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ABSTRACT 

Cocrystals have gained tremendous interest in pharmaceutical development due to their 

potential to increase bioavailability.  Dissolution could be a major determinant for oral 

bioavailability, however, its mechanism for these cocrystalline materials has not been well 

recognized.  Lacking knowledge of the dissolution mechanism can lead to misinterpretation of in 

vitro and in vivo behavior.  The purpose of this dissertation is to provide a mechanistic 

understanding of the dissolution behavior of cocrystals to rationalize the selection process and 

improve in vivo predictions.   

 Cocrystals usually contain components with different physicochemical properties, such as 

ionization, diffusivity, and micellar solubilization and each of these properties can impact their 

rates of dissolution.  The main focus of this dissertation is to develop mass transport analyses to 

evaluate the roles of these properties on dissolution under varying solution conditions.  The 

different diffusivities between the cocrystal components led to the development of two different 

analyses, the surface saturation and interfacial equilibrium models to describe the dissolution 

process of cocrystals.  Better agreement with the experimental data makes the surface saturation 

model the preferred choice for flux predictions.     

This dissertation has demonstrated that the dissolution of cocrystals with ionizable 

components is dictated by the pH at the dissolving solid surface.  This interfacial pH is influenced 

by both the cocrystal properties and solution composition.  Depending on solution conditions, both 

carbamazepine and ketoconazole cocrystals can exhibit higher, equal, or lower dissolution rates 
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compared to their parent drugs.  The carbamazepine cocrystals studied here maintain both 

dissolution advantage and thermodynamic stability because of their diffusivity advantage.  The pH 

dependence of ketoconazole dissolution is mitigated through cocrystallization with acidic 

coformers.  Similar to pharmaceutical salts, cocrystals also exhibit common coformer effect in 

which the dissolution rates decrease with increasing coformer solution concentration.  By 

incorporating the independently determined values of physicochemical properties of cocrystal 

components and solution composition into the mass transport analyses, the flux of cocrystals as a 

function of bulk pH, surfactant, coformer and buffer concentration can be accurately predicted.  

These mass transport analyses provide the fundamental knowledge of cocrystal dissolution and the 

opportunity to predict and rationalize the design of cocrystals for optimal oral absorption.   
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CHAPTER 1  

INTRODUCTION 

Solubility is one of the important physicochemical properties that needs to be evaluated 

during the drug discovery and development process, since it is a significant factor that affects the 

dissolution rate and consequently, the oral absorption of the drug1.  This is particularly important 

for drugs that fall into the Biopharmaceutics Classification System (BCS) class II compounds, 

where solubility is likely the limiting factor for oral absorption due to the low solubility and high 

permeability properties of the drugs1, 2.  Despite the importance of solubility, the number of poorly 

water soluble drugs is increasing due to the need of larger and more lipophilic molecules for the 

newly discovered drug targets1, 3.  Currently, the number of poorly water soluble drugs accounts 

for 40% of the marketed drugs and 75% of the drugs that are under development1.  As a result, the 

enhancement of aqueous solubility has remained a challenge for the successful development of 

drug products in the pharmaceutical industry1, 3.  Many strategies have been employed to overcome 

this challenge and these include both formulation and solid state approaches1, 4.  Formulation 

strategies include but are not limited to the use of cosolvents, surfactants, complexation agents and 

lipid systems1.  While formulation approaches rely mainly on the use of excipients for improving 

solubility, solid state approaches focus on the solid structure modifications of the active 

pharmaceutical ingredients (APIs) and these include amorphous forms, polymorphs, solvates, 

hydrates, formation of salts and cocrystals4.  Each of these solid forms displays unique 

physicochemical properties that can influence the performance of the pharmaceutical materials5.   



 

2 
 

 Among the solid state approaches, cocrystals are an emerging class of engineered solid 

forms in pharmaceutical research and development, which have generated tremendous interest due 

to their potential advantages over other solid forms3, 4, 6.  Polymorphism offers limited number of 

crystalline structures since there is only a few number of different crystal forms that can be 

identified for a given API 7.  Cocrystal engineering provides opportunities to produce a large 

diversity of crystal forms due to the abundance of coformers available for formation3, 4, 8.  Unlike 

salt formation which is limited to only ionizable compounds, cocrystallization is possible for 

nonionizable compounds.  Cocrystals have high crystal lattice energy and thus offer better stability 

for formulations compared to amorphous and solvated drugs1, 7.  More importantly, cocrystals offer 

large solubility range and versatility in fine-tuning the solubility of the parent drugs9-12. 

Cocrystal engineering can generate a variety of crystal forms with physicochemical 

properties that are distinct from the APIs and these properties include but are not limited to 

crystallinity, melting point, physical and chemical stability, mechanical properties, solubility, 

dissolution and bioavailability4.  Among these properties, solubility and dissolution are of 

particular interest due to their importance in the oral absorption of drugs1, 2.  Cocrystals have the 

potential to improve aqueous solubility of pharmaceutical compounds that can translate into higher 

dissolution rate and thus better bioavailability3.  Consequently, a thorough understanding of the 

solubility and dissolution mechanisms of cocrystals is necessary to interpret their in vivo 

performance. 

  Cocrystal solubility is dependent on not only its own properties, but also the solution 

conditions such as pH, solubilizing agents and coformer concentration10, 12, 13.  Depending on the 

solution conditions, the same cocrystal can exhibit higher, equal or lower solubility compared to 

the parent drug.  This solubility phenomenon results in transition points that are important for 
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evaluating the thermodynamic stability of cocrystals.  At the transition point, the solubility of the 

drug and cocrystal are equal, but below or above, cocrystal can have higher solubility.  These 

transition points can be defined as the eutectic point, pHmax, S* and critical stabilization 

concentration (CSC)10, 12, 14-16.  The solubility product behavior of cocrystal in which the solubility 

of the cocrystal decreases with increasing coformer concentration can lead to a transition point 

also known as the eutectic point15.  The existence of pHmax is due to the different solubility pH 

dependence between the drug and cocrystal14, 17.  The preferential solubilization of the drug over 

the coformer by solubilizing agent can lead to a transition point that is characterized by a 

solubilizing agent concentration (CSC) and a solubility value (S*)10, 16.  The existence of these 

transition points makes the thermodynamic stability of cocrystals controllable through varying 

solution conditions.  Knowledge of these transition points can be useful for fine tuning the 

solubility advantages of cocrystals to modulate their dissolution rates. 

 Dissolution studies of cocrystals have been evaluated in different media3, 8, 18-21, however, 

a fundamental understanding of the dissolution mechanism is still lacking to explain the different 

behavior.  Properties of both cocrystal and solution have been shown to be important parameters 

for determining the solubility of cocrystals, but their roles on dissolution remain to be established.  

Cocrystals usually contain components with different physicochemical properties, such as 

ionization, diffusivity and micellar solubilization.  It has been shown that the pH at the dissolving 

surface of ionizable compounds during dissolution could be different from the bulk solution pH22-

24.  Knowing that the cocrystal components can be ionizable, it is important to evaluate how these 

properties could affect the pH microenvironment within the diffusion layer because of the pH 

dependent solubility of the cocrystals.  Diffusion coefficient is another parameter that influences 

dissolution and for most cocrystals, the components can have different diffusivities because of the 
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difference in molecular size and hydrophobicity.  Being able to identify the roles of the different 

properties of cocrystal components can help to establish the dissolution mechanism of cocrystals. 

 One of the prerequisites for successful oral formulation development is to select the solid 

form with optimal physicochemical properties that can lead to desired bioperformance and the 

selection process is based on the thorough understanding of these properties.  The two important 

properties that influence bioavailability are solubility and dissolution.  Since the solubility 

mechanisms of cocrystals have been established, the focus of this dissertation is dissolution.  This 

chapter provides the fundamental principles and concepts that are essential for understanding the 

dissolution behavior of cocrystals.  A statement of research objectives is also included in this 

chapter to give an overview of this dissertation.         

Cocrystal Design and Synthesis 

 Cocrystals are crystalline materials that contain two or more different molecular 

components in the same crystal lattice with well-defined stoichiometric ratios and these 

components are usually APIs and coformers that are both solids at room temperature7, 25, 26.  The 

design of cocrystals is based on the principles of crystal engineering and concepts of 

supramolecular chemistry, in which the components are selected based on favorable 

intermolecular interactions27, 28.  The supramolecular synthons responsible for the formation of 

cocrystals include non-covalent interactions, such as hydrogen bonds, π-π interactions and Vander 

Waals forces7, 26.  Among these interactions, hydrogen bonding is the most important and common 

interaction7, 26.  Supramolecular synthons can be classified into two categories, homosynthons, 

which are interactions between identical functional moieties, whereas heterosynthons are 

interactions between different functional moieties29, 30.  Heterosynthons are important interactions 
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for cocrystal design because they are energetically favored over homosynthons28.  The common 

hydrogen bond synthons of cocrystals are shown in Figure 1.126.  

 

Figure 1.1.  Common supramolecular synthons formed between carboxylic acids and amide 

groups26. 

 

Various techniques have been developed to synthesize cocrystals, which include, but are 

not limited to solution crystallization, mechanical grinding and melt crystallization3.  Among these 

techniques, reaction crystallization method (RCM) offers several advantages over other methods31.  

RCM is not only suitable for high throughput screening of cocrystals, but also good for large scale 

synthesis31.  The mechanism of RCM is based on generating supersaturation in solution with 

respect to only one solid phase, which is the cocrystal31.  Because of the solubility product 

behavior, supersaturation of incongruently saturated cocrystals can be generated in solution by 

increasing concentration of one component in excess to the stoichiometric ratio13, 31.  The synthesis 

of cocrystals can be guided by solubility phase diagrams similar to the one shown in Figure 1.232.  

The diagram indicates the regions of thermodynamic stability of the cocrystal and its components, 

which is very important for identifying the solution conditions that favor the formation of 

cocrystals31, 32.  Among the four regions shown in Figure 1.2, solution concentrations in both region 
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II and IV are supersaturated with respect to the cocrystal.  However, only pure cocrystal can form 

in region IV because region II is also supersaturated with respect to drug.   

 

Figure 1.2.  Schematic phase solubility diagram indicating thermodynamic stability regions and 

formation pathway of cocrystal.  Lines represent solubility of drug A, coformer B, and cocrystal 

AB.  Cocrystal solubility decreases with coformer concentration [B]T.  Subscript T represents total 

concentrations.  Arrows represent a path along which cocrystal is the only phase that can 

crystallize.  Region I: solution is supersaturated with respect to drug, and cocrystal can convert to 

drug.  Region II: solution is supersaturated with respect to both drug and cocrystal, and both can 

crystallize.  Region III: solution is below saturation of drug, cocrystal, and coformer.  Region IV: 

solution is supersaturated with respect to cocrystal, and cocrystal can crystallize32. 

   

Cocrystal solubility 

 Solubility is determined by two important parameters, lattice and solvation energy.  Lattice 

energy refers to the intermolecular forces of the solute and solvation energy is the interaction 

between the solute and solvent molecules in solution1.  The solubility mechanism involves the 

breaking of intermolecular bonds of the solid form and then follows by the formation of solvent-
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solute bonds1, 9.  Therefore, the strategies for enhancing solubility are to reduce the intermolecular 

forces of the solute and/or maximize the solvation energy1.  It is important to know the primary 

barrier for solubility in order to determine what strategy to use for enhancing solubility1.  Studies 

have shown that the main barrier for cocrystal aqueous solubility is the solvation energy because 

of the hydrophobic nature of the drug9.  Consequently, the aqueous solubility of cocrystals can be 

modulated through solution interactions, such as ionization, complexation and micellar 

solubilization9.  The common solution phase interactions of cocrystals are illustrated in Figure 1.3 

9.  

 

Figure 1.3.  Cocrystal solution phase interactions and associated equilibria for a 1:1 cocrystal RHA 

with a non-ionizable drug (R) and an ionizable coformer (HA) in micellar solution9. 

 

Ionization  

The solubility pH dependence of a poorly water soluble drug can be modified via 

cocrystallization with coformers of different ionization properties, such as acidic, basic, 

amphoteric and zwitterionic12.  Mathematical models have been developed to predict the solubility 

pH dependence of cocrystals based on the chemical equilibria of both components in solution12.  

Consider a 1:1 cocrystal with R as the non-ionizable drug and HA as the acidic coformer, the 
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chemical equilibria in solution include cocrystal dissociation and coformer ionization, which can 

be described as follows: 

𝑅𝐻𝐴𝑠𝑜𝑙𝑖𝑑 ⇋ 𝑅𝑎𝑞 + 𝐻𝐴𝑎𝑞             (1.1) 

𝐾𝑠𝑝 = [𝑅]𝑎𝑞[𝐻𝐴]𝑎𝑞                 (1.2) 

𝐻𝐴𝑎𝑞  ⇋  𝐻+ + 𝐴𝑎𝑞
−

                (1.3) 

𝐾𝑎 =
[𝐻+][𝐴−]𝑎𝑞

[𝐻𝐴]𝑎𝑞
              (1.4) 

where Ksp is the solubility product, Ka is the ionization constant of the coformer and subscript aq 

denotes the aqueous phase12.  By applying mass balance for each component in solution, the total 

drug and coformer concentrations can be expressed as12: 

[𝑅]𝑇 = [𝑅]𝑎𝑞               (1.5) 

[𝐴]𝑇 = [𝐻𝐴]𝑎𝑞 + [𝐴−]𝑎𝑞             (1.6) 

By combining the mass balance equations with the equilibrium constants, the total drug 

concentration can be expressed as12: 

[𝑅]𝑇 =  
𝐾𝑠𝑝

[𝐴]𝑇
(1 + 

𝐾𝑎

[𝐻+]
)             (1.7) 

When cocrystal is in equilibrium with solution under stoichiometric conditions, the cocrystal 

solubility is equal to the total drug concentration, as well as the total coformer concentration12:  

𝑆𝑐𝑜𝑐𝑟𝑦𝑠𝑡𝑎𝑙 =  [𝑅]𝑇 = [𝐴]𝑇             (1.8) 

By combining equations 1.7 and 1.8, the stoichiometric solubility of a 1:1 cocrystal with 

nonionizable drug and monoacidic coformer can be expressed as follow12: 
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𝑆𝑐𝑜𝑐𝑟𝑦𝑠𝑡𝑎𝑙 =  √𝐾𝑠𝑝 (1 +
𝐾𝑎

[𝐻+]
)              (1.9) 

Solubility equations for cocrystals of varying ionization properties and stoichiometries can be 

derived in a similar manner12.  The development of these mathematical models can give a priori 

predictions of the solubility pH dependence of pharmaceutical cocrystals.  The ability of cocrystals 

in modulating the pH dependent solubility of the parent drugs is demonstrated in Figure 1.4.  

Depending on the ionization properties of the coformers, the solubility behavior of cocrystals as a 

function of pH can be very different from that of the parent drug.  For example, a non-ionizable 

drug exhibits no pH dependent solubility as shown in Figure 1.4, (a) and (b).  However, the 

cocrystal of this drug with diacidic coformer leads to increase in solubility as a function of pH, 

whereas the cocrystal with amphoteric coformer results in a U-shaped solubility curve.  The 

solubility behavior is also predicted for cocrystals of a basic drug (Figure 1.4, c) and a zwitterionic 

drug (Figure 1.4, d) with acidic coformers. 

(a)                                                                           (b) 
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(c)                                                                              (d) 

 

Figure 1.4.  Theoretical solubility-pH profiles for (a) 2:1 R2H2A cocrystal, (b) 2:1 R2HAB 

cocrystal, (c) 2:1 B2H2A cocrystal and (d) 1:1 –ABH+H2X cocrystal calculated using previously 

developed equations12.  Drug and coformer pKa values and cocrystal Ksp are included in each 

graph.  

 

Transition point: pHmax 

 A transition point, pHmax can exist if the solubility curve of the drug intersects with that of 

the cocrystal at a given pH value.  This transition point is an important parameter for determining 

the stability region of cocrystals.  An example demonstrating this transition point is shown in 

Figure 1.5 for a dibasic drug, ketoconazole and its cocrystals with diacidic coformers33.  At pHmax, 

the solubility of the drug is the same as the cocrystals.  Below pHmax, the drug has higher solubility, 

but above it, the cocrystal solubility is higher.  By changing the solution pH, the 

thermodynamically stable cocrystal (below pHmax) can become unstable in solution (above pHmax).  
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Figure 1.5.  Solubility pH dependence of ketoconazole ( ), ketoconazole-adipic acid ( ), 

ketoconazole-succinic acid ( ) and ketoconazole-fumaric acid ( ).  The transition point, 

pHmax, is at the intersection between the drug and cocrystal solubility curves.  Solid lines represent 

the theoretical predictions and the symbols are the experimental data33. 

 

Micellar solubilization 

 Surfactants are common excipients used in pharmaceutical formulation development to 

enhance the solubility of poorly water soluble drugs34.  Studies have shown that the behavior of 

cocrystals in surfactant solution is different from that of the single components10, 35, 36.  A schematic 

representation of micellar solubilization of cocrystal is demonstrated in Figure 1.6.  The 

solubilization process involves several equilibria between the cocrystal solid phase and its 

components in the aqueous and micellar pseudophases35.  As shown in Figure 1.6, surfactant can 

solubilize the cocrystal components to different extents because of the different hydrophobicity 

between the components.  The hydrophobic drug is preferentially solubilized in the micelles, while 

the hydrophilic coformer is mostly in the aqueous phase.  Because of the differential solubilization 

between the cocrystal components, the solubility dependence on surfactant concentration of the 

cocrystal is different from the drug.  The solubility of hydrophobic drug usually exhibits linear 
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dependence on surfactant concentration, while the cocrystal solubility exhibits nonlinear 

dependence.  The linear dependent solubility of a nonionizable drug in surfactant solution can be 

described as 

𝑆𝑑𝑟𝑢𝑔 =  𝑆0(1 + 𝐾𝑠
𝑅[𝑀])           (1.10) 

and the nonlinear dependent solubility of 1:1 cocrystal RHA with nonionizable drug and acidic 

coformer in surfactant solution is described as  

𝑆𝑐𝑜𝑐𝑟𝑦𝑠𝑡𝑎𝑙 =  √𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑀]) (1 + 𝐾𝑠

𝐻𝐴[𝑀] +
𝐾𝑎

[𝐻+]
)       (1.11) 

where 𝑆0 is the intrinsic solubility of the drug, 𝐾𝑠
𝑅 and 𝐾𝑠

𝐻𝐴 are the solubilization constants of the 

drug and coformer respectively, and M is the micellar surfactant concentration, which is equal to 

the total surfactant concentration minus the critical micellar concentration (CMC) 35. 

 

Figure 1.6.  Schematic illustration of the equilibria between the cocrystal phase and its components 

in the aqueous and micellar pseudophases. This scheme represents micellar solubilization of one 

cocrystal component (for instance drug), leading to excess coformer in the aqueous pseudophase 

and in this way stabilizing the cocrystal phase35. 
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Transition point: CSC 

 Solubilizing agents such as surfactants, polymers and lipids can induce transition point for 

cocrystals with higher solubility than the parent drug under the assumption that these agents 

preferentially solubilize the drug over the coformer.  This transition point is characterized by a 

solubilizing agent concentration (i.e. CSC) required to achieve equivalent solubility between the 

drug and cocrystal, and a solubility value (S*)10, 16.  Similar to pHmax, CSC marks the stability 

region for cocrystals in solution containing solubilizing agents.  Below the CSC, cocrystal is the 

thermodynamically unstable phase relative to the less soluble drug10.  Above the CSC, cocrystal 

becomes thermodynamically stable because it is less soluble than the drug10.   

Surfactants can impart stability to the otherwise unstable cocrystals and the effectiveness 

of stabilization is dependent on the relative magnitude of the micellar solubilization constants 

between the components10, 35.  As demonstrated in Figure 1.7, the greater the difference in micellar 

solubilization between the drug and coformer, the lower the surfactant concentration required to 

achieve the CSC value10, 35.  The existence of CSC is due to the preferential solubilization, so it 

will disappear if the solubilization of the drug is the same as the coformer as shown in Figure 1.710, 

35.     



 

14 
 

 

Figure 1.7.  Schematic representation of the cocrystal (RHA) and drug (R) solubility with respect 

to the total surfactant concentration.  Ks
R and Ks

HA are the solubilization constants for R and HA, 

respectively.  CMC is the critical micellar concentration and CSC is the critical stabilization 

concentration35.  

 

Eutectic point measurement 

 Dissolution is the common method used in evaluating the solubility of cocrystals 3, 8, 21, 37.  

However, this method usually fails to capture the true dissolution concentration time profile 

because cocrystals are supersaturating drug delivery systems and may lead to drug crystallization 

during dissolution9.  Because of the solution mediated phase transformation, the thermodynamic 

solubility of cocrystals can be underestimated using the kinetic measurements.  To address this 

problem, the eutectic point measurement has been developed to determine the thermodynamic 

equilibrium solubility of cocrystals15.  At the eutectic point, the solid phases of both drug and 

cocrystal are in equilibrium with solution, and the solution concentrations of drug and coformer 

are dependent on the solution conditions, such as temperature, pH, solvent and additives15.  The 

eutectic point can be established by following the flowchart illustrated in Figure 1.8.  By measuring 

the solution concentrations of the cocrystal components ([drug]eu and [coformer]eu) at the eutectic 

point, the thermodynamic solubility of the cocrystal can be determined15.   
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Figure 1.8.  Flowchart of representative methods used to determine the equilibrium solution 

concentrations of cocrystal components at the eutectic point.  In this case, the solid phases at 

equilibrium are cocrystal and solid drug15, 32.  

 

Cocrystal dissolution and bioavailability 

 There are numerous examples in the literature trying to demonstrate the advantage of 

cocrystals over the parent drugs by comparing the solubility, dissolution and bioavailability data3.  

However, cocrystals do not always exhibit better performance than the parent compounds and the 

in vitro dissolution data does not always correlate well with the in vivo data8, 18, 21, 38.  Experimental 

designs and interpretation of the results can be improved by understanding the solubility and 

dissolution mechanisms of cocrystals.  This section includes a few examples of cocrystal 

dissolution and bioavailability studies from the literature. 
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Carbamazepine 

Carbamazepine (CBZ) is a BCS II antiepileptic drug that is known to have four different 

anhydrous polymorphs, as well as hydrates and solvates39, 40.  It has limited bioavailability because 

of its poor water solubility, so it usually requires higher doses to achieve the desired 

pharmacological effect41.  Cocrystallization offers advantage for improving aqueous solubility of 

CBZ over salt formation due to its neutral property.  Many cocrystals have been discovered for 

CBZ and some have been demonstrated to have improved solubility15, 38, 42.  CBZ cocrystals are 

excellent examples for which the solubility pH dependence of neutral compounds can be tailored 

through cocrystallization with different coformers.  Among these cocrystals, CBZ saccharin (CBZ-

SAC) has been studied intensively and its performance has been compared with the marketed 

product, Tegretol41.  The dissolution studies of CBZ-SAC were performed in stimulated gastric 

fluid at 37°C with different particle sizes and the results showed that the dissolution rate increased 

with smaller particle sizes41.  It was concluded that the smaller particle size of CBZ-SAC can 

prevent the conversion of cocrystal to the more stable drug form in solution; however, such 

statement was not conclusive because only one dissolution medium was studied and the solid phase 

analyses were performed only on particle size of 500 µm or greater41.  The pharmacokinetic studies 

performed in dogs showed no statistical difference in pharmacokinetic parameters between the 

cocrystal and Tegretol, which is shown in Figure 1.941.  This comparable result is likely due to the 

transformation of cocrystal back to the parent drug, which could potentially cause by the increased 

solubility of the cocrystal at higher pH environment in the intestine43.  In addition, the cocrystal 

capsule is formulated differently from the marketed product.  To improve in vivo performance, the 

formulations of poorly water soluble drugs usually contain additives that can solubilize the drug.  

CBZ-SAC may have better in vivo performance if it is formulated the same as the marketed 
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product.  In conclusion, this study has demonstrated the need to understand the effect of particle 

size and solution environment on cocrystal solubility and dissolution.   

 

Figure 1.9.  Average plasma time curves of CBZ concentrations from a cross-over experiment in 

fasted beagle dogs (n = 4) given oral doses of 200 mg of the active drug as Tegretol tablets and 

CBZ-SAC41.  

 

Indomethacin 

Indomethacin (IND) is a nonsteroidal drug with anti-inflammatory, antipyretic and 

analgesic properties, which belongs to the BCS class II compounds44.  The two polymorphic forms 

of IND are α and γ, with the γ form being thermodynamically stable at room temperature44.  IND 

is a weakly acidic drug with a pKa value of 4.5 and its γ form has a solubility of 2.5-4 µg/ml in 

water.  This low solubility could be the potential cause for low and erratic bioavailability44.  To 

improve the solubility and dissolution of IND, it was cocrystallized with SAC. The powder 

dissolution study indicated that the dissolution of the cocrystal was higher in pH 7.4 phosphate 

buffer compared to the γ form44.  The conversion of the cocrystal to the γ form was noticed during 

dissolution, but in-depth understanding of the dissolution behavior is lacking44.   

The dissolution and bioavailability of IND-SAC were evaluated and compared to the 

marketed product Indomee18.  In vitro dissolution studies were performed in both pH 7.4 phosphate 
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buffer and 0.1 M HCl with 0.5% Tween 80 at pH 1.218.  The results indicated that IND-SAC 

exhibited higher dissolution rate in both dissolution media compared to IND, but displayed 

comparable dissolution rate as the marketed product18.  This study demonstrated the pH effect on 

the dissolution of IND-SAC, in which the dissolution rate increased at high pH due to the acidity 

of IND and SAC11, 18.  Bioavailability of IND, IND-SAC and marketed product were evaluated in 

beagle dogs.  The cocrystal was prepared in hard gelatin capsules containing only lactose, whereas 

the marketed product contained more additives18.  As shown in Figure 1.10, the AUC and Cmax of 

IND-SAC were higher than IND, but similar to the marketed product18.  Again, this similar 

bioavailability between the cocrystal and the marketed product is potentially due to the additives 

used in the marketed product to optimize the formulation18.   

 

Figure 1.10.  Plasma concentration vs. time profiles for IND after oral administration of various 

formulations in beagle dogs: (●) IND–SAC cocrystal (ground); (■) 1:1 Physical mixture of IND 

(γ) and SAC; (▲) Indomee®.  Error bars show standard deviation18. 

 

Meloxicam 

Meloxicam is a BCS class II non-steroidal anti-inflammatory and antipyretic drug45.  It has 

a solubility of 0.012 mg/mL in water and its solubility is pH dependent due to its ionization 

property45.  Meloxicam has five polymorphic forms and it can exist in four different tautomeric 

forms depending on the solution environment45.  The cation form is the dominate species under 
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acidic conditions; the zwitterion or enol form exists in neutral conditions; and the anion form 

presences in basic conditions45.  Meloxicam has an acidic pKa of 4.18 and a basic pKa of 1.0946.  

Because of its low solubility, the therapeutic onset time of meloxicam is long.  Several cocrystals 

with different carboxylic acids as coformers have been discovered to improve the solubility and 

thus decrease the onset time of meloxicam45.     

 As one of the cocrystals, the kinetic solubility and bioavailability of meloxicam-aspirin 

cocrystal were evaluated47.  The cocrystal did not exhibit any solubility advantage in water at room 

temperature compared to the parent drug47.  However, the cocrystal showed a 44 fold solubility 

enhancement in pH 7.4 phosphate buffer at 37°C compared to the parent drug47.  The oral 

bioavailability of the cocrystal was 69%, whereas the parent drug was only 16%47.   

 A more recent study evaluated the correlation between the in vitro dissolution data and in 

vivo performance of meloxicam cocrystals8.  The in vitro dissolution of meloxicam and its 12 

cocrystals were performed in pH 6.5 phosphate buffer solutions at 37°C and the pharmacokinetic 

studies were performed using Sprague-Dawley rats, in which the rats were dosed with cocrystals 

suspended in 5% polyethylene glycol 400 (PEG 400) and 95% methylcellulose solutions8.  All the 

cocrystals exhibited faster dissolution rates at early time points, but eventually equilibrated to 

similar dissolution rate as meloxicam due to conversion8.  The pharmacokinetic study showed 

similar behavior as the dissolution8.  The correlation between the in vitro dissolution rates and in 

vivo absorption rates of the cocrystals was determined using linear regression analysis with a R2 

of 0.7067, which is shown Figure 1.118.  However, such correlation is not very accurate due to the 

following reasons.  First, phosphate buffer is not a very good representation of the physiological 

conditions.  The gastric intestinal (GI) tract contains bile salts, which are natural surfactants that 

can improve bioavailability by increasing dissolution rate48.  Second, the dissolution studies were 
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performed using pure cocrystals, whereas the pharmacokinetic studies used cocrystal suspensions 

in PEG 400 and methylcellulose solutions.  These polymers may have an impact on the solubility 

of the cocrystals.  To have better IVIV correlation, the dissolution studies should be conducted in 

physiological relevant conditions.  

 

Figure 1.11.  Correlation between in vitro dissolution rates and in vivo absorption rates of 

meloxicam and its cocrystals8. 

 

Lamotrigine 

 Lamotrigine is a BCS class II anticonvulsant drug, which exhibits poor water solubility 

(0.17 mg/mL at 25°C) and dissolution rate49.  Despite the fact that lamotrigine is a weak base with 

a pKa of 5.7, its aqueous solubility is still very low in 0.1 M HCl (4.1 mg/mL)49.  Novel crystal 

forms of lamotrigine have been discovered to improve the solubility, which include three 

cocrystals, one cocrystal hydrate, three salt forms, two solvates and one hydrated form49.  Some of 

these crystal forms were selected to determine their dissolution rates and pharmacokinetic 

behavior49.  As shown in Figure 1.12, Lamotrigine methylparaben form II cocrystal exhibited 

lower maximal concentration during dissolution in water compared to the parent drug; however, it 

was able to achieve higher maximal concentration during dissolution in 0.1 M HCl solution49.  This 

different dissolution behavior is most likely due to the pH effect on dissolution.  However, the 
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authors stated that the dissolution profiles in acidic conditions were not affected by pH because 

there was no significant change in the final pH of the solution49.  Although the pH in the bulk 

solution did not change, the pH at the dissolving surface can be different and this interfacial pH is 

the determining factor for the dissolution behavior.   

(a)                                                                        (b) 

  

Figure 1.12.  Dissolution profiles in water (a) and 0.1 M HCl (b) of lamotrigine and its crystal 

forms.  2: lamotrigine methylparaben cocrystal form II; 3: lamotrigine nicotinamide cocrystal; 4: 

lamotrigine nicotinamide cocrystal monohydrate; 5: lamotrigine saccharin salt49. 

 

The mechanism of dissolution 

 Dissolution is defined as the “the mixing of two phases with the formation of one new 

homogeneous phase”, and this process involves five major steps: 1) the wetting of drug particle 

surface by water; 2) the breakdown of solid state bonds; 3) the solvation of drug molecules with 

water; 4) the diffusion of drug molecules away from the dissolving surface into the well-stirred 

bulk solution and 5) the convection within the well-stirred bulk solution50.  In most cases, the first 

three steps happen instantaneously and thus, diffusion is usually the rate limiting step that 

determines the dissolution rate51.   

 Dissolution is the prerequisite of drug absorption for almost all drugs that are given orally 

and the purpose of in vitro dissolution studies is to provide a fast and inexpensive way to predict 
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in vivo performance of drugs50, 52.  Thus, it is essential to understand the mechanism of dissolution 

and the development of mechanistic models for the dissolution process can be very beneficial50.  

The first diffusion controlled dissolution experiment was conducted by Noyes and Whitney in 

1897 and based on their observations, they proposed the dissolution mechanism to be the diffusion 

from the thin film of saturated solution that surrounded the dissolving substances50, 51, 53.  In 1904, 

Nernst and Brunner modified the Noyes and Whitney model and postulated the existence of a 

diffusion layer adhering to the dissolving surface50, 51, 54, 55.  Based on the concept of diffusion layer 

and Fick’s first law, they derived the Nernst-Brunner equation54, 55,  

𝑑𝑀

𝑑𝑡
=

𝐷𝑆

ℎ
(𝐶𝑠 − 𝐶𝑡)            (1.12) 

where dM/dt is the rate of dissolution, D is the diffusion coefficient of the drug, S is the surface 

area of the drug, h is the thickness of the diffusion layer, Cs and Ct are the solubility of the drug 

and the concentration of the drug in the bulk solution at time t, respectively50.  Based on this 

equation, the rate of dissolution is influenced by diffusion, surface area, solubility and thickness 

of the unstirred boundary layer.     

Rotating disk dissolution 

 Intrinsic dissolution rate (IDR) is a useful tool to characterize drugs and it has been used 

to determine the relationship between dissolution rate and crystalline form, as well as to study the 

effect of surfactants and pH on the dissolution of poorly soluble drugs56.  IDR has recently been 

suggested to use for BCS classification because its correlation with in vivo dissolution rate is better 

compared to solublity56.  IDR is defined as the dissolution rate of pure drug substance when 

extrinsic factors, such as surface area, agitation, pH, ionic strength and temperature of the 

dissolution medium, are held constant56, 57.  IDR can be measured by dissolution methods such as 
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the fixed disk system and rotating disk system57.  Rotating disk system is the commonly used 

method and it is also known as the “Wood’s apparatus”57.  One advantage of using this apparatus 

is that the hydrodynamic boundary layer has been well defined.  According to Levich model58, the 

thickness of the diffusion boundary layer for rotating disk is defined as:  

ℎ = 1.612𝐷1/3𝑣1/6𝜔−1/2           (1.13) 

where 𝑣 is the kinematic viscosity of the medium and 𝜔 is the angular velocity in radians per unit 

time58.   

The rate of dissolution can be expressed in terms of flux, which is defined as the amount 

of material flowing through a unit cross section of a barrier in a unit time52.  According to Fick’s 

first law, flux is described as follow:  

𝐽 = −𝐷
𝑑𝐶

𝑑𝑥
              (1.14) 

where J is the flux and 
𝑑𝐶

𝑑𝑥
 is the concentration gradient within the diffusion layer52.  Combining 

equations 1.12, 1.13 & 1.14, the equation describing the flux of drug substance across the diffusion 

layer for rotating disk system can be derived as22  

𝐽 = 0.62𝐷2/3𝑣−1/6𝜔1/2𝐶𝑠           (1.15) 

This equation is based on the assumption that dissolution is conducted under sink conditions, 

where Ct is equal to zero22. 

Mass transport analyses of carboxylic acids 

Rotating disk dissolution apparatus has been used to examine the effect of pH on the 

dissolution kinetics of three carboxylic acids, benzoic acid, 2-naphthoic acid and indomethacin 
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under unbuffered conditions22.  Mass transport model has been developed to describe the 

dissolution process with simultaneous diffusion and chemical reactions within the hydrodynamic 

boundary layer adjacent to the dissolving surface22.  The chemical reactions happening at the 

dissolving surface during dissolution can alter the pH microenvironment and cause the pH at the 

interface to be different from that of the bulk solution22.  The development of the mass transport 

model allows the prediction of this interfacial pH and the flux that depends on this pH.   

The dissolution pH dependence of the three carboxylic acids confirms that the pH at the 

dissolving solid surface is different from the bulk solution22.  These carboxylic acids liberate 

hydrogen ions that can lower the pH at the dissolving solid surface compared to the bulk solution.  

The ionization of these acids also results in a buffer effect at the interface such that the interfacial 

pH remains relatively constant regardless of bulk pH changes as shown in Figure 1.13 (a)22.  

Interfacial pH dictates the dissolution behavior of these acids.  As shown in Figure 1.13 (b), the 

flux values of all three acids increase with bulk pH, but they all reach constant values at the 

buffering regions where there are minimal changes in interfacial pH22.  Knowledge of interfacial 

pH is essential for understanding the dissolution behavior of ionizable compounds.  The difficulty 

in accessing interfacial pH experimentally emphasizes the importance of performing mass 

transport analyses for ionizable compounds.  The mass transport models for predicting interfacial 

pH and flux consider the properties of the dissolving compounds, such as solubility, pKa values, 

and diffusion coefficients, and as well as the composition of the dissolution media, such as buffer 

species, bulk pH, et al22-24.     
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(a)                                                                (b) 

 

Figure 1.13.  (a) Interfacial pH as a function of bulk pH for 1: indomethacin, 2: 2-naphthoic acid 

and 3: benzoic acid.  (b) Flux ratios as a function of bulk pH for indomethacin (▲), 2-naphthoic 

acid (■) and benzoic acid (●)22.   

 

Statement of dissertation research 

 Although the dissolution rates of cocrystals have been widely studied3, 8, 18-21, not many 

have considered the mechanism of the dissolution process59-61.  Due to the lack of knowledge in 

this area, the purpose of this dissertation research is to provide a mechanistic understanding of the 

dissolution behavior of cocrystals under the influence of different solution conditions, such as pH 

and the presence of surfactant, coformer and buffer.  The main objective of this research is to 

develop mass transport models that incorporate the important physicochemical properties of the 

cocrystals to explain their dissolution behavior under different solution conditions.  These mass 

transport analyses can not only guide the development process of cocrystals, but also provide 

useful insights for predicting their in vivo performance.  
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  Chapter 2 of this thesis studies the dissolution behavior of two carbamazepine cocrystals 

under the influence of pH and micellar solubilization.  The purpose of this chapter is to provide a 

mechanistic understanding of the dissolution behavior of cocrystals through mass transport 

analyses.  It has been shown that the pH at the dissolving surface of ionizable drug is different 

from the bulk solution22-24.  This interfacial pH is important for determining the dissolution rate 

and can be predicted by developing mass transport models22-24.  In this chapter, mass transport 

models are developed by applying Fick’s law of diffusion to dissolution with simultaneous 

chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface 

to predict the interfacial pH and flux of the cocrystals.  The predictive powers of these models are 

evaluated by comparing the theoretical predictions of cocrystal flux with the experimental data as 

a function of pH and surfactant concentration.  This chapter also discusses the important roles of 

cocrystal physicochemical properties, such as solubility, diffusivity, ionization, micellar 

solubilization in determining the interfacial pH and rates of dissolution.  

 Chapter 3 provides a mechanistic analysis and comparison of the dissolution behavior of 

carbamazepine to its two cocrystals under the combination effect of pH and surfactant.  In this 

chapter, a simple mathematical equation is derived based on the mass transport analyses of both 

drug and cocrystal to describe the dissolution advantage of cocrystal, which is defined as the flux 

of the cocrystal over that of the drug.  The dissolution advantage is dependent on both the solubility 

and diffusion coefficient advantages of the cocrystal.  If the diffusion coefficient of the drug is the 

same as that of the cocrystal, the cocrystal dissolution advantage is equal to the solubility 

advantage.  This chapter evaluates the cocrystal dissolution advantage under the conditions where 

the diffusivity of the drug is different from that of the cocrystal.  Having a diffusivity advantage 

can be beneficial because it requires lower or even no solubility advantage to maintain higher 
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cocrystal dissolution rate.  The developed mass transport models can be used to evaluate the 

dissolution conditions where the cocrystals can display both dissolution advantage and 

thermodynamic stability.  

 Chapter 4 evaluates the influence of excess coformer on the dissolution rates of cocrystals.  

Similar to pharmaceutical salts, cocrystals also exhibit solubility product behavior.  This behavior 

leads to the suppression of salt dissociation in the presence of excess counter ion, which is known 

as the common ion effect.  The solubility of cocrystal has also been shown to decrease in the 

presence of excess coformer.  Using salts as an analogy, the influence of excess coformer on the 

solubility and dissolution rates of cocrystals is defined as the common coformer effect.  Excess 

coformer can potentially be accumulated in the intestinal lumen if the permeation of the drug is 

faster than the coformer.  The excess coformer in the intestine can affect the dissolution rate if the 

cocrystal has not completely dissolved.  Evaluating the common coformer effect on the dissolution 

of cocrystals can provide insights on how the differential permeations between the cocrystal 

components could impact the oral absorption.  Another important purpose of this chapter is to 

validate the surface saturation model developed in Chapter 2 to describe the dissolution mechanism 

of cocrystals.  By varying the coformer concentration in the bulk solution, the surface 

concentration of coformer can be the same as or higher than the drug concentration. 

Chapter 5 investigates and compares the pH effect on the dissolution of a dibasic drug, 

ketoconazole to its three cocrystals with diacidic coformers.  Because of its basicity, the oral 

absorption of ketoconazole can be impaired for patients with elevated stomach pH.  However, in 

vivo performance can be improved under acidic conditions.  One of the objectives of this chapter 

is to examine the potential of cocrystallizing ketoconazole with acidic coformers in enhancing 

bioavailability.  This is achieved by evaluating and comparing the dissolution pH dependence of 
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ketoconazole to its cocrystals.  In this chapter, the mass transport models are expanded to include 

cocrystals with components of diverse ionization properties, specifically for cocrystals with 

dibasic drugs and diacidic coformers.  The mass transport analyses result in a cubic equation and 

an eighth order polynomial equation for predicting the interfacial pH for the dissolution of the 

diabasic drug and its cocrystals with diacidic coformers, respectively.   Based on the interfacial 

pH predictions, the dissolution pH dependence of both ketoconazole and its cocrystals are 

predicted and compared to the experimental data.  The mechanistic understanding of cocrystal 

dissoluiton provides useful information for the selection process and formulation development. 

Chapter 6 studies the effect of buffer on the dissolution rate of a 1:1 cocrystal, 

carbamazepine-salicylic acid.  This chapter extends the mass transport model developed in Chapter 

2 to include the chemical reactions between the acidic coformer and the basic buffer species within 

the hydrodynamic boundary layer.  In the presence of monoprotic buffer, a seventh order 

polynomial equation is required to predict the interfacial pH for the dissolution of 1:1 cocrystals 

with nonionizable drug and monoacidic coformer.  The impact of buffer on the dissolution of 

cocrystals is evaluated using the mass transport model as a function of bulk pH and buffer 

concentration.  The predictive power of this mass transport model is evaluated by comparing the 

theoretical flux predictions with the experimental data obtained in different acetate and phosphate 

buffer concentrations.  A constant surfactant concentration (150 mM sodium lauryl sulfate) is used 

in all dissolution studies to prevent or minimize the cocrystal conversion.  

 The last chapter of this thesis concludes with the significant findings and future directions 

of this research.  Chapter 2 of this thesis is published in Molecular Pharmaceutics 2016, 13(3), 

1030-46.  A manuscript of Chapter 5 is currently being prepared for publication.  
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CHAPTER 2   

MECHANISTIC ANALYSIS OF COCRYSTAL DISSOLUTION AS A FUNCTION OF 

pH AND MICELLAR SOLUBILIZATION* 

Abstract  

The purpose of this work is to provide a mechanistic understanding of the dissolution 

behavior of cocrystals under the influence of ionization and micellar solubilization.  Mass transport 

models were developed by applying Fick’s Law of diffusion to dissolution with simultaneous 

chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface 

to predict the pH at the dissolving solid-liquid interface (i.e. interfacial pH) and the flux of 

cocrystals. To evaluate the predictive power of these models, dissolution studies of 

carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals 

were performed at varied pH and surfactant concentrations above the critical stabilization 

concentration (CSC), where the cocrystals were thermodynamically stable.  The findings in this 

work demonstrate the pH dependent dissolution behavior of cocrystals with ionizable components 

is dependent on interfacial pH.  This mass transport analysis demonstrates the importance of pH, 

cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.  

 

 

 

* This Chapter is published in Molecular Pharmaceutics, 2016, 13 (3), 1030-1046, 

http://pubs.acs.org/doi/full/10.1021/acs.molpharmaceut.5b00862. 
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Introduction  

The enhancement of aqueous solubility has remained a challenge for the successful 

development of new drug products in the pharmaceutical industry as the number of poorly water 

soluble drugs is increasing.  Many strategies have been employed to overcome this challenge by 

modifying the solid structure of the drug and these include amorphous forms, polymorphism, 

solvates, hydrates, salts and cocrystals1, 2.  Among these approaches, cocrystalline solids have 

generated tremendous interest due to their potential advantages over other solid forms, such as 

their diversity in formation and large solubility range2-4.  Due to their potential of increasing the 

bioavailability of drugs, many studies have been carried out to understand the solubility and 

dissolution behavior of cocrystals3, 5-9.  The solubility behavior of cocrystals has been studied10-13 

and detailed mechanisms of how solution interactions such as ionization and micellar 

solubilization affect the solubility of cocrystals have been identified by Rodriguez and 

coworkers14-17.  Although there are many dissolution studies of cocrystals in the literature3, 5-9, only 

a few have considered the mechanism of dissolution12, 18, 19.  A detailed mechanistic understanding 

of how physicochemical properties of cocrystal components affect the dissolution behavior still 

remains to be explored.  It is essential to understand the dissolution mechanism of cocrystals 

because such knowledge can provide a better understanding of the oral absorption of drugs from 

the cocrystalline solids. 

 An important consideration for cocrystals is the possibility that solution mediated phase 

transformation (eg: precipitation of less soluble drug) can occur during dissolution for cocrystals 

with higher solubility than their parent drugs.  This phenomenon has been observed in a number 

of studies in the literature12, 19-21.  Rapid conversion back to the parent compound makes the 

measurement of cocrystal dissolution challenging.  Dissolution experiments have been carried out 
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at low temperature to decrease the dissolution rates of highly soluble cocrystals to capture the 

intrinsic dissolution rates; however, phase transformation was still observed20.  It has also been 

shown that surfactants can thermodynamically stabilize cocrystals due to differences in micellar 

solubilization between the drug and coformer17, 22, 23.  The critical stabilization concentration 

(CSC) has been defined as the surfactant concentration required to achieve equivalent solubility 

of the cocrystal and parent drug17.  Cocrystals are thermodynamically unstable below the CSC and 

crystallization of pure drug can occur, but thermodynamically stable at or above the CSC17.  

Therefore, solid phase transformation can be prevented by performing cocrystal dissolution at or 

above the CSC. 

 Cocrystal usually contains a hydrophobic drug and a hydrophilic coformer that have very 

different physicochemical properties such as ionization, hydrophobicity, and diffusivity.  These 

properties can have very significant effects on the dissolution rates of cocrystals.  The ionizable 

components can undergo simultaneous chemical reactions at the dissolving surface with the 

chemical species coming from the bulk solution during dissolution.  Consequently, the pH at the 

dissolving surface is not necessarily equivalent to the bulk solution24.  The first and most important 

step for determining the dissolution rate of cocrystal with ionizable components is to model the 

pH at the dissolving surface.  Interfacial pH is affected by the degree of ionization of the 

component at the interface, which is determined by the concentration and pKa value of the 

ionizable component24.  For single component dissolution, the concentration at the dissolving 

surface is dictated by the solubility of that component.  Diffusivity can also influence the 

concentrations of the components at the dissolving surface for multi-component dissolution with 

different component diffusion coefficients.  The faster diffusing component can lead to a decrease 

in concentration of that component at the dissolving surface25.  The dissolution of cocrystal is a 
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multi-component system with different component diffusivities.  Therefore, the concentration of 

the faster diffusing cocrystal component will have a dependence on the difference in diffusivities 

between the cocrystal components.  The larger the difference between the diffusivities, the lower 

the concentration of the faster diffusing component will be at the surface.    

  The purpose of this work is to provide a mechanistically realistic physical mass transport 

analysis of the dissolution behavior of cocrystals under the combined influence of ionization and 

micellar solubilization.  Mass transport models were developed by applying Fick’s Law of 

diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer 

adjacent to the dissolving cocrystal surface24.  To evaluate the predictive power of these models, 

the constant surface area dissolution rates of two model cocrystals with 1:1 stoichiometric ratio, 

carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) were 

determined using a rotating disk dissolution apparatus.  Carbamazepine is non-ionizable, saccharin 

and salicylic acid are monoprotic weak acids with reported pKa values of 1.6 and 3.0, 

respectively13, 17.   

Materials and methods 

Materials   

Anhydrous carbamazepine (CBZ), salicylic acid (SLC) and sodium lauryl sulfate (SLS) 

were purchased from Sigma Chemical Company (St. Louis, MO) and used as received.  

Carbamazepine dihydrate (CBZD) was prepared by slurrying anhydrous CBZ in deionized water 

for 24 hours and solid was obtained through vacuum filtration.  Saccharin (SAC) was purchased 

from Acros Organics (Pittsburgh, PA) and used as received.  Isopropanol, acetonitrile, methanol 

and hydrochloric acid were purchased from Fisher Scientific (Pittsburgh, PA).  Sodium hydroxide 
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pellets were purchased from J.T. Baker (Philipsburg, NJ).  Water used in this study was filtered 

through a double deionized purification system (Milli Q Plus Water System) from Millipore Co. 

(Bedford, MA).   

Cocrystal synthesis   

Cocrystals were prepared by reaction crystallization method26 at room temperature.  CBZ-

SAC was prepared by adding 1:1 molar ratio of CBZ and SAC in isopropanol solution.  CBZ-SLC 

was prepared by adding 1:1 molar ratio of CBZ and SLC in acetonitrile solution containing 0.1 M 

SLC.  Solid phases were characterized by X-ray powder diffraction (XRPD) and differential 

scanning calorimetry (DSC). 

Cocrystal solubility measurements   

Cocrystal solubility was measured by determining the eutectic concentrations of the drug 

and coformer as a function of SLS concentration at pH 1 and 25°C.  A detailed discussion of the 

eutectic point measurement was reported elsewhere27.   Cocrystals (~100 to 150 mg) and CBZD 

(~50 to 100 mg) were suspended in 3 mL of aqueous SLS solution and stirred for 4 days.  Samples 

were collected at 24 hour intervals and centrifuged using Corning Costar Spin-X plastic centrifuge 

tubes with filters to separate the excess solid from solution.  Solution concentrations were 

measured using HPLC and solid phases were analyzed by XRPD.  Cocrystal stoichiometric 

solubility was determined from the measured eutectic concentrations of the cocrystal components 

using the method previously developed27. 

Cocrystal dissolution measurements  

The constant surface area dissolution rates of cocrystals were determined using a rotating 

disk apparatus.  Cocrystal powder (~150 mg) was compressed in a stainless steel rotating disk die 
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with a tablet radius of 0.50 cm at approximately 85 MPa for 2 minutes using a hydraulic press.  

The die containing the compact was mounted onto a stainless steel shaft attached to an overhead, 

variable speed motor.  The disk was exposed to 150 mL of the dissolution medium in a water 

jacketed beaker with temperature controlled at 25°C and a rotation speed of 200 rpm was used.  

Dissolution medium was prepared on the day of the experiment by dissolving SLS in water and 

solution pH was adjusted using HCl or NaOH.  The pH of dissolution media did not change during 

the experiments at pH 1-3 for both cocrystals.  Although the pH decreased for dissolution at pH 4 

and above, the final pH was still within the buffering region.  This means that the change in bulk 

pH during dissolution would not have significant impact on the interfacial pH.  Sink conditions 

were maintained throughout the experiments by ensuring the concentrations at the last time point 

of the dissolution were less than 10% of the cocrystal solubility.  Solution concentrations were 

measured using HPLC and solid phases after dissolution were analyzed by XRPD.   

HPLC   

Waters HPLC equipped with a photodiode array detector was used for all analysis.  The 

mobile phase was composed of 55% methanol and 45% water with 0.1% trifluoroacetic acid and 

the flow rate of 1 mL/min was used.  Separation was achieved using Waters, Atlantis, T3 column 

(5.0 µm, 100 Å) with dimensions of 4.6 x 250 mm.  The sample injection volume was 20 µL.  The 

wavelengths for the analytes were as follows: 284 nm for CBZ, 250 nm for SAC and 303 nm for 

SLC.    
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XRPD   

XRPD diffractograms of solid phases were collected with a benchtop Rigaku Miniflex X-

ray diffractometer using Cu-Kα radiation (λ = 1.54 Å), a tube voltage of 30 kV, and a tube current 

of 15 mA.  Data was collected from 5 to 40° at a continuous scan rate of 2.5°/min. 

DSC   

Crystalline samples were analyzed by DSC using a TA instrument 2910 MDSC system 

equipped with a refrigerated cooling unit.  All experiments were performed by heating the samples 

at a rate of 10 °C/min under a dry nitrogen atmosphere.  Temperature and enthalpy of the 

instrument were calibrated using high purity indium standard.   

Theoretical 

The following mass transport analysis utilizes the classic film theory that postulates the 

presence of a diffusion boundary layer (i.e. stagnant layer) adjacent to the dissolving surface28.  

The dissolution process is determined by the concentration gradient across the diffusion boundary 

layer and influenced by the simultaneous diffusion and chemical reactions occurring at the 

dissolving surface and in the adjacent boundary layer24.  For the dissolution of a 1:1 cocrystal in 

non-reactive media (eg: no ionization or micellar solubilization), the cocrystal would first dissolve 

according to its solubility product to give equal molar concentrations of the drug and coformer.  

Both components would then diffuse across the boundary layer into the bulk solution based on 

their diffusion coefficients and concentration gradients.  Cocrystalline solids have well defined 

stoichiometry so they will dissolve according to their stoichiometric ratios assuming that there is 

no precipitation.   
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At steady state, the dissolution rate of the drug must be the same as the coformer for a 1:1 

cocrystal if there is no solid phase transformation during dissolution (eg: drug precipitation).  As 

mentioned above, diffusion across the boundary layer is influenced by component diffusion 

coefficients and for most cocrystals, the drug molecule is larger than the coformer, so the diffusion 

coefficient of the drug is usually less than the coformer.  The difference in diffusivities between 

the cocrystal components may be magnified if the dissolution is performed in surfactant solution 

where the drug may be highly solubilized by micelles, but the coformer is only slightly solubilized.  

Micellar solubilization typically reduces the diffusion rate of the drug significantly compared to 

the coformer due to the much lower diffusion coefficient of the drug loaded micelles.  With slower 

diffusion, the transport rate of the drug would be less than the coformer.   To maintain 

stoichiometric dissolution of both components of the cocrystal, the difference in diffusivities can 

influence the concentrations of the components at the dissolving surface under steady state 

conditions.   

The mass transport process of cocrystals may be analyzed in two ways described here as 

the interfacial equilibrium and the surface saturation models.  Both of these models were developed 

based on the classic film theory of dissolution28 and the solubility product behavior of cocrystals. 

The major difference between the two models is related to the boundary conditions at the solid-

liquid interface.  For the interfacial equilibrium model, the solubility product of the cocrystal is 

assumed to apply at the dissolving surface at all times t  0.  For the surface saturation model, the 

concentration of the slower diffusing component, typically the drug, is maintained equal to the 

stoichiometric solubility of the cocrystal while the concentration of the faster diffusing component, 

typically the coformer, is depleted due to its more rapid diffusion.  Due to the depletion of the 

coformer at the dissolving surface, the solubility product of the cocrystal is not maintained for the 
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surface saturation model. It is appropriate to point out that the application of rotating disk 

hydrodynamics and the associated hydrodynamic boundary layer are simplifying assumptions 

where simultaneous chemical reactions and micelle solubilization occur.  However, useful 

predictions may be obtained that provide insight into the mechanisms and rate limiting processes 

impacting dissolution.  More detailed descriptions of the two models are provided in the following 

sections. 

Both models are based on the following assumptions: chemical reactions and solute 

solubilization within the diffusion layer occur instantaneously, free solute and micelle are in 

equilibrium throughout the diffusion layer, the ionized form of the coformer is not solubilized by 

surfactant, the solubilization constant of the coformer does not change with surfactant 

concentration, aqueous diffusivity of the ionized and non-ionized forms are the same.  For 

simplification of the interfacial pH prediction, the effective diffusivity of the coformer is assumed 

to be the same as the aqueous diffusivity because it is not significantly solubilized by the surfactant.  

In this study, the effect of surfactant concentration on the viscosity of dissolution media was not 

accounted for the mass transport analysis.  Although the viscosity of the dissolution media may 

approximately double at high surfactant concentration (eg: 300 mM)29, its impact on the 

hydrodynamic boundary layer is small as shown in equation 10.  The viscosity of dissolution media 

is not expected to significantly affect the diffusion of free species as they are assumed to be 

diffusing through the aqueous phase where the surfactant concentration is equal to the critical 

micellar concentration (CMC) and the viscosity is not substantially different from water30. The 

effect of viscosity on the diffusion coefficient of the micelles incorporates the effect of viscosity 

changes.    
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Interfacial equilibrium model  

A schematic representation of the dissolution process for a 1:1 cocrystal with non-ionizable 

components, RA, where R is drug and A is coformer, in non-reactive media, is shown in Figure 

2.1.  The first step of dissolution is the formation of a saturated solution at the solid-liquid interface, 

which represents the equilibrium between the solid cocrystal and solution. This leads to the 

dissociation of RA into its components, R and A, according to the solubility product, Ksp, as 

described by the following equations:  

(𝑅𝐴)𝑠 ⇋ 𝑅𝑎𝑞 + 𝐴𝑎𝑞              (2.1)  

𝐾𝑠𝑝 = [𝑅]𝑎𝑞[𝐴]𝑎𝑞              (2.2)  

where subscript s denotes the solid phase and aq denotes the aqueous phase.  

 

Figure 2.1.  Schematic representation of the dissolution process of RA in non-reactive media using 

the interfacial equilibrium model.  [R]aq,0 and [A]aq,0 represent the concentrations of R and A at the 

dissolving surface; [R]aq,h and [A]aq,h represent the concentrations of R and A in the bulk assuming 

sink conditions; SRA is the solubility of the cocrystal and Ksp is the solubility product of the 

cocrystal.  

 



 

45 
 

At time = 0, before any component diffusion, the concentration of the drug in the saturated 

layer should be the same as the coformer for 1:1 cocrystals as shown in Figure 2.1.  As diffusion 

occurs, the chemical equilibrium shown in equation 2.1 is disrupted in the saturated layer because 

of the decrease in concentration of A due to its more rapid diffusion.  To re-establish this 

equilibrium in the saturated layer, which means keeping Ksp constant, the concentrations of R and 

A would have to vary.  A boundary condition assumption at the solid-liquid interface for the 

interfacial equilibrium model is that the Ksp relationship is assumed to apply at all times (t  0).  

Because of the different diffusivities between the cocrystal components, the concentrations of R 

and A will differ at the dissolving surface for t > 0 to maintain stoichiometric dissolution.  At 

steady state, the concentration of R at the solid liquid interface would be higher than the 

stoichiometric solubility of the cocrystal due to its lower diffusion coefficient, while the 

concentration of A is consequently smaller to maintain the Ksp. 

If there is no solid phase transformation or precipitation in the boundary layer or at the 

solid surface, the dissolution rate of the drug must be the same as the coformer for a 1:1 cocrystal.  

The dissolution rate of the cocrystal in terms of components can be described by the Nernst-

Brunner equation28, 31 for flux: 

𝐽𝑅 =
𝐷𝑅[𝑅]𝑎𝑞,0

ℎ
= 𝐽𝐴 =

𝐷𝐴[𝐴]𝑎𝑞,0

ℎ
             (2.3) 

where D is diffusivity, [𝑅]𝑎𝑞,0 and [𝐴]𝑎𝑞,0 are total concentrations of the drug and coformer at the 

dissolving surface and h is the thickness of the hydrodynamic boundary layer that reflects the 

hydrodynamic conditions near the dissolving surface and sink conditions are assumed.  Since this 

model is assumed to maintain Ksp, the following relationship is true at all time: 

[𝑅]𝑎𝑞,0 ∗ [𝐴]𝑎𝑞,0 = 𝐾𝑠𝑝                        (2.4) 
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The concentration of coformer, [𝐴]𝑎𝑞,0 and drug, [𝑅]𝑎𝑞,0, at the solid liquid interface can 

be solved using equations 2.3 and 2.4 as follows: 

[𝐴]𝑎𝑞,0 = (
𝐷𝑅

𝐷𝐴
)1/2√𝐾𝑠𝑝             (2.5) 

[𝑅]𝑎𝑞,0 = (
𝐷𝐴

𝐷𝑅
) [𝐴]𝑎𝑞,0 = (

𝐷𝐴

𝐷𝑅
) (

𝐷𝑅

𝐷𝐴
)1/2√𝐾𝑠𝑝 = (

𝐷𝐴

𝐷𝑅
)

1

2
√𝐾𝑠𝑝               (2.6) 

The concentrations of both components at the surface are dependent on the solubility and 

differential diffusivity between the components.  A large difference between the component 

diffusivities increases the concentration difference between the drug and coformer at the solid-

liquid interface while maintaining the solubility product. 

Surface saturation model  

The dissolution process of RA in non-reactive media can also be described using the 

surface saturation model, illustrated in Figure 2.2.  It is assumed that a saturated layer adjacent to 

the dissolving surface consists of equal molar concentrations of R and A at the saturated solubility 

of the cocrystal (ie: stoichiometric cocrystal solubility) at time = 0.  Before any component 

diffusion, the concentration product of both components within the saturated layer is equal to the 

solubility product of the cocrystal.  Both components then diffuse across the diffusion layer at 

equal rates in proportion to their respective diffusion coefficients.  As diffusion begins, the 

concentrations of both components would be depleted, but the depletion of A would be greater 

because of its greater diffusivity compared to R.  In response to the depletion, more solid cocrystal 

would dissolve to maintain a saturated solution corresponding to the solubility of the cocrystal in 

the saturated layer.  As the slower diffusing component, the rate of R depletion determines the rate 
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of replenishment.  Therefore, the concentration of R at the dissolving surface is maintained at the 

stoichiometric solubility of the cocrystal: 

[𝑅]𝑎𝑞,0 = √𝐾𝑠𝑝              (2.7) 

while the concentration of A may be lower.  By assuming the dissolution rate of the drug is equal 

to the coformer, the concentration of A at the surface can be solved as follows: 

𝐽𝑅 =
𝐷𝑅√𝐾𝑠𝑝

ℎ
= 𝐽𝐴 =

𝐷𝐴[𝐴]𝑎𝑞,0

ℎ
             (2.8) 

[𝐴]𝑎𝑞,0 =
𝐷𝑅

𝐷𝐴
√𝐾𝑠𝑝              (2.9) 

 

Figure 2.2.  Schematic representation of the dissolution process of RA in non-reactive media using 

the surface saturation model. [R]aq,0 and [A]aq,0 represent the concentrations of R and A at the 

dissolving surface; [R]aq,h and [A]aq,h represent the concentrations of R and A in the bulk assuming 

sink conditions; SRA is the solubility of the cocrystal and Ksp is the solubility product of the 

cocrystal. 

 

The concentration of the drug at the surface is the same as the stoichiometric solubility of 

the cocrystal, but the coformer concentration is dependent on both the cocrystal solubility and 

differential diffusivity between the cocrystal components.  The greater the difference in diffusivity, 
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the lower the concentration of coformer is at the surface.  Because of the lower coformer 

concentration, the solubility product no longer applies beyond the interface at x > 0.    

The assumptions made for both models are based upon the fact that the diffusion 

coefficients of the cocrystal components are different.  Under stoichiometric dissolution for a 1:1 

cocrystal, the dissolution rates of both species are observed to be equal with no solid phase 

transformation.  The difference in diffusion coefficients can result in unequal concentrations of the 

cocrystal components at the dissolving surface and impact the ability of the cocrystal to maintain 

the solubility product, Ksp.  The interfacial equilibrium model is assumed to maintain constant Ksp 

at all time at the dissolving surface during dissolution with the result that the drug concentration 

is higher but a lower coformer concentration.  The surface saturation model assumes that the drug 

concentration remains equal to the stoichiometric solubility of the cocrystal, but with a lower 

coformer concentration to maintain stoichiometric dissolution and without maintaining Ksp 

constant at the dissolving surface.  If the drug and coformer have equal diffusion coefficients, the 

concentrations of both components at the surface will be the same and the two models will merge 

into one. 

Rotating Disk Dissolution Hydrodynamics 

Dissolution experiments may be performed using a variety of experimental systems.  For 

this study, rotating disk dissolution experiments were performed.  Two significant advantages of 

this system include the maintenance of a constant surface area available for dissolution as well as 

defined hydrodynamics that provide an a priori estimate of the hydrodynamic boundary layer 

adjacent to the rotating surface.  According to Levich32, the hydrodynamic boundary layer 

thickness, h, is given by: 
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ℎ = 1.612𝐷
1

3𝑣
1

6𝜔−
1

2            (2.10) 

 where 𝑣 is the kinematic viscosity and 𝜔 is the angular velocity in radians per unit time.  

Both interfacial equilibrium and surface saturation models described above are based on 

the assumption that the diffusion layer is the same for both the drug and coformer.  However, 

according to equation 2.10, the diffusion layer thickness has a dependence on the diffusion 

coefficient.  The diffusion coefficients of the drug and coformer in water can be different due to 

their molecular sizes difference.  The different hydrophobicity between the drug and coformer can 

also magnify the difference in diffusivity in surfactant solution.  The differential diffusivity can 

result in a significant difference between the diffusion layer of the two cocrystal components as h 

is directly proportional to the diffusion coefficient.    

An alternative approach for the two models is to redefine the diffusion layer thicknesses 

for both the drug and coformer as they have different diffusion coefficients and consequently 

different diffusion layer thicknesses according to equation 2.10.  Applying equation 2.10 

separately for the diffusion layer of R (ℎ𝑅 = 1.612𝐷𝑅
1/3

𝑣
1

6𝜔−
1

2) and A (ℎ𝐴 = 1.612𝐷𝐴
1/3

𝑣
1

6𝜔−
1

2) to 

equation 2.3 and applying equation 2.4, the concentrations of R and A at the dissolving surface for 

the interfacial equilibrium model are shown to become a function of the diffusion coefficients: 

[𝐴]𝑎𝑞,0 = (
𝐷𝑅

𝐷𝐴
)1/3√𝐾𝑠𝑝           (2.11) 

[𝑅]𝑎𝑞,0 = (
𝐷𝐴

𝐷𝑅
)1/3√𝐾𝑠𝑝           (2.12) 

And similarly, applying equation 2.10 separately for R and A to equation 2.8, the concentration of 

A at the surface for the surface saturation model becomes: 
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[𝐴]𝑎𝑞,0 = (
𝐷𝑅

𝐷𝐴
)2/3√𝐾𝑠𝑝           (2.13) 

and [𝑅]𝑎𝑞,0 is given by equation 2.7. 

Dissolution in reactive media 

Cocrystals can contain components with different ionization properties (eg: nonionizable 

drug and ionizable coformer) and these components can undergo chemical reactions at the solid 

liquid interface and in the boundary layer with the species from the bulk solution.  These reactions 

can alter the pH and concentrations at the dissolving surface.  A schematic representation of the 

dissolution process for a 1:1 cocrystal with R as the non-ionizable drug and HA as the monoprotic 

acidic coformer is shown in Figure 2.3.  As cocrystal is initially exposed to solution, it dissociates 

into its components, R and HA at the dissolving surface.  Both R and HA diffuse across the 

diffusion layer with a thickness of h, however, HA can simultaneously react with incoming base 

(B-) from the bulk solution to form A- and HB.   

 

Figure 2.3.  Schematic representation of the dissolution process24 for a 1:1 cocrystal with R as the 

non-ionizable drug and HA as the monoprotic acidic coformer in the presence of a reactive medium 

containing base, B-.  A- and HB are the products of the reaction. 
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For the dissolution of RHA in a reactive medium containing hydroxide ion and water as 

the reactive basic species (eg: no additional buffer), the chemical reactions occurring at the surface 

and within the boundary layer include the self-dissociation of the cocrystal into R, HA and 

ionization of HA as it is a weakly acidic coformer.  The chemical equilibria and the equations for 

equilibrium constants for the dissolution of RHA are provided in Appendix A. 

Dissolution in surfactant solution 

Previous studies have shown that surfactants can solubilize the cocrystal components to 

different extents due to the different hydrophobicity of the drug and coformer17, 22, 23.  Typically, 

the drug component is more hydrophobic and it is highly solubilized by surfactants compared to 

the coformer.  The equilibria reflecting the solubilization of drug (R) and the unionized form of 

coformer (HA) are given in Appendix 2A. 

Because of the differential solubilization, the parent drug, which is typically less soluble 

than the cocrystal in the absence of surfactant, can achieve the same solubility as the cocrystal in 

solution containing surfactant concentration at the CSC17, 22, 23.  As surfactant concentration 

exceeds the CSC, the parent drug becomes more soluble, so drug precipitation during dissolution 

of the cocrystal can be prevented.  The two cocrystals studied here have higher solubility than the 

parent drug, so dissolution experiments were performed in media containing surfactant 

concentrations above the CSC to prevent solid phase transformation.  Among the surfactants 

studied in our lab, sodium lauryl sulfate (SLS) solubilizes CBZ to the greatest extent so it was 

chosen to study in this work. 
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Mass transport analysis 

Detailed derivations of the mass transport analysis for the two models applying the above 

considerations are provided in Appendix 2A.  The different boundary conditions of the cocrystal 

components from the two models lead to different mass transport analyses.  These mass transport 

analyses allow for predictions of cocrystal flux as a function of bulk pH and surfactant 

concentration by taking the pH at the surface into consideration.  The comparison of the mass 

transport analyses between the two models are shown in the Results section.   

Results 

Physicochemical properties 

The physicochemical properties of the cocrystal and its components such as solubility 

products, ionization constants, micellar solubilization constants and diffusion coefficients are 

required to predict the interfacial pH and flux of the cocrystal components.  These values can be 

obtained independently.  The solubility products of the model cocrystals, the ionization constants 

of their coformers and the diffusion coefficients in water are summarized in Table 2.1 for 

carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC).  The 

solubility product of CBZ-SLC was determined by measuring the eutectic concentrations of the 

components as a function of surfactant concentration.  The solubility product of CBZ-SAC was 

obtained from the literature13.  The diffusion coefficients in water were estimated using the 

approach of Othmer Thaker33.  According to Othmer Thaker’s equation for estimating diffusion in 

dilute water solutions, the aqueous diffusion coefficient is inversely proportional to the molecular 

volume of the substance33.  As a larger molecule, the diffusion coefficient of CBZ in water is 

smaller than both SAC and SLC. 
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Table 2.1.  Physicochemical properties of model cocrystals and their components. 

Cocrystal (R-HA) Ksp (mM2) pKa of HA 
Aqueous diffusion coefficientc (x 10-6 cm2/sec) 

𝑫𝑹𝒂𝒒
 𝑫𝑯𝑨𝒂𝒒

 

CBZ-SAC 1.00a 1.6a 5.7 7.6 

CBZ-SLC 0.40 3.0b 5.7 7.7 
aFrom reference13.  bFrom reference17.  cEstimated using Othmer Thaker’s equation33.   

 

The micellar solubilization constants of the drug and coformers are summarized in Table 

2.2.  The solubilization power of a surfactant can be influenced by the size and shape of the 

micelles34, 35.  It was reported in the literature that the size and shape of the micelles may change 

as surfactant and additive concentrations change36.  Therefore, it was not surprising to observe that 

SLS solubilizes CBZ to different extents at different concentrations.  The solubilization of 

coformers in SLS is small compared to the drug, and the Ks values were assumed to be independent 

of SLS concentration in the range studied.  The diffusion of CBZ in SLS solution would be smaller 

than the coformers because CBZ is significantly solubilized in the micelles compared to both SAC 

and SLC. 

Table 2.2.  Micellar solubilization constants of CBZ, SAC and SLC in SLS solution. 

Components 
Ks in SLS (mM-1) 

22-44 mM 70 mM 100 mM 150 mM 250 mM 400 mM 

CBZ 0.58a 0.465b ± 

0.004 

0.45b ± 

0.01 

0.43b ± 

0.01 

0.392b ± 

0.003 

0.35b ± 

0.01 

SAC 0.013a 

SLC 0.060a 

aFrom reference17.  The Ks values for SAC and SLC are assumed to be constant for SLS 

concentrations ranging from 22 to 400 mM. 

bDetermined using 𝑆𝑇 = 𝑆𝑎𝑞(1 + 𝐾𝑠
𝑅[𝑚]), where ST is the total solubility of the drug in SLS 

solution and Saq is the aqueous solubility in water, which is 0.53 mM17.  The total drug solubility 

in SLS solution is the same as the eutectic concentrations of CBZ shown in Figure 4 because both 

solid drug and cocrystal are in equilibrium with solution at the eutectic point27. 
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Solubility study 

The concentrations of the cocrystal components at the eutectic point are shown in Figure 

2.4 for both cocrystals at pH 1 as a function of SLS concentration.  Since all the experiments were 

performed above the CSC, the eutectic concentrations of the drug were greater than the coformers, 

meaning the solubility of the cocrystal is less than the drug under these conditions.  At the eutectic 

point, the solid phases of both drug and cocrystal are in equilibrium with solution, and thus the 

drug eutectic concentration is at its solubility at the same solution conditions27.  This allows the 

calculations of solubilization constants for the drug shown in Table 2.2.  Using previously 

developed model27, the solubility of CBZ-SAC and CBZ-SLC were determined from the eutectic 

concentrations and plotted in Figure 2.5.  The lowest SLS concentration used was 22 mM, which 

is above the reported CMC of SLS in the literature (6 mM)17.  The formation of micelles in solution 

preferentially solubilizes CBZ and results in solubility enhancement as SLS concentration 

increases.  SLS does not solubilize SAC and SLC to the same extent as CBZ because these 

coformers are more hydrophilic.  The differential solubilization between the drug and coformers 

causes the solubility of the cocrystal to increase nonlinearly as a function of surfactant 

concentration and the slightly nonlinear nature of the curves in Figure 2.5 may be attributed to this.  
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(a)                                                                          (b) 

 

Figure 2.4.  Eutectic measurements for CBZ-SAC (a) and CBZ-SLC (b) at pH 1 as a function of 

SLS concentration. 

 

(a)                         (b) 

 

Figure 2.5.  Solubility of cocrystals, CBZ-SAC (a) and CBZ-SLC (b) at pH 1 as a function of 

surfactant concentration.  Cocrystal solubility was determined using eutectic concentrations from 

Figure 2.4 by 𝑆𝑐𝑐 = √[𝑑𝑟𝑢𝑔]𝑒𝑢𝑡𝑒𝑐𝑡𝑖𝑐[𝑐𝑜𝑓𝑜𝑟𝑚𝑒𝑟]𝑒𝑢𝑡𝑒𝑐𝑡𝑖𝑐
27. 

 

Effect of surfactant on dissolution 

The dissolution profiles of CBZ-SAC and CBZ-SLC at different SLS concentrations at 

constant pH (pH = 1) where the coformers are mostly nonionized are shown in Figure 2.6.  Since 

experiments were conducted above the CSC where the cocrystals were thermodynamically stable, 
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the dissolution behavior of both cocrystals was linear as expected under sink conditions.  Similar 

to solubility, the dissolution rates of both cocrystals increase as SLS concentration increases.  

(a)             (b) 

 

(c)                                                                         (d) 

 

Figure 2.6.  Dissolution profiles for CBZ-SAC in terms of CBZ concentrations (a) and SAC 

concentrations (b); and CBZ-SLC in terms of CBZ concentrations (c) and SLC concentrations (d) 

at different SLS concentrations at pH1.  The solid circles are experimental data points and the solid 

lines are fitted liner regressions.   

 

The effective diffusion coefficients of CBZ can be estimated from the dissolution rates of 

the cocrystals at pH 1 as a function of SLS concentration using equation 2A.49 from Appendix 
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2A.  The micellar diffusivity of CBZ can then be estimated from the effective diffusivity according 

to the following relationship: 

𝐷𝑅𝑒𝑓𝑓
=

𝐷𝑎𝑞+𝐾𝑠𝐷𝑚[𝑚]

1+𝐾𝑠[𝑚]
                 (2.14) 

where 𝐷𝑅𝑒𝑓𝑓
is the effective diffusivity of the drug and Dm is the micellar diffusivity37.  The micellar 

diffusivities of CBZ for the two cocrystals as a function of SLS concentration are plotted in Figure 

2.7.  A power regression can be fitted to describe the relationship between micellar diffusivity and 

SLS concentration.  Micellar diffusivity of CBZ decreases as surfactant concentration increases.  

The same trend was also observed in the literature38-40.  Detailed analysis of this is beyond the 

scope of this study.  However, this behavior may be due to the formation of larger micelles as 

surfactant concentration increases38 and the potential changes in viscosity.  Another possible 

reason could be the increase in electrostatic repulsion as surfactant concentration increases since 

SLS is negatively charged39.  The diffusion of the micelle-drug complexes can be reduced by the 

electronic repulsion between the negatively charged micelles39.  The CBZ micellar diffusivities 

determined from the dissolution of CBZ-SLC are somewhat greater than those determined for 

CBZ-SAC.  The reason for these differences is not known but may be due to the different chemical 

environments surrounding the micelles between the two cocrystals.  Both SAC and SLC are able 

to ionize and form negatively charged ions that can potentially increase the electronic repulsion in 

solution.  CBZ-SAC has a higher Ksp value and SAC is more acidic than SLC, so the degree of 

SAC ionization is higher than SLC at the same pH.  The higher SAC ion concentration in solution 

may cause a greater increase in electronic repulsion for CBZ-SAC than CBZ-SLC.  Consequently, 

the diffusion of micelles may be slower in CBZ-SAC dissolution than in CBZ-SLC dissolution.  

For this study, the micellar diffusivities shown in Figure 2.7 are used to assess the mass transport 
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models described here.  It is also appropriate to point out that equation 2A.49 from Appendix 2A 

does not take into account kinetic processes involving surfactant and micelles that may occur at 

the dissolving surface. 

 

Figure 2.7.  Micellar diffusivities of CBZ determined from the dissolution of CBZ-SAC ( ) 

and CBZ-SLC ( ) at pH 1 as a function of SLS concentration.  The solid circles are 

experimental data points determined from the dissolution shown in Figure 2.6 using equations 

2A.49 from Appendix 2A and 2.14 and solubility shown in Figure 2.5.  The solid lines are the 

fitted power regression.  The power regression line for CBZ-SAC is y = 9.9771E-06x-4.3920E-01 and 

CBZ-SLC is y = 2.1553E-05*x-5.4153E-01. 

 

Effect of pH on dissolution   

The effect of pH on dissolution of cocrystals was studied at constant surfactant 

concentration as a function of pH.  The dissolution experiments were conducted in 400 mM SLS 

solution for CBZ-SAC and 150 mM for CBZ-SLC.  The dissolution profiles of CBZ-SAC and 

CBZ-SLC in terms of cocrystal components as a function of pH are shown in Figure 2.8 and 2.9.  

The linear dissolution behavior of the two cocrystals indicates no solid phase transformation 

occurred during dissolution as the experiments were performed above the CSC.  The dissolution 
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rates of both cocrystals increase as pH increases and then remain relatively constant in the self-

buffering region of the coformers.  Since SAC has a lower pKa than SLC, pH has a greater impact 

on the dissolution rate of CBZ-SAC compared to CBZ-SLC as reflected in the larger range of 

dissolution rates in Figure 2.8 compared to Figure 2.9.   

(a)                                                                         (b) 

 

Figure 2.8.  Dissolution profiles of CBZ-SAC in terms of CBZ (a) and SAC (b) as a function of 

bulk pH at 400 mM SLS.  The symbols are experimental data points and the solid lines are fitted 

liner regressions.  The pH values represent the initial bulk pH of the dissolution media. 
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(a)                                                                          (b) 

 
Figure 2.9.  Dissolution profiles of CBZ-SLC in terms of CBZ (a) and SLC (b) as a function of 

bulk pH at 150 mM SLS.  The symbols are experimental data points and the solid lines are fitted 

liner regressions.  The pH values represent the initial bulk pH of the dissolution media.  

 

Comparison of flux predictions between the mass transport models 

For comparison purposes, only literature reported micellar diffusivities of CBZ in SLS 

solution were used and no parameters were adjusted to fit the experimental data to the theoretical 

equations of the two transport models shown in Table 2.3 and Figure 2.10.  A micellar diffusivity 

of 3.6E-7 cm2/sec at 400 mM SLS was used for CBZ-SAC and for CBZ-SLC, a value of 6.4E-7 

cm2/sec at 150 mM SLS was used40.  The difference in concentrations of the cocrystal components 

at the surface predicted using the two models and how this difference could affect the interfacial 

pH is illustrated in Table 2.3 for the dissolution of CBZ-SAC at 400 mM SLS.  The interfacial pH 

calculated from both models lags behind bulk pH above the pKa value of SAC (pKa=1.6) due to 

the ionization of SAC in the diffusion layer.  The interfacial equilibrium model predicts a lower 

surface pH (approximately 0.3 pH units at pH 6) compared to the surface saturation model.  The 

lower interfacial pH calculated from the interfacial equilibrium model is due to the greater SAC 
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concentration predicted at the dissolving surface to maintain the Ksp of CBZ-SAC.  As shown in 

Table 2.3, the concentrations of both CBZ and SAC at the surface calculated from the interfacial 

equilibrium model are higher than those calculated from the surface saturation model.  Because of 

the depletion of SAC at the surface of the boundary layer due to faster diffusion, the concentration 

product of CBZ and SAC from the surface saturation model is less than the Ksp of CBZ-SAC.  In 

order to re-establish the equilibrium disrupted by diffusion, both CBZ and SAC concentrations 

from the interfacial equilibrium model are predicted to increase at the surface to maintain a 

concentration product equal to the Ksp of CBZ-SAC.  As seen in Table 2.3 and Figure 2.10, both 

models result in qualitatively similar predictions.  Subtle but potentially important differences in 

surface concentrations result in different predicted dissolution rates.  

Table 2.3.  Interfacial pH and concentrations of CBZ and SAC at the surface calculated using the 

surface saturation and interfacial equilibrium models for the dissolution of CBZ-SAC at 400 mM 

SLS as a function of bulk pH. 

Surface saturation model 

Bulk 

pH 

Interfacial 

pHa 

Concentrations at the surface (mM) [CBZ]aq*[SAC]aq 

(mM2) [CBZ]tot
b [CBZ]aq

c [SAC]tot
d [SAC]aq

e 

1.27 1.27 30.4 0.2 4.2 0.6 0.1 

2.16 2.15 36.8 0.3 5.1 0.5 0.1 

3.02 2.84 57.4 0.4 8.0 0.3 0.1 

4.03 3.10 72.7 0.5 10.1 0.3 0.1 

5.97 3.14 75.6 0.5 10.5 0.3 0.1 

7.66 3.14 75.6 0.5 10.5 0.3 0.1 

Interfacial equilibrium model 

1.27 1.27 81.5 0.6 11.3 1.7 1.0 

2.16 2.14 98.3 0.7 13.7 1.4 1.0 

3.02 2.70 137.3 1.0 19.1 1.0 1.0 

4.03 2.85 155.2 1.1 21.6 0.9 1.0 

5.97 2.87 157.9 1.1 22.0 0.9 1.0 

7.66 2.87 157.9 1.1 22.0 0.9 1.0 
aCalculated using equation 2A.45 from Appendix 2A for surface saturation model and equation 

2A.57 from Appendix 2A for interfacial equilibrium model with Ksp, Ka, Ks and 𝐷𝐻𝐴𝑎𝑞
 values 

shown in Table 2.1 and 2.2.  𝐷𝐻𝐴𝑒𝑓𝑓
 is assumed to be equal to 𝐷𝐻𝐴𝑎𝑞

.  The 𝐷𝑅𝑒𝑓𝑓
 value for CBZ-

SAC (3.9E-7 cm2/sec) was calculated from equation 2.14 using the Dm value of 3.6E-7 cm2/sec 
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from the literature40.  The diffusion coefficients for H+ and OH- are 9.31E-5 and 5.28E-5 cm2/sec, 

respectively41.    

bCalculated using equation 2A.13 from Appendix 2A with the Ks value from Table 2.2 and 

calculated [CBZ]aq from surface saturation and interfacial equilibrium models. 

cCalculated using equations 2A.38 and 2A.51 from Appendix 2A for surface saturation model and 

interfacial equilibrium model, respectively.  Ksp, Ka, Ks values are from Table 2.1 and 2.2 and 

interfacial pH is from a.  𝐷𝑅𝑒𝑓𝑓
 is 3.9E-7 cm2/sec and 𝐷𝐻𝐴𝑒𝑓𝑓

 is assumed to be equal to 𝐷𝐻𝐴𝑎𝑞
 

shown in Table 2.1. 

dCalculated using equation 2A.14 from Appendix 2A with the Ks and Ka values from Table 2.1 

and 2.2, calculated [SAC]aq from surface saturation and interfacial equilibrium models, and 

interfacial pH from a. 

eCalculated using equations 2A.40 and 2A.52  from Appendix 2A for surface saturation model and 

interfacial equilibrium model, respectively.  Ksp, Ka, Ks values are from Table 2.1 and 2.2 and 

interfacial pH is from a.  𝐷𝑅𝑒𝑓𝑓
 is 3.9E-7 cm2/sec and 𝐷𝐻𝐴𝑒𝑓𝑓

 is assumed to be 𝐷𝐻𝐴𝑎𝑞
 shown in 

Table 2.1. 

 

The flux of CBZ-SAC at 400 mM SLS and CBZ-SLC at 150 mM SLS as a function of 

bulk pH were predicted using both models and the predicted values were compared with the 

experimental data as shown in Figure 2.10.  The predictions from both models follow the same 

trend as the experimental data.  However, the predictions from both models deviate from the 

experimental data because the effective diffusivities of CBZ used here were estimated from the 

micellar diffusivities of SLS in the literature determined at conditions different from the study 

here.  The surface saturation model slightly under predicted the flux, while the interfacial 

equilibrium model over predicted the flux.  However, the surface saturation model is able to 

provide more accurate prediction of cocrystal flux compared to the interfacial equilibrium model.  

It is difficult to experimentally prove which model more accurately represents the conditions at 

the dissolving surface as it requires concentration measurements at the dissolving surface.  

Analysis of the experimental results and theoretical predictions from the surface saturation model 

indicated somewhat better alignment.  Consequently, the surface saturation model is used to 

perform the mass transport analysis for the two cocrystals studied here.  
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(a)                                                                          (b) 

 

Figure 2.10.  Experimental ( ) and predicted flux comparison of CBZ-SAC at 400 mM SLS (a) 

and CBZ-SLC at 150 mM SLS (b) as a function of bulk pH using the surface saturation model (

) and interfacial equilibrium model ( ).  The flux predictions were calculated using 

equations 2A.49 and 2A.58 from Appendix 2A based on the interfacial pH predicted from 

equations 2A.45 and 2A.57 from Appendix 2A for surface saturation and interfacial equilibrium 

models, respectively.  The Ksp, Ka, Ks and 𝐷𝐻𝐴𝑎𝑞
 values are shown in Table 2.1 and 2.2.  𝐷𝑅𝑒𝑓𝑓

 

values for CBZ-SAC is 3.9E-7 cm2/sec and CBZ-SLC is 7.2E-7 cm2/sec. 

 

Interfacial pH and CSC predictions from surface saturation model  

Interfacial pH can be predicted using equation 2A.45 derived from the surface saturation 

model shown in Appendix 2A and the physicochemical parameters of the cocrystals and their 

components (eg: solubility products, ionization constants, solubilization constants and effective 

diffusivities).  The effect of bulk pH and surfactant concentration on interfacial pH for CBZ-SAC 

and CBZ-SLC is shown in Figure 2.11 utilizing the surface saturation model.  At constant 

surfactant concentration, for bulk pH < pKa, interfacial pH is approximately equal to bulk pH 

because the hydrogen ion in the bulk solution suppresses the ionization of the coformers24.  As 

bulk pH increases above the pKa value of the coformer, coformer ionization begins to occur.  This, 

in effect, results in a buffer effect at the interface and the interfacial pH no longer continues to 

increase linearly with increasing bulk pH24.  Both cocrystals have the ability to self-buffer the pH 
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microenvironment in the diffusion layer24 and this is demonstrated by the plateau region that 

ranges from bulk pH 4 to 8 in Figure 2.11.  CBZ-SAC is able to self-buffer the interfacial pH to 

around 3.0; while the plateau interfacial pH for CBZ-SLC is around 3.7.  The buffering ability is 

affected by the degree of ionization of the ionizable components at the interface and this is 

determined by the concentration and pKa values of the ionizable components.  With a higher 

solubility product and a lower pKa, CBZ-SAC is able to self-buffer to a lower pH at the interface 

compared to CBZ-SLC.  Surfactant has little or no effect on interfacial pH at bulk pH < pKa values 

of the coformers because the interfacial pH is determined by bulk pH.  As bulk pH increases above 

the pKa of the coformer, the degree of coformer ionization is not affected by SLS significant 

enough to cause any changes in interfacial pH.  For the cocrystals studied here, no significant 

impact on interfacial pH was predicted or observed as a function of surfactant concentration. 

(a)                                                                          (b) 

 

Figure 2.11.  Theoretical predictions of interfacial pH for CBZ-SAC (a) and CBZ-SLC (b) as a 

function of pH and SLS concentration using surface saturation model.  Interfacial pH was 

calculated using equation 2A.45 from Appendix 2A.  The Ksp, Ka, Ks and 𝐷𝐻𝐴𝑎𝑞
 values are shown 

in Table 2.1 and 2.2 and 𝐷𝑅𝑒𝑓𝑓
 values are from Figure 2.7. 
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The critical stabilization concentration, CSC has a pH dependence for the cocrystals 

studied here, so different surfactant concentrations will be required to stabilize the cocrystals at 

different pH to prevent solid phase transformation.  Based on the predicted interfacial pH, the CSC 

needed at the dissolving cocrystal surface to prevent phase transformation can be estimated using 

the previously developed model17.  The surfactant concentrations that are required to stabilize the 

model cocrystals at different pH are calculated and shown in Table 2.4.   

Table 2.4.  Estimated SLS concentrations for stabilizing cocrystals during dissolution at different 

pH using the surface saturation model. 

CBZ-SAC CBZ-SLC 

pH 
CSCb (mM) 

pH 
CSCb (mM) 

Bulk Interfaciala Bulk Interfaciala 

1.0 1.0 12 1.0 1.0 7 

2.0 2.0 27 2.0 2.0 7 

3.0 2.8 161 3.0 3.0 10 

4.0 3.0 306 4.0 3.6 18 

5.0 3.0 326 5.0 3.7 21 

6.0 3.0 326 6.0 3.7 21 

7.0 3.0 326 7.0 3.7 21 

8.0 3.0 326 8.0 3.7 21 
aFrom Figure 2.11.    

bCalculated from previously developed model17. 

 

The CSC of CBZ-SAC is significantly higher than CBZ-SLC since the solubility of CBZ-

SAC is higher and thus requires higher surfactant concentration to stabilize the cocrystal during 

dissolution.  Because of the self-buffering ability of the cocrystals, the CSC is essentially the same 

in the buffering region regardless of the bulk pH.  

Surface saturation model flux predictions – pH effect   

The flux of the cocrystals were calculated from the dissolution rates and compared to 

theoretical predictions to evaluate the predictive power of the surface saturation model.  The 
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theoretical flux can be calculated using equation 2A.49 from Appendix 2A and the 

physicochemical parameters of the cocrystals and their components.  The experimental and 

theoretical flux comparison is shown in Figure 2.12.  The experimental data confirmed that the 

flux of the cocrystal components are equal as expected because the stoichiometry of both cocrystals 

are 1:1.  Also as expected, the flux of CBZ-SAC and CBZ-SLC plateau in the buffering region 

because there is minimal change in interfacial pH as predicted from the mass transport analysis.  

By modeling the interfacial pH, the theoretical flux shows excellent agreement with the 

experimental data using the physicochemical parameters in Table 2.1 and 2.2 and Figure 2.7.  

Because of the acidity of SAC, the flux of CBZ-SAC is very sensitive to interfacial pH changes 

and this can lead to the large deviations observed in the buffering region.  A 0.2 unit pH change in 

interfacial pH around 3.0 can lead to a roughly 20% change in the flux of CBZ-SAC.  Accurate 

predictions of interfacial pH are clearly very important for predicting the flux of cocrystals with 

ionizable components.   

(a)                                                                           (b) 

 

Figure 2.12.  Flux of CBZ-SAC at 400 mM SLS (a) and CBZ-SLC at 150 mM SLS (b) as a function 

of bulk pH.  Flux predictions were calculated using equation 2A.49 from Appendix 2A based on 

the interfacial pH predicted from Figure 2.11.  The Ksp, Ka, Ks values are shown in Table 2.1 and 

2.2 and 𝐷𝑅𝑒𝑓𝑓
 values are from Figure 2.7. 
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Combination effect of pH and surfactant on dissolution  

The combination of pH and surfactant effect on the dissolution of cocrystals was studied 

by performing dissolution experiments at different pH and surfactant concentrations.  The 

dissolution rates were expressed in terms of flux and compared to the predicted values from the 

surface saturation model.  The dependence of flux on pH and surfactant concentration for both 

cocrystals is shown in the three dimensional plots in Figure 2.13.  For both cocrystals, the 

theoretical values showed excellent agreement with the experimental data.  There are fewer 

experimental data points on the CBZ-SAC plot because much of the area in the plot is not 

experimentally accessible due to the potential phase transformation during dissolution.  At the 

buffering region (bulk pH 4 to 8), the surfactant concentration required to stabilize CBZ-SAC 

during dissolution is at least 326 mM (Table 2.4).  Due to the potential conversion of CBZ-SAC 

back to the stable drug form, no dissolution experiments were performed in SLS concentration 

below 400 mM in the bulk pH range of 4 to 8.  The effect of bulk pH on the flux of cocrystal is 

dictated by the interfacial pH.  Any bulk pH changes in the range of 4 to 8 does not have a 

significant impact on the dissolution of the cocrystal because the cocrystal can self-buffer the pH 

microenvironment at the dissolving surface to produce essentially the same interfacial pH.  Flux 

increases as surfactant concentration increases; however, the increase is larger at lower surfactant 

concentration.   
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(a)                                                                        (b) 

 

Figure 2.13.  Influence of pH and surfactant concentration on flux of CBZ-SAC (a) and CBZ-SLC 

(b).  The wireframe mesh represents the theoretical flux predictions and circles represent the 

experimentally measured flux of cocrystals in terms of CBZ.  Flux predictions were calculated 

using equation 2A.49 from Appendix 2A based on the interfacial pH predicted from Figure 2.11.  

The Ksp, Ka, Ks values are shown in Table 2.1 and 2.2 and 𝐷𝑅𝑒𝑓𝑓
 values are from Figure 2.7. 

 

The effects of surfactant concentration on solubility and micellar diffusivity are opposite.  

At low surfactant concentrations, the advantage of solubility enhancement on dissolution is greater 

than the disadvantage of decreased micellar diffusivity, so the increase in flux is greater.  As 

surfactant concentration increases, the disadvantage of reduced micellar diffusivity is slowly 

approaching the advantage of solubility enhancement and thus the flux increase is smaller.  When 

the opposite effects of surfactant on micellar diffusivity and solubility essentially cancel each other 

out, the enhancement in flux by surfactant is limited as indicated by the plateau values of CBZ-

SAC at surfactant concentrations range from 300 to 400 mM.   

Discussion 

 This work highlights the importance of interfacial pH on determining the flux of cocrystals 

with ionizable components.  Without the knowledge of interfacial pH, one might assume the pH 

at the dissolving surface is the same as the bulk pH.  Assuming this, the flux of both CBZ-SAC 
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and CBZ-SLC would be expected to increase with increasing bulk pH instead of plateauing at the 

buffering region.  The fifth order equation (equation 2A.45 from Appendix 2A) developed from 

the mass transport analysis of the surface saturation model gives reasonably accurate predictions 

of interfacial pH that are otherwise difficult to measure experimentally.  This allows the model to 

capture the plateaued region in the flux of both cocrystals as a function of bulk pH.  The surfactant 

concentrations required to stabilize the cocrystal during dissolution at different bulk pH can also 

be estimated from the interfacial pH predictions.  The use of surfactant can enhance the dissolution 

of cocrystals, but sometimes the enhancement may not be as large as expected because of the 

counter balancing effect of surfactant on solubility and micellar diffusion coefficients. 

One of the important elements for the mass transport analysis of cocrystal is the 

concentrations of the cocrystal components at the dissolving surface as they determine the rate of 

dissolution.  The surface concentrations of the components may not follow the cocrystal’s 

stoichiometric ratio because they have different diffusion coefficients.  For the cocrystals studied 

here, the drug has a slower diffusion compared to the coformers.  According to the surface 

saturation model, the slower diffusing component (ie: the drug) is able to maintain a surface 

concentration at the stoichiometric cocrystal solubility and acts as the determinant for the 

dissolution of the cocrystal while the faster diffusing component has a lower surface concentration.  

The mass transport analysis here is only applicable for cocrystals that have the same stoichiometry 

and ionization property as CBZ-SAC and CBZ-SLC.  However, the surface saturation model 

developed here can be applied to the mass transport analysis for cocrystals with different 

stoichiometries and ionization properties. 
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Conclusions 

The mechanism of cocrystal dissolution as a function of pH and surfactant concentration 

has been successfully analyzed through the development and evaluation of a physically realistic 

mass transport model.  This mass transport analysis demonstrated the importance of interfacial pH 

in determining the flux of cocrystals with ionizable components.  The ionizable components have 

the ability to self-buffer the pH microenvironment at the interface.  Evaluation of the 

physicochemical properties such as solubility product, ionization constant, solubilization constant 

and diffusion coefficient, are required for accurate prediction of interfacial pH and flux of the 

cocrystal.  The predictive power of the mass transport analysis was evaluated by performing 

dissolution above the CSC to prevent the conversion of highly soluble cocrystal back to the drug 

form.  The model adequately describes the dissolution behavior of cocrystal as a function of pH 

and surfactant concentration.  Bulk pH itself does not adequately explain the dissolution behavior 

of cocrystal because the rate of dissolution is affected by the pH at the interface.  The effect of 

surfactant on dissolution of cocrystal is also an important consideration and can diminish as 

surfactant concentration increases due to the counter balancing effects of surfactant on micellar 

diffusivity and solubility.     
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APPENDIX 2A  

The chemical equilibria and the equations for equilibrium constants during the dissolution of 1:1 

cocrystal, RHA with R as the nonionizable drug and HA as the weak acidic coformer in the 

presence of surfactant can be described as follows: 

(𝑅𝐻𝐴)𝑠𝑜𝑙𝑖𝑑 ⇋ 𝑅𝑎𝑞 + 𝐻𝐴𝑎𝑞          (2A.1) 

𝐾𝑠𝑝 = [𝑅]𝑎𝑞[𝐻𝐴]𝑎𝑞               (2A.2) 

𝑅𝑎𝑞 + 𝑚 ⇋ 𝑅𝑚           (2A.3) 

𝐾𝑠
𝑅 =

[𝑅]𝑚

[𝑅]𝑎𝑞[𝑚]
            (2A.4) 

𝐻𝐴𝑎𝑞 + 𝑚 ⇋ 𝐻𝐴𝑚           (2A.5)  

𝐾𝑠
𝐻𝐴 =

[𝐻𝐴]𝑚

[𝐻𝐴]𝑎𝑞[𝑚]
           (2A.6)  

𝐻2𝑂 + 𝐻𝐴𝑎𝑞 ⇋ 𝐻3𝑂+ + 𝐴𝑎𝑞
−           (2A.7)  

𝐾𝑎 =
[𝐻3𝑂+][𝐴−]𝑎𝑞

[𝐻𝐴]𝑎𝑞
           (2A.8) 

𝐻3𝑂+ + 𝑂𝐻− ⇋ 2𝐻2𝑂          (2A.9)  

𝐾𝑤 = [𝐻3𝑂+][𝑂𝐻−]                    (2A.10) 

𝐻𝐴𝑎𝑞 + 𝑂𝐻− ⇋ 𝐻2𝑂 + 𝐴𝑎𝑞
−                    (2A.11) 
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𝐾1 =
[𝐴−]𝑎𝑞

[𝐻𝐴]𝑎𝑞[𝑂𝐻−]
                    (2A.12)  

where 𝐾𝑠
𝑅 is the solubilization constant of R and 𝐾𝑠

𝐻𝐴 is the solubilization constant of HA, m is the 

micellar concentration in the solution and is equal to the total surfactant concentration minus the 

CMC, Ka is the ionization constant of HA, Kw is the dissociation constant of water, K1 is the ratio 

of Ka/Kw.  Subscript aq denotes the aqueous phase and m denotes the micellar phase.   An 

assumption in this analysis is that the ionized coformer is not solubilized by surfactant. 

The total concentrations of the cocrystal components, 𝑅𝑡𝑜𝑡,0 and 𝐴𝑡𝑜𝑡,0 at the dissolving 

surface can be described as: 

𝑅𝑡𝑜𝑡,0 = 𝑅𝑎𝑞,0(1 + 𝐾𝑠
𝑅[𝑚])                   (2A.13) 

𝐴𝑡𝑜𝑡,0 = 𝐻𝐴𝑎𝑞,0(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])                  (2A.14) 

When the cocrystal is in equilibrium with solution at the dissolving surface at time = 0 before any 

diffusion, the stoichiometric solubility of RHA is as follow: 

𝑆𝑐𝑐 = 𝑅𝑡𝑜𝑡,0 = 𝐴𝑡𝑜𝑡,0 = √𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑚])(1 +

𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])              (2A.15) 

The flux of all the species across the diffusion layer includes both the diffusion and 

chemical reactions happening during dissolution.  At steady state, the diffusion and simultaneous 

chemical reactions of the individual species within the diffusion layer can be written using Fick’s 

law as follows24: 

𝜕[𝑅]𝑎𝑞

𝜕𝑡
= 𝐷𝑅𝑎𝑞

𝜕2 [𝑅]𝑎𝑞

𝜕𝑥2 + 𝜙1 = 0                  (2A.16) 

𝜕[𝑅]𝑚

𝜕𝑡
= 𝐷𝑅𝑚

𝜕2 [𝑅]𝑚

𝜕𝑥2 + 𝜙2 = 0                  (2A.17) 
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𝜕[𝐻𝐴]𝑎𝑞

𝜕𝑡
= 𝐷𝐻𝐴𝑎𝑞

𝜕2 [𝐻𝐴]𝑎𝑞

𝜕𝑥2 + 𝜙3 = 0                  (2A.18) 

𝜕[𝐴−]𝑎𝑞

𝜕𝑡
= 𝐷𝐴𝑎𝑞

−
𝜕2 [𝐴−]𝑎𝑞

𝜕𝑥2 + 𝜙4 = 0                  (2A.19) 

𝜕[𝐻𝐴]𝑚

𝜕𝑡
= 𝐷𝐻𝐴𝑚

𝜕2 [𝐻𝐴]𝑚

𝜕𝑥2
+ 𝜙5 = 0                  (2A.20) 

𝜕[𝑂𝐻−]

𝜕𝑡
= 𝐷𝑂𝐻−

𝜕2 [𝑂𝐻−]

𝜕𝑥2 + 𝜙6 = 0                  (2A.21) 

𝜕[𝐻+]

𝜕𝑡
= 𝐷𝐻+

𝜕2 [𝐻+]

𝜕𝑥2 + 𝜙7 = 0                   (2A.22) 

where ϕ1-7 are the reaction rate functions.  At equilibrium, the reaction rate of the reactant should 

be the opposite of the product.  Based on the chemical equilibria, the followings can be written: 

𝜙1 = −𝜙2                     (2A.23) 

𝜙3 = −𝜙4 − 𝜙5                    (2A.24) 

The reaction rate of A- can be reflected by the reaction rate of H+ and OH-, therefore, 

𝜙4 = 𝜙7 − 𝜙6                     (2A.25) 

Based on equation 2A.25, equation 2A.24 can be written as:  

𝜙3 = 𝜙6 − 𝜙5 − 𝜙7                    (2A.26) 

Based on the equations 2A.23, 2A.24 and 2A.26, the following mass balance equations can be 

written:  

𝐷𝑅𝑎𝑞

𝑑2 [𝑅]𝑎𝑞

𝑑𝑥2
= −𝐷𝑅𝑚

𝑑2 [𝑅]𝑚

𝑑𝑥2
                   (2A.27) 

𝐷𝐻𝐴𝑎𝑞

𝑑2 [𝐻𝐴]𝑎𝑞

𝑑𝑥2 = −𝐷𝐴𝑎𝑞
−

𝑑2[𝐴−]𝑎𝑞

𝑑𝑥2 − 𝐷𝐻𝐴𝑚

𝑑2 [𝐻𝐴]𝑚

𝑑𝑥2                 (2A.28) 
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𝐷𝐻𝐴𝑎𝑞

𝑑2 [𝐻𝐴]𝑎𝑞

𝑑𝑥2 = 𝐷𝑂𝐻−
𝑑2 [𝑂𝐻−]

𝑑𝑥2 − 𝐷𝐻+
𝑑2[𝐻+]

𝑑𝑥2 − 𝐷𝐻𝐴𝑚

𝑑2 [𝐻𝐴]𝑚

𝑑𝑥2               (2A.29) 

Integrating equations 2A.27 to 2A.29 once gives: 

𝐷𝑅𝑎𝑞

𝑑[𝑅]𝑎𝑞

𝑑𝑥
= −𝐷𝑅𝑚

𝑑 [𝑅]𝑚

𝑑𝑥
+ 𝐶1                  (2A.30) 

𝐷𝐻𝐴𝑎𝑞

𝑑 [𝐻𝐴]𝑎𝑞

𝑑𝑥
= −𝐷𝐴𝑎𝑞

−
𝑑[𝐴−]𝑎𝑞

𝑑𝑥
− 𝐷𝐻𝐴𝑚

𝑑 [𝐻𝐴]𝑚

𝑑𝑥
+ 𝐶2                (2A.31) 

𝐷𝐻𝐴𝑎𝑞

𝑑 [𝐻𝐴]𝑎𝑞

𝑑𝑥
= 𝐷𝑂𝐻−

𝑑 [𝑂𝐻−]

𝑑𝑥
− 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
− 𝐷𝐻𝐴𝑚

𝑑 [𝐻𝐴]𝑚

𝑑𝑥
+ 𝐶3              (2A.32) 

Since 𝐴𝑎𝑞
−  is the product of the reaction between HA and OH-, so its flux can be reflected by both 

OH- and H+: 

−𝐷𝐴𝑎𝑞
−

𝑑[𝐴−]𝑎𝑞

𝑑𝑥
= 𝐷𝑂𝐻−

𝑑 [𝑂𝐻−]

𝑑𝑥
− 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
                 (2A.33) 

With this mass balance relationship, it can be seen that  

𝐶2 = 𝐶3                     (2A.34) 

Integrating equations 2A.30 to 2A.32 once gives:  

𝐷𝑅𝑎𝑞
[𝑅]𝑎𝑞 = −𝐷𝑅𝑚

[𝑅]𝑚 + 𝐶1𝑥 + 𝐶4                 (2A.35) 

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞 = −𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚−𝐷𝐴𝑎𝑞
− [𝐴−]𝑎𝑞 + 𝐶2𝑥 + 𝐶5               (2A.36) 

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞 = 𝐷𝑂𝐻−[𝑂𝐻−] − 𝐷𝐻+[𝐻+]−𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚 + 𝐶3𝑥 + 𝐶6             (2A.37) 

Interfacial pH and flux of the species can be evaluated by solving these mass balance equations 

with the boundary conditions obtained from the surface saturation and interfacial equilibrium 

models. 
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Surface saturation model 

Given that the concentration of the drug is the same as the solubility of the cocrystal at the 

surface for the surface saturation model, the aqueous concentration of the drug at the surface can 

be solved using equation 2A.13 and 2A.15:  

𝑅𝑎𝑞,0 =
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

                  (2A.38) 

Assuming the dissolution of RHA in the presence of surfactant gives equal flux of R and HA:  

𝐽𝑅𝑡𝑜𝑡
=

𝐷𝑅𝑒𝑓𝑓
[𝑅]𝑡𝑜𝑡,0

ℎ
= 𝐽𝐴𝑡𝑜𝑡

=
𝐷𝐻𝐴𝑒𝑓𝑓

[𝐴]𝑡𝑜𝑡,0

ℎ
                 (2A.39) 

where 𝐷𝑅𝑒𝑓𝑓
 and 𝐷𝐻𝐴𝑒𝑓𝑓

 are the effective diffusion coefficients of the drug and coformer, which 

are defined in equation 2.14 as the total diffusion of the free and micelle solubilized solute.37  Given 

equations 2A.13-2A.15 above and applying the equation for diffusion layer thickness shown in 

equation 2.10, the aqueous concentration of the coformer at the surface is given by: 

[𝐻𝐴]𝑎𝑞,0 = (
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
                (2A.40) 

Based on equations 2A.38 and 2A.40, the following boundary conditions for each species can be 

written for the surface saturation model: 

At x = 0:        at x = h: 

[𝑅]𝑎𝑞,0 =
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

   [𝑅]𝑎𝑞,ℎ = 0 (under sink condition) 
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[𝐻𝐴]𝑎𝑞,0 = (
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
  [𝐻𝐴]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝑅]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝑅]𝑚,ℎ = 0 (under sink condition) 

[𝐻𝐴]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝐻𝐴]𝑚,ℎ = 0 (under sink condition) 

[𝐴−]𝑎𝑞,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝐴−]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝐻+] = [𝐻+]0       [𝐻+] = [𝐻+]ℎ 

[𝑂𝐻−] = [𝑂𝐻−]0      [𝑂𝐻−] = [𝑂𝐻−]ℎ 

Evaluation of pH at the solid surface   

Applying the above boundary conditions to equations 2A.36 and 2A.37, at x = 0:  

𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
= −𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚,0−𝐷𝐴𝑎𝑞
− [𝐴−]𝑎𝑞,0 + 𝐶5         (2A.41) 

𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
= 𝐷𝑂𝐻−[𝑂𝐻−]0 − 𝐷𝐻+[𝐻+]0−𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚,0 + 𝐶6       

                                               (2A.42) 

and at x = h, since sink conditions are assumed, equations 2A.36 and 2A.37 can be written as: 

𝐶2ℎ + 𝐶5 = 0                     (2A.43) 

0 = 𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ + 𝐶3ℎ + 𝐶6                 (2A.44) 

Combining equations 2A.41 to 2A.44 and algebraically solving for interfacial pH, [H+]0, yields the 

following equation: 
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𝐴[𝐻+]0
5

+ 𝐵[𝐻+]0
4

+ 𝐶[𝐻+]0
3

+ 𝐷[𝐻+]0
2

+ 𝐸[𝐻+]0 + 𝐹 = 0              (2A.45) 

where 

𝐴 = 𝐷𝐻+
2 (1 + 𝐾𝑠

𝐻𝐴[𝑚]); 

𝐵 = −2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + 𝐷𝐻+

2 𝐾𝑎; 

𝐶 = −2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + (1 + 𝐾𝑠

𝐻𝐴[𝑚])(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2 −

2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)𝐾𝑎; 

𝐷 = 2𝐷𝑂𝐻−𝐾𝑤(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) − 2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤𝐾𝑎 +

(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2𝐾𝑎; 

𝐸 = (𝐷𝑂𝐻−𝐾𝑤)2(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + 2𝐷𝑂𝐻−𝐾𝑤(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)𝐾𝑎 −

(𝐷𝐴𝑎𝑞
−

1/3
𝐷𝑅𝑒𝑓𝑓

2/3
Ka√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚]))2; 

𝐹 = 𝐾𝑎(𝐷𝑂𝐻−𝐾𝑤)2. 

Evaluation of flux of the cocrystal components   

Applying the boundary conditions to equation 2A.35, at x = 0: 

𝐷𝑅𝑎𝑞

√𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

= −𝐷𝑅𝑚
𝐾𝑠

𝑅[𝑚]
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

+ 𝐶4             (2A.46) 

and at x = h, assuming sink conditions: 

0 = 𝐶1ℎ + 𝐶4                     (2A.47) 

Combining equations 2A.46 and 2A.47 and solving for −𝐶1 for the flux of the cocrystal in terms 

of drug: 

𝐽𝑅 =
𝐷𝑅𝑒𝑓𝑓

ℎ𝑅
√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚])(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])                (2A.48) 
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By substituting equation 2.10 into equation 2A.48, it becomes: 

𝐽𝑅 = 0.62𝐷𝑅𝑒𝑓𝑓

2/3
𝜔1/2𝑣−1/6√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚])(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])              (2A.49) 

The flux of the cocrystal in terms of coformer can be also solved in a similar manner by applying 

the boundary conditions to equation 2A.36: 

𝐽𝐻𝐴 =
𝐷𝐻𝐴𝑒𝑓𝑓

1
3 𝐷𝑅𝑒𝑓𝑓

2
3

ℎ𝐻𝐴
√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚])(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])               (2A.50) 

By substituting equation 2.10 into equation 2A.50, it can be shown to equal equation 2A.49.  This 

is expected since the flux of drug and coformer should be the same for a 1:1 cocrystal even though 

they have different diffusivities.   

Interfacial equilibrium model 

Given equations 2A.2, 2A.13, 2A.14, 2A.15, 2A.39 and applying the equation for diffusion 

layer thickness shown in equation 2.10, the aqueous concentrations of R and HA at the dissolving 

surface required to maintain constant Ksp at all time t ≥ 0 are as follows:  

[𝑅]𝑎𝑞,0 = (
𝐷𝐻𝐴𝑒𝑓𝑓

𝐷𝑅𝑒𝑓𝑓

)1/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

                (2A.51) 

[𝐻𝐴]𝑎𝑞,0 = (
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)1/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
                 (2A.52) 

Based on equations 2A.51 and 2A.52, the following boundary conditions for each species can be 

written for the interfacial equilibrium model: 

At x = 0:        at x = h: 
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[𝑅]𝑎𝑞,0 = (
𝐷𝐻𝐴𝑒𝑓𝑓

𝐷𝑅𝑒𝑓𝑓

)1/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

  [𝑅]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝐻𝐴]𝑎𝑞,0 = (
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)1/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
  [𝐻𝐴]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝑅]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝑅]𝑚,ℎ = 0 (under sink condition) 

[𝐻𝐴]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝐻𝐴]𝑚,ℎ = 0 (under sink condition) 

[𝐴−]𝑎𝑞,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝐴−]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝐻+] = [𝐻+]0       [𝐻+] = [𝐻+]ℎ 

[𝑂𝐻−] = [𝑂𝐻−]0      [𝑂𝐻−] = [𝑂𝐻−]ℎ 

Evaluation of pH at the solid surface   

Applying the above boundary conditions to equations 2A.36 and 2A.37, at x = 0:  

𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)1/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
= −𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚,0−𝐷𝐴𝑎𝑞
− [𝐴−]𝑎𝑞,0 + 𝐶5        (2A.53) 

𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)1/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
= 𝐷𝑂𝐻−[𝑂𝐻−]0 − 𝐷𝐻+[𝐻+]0−𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚,0 + 𝐶6 

                       (2A.54) 

and at x = h: 

𝐶2ℎ + 𝐶5 = 0                     (2A.55) 

0 = 𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ + 𝐶3ℎ + 𝐶6                 (2A.56) 
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Combining equations 2A.53 to 2A.56 and algebraically solving for interfacial pH yields the 

following equation: 

𝐴[𝐻+]0
5

+ 𝐵[𝐻+]0
4

+ 𝐶[𝐻+]0
3

+ 𝐷[𝐻+]0
2

+ 𝐸[𝐻+]0 + 𝐹 = 0              (2A.57) 

where,  

𝐴 = 𝐷𝐻+
2 (1 + 𝐾𝑠

𝐻𝐴[𝑚]); 

𝐵 = −2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + 𝐷𝐻+

2 𝐾𝑎; 

𝐶 = −2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + (1 + 𝐾𝑠

𝐻𝐴[𝑚])(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2 −

2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)𝐾𝑎; 

𝐷 = 2𝐷𝑂𝐻−𝐾𝑤(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) − 2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤𝐾𝑎 +

(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2𝐾𝑎; 

𝐸 = (𝐷𝑂𝐻−𝐾𝑤)2(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + 2𝐷𝑂𝐻−𝐾𝑤(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)𝐾𝑎 −

(𝐷𝐴𝑎𝑞
−

2/3
𝐷𝑅𝑒𝑓𝑓

1/3
Ka√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚]))2; 

𝐹 = 𝐾𝑎(𝐷𝑂𝐻−𝐾𝑤)2. 

This equation is very similar to the one obtained from the surface saturation model.  The only 

difference is the coefficient E in the equation because of the different boundary layer conditions.   

Evaluation of flux of the cocrystal components   

Applying the new boundary conditions to mass balance equations 2A.35 and 2A.36, the flux of 

the cocrystal in terms of components can be re-evaluated as: 

𝐽𝑅 = 𝐽𝐻𝐴 = 0.62(𝐷𝑅𝑒𝑓𝑓
𝐷𝐻𝐴𝑒𝑓𝑓

)1/3𝜔1/2𝑣−1/6√𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑚])(1 +

𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])          (2A.58) 
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Unlike the surface saturation model, the flux of the cocrystal is not only dependent on the effective 

diffusivity of the drug, but also the coformer.   
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CHAPTER 3  

MECHANISTIC BASIS OF COCRYSTAL DISSOLUTION ADVANTAGE 

Abstract 

The current interest in cocrystal development resides in the advantages that the cocrystal 

may have in solubility and dissolution compared to the parent drug.  The mechanism of cocrystal 

solubility advantage has been studied in detail, however, limited research has been carried out on 

the dissolution of cocrystals. The purpose of this work is to provide a mechanistic analysis and 

comparison of the dissolution behavior of carbamazepine (CBZ) and its two cocrystals, 

carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the 

influence of pH and micellar solubilization.  A simple mathematical equation is derived based on 

the mass transport analyses of both the drug and cocrystal to describe the dissolution advantage of 

cocrystal, which is defined as the ratio of the cocrystal flux over the drug flux.  The dissolution 

advantage of cocrystal has a dependence on both the solubility and diffusivity advantages.  In this 

work, the effective diffusivity of CBZ in the presence of surfactant is determined to be different 

from those of the cocrystals.  The higher effective diffusivities of the cocrystals can impart 

dissolution advantages to cocrystals with lower solubility than the parent drugs while still 

maintaining thermodynamic stability.  Dissolution conditions where cocrystals display both 

thermodynamic stability and dissolution advantage can be obtained from the mass transport 

models and this information is useful for both cocrystal selection and formulation development.   
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Introduction 

Cocrystallization is one of the powerful strategies used in pharmaceutical development to 

improve the aqueous solubility of inherently insoluble drugs1-6.  Cocrystallization usually involves 

the formation of cocrystal through hydrogen bonding between the hydrophobic drug and 

hydrophilic coformer7, 8.  As a new and different solid form, the physicochemical properties of 

cocrystal need to be fully evaluated in order to develop a feasible formulation.  Among these 

properties, solubility and dissolution are of particular interests due to their importance in 

determining the oral absorption of drugs9.  A thorough understanding of the solubility and 

dissolution mechanisms of cocrystals not only aids the formulation development, but also provides 

an improved perspective on the oral absorption of drugs from the cocrystalline solids. 

One of the motivations for cocrystal development is the solubility advantages that these 

cocrystalline materials can generate1-6.  However, these solubility advantages are not constant and 

they can vanish under certain solution conditions, such as pH and the presence of solubilizing 

additive10-15.  Cocrystals can exhibit higher, equal or lower solubility compared to the parent drugs 

depending on the solution conditions.  Important transition points, such as pHmax and critical 

stabilization concentration (CSC), have been identified to access the solubility behavior of 

cocrystals10, 11, 15.  Cocrystal is thermodynamically unstable below the CSC, but it is 

thermodynamically stable above the CSC10, 12, 13.  CSC can be achieved using any additives that 

preferentially solubilize the drug compared to the coformer10, 12, 13.  Without knowing these 

important concepts, cocrystals could lose their solubility advantages compared to the parent drugs 

if the concentrations of solubilizing agents used are above the CSC.  Consequently, a thorough 

understanding of the transition point is essential for fine-tuning the formulations of cocrystals to 

achieve desired solubility advantages.     
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Another question of interest for cocrystal development is whether cocrystal could exhibit 

higher dissolution rate compared to the parent drug.  Knowing the dissolution behavior of 

cocrystals adds another level of confidence in formulation development.  The dissolution 

mechanism of cocrystals under the influence of pH and surfactant has been evaluated through the 

development of mass transport models16.  The mass transport analyses indicate that the 

physicochemical properties of cocrystals and their components, such as solubility products, 

ionization constants, solubilization constants and diffusion coefficients, are important parameters 

for determining the rates of cocrystal dissolution16.    Dissolution rate is directly proportional to 

the solubility of the cocrystal.  This relationship leads to an important question to be addressed in 

this study, which is whether a cocrystal solubility advantage is necessary to obtain higher cocrystal 

dissolution rate compared to the parent drug.  

Here, a simple mathematical model is presented to determine the dissolution advantages of 

cocrystals compared to the parent drugs.  This model is evaluated using a model drug, 

carbamazepine (CBZ) and its two cocrystals with 1:1 stoichiometry, carbamazepine saccharin 

(CBZ-SAC) and carbamazepine salicylic acid (CBZ-SLC).  CBZ is non-ionizable and both SAC 

and SLC are acidic coformers with pKa values of 1.6 and 3.01, 10, respectively.  The stable form of 

CBZ in solution is its dihydrated form.  To eliminate the complication of conversion, CBZ 

dihydrate (CBZD) was used for this study.  Constant surface area dissolution of both CBZD and 

its two cocrystals was determined using rotating disk apparatus.  Both CBZ-SAC and CBZ-SLC 

have higher solubility than CBZD, so dissolution studies were performed in solution containing 

sodium lauryl sulfate (SLS) concentration at or above the CSC to prevent solid phase 

transformation during dissolution.  Effect of pH and surfactant concentration on the dissolution of 

CBZD and two CBZ cocrystals was evaluated and compared in this study. 
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Materials and methods 

Materials  

Anhydrous carbamazepine (CBZ), salicylic acid (SLC) and sodium lauryl sulfate (SLS) 

were purchased from Sigma Chemical Company (St. Louis, MO) and used as received.  

Carbamazepine dihydrate (CBZD) was prepared by slurrying anhydrous CBZ in deionized water 

for 24 hours and solid was obtained through vacuum filtration.  Saccharin (SAC) was purchased 

from Acros Organics (Pittsburgh, PA) and used as received.  Isopropanol, acetonitrile, methanol 

and hydrochloric acid were purchased from Fisher Scientific (Pittsburgh, PA).  Sodium hydroxide 

pellets were purchased from J.T. Baker (Philipsburg, NJ).  Water used in this study was filtered 

through a double deionized purification system (Milli Q Plus Water System) from Millipore Co. 

(Bedford, MA).   

Cocrystal synthesis   

Cocrystals were prepared by reaction crystallization method17 at room temperature.  CBZ-

SAC was prepared by adding 1:1 molar ratio of CBZ and SAC in isopropanol solution.  CBZ-SLC 

was prepared by adding 1:1 molar ratio of CBZ and SLC in acetonitrile solution containing 0.1 M 

SLC.  Solid phases were characterized by X-ray powder diffraction (XRPD) and differential 

scanning calorimetry (DSC).   

Cocrystal solubility  

Cocrystal solubility was measured by determining the eutectic concentrations of the drug 

and coformer as a function of SLS concentration at pH 1 and 25°C.  A detailed discussion of the 

eutectic point measurement was reported elsewhere18.  Cocrystals (100 – 150 mg) and CBZD (50 
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– 100 mg) were suspended in 3 mL of aqueous SLS solution and stirred for 4 days.  Samples were 

collected at 24 hour intervals and centrifuged using Corning Costar Spin-X plastic centrifuge tubes 

with filters to separate the excess solid from solution.  Solution concentrations were measured 

using HPLC and solid phases were analyzed by XRPD.  Cocrystal stoichiometric solubility was 

determined from the measured eutectic concentrations of the components using previously 

developed method18. 

Dissolution experiments   

The constant surface area dissolution rates of cocrystals and CBZD were determined using 

a rotating disk apparatus.  Cocrystal or CBZD powder (~150 mg) was compressed in a stainless 

steel rotating disk die with a tablet radius of 0.50 cm at 85 MPa for 2 minutes using a Carver 

hydraulic press.  The die containing the compact was mounted onto a stainless steel shaft attached 

to an overhead, variable speed motor.  The disk was exposed to 150 mL of the dissolution medium 

in a water jacketed beaker with temperature controlled at 25°C and a rotation speed of 200 rpm 

was used.  Dissolution medium was prepared on the day of the experiment by dissolving SLS in 

water and solution pH was adjusted using HCl or NaOH.  Sink conditions were maintained 

throughout the experiments by ensuring the concentrations at the last time point of dissolution 

were less than 10% of the cocrystal solubility.  Solution concentrations were measured using 

HPLC and solid phases after dissolutions were analyzed by XRPD.   

HPLC   

Waters HPLC equipped with a photodiode array detector was used for all analysis.  The 

mobile phase was composed of 55% methanol and 45% water with 0.1% trifluoroacetic acid and 

the flow rate was 1 mL/min was used.  Separation was achieved using Waters, Atlantis, T3 column 



 

91 
 

(5.0 µm, 100 Å) with dimensions of 4.6 x 250 mm.  The sample injection volume was 20 µL.  The 

wavelengths for the analytes were as follows: 284 nm for CBZ, 250 nm for SAC and 303 nm for 

SLC.    

XRPD   

XRPD diffractograms of solid phases were collected with a benchtop Rigaku Miniflex X-

ray diffractometer using Cu-Kα radiation (λ = 1.54 Å), a tube voltage of 30 kV, and a tube current 

of 15 mA.  Data was collected from 5 to 40° at a continuous scan rate of 2.5°/min. 

DSC 

Crystalline samples were analyzed by DSC using a TA instrument 2910 MDSC system 

equipped with a refrigerated cooling unit.  All experiments were performed by heating the samples 

at a rate of 10 °C/min under a dry nitrogen atmosphere.  Temperature and enthalpy of the 

instrument were calibrated using high purity indium standard.   

Theoretical  

The solubility of non-ionizable drug in surfactant solution can be described as: 

𝑆𝑑𝑟𝑢𝑔 = 𝑆0(1 + 𝐾𝑠
𝑅[𝑚])             (3.1) 

where 𝑆0 is the intrinsic solubility of the drug, 𝐾𝑠
𝑅 is the solubilization constant of the drug in 

surfactant solution and [m] is the concentration of the micelle10.   

The solubility of a 1:1 cocrystal with non-ionizable drug and acidic coformer in surfactant 

solution can be described as: 

𝑆𝑐𝑐 = √𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑚])(1 + 𝐾𝑠

𝐻𝐴[𝑚] +
𝐾𝑎

𝐻+)          (3.2) 
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where 𝐾𝑠𝑝 is the solubility product of the cocrystal, 𝐾𝑠
𝐻𝐴 is the solubilization constant of the 

coformer in surfactant solution and 𝐾𝑎 is the ionization constant of the coformer10.  Here, the 

solubilization of the ionized form of the coformer in surfactant solution is assumed to be negligible.     

For rotating disk dissolution, the flux of both drug and cocrystal in surfactant solution can 

be described as follows: 

𝐽𝑅 = 0.62𝐷𝑅𝑒𝑓𝑓,𝑑𝑟𝑢𝑔

2/3
𝜔1/2𝑣−1/6𝑆0(1 + 𝐾𝑠

𝑅[𝑚])          (3.3) 

𝐽𝑐𝑐 = 0.62𝐷𝑅𝑒𝑓𝑓,𝑐𝑐

2/3
𝜔1/2𝑣−1/6√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚])(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])       (3.4) 

where 𝐷𝑅𝑒𝑓𝑓,𝑑𝑟𝑢𝑔
  and 𝐷𝑅𝑒𝑓𝑓,𝑐𝑐

 are the effective diffusivities of the drug determined from the 

dissolution of drug and cocrystal respectively, 𝜔 is the rotation speed during dissolution and 𝑣 is 

the viscosity of the dissolution media16, 19.  The effective diffusivity in surfactant solution can be 

described as:  

𝐷𝑅𝑒𝑓𝑓
=

𝐷𝑎𝑞+𝐾𝑠𝐷𝑚[𝑚]

1+𝐾𝑠[𝑚]
              (3.5) 

where 𝐷𝑎𝑞 is the aqueous diffusivity and 𝐷𝑚 is the micellar diffusivity20.  

The dissolution advantage of cocrystal, ∅, is defined as the ratio of the cocrystal flux over 

the drug flux, which is given by: 

∅ =
𝐽𝑐𝑐

𝐽𝑅
= (

𝐷𝑅𝑒𝑓𝑓,𝑐𝑐

𝐷𝑅𝑒𝑓𝑓,𝑑𝑟𝑢𝑔

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

𝑆0(1+𝐾𝑠
𝑅[𝑚])

         (3.6) 

A ∅ value greater than 1 indicates the cocrystal has higher dissolution rate than the drug; whereas 

the dissolution rate of cocrystal is less than the drug with ∅ value below 1.  Equation 3.6 is specific 
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for determining the cocrystal dissolution advantage under surfactant conditions.  However, a 

simplified equation can be derived to apply for dissolution under different solution conditions: 

∅ = (
𝐷𝑅,𝑐𝑐

𝐷𝑅,𝑑𝑟𝑢𝑔

)2/3 𝑆𝑐𝑐

𝑆𝑑𝑟𝑢𝑔
              (3.7) 

where 
𝐷𝑅,𝑐𝑐

𝐷𝑅,𝑑𝑟𝑢𝑔

 is the diffusivity advantage and 
𝑆𝑐𝑐

𝑆𝑑𝑟𝑢𝑔
 is the solubility advantage of the cocrystal.  By 

knowing the cocrystal diffusivity and solubility advantage, the dissolution advantage of cocrystal 

can be predicted under the different solution conditions.  The dissolution advantage of cocrystal 

would only depend on the solubility advantage if the diffusion coefficients are the same for the 

drug and cocrystal.  This is usually true under aqueous conditions with no surfactant.  However, 

under surfactant conditions, the effective diffusion coefficient of the drug maybe different from 

the cocrystal due to the different solubility dependence on surfactant concentration.  Therefore, 

besides the solubility advantage, the effective diffusion coefficients of both drug and cocrystal 

have to be taken into consideration as well for determining the dissolution advantage of cocrystal 

under surfactant conditions.  Due to the differential diffusion coefficients, dissolution advantages 

can be imparted to cocrystals with lower solubility than the parent drugs, as long as the diffusion 

coefficients of the cocrystals are large enough to compensate for the disadvantages in solubility.   

Results and discussion 

Solubility study 

The equilibrium solubility of both cocrystals as a function of surfactant concentration at 

pH 1 was determined using the eutectic point measurement.  At the eutectic point, the solid phases 

of both the drug and cocrystal are in equilibrium with solution and the concentrations of both 

cocrystal components can be measured18.  The relative solubility of the cocrystal to the parent drug 
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can be accessed by the eutectic constant, Keu, which is a ratio of the coformer eutectic 

concentration over the drug eutectic concentration18, 21.  Cocrystal is more soluble than the parent 

drug when Keu > 1; but it is less soluble than the parent drug when Keu < 118, 21.  The eutectic 

concentrations of the cocrystal components16 and Keu as a function of SLS at pH 1 are shown in 

Figure 3.1 and 3.2.  The concentrations of both components increase with surfactant concentration 

increases, however, the drug concentrations are higher than the coformer concentrations at all 

surfactant concentrations.  This is expected because all the solubility studies were performed at 

surfactant concentrations above the CSC, where the cocrystals are less soluble.  The eutectic 

constants shown in Figure 3.1 and 3.2 further confirm the thermodynamic stability of the cocrystals 

under these conditions.  Keu values decrease as SLS concentration increases because the surfactant 

concentration is further away from the CSC. 

(a)                                                                                (b) 

 

Figure 3.1.  (a) Eutectic concentrations of CBZ ( ) and SAC ( ) measured at the eutectic point 

for CBZ-SAC at pH 1 as a function of SLS concentration16.  (b) Keu values calculated from the 

eutectic concentrations. 
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(a)                                                                                 (b) 

 

Figure 3.2.  (a) Eutectic concentrations of CBZ ( ) and SLC ( ) measured at the eutectic point 

for CBZ-SLC at pH 1 as a function of SLS concentration16.  (b) Keu values calculated from the 

eutectic concentrations.  

 

The equilibrium solubility of cocrystals can be calculated from the eutectic concentrations 

of the cocrystal components using the following equation18: 

𝑆𝑐𝑐 = √[𝑑𝑟𝑢𝑔]𝑒𝑢𝑡𝑒𝑐𝑡𝑖𝑐[𝑐𝑜𝑓𝑜𝑟𝑚𝑒𝑟]𝑒𝑢𝑡𝑒𝑐𝑡𝑖𝑐           (3.8) 

The solubility of CBZD is the same as the eutectic concentration because the solid phase of CBZD 

is in equilibrium with solution.  Previous studies have shown that the solubilization of CBZD by 

SLS is not affected by the presence of coformer10, 12, 13.  The solubility of CBZ-SAC and CBZ-

SLC was determined and compared to CBZD in Figure 3.3 and 3.4, respectively.  Solubility of 

both drug and cocrystals increases as surfactant concentration increases, however, the drug has a 

greater rate of increase compared to both of the cocrystals.  As shown in equations 3.1 and 3.2, the 

solubility of drug has a linear dependence on surfactant concentration, while the cocrystal has a 

square root dependence.  This explains why the drug has a higher increase in solubility as a 

function of surfactant concentration compared to the cocrystals.  The square root dependence of 

cocrystal solubility on surfactant concentration is a result of the preferential solubilization of the 
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drug compared to the coformers by surfactant10.  Since the solubility studies were performed above 

the CSC, both cocrystals exhibited no solubility advantage over the parent drug, as indicated in 

Figure 3.3 and 3.4 with the ratios of Scc/Sdrug less than 1.  The Scc/Sdrug ratios of both cocrystals 

decrease as SLS concentration increases because the difference in solubility between the drug and 

cocrystals increases as the concentration of SLS moves further away from the CSC.   

(a)                                                                                (b) 

 

Figure 3.3.  (a) Solubility of CBZD ( ) and CBZ-SAC ( ) at pH 1 as a function of SLS 

concentration16.  (b) Solubility advantage of CBZ-SAC, Scc/Sdrug, calculated from the solubility 

data.   
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Figure 3.4.  (a) Solubility of CBZD ( ) and CBZ-SLC ( ) at pH 1 as a function of SLS 

concentration16.  (b) Solubility advantage of CBZ-SLC, Scc/Sdrug, calculated from the solubility 

data.   

 

Effect of surfactant on dissolution of CBZD and CBZ cocrystals 

Dissolution studies of CBZD, CBZ-SAC and CBZ-SLC were performed at pH 1 as a 

function of SLS concentration.  The flux values of CBZD are compared to CBZ-SAC in Figure 

3.5 and CBZ-SLC in Figure 3.6.  Flux of both drug and cocrystals increases as SLS concentration 

increases, however, there is a greater increase for the drug compared to the two cocrystals because 

it has a greater solubility dependence on surfactant concentration.  Dissolution advantages were 

determined by comparing the cocrystal flux to CBZD flux.  Both cocrystals have no dissolution 

advantages over the parent drug under these dissolution conditions as indicated by ∅ < 1 shown in 

Figure 3.5 and 3.6.  Under these conditions, the solubility of the drug is higher than both of the 

cocrystals, so the flux of both CBZ-SAC and CBZ-SLC is smaller than CBZD.  As shown in 

equation 3.7, ∅ is proportional to Scc/Sdrug, so it follows the same trend as the solubility advantage, 

in which the dissolution advantage decreases with increasing SLS concentration. 

(a)                                                                                (b) 

 

Figure 3.5.  (a) Flux of CBZD ( ) and CBZ-SAC16 ( ) at pH 1 as a function of SLS concentration.  

(b) Dissolution advantage (∅) of CBZ-SAC calculated from the experimental flux. 
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(a)                                                                                 (b) 

 

Figure 3.6.  (a) Flux of CBZD ( ) and CBZ-SLC16 ( ) at pH 1 as a function of SLS concentration.  

(b) Dissolution advantage (∅) of CBZ-SLC calculated from the experimental flux. 
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diffusion coefficients determined from the two cocrystals are different from each other and this 
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determined from the dissolution of CBZD as a function of SLS concentration at pH 1.  These 

micellar diffusivities are compared to those determined from the dissolution of CBZ-SAC and 

CBZ-SLC in Figure 3.7.  The micellar diffusivities of CBZ determined from the dissolution of 

CBZD follow the same trend as the ones determined from the cocrystals.  As shown in Figure 3.7, 
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these relationships can be fitted into power regressions.  The decrease in micellar diffusivities is 
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coefficients, the ones determined from the dissolution of CBZD are the lowest.  Detailed analysis 

of this is beyond the scope of this study.  However, the difference in solubility dependence on 

surfactant concentration between the drug and cocrystal could be the potential reason for the 

difference in micellar diffusion coefficients.  The solubility of CBZD has a stronger dependence 

on surfactant concentration compared to the cocrystals as indicated by the linear dependence 

shown in equation 3.1.  It is possible that more drug molecules are solubilized into the micelles 

during the dissolution of CBZD compared to the dissolution of the cocrystals and thus results in 

slower micellar diffusion compared to the cocrystals.   

 

Figure 3.7.  Micellar diffusivities of CBZ determined from the dissolution of CBZD ( ), CBZ-

SAC16 ( ) and CBZ-SLC16 ( ) at pH 1 as a function of SLS.  The circles are the experimental 

data and the solid lines are the power regressions. 

 

Solubility and dissolution enhancements by SLS 

Due to micellar solubilization, the solubility and dissolution of CBZD and the two 

cocrystals can be enhanced in the presence of surfactant.  The solubility and dissolution 

enhancements by SLS for CBZD, CBZ-SAC and CBZ-SLC were determined by normalizing the 

solubility and dissolution data at all surfactant concentrations to those at 22 mM SLS.  As shown 
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in Figure 3.8, both solubility and dissolution enhancements increase as surfactant concentration 

increases, however, the enhancement for solubility is greater than that for dissolution and this 

difference increases as surfactant concentration increases.  According to equations 3.3 and 3.4, the 

flux of the drug and cocrystal is proportional to solubility, so the dissolution enhancement should 

theoretically be proportional to the solubility enhancement.  However, the presence of surfactant 

increases the solubility of a compound by solubilizing it into the micelles, but at the same time, it 

decreases the diffusivity of the solubilized compound.  The counter effect of surfactant on 

solubility and micellar diffusivity results in lower dissolution enhancement compared to the 

solubility enhancement.  This counter effect increases as surfactant concentration increases and 

results in greater difference between the solubility and dissolution enhancements.  As expected, 

both solubility and dissolution enhancements of CBZD are higher than those of CBZ-SAC and 

CBZ-SLC because of the higher solubility dependence on surfactant. 
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                           (a) 

 

(b)            (c) 

 

Figure 3.8.  Solubility ( ) and dissolution ( ) enhancements of CBZD (a), CBZ-SAC (b) and 

CBZ-SLC (c) at pH 1 as a function of SLS.  Both solubility and dissolution enhancements were 

determined by normalizing the data to 22 mM SLS.    

 

Cocrystal solubility and dissolution advantage comparison 

The solubility and dissolution advantages of both cocrystals at pH 1 as a function of SLS 

concentration were compared and shown in Figure 3.9.  Both solubility and dissolution advantages 

decrease with increasing SLS concentration because the surfactant concentration is moving away 

from the CSC.  However, the dissolution advantages of both cocrystals are higher than the 

solubility advantages at all surfactant concentrations.  According to equation 3.6, dissolution 
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advantage depends on both the solubility and diffusivity advantages.  As discussed earlier, the 

micellar diffusivities of CBZ determined from the dissolution of CBZD are smaller than those 

determined from both of the cocrystals.  Therefore, the dissolution advantages of both cocrystals 

are enhanced by the higher micellar diffusions compared to the parent drug.  The enhancement in 

dissolution advantage of CBZ-SLC is greater than CBZ-SAC because there is larger difference in 

micellar diffusivity between CBZD and CBZ-SLC.  

(a)                    (b) 

 

Figure 3.9.  Solubility ( ) and dissolution ( ) advantages of CBZ-SAC (a) and CBZ-SLC (b) at 

pH 1 as a function of SLS.     

 

Effect of pH on dissolution of CBZD and CBZ cocrystals 

By cocrystallizing with acidic coformers, SAC and SLC, the nonionizable drug, CBZD, is 

able to possess pH dependent dissolution.  The effect of pH on the dissolution of CBZ-SAC and 

CBZ-SLC was evaluated at constant surfactant concentration as a function of bulk pH and 

compared to the parent drug in Figure 3.10 and 3.11, respectively.  The flux of CBZD is predicted 

to be constant as a function of bulk pH due to its nonionizable property.  Since pH has no effect 

on the dissolution of CBZD, dissolution experiments were conducted in SLS solutions with no pH 

adjustment.  The flux of both CBZ-SAC and CBZ-SLC increases as bulk pH increases because of 
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the acidity of the coformers.  However, both flux plateau at bulk pH ranges from 4 to 8, where the 

coformers are self-buffering the pH microenvironment at the dissolving surface.   Interfacial pH is 

relatively constant in this region, so no significant change in flux is observed in this region.  The 

dissolution advantages, ∅, of both cocrystals were determined by comparing the experimental 

cocrystal flux to CBZD flux, and these values are shown in Figure 3.10 for CBZ-SAC and Figure 

3.11 for CBZ-SLC.  As shown in these figures, there exists a transition pH where the flux of the 

drug is the same as the cocrystal flux.  Below this transition pH, the drug flux is higher, however, 

above it, the cocrystal flux becomes higher.  Theoretically, both cocrystals should not display any 

dissolution advantages under these conditions since the dissolution studies were performed above 

the CSC to prevent the solid phase transformation of the cocrystals back to the stable drug form.  

Under these dissolution conditions, both cocrystals have no solubility advantage over the parent 

drug as indicated by the ratios of Scc/Sdrug less than 1 shown in Table 3.1 and 3.2.  Despite the 

lower solubility, CBZ-SAC and CBZ-SLC can still display higher dissolution rates compared to 

CBZD above the transition pH.  According to equation 3.6, the cocrystal dissolution advantage is 

dependent on not only the solubility advantage, but also the diffusivity advantage.  As shown in 

Figure 3.7 above, the effective diffusivities of CBZ determined from the dissolution of CBZ-SAC 

and CBZ-SLC are higher than those of CBZD.  The effective diffusion coefficient of CBZ-SAC 

at 400 mM SLS and CBZ-SLC at 150 mM SLS is about 1.7x and 2.1x higher than that of CBZD, 

respectively.  These differences in effective diffusion coefficients are not large enough to impart 

dissolution advantages to both cocrystals below the transition pH because the solubility advantages 

are too low under these conditions as shown in Table 3.1 and 3.2.  As the solubility advantages of 

both cocrystals become higher above the transition pH, the higher effective diffusivities of both 
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cocrystals is able to compensate for the disadvantages in solubility and impart dissolution 

advantages.     

(a)                                                                              (b) 

 

Figure 3.10.  (a) Flux of CBZD and CBZ-SAC at 400 mM SLS as a function of bulk pH.  (b) 

Dissolution advantages, ∅, of CBZ-SAC calculated from the experimental flux.  The flux of CBZD 

( ) are predicted using equation 3.3 and the flux of CBZ-SAC ( ) are predicted using 

equation 3.4.  CBZD experimental flux: ; CBZ-SAC experimental flux: . 

 

 

(a)                                                                              (b) 

 

Figure 3.11.  (a) Flux of CBZD and CBZ-SLC at 44 mM SLS as a function of bulk pH.  (b) 

Dissolution advantages, ∅, of CBZ-SLC calculated from the experimental flux.  The flux of CBZD 

( ) are predicted using equation 3.3 and the flux of CBZ-SLC ( ) are predicted using 

equation 3.4.  CBZD experimental flux: ; CBZ-SAC experimental flux: . 
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By knowing the solubility and diffusivity advantages, the dissolution advantages of 

cocrystals can be predicted using equation 3.6.  The predicted dissolution advantages of CBZ-SAC 

and CBZ-SLC are shown in Table 3.1 and 3.2, respectively.  These predicted values agree well 

with the experimental values shown in Figure 3.10 and 3.11.  The higher effective diffusivity of 

the cocrystals is able to compensate for the disadvantage in solubility and results in dissolution 

advantage for both cocrystals without having to deal with the solid phase transformation of the 

cocrystals during dissolution. 

Table 3.1.  Theoretical predictions of dissolution advantages for CBZ-SAC at 400 mM SLS as a 

function of pH. 

pH Solubilityb (mM) 
Scc/Sdrug 

Deff,R (x 10-7 cm2/sec) Predicted 

∅d Bulk Interfaciala CBZD CBZ-SAC CBZD CBZ-SACc 

1.27 1.27 

74.2 

30.4 0.41 

4.16±0.02 7.2±0.3 

0.59 

2.16 2.15 36.8 0.50 0.72 

3.02 2.78 54.6 0.74 1.07 

4.03 3.00 66.2 0.89 1.28 

5.97 3.03 68.0 0.92 1.33 

7.66 3.03 68.0 0.92 1.33 

a) From reference 16.  

b) Predicted from equation 3.1 for CBZD and equation 3.2 for CBZ-SAC. 

c) From reference 16. 

d) Predicted from equation 3.6. 

 

Table 3.2.  Theoretical predictions of dissolution advantages for CBZ-SLC at 44 mM SLS as a 

function of pH. 

pH Solubilityb (mM) 

Scc/Sdrug 
Deff,R (x 10-6 cm2/sec) Predicted 

∅d Bulk Interfaciala CBZD CBZ-SLC CBZD CBZ-SLCc 

1.15 1.15 

12.2 

6.53 0.54 

1.41±0.04 2.98±0.04 

0.88 

3.08 2.97 6.27 0.51 0.84 

5.05 3.65 8.49 0.70 1.15 

5.99 3.66 8.55 0.70 1.15 

7.49 3.66 8.55 0.70 1.15 

a) From reference 16. 

b) Predicted from equation 3.1 for CBZD and equation 3.2 for CBZ-SAC. 

c) From reference 16. 

d) Predicted from equation 3.6. 
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Dissolution conditions for maintaining cocrystal dissolution advantage 

Solid phase transformation is one of the challenges for developing cocrystals because it 

can lead to minimal or no dissolution advantage compared to the parent drug.  The enhanced 

dissolution rate through cocrystallization can potentially increase the bioavailability of the parent 

drug.  Therefore, it would be beneficial to formulate a cocrystal that can display higher dissolution 

rate than the parent drug without having to deal with solid phase transformation during dissolution.  

It is possible to develop such formulations because the effective diffusivity of the cocrystal in the 

presence of surfactant is found to be larger than the drug and this allows the cocrystal to achieve 

dissolution advantage even it has lower solubility than the parent drug.  Knowledge of the 

dissolution behavior of cocrystals would help to develop feasible formulations.  To evaluate the 

dissolution conditions in which the cocrystals can maintain both dissolution advantage and 

thermodynamic stability for formulation development, the combination effect of pH and surfactant 

concentration on the dissolution of CBZD is compared to CBZ-SAC and CB-SLC in Figure 3.12.  

Because of the nonionizable property, the dissolution rate of CBZD is only affected by the 

surfactant concentration, whereas the cocrystals are affected by both surfactant and pH because of 

the acidity of the coformers.  As shown in Figure 3.12, CBZ-SAC is able to achieve dissolution 

advantages from bulk pH 3 to 8 at SLS concentrations range from 22 to 400 mM.  However, this 

does not mean that the cocrystal is thermodynamically stable under all these conditions.  The CSC 

for CBZ-SAC at bulk pH 3 is 161 mM SLS and from bulk pH 4 to 8 is 306 mM.  This suggests 

that CBZ-SAC would be able to maintain dissolution advantage without solid phase transformation 

at bulk pH 3 with SLS concentration of 161 mM and above; and from bulk pH 4 to 8 with SLS 

concentration of 306 mM and above.  These surfactant concentrations maybe too high for oral 

formulation.  However, the CSC for CBZ-SLC at bulk pH up to 8 is only 21 mM SLS.  This means 
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that the cocrystal is thermodynamically stable and less soluble than the parent drug under all the 

dissolution conditions shown in Figure 3.12.  Although it is less soluble than CBZD, CBZ-SLC is 

able to maintain dissolution advantages at SLS concentrations range from 22 to 70 mM and bulk 

pH ranges from 4 to 8 because of the higher effective diffusivities.   

(a)                                                                          (b) 

 

Figure 3.12.  (a) Theoretical flux comparison of CBZD (yellow) to CBZ-SAC (blue), and (b) 

CBZD (yellow) to CBZ-SLC (purple) as a function of pH and SLS concentration.  Flux predictions 

of CBZD were determined using equation 3.3 and cocrystals were from reference16. 

 

Conclusions 

This work has compared the effect of pH and surfactant on the dissolution of CBZD to its 

two cocrystals, CBZ-SAC and CBZ-SLC.  Solubility and dissolution pH dependence are imparted 

to CBZ through the cocrystallization with acidic coformers.  Because of the preferential 

solubilization of the drug over the coformers by surfactant, the solubility dependence on surfactant 

of the drug is different from the cocrystals.  There is a linear dependence for the solubility of the 

drug, whereas cocrystal solubility has a square root dependence.  Because of this different 

dependence, the enhancements in solubility and dissolution by surfactant for the drug are higher 
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than for both of the cocrystals.  Cocrystal dissolution advantage can be determined by comparing 

the cocrystal flux to the drug flux.  Based on the mass transport analyses, cocrystal dissolution 

advantage is proportional to both the solubility and diffusivity advantages.  In this study, the 

micellar diffusivity of CBZ determined from the dissolution of CBZD is found to be smaller than 

those of the cocrystals because the drug has a higher solubility dependence on surfactant.  Because 

of the higher diffusivities, cocrystals with lower solubility than the parent drug do not necessarily 

have slower dissolution rates.  The diffusivity advantages allow cocrystals to compensate for their 

lower solubility above the CSC and result in higher dissolution rates compared to the parent drug.  

Dissolution conditions where the cocrystal can obtain both thermodynamic stability and 

dissolution advantage are useful information for cocrystal formulation development and these 

conditions can be evaluated through the simple mass transport models provided in this work.       
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CHAPTER 4  

COMMON COFORMER EFFECT ON THE DISSOLUTION RATE OF COCRYSTAL 

Abstract 

The presence of excess coformer in solution is known to decrease the solubility of 

cocrystals because of the solubility product behavior.  However, its effect on dissolution rates has 

not been addressed.  The purpose of this work is to develop mass transport models to evaluate the 

common coformer effect on the dissolution rates of cocrystals.  These mass transport analyses not 

only provide useful insights for the oral absorption of cocrystals with drug membrane permeation 

higher than the coformer, but also validate the surface saturation model that was developed 

previously to describe the dissolution process of cocrystals.  Rotating disk dissolution experiments 

of the model cocrystal, carbamazepine salicylic acid (CBZ-SLC) show that the dissolution rates 

decrease with increasing coformer concentration.  The common coformer effect decreases the 

ability of CBZ-SLC in lowering the pH at the dissolving surface due to the lower degree of 

coformer ionization and results in higher interfacial pH.  The higher interfacial pH subsequently 

reduces the common coformer effect on the dissolution rate of CBZ-SLC because of the acidity of 

salicylic acid. 
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Introduction 

Cocrystals have gained tremendous interest in pharmaceutical industry in recent years due 

to their potential of increasing bioavailability of poorly water soluble drugs1-5.  The solubility and 

dissolution behavior of cocrystals have been widely studied1, 3, 4, 6-8 in order to gain a better 

understanding on the oral absorption of these cocrystalline materials.  The solubility mechanism 

of cocrystals have been well studied by Rodriguez, et al.9-12 and the dissolution mechanism has 

been proposed by a recent study13.  Detailed mass transport models have been developed to predict 

the pH at the dissolving surface (i.e. interfacial pH) and the flux of cocrystals13.  These mass 

transport analyses emphasize the importance of physicochemical properties of the cocrystal 

components on the rate of dissolution. 

Cocrystals usually contain components with different physicochemical properties, such as 

hydrophobicity, micellar solubilization, diffusion coefficient and permeability.  The more 

lipophilic drug usually has a faster membrane permeation compared to the less lipophilic coformer.  

The faster permeation of the drug through the intestinal membrane can result in excess coformer 

concentration in the intestinal lumen.  This excess coformer concentration can impact the 

dissolution rate of the cocrystal if it is not fully dissolved.   

Cocrystals behave similarly to pharmaceutical salts in a way that the solubility is also 

described by the solubility product of the components.  The presence of excess counter ion can 

suppress the degree of salt dissociation because of the solubility product behavior and this 

phenomenon is known as the common ion effect14-17.  The solubility of hydrochloride salts have 

been shown to decrease in dilute hydrochloric solutions and similar behavior was also observed 

for other pharmaceutical salts in solutions containing their counter ions14-17.  Because of the 

common ion effect, the dissolution rates of pharmaceutical salts are also suppressed by the 
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presence of counter ions14-17.  With similar solubility product behavior, the solubility of cocrystals 

also decrease in solutions containing excess coformer9, 18.  The solubility of carbamazepine-

nicotinamide cocrystal has been shown to decrease with increasing nicotinamide concentration in 

solution18.  While the effect of excess coformer on the solubility of cocrystals has been addressed, 

its effect on the dissolution rates has not been explored.  Using pharmaceutical salts as an analogy, 

the effect of excess coformer on the solubility and dissolution of cocrystals is defined as the 

common coformer effect.  Herein, mechanism based models were developed to evaluate the 

common coformer effect on the dissolution behavior of cocrystals. 

  Surface saturation model has been proposed previously to describe the dissolution 

mechanism of cocrystals13.  It is difficult to validate this model experimentally because it would 

require the measurements of surface concentrations of the cocrystal components.  Another purpose 

of this work is to validate the surface saturation model by varying the coformer concentration at 

the dissolving surface by the addition of coformer in the bulk solution.  To evaluate the common 

coformer effect and validate the surface saturation model, rotating disk dissolution experiments of 

carbamazepine salicylic acid (CBZ-SLC) cocrystal were performed in dissolution media 

containing different salicylic acid concentrations.   

Materials and methods 

Materials   

Anhydrous carbamazepine (CBZ), salicylic acid (SLC) and sodium lauryl sulfate (SLS) 

were purchased from Sigma Chemical Company (St. Louis, MO) and used as received.  

Acetonitrile, methanol and hydrochloric acid were purchased from Fisher Scientific (Pittsburgh, 

PA).  Sodium hydroxide pellets were purchased from J.T. Baker (Philipsburg, NJ).  Water used in 
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this study was filtered through a double deionized purification system (Milli Q Plus Water System) 

from Millipore Co. (Bedford, MA).  

Cocrystal synthesis   

Cocrystals were prepared by reaction crystallization method19 at room temperature.  CBZ-

SLC was prepared by adding 1:1 molar ratio of CBZ and SLC in acetonitrile solution containing 

0.1 M SLC.  Solid phases were characterized by X-ray powder diffraction (XRPD) and differential 

scanning calorimetry (DSC). 

Dissolution experiments   

Constant surface area dissolution rates of CBZ-SLC were determined using a rotating disk 

apparatus.  Cocrystal powder (~150 mg) was compressed in a stainless steel rotating disk die with 

a tablet radius of 0.50 cm at approximately 85 MPa for 2 minutes using a hydraulic press.  The die 

containing the compact was mounted onto a stainless steel shaft attached to an overhead, variable 

speed motor.  The disk was exposed to 150 mL of dissolution medium in a water jacketed beaker 

with temperature controlled at 25°C and a rotation speed of 200 rpm was used.  Dissolution 

medium was prepared on the day of the experiment by dissolving SLC in 150 mM SLS solution 

and solution pH was adjusted using HCl or NaOH.  Sink conditions were maintained throughout 

the experiments by ensuring the concentrations at the last time point of the dissolution were less 

than 10% of the cocrystal solubility.  Bulk solution pH was maintained at constant throughout the 

dissolution using HCl or NaOH.  Solution concentrations were measured using HPLC and solid 

phases after dissolution were analyzed by XRPD.   
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HPLC   

Waters HPLC equipped with a photodiode array detector was used for all analysis.  The 

mobile phase was composed of 55% methanol and 45% water with 0.1% trifluoroacetic acid and 

the flow rate was 1 mL/min was used.  Separation was achieved using Waters, Atlantis, T3 column 

(5.0 µm, 100 Å) with dimensions of 4.6 x 250 mm.  The sample injection volume was 20 µL.  The 

wavelengths for the analytes were as follows: 284 nm for CBZ and 303 nm for SLC.    

XRPD 

XRPD diffractograms of solid phases were collected with a benchtop Rigaku Miniflex X-

ray diffractometer using Cu-Kα radiation (λ = 1.54 Å), a tube voltage of 30 kV, and a tube current 

of 15 mA.  Data was collected from 5 to 40° at a continuous scan rate of 2.5°/min. 

DSC 

Crystalline samples were analyzed by DSC using a TA instrument 2910 MDSC system 

equipped with a refrigerated cooling unit.  All experiments were performed by heating the samples 

at a rate of 10 °C/min under a dry nitrogen atmosphere.  Temperature and enthalpy of the 

instrument were calibrated using high purity indium standard.  

Theoretical  

Surface saturation model was previously developed to describe the dissolution mechanism 

of cocrystals13.  Because of the different diffusivities between the drug and coformer, the 

concentrations of the cocrystal components are different at the dissolving surface in order to 

maintain stoichiometric dissolution13.  Due to faster diffusion, the coformer concentration is lower 

than that of the drug at the dissolving surface, whereas the drug is able to maintain the same 
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concentration as the solubility of the cocrystal13.  The depletion in concentration of the faster 

diffusing component at the dissolving surface is not easy to demonstrate experimentally because 

of the difficulty in measuring the surface concentrations.  Alternative approaches to validate this 

model are to vary the coformer concentrations at the dissolving surface by the addition of coformer 

in the bulk solution.  Approach 1 is to achieve a coformer concentration that is the same as the 

drug at the dissolving surface by adding equivalent amount of coformer that would be depleted 

due to rapid diffusion in the dissolution medium.  Approach 2 is to achieve a coformer 

concentration that is higher than the drug at the dissolving surface by adding larger amount of 

coformer than the depleted amount in the dissolution medium.  By adding coformer in the 

dissolution medium, the depleted coformer concentration at the dissolving surface due to faster 

diffusion can be replenished to the same or even higher concentration than the drug.  Knowing the 

solubility product behavior of cocrystals, the presence of excess coformer in the dissolution 

medium can influence the solubility and consequently, the dissolution of cocrystals.  Therefore, 

besides validation, these approaches can also be used to demonstrate the common coformer effect 

on the dissolution of cocrystals. 

Approach 1: [𝑅]𝑎𝑞,0 = [𝐴]𝑎𝑞,0 

A schematic representation of approach 1 for a 1:1 cocrystal with nonionizable 

components, RA is illustrated in Figure 4.1.  At time = 0, the cocrystal would first dissociate into 

its components to give equal molar concentrations of R and A at the dissolving surface according 

to its solubility.  However, with the excess coformer added in the bulk solution, the coformer 

concentration would be higher than the drug concentration at the dissolving surface before any 

diffusion happens.  As both drug and coformer diffuse away from the dissolving surface, the 

coformer concentration would be depleted due to faster diffusion.  However, the coformer 
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concentration added in the bulk solution is the same as the depleted concentration, so the coformer 

would be able to maintain the same surface concentration as the drug at steady state.   

 

Figure 4.1.  Schematic representation of approach 1 for the dissolution of RA with R and A as the 

nonionizable components.  The concentration of coformer added in the bulk solution is the same 

as the depleted coformer concentration due to faster diffusion.  [R]aq,0 and [A]aq,0 represent the 

concentrations of R and A at the surface; [R]aq,h and [A]aq,h represent the concentrations of R and 

A in the bulk solution; SRA is the solubility of the cocrystal and Cexc is the concentration of 

coformer added in the dissolution medium. 

 

Approach 2: [𝑅]𝑎𝑞,0 < [𝐴]𝑎𝑞,0 

The schematic representation of approach 2 is shown in Figure 4.2.  Similar to approach 1, 

the coformer concentration at the dissolving surface is higher than that of the drug before any 

diffusion happens.  However, for this approach, the coformer would be able to maintain a surface 

concentration that is higher than the drug concentration at steady state because the coformer 

concentration added in the dissolution medium is higher than the depleted concentration due to 

faster diffusion.   
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Figure 4.2.  Schematic representation of approach 2 for the dissolution of RA with R and A as the 

nonionizable components.  The concentration of coformer added in the bulk solution is higher than 

the depleted coformer concentration.  [R]aq,0 and [A]aq,0 represent the concentrations of R and A at 

the surface; [R]aq,h and [A]aq,h represent the concentrations of R and A in the bulk; SRA is the 

solubility of the cocrystal and Cexc is the concentration of coformer added in the dissolution 

medium. 

 

Chemical equilibria within diffusion layer 

Carbamazepine salicylic acid (CBZ-SLC) is chosen as the model cocrystal because it has 

a low solubility product, so it does not require much coformer to achieve the two approaches.  

CBZ-SLC has higher solubility than the parent drug, so solid phase transformation can happen 

during dissolution.  Previous studies have shown that the cocrystal can be stabilized during 

dissolution in 150 mM SLS at bulk pH up to 7.513.  To avoid the complication of conversion, all 

dissolution studies were performed in 150 mM SLS.  Chemical equilibria involved for the 

dissolution of CBZ-SLC in the presence of SLS can be written as follows with R representing the 

non-ionizable drug, CBZ and HA as the acidy coformer, SLC: 

(𝑅𝐻𝐴)𝑠𝑜𝑙𝑖𝑑 ⇋ 𝑅𝑎𝑞 + 𝐻𝐴𝑎𝑞             (4.1) 

𝐾𝑠𝑝 = [𝑅]𝑎𝑞[𝐻𝐴]𝑎𝑞              (4.2)  
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𝐻2𝑂 + 𝐻𝐴𝑎𝑞 ⇋ 𝐻3𝑂+ + 𝐴𝑎𝑞
−              (4.3)  

𝐾𝑎 =
[𝐻3𝑂+][𝐴−]𝑎𝑞

[𝐻𝐴]𝑎𝑞
              (4.4)  

𝐻3𝑂+ + 𝑂𝐻− ⇋ 2𝐻2𝑂             (4.5)  

𝐾𝑤 = [𝐻3𝑂+][𝑂𝐻−]              (4.6)  

𝐻𝐴𝑎𝑞 + 𝑂𝐻− ⇋ 𝐻2𝑂 + 𝐴𝑎𝑞
−              (4.7) 

𝐾1 =
[𝐴−]𝑎𝑞

[𝐻𝐴]𝑎𝑞[𝑂𝐻−]
              (4.8) 

𝑅𝑎𝑞 + 𝑚 ⇋ 𝑅𝑚              (4.9) 

𝐾𝑠
𝑅 =

[𝑅]𝑚

[𝑅]𝑎𝑞[𝑚]
             (4.10) 

𝐻𝐴𝑎𝑞 + 𝑚 ⇋ 𝐻𝐴𝑚            (4.11) 

𝐾𝑠
𝐻𝐴 =

[𝐻𝐴]𝑚

[𝐻𝐴]𝑎𝑞[𝑚]
            (4.12) 

where Ksp is the solubility product of the cocrystal, Ka is the ionization constant of HA, Kw is the 

dissociation constant of water, K1 is the ratio of Ka / Kw, 𝐾𝑠
𝑅 is the solubilization constant of R and 

𝐾𝑠
𝐻𝐴 is the solubilization constant of HA, m is the micellar concentration in solution and it is equal 

to the total surfactant concentration minus the critical micellar concentration (CMC).  Subscript 

aq denotes the aqueous phase and m denotes the micellar phase.   

Common coformer effect on solubility 

As shown in equation 4.2, the solubility product, Ksp, is a chemical equilibrium constant 

describing the solubility of the cocrystal.  In the presence of excess coformer, the solubility of 
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cocrystal would decrease in order to maintain a constant Ksp value.   This behavior is very similar 

to the common ion effect of pharmaceutical salts and it is defined as the common coformer effect.  

In the presence of excess coformer, the solubility of CBZ-SLC in surfactant solution can be 

described as follow18: 

𝑆𝑐𝑐 =
− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐

2+4𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2
        (4.13) 

where 𝐶𝑒𝑥𝑐 is the concentration of excess coformer in the dissolution medium.   

According to the surface saturation model, the total concentrations of the cocrystal 

components at the dissolving surface can be written as follows13: 

[𝑅]𝑇 = [𝑅]𝑎𝑞 + [𝑅]𝑚 = 𝑆𝑐𝑐           (4.14) 

[𝐻𝐴]𝑇 = [𝐻𝐴]𝑎𝑞 + [𝐻𝐴]𝑚 + [𝐴−]𝑎𝑞 = (
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3𝑆𝑐𝑐       (4.15) 

where 𝐷𝑅𝑒𝑓𝑓
 and 𝐷𝐻𝐴𝑒𝑓𝑓

 are the effective diffusion coefficients of R and HA, Scc is the solubility 

of cocrystal and subscript T denotes the total concentration.  For approach 1, excess coformer 

would be added to the dissolution medium so that the coformer concentration at the dissolving 

surface would be the same as the drug concertation and this can be described by the following: 

[𝑅]𝑇 = [𝐻𝐴]𝑇 + 𝐶𝑒𝑥𝑐            (4.16) 

Substituting equations 4.13, 4.14 and 4.15 into 4.16, the concentration of coformer required to 

achieve approach 1 can be described as follow: 
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𝐶𝑒𝑥𝑐 =
√

4𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

[
2

1−(
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓
)

2
3

+1]2−1
          (4.17) 

By knowing the equilibrium constants and the effective diffusion coefficients, the concentration 

of coformer required in the bulk solution to achieve equivalent concentrations of cocrystal 

components at the surface can be calculated as a function of pH and surfactant concentration.   

Detailed mass transport analyses for the two approaches are shown in Appendix 4A.  These 

analyses allow the validation of the surface saturation model and the evaluation of the common 

coformer effect on interfacial pH and flux of the cocrystals.  Both approaches are based on the 

following assumptions: all chemical reactions and solute solubilization within the diffusion layer 

occur instantaneously, free solute and micelle are in equilibrium throughout the diffusion layer, 

the ionized form of the coformer is not solubilized by surfactant, aqueous diffusivity of the ionized 

and non-ionized forms are the same.  For simplification of the interfacial pH prediction, the 

effective diffusivity of the coformer is assumed to be the same as the aqueous diffusivity because 

it is not significantly solubilized by the surfactant.  In this study, the effect of surfactant 

concentration on the viscosity of dissolution medium was not accounted for the mass transport 

analyses.  Although the viscosity of the dissolution medium may approximately double at high 

surfactant concentration (eg: 300 mM)20, its impact on the hydrodynamic boundary layer is small.  

The viscosity of dissolution medium is not expected to significantly affect the diffusion of free 

species as they are assumed to be diffusing through the aqueous phase where the surfactant 

concentration is equal to the critical micellar concentration (CMC) and the viscosity is not 

substantially different from water21.  The effect of viscosity on the diffusion coefficient of the 

micelles incorporates the effect of viscosity changes.      
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Results and discussion 

 Physicochemical properties of CBZ-SLC and its components such as solubility product, 

ionization constant, micellar solubilization constant and diffusion coefficient are required to 

perform the mass transport analyses for the dissolution of cocrystal in the presence of excess 

coformer in the dissolution medium.  These properties can be obtained from the literature and they 

are summarized in Table 4.1.  All dissolution experiments in this study were performed in 150 mM 

SLS to prevent solid phase transformation of the cocrystal back to the stable drug form.  Therefore, 

the solubilization constants of CBZ and SLC and effective diffusion coefficient of CBZ in Table 

4.1 are obtained from 150 mM SLS.  The effective diffusivity of SLC is not listed in Table 4.1 

because it has a pH dependence due to the ionization properties of SLC.  By knowing the micellar 

diffusivity (Dm), the effective diffusivity of SLC at a given pH can be estimated using the following 

equation: 

𝐷𝐻𝐴𝑒𝑓𝑓
=

𝐷𝑎𝑞(1+
𝐾𝑎
𝐻+)+𝐾𝑠

𝐻𝐴𝐷𝑚[𝑚]

1+
𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚]
          (4.18) 

Table 4.1.  Physicochemical properties of CBZ-SLC and its components. 

Cocrystal 
Ksp 

(mM2)a 

pKa of 

SLCa 

Ks in 150 mM SLS 

(mM-1)a 

Diffusion coefficient 

(x 10-6 cm2/sec)a 

CBZ SLC 𝑫𝑹𝒂𝒒
 𝑫𝑹𝒆𝒇𝒇

 𝑫𝑯𝑨𝒂𝒒
 

CBZ-SLC 0.40 3.0 0.43 0.060 5.7 1.5 7.7 

a) From Reference 13. 

Evaluation of approach 1 

The concentrations of coformer required to establish approach 1 were calculated using 

equation 4.17 as a function of bulk pH, and these are summarized in Table 4.2.  As pH increases, 

the solubility of CBZ-SLC increases due to the acidity of SLC, consequently, it requires higher 
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SLC concentration in the dissolution medium to compensate for the depletion of SLC at the 

dissolving surface due to faster diffusion.  The concentrations of SLC are the same at the self-

buffering region of CBZ-SLC because there is only minimal change in interfacial pH at bulk pH 

from 5.0 to 7.5. 

Table 4.2.  Concentrations of SLC required to establish approach 1 as a function of bulk pH. 

pH SLC 

(mM)b Bulk Interfaciala 

1.0 1.0 2.87 

2.0 2.0 3.05 

3.0 3.0 4.45 

5.0 3.8 8.50 

6.0 3.8 8.56 

7.5 3.8 8.57 

a) Calculated using equation 4A.27 from Appendix 4A; 

b) Calculated using equation 4.17. 

 

The solubility of cocrystal decreases in the presence of coformer in excess to the 

stoichiometric concentration because of the solubility product behavior.  The decrease in cocrystal 

solubility lowers the degree of coformer ionization at the dissolving surface and thus influences 

the pH at the interface.  The common coformer effect on interfacial pH and solubility of CBZ-SLC 

as a function of bulk pH for approach 1 is summarized in Table 4.3.  Interfacial pH is not affected 

by the common coformer effect at bulk pH ≤ pKa of SLC (3.0) because the pH microenvironment 

is dominated by the bulk pH.  As bulk pH increases above the pKa value, the ability in lowering 

interfacial pH is smaller in the presence of excess coformer.  The common coformer effect 

decreases the solubility of CBZ-SLC and lowers the degree of SLC ionization at the interface, and 

thus results in slightly higher interfacial pH.  As shown in Table 4.3, solubility of CBZ-SLC 

decreases in the presence of SLC at all pH.  As the SLC concentrations required to achieve 

approach 1 are very small at pH 1 and 2, there is no significant decrease in solubility of CBZ-SLC 
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under these conditions.  The common coformer effect on the dissolution rates of CBZ-SLC under 

these conditions may not be very significant.  Therefore, dissolution studies of CBZ-SLC at bulk 

pH 3, 5 and 7.5 were performed to evaluate the mass transport model for approach 1.   

Table 4.3.  Common coformer effect on interfacial pH and solubility of CBZ-SLC as a function of 

bulk pH.   

pH SLC 

(mM)b Scc (mM)c 

Bulk Interfaciala 

1.0 
1.0 0 15.6 

1.0 2.87 14.2 

2.0 
2.0 0 15.7 

2.0 3.05 14.2 

3.0 
3.0 0 16.4 

3.0 4.45 14.3 

5.0 
3.7 0 19.3 

3.8 8.50 16.3 

6.0 
3.7 0 19.4 

3.8 8.56 16.4 

7.5 
3.7 0 19.4 

3.8 8.57 16.4 

a) Absence of SLC is from reference 13 and presence of SLC is from Table 4.1; 

b) From Table 4.2;  

c) Calculated using equation 4.13. 

 

Dissolution studies of CBZ-SLC at bulk pH 3, 5 and 7.5 were performed in 150 mM SLS 

containing SLC concentrations shown in Table 4.2 to maintain equal component concentrations at 

the dissolving surface.  The rotating disk dissolution concentration profiles are shown in Figure 

4.3.  The linear dissolution behavior indicated that no solid phase transformation happened during 

dissolution under these conditions.   
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Figure 4.3.  Dissolution concentration profiles of CBZ-SLC in 150 mM SLS at pH 3.06, 4.5 mM 

SLC ( ); pH 5.03, 8.2 mM SLC ( ) and pH 7.50, 8.3 mM SLC ( ).  

 

To evaluate the predictive power of the mass transport model for approach 1, the 

experimental flux of CBZ-SLC were calculated from the dissolution concentration profiles shown 

in Figure 4.3 and compared to the theoretical predictions.  Table 4.4 summarizes the interfacial 

pH, concentrations of the cocrystal components at the surface, the theoretical and experimental 

flux of CBZ-SLC in the absence and presence of excess SLC.  With no excess SLC in the 

dissolution medium, the concentration of SLC at the dissolving surface is smaller than that of CBZ 

because it is depleted due to faster diffusion.  By adding the depleted amount of SLC in the 

dissolution medium, the SLC concentration at the dissolving surface is able to maintain the same 

concentration as that of the drug.  The presence of excess SLC decreases the solubility of CBZ-

SLC due to the common coformer effect and thus lowers the concentration of CBZ at the dissolving 

surface compared to that without excess coformer.  The common coformer effect is also reflected 

in the dissolution of CBZ-SLC by the lower flux in the presence of excess SLC compared to those 

in the absence of excess SLC.  As shown in Table 4.4, the theoretical flux predictions have 

excellent agreement with the experimental values.  The developed mass transport model with 

consideration of interfacial pH for approach 1 is able to accurately predict the flux of CBZ-SLC.   
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Table 4.4.  Interfacial pH, concentrations of CBZ and SLC at the dissolving surface, predicted and 

experimental flux of CBZ-SLC in the absence and presence of excess SLC. 

pH 
SLC (mM) 

Conc. at the 

surface (mM) 

Flux  

(x 10-4 mmole/cm2 min) 
% 

difference 
Bulk  Interfacial CBZa SLCb Predicted Experimental 

3.11 ± 0.02 3.0 0 16.4 5.5 8.0c 7.9 ± 0.2c 2.1 

3.06 ± 0.01 3.0 4.47 ± 0.01 14.4 14.4 7.0d 7.5 ± 0.1 7.0 

4.96  ± 0.03 3.7 0 19.3 6.5 9.4c 9.8 ± 0.4c 4.4 

5.03 ± 0.03 3.8 8.2 ± 0.5 16.3 16.3 7.9d 8.5 ± 0.1 7.2 

7.5  ± 0.1 3.7 0 19.4 6.5 9.4c 9.69 ± 0.01c 2.9 

7.5 ± 0.1 3.8 8.3 ± 0.5 16.4 16.4 8.0d 8.1 ± 0.2 1.1 

a) Calculated using equation 4.14; 

b) Calculated using equation 4.15; 

c) From reference 13; 

d) Calculated using equation 4A.33 from Appendix 4A. 

 

Evaluation of approach 2 

Approach 2 is to establish a higher coformer concentration than the drug concentration at 

the dissolving surface by adding coformer in the dissolution medium that is higher than the 

required concentration for approach 1.  The interfacial pH and surface concentrations of the 

cocrystal components at bulk pH 3 as a function of SLC are summarized in Table 4.5.  Because 

the bulk pH is at the pKa value of SLC, there is not much deviation in interfacial pH from the bulk 

pH as a function of SLC.  With no SLC in the dissolution medium, surface concentration of SLC 

is less than CBZ due to its rapid diffusion.  In 4.47 mM SLC solution, the concentrations of the 

cocrystal components at the dissolving surface are the same because this SLC concentration is the 

required concentration for approach 1 (Table 4.2).  By further increasing the SLC concentration in 

the dissolution medium, the SLC concentration at the dissolving surface becomes higher than that 

of CBZ.  By varying the SLC concentration in the dissolution medium, the surface concentration 

of SLC can be the same as or higher than the drug concentration.  
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Table 4.5.  Interfacial pH and surface concentrations of CBZ and SLC at bulk pH 3 in 150 mM 

SLS as a function of SLC. 

pH 
SLC (mM) 

Surface concentration 

(mM) 

Bulk  Interfaciala CBZb SLCc 

3.11 ± 0.02 3.0 0 16.4 5.5 

3.06 ± 0.01 3.0 4.47 ± 0.01 14.4 14.4 

3.04 ± 0.02 3.0 6.64 ± 0.01 13.4 15.8 

3.03 ± 0.01 3.0 25.01 ± 0.01 8.1 30.5 

2.98 ± 0.02 3.0 45.02 ± 0.01 5.3 48.6 

a) Calculated using equation 4A.28 from Appendix 4A; 

b) Calculated using equation 4.14; 

c) Calculated using equation 4.15.  

 

 The common coformer effect on the interfacial pH of CBZ-SLC at bulk pH 5 is shown in 

Figure 4.4.  This bulk pH value is above the pKa of SLC, so the cocrystal has the ability to lower 

the interfacial pH due to the ionization of the coformer.  However, this ability decreases as the 

concentration of SLC increases in the bulk solution.  As shown in Figure 4.4, interfacial pH 

increases with increasing SLC concentration in the dissolution medium.  The presence of SLC in 

the bulk solution decreases the solubility of the cocrystal and thus lowers the ionization of the 

coformer at the interface.  The higher interfacial pH can have implications in reducing the common 

coformer effect on dissolution rates of cocrystals.    

 

Figure 4.4.  Interfacial pH of CBZ-SLC in 150 mM SLS at bulk pH 5 as a function of SLC.  

Interfacial pH was predicted using equation 4A.28 from Appendix 4A with physicochemical 

parameters shown in Table 4.1. 
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Approach 2 was evaluated by performing dissolution experiments for CBZ-SLC at bulk 

pH 3 and 5 as a function of excess SLC in 150 mM SLS dissolution media.  The dissolution 

concentration profiles of CBZ-SLC at bulk pH 3 and 5 as a function of SLC are shown in Figure 

4.5.  Solid phase transformation did not occur during dissolution as indicated by the linear 

dissolution behavior.  Dissolution rates of CBZ-SLC decrease with increasing SLC concentration 

due to the common coformer effect.  The impact of common coformer effect on the dissolution of 

CBZ-SLC at bulk pH 3 is greater than at bulk pH 5 as indicated by the larger decrease in dissolution 

rates at bulk pH 3 as a function of SLC concentration. 

(a)                                                                             (b) 

  

Figure 4.5.  Dissolution concentration profiles of CBZ-SLC in 150 mM SLS at bulk pH 3.0 (a) 

and bulk pH 5 (b) as a function of SLC concentration.   

 

Flux of CBZ-SLC at bulk pH 3 and 5 as a function of SLC was calculated from the 

dissolution rates and compared to the theoretical predictions as shown in Figure 4.6.  The flux of 

CBZ-SLC at both pH decreases as SLC concentration increases.  The common coformer effect on 

the flux of CBZ-SLC is greater at bulk pH 3 than pH 5 as indicated by the steeper curve shown in 

Figure 4.6 for pH 3.  The common coformer effect is dampened at bulk pH 5 because of the 
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increase in interfacial pH as a function of SLC concentration shown in Figure 4.4.  The increased 

interfacial pH can help to reduce the common coformer effect on the solubility and dissolution of 

CBZ-SLC because of the acidity of SLC.  The mass transport model is able to capture the common 

coformer effect on the dissolution of CBZ-SLC as indicated by the excellent agreement between 

the theoretical and experimental flux as a function of SLC concentration.  However, there are some 

deviations in the flux predictions at bulk pH 5 from the experimental values.  The largest deviation 

is at 45 mM SLC, but the flux prediction is still within a factor of two compared to the experimental 

value.  These deviations may be due to the pH sensitivity of CBZ-SLC flux because the interfacial 

pH at bulk pH 5 is predicted to be above the pKa value of SLC.  A 0.5 unit pH change in interfacial 

pH at 45 mM SLC can lead to a roughly 70% change in flux prediction of CBZ-SLC.  Obviously, 

accurate interfacial pH prediction is essential for predicting the flux of cocrystal with ionizable 

components.  

(a)                                                                          (b) 

 

Figure 4.6.  The experimental (orange circle) and theoretical (blue line) flux comparison of CBZ-

SLC in 150 mM SLS at bulk pH 3 (a) and 5 (b) as a function of SLC.  Flux predictions were 

calculated using equation 4A.33 from Appendix 4A with physicochemical properties shown in 

Table 4.1. 
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Conclusions 

This chapter has demonstrated the influence of common coformer effect on the interfacial 

pH and flux of cocrystals.  The establishment of the two approaches in this study adds another 

level of confidence to the surface saturation model developed previously for the dissolution of 

cocrystals.  The mass transport analyses based on the surface saturation model for the two 

approaches are able to evaluate the impact of coformer in the bulk solution on interfacial pH and 

flux of cocrystals.  The presence of excess coformer can decrease the cocrystal solubility and lower 

the degree of coformer ionization at the dissolving surface, and consequently, the interfacial pH 

would be higher compared to the absence of excess coformer.  It is essential to understand the 

influence of common coformer effect on interfacial pH because it is required for accurate flux 

predictions.  The flux of cocrystal is predicted to decrease with increasing coformer concentration 

because of the solubility product behavior of cocrystal.  In the case of oral absorption, the lower 

membrane permeation of the coformer can potentially result in excess coformer in the intestinal 

lumen that can influence the dissolution of the continually dissolving cocrystal due to the common 

coformer effect.  These mass transport models can provide useful insights on how the differential 

permeability between the cocrystal components can influence the oral absorption of the drug from 

the cocrystalline materials.   
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APPENDIX 4A  

The flux of all the species across the diffusion layer include both the diffusion and chemical 

reactions happening during dissolution.  At steady state, the diffusion and simultaneous chemical 

reactions of the individual species within the diffusion layer can be written using Fick’s law as 

follows: 

𝜕[𝑅]𝑎𝑞

𝜕𝑡
= 𝐷𝑅𝑎𝑞

𝜕2 [𝑅]𝑎𝑞

𝜕𝑥2 + 𝜙1 = 0         (4A.1) 

𝜕[𝑅]𝑚

𝜕𝑡
= 𝐷𝑅𝑚

𝜕2 [𝑅]𝑚

𝜕𝑥2 + 𝜙2 = 0         (4A.2) 

𝜕[𝐻𝐴]𝑎𝑞

𝜕𝑡
= 𝐷𝐻𝐴𝑎𝑞

𝜕2 [𝐻𝐴]𝑎𝑞

𝜕𝑥2 + 𝜙3 = 0         (4A.3) 

𝜕[𝐴−]𝑎𝑞

𝜕𝑡
= 𝐷𝐴𝑎𝑞

−
𝜕2 [𝐴−]𝑎𝑞

𝜕𝑥2 + 𝜙4 = 0         (4A.4) 

𝜕[𝐻𝐴]𝑚

𝜕𝑡
= 𝐷𝐻𝐴𝑚

𝜕2 [𝐻𝐴]𝑚

𝜕𝑥2 + 𝜙5 = 0         (4A.5) 

𝜕[𝑂𝐻−]

𝜕𝑡
= 𝐷𝑂𝐻−

𝜕2 [𝑂𝐻−]

𝜕𝑥2 + 𝜙6 = 0         (4A.6) 

𝜕[𝐻+]

𝜕𝑡
= 𝐷𝐻+

𝜕2 [𝐻+]

𝜕𝑥2 + 𝜙7 = 0          (4A.7) 

where ϕ1-7 are the reaction rate functions.  At equilibrium, the reaction rate of the reactant should 

be the opposite of the product.  Based on the chemical equilibria, the following can be written: 

𝜙1 = −𝜙2            (4A.8) 

𝜙3 = −𝜙4 − 𝜙5               (4A.9) 
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The reaction rate of A- can be reflected by the reaction rate of H+ and OH-, therefore,  

𝜙4 = 𝜙7 − 𝜙6                        (4A.10) 

Based on equation 4A.10, equation 4A.9 can be written as: 

𝜙3 = 𝜙6 − 𝜙5 − 𝜙7                        (4A.11) 

Based on the equations 4A.8, 4A.9 and 4A.11, the following mass balance equations can be 

written:  

𝐷𝑅𝑎𝑞

𝑑2 [𝑅]𝑎𝑞

𝑑𝑥2 = −𝐷𝑅𝑚

𝑑2 [𝑅]𝑚

𝑑𝑥2                    (4A.12) 

𝐷𝐻𝐴𝑎𝑞

𝑑2 [𝐻𝐴]𝑎𝑞

𝑑𝑥2 = −𝐷𝐴𝑎𝑞
−

𝑑2[𝐴−]𝑎𝑞

𝑑𝑥2 − 𝐷𝐻𝐴𝑚

𝑑2 [𝐻𝐴]𝑚

𝑑𝑥2                 (4A.13) 

𝐷𝐻𝐴𝑎𝑞

𝑑2 [𝐻𝐴]𝑎𝑞

𝑑𝑥2 = 𝐷𝑂𝐻−
𝑑2 [𝑂𝐻−]

𝑑𝑥2 − 𝐷𝐻+
𝑑2[𝐻+]

𝑑𝑥2 − 𝐷𝐻𝐴𝑚

𝑑2 [𝐻𝐴]𝑚

𝑑𝑥2               (4A.14) 

Integrating equations 4A.12 to 4A.14 once gives: 

𝐷𝑅𝑎𝑞

𝑑[𝑅]𝑎𝑞

𝑑𝑥
= −𝐷𝑅𝑚

𝑑 [𝑅]𝑚

𝑑𝑥
+ 𝐶1                             (4A.15) 

𝐷𝐻𝐴𝑎𝑞

𝑑 [𝐻𝐴]𝑎𝑞

𝑑𝑥
= −𝐷𝐴𝑎𝑞

−
𝑑[𝐴−]𝑎𝑞

𝑑𝑥
− 𝐷𝐻𝐴𝑚

𝑑 [𝐻𝐴]𝑚

𝑑𝑥
+ 𝐶2                (4A.16) 

𝐷𝐻𝐴𝑎𝑞

𝑑 [𝐻𝐴]𝑎𝑞

𝑑𝑥
= 𝐷𝑂𝐻−

𝑑 [𝑂𝐻−]

𝑑𝑥
− 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
− 𝐷𝐻𝐴𝑚

𝑑 [𝐻𝐴]𝑚

𝑑𝑥
+ 𝐶3              (4A.17) 

Since 𝐴𝑎𝑞
−  is the product of the reaction between HA and OH-, so its flux can be reflected by both 

OH- and H+: 

−𝐷𝐴𝑎𝑞
−

𝑑[𝐴−]𝑎𝑞

𝑑𝑥
= 𝐷𝑂𝐻−

𝑑 [𝑂𝐻−]

𝑑𝑥
− 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
                 (4A.18) 

With this mass balance relationship, it can be seen that  
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𝐶2 = 𝐶3                     (4A.19) 

Integrating equations 4A.15 to 4A.17 gives:  

𝐷𝑅𝑎𝑞
[𝑅]𝑎𝑞 = −𝐷𝑅𝑚

[𝑅]𝑚 + 𝐶1𝑥 + 𝐶4                 (4A.20) 

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞 = −𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚−𝐷𝐴𝑎𝑞
− [𝐴−]𝑎𝑞 + 𝐶2𝑥 + 𝐶5                  (4A.21) 

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞 = 𝐷𝑂𝐻−[𝑂𝐻−] − 𝐷𝐻+[𝐻+]−𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚 + 𝐶3𝑥 + 𝐶6                       (4A.22) 

Interfacial pH and flux of the species can be evaluated by solving these mass balance equations 

with the following boundary conditions. 

Boundary conditions:   

At x = 0:         at x = h: 

[𝑅]𝑎𝑞,0 =
− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐

2+4𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2(1+𝐾𝑠
𝑅[𝑚])

   [𝑅]𝑎𝑞,ℎ = 0 (sink conditions) 

[𝐻𝐴]𝑎𝑞,0 = (
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐

2+4𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])
+ [𝐻𝐴]𝑎𝑞,ℎ [𝐻𝐴]𝑎𝑞,ℎ = [𝐻𝐴]𝑎𝑞,ℎ 

[𝑅]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝑅]𝑚,ℎ = 0 (sink conditions) 

[𝐻𝐴]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐻𝐴]𝑚 = [𝐻𝐴]𝑚,ℎ 

[𝐴−]𝑎𝑞,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐴−]𝑎𝑞 = [𝐴−]𝑎𝑞,ℎ 

[𝐻+] = [𝐻+]0        [𝐻+] = [𝐻+]ℎ 

[𝑂𝐻−] = [𝑂𝐻−]0       [𝑂𝐻−] = [𝑂𝐻−]ℎ 

Evaluation of pH at the interface   



 

136 
 

Applying the above boundary conditions to equations 4A.21 and 4A.22, at x = 0:  

𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐

2+4𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])
+ [𝐻𝐴]𝑎𝑞,ℎ =

−𝐷𝐻𝐴𝑚
[𝐻𝐴]𝑚,0−𝐷𝐴𝑎𝑞

− [𝐴−]𝑎𝑞,0 + 𝐶5                       (4A.23) 

𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐

2+4𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])
+ [𝐻𝐴]𝑎𝑞,ℎ = 𝐷𝑂𝐻−[𝑂𝐻−]0 −

𝐷𝐻+[𝐻+]0−𝐷𝐻𝐴𝑚
[𝐻𝐴]𝑚,0 + 𝐶6                  (4A.24) 

and at x = h: 

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞,ℎ = −𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚,ℎ−𝐷𝐴𝑎𝑞
− [𝐴−]𝑎𝑞,ℎ + 𝐶2ℎ + 𝐶5              (4A.25) 

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞,ℎ = 𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ−𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚,ℎ + 𝐶3ℎ + 𝐶6             (4A.26)  

For approach 1, a fifth order equation can be obtained by combining equations 4A.23 to 4A.26 and 

substitute equation 4.17 for Cexc to calculate the interfacial pH: 

𝐴[𝐻+]0
5

+ 𝐵[𝐻+]0
4

+ 𝐶[𝐻+]0
3

+ 𝐷[𝐻+]0
2

+ 𝐸[𝐻+]0 + 𝐹 = 0              (4A.27) 

where,  

𝐴 = 𝐷𝐻+
2 (1 + 𝐾𝑠

𝐻𝐴[𝑚]); 

𝐵 = −2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + 𝐷𝐻+

2 𝐾𝑎; 

𝐶 = −2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + (1 + 𝐾𝑠

𝐻𝐴[𝑚])(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2 −
2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)𝐾𝑎; 

𝐷 = 2𝐷𝑂𝐻−𝐾𝑤(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) − 2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤𝐾𝑎 +

(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2𝐾𝑎; 
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𝐸 = (𝐷𝑂𝐻−𝐾𝑤)2(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + 2𝐷𝑂𝐻−𝐾𝑤(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)𝐾𝑎 −

(𝐷𝐴𝑎𝑞
−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 Ka√𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑚])(√

1

𝑔
+ 1 −

1

√𝑔
))2; 

𝐹 = 𝐾𝑎(𝐷𝑂𝐻−𝐾𝑤)2; 

and 𝑔 = [
2

1−(
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)

2
3

+ 1]2 − 1. 

 

For approach 2, a sixth order equation is obtained by combining equations 4A.23 to 4A.26 for 

calculating the interfacial pH: 

𝐴[𝐻+]0
6

+ 𝐵[𝐻+]0
5

+ 𝐶[𝐻+]0
4

+ 𝐷[𝐻+]0
3

+ 𝐸[𝐻+]0
2

+ 𝐹[𝐻+]0 + 𝐺 = 0            (4A.28) 

where,  

𝐴 = 𝐷𝐻+
2 (1 + 𝐾𝑠

𝐻𝐴[𝑚])2;  

𝐵 = −2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚])2 + 2𝐷𝐻+

2 𝐾𝑎(1 + 𝐾𝑠
𝐻𝐴[𝑚]); 

𝐶 = −2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤(1 + 𝐾𝑠
𝐻𝐴[𝑚])2 + (1 + 𝐾𝑠

𝐻𝐴[𝑚])2(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2 −

4𝐷𝐻+𝐾𝑎(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) + (𝐷𝐻+𝐾𝑎)2 + 𝐷𝐻+𝐷𝐴𝑎𝑞

−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐾𝑎𝐶𝑒𝑥𝑐(1 +

𝐾𝑠
𝐻𝐴[𝑚]); 

𝐷 = 2𝐷𝑂𝐻−𝐾𝑤(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚])2 − 4𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤𝐾𝑎(1 +

𝐾𝑠
𝐻𝐴[𝑚]) + 2 ∗ (1 + 𝐾𝑠

𝐻𝐴[𝑚])(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2𝐾𝑎 − 2𝐷𝐻+(𝐷𝐻+[𝐻+]ℎ −

𝐷𝑂𝐻−[𝑂𝐻−]ℎ)𝐾𝑎
2 − 𝐷𝐴𝑎𝑞

−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐾𝑎𝐶𝑒𝑥𝑐(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠
𝐻𝐴[𝑚]) +

𝐷𝐴𝑎𝑞
−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐷𝐻+𝐾𝑎
2𝐶𝑒𝑥𝑐; 

𝐸 = (𝐷𝑂𝐻−𝐾𝑤)2(1 + 𝐾𝑠
𝐻𝐴[𝑚])2 + 4𝐷𝑂𝐻−𝐾𝑤𝐾𝑎(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)(1 + 𝐾𝑠

𝐻𝐴[𝑚]) −

2𝐷𝐻+𝐷𝑂𝐻−𝐾𝑤𝐾𝑎
2 + 𝐾𝑎

2(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)2 − 𝐷𝐴𝑎𝑞
−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐷𝑂𝐻−𝐾𝑤𝐾𝑎𝐶𝑒𝑥𝑐(1 +

𝐾𝑠
𝐻𝐴[𝑚]) − 𝐷𝐴𝑎𝑞

−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐾𝑎
2𝐶𝑒𝑥𝑐(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ) − 𝐾𝑠𝑝(𝐷𝐴𝑎𝑞

−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐾𝑎)2(1 +

𝐾𝑠
𝑅[𝑚])(1 + 𝐾𝑠

𝐻𝐴[𝑚]); 
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𝐹 = 2𝐾𝑎(1 + 𝐾𝑠
𝐻𝐴[𝑚])(𝐷𝑂𝐻−𝐾𝑤)2 + 2𝐷𝑂𝐻−𝐾𝑤𝐾𝑎

2(𝐷𝐻+[𝐻+]ℎ − 𝐷𝑂𝐻−[𝑂𝐻−]ℎ) −

𝐷𝐴𝑎𝑞
−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐷𝑂𝐻−𝐾𝑤𝐾𝑎
2𝐶𝑒𝑥𝑐 − 𝐾𝑠𝑝𝐾𝑎(𝐷𝐴𝑎𝑞

−

1

3 𝐷𝑅𝑒𝑓𝑓

2

3 𝐾𝑎)2(1 + 𝐾𝑠
𝑅[𝑚]); 

𝐺 = (𝐾𝑎𝐷𝑂𝐻−𝐾𝑤)2. 

 

Evaluation of flux of the cocrystal components   

Applying the boundary conditions to equation 4A.20, at x = 0: 

𝐷𝑅𝑎𝑞

− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐
2+4𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2(1+𝐾𝑠
𝑅[𝑚])

=

−𝐷𝑅𝑚
𝐾𝑠

𝑅[𝑚]
− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐

2+4𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2(1+𝐾𝑠
𝑅[𝑚])

+ 𝐶4                                       (4A.29) 

and at x = h: 

0 = 𝐶1ℎ + 𝐶4                     (4A.30) 

Combining equations 4A.29 and 4A.30 and solve for −𝐶1 for the flux of the cocrystal in terms of 

drug: 

𝐽𝑅 =
𝐷𝑅𝑒𝑓𝑓

ℎ
∗

1

2
[− 𝐶𝑒𝑥𝑐 + √𝐶𝑒𝑥𝑐

2 + 4𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑚]) (1 +

𝐾𝑎

𝐻+ + 𝐾𝑠
𝐻𝐴[𝑚])]            (4A.31) 

For rotating disk, the thickness of the hydrodynamic boundary layer can be defined according to 

Levich22: 

ℎ = 1.612𝐷
1

3𝑣
1

6𝜔−
1

2                    (4A.32) 

 where 𝑣 is the kinematic viscosity and 𝜔 is the angular velocity in radians per unit time.  

Substituting equation 4A.32 into 4A.31, the flux of cocrystal in terms of drug can be written as: 
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𝐽𝑅 = 0.62𝐷𝑅𝑒𝑓𝑓

2/3
𝜔1/2𝑣−1/6

− 𝐶𝑒𝑥𝑐+√𝐶𝑒𝑥𝑐
2+4𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎
𝐻++𝐾𝑠

𝐻𝐴[𝑚])

2
                 (4A.33) 

This equation is applicable for both approaches to calculate the flux of the cocrystal in terms of 

drug concentration.  Since the coformer concentration is not measuring, so the flux of the cocrystal 

in terms of coformer is not derived.  
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CHAPTER 5  

MECHANISTIC ANALYSIS OF COCRYSTAL DISSOLUTION AS A GUIDE FOR 

RATIONAL SELECTION 

Abstract 

The dissolution behavior of a dibasic drug, ketoconazole (KTZ) under the influence of pH 

has been evaluated and compared to its three 1:1 cocrystals with diacidic coformers, fumaric acid 

(FUM), succinic acid (SUC), and adipic acid (ADP).  Mass transport models were developed by 

applying Fick’s Law of diffusion to dissolution with simultaneous chemical reactions in the 

hydrodynamic boundary layer adjacent to the dissolving surface to predict the interfacial pH and 

flux of the parent drug and cocrystals.  All three cocrystals have the ability to modulate the 

interfacial pH to different extents compared to the parent drug due to the acidity of the coformers.  

The pH effect on the dissolution of KTZ is significantly reduced by the cocrystallization with 

acidic coformers.  Due to the different dissolution pH dependence, there exists a transition pH 

where the flux of the cocrystal is the same as the parent drug.  Below this transition pH, the KTZ 

flux would be higher, but above it, the cocrystal flux would be higher.  The development of mass 

transport models not only provides a mechanistic understanding of the dissolution behavior, but 

also helps to rationalize the selection process of cocrystals.  
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Introduction 

 Cocrystals are multicomponent solids containing two or more different molecular 

components in the same crystal lattice with well-defined stoichiometry and they have emerged as 

a promising solid state modification strategy to enhance the solubility, dissolution and 

bioavailability of poorly water soluble compounds1-5.  One of the advantages that cocrystals have 

to offer is the large diversity in formation, however, this can complicate the process of selecting 

the proper form for development since each cocrystal form can have very distinct physicochemical 

properties6-8.  Among these properties, solubility and dissolution are important criteria for the 

selection process because they play significant roles in determining the oral absorption9.  

Consequently, mechanistic understanding of the solubility and dissolution processes would be 

beneficial for finding the cocrystal form with optimal physicochemical properties.  

 Unlike the well-established solubility mechanism, the dissolution mechanism of cocrystals 

is still under development.  A recent study has presented the dissolution mechanism for 1:1 

cocrystals with nonionizable drug and monoacidic coformers under the influence of both pH and 

surfactant10.  Due to the different diffusion coefficients between the cocrystal components, the 

concentrations of the components at the dissolving surface have to be different in order to maintain 

stoichiometric dissolution10.  Based on the solubility product behavior of cocrystals, two models 

have been developed to describe the dissolution process10.  The interfacial equilibrium model is 

able to maintain constant solubility product at all time during dissolution, while the surface 

saturation model is only able to maintain the drug concentration at the stoichiometric solubility of 

the cocrystal10.  The theoretical comparison between the two models has demonstrated the mass 

transport analysis based on the surface saturation model provides flux predictions that are more 

align with the experimental data10.  In order to increase the applicability, the surface saturation 
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model is used in this study to perform mass transport analyses for cocrystals containing diverse 

ionization properties, specifically for cocrystals with dibasic drugs and diacidic coformers.  

 The model drug studied here is ketoconazole (KTZ), an antifungal drug used primarily for 

fungal infections11-13.  It is a weakly dibasic drug with poor intrinsic solubility, pH dependent 

dissolution and variable oral absorption11-13.  The dissolution of KTZ below pH 3 is rapid, but the 

rate is significantly reduced above pH 513, 14.  Many studies have demonstrated that the oral 

absorption of KTZ is impaired for patients with reduced gastric acid production15-17.  Therefore, 

the prerequisite for adequate KTZ dissolution and oral absorption is the sufficient gastric acidity.  

There are studies showing the oral absorption of KTZ can be improved by co-administering with 

stomach acid stimulant or acidic beverage11, 13, 17.  Knowing KTZ performs better under acidic 

conditions, it is interesting to figure out whether the cocrystallization with acidic coformers would 

help to improve its performance.  The purpose of this study is to evaluate and compare the pH 

dependent dissolution of KTZ to its three cocrystals discovered by Martin, et al.18, ketoconazole 

fumaric acid (KTZ-FUM), ketoconazole succinic acid (KTZ-SUC), and ketoconazole adipic acid 

(KTZ-ADP) cocrystals. 

Materials and methods 

Materials   

Ketoconazole (KTZ) was purchased from Bosche Scientific (New Brunswick, NJ) and 

used as received.  Adipic acid (ADP), succinic acid (SUC), fumaric acid (FUM), were purchased 

from Sigma-Aldrich (St. Louis, MO) and used as received.  Methanol, 2-propanol and hydrochloric 

acid were purchased from Fisher Scientific (Pittsburgh, PA).  Acetone was purchased from Acros 

Organics (NJ).  Sodium hydroxide pellets were purchased from J.T. Baker (Philipsburg, NJ).  
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Trifluoroacetic acid was purchased from Aldrich Company (Milwaukee, WI).  Water used in this 

study was filtered through a double deionized purification system (Milli Q Plus Water System) 

from Millipore Co. (Bedford, MA).   

Cocrystal synthesis  

Cocrystals were prepared by reaction crystallization method19 at room temperature.  KTZ-

SUC and KTZ-FUM were prepared by adding 1:1 molar ratio of KTZ and coformers in acetone 

solution.  KTZ-ADP was prepared by adding 1:1 molar ratio of KTZ and ADP in 2-propanol 

solution.  Solid phases were characterized by X-ray powder diffraction (XRPD) and differential 

scanning calorimetry (DSC). 

Cocrystal dissolution measurements  

Constant surface area dissolution rates of KTZ and its cocrystals were determined using a 

rotating disk apparatus.  Drug or cocrystal powder (~150 mg) was compressed in a stainless steel 

rotating disk die with a tablet radius of 0.50 cm at approximately 85 MPa for 2 minutes using a 

hydraulic press.  The die containing the compact was mounted onto a stainless steel shaft attached 

to an overhead, variable speed motor.  The disk was exposed to 150 mL of dissolution medium in 

a water jacketed beaker with temperature controlled at 25°C and a rotation speed of 200 rpm was 

used.  All dissolution experiments were performed in water with pH adjusted using HCl or NaOH.  

The bulk pH during dissolution was maintained constant by adding HCl or NaOH as necessary.  

Sink conditions were maintained throughout the experiments by ensuring the concentrations at the 

last time point of the dissolution were less than 10% of the solubility.  Solution concentrations 

were measured using HPLC and solid phases after dissolution were analyzed by XRPD.   
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HPLC   

Waters HPLC equipped with a photodiode array detector was used for all analysis.  The 

mobile phase was composed of 60% methanol and 40% water with 0.1% trifluoroacetic acid and 

the flow rate of 1 mL/min was used.  Separation was achieved using Waters, Atlantis, T3 column 

(5.0 µm, 100 Å) with dimensions of 4.6 x 250 mm.  The sample injection volume was 20 µL.  

However, it was increased to 100 µL for the dissolution of KTZ at pH 5 and 6 due to the low 

concentration.  The wavelengths for the analytes were as follows: 230 nm for KTZ, 220 nm for 

FUM and 210 nm for both SUC and ADP.    

XRPD   

XRPD diffractograms of solid phases were collected with a benchtop Rigaku Miniflex X-

ray diffractometer using Cu-Kα radiation (λ = 1.54 Å), a tube voltage of 30 kV, and a tube current 

of 15 mA.  Data was collected from 5 to 40° at a continuous scan rate of 2.5°/min. 

DSC 

Crystalline samples were analyzed by DSC using a TA instrument 2910 MDSC system 

equipped with a refrigerated cooling unit.  All experiments were performed by heating the samples 

at a rate of 10 °C/min under a dry nitrogen atmosphere.  Temperature and enthalpy of the 

instrument were calibrated using high purity indium standard.   

Theoretical 

 The mass transport models presented in this study describe the dissolution mechanisms of 

a dibasic drug and its three 1:1 cocrystals with diacidic coformers in solutions containing hydrogen 

ion, hydroxide ion and water as the reactive species.  The mass transport analyses are based on the 
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classic film theory that postulates the existence of a diffusion boundary layer adjacent to the 

dissolving surface20.  Due to the ionization properties, both drug and coformers can undergo 

chemical reactions with the reactive species from the bulk solution that can alter the pH at the 

dissolving surface.  The dissolution process is determined by the concentration gradient across the 

diffusion boundary layer and influenced by the simultaneous diffusion and chemical reactions 

occurring at the dissolving surface and in the adjacent boundary layer20, 21.   

 The chemical equilibria and equations for chemical equilibrium constants for the 

dissolution of the diabasic drug, B are as follows: 

𝐻2𝑂 + 𝐵𝐻2
2+ ⇋ 𝐻3𝑂+ + 𝐵𝐻+            (5.1) 

𝐾𝑎1
𝐵 =

[𝐻3𝑂+][𝐵𝐻+]

[𝐵𝐻2
2+]

                (5.2)  

𝐻2𝑂 + 𝐵𝐻+ ⇋ 𝐻3𝑂+ + 𝐵             (5.3)  

𝐾𝑎2
𝐵 =

[𝐻3𝑂+][𝐵]

[𝐵𝐻+]
               (5.4) 

𝐻3𝑂+ + 𝑂𝐻− ⇋ 2𝐻2𝑂             (5.5) 

𝐾𝑤 = [𝐻3𝑂+][𝑂𝐻−]                     (5.6) 

𝑂𝐻− + 𝐵𝐻2
2+ ⇋ 𝐻2𝑂 + 𝐵𝐻+               (5.7) 

𝐾1 =
[𝐵𝐻+]

[𝐵𝐻2
2+][𝑂𝐻−]

                    (5.8) 

𝑂𝐻− + 𝐵𝐻+ ⇋ 𝐻2𝑂 + 𝐵             (5.9) 

𝐾2 =
[𝐵]

[𝐵𝐻+][𝑂𝐻−]
               (5.10) 
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where 𝐾𝑎1
𝐵  and 𝐾𝑎2

𝐵  are the ionization constants for the dibasic drug.  Under aqueous conditions, 

the solubility of the dibasic drug as a function of pH can be described as follow: 

𝑆𝐵 = [𝐵]0(1 +
𝐻+

𝐾𝑎2
𝐵 +

(𝐻+)
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )                  (5.11) 

where [𝐵]0 is the intrinsic solubility of the drug.  

The chemical equilibria and equations for chemical equilibrium constants for the 

dissolution of a 1:1 cocrystal with dibasic drug, B and diacidic coformer, H2A are as follows: 

(𝐵𝐻2𝐴)𝑠𝑜𝑙𝑖𝑑 ⇋ 𝐵 + 𝐻2𝐴           (5.12) 

𝐾𝑠𝑝 = [𝐵][𝐻2𝐴]                 (5.13) 

𝐻2𝑂 + 𝐵𝐻2
2+ ⇋ 𝐻3𝑂+ + 𝐵𝐻+          (5.14) 

𝐾𝑎1
𝐵 =

[𝐻3𝑂+][𝐵𝐻+]

[𝐵𝐻2
2+]

               (5.15) 

𝐻2𝑂 + 𝐵𝐻+ ⇋ 𝐻3𝑂+ + 𝐵           (5.16) 

𝐾𝑎2
𝐵 =

[𝐻3𝑂+][𝐵]

[𝐵𝐻+]
               (5.17) 

𝐻2𝑂 + 𝐻2𝐴 ⇋ 𝐻3𝑂+ + 𝐻𝐴−           (5.18) 

𝐾𝑎1
𝐻2𝐴

=
[𝐻3𝑂+][𝐻𝐴−]

[𝐻2𝐴]
                (5.19) 

𝐻2𝑂 + 𝐻𝐴− ⇋ 𝐻3𝑂+ + 𝐴2−           (5.20) 

𝐾𝑎2
𝐻2𝐴

=
[𝐻3𝑂+][𝐴2−]

[𝐻𝐴−]
                (5.21) 

𝐻3𝑂+ + 𝑂𝐻− ⇋ 2𝐻2𝑂           (5.22) 
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𝐾𝑤 = [𝐻3𝑂+][𝑂𝐻−]                     (5.23) 

𝑂𝐻− + 𝐵𝐻2
2+ ⇋ 𝐻2𝑂 + 𝐵𝐻+               (5.24) 

𝐾1 =
[𝐵𝐻+]

[𝐵𝐻2
2+][𝑂𝐻−]

                   (5.25) 

𝑂𝐻− + 𝐵𝐻+ ⇋ 𝐻2𝑂 + 𝐵             (5.26) 

𝐾2 =
[𝐵]

[𝐵𝐻+][𝑂𝐻−]
                    (5.27) 

𝐻2𝐴 + 𝑂𝐻− ⇋ 𝐻2𝑂 + 𝐻𝐴−                (5.28) 

𝐾3 =
[𝐻𝐴−]

[𝐻2𝐴][𝑂𝐻−]
                    (5.29) 

𝑂𝐻− + 𝐻𝐴− ⇋ 𝐻2𝑂 + 𝐴2−           (5.30) 

𝐾4 =
[𝐴2−]

[𝐻𝐴−][𝑂𝐻−]
                 (5.31) 

where Ksp is the solubility product of the cocrystal, 𝐾𝑎1
𝐻2𝐴

 and 𝐾𝑎2
𝐻2𝐴

 are the ionization constants of 

the coformer.  Under aqueous conditions, the stoichiometric solubility of the cocrystal as a function 

of pH can be described as: 

𝑆𝑐𝑐 = √𝐾𝑠𝑝(1 +
𝐾𝑎1

𝐻2𝐴

[𝐻+]
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]2 )(1 +
[𝐻+]

𝐾𝑎2
𝐵 +

[𝐻+]2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )       (5.32) 

 Previously developed mass transport models for cocrystal dissolution have demonstrated 

that the concentrations of the cocrystal components at the dissolving surface can be different if 

they have different diffusion coefficients10.  The model drug, KTZ, is a bigger molecule compared 

to the carboxylic acid coformers, and thus has smaller diffusion coefficient compared to the 
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coformers.  According to the surface saturation model, the concentration of the slower diffusing 

component at the dissolving surface is maintained at the solubility of the cocrystal, while the 

concentration of the faster diffusing component is lower10.  For the dissolution of 1:1 cocrystals 

with dibasic drugs and diacidic coformers, the concentrations of the components at the dissolving 

surface can be written as:  

[𝐵]𝑇,0 = [𝐵] + [𝐵𝐻+] + [𝐵𝐻2
2+] = 𝑆𝑐𝑐         (5.33) 

[𝐻2𝐴]𝑇,0 = [𝐻2𝐴] + [𝐻𝐴−] + [𝐴2−] = (
𝐷𝐵

𝐷𝐻2𝐴
)2/3𝑆𝑐𝑐       (5.34) 

where DB and DH2A are the diffusion coefficients of the drug and coformer, respectively, and 

subscript T,0 denotes the total concentration of the ionized and nonionized forms at dissolving 

surface. 

The mass transport analyses for both drug and cocrystals are based on the assumptions that 

all chemical reactions within the diffusion layer happen instantaneously and the aqueous 

diffusivities of the ionized and non-ionized forms are the same.  Detailed derivations of the mass 

transport models for the drug and cocrystals using the surface saturation model are provided in 

Appendix 5A.  The mass transport analyses for cocrystal dissolution using the interfacial 

equilibrium model are also provided in Appendix 5B.  In this Appendix, a comparison in cocrystal 

flux predictions between the surface saturation and interfacial equilibrium models is also included.  

Results  

Physicochemical properties 

 Accurate flux predictions for cocrystals require knowledge about the physicochemical 

properties of the cocrystals and their components, such as solubility product, ionization constant, 
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and diffusion coefficient and these can be obtained independently from the dissolution studies.  

The physicochemical properties of the model cocrystals are summarized in Table 5.1.  The 

diffusion coefficient of KTZ is about 2x times smaller compared to the three coformers because 

of the bigger molecular size.  These differential diffusion coefficients would result in different 

concentrations for the cocrystal components at the dissolving surface as predicted by the surface 

saturation model10.  Because of the diprotic property, the drug and the three coformers have two 

pKa values.  The pKa values of the parent drug are basic, while those of the coformers are acidic.  

Due to its basicity, the solubility of the drug decreases with increasing pH and reaches constant 

value at the pH region where the drug is completely un-ionized.  By cocrystallizing with acidic 

coformers, the solubility pH dependence of the cocrystals is different from that of the parent drug.  

At low pH, where the basicity of the drug is dominated, the solubility of the cocrystals decreases 

with increasing pH.  However, the rate of decrease is much lower compared to the parent drug 

because of the acidity of the coformers.  As pH increases above the pKa values of the coformers, 

the solubility of the cocrystals starts to increase because the acidity of the coformers is dominating 

the solubility pH effect.  The basicity of the drug and acidity of the coformers result in U shape 

solubility curves for the three cocrystals as a function of pH22 as shown in Figure 5.1.  Because of 

the different solubility pH dependence between the drug and cocrystal, there exists a transition 

point on the solubility phase diagram where the solubility of the drug is the same as the cocrystal22-

24.  The pH at this transition point is known as the pHmax.  The model cocrystals are 

thermodynamically stable below pHmax, but thermodynamically unstable above it and they have 

the tendency to transform back to the stable drug form.  This transition point allows the true 

intrinsic dissolution measurements for the cocrystals at pH below the pHmax.  Among the three 
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cocrystals, KTZ-FUM has the highest pHmax value because it has the lowest Ksp, so it requires a 

higher pH to reach the same solubility as the parent drug22.   

Table 5.1.  Physicochemical properties of model cocrystals and their components. 

Cocrystal 

(B-H2A) 
Ksp (x 10-2 mM2)a 

pKa values 
Diffusion coefficient 

(x 10-6 cm2/sec)d 

Bb H2Ac 𝑫𝑩𝒂𝒒
 𝑫𝑯𝑨𝒂𝒒

 

KTZ-FUM 0.15 
2.94, 

6.51 

3.03, 4.38 

3.56 

8.67 

KTZ-SUC 2.4 4.2, 5.6 8.38 

KTZ-ADP 3.4 4.44, 5.44 7.07 

a) From reference 22;  

b) From reference 12;  

c) From reference 18;  

d) Determined using Othmer Thaker’s equation25. 

 

 

Figure 5.1.  Solubility pH dependence of KTZ ( ), KTZ-ADP ( ), KTZ-SUC ( ) and KTZ-

FUM ( ).  pHmax value for KTZ-ADP is 3.6; KTZ-SUC is 3.6; and KTZ-FUM is 3.8.  Solid lines 

represent the theoretical predictions and the symbols are the experimental data22. 

 

Interfacial pH predictions 

 With the knowledge of physicochemical properties, interfacial pH of KTZ and its three 
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ability of KTZ in altering the pH microenvironment at the dissolving surface is compared to that 

of the three cocrystals in Figure 5.2.  At low bulk pH, the interfacial pH of KTZ is higher than the 

bulk solution pH because KTZ is mostly ionized under these conditions and thus increases the pH 

at the dissolving surface.  As bulk pH increases above the pKa values, the ability of KTZ in 

increasing interfacial pH is limited by its lower degree of ionization at the dissolving surface.  

Therefore, interfacial pH is approximately the same as the bulk pH.  By cocrystallizing with acidic 

coformers, all three cocrystals still have the ability to increase the interfacial pH at low bulk pH.  

However, the increase is much smaller compared to the drug because the ionization of KTZ is 

being suppressed by the acidic coformers.  As bulk pH increases above the pKa values of the 

coformers, interfacial pH of the cocrystals is dominated by the acidity of the coformers.  The 

ionization of the coformers lowers the interfacial pH and results in a buffer effect at the dissolving 

surface, in which the interfacial pH does not change with bulk pH.  The interfacial pH at the 

buffering region for KTZ-FUM is 4.1, KTZ-SUC is 4.7 and KTZ-ADP is 4.8.  Even KTZ-FUM 

has the lowest Ksp among three cocrystals, it is still able to buffer the interfacial pH to the lowest 

because FUM is the most acidic among the three coformers.  The interfacial pH at the buffering 

regions of the three cocrystals is above their pHmax values.  This means that the cocrystals are 

thermodynamically unstable in these regions and have the tendency to transform back to the stable 

drug form during dissolution.  
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Figure 5.2.  Interfacial pH of KTZ ( ), KTZ-ADP ( ), KTZ-SUC ( ) and KTZ-FUM (

) as a function of bulk pH.  Interfacial pH of both drug and cocrystals were calculated using 

equations 5A.20 and 5A.52 from Appendix 5A, respectively, with the physicochemical parameters 

shown in Table 5.1. 

 

Drug crystallization may happen during the dissolution of highly soluble cocrystals and the 

crystallization process has a dependence on the degree of supersaturation generated in solution 

with respect to the parent drug.  Knowing the interfacial pH, the degree of supersaturation at the 

dissolving cocrystal surface during dissolution can be determined from the solubility advantage of 

the cocrystal, which is a ratio of the cocrystal solubility over that of the drug.  The solubility 

advantages of the three cocrystals as a function of bulk pH were calculated based on the interfacial 

pH predictions and these are shown in Figure 5.3.  At bulk pH ≤ 3, all cocrystals do not exhibit 

solubility advantage as indicated by the ratios of Scc/Sdrug below 1.  Under these bulk pH conditions, 

the interfacial pH of all cocrystals is below their pHmax values, so the drug is more soluble 

compared to the cocrystals.  This means that the cocrystals are the stable forms and the 

precipitation of solid drug during dissolution should not occur at bulk pH ≤ 3.  Above bulk pH 3, 
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bulk pH conditions, all three cocrystals can generate supersaturation with respect to the parent 

drug in solution and provide the driving force for drug crystallization at the dissolving surface 

during dissolution.  The rate of nucleation is inversely proportional to supersaturation26, so the 

probability of drug precipitation during dissolution would increase as the degree of supersaturation 

increases.  Among the three cocrystals, KTZ-ADP has the highest solubility advantage and this 

can translate into the highest tendency for drug precipitation during dissolution.  Drug precipitation 

at the dissolving surface can impede the dissolution of cocrystal and this can lead to disagreement 

with the theoretical flux predictions since the mass transport models have not considered the 

transformation kinetic.  The solubility advantage of KTZ-FUM is about 2 at the buffering region, 

so it may be able to sustain supersaturation during the 30 minute dissolution. 

 

Figure 5.3.  Solubility advantage for KTZ-FUM ( ), KTZ-SUC ( ) and KTZ-ADP ( ) as a 

function of bulk pH.  The solubility of the drug and cocrystals were calculated based on the 

interfacial pH predicted from Figure 5.2 using equation 5.11 and 5.32 respectively.   
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Effect of pH on KTZ dissolution 

 The effect of pH on the dissolution of KTZ was evaluated by performing rotating disk 

dissolution as a function of bulk pH.  The dissolution concentration profiles of KTZ as a function 

of bulk pH are shown in Figure 5.4.  Because of the basicity, the dissolution rates of KTZ decrease 

with increasing pH.  KTZ is a poorly water soluble compound with an intrinsic solubility of 4.7 x 

10-6 M22, so the dissolution rate is very low when it is at minimal ionization.  At bulk pH 4 and 5, 

the KTZ concentration was not detectable by HPLC until 5 and 10 minutes after dissolution started, 

respectively.  At bulk pH 6, KTZ is almost completely unionized and its concentration could not 

be detected until 30 minutes after dissolution started.  Therefore, the dissolution at bulk pH 6 had 

to extend to 60 minutes in order to get enough data points to determine the dissolution rate.  The 

large error bars for the dissolution at bulk pH 6 is possibly associated with the low concentration 

of KTZ. 

(a)                                                                            (b) 

 

Figure 5.4.  Dissolution concentration profiles of KTZ at bulk pH 2 to 5 (a) and bulk pH 6 (b). 

 

The flux of KTZ as a function of bulk pH were calculated from the dissolution rates and 

compared to the theoretical predictions in Figure 5.5.  KTZ is a weakly basic drug, so it does not 
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have much ability to self-buffer the pH at the dissolving surface.  Consequently, the flux of KTZ 

can vary drastically as a function of bulk pH.  There is almost 2000x difference between the flux 

of KTZ at pH 2 and 6.  The large pH effect on the dissolution rate of KTZ may be responsible for 

its variability in oral absorption observed in patients.   

Although there are some deviations in flux predictions for KTZ at low bulk pH, the 

theoretical values follow the same trend as the experimental data.  The large deviations in flux 

predictions at low bulk pH could be possibly due to the assumption that the diffusion coefficients 

of the unionized and ionized forms are the same.  In multicomponent electrolyte mass transport 

system, the diffusion of the charged species can be significantly different from the neutral species 

due to the electrostatic interactions between the diffusing species in order to maintain charge 

neutrality27-29.  In general, the fast diffusing ion is coupled with a sluggish ion of opposite charge 

to counteract the charge separation between the ions27-29.  In other words, the diffusion of the 

charged species can be accelerated or retarded by the electrostatic interactions27-29.  At pH 2 and 

3, KTZ is mostly in its ionized form.  It is possible that the positively charged KTZ is coupled with 

the highly mobile hydroxide ion to maintain charge neutrality at the dissolving surface and thus 

results in faster diffusion compared to the neutral form of KTZ.  The diffusion of KTZ under low 

bulk pH conditions may have been underestimated based on the assumption that the diffusion 

coefficient of the ionized form is the same as the nonionized form.  The underestimation in 

diffusion coefficient of the ionized form of KTZ could result in deviations of flux predictions under 

low bulk pH conditions.  Since the purpose of this paper is to provide a mechanistic understanding 

of the dissolution behavior of KTZ under the influence of pH, the diffusion coefficient of the 

ionized form was not evaluated for accurate flux predictions.  



 

156 
 

 

Figure 5.5.  Theoretical ( ) and experimental ( ) flux comparison of KTZ as a function of 

bulk pH.  The flux of KTZ were calculated using equation 5A.23 from Appendix 5A based on the 

interfacial pH predicted in Figure 5.2 and the physicochemical properties shown in Table 5.1.  

 

Effect of pH on the dissolution of KTZ cocrystals 

 The pH effect on the dissolution of the three model KTZ cocrystals was also evaluated and 

the dissolution concentration profiles as a function of bulk pH are shown in Figure 5.6, 5.7 and 5.8 

for KTZ-FUM, KTZ-SUC and KTZ-ADP, respectively.  It is important to measure the 

concentration of the coformer during dissolution because it can serve as an indicator for solid phase 

transformation.  If higher coformer concentration is observed for the dissolution of a 1:1 cocrystal, 

it is likely that the drug is precipitating at the dissolving surface because of its inability in 

sustaining supersaturation.  Without knowing the coformer concentration, it could be difficult to 

confirm the stability of the cocrystal during dissolution when solid phase analysis, such as XRPD 

is not sensitive enough to detect the solid phase transformation.  Among the three cocrystals, the 

measurements of both drug and coformer concentrations during dissolution were only possible for 

KTZ-FUM.  For KTZ-SUC and KTZ-ADP, only the drug concentrations were determined because 

both coformer concentrations were below the detection limit.  As shown in Figure 5.6, the coformer 
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concentrations match those of the drug at all bulk pH conditions studied here, which indicates no 

solid phase transformation occurred during the dissolution of KTZ-FUM.  It seems like KTZ-SUC 

is also stable at all bulk pH conditions studied here as indicated by the linear dissolution behavior 

and the pure cocrystal structure from XRPD analysis after dissolution.  KTZ-ADP was stable 

during dissolution at bulk pH 2 and 3 because the interfacial pH at these conditions was below the 

pHmax.  Although the XRPD analyses after the dissolution of KTZ-ADP at bulk pH 4 to7 showed 

pure cocrystal phase, the nonlinear dissolution behavior under these conditions is a sign of solid 

phase transformation.  An example of nonlinear dissolution behavior at bulk pH 6 for KTZ-ADP 

is demonstrated in Figure 5.7 (b). 

(a)                                                                         (b) 

  

Figure 5.6.  Dissolution concentration profiles of KTZ-FUM in terms of KTZ (a) and FUM (b) 

concentrations as a function of bulk pH. 
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Figure 5.7.  Dissolution concentration profiles of KTZ-SUC in terms of KTZ concentrations as a 

function of bulk pH. 

 

(a)                                                                              (b) 

 

Figure 5.8.  Dissolution concentration profiles of KTZ-ADP in terms of KTZ concentrations as a 

function of bulk pH (a) and the nonlinear dissolution behavior at bulk pH 6 (b). 
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the acidic coformers, the flux of cocrystals still decreases with pH at low bulk pH because the pH 

effect on dissolution is dominated by the basic drug.  The coformers take over the pH effect on the 

dissolution of cocrystals at bulk pH above the acidic pKa values because the coformers start to 

ionize, while the drug ionization is suppressed.  The acidity of the coformers dampens the pH 

effect on the dissolution of the cocrystals compared to the parent drug.  There is about 5x difference 

in the flux of KTZ-FUM between pH 2 and 6, 11x for KTZ-SUC and 15x for KTZ-ADP.  These 

differences are significantly smaller compared to the almost 2000x difference for KTZ.  This 

significant reduction in flux variation due to pH can potentially mitigate the pH effect on oral 

absorption of KTZ.   

By modeling interfacial pH, the mass transport model adequately describes the dissolution 

behavior of cocrystals under the influence of pH.  There is an excellent agreement between the 

theoretical flux predictions and experimental data.  As discussed earlier, the cocrystal flux can be 

over predicted if drug crystallization happened during dissolution.  The driving force for solid 

phase transformation is the highest for KTZ-ADP (Scc/Sdrug = 11) as shown in Figure 5.3 and it 

was confirmed that drug precipitation occurred during dissolution at bulk pH 4 to 7.  The solid 

phase transformation of the cocrystal results in deviations of theoretical flux predictions from the 

experimental data for KTZ-ADP.      
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                                      (a) 

 

   (b)                                                                        (c) 

 

Figure 5.9.  Theoretical (solid line) and experimental (solid circle) flux comparison of (a) KTZ-

FUM, (b) KTZ-SUC and (c) KTZ-ADP.  The theoretical flux of cocrystals were calculated using 

equation 5A.54 from Appendix 5A based on the interfacial pH predicted in Figure 5.2 and the 

physicochemical properties shown in Table 5.1. 

 

Comparison of dissolution behavior 

 The pH effect on the flux of KTZ is compared with KTZ-FUM in Figure 5.10, KTZ-SUC 

in Figure 5.11 and KTZ-ADP in Figure 5.12.  These Figures demonstrate that the dissolution pH 

dependence of KTZ is significantly reduced by cocrystallizing with acidic coformers.  Due to the 

different pH dependence, there exists a transition pH where the flux of the drug is the same as the 
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pHmax, so the KTZ flux is higher than those of the cocrystals.  Above the transition pH, interfacial 

pH is above the pHmax and resulting in higher cocrystal flux compared to KTZ.  This transition pH 

is different from the pHmax in a way that it is determined from the kinetic process.  Consequently, 

it cannot be used to evaluate the thermodynamic stability of the cocrystals.  However, it is still 

important because it provides the solution conditions at which the cocrystals would display 

dissolution advantages.  The dissolution advantage of cocrystal is defined as the ratio of the 

cocrystal flux over that of the drug (Jcc/Jdrug).  Cocrystal has no dissolution advantage if Jcc/Jdrug ≤ 

1, but it would display dissolution advantage if Jcc/Jdrug > 1.  The dissolution advantages of the 

three cocrystals were evaluated from the experimental data and shown in Figure 5.10 to 5.12 for 

the three cocrystals.  At bulk pH 2, the dissolution advantages of all three cocrystals are below one 

because the pH is below the transition pH.  At bulk pH 3, near the transition pH, all three cocrystals 

exhibit nearly the same flux as the drug.  Above bulk pH 3, all cocrystals display dissolution 

advantages and these advantages increase with increasing pH because the flux of KTZ decrease 

with pH.  Among the three cocrystals, KTZ-FUM has the highest dissolution advantage, follows 

by KTZ-SUC and KTZ-ADP.   

(a)                                                                            (b) 
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Figure 5.10.  (a) Flux comparison between KTZ-FUM ( ) and KTZ ( ) as a function of 

bulk pH.  (b) Dissolution advantages of KTZ-FUM determined from the experimental flux values.  

The solid lines represent the theoretical flux predictions and the symbols represent the 

experimental flux for KTZ-FUM ( ) and KTZ ( ).   

 

(a)                                                                           (b) 

 

Figure 5.11.  (a) Flux comparison between KTZ-SUC ( ) and KTZ ( ) as a function of bulk 

pH.  (b) Dissolution advantages of KTZ-SUC determined from the experimental flux values.  The 

solid lines represent the theoretical flux predictions and the symbols represent the experimental 

flux for KTZ-SUC ( ) and KTZ ( ).   

 

(a)                                                                          (b) 

 

Figure 5.12.  (a) Flux comparison between KTZ-ADP ( ) and KTZ ( ) as a function of bulk 

pH.  (b) Dissolution advantage of KTZ-ADP determined from the experimental flux values.  The 
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solid lines represent the theoretical flux predictions and the symbols represent the experimental 

flux for KTZ-ADP ( ) and KTZ ( ).   

 

Discussion 

The selection of a solid form with optimal physicochemical properties that can lead to 

desired bioperformance is essential for successful oral drug product development.  Solubility and 

dissolution are important parameters for determining the bioavailability of drugs that are given 

orally9.  Hence, the solubility and dissolution advantages of cocrystals are important parameters to 

be considered during the cocrystal selection process.  The advantage in diverse formation of 

cocrystals can become a challenge when it comes to the selection process.  Depending on the 

properties of the coformers and solution conditions, cocrystals can behave very different in 

solution30.  Cocrystals can generate solubility that are orders of magnitude different from that of 

the parent drug30.  One of the important questions needs to be addressed during the selection 

process is what the most desired cocrystal solubility should be.  Usually, higher cocrystal solubility 

would not necessarily lead to better performance because it is more prone for conversion during 

dissolution.  The ideal candidate would be a cocrystal with a solubility advantage that allows 

supersaturation to be sustained in solution.  Understanding the solution behavior of cocrystals 

would help to rationalize the selection process. 

The three cocrystals studied in this work demonstrated different ability in modulating the 

dissolution behavior of the parent drug and this ability is dependent on the properties of the 

coformers and cocrystals.  The ionization properties of the coformers allow the cocrystals to alter 

the interfacial pH to different extents compared to the parent drug.  The ability of modeling 

interfacial pH allows the evaluation of cocrystal solubility advantage at the dissolving surface, 

which provides useful information regarding the thermodynamic stability of the cocrystals during 
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dissolution.  Among the three cocrystals, KTZ-FUM is the most stable because the solubility 

advantage at the buffering region is 2, while KTZ-SUC is 9 and KTZ-ADP is 11.  Although KTZ-

FUM has the smallest solubility advantage, it is able to achieve the highest dissolution advantage.  

With high dissolution advantage and low risk of conversion, it is no doubt that KTZ-FUM is the 

favor cocrystal for further development at this stage.  This work has mainly considered the pH 

effect on the dissolution of cocrystals, however, other factors, such as solubilizing agents should 

also be considered for the selection process.   

Conclusions 

The dissolution mechanism for 1:1 cocrystals with dibasic drug (KTZ) and diacidic 

coformers (FUM, SUC, ADP) under the influence of pH has been analyzed and compared to the 

parent drug through the development and evaluation of physically realistic mass transport models.  

The mass transport analyses for the dissolution of cocrystals are based on the previously developed 

surface saturation model.  The mass transport models show that the pH at the dissolving cocrystal 

surface is different from that of the parent drug because of the ability of the coformers in lowering 

the interfacial pH.  The dissolution behavior of both drug and cocrystals has been theoretically and 

experimentally demonstrated to be dependent on interfacial pH instead of bulk pH.  This highlights 

the importance of modeling the almost experimentally inaccessible interfacial pH.  The dissolution 

of KTZ has been shown to exhibit large pH effect, however, this pH effect is significantly reduced 

by cocrystallizing with acidic coformers.  Because of the different pH dependence, there exists a 

transition pH that can serve as a turning point for the cocrystal dissolution advantage.  Cocrystals 

can modulate the dissolution behavior of the parent drug by altering both interfacial pH and 

solubility.  Having a thorough understanding on the thermodynamic and kinetic behavior of 

cocrystals can help to select the most suitable cocrystal for further development.  
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APPENDIX 5A  

Mass transport analysis for drug 

The flux of all the species across the diffusion layer include both the diffusion and chemical 

reactions happening during dissolution.  At steady state, the diffusion and simultaneous chemical 

reactions of the individual species within the diffusion layer can be written using Fick’s law as 

follows: 

𝜕[𝐵]

𝜕𝑡
= 𝐷𝐵

𝜕2 [𝐵]

𝜕𝑥2 + 𝜙1 = 0          (5A.1) 

𝜕[𝐵𝐻+]

𝜕𝑡
= 𝐷𝐵

𝜕2 [𝐵𝐻+]

𝜕𝑥2 + 𝜙2 = 0                    (5A.2) 

𝜕[𝐵𝐻2
2+]

𝜕𝑡
= 𝐷𝐵

𝜕2 [𝐵𝐻2
2+]

𝜕𝑥2 + 𝜙3 = 0         (5A.3) 

𝜕[𝑂𝐻−]

𝜕𝑡
= 𝐷𝑂𝐻−

𝜕2 [𝑂𝐻−]

𝜕𝑥2 + 𝜙4 = 0         (5A.4) 

𝜕[𝐻+]

𝜕𝑡
= 𝐷𝐻+

𝜕2 [𝐻+]

𝜕𝑥2 + 𝜙5 = 0          (5A.5) 

where ϕ1-5 are the reaction rate functions.  At equilibrium, the reaction rate of the reactant should 

be the opposite of the product: 

𝜙3 = −𝜙1 − 𝜙2           (5A.6) 

The reaction rate of the acid and the base should be the same: 

𝜙3 + 𝜙5 = 𝜙1 + 𝜙4           (5A.7) 
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Based on equations 5A.6 and 5A.7, the following mass balance equations can be written: 

𝐷𝐵
𝑑2[𝐵]

𝑑𝑥2
+ 𝐷𝐵

𝑑2[𝐵𝐻+]

𝑑𝑥2
+ 𝐷𝐵

𝑑2[𝐵𝐻2
2+]

𝑑𝑥2
= 0        (5A.8) 

𝐷𝑂𝐻−
𝑑2[𝑂𝐻−]

𝑑𝑥2 + 𝐷𝐵
𝑑2[𝐵]

𝑑𝑥2 = 𝐷𝐻+
𝑑2[𝐻+]

𝑑𝑥2 + 𝐷𝐵
𝑑2[𝐵𝐻2

2+]

𝑑𝑥2             (5A.9) 

Integrating equations 5A.8 and 5A.9 once, gives: 

𝐷𝐵
𝑑[𝐵]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻+]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻2
2+]

𝑑𝑥
= 𝐶1                   (5A.10) 

𝐷𝑂𝐻−
𝑑[𝑂𝐻−]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵]

𝑑𝑥
= 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻2
2+]

𝑑𝑥
+ 𝐶2                    (5A.11) 

By charge neutrality:  

𝐷𝑂𝐻−
𝑑[𝑂𝐻−]

𝑑𝑥
= 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻+]

𝑑𝑥
+ 2𝐷𝐵

𝑑[𝐵𝐻2
2+]

𝑑𝑥
                   (5A.12) 

By combining equation 5A.10, 5A.11 and 5A.12, it can be shown that:  

𝐶1 = −𝐶2                     (5A.13) 

Integrating equations 5A.10 and 5A.11,  

𝐷𝐵[𝐵] + 𝐷𝐵[𝐵𝐻+] + 𝐷𝐵[ 𝐵𝐻2
2+] = 𝐶1𝑥 + 𝐶3                       (5A.14) 

𝐷𝑂𝐻−[𝑂𝐻−] + 𝐷𝐵[𝐵] = 𝐷𝐻+[𝐻+] + 𝐷𝐵[ 𝐵𝐻2
2+] + 𝐶2𝑥 + 𝐶4              (5A.15) 

Boundary conditions: 

At x = 0:        At x = h: 

[𝐵] = [𝐵]0 (intrinsic solubility of the drug)    [𝐵] = 0 (sink condition) 

[𝐵𝐻+] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐵𝐻+] = 0 (sink condition) 
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[ 𝐵𝐻2
2+] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [ 𝐵𝐻2

2+] = 0 (sink condition) 

[𝐻+] = [𝐻+]0        [𝐻+] = [𝐻+]ℎ 

[𝑂𝐻−] = [𝑂𝐻−]0       [𝑂𝐻−] = [𝑂𝐻−]ℎ 

Evaluation of interfacial pH 

Applying the above boundary conditions to equations 5A.14 and 5A.15, at x = 0: 

𝐷𝐵[𝐵]0 + 𝐷𝐵[𝐵𝐻+] + 𝐷𝐵[ 𝐵𝐻2
2+] = 𝐶3                         (5A.16) 

𝐷𝑂𝐻−[𝑂𝐻−]0 + 𝐷𝐵[𝐵]0 = 𝐷𝐻+[𝐻+]0 + 𝐷𝐵[ 𝐵𝐻2
2+] + 𝐶4               (5A.17) 

and at x = h, assuming sink conditions, equations 5A.14 and 5A.15 can be written as: 

0 = 𝐶1ℎ + 𝐶3                     (5A.18) 

𝐷𝑂𝐻−[𝑂𝐻−]ℎ = 𝐷𝐻+[𝐻+]ℎ + 𝐶2ℎ + 𝐶4                 (5A.19) 

Combining equations 5A.16 to 5A.19 and algebraically solving for interfacial pH, [H+]0, yields the 

following equation: 

2𝐷𝐵
[𝐵]0

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 [𝐻+]0
3

+ (𝐷𝐻+ + 𝐷𝐵
[𝐵]0

𝐾𝑎2
𝐵 ) [𝐻+]0

2
+ (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)[𝐻+]0 −

𝐷𝑂𝐻−𝐾𝑤 = 0                                                (5A.20) 

Evaluation of flux 

Combine equations 5A.16 and 5A.18, and solve for −𝐶1 for the total flux of the drug species across 

the diffusion layer: 

𝐽𝐵 =
𝐷𝐵

ℎ
[𝐵]0 (1 +

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )                  (5A.21) 
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For rotating disk, the thickness of the hydrodynamic boundary layer can be defined according to 

Levich model21: 

ℎ = 1.612𝐷
1

3𝑣
1

6𝜔−
1

2                    (5A.22) 

 where 𝑣 is the kinematic viscosity and 𝜔 is the angular velocity in radians per unit time.  Substitute 

equation 5A.22 into 5A.21, the flux of the drug becomes: 

𝐽𝐵 = 0.62𝐷𝐵
2/3

𝜔1/2𝑣−1/6[𝐵]0 (1 +
[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )                  (5A.23) 

Mass transport analysis for cocrystal 

The flux of all the species across the diffusion layer include both the diffusion and chemical 

reactions happening during dissolution.  At steady state, the diffusion and simultaneous chemical 

reactions of the individual species within the diffusion layer can be written using Fick’s law as 

follows: 

𝜕[𝐵]

𝜕𝑡
= 𝐷𝐵

𝜕2 [𝐵]

𝜕𝑥2 + 𝜙1 = 0                   (5A.24) 

𝜕[𝐵𝐻+]

𝜕𝑡
= 𝐷𝐵

𝜕2 [𝐵𝐻+]

𝜕𝑥2 + 𝜙2 = 0                  (5A.25) 

𝜕[𝐵𝐻2
2+]

𝜕𝑡
= 𝐷𝐵

𝜕2 [𝐵𝐻2
2+]

𝜕𝑥2 + 𝜙3 = 0                  (5A.26) 

𝜕[𝑂𝐻−]

𝜕𝑡
= 𝐷𝑂𝐻−

𝜕2 [𝑂𝐻−]

𝜕𝑥2
+ 𝜙4 = 0                  (5A.27) 

𝜕[𝐻+]

𝜕𝑡
= 𝐷𝐻+

𝜕2 [𝐻+]

𝜕𝑥2
+ 𝜙5 = 0                   (5A.28) 

𝜕[𝐻2𝐴]

𝜕𝑡
= 𝐷𝐻2𝐴

𝜕2 [𝐻2𝐴]

𝜕𝑥2 + 𝜙6 = 0                  (5A.29) 
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𝜕[𝐻𝐴−]

𝜕𝑡
= 𝐷𝐻2𝐴

𝜕2 [𝐻𝐴−]

𝜕𝑥2
+ 𝜙7 = 0                  (5A.30) 

𝜕[𝐴2−]

𝜕𝑡
= 𝐷𝐻2𝐴

𝜕2 [𝐴2−]

𝜕𝑥2 + 𝜙8 = 0                  (5A.31) 

At equilibrium, the reaction rate of the reactant should be the opposite of the product.  Based on 

the chemical equilibria, the followings can be written: 

𝜙3 = −𝜙1 − 𝜙2                    (5A.32) 

𝜙6 = −𝜙7 − 𝜙8                    (5A.33) 

The reaction rate of the acid and the base should be the same: 

𝜙3 + 𝜙5 + 𝜙6 = 𝜙1 + 𝜙4 + 𝜙8                  (5A.34) 

Based on equations 5A.32, 5A.33 and 5A.34, the following mass balance equations can be written:  

𝐷𝐵
𝑑2[𝐵]

𝑑𝑥2 + 𝐷𝐵
𝑑2[𝐵𝐻+]

𝑑𝑥2 + 𝐷𝐵
𝑑2[𝐵𝐻2

2+]

𝑑𝑥2 = 0                 (5A.35) 

𝐷𝐻2𝐴
𝑑2[𝐻2𝐴]

𝑑𝑥2 + 𝐷𝐻2𝐴
𝑑2[𝐻𝐴−]

𝑑𝑥2 + 𝐷𝐻2𝐴
𝑑2[ 𝐴2−]

𝑑𝑥2 = 0                (5A.36) 

𝐷𝑂𝐻−
𝑑2[𝑂𝐻−]

𝑑𝑥2 + 𝐷𝐵
𝑑2[𝐵]

𝑑𝑥2 + 𝐷𝐻2𝐴
𝑑2[ 𝐴2−]

𝑑𝑥2 = 𝐷𝐻+
𝑑2[𝐻+]

𝑑𝑥2 + 𝐷𝐵
𝑑2[𝐵𝐻2

2+]

𝑑𝑥2 𝐷𝐻2𝐴
𝑑2[𝐻2𝐴]

𝑑𝑥2             (5A.37) 

Integrate equations 5A.35 to 5A.37 once, gives: 

𝐷𝐵
𝑑[𝐵]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻+]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻2
2+]

𝑑𝑥
= 𝐶1                 (5A.38) 

𝐷𝐻2𝐴
𝑑[𝐻2𝐴]

𝑑𝑥
+ 𝐷𝐻2𝐴

𝑑[𝐻𝐴−]

𝑑𝑥
+ 𝐷𝐻2𝐴

𝑑[ 𝐴2−]

𝑑𝑥
= 𝐶2                    (5A.39) 

𝐷𝑂𝐻−
𝑑[𝑂𝐻−]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵]

𝑑𝑥
+ 𝐷𝐻2𝐴

𝑑[ 𝐴2−]

𝑑𝑥
= 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻2
2+]

𝑑𝑥
+ 𝐷𝐻2𝐴

𝑑[𝐻2𝐴]

𝑑𝑥
+ 𝐶3          (5A.40) 

By charge neutrality:  
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𝐷𝑂𝐻−
𝑑[𝑂𝐻−]

𝑑𝑥
+ 𝐷𝐻2𝐴

𝑑[𝐻𝐴−]

𝑑𝑥
+ 2𝐷𝐻2𝐴

𝑑[ 𝐴2−]

𝑑𝑥
= 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
+ 𝐷𝐵

𝑑[𝐵𝐻+]

𝑑𝑥
+ 2𝐷𝐵

𝑑[𝐵𝐻2
2+]

𝑑𝑥
          (5A.41) 

By combining equations 5A.38 to 5A.41, it can be shown that:  

𝐶3 = 𝐶2 − 𝐶1                     (5A.42) 

Integrating equations 5A.38 to 5A.40, gives: 

𝐷𝐵[𝐵] + 𝐷𝐵[𝐵𝐻+] + 𝐷𝐵[ 𝐵𝐻2
2+] = 𝐶1𝑥 + 𝐶4                     (5A.43) 

𝐷𝐻2𝐴[𝐻2𝐴] + 𝐷𝐻2𝐴[𝐻𝐴−] + 𝐷𝐻2𝐴[ 𝐴2−] = 𝐶2𝑥 + 𝐶5               (5A.44) 

𝐷𝑂𝐻−[𝑂𝐻−] + 𝐷𝐵[𝐵] + 𝐷𝐻2𝐴[ 𝐴2−] = 𝐷𝐻+[𝐻+] + 𝐷𝐵[ 𝐵𝐻2
2+] + 𝐷𝐻2𝐴[𝐻2𝐴] + 𝐶3𝑥 + 𝐶6(5A.45) 

Based on equations 5.33 and 5.34, the concentrations of the nonionized drug and coformer at the 

dissolving surface can be written to include in the following boundary conditions: 

At x = 0:        at x = h: 

[B] =

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

    [B] = 0 (sink condition) 

[𝐻2𝐴] = (
𝐷𝐵

𝐷𝐻2𝐴
)2/3

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )

  [𝐻2𝐴] = 0 (sink condition) 

[𝐵𝐻+] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐵𝐻+] = 0 (sink condition) 

[𝐵𝐻2
2+] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐵𝐻2

2+] = 0 (sink condition) 

[𝐻𝐴−] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐻𝐴−] = 0 (sink condition) 
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[𝐴2−] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐴2−] = 0 (sink condition) 

[𝐻+] = [𝐻+]0        [𝐻+] = [𝐻+]ℎ 

[𝑂𝐻−] = [𝑂𝐻−]0       [𝑂𝐻−] = [𝑂𝐻−]ℎ 

Evaluation of interfacial pH 

Applying the above boundary conditions to equations 5A.43 to 5A.45, at x = 0: 

𝐷𝐵

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

+ 𝐷𝐵[𝐵𝐻+] + 𝐷𝐵[ 𝐵𝐻2
2+] = 𝐶4             (5A.46) 

𝐷𝐻2𝐴(
𝐷𝐵

𝐷𝐻2𝐴
)2/3

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )

+ 𝐷𝐻2𝐴[𝐻𝐴−] + 𝐷𝐻2𝐴[ 𝐴2−] = 𝐶5  (5A.47) 

𝐷𝑂𝐻−[𝑂𝐻−]0 + 𝐷𝐵

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

+ 𝐷𝐻2𝐴[ 𝐴2−] = 𝐷𝐻+[𝐻+]0 +

𝐷𝐵[ 𝐵𝐻2
2+] + 𝐷𝐻2𝐴(

𝐷𝐵

𝐷𝐻2𝐴
)2/3

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )

+ 𝐶6             (5A.48) 

and at x = h, assuming sink conditions, equations 5A.43 to 5A.45 can be written as: 

0 = 𝐶1ℎ + 𝐶4                     (5A.49) 

0 = 𝐶2ℎ + 𝐶5                     (5A.50) 

𝐷𝑂𝐻−[𝑂𝐻−]ℎ = 𝐷𝐻+[𝐻+]ℎ + 𝐶3ℎ + 𝐶6                            (5A.51) 
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Combining equations 5A.46 to 5A.51 and algebraically solving for interfacial pH, [H+]0, yields the 

following equation: 

𝐴𝑥8 + 𝐵𝑥7 + 𝐶𝑥6 + 𝐷𝑥5 + 𝐸𝑥4 + 𝐹𝑥3 + 𝐺𝑥2 + 𝐻𝑥 + 𝐼 = 0              (5A.52) 

where: 

𝐴 = 4𝐷𝐵
2𝐾𝑠𝑝 − 𝐷𝐻+

2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 ; 
 

𝐵 = 4𝐷𝐵𝐾𝑠𝑝 (𝐷𝐵𝐾𝑎1
𝐵 + 2𝐷𝐵𝐾𝑎1

𝐻2𝐴
− 𝐷𝐵

2

3𝐷𝐻2𝐴

1

3𝐾𝑎1
𝐻2𝐴

) − 𝐷𝐻+
2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐾𝑎1

𝐻2𝐴
+ 𝐾𝑎1

𝐵 ) −

2𝐷𝐻+𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ); 
 

𝐶 = 𝐷𝐵
2𝐾𝑠𝑝 (𝐾𝑎1

𝐵 2
+ 8𝐾𝑎1

𝐻2𝐴
𝐾𝑎1

𝐵 + 8𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 4𝐾𝑎1
𝐻2𝐴2

) − 2𝐷𝐵

5

3𝐷𝐻2𝐴

1

3𝐾𝑠𝑝 (2𝐾𝑎1
𝐻2𝐴2

+

3𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 4𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
) − 2𝐷𝐻+𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)( 𝐾𝑎1

𝐻2𝐴
+ 𝐾𝑎1

𝐵 ) −

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2 − 𝐷𝐻+
2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
+ 𝐾𝑎1

𝐻2𝐴
𝐾𝑎1

𝐵 + 𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 ) +

2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

; 
 

𝐷 = 2𝐷𝐵
2𝐾𝑠𝑝𝐾𝑎1

𝐻2𝐴
𝐾𝑎1

𝐵 (𝐾𝑎1
𝐵 + 4𝐾𝑎2

𝐻2𝐴
+ 2𝐾𝑎1

𝐻2𝐴
) − 2𝐷𝐵

5

3𝐷𝐻2𝐴

1

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴

(2𝐾𝑎2
𝐻2𝐴

+ 2𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 +

2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 2
+ 4𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
+ 6𝐾𝑎2

𝐻2𝐴
𝐾𝑎1

𝐵 ) + 2𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

(2𝐾𝑎2
𝐻2𝐴

+

𝐾𝑎1
𝐵 ) + 8𝐷𝐵

2𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

+ 2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

+ 𝐾𝑎1
𝐵 ) − 2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐻+[𝐻+]ℎ)(𝐷𝐻+𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐷𝐻+𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐷𝐻+𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 − 𝐷𝑂𝐻−𝐾𝑤) −

𝐷𝐻+
2𝐾𝑎1

𝐵 2
𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
) − 𝐾𝑎1

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐵 +

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 ); 
 

𝐸 = 𝐷𝐵
2𝐾𝑠𝑝𝐾𝑎1

𝐵 2
(2𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
+ 𝐾𝑎1

𝐻2𝐴2
) − 2𝐷𝐵

5

3𝐷𝐻2𝐴

1

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴

(9𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 +

2𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 2𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 2

+ 4𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴2

+ 4𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 2

+ 𝐾𝑎1
𝐵 2

𝐾𝑎2
𝐵 ) +

𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

(𝐾𝑎1
𝐵 2

+ 2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 4𝐾𝑎2
𝐻2𝐴2

+ 8𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 ) − (𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 +

2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)(𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐻2𝐴

+ 𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐵 − 𝐷𝐻+𝐾𝑎1

𝐵 𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

−

𝐷𝐻+𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 ) + 2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) −

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) +

4𝐷𝐵
2𝐾𝑠𝑝𝐾𝑎1

𝐻2𝐴2
(2𝐾𝑎2

𝐻2𝐴
𝐾𝑎1

𝐵 + 𝐾𝑎2
𝐻2𝐴2

) − 𝐷𝐻+
2(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
; 

 

𝐹 = 2𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎1
𝐵 (2𝐾𝑎2

𝐻2𝐴
𝐾𝑎1

𝐵 + 4𝐾𝑎2
𝐻2𝐴

𝐾𝑎2
𝐵 + 4𝐾𝑎2

𝐻2𝐴2
+ 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) −

2𝐷𝐵

5

3𝐷𝐻2𝐴

1

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎1
𝐵 (6𝐾𝑎2

𝐻2𝐴2
+ 6𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 3𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 + 2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐻2𝐴 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) −
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(𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

+ 𝐾𝑎1
𝐵 ) + 2𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐻+[𝐻+]ℎ)(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) + 2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1

𝐵 2
𝐾𝑎1

𝐻2𝐴
(𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 𝐾𝑎2
𝐵 2

) −

𝐾𝑎1
𝐵 2

𝐾𝑎1
𝐻2𝐴(𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2 (𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 𝐾𝑎2
𝐵 2

) − 2𝐷𝐻+(𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐻+[𝐻+]ℎ)𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2 + 2𝐷𝐵

2𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 (𝐾𝑎1

𝐵 + 2𝐾𝑎2
𝐻2𝐴

); 
 

𝐺 = 𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎1
𝐵 (𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 2

+ 8𝐾𝑎2
𝐻2𝐴2

𝐾𝑎2
𝐵 + 8𝐾𝑎2

𝐻2𝐴
𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 + 4𝐾𝑎2

𝐻2𝐴2
𝐾𝑎1

𝐵 ) −

2𝐷𝐵

5

3𝐷𝐻2𝐴

1

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 (4𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 3𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 2𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 ) −

(𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) +

2𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 2

𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)(𝐾𝑎2

𝐻2𝐴
+ 𝐾𝑎2

𝐵 ) +

2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2 − (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴(𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )2 +

𝐷𝐵
2𝐾𝑠𝑝(𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
𝐾𝑎1

𝐵 )2; 
 

𝐻 = 4𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 2𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 ) −

(𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 2

𝐾𝑎2
𝐵 (𝐾𝑎2

𝐻2𝐴
+ 𝐾𝑎2

𝐵 ) + 2𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2(𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐻+[𝐻+]ℎ) − 4𝐷𝐵

5

3𝐷𝐻2𝐴

1

3𝐾𝑠𝑝(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 )2𝐾𝑎2

𝐵 ; 
 

𝐼 = 4𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )2 − (𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2. 

 

Evaluation of flux of the cocrystal components   

Combine equations 5A.46 and 5A.49, and solve for −𝐶1 for the total flux of cocrystal in terms of 

drug species across the diffusion layer: 

𝐽𝑐𝑐 =
𝐷𝐵

ℎ
√𝐾𝑠𝑝(1 +

𝐾𝑎1
𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1 +

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )                    (5A.53) 

Substituting equation 5A.22 into equation 5A.53, the rotating flux of cocrystal can be written as:  

𝐽𝑐𝑐 = 0.62𝐷𝐵
2/3

𝜔1/2𝑣−1/6√𝐾𝑠𝑝(1 +
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1 +

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )            (5A.54) 
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APPENDIX 5B  

This appendix provides the mass transport analysis for the dissolution of cocrystals based 

on the interfacial equilibrium model and as well as the comparison in interfacial pH and flux 

predictions between the surface saturation and interfacial equilibrium models.   

Mass transport analysis based on interfacial equilibrium model 

According to the interfacial equilibrium model, the concentrations of the cocrystal 

components have to increase in order to maintain constant solubility product at the dissolving 

surface at all time.  For the dissolution of a 1:1 cocrystal with dibasic drug and diacidic coformer, 

the concentrations of the components at the dissolving surface can be written based on the 

interfacial equilibrium model as:  

[𝐵]𝑇 = [𝐵] + [𝐵𝐻+] + [𝐵𝐻2
2+] = (

𝐷𝐻2𝐴

𝐷𝐵
)1/3𝑆𝑐𝑐       (5B.1) 

[𝐻2𝐴]𝑇 = [𝐻2𝐴] + [𝐻𝐴−] + [𝐴2−] = (
𝐷𝐵

𝐷𝐻2𝐴
)1/3𝑆𝑐𝑐       (5B.2) 

Based on these two equations, the following boundary conditions can be written: 

At x = 0:        at x = h: 

[𝐵] = (
𝐷𝐻2𝐴

𝐷𝐵
)1/3

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

  [𝐵] = 0 (sink condition) 
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[𝐻2𝐴] = (
𝐷𝐵

𝐷𝐻2𝐴
)1/3

√𝐾𝑠𝑝(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1+

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )

(1+
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )

  [𝐻2𝐴] = 0 (sink condition) 

[𝐵𝐻+] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐵𝐻+] = 0 (sink condition) 

[𝐵𝐻2
2+] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐵𝐻2

2+] = 0 (sink condition) 

[𝐻𝐴−] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐻𝐴−] = 0 (sink condition) 

[𝐴2−] = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛       [𝐴2−] = 0 (sink condition) 

[𝐻+] = [𝐻+]0        [𝐻+] = [𝐻+]ℎ 

[𝑂𝐻−] = [𝑂𝐻−]0       [𝑂𝐻−] = [𝑂𝐻−]ℎ 

Evaluation of interfacial pH 

Applying the above boundary conditions to equations 5A.43 to 5A.45 and follow the steps 

shown in Appendix 5A, the following equation can be written to predict the interfacial pH: 

𝐴𝑥8 + 𝐵𝑥7 + 𝐶𝑥6 + 𝐷𝑥5 + 𝐸𝑥4 + 𝐹𝑥3 + 𝐺𝑥2 + 𝐻𝑥 + 𝐼 = 0     (5B.3) 

where: 

𝐴 = 4𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝 − 𝐷𝐻+
2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ; 

 

𝐵 = 4𝐷𝐵𝐷𝐻2𝐴

2

3𝐾𝑠𝑝 (𝐷𝐵

1

3𝐾𝑎1
𝐵 + 2𝐷𝐵

1

3𝐾𝑎1
𝐻2𝐴

− 𝐷𝐻2𝐴

1

3𝐾𝑎1
𝐻2𝐴

) − 𝐷𝐻+
2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐾𝑎1

𝐻2𝐴
+ 𝐾𝑎1

𝐵 ) −

2𝐷𝐻+𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ); 
 

𝐶 = 𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝 (𝐾𝑎1
𝐵 2

+ 8𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 8𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
+ 4𝐾𝑎1

𝐻2𝐴2
) − 2𝐷𝐵𝐷𝐻2𝐴𝐾𝑠𝑝 (2𝐾𝑎1

𝐻2𝐴2
+

3𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 4𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
) − 2𝐷𝐻+𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)( 𝐾𝑎1

𝐻2𝐴
+ 𝐾𝑎1

𝐵 ) −
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𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2 − 𝐷𝐻+
2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
+ 𝐾𝑎1

𝐻2𝐴
𝐾𝑎1

𝐵 + 𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 ) +

2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 𝐷𝐻2𝐴

4

3𝐷𝐵

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

; 
 

𝐷 = 2𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 (𝐾𝑎1

𝐵 + 4𝐾𝑎2
𝐻2𝐴

+ 2𝐾𝑎1
𝐻2𝐴

) − 2𝐷𝐵𝐷𝐻2𝐴𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴

(2𝐾𝑎2
𝐻2𝐴

+

2𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 + 𝐾𝑎1

𝐻2𝐴
𝐾𝑎1

𝐵 + 𝐾𝑎1
𝐵 2

+ 4𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 6𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 ) +

2𝐷𝐻2𝐴

4

3𝐷𝐵

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

(2𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐵 ) + 8𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

+

2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

+ 𝐾𝑎1
𝐵 ) − 2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)(𝐷𝐻+𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴
+

𝐷𝐻+𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐷𝐻+𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 − 𝐷𝑂𝐻−𝐾𝑤) − 𝐷𝐻+

2𝐾𝑎1
𝐵 2

𝐾𝑎2
𝐵 (𝐾𝑎1

𝐻2𝐴
𝐾𝑎1

𝐵 + 𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

) −

𝐾𝑎1
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2(𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐵 + 𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 ); 
 

𝐸 = 𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐵 2

(2𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴2

) − 2𝐷𝐵𝐷𝐻2𝐴𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴

(9𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 +

2𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 2𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 2

+ 4𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴2

+ 4𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 2

+ 𝐾𝑎1
𝐵 2

𝐾𝑎2
𝐵 ) +

𝐷𝐻2𝐴

4

3𝐷𝐵

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

(𝐾𝑎1
𝐵 2

+ 2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 4𝐾𝑎2
𝐻2𝐴2

+ 8𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 ) − (𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 +

2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)(𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐻2𝐴

+ 𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐵 − 𝐷𝐻+𝐾𝑎1

𝐵 𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

−

𝐷𝐻+𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 ) + 2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) −

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) +

4𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

(2𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎2

𝐻2𝐴2
) − 𝐷𝐻+

2(𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )2𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

; 

 

𝐹 = 2𝐷𝐻2𝐴

4

3𝐷𝐵

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎1
𝐵 (2𝐾𝑎2

𝐻2𝐴
𝐾𝑎1

𝐵 + 4𝐾𝑎2
𝐻2𝐴

𝐾𝑎2
𝐵 + 4𝐾𝑎2

𝐻2𝐴2
+ 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) −

2𝐷𝐵𝐷𝐻2𝐴𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎1
𝐵 (6𝐾𝑎2

𝐻2𝐴2
+ 6𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 3𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 + 2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐻2𝐴 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) −

(𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

+ 𝐾𝑎1
𝐵 ) + 2𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐻+[𝐻+]ℎ)(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) + 2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1

𝐵 2
𝐾𝑎1

𝐻2𝐴
(𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 𝐾𝑎2
𝐵 2

) −

𝐾𝑎1
𝐵 2

𝐾𝑎1
𝐻2𝐴(𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2 (𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 𝐾𝑎2
𝐵 2

) − 2𝐷𝐻+(𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐻+[𝐻+]ℎ)𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2 + 2𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 (𝐾𝑎1

𝐵 + 2𝐾𝑎2
𝐻2𝐴

); 
 

𝐺 = 𝐷𝐻2𝐴

4

3𝐷𝐵

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎1
𝐵 (𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 2

+ 8𝐾𝑎2
𝐻2𝐴2

𝐾𝑎2
𝐵 + 8𝐾𝑎2

𝐻2𝐴
𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 + 4𝐾𝑎2

𝐻2𝐴2
𝐾𝑎1

𝐵 ) −

2𝐷𝐵𝐷𝐻2𝐴𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 (4𝐾𝑎2

𝐻2𝐴
𝐾𝑎2

𝐵 + 3𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 2𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 ) −

(𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

+ 𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 + 𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 ) +

2𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 2

𝐾𝑎2
𝐵 (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)(𝐾𝑎2

𝐻2𝐴
+ 𝐾𝑎2

𝐵 ) +

2𝐷𝑂𝐻−𝐷𝐻+𝐾𝑤𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2 − (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐻+[𝐻+]ℎ)2𝐾𝑎1

𝐻2𝐴
𝐾𝑎2

𝐻2𝐴(𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )2 +

𝐷𝐵

4

3𝐷𝐻2𝐴

2

3𝐾𝑠𝑝(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 )2; 
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𝐻 = 4𝐷𝐻2𝐴

4

3𝐷𝐵

2

3𝐾𝑠𝑝𝐾𝑎1
𝐻2𝐴2

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 (𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 + 2𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 ) −

(𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐻2𝐴

𝐾𝑎1
𝐵 2

𝐾𝑎2
𝐵 (𝐾𝑎2

𝐻2𝐴
+ 𝐾𝑎2

𝐵 ) + 2𝐷𝑂𝐻−𝐾𝑤𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2(𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐻+[𝐻+]ℎ) − 4𝐷𝐵𝐷𝐻2𝐴𝐾𝑠𝑝(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 )2𝐾𝑎2

𝐵 ; 
 

𝐼 = 4𝐷𝐻2𝐴

4

3𝐷𝐵

2

3𝐾𝑠𝑝(𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )2 − (𝐷𝑂𝐻−𝐾𝑤)2𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴(𝐾𝑎1

𝐵 𝐾𝑎2
𝐵 )2. 

Evaluation of flux of the cocrystal components   

Applying the above boundary conditions to equation 5A.43 from Appendix 5A and solve 

for −𝐶1 for the total flux of cocrystal in terms of drug species across the diffusion layer: 

𝐽𝑐𝑐 =
𝐷𝐻2𝐴

1
3𝐷𝐵

2
3

ℎ
√𝐾𝑠𝑝(1 +

𝐾𝑎1
𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1 +

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )     (5B.4) 

Substitute equation 5A.22 from Appendix 5A into equation 5B.4, the rotating flux of cocrystal can 

be written as:  

𝐽𝑐𝑐 = 0.62(𝐷𝐵𝐷𝐻2𝐴)1/3𝜔1/2𝑣−1/6√𝐾𝑠𝑝(1 +
𝐾𝑎1

𝐻2𝐴

[𝐻+]0
+

𝐾𝑎1
𝐻2𝐴

𝐾𝑎2
𝐻2𝐴

[𝐻+]0
2 )(1 +

[𝐻+]0

𝐾𝑎2
𝐵 +

[𝐻+]0
2

𝐾𝑎1
𝐵 𝐾𝑎2

𝐵 )      (5B.5) 

Comparison between the surface saturation and interfacial equilibrium models  

 In order to evaluate the superiority between the surface saturation and interfacial 

equilibrium models, interfacial pH and flux of the cocrystals were predicted using both models 

and compared in Figure 5B.1 to 5B.3 for the three KTZ cocrystals.  The surface concentration of 

the drug for the interfacial equilibrium model is greater than that for the surface saturation model 

because it has to raise above the stoichiometric solubility of the cocrystal in order to maintain 

constant Ksp at the surface at all times during dissolution.  While the surface coformer 

concentration for the interfacial equilibrium model is lower than the drug concentration, it is still 
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higher than that for the surface saturation model.  The different concentrations of the cocrystal 

components at the dissolving surface result in the slight difference in interfacial pH predictions 

between the two models.  As shown in Figure 5B.1 to 5B.3, the predicted interfacial pH values at 

low bulk pH from the interfacial equilibrium model for all three cocrystals are slightly higher than 

those from the surface saturation model.  This is due to the higher drug concentration at the 

dissolving surface predicted from the interfacial equilibrium model, which leads to greater 

basicity.  On the other hand, the higher coformer concentration at the dissolving surface for the 

interfacial equilibrium model results in slightly lower interfacial pH predictions at high bulk pH 

compared to the surface saturation model.  Although the theoretical flux predictions from both 

models follow the same trend as the experimental data, the predictions from the interfacial 

equilibrium model for all three cocrystals are greater than those from the surface saturation model 

as shown in Figure 5B.1 to 5B.3. The better agreement between the experimental data and 

theoretical flux predictions has again demonstrated the superiority of the surface saturation model 

over the interfacial equilibrium model. 

(a)                                                                      (b)                                                  

 

Figure 5B.1.  Comparison of interfacial pH (a) and flux predictions (b) for KTZ-FUM between the 

interfacial equilibrium model (dotted line) and surface saturation model (solid line).  The solid 

circles are the experimental flux values.   
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(a)                                                                      (b) 

 

Figure 5B.2.  Comparison of interfacial pH (a) and flux predictions (b) for KTZ-SUC between the 

interfacial equilibrium model (dotted line) and surface saturation model (solid line).  The solid 

circles are the experimental flux values.   

 

(a)                                                                         (b) 

 

Figure 5B.3.  Comparison of interfacial pH (a) and flux predictions (b) for KTZ-ADP between the 

interfacial equilibrium model (dotted line) and surface saturation model (solid line).  The solid 

circles are the experimental flux values.   
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CHAPTER 6  

EFFECT OF BUFFERING AGENTS ON THE DISSOLUTION OF COCRYSTALS 

Abstract  

 Buffers are commonly encountered in drug development as they are frequently used in 

preparing dissolution media and sometimes even in drug formulations.  The human GI tract also 

contains bicarbonate buffer to maintain the GI pH.  It is well known that the properties and 

concentrations of buffers can have significant impact on the dissolution rates of ionizable drugs.  

Since cocrystals usually contain ionizable components, the influence of buffering agents on the 

dissolution rates of these cocrystalline materials should also be emphasized.  The purpose of this 

study is to evaluate the effect of acetate and phosphate buffers on the dissolution of a 1:1 cocrystal 

with nonionizable drug and acidic coformer, carbamazepine-salicylic acid (CBZ-SLC).  The mass 

transport model previously developed for this cocrystal has been extended to include the buffer 

properties for evaluating the buffer effect on interfacial pH and dissolution rates.  The mass 

transport analyses have demonstrated the importance of pKa value, diffusion coefficient and 

concentration of buffering agents in determining the interfacial pH.  By modeling interfacial pH, 

the flux of cocrystal can be accurately predicted as a function of buffer concentration.  In this 

study, the dissolution rate of CBZ-SLC increases with increasing buffer concentration and this 

increase is due to the elevation in interfacial pH by both acetate and phosphate buffers.   
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Introduction  

 The composition of dissolution media, such as pH and buffering agents can have significant 

impact on the dissolution rates of ionizable drugs1-3.  For the dissolution of ionizable compounds, 

the pH at the dissolving surface is extremely important and this interfacial pH can be quite different 

from the pH of the bulk solution1-3.  The presence of buffer species in the dissolution media can 

influence the interfacial pH and consequently alters the dissolution rates of ionizable drugs2-6.  

There has been studies in the literature demonstrating the influence of buffering agents on the 

dissolution rates of ionizable drugs2-6.  In these studies, the dissolution rates of ionizable drugs 

increase as buffer concentration increases and the rate of increase is dependent on the properties 

and concentrations of the buffer in solutions2-6.  The interfacial pH of naproxen has been shown to 

increase with increasing phosphate buffer concentration4.  As the buffer capacity in the bulk 

solution exceeds the self-buffering capacity of naproxen, the interfacial pH becomes similar to the 

bulk pH4.  Interfacial pH determines the dissolution behavior of naproxen in the presence of 

phosphate buffer and the dissolution rate of naproxen increases with increasing buffer 

concentration4.  Both interfacial pH and dissolution behavior of ionizable drugs under the influence 

of buffer can be accurately predicted using mass transport analyses for dissolution with 

simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving 

surface2-6.   

The primary buffer species in human GI tract is bicarbonate and the buffer concentrations 

can vary depending on the location in the GI tract and other factors such as food and stress7-9.  

Physiological relevant dissolution media such as fasted state simulated intestinal fluid (FaSSIF) 

and fed state simulated intestinal fluid (FeSSIF) also contain phosphate buffer as the main 

buffering agent10, 11.  Besides dissolution media, buffering agents have also been used in 
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formulations to prevent GI irritation and/or to promote dissolution of acidic drugs12-14.  Buffering 

agents can be encountered both in vivo and in vitro, so it is essential to understand the mechanism 

of how they influence the dissolution rates of ionizable drugs.      

The impact of pH on the dissolution rates of cocrystals under unbuffered conditions has 

been evaluated in previous chapters in this thesis.  The purpose of this chapter is to evaluate the 

dissolution rates of cocrystals under the influence of buffering agents.  The model cocrystal used 

in this study is carbamazepine-salicylic acid (CBZ-SLC) and the buffering agents are phosphate 

and acetate buffers.  The mass transport analyses for this cocrystal based on the surface saturation 

model15 were extended to include the chemical reactions of the coformer with the buffer species 

from the bulk solution.  This new mass transport model can be used to predict the interfacial pH 

and flux of 1:1 cocrystals with non-ionizable drugs and acidic coformers as a function of pH and 

buffer concentration. 

Materials and methods 

Materials   

Anhydrous carbamazepine (CBZ), salicylic acid (SLC), sodium lauryl sulfate (SLS), 

potassium phosphate monobasic, sodium acetate anhydrous and potassium phosphate dibasic 

anhydrous were purchased from Sigma Chemical Company (St. Louis, MO) and used as received.  

Acetonitrile, methanol and sodium phosphate monobasic were purchased from Fisher Scientific 

(Pittsburgh, PA).  Sodium phosphate dibasic heptahydrate was purchased from Acros Organics 

(Pittsburgh, PA).  Acetic acid was purchased from Mallinckrodt Baker (Phillipsburg, NJ).  Water 

used in this study was filtered through a double deionized purification system (Milli Q Plus Water 

System) from Millipore Co. (Bedford, MA).   
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Cocrystal synthesis   

Cocrystals were prepared by reaction crystallization method16 at room temperature.  CBZ-

SLC was prepared by adding 1:1 molar ratio of CBZ and SLC in acetonitrile solution containing 

0.1 M SLC.  Solid phases were characterized by X-ray powder diffraction (XRPD) and differential 

scanning calorimetry (DSC). 

Cocrystal dissolution measurements  

Constant surface area dissolution rates of CBZ-SLC were determined using a rotating disk 

apparatus.  Cocrystal powder (~150 mg) was compressed in a stainless steel rotating disk die with 

a tablet radius of 0.50 cm at approximately 85 MPa for 2 minutes using a hydraulic press.  The die 

containing the compact was mounted onto a stainless steel shaft attached to an overhead, variable 

speed motor.  The disk was exposed to 150 mL of the dissolution medium in a water jacketed 

beaker with temperature controlled at 25°C and a rotation speed of 200 rpm was used.  Dissolution 

media containing different buffer concentrations in 150 mM SLS were prepared on the day of the 

experiment.  The bulk solution pH did not change significantly throughout the experiment.  Sink 

conditions were maintained throughout the experiments by ensuring the concentrations at the last 

time point of the dissolution were less than 10% of the cocrystal solubility.  Solution 

concentrations were measured using HPLC and solid phases after dissolution were analyzed by 

XRPD.   

HPLC   

Waters HPLC equipped with a photodiode array detector was used for all analysis.  The 

mobile phase was composed of 55% methanol and 45% water with 0.1% trifluoroacetic acid and 

the flow rate of 1 mL/min was used.  Separation was achieved using Waters, Atlantis, T3 column 
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(5.0 µm, 100 Å) with dimensions of 4.6 x 250 mm.  The sample injection volume was 20 µL.  The 

wavelengths for the analytes were as follows: 284 nm for CBZ and 303 nm for SLC.    

XRPD   

XRPD diffractograms of solid phases were collected with a benchtop Rigaku Miniflex X-

ray diffractometer using Cu-Kα radiation (λ = 1.54 Å), a tube voltage of 30 kV, and a tube current 

of 15 mA.  Data was collected from 5 to 40° at a continuous scan rate of 2.5°/min. 

DSC   

Crystalline samples were analyzed by DSC using a TA instrument 2910 MDSC system 

equipped with a refrigerated cooling unit.  All experiments were performed by heating the samples 

at a rate of 10 °C/min under a dry nitrogen atmosphere.  Temperature and enthalpy of the 

instrument were calibrated using high purity indium standard.   

Theoretical 

The present model here describes the dissolution of 1:1 cocrystals with nonionizable drugs 

and monoacidic coformers in buffered media containing surfactant.  This model is an extension 

from the previous model developed based on the surface saturation model with simultaneous 

chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving surface15.  

Besides the chemical reactions with water and hydroxide ion, the acidic coformer also reacts with 

the basic components of the buffer in the dissolution medium.  Although the mass transport model 

developed here is for the monoprotic buffer systems, it is also applicable to diprotic or even 

triprotic buffer systems as long as the pKa value used is close to the bulk pH of the dissolution 

medium.  This assumption has been tested for both diprotic and triprotic buffer systems3.  By using 

relevant pKa values, the flux predictions from the monoprotic model have been shown to be 
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identical to those from the diprotic and triprotic models 3.  These findings suggest that the transport 

mechanism of buffer is governed by the dissociation of the dominated buffer species in solution3.  

The chemical equilibria and the equations for equilibrium constants during the dissolution 

of 1:1 cocrystal, RHA with R as the nonionizable drug and HA as the weakly acidic coformer in 

buffered solution containing surfactant with B as the basic and BH+ as the conjugate acidic buffer 

species, can be described as follows: 

(𝑅𝐻𝐴)𝑠𝑜𝑙𝑖𝑑 ⇋ 𝑅𝑎𝑞 + 𝐻𝐴𝑎𝑞             (6.1) 

𝐾𝑠𝑝 = [𝑅]𝑎𝑞[𝐻𝐴]𝑎𝑞              (6.2) 

𝑅𝑎𝑞 + 𝑚 ⇋ 𝑅𝑚              (6.3)  

𝐾𝑠
𝑅 =

[𝑅]𝑚

[𝑅]𝑎𝑞[𝑚]
               (6.4)   

𝐻𝐴𝑎𝑞 + 𝑚 ⇋ 𝐻𝐴𝑚              (6.5) 

𝐾𝑠
𝐻𝐴 =

[𝐻𝐴]𝑚

[𝐻𝐴]𝑎𝑞[𝑚]
              (6.6) 

𝐻𝐴𝑎𝑞 ⇋ 𝐻3𝑂+ + 𝐴𝑎𝑞
−               (6.7) 

𝐾𝑎
𝐻𝐴 =

[𝐻3𝑂+][𝐴−]𝑎𝑞

[𝐻𝐴]𝑎𝑞
              (6.8)   

𝐻𝐴𝑎𝑞 + 𝑂𝐻− ⇋ 𝐻2𝑂 + 𝐴𝑎𝑞
−              (6.9) 

𝐾1 =
[𝐴−]𝑎𝑞

[𝐻𝐴]𝑎𝑞[𝑂𝐻−]
            (6.10) 

𝐵𝐻𝑎𝑞
+ ⇋ 𝐵𝑎𝑞 + 𝐻+            (6.11) 
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𝐾𝑎
𝐵 =

[𝐻+][𝐵]𝑎𝑞

[𝐵𝐻+]𝑎𝑞
             (6.12) 

𝐵𝐻𝑎𝑞
+ + 𝑂𝐻− ⇋ 𝐵𝑎𝑞 + 𝐻2𝑂           (6.13) 

𝐾2 =
[𝐵]𝑎𝑞

[𝐵𝐻+]𝑎𝑞[𝑂𝐻−]
            (6.14) 

𝐻𝐴𝑎𝑞 + 𝐵𝑎𝑞 ⇋ 𝐵𝐻𝑎𝑞
+ + 𝐴𝑎𝑞

−            (6.15) 

𝐾3 =
[𝐵𝐻+]𝑎𝑞[𝐴−]𝑎𝑞

[𝐵]𝑎𝑞[𝐻𝐴]𝑎𝑞
=

𝐾𝑠
𝐻𝐴

𝐾𝑎
𝐵            (6.16) 

where 𝐾𝑠𝑝 is the solubility product of the cocrystal, 𝐾𝑠
𝑅 is the solubilization constant of R and 𝐾𝑠

𝐻𝐴 

is the solubilization constant of HA, m is the micellar concentration in solution and is equal to the 

total surfactant concentration minus the critical micellar concentration (CMC), 𝐾𝑎
𝐻𝐴 and 𝐾𝑎

𝐵 are 

the ionization constants of HA and B.  Subscript aq denotes the aqueous phase and m denotes the 

micellar phase.   The underlying assumption in this analysis is that the buffer species and ionized 

form of coformer are not solubilized by surfactant. 

 In the presence of surfactant, the stoichiometric solubility of RHA can be predicted using 

the following equation: 

𝑆𝑐𝑐 = √𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑚])(1 +

𝐾𝑎

𝐻+
+ 𝐾𝑠

𝐻𝐴[𝑚])        (6.17) 

Detailed derivations of the mass transport analyses based on the surface saturation model15 

developed previously to describe the dissolution of cocrystals are provided in Appendix 6A.  The 

mass transport analyses are based on the following assumptions: chemical reactions and solute 

solubilization within the diffusion layer occur instantaneously, free solutes and micelles are in 

equilibrium throughout the diffusion layer, the ionized form of the coformer and buffer species are 
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not solubilized by surfactant, aqueous diffusivities of the ionized and non-ionized forms are the 

same.  For simplification of the interfacial pH prediction, the effective diffusivity of the coformer 

is assumed to be the same as the aqueous diffusivity because it is not significantly solubilized by 

the surfactant.  In this study, the effect of surfactant concentration on the viscosity of dissolution 

media was not accounted for the mass transport analyses.  Although the viscosity of the dissolution 

media may approximately double at high surfactant concentration (eg: 300 mM)17, its impact on 

the hydrodynamic boundary layer is small.  The viscosity of dissolution media is not expected to 

significantly affect the diffusion of free species as they are assumed to be diffusing through the 

aqueous phase where the surfactant concentration is equal to the CMC and the viscosity is not 

substantially different from water18. The effect of viscosity on the diffusion coefficient of the 

micelles incorporates the effect of viscosity changes.    

Results and discussion 

Physicochemical properties 

In this study, the effect of buffer on the dissolution of CBZ-SLC was evaluated using 

acetate and phosphate buffers in 150 mM SLS solutions.  This surfactant concentration was 

maintained constant for all dissolution studies in order to rule out the surfactant effect on the 

dissolution rates of the cocrystal.  In the absence of buffering agent, 150 mM SLS is sufficient to 

stabilize CBZ-SLC from the conversion back to the stable drug form during dissolution at bulk pH 

up to 815.  However, this concentration may not be sufficient for stabilizing the cocrystal in certain 

buffer concentrations due to the ability of buffer in elevating the interfacial pH.  Consequently, 

solid phase transformation may be observed in some of the dissolution experiments.  

Physicochemical properties of CBZ-SLC and its components are required for the predictions of 
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interfacial pH and flux.  The solubility product of CBZ-SLC was determined to be 0.40 mM2, and 

the solubilization constant of CBZ is 0.43 mM-1 and SLC is 0.060 mM-1 in 150 mM SLS15.   The 

pKa values and diffusion coefficients for the cocrystal components and buffer species are 

summarized in Table 6.1.  Although phosphoric acid has three pKa values, only the second one 

was used in this study because the pH of the dissolution media were around this value.  Therefore, 

the relevant buffer species in solutions are monobasic phosphate and dibasic phosphate.   

Table 6.1.  pKa values and diffusion coefficients of cocrystal components and buffer species. 

Compound pKa Diffusion Coefficient (x 10-6 cm2/sec) 

Carbamazepine - 1.48a 

Salicylic Acid 3.0a 7.66a 

Acetate 4.8b 10.9d 

Phosphate 6.6c 8.1c 

a) From reference 15;  

b) From reference 2; 

c) From reference 3; 

d) From reference 4. 

 

Influence of buffer on interfacial pH 

 The pH at the dissolving surface is important for determining the dissolution rates of 

cocrystals with ionizable components and this interfacial pH can be predicted using equation 

6A.36 from Appendix 6A.  The influence of buffering agents on the interfacial pH of CBZ-SLC 

as a function of bulk pH is shown in Figure 6.1.  As shown in Figure 6.1, interfacial pH is 

influenced by both the properties and concentrations of the buffering agents.  The buffer effect on 

interfacial pH is effective at bulk pH around the pKa values of the buffers.  The pKa value of acetate 

buffer is 4.8, so the interfacial pH starts to deviate from the unbuffered system at bulk pH 4 and 

these deviations increase with increasing buffer concentration.  The pKa value of phosphate buffer 

is 6.6, so the deviations in interfacial pH from the unbuffered system do not start until at bulk pH 
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above 5.  In both buffered systems, interfacial pH is elevated due to the chemical reactions between 

the acidic coformer and basic components of the buffers at the dissolving surface, which decrease 

the concentration of hydrogen ion and increase the interfacial pH.  The relative acidity and basicity 

between the buffer and coformer can also play a role on influencing the interfacial pH2.  The 

equilibrium constant from equation 6.16 for acetate and SLC is 63, while for phosphate and SLC 

is 3981.  This means that the phosphate buffer is a lot more basic compared to SLC than acetate 

buffer to SLC.  The lower basicity of acetate could not suppress the self-buffering ability of the 

coformer and allows it to self-buffer the interfacial pH similar to the unbuffered conditions for the 

buffer concentrations studied here.  The self-buffering ability of the coformer vanishes in the more 

basic phosphate buffer system.  Instead of plateauing, the interfacial pH in phosphate buffer 

solutions increases with bulk pH in an attempt to maintain a surface pH as close as to the bulk 

solution pH.                              

(a)                                                                           (b) 

  

Figure 6.1.  Theoretical predictions of interfacial pH for CBZ-SLC as a function of bulk pH in 

different acetate buffer (a) and phosphate buffer (b) concentrations at 150 mM SLS.  No buffer: 

; 15 mM: ; 25 mM: ; 50 mM: .  Interfacial pH were predicted using equation 6A.36 

from Appendix 6A with the physicochemical properties shown in Table 6.1.  
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Evaluation of crital stabilization concentration (CSC)  

 Critical stabiliztion concentration (CSC) is defined as the surfactant concentration required 

to achieve equivalent solubility of the cocrystal and parent drug19-21.  This concentration is pH 

dependent for cocrystals with ionizable components19-21.  Due to the elevation in interfacial pH by 

buffer, the CSC values of CBZ-SLC should be evaluated at the bulk pH of dissolution experiments 

to determine if they are below the SLS concentration (150 mM) used in this study.  The CSC  

values of CBZ-SLC for all the dissoluiton conditions studied in this work are summarized in Table 

6.2.  As shown in this table, the CSC values are below 150 mM SLS for most of the conditions, 

expect for 25 mM phosphate buffer at bulk pH 6.79, 50 mM phosphate buffer at bulk pH 6.78 and 

50 mM acetate buffer at bulk pH 4.85.  Since the CSC values in these conditions are above 150 

mM SLS used in the dissolution experiments, solid phase transformation may occur during 

dissoltuion.  

Table 6.2.  Estimated CSC for CBZ-SLC in different bulk pH, phosphate and acetate buffer 

concentrations. 

Buffer 

Conc. (mM) 

Phosphate buffer Acetate buffer 

pH CSCb 

(mM) 

pH CSCb 

(mM) Bulk Interfaciala Bulk Interfaciala 

15 6.84 4.5 148 - - - 

25 
6.79 4.8 289 

4.80 4.4 120 
6.03 4.1 63 

50 
6.78 5.3 861 4.85 4.6 181 

6.03 4.5 127 3.97 3.8 36 

a) Calculated using equation 6A.36 from Appendix 6A with the physicochemical properties shown 

in Table 6.1. 

b) Calculated using previously developed equation20. 

 

Influence of buffer on dissolution  

 Effect of buffer on the dissolution rates of CBZ-SLC was evaluated by performing 

dissolution studies in 150 mM SLS at different buffer concentrations and bulk pH.  For acetate 
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buffer, the dissolution profiles of CBZ-SLC in terms of components’ concentrations are shown in 

Figure 6.2.  Among the three dissolution conditions, only the 50 mM acetate buffer at bulk pH 

4.85 was expected to have cocrystal conversion during dissolution as predicted by the CSC value 

shown in Table 6.2.  This conversion was confirmed by the nonlinear dissolution behavior shown 

in Figure 6.2 and a mixed phase of CBZ-SLC and the dihydrated form of CBZ after dissolution by 

XRPD analysis.  Theoretically, the dissolution of CBZ-SLC in 50 mM acetate buffer at bulk pH 

4.85 should be faster than in 25 mM acetate buffer at bulk pH 4.80 due to the evaluation in 

interfacial pH.  However, the dissolution rates of CBZ-SLC in these conditions are nearly the same 

as shown in Figure 6.2 due to the conversion of the cocrystal in 50 mM acetate buffer at bulk pH 

4.85.  The dissolution profiles of CBZ-SLC in terms of components’ concentrations for phosphate 

buffer are shown in Figure 6.3 and 6.4.  In Figure 6.3, the dissolution experiments were performed 

in 15, 25 and 50 mM phosphate buffer at bulk pH around 6.8.  Among these conditions, CBZ-SLC 

is only stable in 15 mM phosphate buffer and these results are consistent with the CSC predictions 

shown in Table 6.2.  The solid phase transformation of CBZ-SLC in both 25 and 50 mM phosphate 

buffer was demonstrated by the nonlinear dissolution behavior shown in Figure 6.3 and the XRPD 

analyses after dissolution.  The dissolution rate of CBZ-SLC was only slightly higher in 50 mM 

phosphate buffer during the early dissolution time points and this did not last very long as the 

concentrations of both components became lower than those in 25 mM phosphate buffer by 10 

minutes.  These dissolution profiles suggest that the conversion rate of CBZ-SLC is much faster 

in 50 mM phosphate buffer than in 25 mM phosphate buffer.  As shown in Table 6.2, the CSC for 

CBZ-SLC in 50 mM phosphate buffer is 5.7x larger than 150 mM SLS, while for 25 mM phosphate 

buffer is only 1.9x.  The higher supersaturation generated with respect to the parent drug during 

the dissolution of CBZ-SLC in 50 mM phosphate buffer leads to faster conversion rate compared 
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to that in 25 mM phosphate buffer.  In order to capture the true dissolution rates of CBZ-SLC, 

linear regressions were fitted using the first 4 data points for 25 mM phosphate buffer and first 3 

data points for 50 mM phosphate buffer.  The dissolution experiments of CBZ-SLC in 25 and 50 

mM phosphate buffer at bulk pH 6 are shown in Figure 6.4.  There was no solid phase 

transformation observed during dissolution for these two conditions, which is expected because 

the CSC values are below 150 mM SLS.            

(a)                                                                          (b) 

 

Figure 6.2.  Dissolution profiles of CBZ-SLC in terms of CBZ concentrations (a) and SLC 

concentrations (b) in 150 mM SLS at different bulk pH and acetate buffer concentrations.  25 mM 

acetate buffer at pH 4.80: ; 50 mM acetate buffer at pH 4.85: ; 50 mM acetate buffer at pH 3.97:

.  The solid circles are the experimental data and the lines are the fitted linear regressions. 
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(a)                                                                          (b)  

  

Figure 6.3.  Dissolution profiles for CBZ-SLC in terms of CBZ concentrations (a) and SLC 

concentrations (b) in 150 mM SLS at different bulk pH and phosphate buffer concentrations.  15 

mM phosphate buffer at pH 6.84: ; 25 mM phosphate buffer at pH 6.79: ; 50 mM phosphate 

buffer at pH 6.78: .  The solid circles are the experimental data and the lines are the fitted linear 

regressions. 

 

(a)                                                                            (b) 

 

Figure 6.4.  Dissolution profiles for CBZ-SLC in terms of CBZ concentrations (a) and SLC 

concentrations (b) in 150 mM SLS at different bulk pH and phosphate buffer concentrations.  25 

mM phosphate buffer at pH 6.03: ; 50 mM phosphate at pH 6.03: .  The solid circles are the 

experimental points and the lines are the fitted linear regressions. 
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Evaluation of the mass transport model 

 To evaluate the predictive power of the mass transport model, the flux of CBZ-SLC in 

different buffer concentrations were calculated from the dissolution rates and compared to the 

theoretical predictions.  The influence of pH and buffer concentration on the dissolution of CBZ-

SLC is shown in Figure 6.5.  The dissolution pH dependence of CBZ-SLC relies on the interfacial 

pH rather than bulk pH.  Buffering agents have the ability to alter the interfacial pH and this ability 

is dependent on the properties and concentrations of the buffer.   Therefore, the dissolution pH 

dependence of CBZ-SLC can vary depending on the types and concentrations of the buffer.  As 

buffer concentration increases, interfacial pH increases due to the consumption of hydrogen ion at 

the dissolving surface and consequently, the flux of CBZ-SLC would increase because of the 

acidity of the coformer.  Due to the rapid conversion of the cocrystal back to the parent drug, the 

concentration profile of CBZ-SLC in pH 6.78, 50 mM phosphate buffer shown in Figure 6.3 (a) 

represents the drug dissolution more than the cocrystal dissolution.  Therefore, the flux of CBZ-

SLC at this condition was calculated using the first 3 data points from the dissolution concentration 

profile in terms of SLC shown in Figure 6.3 (b) and compared to the theoretical flux in Figure 6.5.  

As shown in Figure 6.5, the theoretical predictions agree reasonably well with the experimental 

data.  Some large deviations, such as at bulk pH 4.85, 50 mM acetate buffer and pH 6.78, 50 mM 

phosphate buffer, are due to the conversion of the cocrystal during dissolution.  The precipitation 

of the dihydrated form of CBZ at the dissolving surface impeded the dissolution of CBZ-SLC and 

resulted in lower flux.  The mass transport model in this study has not considered the cocrystal 

conversion, so the flux predictions would be overestimated when conversion happens during 

dissolution.   
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(a)                                                                          (b) 

 

Figure 6.5.  Flux of CBZ-SLC at 150 mM SLS as a function of bulk pH in acetate buffer (a) and 

phosphate buffer (b) solutions.  50 mM buffer: ; 25 mM buffer: ;15 mM buffer: ; and 0 

mM buffer: .  Solid circles are experimental flux values of CBZ-SLC in terms of CBZ, except 

for pH 6.78, 50 mM phosphate buffer, which is in terms of SLC.  Solid lines are theoretical flux 

predictions.  The theoretical and experiment flux in 0 mM buffer are from reference 15.  The flux 

in the presence of buffer were calculated using equation 6A.40 from Appendix 6A based on the 

interfacial pH predicted in Figure 6.1.  

 

Conclusions 

 The mass transport model for the dissolution of 1:1 cocrystals with nonionizable drugs and 

monoacidic coformers has been successfully extended to evaluate the effect of buffer on the 

dissolution rates of these cocrystals.   The model was extended to include the simultaneous 

chemical reactions of the acidic coformer with the basic buffer species within the hydrodynamic 

boundary layer.  The influence of buffer on interfacial pH can be accurately predicted using this 

mass transport model and the ability of buffer in altering this pH is dependent on the pKa value, 

diffusion coefficient and concentration of the buffer.  The two buffering agents used in this study, 

acetate and phosphate buffers, elevate the interfacial pH of CBZ-SLC in 150 mM SLS compared 

to that without buffer and this elevation increases with increasing buffer concentration.  Based on 
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the interfacial pH predictions, the flux of CBZ-SLC can be adequately predicted as a function of 

buffer concentration.  Due to the acidity of the coformer, the flux of CBZ-SLC increases as a 

function of buffer concentration because interfacial pH is evaluated by the presence of buffer.  This 

study emphasizes the importance of including any parameters that can influence the pH at the 

dissolving surface in the mass transport analyses in order to obtain accurate flux predictions for 

ionizable compounds.     
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APPENDIX 6A  

The flux of all the species across the diffusion layer includes both the diffusion and 

chemical reactions happening during dissolution.  At steady state, the diffusion and simultaneous 

chemical reactions of the individual species within the diffusion layer can be written using Fick’s 

law as follows:  

𝜕[𝑅]𝑎𝑞

𝜕𝑡
= 𝐷𝑅𝑎𝑞

𝜕2 [𝑅]𝑎𝑞

𝜕𝑥2 + 𝜙1 = 0         (6A.1) 

𝜕[𝑅]𝑚

𝜕𝑡
= 𝐷𝑅𝑚

𝜕2 [𝑅]𝑚

𝜕𝑥2 + 𝜙2 = 0         (6A.2) 

𝜕[𝐻𝐴]𝑎𝑞

𝜕𝑡
= 𝐷𝐻𝐴𝑎𝑞

𝜕2 [𝐻𝐴]𝑎𝑞

𝜕𝑥2 + 𝜙3 = 0         (6A.3) 

𝜕[𝐴−]𝑎𝑞

𝜕𝑡
= 𝐷𝐴𝑎𝑞

−
𝜕2 [𝐴−]𝑎𝑞

𝜕𝑥2 + 𝜙4 = 0         (6A.4) 

𝜕[𝐻𝐴]𝑚

𝜕𝑡
= 𝐷𝐻𝐴𝑚

𝜕2 [𝐻𝐴]𝑚

𝜕𝑥2 + 𝜙5 = 0         (6A.5) 

𝜕[𝑂𝐻−]

𝜕𝑡
= 𝐷𝑂𝐻−

𝜕2 [𝑂𝐻−]

𝜕𝑥2 + 𝜙6 = 0         (6A.6) 

𝜕[𝐻+]

𝜕𝑡
= 𝐷𝐻+

𝜕2 [𝐻+]

𝜕𝑥2 + 𝜙7 = 0          (6A.7) 

∂[BH+]𝑎𝑞

∂t
= DBH+

∂2 [BH+]𝑎𝑞

∂x2
+ ϕ8 = 0         (6A.8) 

∂[𝐵]𝑎𝑞

∂t
= D𝐵

∂2 [B]𝑎𝑞

∂x2
+ ϕ9 = 0          (6A.9) 
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where ϕ1-9 are the reaction rate functions.  At equilibrium, the reaction rate of the reactant should 

be the opposite of the product.  Based on the chemical equilibria, the followings can be written: 

𝜙1 = −𝜙2                     (6A.10) 

𝜙3 = −𝜙4 − 𝜙5                    (6A.11) 

ϕ8 = −ϕ9                     (6A.12) 

Because of A- is a product of the reactions between HA, B and BH+, so reaction rate of A- can be 

reflected by the reaction rate of B, H+ and OH-, therefore, 

𝜙4 = 𝜙7 − 𝜙6 − 𝜙9                    (6A.13) 

Based on equation 6A.13, equation 6A.11 can be written as:  

𝜙3 = 𝜙6 + 𝜙9 − 𝜙5 − 𝜙7                   (6A.14) 

Based on the equations 6A.10, 6A.11, 6A.12 and 6A.14, the following mass balance equations can 

be written:  

𝐷𝑅𝑎𝑞

𝑑2 [𝑅]𝑎𝑞

𝑑𝑥2 = −𝐷𝑅𝑚

𝑑2 [𝑅]𝑚

𝑑𝑥2                    (6A.15) 

𝐷𝐻𝐴𝑎𝑞

𝑑2 [𝐻𝐴]𝑎𝑞

𝑑𝑥2 = −𝐷𝐴𝑎𝑞
−

𝑑2[𝐴−]𝑎𝑞

𝑑𝑥2 − 𝐷𝐻𝐴𝑚

𝑑2 [𝐻𝐴]𝑚

𝑑𝑥2                 (6A.16) 

𝐷𝐻𝐴𝑎𝑞

𝑑2 [𝐻𝐴]𝑎𝑞

𝑑𝑥2 = 𝐷𝑂𝐻−
𝑑2 [𝑂𝐻−]

𝑑𝑥2 + 𝐷𝐵𝑎𝑞

𝑑2 [𝐵]𝑎𝑞

𝑑𝑥2 − 𝐷𝐻+
𝑑2[𝐻+]

𝑑𝑥2 − 𝐷𝐻𝐴𝑚

𝑑2 [𝐻𝐴]𝑚

𝑑𝑥2             (6A.17) 

𝐷𝐵𝑎𝑞

𝑑2 [𝐵]𝑎𝑞

𝑑𝑥2 = −𝐷𝐵𝐻𝑎𝑞
+

𝑑2 [𝐵𝐻+]𝑎𝑞

𝑑𝑥2                   (6A.18) 

Integrating equations 6A.15 to 6A.18 once gives: 
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𝐷𝑅𝑎𝑞

𝑑[𝑅]𝑎𝑞

𝑑𝑥
= −𝐷𝑅𝑚

𝑑 [𝑅]𝑚

𝑑𝑥
+ 𝐶1                  (6A.19) 

𝐷𝐻𝐴𝑎𝑞

𝑑 [𝐻𝐴]𝑎𝑞

𝑑𝑥
= −𝐷𝐴𝑎𝑞

−
𝑑[𝐴−]𝑎𝑞

𝑑𝑥
− 𝐷𝐻𝐴𝑚

𝑑 [𝐻𝐴]𝑚

𝑑𝑥
+ 𝐶2                (6A.20) 

𝐷𝐻𝐴𝑎𝑞

𝑑 [𝐻𝐴]𝑎𝑞

𝑑𝑥
= 𝐷𝑂𝐻−

𝑑 [𝑂𝐻−]

𝑑𝑥
+ 𝐷𝐵𝑎𝑞

𝑑 [𝐵]𝑎𝑞

𝑑𝑥
− 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
− 𝐷𝐻𝐴𝑚

𝑑 [𝐻𝐴]𝑚

𝑑𝑥
+ 𝐶3            (6A.21) 

𝐷𝐵𝑎𝑞

𝑑 [𝐵]𝑎𝑞

𝑑𝑥
= −𝐷𝐵𝐻𝑎𝑞

+
𝑑 [𝐵𝐻+]𝑎𝑞

𝑑𝑥
+ 𝐶4                  (6A.22) 

Since 𝐴𝑎𝑞
−  is the product of the reaction between HA, B and OH-, so its flux can be reflected by B, 

OH- and H+: 

−𝐷𝐴𝑎𝑞
−

𝑑[𝐴−]𝑎𝑞

𝑑𝑥
= 𝐷𝑂𝐻−

𝑑 [𝑂𝐻−]

𝑑𝑥
+ 𝐷𝐵𝑎𝑞

𝑑 [𝐵]𝑎𝑞

𝑑𝑥
− 𝐷𝐻+

𝑑[𝐻+]

𝑑𝑥
               (6A.23) 

With this mass balance relationship, it can be seen that  

𝐶2 = 𝐶3                     (6A.24) 

Since the concentration of buffer is conserved, the total flux of buffer should be equal to zero, 

therefore,  

𝐶4 = 0                      (6A.25) 

Integrating equations 6A.19 to 6A.22 once gives:  

𝐷𝑅𝑎𝑞
[𝑅]𝑎𝑞 = −𝐷𝑅𝑚

[𝑅]𝑚 + 𝐶1𝑥 + 𝐶5                 (6A.26)   

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞 = −𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚−𝐷𝐴𝑎𝑞
− [𝐴−]𝑎𝑞 + 𝐶2𝑥 + 𝐶6               (6A.27) 

𝐷𝐻𝐴𝑎𝑞
[𝐻𝐴]𝑎𝑞 = 𝐷𝑂𝐻−[𝑂𝐻−] + 𝐷𝐵𝑎𝑞

[𝐵]𝑎𝑞 − 𝐷𝐻+[𝐻+]−𝐷𝐻𝐴𝑚
[𝐻𝐴]𝑚 + 𝐶3𝑥 + 𝐶7            (6A.28) 

𝐷𝐵𝑎𝑞
[𝐵]𝑎𝑞 + 𝐷𝐵𝐻𝑎𝑞

+ [𝐵𝐻+]𝑎𝑞 = 𝐶8                  (6A.29) 
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Boundary conditions 

Based on the surface saturation model and solubility of cocrystal under surfactant conditions, the 

following boundary conditions for each species can be written: 

At x = 0:        at x = h: 

[𝑅]𝑎𝑞,0 =
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

   [𝑅]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝐻𝐴]𝑎𝑞,0 = (
𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
  [𝐻𝐴]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝑅]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝑅]𝑚,ℎ = 0 (under sink condition) 

[𝐻𝐴]𝑚,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝐻𝐴]𝑚,ℎ = 0 (under sink condition) 

[𝐴−]𝑎𝑞,0 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛      [𝐴−]𝑎𝑞,ℎ = 0 (under sink condition) 

[𝐵]𝑎𝑞 = [𝐵]0       [𝐵]𝑎𝑞 = [𝐵]ℎ 

[𝐵𝐻+]𝑎𝑞 = [𝐵𝐻+]0      [𝐵𝐻+]𝑎𝑞 = [𝐵𝐻+]ℎ 

[𝐻+] = [𝐻+]0       [𝐻+] = [𝐻+]ℎ 

[𝑂𝐻−] = [𝑂𝐻−]0      [𝑂𝐻−] = [𝑂𝐻−]ℎ 

Evaluation of interfacial pH   

Applying the above boundary conditions to equations 6A.27 to 6A.29, at x = 0:  

𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
= −𝐷𝐻𝐴𝑚

[𝐻𝐴]𝑚,0−𝐷𝐴𝑎𝑞
− [𝐴−]𝑎𝑞,0 + 𝐶6         (6A.30) 
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𝐷𝐻𝐴𝑎𝑞
(

𝐷𝑅𝑒𝑓𝑓

𝐷𝐻𝐴𝑒𝑓𝑓

)2/3
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚]
= 𝐷𝑂𝐻−[𝑂𝐻−]0 + 𝐷𝐵𝑎𝑞

[𝐵]0 −

𝐷𝐻+[𝐻+]0−𝐷𝐻𝐴𝑚
[𝐻𝐴]𝑚,0 + 𝐶7                  (6A.31) 

𝐷𝐵𝑎𝑞
[𝐵]0 + 𝐷𝐵𝐻𝑎𝑞

+ [𝐵𝐻+]0 = 𝐶8                  (6A.32) 

and at x = h, since sink conditions are assumed, 6A.27 to 6A.29 can be written as: 

𝐶2ℎ + 𝐶6 = 0                     (6A.33) 

0 = 𝐷𝑂𝐻−[𝑂𝐻−]ℎ + 𝐷𝐵𝑎𝑞
[𝐵]ℎ − 𝐷𝐻+[𝐻+]ℎ + 𝐶3ℎ + 𝐶7               (6A.34) 

𝐷𝐵𝑎𝑞
[𝐵]ℎ + 𝐷𝐵𝐻𝑎𝑞

+ [𝐵𝐻+]ℎ = 𝐶8                  (6A.35) 

Combining equations 6A.30 to 6A.35 and algebraically solving for interfacial pH, [H+]0, yields the 

following equation: 

𝐴[𝐻+]0
7

+ 𝐵[𝐻+]0
6

+ 𝐶[𝐻+]0
5

+ 𝐷[𝐻+]0
4

+ 𝐸[𝐻+]0
3

+ 𝐹[𝐻+]0
2

+ 𝐺[𝐻+]0 + 𝐻 = 0 (6A.36) 

where 

𝐴 = (𝐷𝐻+𝐷𝐵𝐻𝑎𝑞
+ )2(1 + 𝐾𝑠

𝐻𝐴[𝑚]); 

𝐵 = 2𝐷𝐻+𝐷𝐵𝐻𝑎𝑞
+ [𝐷𝐻+DBaq

Ka
B + 𝐷𝐵𝐻𝑎𝑞

+ (DBaq
[B]h − 𝐷𝐻+[𝐻+]ℎ + 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)](1 +

𝐾𝑠
𝐻𝐴[𝑚]); 

𝐶 = 2𝐷𝐻+𝐷𝐵𝐻𝑎𝑞
+ [DBaq

Ka
B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐵𝐻𝑎𝑞

+ [𝐵𝐻+]ℎ − 𝐷𝐻+[𝐻+]ℎ) − 𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞
+ ] (1 +

𝐾𝑠
𝐻𝐴[𝑚]) + (1 + 𝐾𝑠

𝐻𝐴[𝑚]) [𝐷𝐻+DBaq
Ka

B + 𝐷𝐵𝐻𝑎𝑞
+ (DBaq

[B]h − 𝐷𝐻+[𝐻+]ℎ + 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)]
2

+

2Ka
HA𝐷𝐻+𝐷𝐵𝐻𝑎𝑞

+ [𝐷𝐻+DBaq
Ka

B + 𝐷𝐵𝐻𝑎𝑞
+ (DBaq

[B]h − 𝐷𝐻+[𝐻+]ℎ + 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)]; 

𝐷 = 2 [𝐷𝐻+DBaq
Ka

B + 𝐷𝐵𝐻𝑎𝑞
+ (DBaq

[B]h − 𝐷𝐻+[𝐻+]ℎ +

𝐷𝑂𝐻−[𝑂𝐻−]ℎ)] [DBaq
Ka

B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐵𝐻𝑎𝑞
+ [𝐵𝐻+]ℎ − 𝐷𝐻+[𝐻+]ℎ) − 𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞

+ ] (1 +
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𝐾𝑠
𝐻𝐴[𝑚]) − 2𝐷𝐻+𝐷𝐵𝐻𝑎𝑞

+ 𝐷𝑂𝐻−𝐾𝑤DBaq
Ka

B(1 + 𝐾𝑠
𝐻𝐴[𝑚]) +

2𝐷𝐻+𝐷𝐵𝐻𝑎𝑞
+ Ka

HA [DBaq
Ka

B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐵𝐻𝑎𝑞
+ [𝐵𝐻+]ℎ − 𝐷𝐻+[𝐻+]ℎ) − 𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞

+ ] +

[𝐷𝐻+DBaq
Ka

B + 𝐷𝐵𝐻𝑎𝑞
+ (DBaq

[B]h − 𝐷𝐻+[𝐻+]ℎ + 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)]2Ka
HA; 

𝐸 = [DBaq
Ka

B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐵𝐻𝑎𝑞
+ [𝐵𝐻+]ℎ − 𝐷𝐻+[𝐻+]ℎ) − 𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞

+ ]
2

(1 +

𝐾𝑠
𝐻𝐴[𝑚]) − 2𝐷𝑂𝐻−𝐾𝑤DBaq

Ka
B [𝐷𝐻+DBaq

Ka
B + 𝐷𝐵𝐻𝑎𝑞

+ (DBaq
[B]h − 𝐷𝐻+[𝐻+]ℎ +

𝐷𝑂𝐻−[𝑂𝐻−]ℎ)] (1 + 𝐾𝑠
𝐻𝐴[𝑚]) − 2𝐷𝐻+𝐷𝐵𝐻𝑎𝑞

+ 𝐷𝑂𝐻−𝐾𝑤DBaq
Ka

BKa
HA + 2 [𝐷𝐻+DBaq

Ka
B +

𝐷𝐵𝐻𝑎𝑞
+ (DBaq

[B]h − 𝐷𝐻+[𝐻+]ℎ + 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)] [DBaq
Ka

B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐵𝐻𝑎𝑞
+ [𝐵𝐻+]ℎ −

𝐷𝐻+[𝐻+]ℎ) − 𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞
+ ] Ka

HA − (𝐷𝐴𝑎𝑞
−

1/3
𝐷𝑅𝑒𝑓𝑓

2/3
DBaq

Ka
HA√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚]))2; 

𝐹 = Ka
HA [DBaq

Ka
B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐵𝐻𝑎𝑞

+ [𝐵𝐻+]ℎ − 𝐷𝐻+[𝐻+]ℎ) − 𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞
+ ]

2

−

2𝐷𝑂𝐻−𝐾𝑤DBaq
Ka

B [DBaq
Ka

B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ − 𝐷𝐵𝐻𝑎𝑞
+ [𝐵𝐻+]ℎ − 𝐷𝐻+[𝐻+]ℎ) −

𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞
+ ] (1 + 𝐾𝑠

𝐻𝐴[𝑚]) − 2𝐷𝑂𝐻−𝐾𝑤DBaq
Ka

BKa
HA [𝐷𝐻+DBaq

Ka
B + 𝐷𝐵𝐻𝑎𝑞

+ (DBaq
[B]h −

𝐷𝐻+[𝐻+]ℎ + 𝐷𝑂𝐻−[𝑂𝐻−]ℎ)] − 2Ka
B(𝐷𝐴𝑎𝑞

−
1/3

𝐷𝑅𝑒𝑓𝑓

2/3
DBaq

Ka
HA√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚]))2; 

𝐺 = (𝐷𝑂𝐻−𝐾𝑤DBaq
Ka

B)2(1 + 𝐾𝑠
𝐻𝐴[𝑚]) − 2𝐷𝑂𝐻−𝐾𝑤DBaq

Ka
BKa

HA [DBaq
Ka

B (𝐷𝑂𝐻−[𝑂𝐻−]ℎ −

𝐷𝐵𝐻𝑎𝑞
+ [𝐵𝐻+]ℎ − 𝐷𝐻+[𝐻+]ℎ) − 𝐷𝑂𝐻−𝐾𝑤𝐷𝐵𝐻𝑎𝑞

+ ] − (𝐷𝐴𝑎𝑞
−

1/3
𝐷𝑅𝑒𝑓𝑓

2/3
DBaq

Ka
HAKa

B√𝐾𝑠𝑝(1 + 𝐾𝑠
𝑅[𝑚]))2; 

𝐻 = Ka
HA(𝐷𝑂𝐻−𝐾𝑤DBaq

Ka
B)2. 

Evaluation of flux of the cocrystal components:   

Applying the boundary conditions to equation 6A.26, at x = 0: 

𝐷𝑅𝑎𝑞

√𝐾𝑠𝑝(1+𝐾𝑠
𝑅[𝑚])(1+

𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

= −𝐷𝑅𝑚
𝐾𝑠

𝑅[𝑚]
√𝐾𝑠𝑝(1+𝐾𝑠

𝑅[𝑚])(1+
𝐾𝑎

𝐻0
++𝐾𝑠

𝐻𝐴[𝑚])

1+𝐾𝑠
𝑅[𝑚]

+ 𝐶5           (6A.37) 

and at x = h, assuming sink conditions: 

0 = 𝐶1ℎ + 𝐶5                                (6A.38) 

Combining the above equations and solving for −𝐶1 for the flux of the cocrystal in terms of drug: 
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𝐽𝑅 =
𝐷𝑅𝑒𝑓𝑓

ℎ𝑅
√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚])(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])                (6A.39) 

By substituting the thickness of the hydrodynamic boundary layer for rotating disk (ℎ =

1.612𝐷
1

3𝑣
1

6𝜔−
1

2)1, equation 6A.39 becomes: 

𝐽𝑅 = 0.62𝐷𝑅𝑒𝑓𝑓

2/3
𝜔1/2𝑣−1/6√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚])(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])              (6A.40) 

The flux of the cocrystal in terms of coformer can be also solved in a similar manner by applying 

the boundary conditions to equation 6A.27: 

𝐽𝐻𝐴 =
𝐷𝐻𝐴𝑒𝑓𝑓

1
3 𝐷𝑅𝑒𝑓𝑓

2
3

ℎ𝐻𝐴
√𝐾𝑠𝑝(1 + 𝐾𝑠

𝑅[𝑚])(1 +
𝐾𝑎

𝐻0
+ + 𝐾𝑠

𝐻𝐴[𝑚])               (6A.41) 

By substituting the boundary layer thickness into equation 6A.41, it can be shown to equal to 

equation 6A.40.  This is expected since the flux of drug and coformer should be the same for a 1:1 

cocrystal even though they have different diffusivities.   
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

The fundamental frameworks have been built in this dissertation to understand the 

dissolution behavior of cocrystals under different solution conditions.  Unlike the empirical 

approaches that are based on experimental observations, this thesis relies on the mass transport 

phenomenon to explain the dissolution behavior of cocrystals.  The mechanism of cocrystal 

dissolution has been investigated through the development of mass transport models by applying 

Fick’s law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic 

boundary layer adjacent to the dissolving cocrystal solid surface.  These mass transport models 

have emphasized the importance of physicochemical properties of the cocrystal components and 

solution conditions in determining the rates of cocrystal dissolution.  Overall, this dissertation has 

provided the fundamental knowledge of cocrystal dissolution that is important for the cocrystal 

selection process and formulation development.         

 Based on the differential diffusion between the cocrystal components and the solubility 

product behavior of the cocrystals, two models, the surface saturation and interfacial equilibrium 

models have been developed to describe the dissolution process of cocrystals.  The major 

differences between the two models are related to the boundary conditions of the cocrystal 

components at the dissolving solid-liquid interface due to the different ability of the models in 

maintaining the solubility product of the cocrystal.  The different boundary conditions of the two 

models lead to different mass transport analyses that would result in different theoretical 
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predictions in interfacial pH and flux of the cocrystals.  The better agreement between the 

experimental and theoretical flux makes the surface saturation model superior to the interfacial 

equilibrium model.  Consequently, the surface saturation model was primarily used in this 

dissertation to perform mass transport analyses for evaluating the dissolution behavior of 

cocrystals in different solution conditions.   

By validating the surface saturation model, the common coformer effect on the dissolution 

rates of cocrystals was also evaluated in this thesis.  Similar to pharmaceutical salts, cocrystals 

also exhibit solubility product behavior.  Therefore, the dissolution rates of cocrystals would 

decrease in the presence of excess coformer.  These findings have provided useful insights for the 

effect of differential permeation between the cocrystal components on oral absorption.  The higher 

drug permeation can potentially result in excess coformer in the intestine that can decrease the 

dissolution rate of the continually dissolving cocrystal and consequently, result in lower oral 

absorption.   

One of the important findings of this thesis is that the interfacial pH is the significant factor 

that determines the dissolution rates of cocrystals with ionizable components.  By cocrystallizing 

with different coformers, interfacial pH can be modulated to different extents compared to the 

parent drugs.  For example, CBZ is nonionizable, so it has no ability to alter the pH at the dissolving 

surface and this means that the interfacial pH is the same as the bulk pH.  However, when it 

cocrystallizes with acidic coformers, SAC and SLC, interfacial pH is significantly different from 

the bulk solution pH.  For both cocrystals, interfacial pH decrease as coformers start to ionize and 

reach constant values at bulk pH ranges from 4 to 8 due to the self-buffering ability of the 

cocrystals.  Similarly, KTZ cocrystals with acidic coformers also lower the interfacial pH 

compared to the basic KTZ.  Besides the physicochemical properties of the cocrystals and their 
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components, solution composition, such as buffering agents can also affect the interfacial pH.  The 

presence of acetate and phosphate buffers elevates the interfacial pH of CBZ-SLC due to the 

chemical reactions between the acidic coformer and basic buffer components at the dissolving 

surface.  The mass transport models developed in this thesis are able to capture the interfacial pH 

behavior and allow accurate flux predictions for cocrystals under different solution conditions.  

Cocrystallization can not only modulate the interfacial pH, but also the dissolution pH dependence 

of the parent drugs.     

Besides solubility advantage, cocrystals can also exhibit diffusivity advantage over the 

parent drug in the presence of surfactant.  The effective diffusion coefficients of CBZ as a function 

of SLS were found to be smaller than those of the cocrystals.  These differential diffusion 

coefficients could be potentially due to the different solubility dependence on SLS between the 

drug and cocrystals.  Having higher diffusion coefficients, cocrystals would require lower or even 

no solubility advantages to maintain higher dissolution rates compared to the parent drugs.  One 

of the challenges for current cocrystal development is the potential instability of the highly soluble 

cocrystals in solution.  Therefore, the ability of identifying the conditions in which the cocrystals 

can exhibit both thermodynamic stability and dissolution advantage is important for formulation 

development.        

The important physicochemical parameters have been established in this dissertation to 

predict the in vitro dissolution behavior of cocrystals.  Moving forward with this project, in vivo 

predictive dissolution is the next logical direction.  The dissolution conditions in this thesis did not 

accurately reflect the physiological environment of the human GI tract.  Therefore, future 

dissolution studies should consider using biorelevant media, such as Fasted and Fed State 

Simulated Intestinal Fluids (FaSSIF and FeSSIF) at body temperature.  Both FaSSIF and FeSSIF 
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contain physiologically relevant surfactants (such as bile salts and phospholipids) and buffer 

species that can influence the dissolution behavior of cocrystals.  Although the mass transport 

models in this dissertation have considered both of these parameters, the power of these models in 

predicting the dissolution behavior of cocrystals in biorelevant media still remains to be explored.  

In order to be more physiologically relevant, future dissolution studies should also consider using 

powder dissolution instead of the current rotating disk dissolution.  Although there are more 

parameters, such as particle sizes and surface areas that need to be considered for modeling the 

powder dissolution, the current mass transport analyses have provided the theoretical frameworks 

for the transition from rotating disk to powder dissolution.   

The rates of dissolution and permeation are important for determining the bioavailability 

of oral drugs.  The drug permeability can be different from the coformer permeability, and there is 

a lack of studies to evaluate the effect of this differential permeation on the oral absorption of 

cocrystals.  Chapter 4 has shown that the presence of excess coformer can decrease the dissolution 

rate of cocrystal.  Therefore, it is essential to investigate whether the slower permeation of the 

coformer would result in excess concentration that could alter the dissolution rate of the 

continually dissolving cocrystal.  A dissolution/permeation system would be useful to 

simultaneously evaluate the dissolution and permeation of the cocrystal components to access the 

oral absorption mechanisms of cocrystals.  

The mass transport models in this dissertation were developed with assumptions to keep 

the analyses simple.  However, there are other factors that can influence the cocrystal dissolution 

rate have not been considered, such as ionic strength, viscosity, diffusion of the ionized 

components, solution mediated phase transformation, et al.  Future mass transport analyses should 

consider all these factors to provide more rigorous mass transport models for cocrystal flux 
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predictions.  There is also a lack of studies to demonstrate which model, surface saturation or 

interfacial equilibrium, is more physically realistic.  Future studies should explore more in this 

area.    


