between Gi and (XE
i ,Ei); the last
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equality is because Gi is centered. With respect to the second term KXG .

KXG = EH0 [
∑
(j,k)

EijGivij,ik(X
G
i,kβ

0
XG −XG

i,kβXG)]

= (β0
XG − βXG)

∑
(j,k)

EH0(Eijvij,ik)cov(Gi,X
G
i,k)

= EH0(
∑
j

Eij
∑
k

vij,ik)ci = 0,

where ci = cov(Gi,X
G
i,k)(β

0
XG − βXG) is a constant which depends on neither j nor k,

because cov(XG
i,k, Gi) is time invariant. The weights used to center E ensures the last

equality. Similar argument can be applied to KE and KG,

KE = EH0{
∑
(j,k)

EijGivij,ik[hE(Ei,k)− Ei,kβE]}

= EH0{
∑
(j,k)

Eijvij,ik[hE(Ei,k)− Ei,kβE]}EH0(Gi) = 0.

KG = EH0{
∑
(j,k)

EijGivij,ik[hG(Gi)−GiβG]}

= EH0(
∑
j

Eij
∑
k

vij,ik)EH0{Gi[hG(Gi)−GiβG]} = 0,

Finally,

EH0 [Sγ ,i(β, ζ, 0)] = 0.

The above derivation is for balanced data. The proof follows similarly if the data is missing

completely at random.

1.3 Proof of Result 4.2

Since Sγ(β, ζ, 0) is a vector where each element separately corresponds to one ge-

netic variable, we prove the result when there is only one genetic variable without loss of

generality.

1√
m
Sγ(β̂, ζ̂, 0) =

1√
m

∑
i

(Ei ∗Gi)
TV −1i (ζ̂)(Y i − µ̂i)

=
1√
m

∑
i

(Ei ∗Gi)
TV −1i (ζ̂)(Y i − µ0

i )−
1√
m

∑
i

(Ei ∗Gi)
TV −1i (ζ̂)(µ̂i − µ0

i )
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By Taylor expansion, we can replace ζ̂ by ζ except an op(1) term. Thus

1√
m
Sγ(β̂, ζ̂, 0) =

1√
m

∑
i

(Ei∗Gi)
TV −1i (ζ)(Y i−µ0

i )−
1√
m

∑
i

(Ei∗Gi)
TV −1i (ζ)(µ̂i−µ0

i )+op(1).

We will show the second term 1√
m

∑
i(Ei ∗Gi)

TV −1i (ζ̂)(µ̂i − µ0
i ) = op(1). This is by

evaluating the difference between the estimated model and true model.

1√
m

∑
i

(Ei ∗Gi)
TV −1i (ζ)(µ̂i − µ0

i ) = (β̂XE − β0
XE)

1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)XE

i

+ (β̂XG − β0
XG)

1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)XG

i

+
1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)[hE,U(Ei, β̂E)− hE(Ei)]

+ (β̂G − β0
G)

1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)Gi

, Im,XE + Im,XG + Im,E + Im,G

We note that hE,U(x; β̂) uniformly converges to hE(x) for ∀ x asm→∞ and (β̂
T

XE , β̂
T

XG , β̂
T

G)T

converge to (β0T
XE ,β

0T
XG ,β

0T
G )T . To evaluate Im,XE = (β̂XE − β0

XE) 1√
m

∑m
i=1(Ei ∗

Gi)
TV −1i (ζ)XE

i , by C1) and C2), following the similar argument in the proof of Result

4.1,

E[(Ei∗Gi)
TV −1i (ζ∗)XE

i ] = E(
∑
j,k

Ei,jGivij,ikX
E
i,k) = E(

∑
j,k

Ei,jvij,ikX
E
i,k)E(Gi) = 0.

By the central limit theorem and convergence of β̂XE , we have

Im,XE = (β̂XE − β0
XE)

1√
m

∑
i

(Ei ∗Gi)
TV −1i (ζ∗)XE

i = op(1)

where the weights used to center E ensures that (Ei ∗Gi)
TV −1i (ζ∗)XE

i has mean zero.

Similarly Im,XG = Im,G = op(1). To evaluate Im,E , we note

Im,E =
1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)[ĥE,U(Ei)− hE,U(Ei)]

= op(1)
1√
m

m∑
i=1

(Ei ∗Gi)
TV −1i (ζ)1 = op(1),
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where the last equality is by then central limit theorem. Finally,

1√
m
Sγ(β̂, ζ̂, 0) =

1√
m

∑
i

(Ei ∗Gi)
TV −1i (ζ)[Y i − E0

H0
(Y i|X i,Ei,Gi)] + op(1)

The above derivation is for balanced data. The proof follows similarly if the data is missing

completely at random.

1.4 Proof of Result 4.3

We prove the result by contrasting the true model where all PCs are included and a

reduced model with the S PCs only:

µ0
i,j = XT

i,jβ
0
X + Ei,jβ

0
E +

q∑
s=1

P s
i β

0
P,s µi,j = XT

i,jβX + Ei,jβE +
S∑
s=1

P s
i βP,s.

We note that β , (βTX , βE, βP,1, ..., βP,S)T is the solution of

EH0 [(X i,Ei,P
1
i , . . . ,P

S
i )TV −1i (ζ)(Y i − µi)] = 0.

By calculating the expectation and some algebra, we have

(C.4) (βTX , βE, βP,1, ..., βP,S)T = (β0T
X , β

0
E, β

0
P,1, ..., β

0
P,S)T +A−1B(β0

P,S+1, ..., β
0
P,q)

T ,

where

A = EH0{[X i,Ei,P
1
i , . . . ,P

S
i ]TV −1i (ζ)[X i,Ei,P

1
i , . . . ,P

S
i ]}

B = EH0{[X i,Ei,P
1
i , . . . ,P

S
i ]TV −1i (ζ)[P S+1

i , . . . ,P q
i ]}.

Then we will evaluate the bias due to fitting the reduced model,

EH0 [Sγ ,i(β, ζ, 0)] = EH0 [(Ei∗Gi)
TV −1i (ζ)(Y i−µi)] = EH0 [(Ei∗Gi)

TV −1i (ζ)(µ0
i−µi)].
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By plugging (C.4) into the above equation,

EH0 [Sγ ,i(β, ζ, 0)] = −EH0 [(Ei ∗Gi)
TV −1i (X i,Ei,P

1
i , . . . ,P

S
i )]A−1B(β0

P,S+1, . . . ,β
0
P,q)

T

+

q∑
s=S+1

EH0 [(Ei ∗Gi)
TV −1i (ζ)P s

i ]β
0
P,s

= −
q∑

s=S+1

EH0 [(Ei ∗Gi)
TV −1i (X i,Ei,P

1
i , . . . ,P

S
i )]A−1bsβ0

P,s

+

q∑
s=S+1

EH0 [(Ei ∗Gi)
TV −1i (ζ)P s

i ]β
0
P,s

=

q∑
s=S+1

{EH0 [(Ei ∗Gi)
TV −1i (ζ)P s

i ]− φs}β0
P,s,

where bs is the s-th column ofB;φs = E{(Ei∗Gi)
TV −1i (ζ)[X i,Ei,P

1
i , . . . ,P

S
i ]}A−1bs.
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2. Additional Numerical Studies

2.1 Main effect adjustment of G when the number of SNP exceeds the sample size

Table C.1: Simulation study evaluating the main effect adjustment of G (500 subjects). A linear main effect of E was fitted. Each
cell presents the type I error rate/power based on 1000 replicates. MinP: single SNP analysis using GEE adjusted by the
effective number of independent tests (Gao et al., 2008). iSKAT: region based test proposed by Lin et al. (2013). rareGE:
rareGE test proposed by Chen et al. (2014) assuming a random main effect of G. GE-none: the proposed test adjusting
for none of the SNPs. GE-wPCA/wPCAM-

√
m: the proposed test adjusting for the leading

√
m components using the

weighted PCA and robust(wPCA)/model-based(wPCAM) inference. GE-true: the proposed test with the correct model,
which correctly correctly includes all SNPs with non-zero main effects. Type I error rate and power were both evaluated
at α = 0.05. Power is empirically calibrated to α = 0.05 and marked as “*” when a method has type I error rate> 0.07.

Cross-sectional data
Type I error rate Power

C1 holds C1 does not hold C1 holds C1 does not hold
q 400 700 400 700 400 700 400 700

MinP 0.052 0.047 0.116 0.129 0.426 0.355 0.676* 0.636*
iSKAT 0.083 1.000 0.085 1.000 0.334* 0* 0.561* 0*
rareGE 0.049 0.061 0.062 0.072 0.433 0.411 0.690 0.616*

GE-none 0.030 0.021 0.093 0.101 0.281 0.256 0.623 0.549
GE-wPCA -

√
m 0.032 0.013 0.031 0.043 0.343 0.317 0.574 0.526

GE-wPCAM-
√
m 0.042 0.046 0.029 0.048 0.423 0.402 0.638 0.607

GE-true 0.031 0.028 0.040 0.033 0.352 0.325 0.610 0.597

Longitudinal data
Type I error rate Power

Ind. holds Ind. does not hold Ind. holds Ind. does not hold
q 400 700 400 700 400 700 400 700

MinP 0.044 0.029 0.084 0.069 0.325 0.298 0.392* 0.438
GE-none 0.035 0.043 0.110 0.126 0.381 0.381 0.368* 0.396*

GE-wPCA -
√
m 0.024 0.034 0.025 0.028 0.402 0.380 0.520 0.520

GE-wPCAM-
√
m 0.022 0.043 0.030 0.040 0.438 0.435 0.573 0.581

GE-true 0.030 0.040 0.026 0.033 0.431 0.426 0.563 0.554
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2.2 Detailed evaluation of PCA, PLS and weighted PCA

Table C.2: Simulation study evaluating the main effect adjustment ofG (775 subjects). A linear main effect ofE was included in the
working model. Each cell presents the type I error rate/power based on 1000 replicates. GE-PCA/PLS/wPCA-5/

√
m: the

proposed test adjusting for the leading 5/
√
n components using principal component analysis (PCA)/partial least square

regression (PLS)/ the weighted PCA (wPCA) approach. GE-true: the proposed test with a correct model. Type I error
rate and power were both evaluated at α = 0.05. Power is empirically calibrated to α = 0.05 and marked as “*” when a
method has high type I error rate (> 0.07). The zero calibrated power is due to extremely low p-values when type I error
rate is high.

Cross-sectional data
Type I error rate Power

Ind. holds Ind. does not hold Ind. holds Ind. does not hold
q 400 700 400 700 400 700 400 700

GE-PCA-5 0.036 0.038 0.122 0.107 0.517 0.444 0.706* 0.682*
GE-PLS-5 0.037 0.035 0.044 0.035 0.547 0.476 0.747 0.718

GE-wPCA-5 0.038 0.042 0.072 0.076 0.540 0.480 0.738* 0.708*
GE-PCA-

√
m 0.039 0.040 0.052 0.041 0.560 0.481 0.785 0.744

GE-PLS-
√
m 0.042 0.032 0.033 0.029 0.499 0.381 0.714 0.642

GE-wPCA -
√
m 0.038 0.038 0.044 0.041 0.557 0.483 0.766 0.742

GE-true 0.036 0.038 0.045 0.041 0.584 0.509 0.797 0.759

Longitudinal data
Type I error rate Power

Ind. holds Ind. does not hold Ind. holds Ind. does not hold
q 400 700 400 700 400 700 400 700

GE-PCA-5 0.043 0.033 0.086 0.094 0.595 0.578 0.707 0.714
GE-PLS-5 0.039 0.028 0.035 0.033 0.603 0.586 0.702 0.687

GE-wPCA-5 0.044 0.036 0.062 0.057 0.599 0.577 0.705 0.703
GE-PCA-

√
m 0.037 0.025 0.031 0.040 0.588 0.559 0.696 0.688

GE-PLS-
√
m 0.030 0.049 0.031 0.033 0.571 0.566 0.662 0.633

GE-wPCA -
√
m 0.033 0.034 0.031 0.034 0.588 0.569 0.687 0.682

GE-true 0.040 0.034 0.038 0.039 0.615 0.589 0.724 0.707
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3. Additional Data Analysis

3.1 Detailed description of the neighborhood features

The four neighborhood measures include two geographic information system based

measures and two survey based measures: 1. Density of favorable food stores (GIS-based);

2. Density of recreational facilities (GIS-based); 3. Perceived healthy foods availability

(survey-based); 4. Perceived walkability (survey-based). The GIS measures are from the

National Establishment Time Series (NETS) database from Wall and Associates for 2000

to 2007, where data on food stores and commercially-available recreational facilities for

every ZIP code within a 5 miles radius of MESA participant households were collected.

The food stores were identified from a total of 15 Standardized Industrial Codes (SIC)

and the data was enhanced by adding supermarket data from Nielsen (2008)/TDLinx as in

Auchincloss et al. (2012). The recreational facilities were identified from 114 SICs and in-

cludes indoor conditioning, dance, bowling, golf, team and racquet sports, and water activ-

ities. Gaussian kernel weighted densities of the food stores and recreational facilities were

calculated for one mile buffers surrounding participant households using ArcGIS 9.3 for

each year of the MESA examination. The survey based measures of healthy food availabil-

ity and walkability were obtained from questionnaires administered to MESA participants.

Respondents were asked to answer a set of questions regarding healthy food availability

(large selections of fresh fruit and vegetables and low fat foods) and walkability (pleasur-

ability and ease of walking, and frequency of other people walking or exercising in the

neighborhood) using a 5-point scale. The measures were then aggregated by pooling all

available respondents in each census tract using Conditional Empirical Bayes estimates

adjusted for respondent age, sex, source and site as described in Mujahid et al. (2008). For

all these measures, higher values indicate a better neighborhood environment.
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3.2 Linkage disequilibrium structure of region MECOM

Figure C.1: Region MECOM (821 SNPs) in Chinese Americans (775 subjects). The top figure shows its linkage disequilibrium
structure, created by Haploview based on HapHap CHD reference samples. Bar plots show the distribution of coefficient
squares and eigen-values. The coefficients were estimated by first regressing systolic blood pressure on covariates used
in the data analysis of MESA, then regress the residuals on each SNP/PC.
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3.3 Descriptive statistics

Table C.3: Gender distribution of MESA subjects across site and race. Each cell represents the number of subject in the corresponding
category. WFU: Wake Forest University, Winston Salem, NC; COL: Columbia University, New York, NY; JHU: Johns
Hopkins University, Baltimore, MD; UMN: University of Minnesota, Twin Cities, MN; NWU: Northwestern University,
Chicago, IL; UCLA: University of California - Lost Angeles, Los Angeles, CA.

Gender
Site Female Male All

WFU 528 464 992
COL 536 434 970
JHU 556 488 1044
UMN 532 518 1050
NWU 551 508 1059
UCLA 666 648 1314

All 3369 3060 6429

Gender
Race Female Male All

White/Caucasian 1321 1206 2527
Chinese American 394 381 775

Black/African-American 906 771 1677
Hispanic 748 702 1450

All 3369 3060 6429

Table C.4: Marginal association between sBP/dBP and the neighborhood exposures. This is a joint analysis of all four ethnic groups
using GEE, adjusting for age, gender, BMI and the socioeconomic status.

sBP dBP
Exposure Coefficient Sd P-value Coefficient Sd P-value

Density of Favorable Food Stores -0.15 0.05 3.65E-03 0.03 0.03 1.83E-01
Density of Recreational Facilities -0.08 0.02 4.69E-04 6.68E-05 0.01 9.95E-01

Perceived Healthy Foods Availability -2.18 0.44 8.74E-07 -0.61 0.21 4.21E-03
Perceived Walkability 0.05 0.81 9.48E-01 0.58 0.38 1.27E-01

Table C.5: Longitudinal summary of blood pressure phenotypes and covariates we adjusted for in MESA across four exams. Sd: standard
deviation. N: number of subject. sBP: systolic blood pressure. dBP: diastolic blood pressure. BMI: body mass index. SES:
socioeconomic status. DFFS: density of favorable food stores. DRF: density of recreational facilities. PHFA: perceived
healthy foods availability. PW: perceived walkability.

Exam 1 (24 months) Exam 2 (18 months) Exam 3 (18 months) Exam 4 (24 months)
Mean Sd N Mean Sd N Mean Sd N Mean Sd N

sBP (mm Hg) 126.51 21.55 6427 124.33 20.79 5898 123.16 20.58 5619 123.59 20.56 5399
dBP (mm Hg) 71.82 10.27 6427 70.37 10.09 5898 69.69 9.94 5619 69.61 10.05 5399
BMI (kg/m2) 28.3 5.47 6429 28.33 5.48 5889 28.28 5.51 5621 28.38 5.58 5402
Age (years) 62.22 10.24 6429 63.69 10.1 5900 64.99 9.99 5628 66.51 9.94 5505

SES -0.24 1.36 5853 -0.29 1.35 5755 -0.45 1.33 5576 -0.74 1.32 5333
DFFS 2.59 4.22 5853 2.64 4.32 5755 2.6 4.34 5595 2.66 4.45 5383
DRF 4.71 8.29 5853 5.37 9.38 5755 5.73 9.76 5595 6.61 11.32 5383

PHFA 3.48 0.48 5785 3.49 0.47 5659 3.48 0.47 5398 3.72 0.38 4932
PW 3.91 0.31 5785 3.91 0.3 5659 3.91 0.3 5398 3.95 0.26 4932
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Table C.6: Chromosomal Region Information for the 29 regions considered in the MESA analysis.
Region Name Chromosome Start End Index SNP Nearest Gene Coded Allele Frequency

MOV10 1 113012286 113049891 rs2932538 MOV10 0.75
rs13082711 3 27462913 27562913 rs13082711 SLC4A7 0.78
MECOM 3 170278981 170869100 rs419076 MECOM 0.47
SLC39A8 4 103386221 103576438 rs13107325 SLC39A8 0.05
GUCY1A3 4 156802313 156877951 rs13139571 GUCY1A3,GUCY1B3 0.76
rs1173771 5 32800785 32900785 rs1173771 NPR3,C5orf23 0.6

rs11953630 5 157727980 157827980 rs11953630 EBF1 0.37
HFE 6 26190488 26211550 rs1799945 HFE 0.14

rs805303 6 31674345 31774345 rs805303 BAT2,BAT5 0.61
rs4373814 10 18409978 18509978 rs4373814 CACNB2 0.55

PLCE1 10 95738736 96083139 rs932764 PLCE1 0.44
rs7129220 11 10257114 10357114 rs7129220 ADM 0.89

ARHGAP42 11 100058594 100371866 rs633185 FLJ32810,TMEM133 0.28
FES 15 89222929 89245010 rs2521501 FURIN,FES 0.31

GOSR2 17 42350482 42465002 rs17608766 GOSR2 0.86
rs1327235 20 10867030 10967030 rs1327235 JAG1 0.46
rs6015450 20 57134512 57234512 rs6015450 GNAS,EDN3 0.12
MTHFR 1 11763367 11794564 rs17367504 MTHFR,NPPB 0.15
ULK4 3 41258094 41983926 rs3774372 ULK4 0.83

rs1458038 4 81333747 81433747 rs1458038 FGF5 0.29
CACNB2 10 18464612 18875804 rs1813353 CACNB2 0.68
C10orf107 10 63087725 63201530 rs4590817 C10orf107 0.84

NT5C2 10 104830930 104948046 rs11191548 CYP17A1,NT5C2 0.91
PLEKHA7 11 16751418 16997566 rs381815 PLEKHA7 0.26
ATP2B1 12 88500959 88632208 rs17249754 ATP2B1 0.84
SH2B3 12 110323135 110378810 rs3184504 SH2B3 0.47

rs10850411 12 113822179 113922179 rs10850411 TBX5,TBX3 0.7
rs1378942 15 72814420 72914420 rs1378942 CYP1A1,ULK3 0.35
ZNF652 17 44716567 44799834 rs12940887 ZNF652 0.38
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3.4 Marginal association analysis of the 29 regions in MESA

Table C.7: Marginal association between sBP and the 29 regions in MESA. Four ethnic groups were combined using Fisher’s method.
MinP: minimum p-value test using GEE. SKAT: the SKAT test using the average value of the outcome. LGRF-G/J: the longitu-
dinal genetic random field model proposed by He et al. (2015). The results are from He et al. (2015). Age, gender, BMI and top
2 PCs were adjusted as covariates.

name chr start end MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 0.12662 0.11615 0.08422 0.20122
2 MTHFR 1 11763367 11794564 0.44532 0.27329 0.25608 0.19276
3 rs13082711 3 27462913 27562913 0.04979 0.00129 0.00087 0.00359
4 MECOM 3 170278981 170869100 0.84271 0.16447 0.26964 0.25385
5 ULK4 3 41258094 41983926 0.93729 0.94506 0.96538 0.90941
6 SLC39A8 4 103386221 103576438 1.00000 0.95245 0.88354 0.98117
7 GUCY1A3 4 156802313 156877951 0.27964 0.14522 0.14894 0.16461
8 rs1458038 4 81333747 81433747 0.71395 0.26335 0.20692 0.16141
9 rs1173771 5 32800785 32900785 0.70582 0.38030 0.22572 0.46261
10 rs11953630 5 157727980 157827980 0.99994 0.69307 0.69145 0.83252
11 HFE 6 26190488 26211550 0.58656 0.15250 0.14972 0.22746
12 rs805303 6 31674345 31774345 0.06037 0.28225 0.20031 0.19631
13 rs4373814 10 18409978 18509978 0.61972 0.15804 0.12702 0.27193
14 PLCE1 10 95738736 96083139 0.20492 0.31685 0.38811 0.24973
15 CACNB2 10 18464612 18875804 0.51404 0.02932 0.02661 0.02366
16 C10orf107 10 63087725 63201530 0.13607 0.12543 0.07493 0.04878
17 NT5C2 10 104830930 104948046 0.11075 0.02387 0.03046 0.09402
18 rs7129220 11 10257114 10357114 0.51322 0.58221 0.62433 0.64354
19 ARHGAP42 11 100058594 100371866 0.36079 0.55124 0.35965 0.34083
20 PLEKHA7 11 16751418 16997566 0.30172 0.10267 0.07077 0.04177
21 ATP2B1 12 88500959 88632208 0.99872 0.38877 0.48796 0.48406
22 SH2B3 12 110323135 110378810 0.69064 0.46967 0.36973 0.62359
23 rs10850411 12 113822179 113922179 0.99999 0.96044 0.92497 0.91949
24 FES 15 89222929 89245010 0.96616 0.26903 0.35591 0.55000
25 rs1378942 15 72814420 72914420 0.28300 0.02224 0.02575 0.02478
26 GOSR2 17 42350482 42465002 0.78478 0.49338 0.45838 0.57622
27 ZNF652 17 44716567 44799834 0.98444 0.63856 0.76786 0.88685
28 rs1327235 20 10867030 10967030 0.92765 0.48760 0.48532 0.55831
29 rs6015450 20 57134512 57234512 0.40123 0.24997 0.25722 0.17082

Table C.8: Marginal association between dBP and the 29 regions in MESA. Four ethnic groups were combined using Fisher’s method.
MinP: minimum p-value test using GEE. SKAT: the SKAT test using the average value of the outcome. LGRF-G/J: the longitu-
dinal genetic random field model proposed by He et al. (2015). The results are from He et al. (2015). Age, gender, BMI and top
2 PCs were adjusted as covariates.

name chr start end MinP SKAT LGRF-G LGRF-J
1 MOV10 1 113012286 113049891 0.65418 0.61873 0.56224 0.72836
2 MTHFR 1 11763367 11794564 0.13322 0.00934 0.00557 0.00854
3 rs13082711 3 27462913 27562913 0.00434 0.00041 0.00063 0.00241
4 MECOM 3 170278981 170869100 0.40581 0.04256 0.10761 0.07974
5 ULK4 3 41258094 41983926 0.12987 0.55612 0.56460 0.87757
6 SLC39A8 4 103386221 103576438 0.97592 0.87205 0.69878 0.34243
7 GUCY1A3 4 156802313 156877951 0.82750 0.19607 0.24412 0.47640
8 rs1458038 4 81333747 81433747 0.99279 0.32604 0.26011 0.26061
9 rs1173771 5 32800785 32900785 0.50600 0.82381 0.76341 0.87893
10 rs11953630 5 157727980 157827980 0.90491 0.48791 0.58455 0.46902
11 HFE 6 26190488 26211550 0.78654 0.18630 0.31383 0.39228
12 rs805303 6 31674345 31774345 0.11321 0.04401 0.04039 0.05240
13 rs4373814 10 18409978 18509978 0.86003 0.62699 0.50342 0.67279
14 PLCE1 10 95738736 96083139 1.00000 0.90959 0.90494 0.82606
15 CACNB2 10 18464612 18875804 0.23328 0.07493 0.05311 0.04745
16 C10orf107 10 63087725 63201530 0.02302 0.00146 0.00097 0.00086
17 NT5C2 10 104830930 104948046 1.00000 0.77595 0.68184 0.76498
18 rs7129220 11 10257114 10357114 0.47707 0.08902 0.09892 0.18138
19 ARHGAP42 11 100058594 100371866 0.63454 0.44668 0.29560 0.56021
20 PLEKHA7 11 16751418 16997566 0.70240 0.18356 0.13426 0.11532
21 ATP2B1 12 88500959 88632208 0.50290 0.25040 0.29796 0.15524
22 SH2B3 12 110323135 110378810 0.26183 0.71943 0.63767 0.55636
23 rs10850411 12 113822179 113922179 0.95580 0.90671 0.88300 0.89773
24 FES 15 89222929 89245010 1.00000 0.56643 0.57727 0.63884
25 rs1378942 15 72814420 72914420 0.62576 0.23689 0.16497 0.16428
26 GOSR2 17 42350482 42465002 0.58833 0.32515 0.41807 0.53758
27 ZNF652 17 44716567 44799834 0.93545 0.65153 0.70855 0.76768
28 rs1327235 20 10867030 10967030 1.00000 0.86045 0.92321 0.97171
29 rs6015450 20 57134512 57234512 0.64413 0.20782 0.23223 0.28420
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4.4 Sensitivity analyses

Table C.9: Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data. Each cell shows the p-value. EUR: European Ameri-
cans; HIS: Hispanics. DFFS: Density of favorable food stores. DRF: Density of recreational facilities. PHFA: Perceived
Healthy Food Availability. PW: Perceived walkability. GE-linear: the proposed test with a linear main effect of E. GE-
spline: the proposed test using

√
n natural cubic-spline basis functions for the main effect ofE. MinP: minimum p-value

test based on GEE. iSKAT-avg./base.: cross-sectional iSKAT using the average/baseline value of repeated measurements
as the outcome. Bonferroni correction threshold is 0.00043.

Systolic Blood Pressure - Region Indexed by rs10850411 - EUR
Not adjusting for site Adjusting for site

DFFS DRF PHFA PW DFFS DRF PHFA PW
GE-linear 0.0427 0.7857 0.0005 0.2812 0.0621 0.8518 0.0009 0.2590
GE-spline 0.0570 0.8480 0.0009 0.2127 0.0725 0.8830 0.0010 0.2240

MinP 0.0602 1.0000 0.0047 1.0000 0.0906 1.0000 0.0091 1.0000
iSKAT-avg. 0.2416 0.5134 0.8205 0.9028 0.3352 0.6967 0.8667 0.9001
iSKAT-base. 0.3953 0.7215 0.4331 0.8422 0.5572 0.8872 0.5938 0.8284

Table C.10: Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data. Each cell shows the p-value. EUR: European Ameri-
cans; HIS: Hispanics. DFFS: Density of favorable food stores. DRF: Density of recreational facilities. PHFA: Perceived
Healthy Food Availability. PW: Perceived walkability. GE-base: the proposed test using the baseline measurement of
both Y and E. GE-cumulative: the proposed test using the cumulative average of previous measurements. GE: the
proposed test as noted in the main text, which assumes full covariate conditional mean (Pepe and Anderson, 1994).

√
n

natural cubic-spline basis functions for the main effect of E are used. Bonferroni correction threshold is 0.00043.
Systolic Blood Pressure

Region Indexed by rs10850411 - EUR CACNB2 - HIS
DFFS DRF PHFA PW DFFS DRF PHFA PW

GE-base 0.4849 0.8250 0.4252 0.7919 0.0783 0.0190 0.9741 0.7015
GE-cumulative 0.1466 0.6995 0.1771 0.5955 0.1094 0.0279 0.3746 0.4476

GE 0.0570 0.8480 0.0009 0.2127 0.1008 0.0346 0.3081 0.3792

3.5 Locus-zoom plots
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Figure C.2: Locus-zoom plots of single SNP analysis of systolic blood pressure. The left panel shows the interaction between
perceived healthy food availability and region indexed by rs10850411 in European Americans. The right panel shows
the interaction between density of recreational facilities and region CACNB2 in Hispanic Americans. Each dot presents
the p-value with respect to one SNP in the region.

3.6 Additional data analysis of region CACNB2 and region indexed by rs10850411

Table C.11: Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data: interactions between neighborhood variables and the
region CACNB2 on systolic blood pressure. Each cell shows the p-value. EUR: European Americans; AFA: African
Americans; HIS: Hispanics; CHN: Asians of Chinese descent. Meta: Meta-analysis combining the results of four ethnic
groups using Fisher’s combined probability test. GE-linear: the proposed test with a linear main effect ofE. GE-spline:
the proposed test using

√
n natural cubic-spline basis functions for the main effect of E. MinP: minimum p-value test

based on GEE. The working correlation assumed in LGRF is compound symmetric. iSKAT-avg./base.: cross-sectional
iSKAT using the average/baseline value of repeated measurements as the outcome. Bonferroni correction threshold is
0.00043.

Systolic Blood Pressure - Region CACNB2 (687 -741 SNPs)
Density of favorable food stores Density of recreational facilities

EUR CHN AFA HIS Meta EUR CHN AFA HIS Meta
GE-linear 0.7215 0.1232 0.3837 0.0955 0.1773 0.5592 0.5777 0.7337 0.0753 0.4285
GE-spline 0.7410 0.2133 0.4402 0.1008 0.2708 0.5736 0.6176 0.6703 0.0346 0.2938

MinP 1.0000 1.0000 1.0000 0.0457 0.6282 0.4473 0.2836 1.0000 0.0012 0.0247
iSKAT.avg 0.9833 0.2402 0.3045 0.1023 0.2775 0.7105 0.2057 0.3039 0.0596 0.1572
iSKAT.base 0.9413 0.3396 0.5249 0.1125 0.4394 0.4008 0.2528 0.5071 0.0487 0.1521

Perceived Healthy Food Availability Perceived walkability
EUR CHN AFA HIS Meta EUR CHN AFA HIS Meta

GE-linear 0.8697 0.5274 0.9331 0.3374 0.8687 0.5087 0.8755 0.5675 0.5535 0.8630
GE-spline 0.8166 0.3934 0.9152 0.3081 0.7784 0.5610 0.9190 0.5241 0.3792 0.8038

MinP 0.4264 1.0000 1.0000 0.8478 0.9799 1.0000 1.0000 1.0000 1.0000 1.0000
iSKAT.avg 0.8886 0.0381 0.2958 0.0278 0.0373 0.3447 0.3270 0.3881 0.1459 0.2575
iSKAT.base 0.9905 0.0174 0.3402 0.6535 0.1945 0.3580 0.5804 0.3571 0.2561 0.4407
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Table C.12: Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data. Each cell shows the p-value. DFFS: Density of favor-
able food stores. DRF: Density of recreational facilities. PHFA: Perceived Healthy Food Availability. PW: Perceived
walkability. GE-linear: the proposed test with a linear main effect of E. GE-spline: the proposed test using

√
n nat-

ural cubic-spline basis functions for the main effect of E. MinP: minimum p-value test based on GEE. iSKAT-avg.:
cross-sectional iSKAT using the average value of repeated measurements as the outcome. iSKAT-base.: cross-sectional
iSKAT using the baseline value of repeated measurements as the outcome. Bonferroni correction threshold is 0.00043.

Region Indexed by rs10850411 - European Americans
Systolic blood pressure Diastolic blood pressure

DFFS DRF PHFA PW DFFS DRF PHFA PW
GE-linear 0.0427 0.7857 0.0005 0.2812 0.3865 0.7021 0.0844 0.9470
GE-spline 0.0570 0.8480 0.0009 0.2127 0.3644 0.7238 0.0527 0.9179

MinP 0.0602 1.0000 0.0047 1.0000 1.0000 1.0000 0.8297 1.0000
iSKAT-avg . 0.2416 0.5134 0.8205 0.9028 0.9147 0.8799 0.6560 0.5510
iSKAT-base. 0.3953 0.7215 0.4331 0.8422 0.7211 0.9039 0.9851 0.7764

3.7 Single SNP GEI analysis of the identified SNPs

The following figure shows the subgroup effect of the neighborhood exposures on sys-

tolic blood pressure, stratified by the top SNPs in the region indexed by rs10850411 and

region CACNB2. The overall effects show that higher healthy food availability is associ-

ated with lower systolic blood pressure in EUR with a coefficient -2.64 and 95% CI (-3.89,

-1.39); Higher density of recreational facility is associated with lower systolic blood pres-

sure in HIS with a coefficient -0.05 and 95% CI (-0.17, 0.06). The effects are modified

by rs10850411 and rs7085587. For example, higher healthy food availability has a larger

negative association with systolic blood pressure in European Americans with genotype

TT on rs10850411 (coefficient = -4.50, 95% CI = (-2.88, -6.12)), but the association is not

significant for those with genotype CC (coefficient = 1.70, 95% CI = (-0.57, 3.98)); Higher

density of recreational facility has a larger negative association with systolic blood pres-

sure in Hispanic Americans with genotype GG on rs7085587 (coefficient = -0.28, 95% CI

= (-0.13, -0.43)), but the association is positive for those with genotype AA (coefficient =

0.19, 95% CI = (0.07,0.32)).
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Figure C.3: The left panel shows the subgroup effect of perceived healthy food availability on systolic blood pressure stratified by
the genotype of rs10850411 in European Americans. The right panel shows the effect of density of recreational facilities
on systolic blood pressure stratified by the genotype of rs7085587 in Hispanic Americans.

3.8 Genome-wide GEI analysis of MESA

Figure C.4: Genome-wide set-based analysis of systolic blood pressure in MESA using the proposed method. Four ethnic groups’
p-values were combined using Fisher’s method for a meta-analysis after an ethnicity specific analysis. Each dot presents
the p-value of one gene.
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Figure C.5: Genome-wide set-based analysis of diastolic blood pressure in MESA using the proposed method. Four ethnic groups’
p-values were combined using Fisher’s method for a meta-analysis after an ethnicity specific analysis. Each dot presents
the p-value of one gene.

Figure C.6: Genome-wide set-based analysis of systolic blood pressure in MESA using iSKAT with the baseline value of repeated
measures. Four ethnic groups’ p-values were combined using Fisher’s method for a meta-analysis after an ethnicity
specific analysis. Each dot presents the p-value of one gene.
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Figure C.7: Genome-wide set-based analysis of diastolic blood pressure in MESA using iSKAT with the baseline value of repeated
measures. Four ethnic groups’ p-values were combined using Fisher’s method for a meta-analysis after an ethnicity
specific analysis. Each dot presents the p-value of one gene.
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