
Methods for Optimal Output Prediction in
Computational Fluid Dynamics

by

Steven Michael Kast

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2016

Doctoral Committee:

Associate Professor Krzysztof J. Fidkowski, Chair
Assistant Professor Tan Bui-Thanh, University of Texas at Austin
Professor Robert Krasny
Professor Philip L. Roe

“S
o this is it,” said Arthur, “We are going to die.”

“Yes,” said Ford, “except... no! Wait a minute!” He suddenly

lunged across the chamber at something behind Arthur’s line of

vision.“What’s this switch?” he cried.

“What? Where?” cried Arthur, twisting round.

“No, I was only fooling,” said Ford, “we are going to die after all.”

DOUGLAS ADAMS

The Hitchhiker’s Guide to the Galaxy

c© Steven Michael Kast 2016

All Rights Reserved

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Krzysztof Fid-

kowksi, for his support and guidance over the past few years. I am incredibly lucky

to have had such an insightful and understanding mentor, and this work would not

have been possible without him. His love of teaching and ability to explain almost

anything are things that I will always admire. Thank you for making my time here

truly enjoyable.

I would also like to thank my committee members: Professor Phil Roe, Professor

Robert Krasny, and Professor Tan Bui-Thanh for taking the time to review this

thesis and for providing helpful suggestions. To Professor Roe for his philosophical

insight and historical perspective, to Professor Krasny for serving as cognate on short

notice, and to Professor Bui-Thanh for his long-distance insight from Texas. I am

also grateful for the support of Professor Smadar Karni.

I am indebted to Professor Leslie Olsen and Professor Pete Washabaugh, who

taught the first Aerospace Engineering class I ever took and who have been continual

sources of inspiration and help over the years. Finally, I would like to thank Professor

Luis Bernal for providing me with my first taste of (experimental) research, even if I

did switch over to the “dark side” of computation in the end.

The Aerospace Engineering staff also deserves a huge thanks. Denise Phelps has

been a life-saver and has made my time here much more enjoyable. Chris Chartier

has also been a frequent source of help and humor.

I would also like to thank my research group members, both past (Isaac Asher

and Marco Ceze) and present (Guodong Chen, Johann Dahm, Kyle Ding, Devina

Sanjaya, and Yukiko Shimizu). Grad school would have been much less fun without

you. Special thanks is owed to Marco for showing me the ropes when I was new to

the group and for being a constant source of both wisdom and humor. Thanks also

to Johann for his friendship over the years, as well as for many interesting discussions

and help related to both research and programming. Last but not least, thanks to

Yuki for her encouragement and support, and for helping me see things from a new

perspective.

ii

My officemates, both past (Tim Eymann, Paul Giuliano, and Ashley Verhoff) and

present (Sam Chen, Horatiu Dragnea, and Kyle Hanquist) also deserve thanks for

sharing the same space peacefully and for being good friends. Thanks especially to

Ashley for many good discussions, and to Kyle for his Nebraskan sense of humor,

as well as for serving as intramural sports captain for several years running. To all

members of the Aerospace intramural basketball, softball, soccer, and flag football

teams, as well as to the frisbee and tennis groups – thank you; it’s been fun.

To other friends over the years – Erin and Tony D’Amato, Luke Hansen, Lauren

Mackey, Brandon Smith, Jon and Michelle Wiebenga, as well as Maria Choi (and

Max), Doreen Fan, Tyler Lung, Chris Ngigi, Lu-Yin Wang, Daniel Zaide and others

– thank you for all the good times. For those I have not mentioned, thank you as

well – you know who you are.

Finally, I would like to thank my family. To my parents, Doug and Lynn, for their

endless support and encouragement in too many ways to name. And to my brother

John and sister Jenna, for leading the way in life and for always providing me with a

good example.

Funding for this work was provided by a National Defense Science and Engineering

Graduate (NDSEG) Fellowship sponsored by the Department of Defense High Per-

formance Computing Modernization Program, as well as by a Rackham Predoctoral

Fellowship.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . viii

LIST OF TABLES . xvi

LIST OF APPENDICES . xvii

ABSTRACT . xviii

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Numerical Errors . 3
1.3 High-order Finite Element Methods 4
1.4 Output Error Estimation and Mesh Adapatation 5
1.5 Test Space Optimization . 7
1.6 Thesis Objectives . 9

II. Adjoint and Error Estimation Review 11

2.1 Discrete Adjoints . 11
2.1.1 Alternative (CFD) Notation 14
2.1.2 Adjoint Example 16
2.1.3 Applications of Adjoints 18

2.2 Continuous Adjoints . 19
2.2.1 Generalization of the Continuous Adjoint 21
2.2.2 Further Generalization of the Continuous Adjoint . 24

2.3 Summary: Discrete and Continuous Adjoints 33
2.3.1 The Discrete Adjoint Operator and Adjoint Consis-

tency . 33
2.3.2 Summary of Adjoint Properties 35

2.4 Output-based Error Estimation 36

iv

2.4.1 Continuous Error Estimation 36
2.4.2 Discrete Error Estimation 40

III. Unsteady Problems . 47

3.1 Unsteady Adjoints . 47
3.1.1 Nonlinear Unsteady Problems 51
3.1.2 Solution of the Unsteady Adjoint Equation 52

3.2 Unsteady Error Estimation and Mesh Adaptation 56
3.2.1 Unsteady Error Estimation 56
3.2.2 Unsteady Mesh Adaptation 57

IV. Governing Equations and Discretization 61

4.1 Unsteady Conservation Laws 61
4.2 Discontinuous Galerkin (DG) Method 62

4.2.1 Solution Approximation 62
4.2.2 Weak Form . 64
4.2.3 Discrete Form . 65

4.3 DG-in-Time Method . 66
4.3.1 Solution Approximation 66
4.3.2 Weak Form . 67

V. Output-based Mesh Adaptation for Navier-Stokes Simula-
tions on Deformable Domains 70

5.1 Introduction . 70
5.2 Arbitrary Lagrangian-Eulerian Mapping 72

5.2.1 ALE mapping . 73
5.2.2 Conservation Law on Reference Domain 75
5.2.3 Implementation . 77

5.3 The Geometric Conservation Law 78
5.3.1 Blended Mesh Motion 80

5.4 Primal Discretization . 84
5.4.1 Approximation . 84
5.4.2 Residuals . 85
5.4.3 Implementation . 86

5.5 Output Error Estimation and Adjoint Formulation 86
5.5.1 Estimating Errors with the GCL 87
5.5.2 Some notes on the GCL adjoint 89
5.5.3 Unsteady Adjoint Equations 90
5.5.4 Adjoint Implementation 90
5.5.5 Error Estimate Implementation 91
5.5.6 Error Localization 91
5.5.7 Space-Time Anisotropy 92

v

5.6 Spatial and Temporal Adaptation 93
5.6.1 Summary of Adaptation Procedure 97
5.6.2 Alternative Adaptive Methods 99

5.7 Results . 100
5.7.1 Error Estimate Verification 100
5.7.2 Dynamic Mesh Adaptation for Pitching Airfoil . . . 105
5.7.3 CPU Time Comparison 107
5.7.4 Dynamic Mesh Adaptation for Pitching and Plung-

ing Airfoils . 112
5.7.5 Mesh Adaptation for a Three-Dimensional Flapping

Wing . 117
5.8 Relevance of the GCL . 122
5.9 Conclusions . 124

VI. Optimal Test Functions for Boundary Accuracy in Discontin-
uous Finite Element Methods 127

6.1 Introduction . 128
6.2 An Approximation Problem 131

6.2.1 One-Dimensional Function Approximation 131
6.3 Optimal Test Functions (One-Dimensional Example) 133
6.4 Optimal Test Functions as Adjoints 139
6.5 Localization of Test Functions 141
6.6 Implementation (One-Dimensional Example) 142

6.6.1 Computation of Test Functions 142
6.6.2 Construction of Primal System 144
6.6.3 Summary of Method 145

6.7 Results (One-Dimensional Example) 145
6.8 General Theory for Multi-Dimensional Systems 146

6.8.1 Localization and Adjoint Consistency 153
6.8.2 Boundary Enrichment of Trial Space 154
6.8.3 Benefit in Multiple Dimensions 156

6.9 A Hybridized BDPG Method 156
6.9.1 HDG Discretization 157
6.9.2 Optimal Test Function (BDPG) Implementation . . 161
6.9.3 Summary of Hybrid BDPG Method 163

6.10 Results . 163
6.10.1 One-Dimensional Advection-Diffusion 163
6.10.2 Two-Dimensional Advection-Diffusion: Manufactured

Solution . 165
6.10.3 Two-Dimensional Advection-Diffusion: Boundary Layer167
6.10.4 Two-Dimensional Linearized Euler: Manufactured So-

lution . 168
6.10.5 Two-Dimensional Linearized Euler: Cylinder and Air-

foil . 170

vi

6.11 Nonlinear Extension of BDPG 173
6.11.1 Nonlinear Extension and Benefit 174
6.11.2 Nonlinear Test Function Computation 175
6.11.3 Nonlinear One-Dimensional Examples 176
6.11.4 Nonlinear Two-Dimensional Problems 182

6.12 Optimal Test Function Summary 186
6.13 Cost of Optimal Test Functions 188
6.14 Remaining Challenges . 190
6.15 Conclusion . 191

VII. Conclusions and Future Work 192

7.1 Summary and Conclusions 192
7.1.1 Unsteady Output-based Error Estimation and Mesh

Adaptation . 192
7.1.2 Optimal Test Functions 193

7.2 Future Work . 193

APPENDICES . 198

BIBLIOGRAPHY . 241

vii

LIST OF FIGURES

Figure

1.1 A cylinder and airfoil pitching and plunging in series at a Reynolds
number of 1000 and a Strouhal number of 0.2. (Str = fc/U , where f
is the stroke frequency, c is the airfoil chord, and U is the freestream
velocity.) The mesh must deform to capture the motion of the bodies,
and the resulting complexity of the flow field makes accurate output
prediction difficult. 2

1.2 Snapshots of CFD simulations for (a) two-dimensional and (c) three-

dimensional wings in flapping flight, taken from Chapter V. Parts (b)

and (d) show the solution order distribution for meshes that have been

adapted to achieve accurate lift outputs near the final time. (For (b), the

output is the lift on the right airfoil.) Red corresponds to p = 5 while blue

corresponds to p = 1. Initially, the red regions in (b) and (d) contribute

the most to the output error, so they are refined to drive the output error

down. 6
1.3 (a) The goal of BDPG (with optimal test functions) is to achieve greater

boundary accuracy than a standard DG method, as can be seen for this

one-dimensional problem. (b) We also extend these ideas to more practical

problems, such as for flow around airfoils. 9
2.1 Contours of (a) x-momentum ([blue, dark red] = [-0.035, 0.55]) and

(b) the conservation of x-momentum component of the drag adjoint
([blue, dark red] = [-1.05, 0.15]) for Re = 5000 flow around an airfoil.
The drag is most sensitive to x-momentum residual perturbations
made in the dark blue/red regions of (b). 16

2.2 1D advection: The adjoint associated with the output J = u(xp).
Here, primal source perturbations (indicated by the squiggle) travel
rightward, so only perturbations made to the left of xp can influence
the output value. Thus, for x > xp, ψ = 0. Furthermore, since all
perturbations made in xL < x < xp will propagate to xp eventually,
the output is equally sensitive to all of them, meaning ψ = constant
in this region. 22

viii

2.3 Illustration of the variation, δu. The variation is a function of x and
represents a perturbation to the state, u. If the value of u is fixed
at a boundary by a Dirichlet condition (as it is on the left here) the
variation is constrained to be 0 at that boundary. 25

2.4 (a) Fine-space adjoint for the lift on the airfoil. (b) Fine-space resid-
ual evaluated with the injected coarse state (a measure of local trun-
cation error). (c) Error indicators, representing the amount of error
each element contributes to the lift. This is given by the product of
the adjoint and residual, i.e. (a)·(b). (Figures reproduced from [31].) 43

3.1 Unsteady primal and adjoint solution procedure. For nonlinear prob-
lems, the state U is first computed via a forward time march. It
is then stored and used in the adjoint problem, which is solved by
marching backward in time. 55

3.2 For each adaptive iteration, the primal problem is marched forward
in time, and the adjoint problem is marched backward in time (on a
uniformly refined space-time mesh). An output error estimate is then
computed and mesh adaptation in space and time is performed. The
spatial mesh is adapted differently at each time-step (as indicated by
the variable shading in the 2nd iteration above), and time steps are
selectively refined or coarsened. 59

4.1 (a) Unstructured tessellation TH (i.e. mesh) of a domain Ω, which can
be used to compute a DG approximation to the solution of a PDE.
(b) Solution approximation for a DG method, which is discontinuous
between elements. (Figures reproduced from [32].) 63

4.2 The DG-in-time method treats the numerical solution as a set of
discontinuous polynomials on each time “slab.” (Figure reproduced
from [31].) . 67

5.1 Summary of the mesh motion mapping. The physical domain deforms

according to a user-defined analytical mapping, x(~X, t). The equations

are then mapped to and solved on the reference domain, which remains

fixed for all time. Note: when denoting reference domain quantities, we

use a subscript X rather than ~X for visual clarity. 74
5.2 Free-stream errors with and without the GCL. A large number of time

steps is used so that the spatial error dominates the temporal error in

each case. 80
5.3 If an object such as an airfoil needs to move, a rigid-body motion

around that object can be blended into the static mesh further out.
This keeps the boundaries of the domain fixed while the object moves. 81

5.4 Airfoil (a) and wing (b) undergoing analytical motions. The blue regions

are those in which the prescribed inner motion is blended into the static

outer mesh. The boundaries of these blending regions are circular in 2D

and spherical in 3D. 81

ix

5.5 Sparsity patterns for the coupled state/GCL system in a DG-in-time
discretization, shown for the first three time slabs. Each entry has
the dimension of a Jacobian matrix (with respect to either Uh or Gh)
over the temporal nodes and spatial domain. 90

5.6 An illustration of dynamic-p refinement, in which spatial interpola-
tion orders change in time to track relevant flow features. 94

5.7 Demonstration of the one-dimensional remeshing algorithm used to
define new time slab breakpoints. 97

5.8 For each adaptive iteration, the primal problem is marched forward
in time, and the adjoint problem is marched backward in time (on a
uniformly refined space-time mesh). An output error estimate is then
computed and mesh adaptation in space and time is performed. The
spatial mesh is adapted differently at each time-step (as indicated by
the variable shading in the 2nd iteration above), and time steps are
selectively refined or coarsened. 98

5.9 Initial and final meshes and densities. The initial density perturbation is

25% above the nominal value. 101
5.10 Output convergence for both motion and no-motion cases, shown with

the same scale. Despite larger-magnitude errors, the corrected output

converges rapidly to the true value for motion cases. 102
5.11 Spatial and temporal convergence histories for the corrected and uncor-

rected final-time output. Average convergence rates are shown next to

each curve, and expected rates are achieved for all runs. Note that differ-

ent reference values are used for the GCL, no-GCL, and no-motion cases,

so a direct comparison of error magnitudes should not be made. 104
5.12 Single airfoil: Output convergence for the various adaptive methods.

The output-based method outperforms both residual-based and uni-
form refinement by orders of magnitude. Note that the red and blue
curves come from the same runs, but the red curve is the “corrected”
output, J + δJest, while the blue curve shows J 106

5.13 Single airfoil: Wall time comparison for the various adaptive methods.
The output-based method outperforms the other strategies. 108

5.14 Single airfoil: Temporal grids from the seventh adaptation of both
adjoint and residual runs. 108

5.15 Single airfoil: Entropy (left) and GCL adjoint (right) contours at
various stages of the pitch motion on a fine mesh. Note that the
GCL adjoint contours have been re-scaled to more clearly show the
features. (Black is 1.5, white is -0.75.) 110

5.16 Single airfoil: Output-adapted meshes at various stages of the pitch
motion. Blue is p = 0, red is p = 5. 111

x

5.17 Two airfoil case: Entropy (left) and GCL adjoint (right) contours at var-

ious stages of the motion on a fine mesh. The GCL adjoint contours have

been re-scaled to more clearly show the features (black is 2, white is -1).

Both acoustic and convective modes of error propagation can be seen in

the first two contours, while at the final time, the adjoint field collapses

on the second airfoil. 113
5.18 Two-airfoil case: Output convergence for various adaptive methods. The

output-based method performs the best. 114
5.19 Two-airfoil case: Output-adapted meshes at various stages of the motion.

Blue is p = 0, red is p = 5. 115
5.20 Two-airfoil case: Temporal grids from the seventh adaptation of both

output-based and residual runs. For clarity, only every other time slab is

plotted. 116
5.21 Two-airfoil case: Wall time comparison for the various adaptive methods.

The output-based method converges the fastest. 117
5.22 Illustration of spatial and temporal adjoint reconstructions. (a) shows a

patch of nearest-neighbor elements used for spatial high-order reconstruc-

tion via least-squares interpolation. (b) shows reconstruction of an r = 1

adjoint to r = 2 using the left node from the adjacent future time slab and

the super-convergent nodes on the current time slab (which correspond to

the roots of the left Radau polynomial for r = 1). 118
5.23 3D wing: Schematic of the flapping motion. The flow regime is approxi-

mately that of a small house-fly. 118
5.24 3D Wing: Mach contours projected onto entropy isosurfaces, shown for

several stages of the flapping motion. The maximum Mach number (in

red) is approximately 0.5. The images are taken from the final (p = 3)

uniform refinement. 120
5.25 3D wing: Output convergence as a function of (a) degrees of freedom and

(b) total wall time. 121
5.26 3D wing: (a) Spatial orders from the residual adaptation midway through

the simulation (blue is p = 0, red is p = 3). The adaptation targets

only elements far from the wing, leading to poor output convergence. (b)

Temporal grids from the final output-based and residual adaptations. The

residual adaptation refines periodically with the motion, while the output-

based adaptation increases the resolution near the final times. 122
5.27 3D Wing: Spatial orders from the final output-based adaptation, shown at

several stages of the flapping motion. Dark blue is p = 0, red is p = 3. The

images on the left show the interpolation orders projected onto entropy

isosurfaces. 123
5.28 Output convergence for the single and two-airfoil runs with and without

the GCL. 125

xi

6.1 Two p = 1 approximations of a one-dimensional function u(x). The
blue curve provides interior accuracy, while the red curve provides
right-boundary accuracy. The amount of boundary accuracy depends
solely on the type of error norm minimized – not on the type of
polynomial itself. 132

6.2 One-dimensional advection-reaction: (a) Normalized optimal test func-
tions corresponding to a p = 1 trial space and large wR. The black
test function (v2 in Eqn. 6.15) provides right-boundary accuracy,
while the remaining test function (v1 in Eqn. 6.15) provides inte-
rior L2 accuracy. Note the upwind/leftward bias of both functions.
(b) The solution obtained using the optimal test functions. Right-
boundary accuracy is achieved. 138

6.3 One-dimensional advection-reaction: (a) p = 1 solutions for DG and
BDPG on a 5-element mesh. (b) The error in the right-boundary
flux for p = 0 and p = 1 runs. The BDPG fluxes converge at a rate
of 2ptest + 1 and quickly attain machine precision accuracy. 146

6.4 One-dimensional advection-reaction: (a) Localized optimal test func-
tions for the 5-element BDPG solution shown in Fig. 6.3a. The two
test functions on each element correspond to the two p = 1 trial
bases. (b) L2 error convergence for p = 0 and p = 1 DG and BDPG
solutions. The L2 performance of the methods is similar, with BDPG
showing greater stability on coarse meshes. 146

6.5 Optimal test functions corresponding to the qy (gradient in the ver-
tical direction) trial basis in the upper-right corner of each element.
Blue corresponds to a large value, while red is near zero. These
test functions ensure that accuracy in the top flux of each element
is obtained. Similar test functions ensure accuracy in the remaining
fluxes. Note the upwinding nature of the test functions. 154

6.6 An eighth-order Lobatto function defined along an edge of a quadri-
lateral reference element. These functions are added to the trial space
to improve flux resolution. 155

6.7 In the HDG method, introducing additional û unknowns on element
interfaces allows for elimination of the element-interior unknowns
during the global solve. This results in a global system in which
the number of unknowns scales as pdim−1 instead of pdim (as for DG). 157

6.8 One-dimensional advection-diffusion: (a) Sample p = 0 solutions for
both HDG and BDPG. (b) Convergence of the right-boundary flux,
where w = 1015 was used for BDPG. BDPG provides interior accu-
racy while achieving significantly greater flux accuracy than HDG. . 164

xii

6.9 One-dimensional advection-diffusion: (a) Normalized v-component
of the optimal test functions for the p = 0 solution in Fig. 6.8a.
The black test functions are associated with the q trial bases, while
the remaining test functions are associated with the u bases. (b)
Convergence of the left-boundary flux for p = 0 and various choices
of boundary weight, w. The higher the boundary weight, the more
accurate the flux. 164

6.10 Two-dimensional advection-diffusion: (a) Manufactured solution with
fluxes that are exactly representable in a p = 1 space. (b) Conver-
gence of the top-boundary flux as a function of p. As the order is
increased above p = 0, the fluxes become representable and BDPG
attains machine-precision accuracy. This verifies the performance of
BDPG and highlights the importance of flux resolution in multiple
dimensions. 166

6.11 Two-dimensional advection-diffusion: (a) The solution to a Re = 100
problem on a fine mesh. (b) The optimal test functions associated
with the upper-right qy trial basis on each element. Note the upwind-
ing nature of the test functions. 168

6.12 Two-dimensional advection-diffusion: Convergence rates for various
outputs. Note that pI and pB denote the interior and boundary
interpolation orders, respectively. Higher accuracy is obtained with
BDPG as the amount of boundary enrichment increases. Note that
BDPG also achieves accuracy in the interior u2 output. 169

6.13 Two-dimensional advection-diffusion: Solution profiles along the right
boundary of the domain. BDPG with enrichment achieves greater ac-
curacy than standard HDG. 170

6.14 Two-dimensional linearized Euler: (a) Manufactured solution pres-
sure contours. (b) Component of the optimal test functions corre-
sponding to the trial basis in the upper-right corner of each element. 171

6.15 Two-dimensional linearized Euler: Output convergence for HDG and
BDPG runs. The flux outputs represent the sum of all state com-
ponents of the flux vector. (Note that this sum is taken so that the
convergence behavior of all fluxes can be captured in a single plot
– each of the individual flux components converges similarly to the
results shown here.) Higher accuracy is obtained as the amount of
BDPG boundary enrichment increases. BDPG also achieves accuracy
in the interior p2 output. 172

6.16 Two-dimensional linearized Euler: Solution profiles along the right
boundary of the domain. BDPG with boundary enrichment is again
more accurate than HDG with the same interior basis. 173

6.17 Two-dimensional cylinder: (a) Pressure and (b) y-velocity contours
from a high-order HDG solution. 173

xiii

6.18 Two-dimensional cylinder: (a) Convergence of the pressure flux through
the cylinder wall for BDPG and p = 1 HDG. (b) Pressure flux conver-
gence where the same pB = 8 trial space is used for both BDPG and
HDG. Since the only difference is the test space, the results show
that the optimal test functions of BDPG are effective in reducing
boundary errors. 174

6.19 Two-dimensional airfoil: (a) Pressure contours from a high-order
BDPG solution. (b) x-velocity flux convergence for both BDPG and
HDG. While the convergence rates are limited by the trailing-edge
singularity, BDPG still provides a benefit over HDG. 174

6.20 1D Burgers: 6-element, p = 1 (a) BDPG solution and (b) DG solu-
tion. Numerical solutions are shown in blue, while the exact solution
is shown in red. Note the downwind accuracy of BDPG on each ele-
ment. (c) First and (d) second BDPG test functions on each element,
corresponding to the two Lagrange trial basis functions on each el-
ement. The test functions in (d) have been normalized by the flux
weight, w, to keep their magnitudes O(1). Note that the vertical
lines in all figures are drawn only for convenience – both the test
functions and states on each element are independent and are not
actually connected in any way. 178

6.21 1D Burgers: Right-boundary flux convergence for BDPG and DG
methods. BDPG achieves rates of 2p + 2, compared to the 2p + 1
rates of DG. 179

6.22 1D Euler: (a) Subsonic case with inflow on the left and inviscid wall
on the right side of the domain. (b) Supersonic case with Dirichlet
conditions on left and outflow on right. 180

6.23 1D Euler: Various flux outputs for subsonic and supersonic cases.
(Note that “sum of fluxes” means all state components of the flux
are summed to compute the output. The individual flux components
converge similarly.) The supersonic BDPG runs achieve the optimal
2p + 2 rate, while the subsonic BDPG run comes close to this rate.
Standard DG obtains only 2p+ 1 rates for all cases. 181

6.24 1D Navier-Stokes: (a) State variables within the domain. (b) Mach
number and pressure variation within the domain. Note that the flow
transitions from supersonic to subsonic near the inflow. 182

6.25 1D Navier-Stokes: Convergence rates for a mixed supersonic/subsonic
flow with p = 1. BDPG obtains optimal 2p+ 2 rates. 182

6.26 Pressure contours (blue=low, red=high) from a BDPG solution with
pI = 2, pB = 3, and ptest = 3. The flow moves from left to right
between inviscid walls at the top and bottom of the domain. A sub-
sonic, horizontal inflow is specified at the left boundary with Mach
number M = 0.5, total temperature T0 = 1.05, and total pressure
p0 = 1.1862. A static-pressure outflow is specified at the right bound-
ary with p = 1.0. 183

xiv

6.27 2D Euler: Convergence rates for BDPG and HDG. All runs have
interior order pI = 2, along with the specified edge order pB. For the
BDPG runs, we take ptest = pB. Note that BDPG achieves 2pI + 2
rates when 3rd-order (or higher) edge modes are added to the trial
space. On the other hand, HDG remains at 2pI + 1 when these same
3rd-order edge modes are added. 185

6.28 2D Euler: Optimal test function contours. The trial basis here has
pI = 2, pB = 3, with nU = 9. Accounting for the 4 state components
then means that we have 36 trial basis functions on each element.
We thus compute a corresponding 36 optimal test functions on each
element. Plotted here are the state components of one of these opti-
mal test functions. Specifically, we show the density, x-momentum,
y-momentum, and energy components of an optimal test function as-
sociated with the energy component of the basis function φ9 on each
element. 187

C.1 Density profiles for a 1D shock tube problem, solved at (a) p = 0 and (b)

p = 1. The profiles shown are snapshots taken at time t = 5, after the

shock has reflected several times off of the domain boundaries. 230
D.1 Local and global coordinate systems and test functions. Note that a

bar designates local quantities. 234
E.1 Two-dimensional advection manufactured solution. 238
E.2 Convergence of the flux along the right boundary of the domain for

both (1) a standard block-Jacobi smoothing procedure, starting from
a p = 1 DG solution and smoothing to a p = 3 solution, and (2)
a trial space “optimization” procedure, in which the number of trial
space basis functions n is kept fixed at 5 during later iterations, while
only the shape of these functions is updated. Optimal test functions
are computed simultaneously to request accuracy in the fluxes. . . . 239

E.3 Performance of test/trial function optimization compared to element-
wise block Jacobi smoothing. Convergence is shown for various mesh
sizes, each with a given number of elementsNe. The optimal test/trial
functions strategy scales better than Jacobi smoothing with increas-
ing mesh size. 240

xv

LIST OF TABLES

Table

5.1 Definitions of variables used in the ALE mapping. Bold indicates a state

vector and an arrow indicates a spatial vector. 73
5.2 Relative accuracy of error estimates for motion and no-motion cases at

different orders p. “% Error” denotes the error in δJest relative to δJact. . 103
5.3 Contribution of GCL and state errors to total error estimate. 103
5.4 Single airfoil: Contribution of GCL and state errors to the total error

estimate for all iterations of output-based adaptation. 109
5.5 Two-airfoil case: Contribution of GCL and state errors to the total error

estimate for all iterations of output-based adaptation. 116
5.6 3D wing: Contribution of state and GCL errors to the total error estimate

for all iterations of output-based adaptation. 122
C.1 Left and right states for the shock tube initial condition. ρ, u, and p refer

to density, velocity, and pressure, respectively. 230

xvi

LIST OF APPENDICES

Appendix

A. Output Error Estimation: Additional Details, Including Dual and Primal-
Dual Forms . 199

B. ALE DG Implementation . 219

C. Relevance of GCL for Shock Tube Problem 229

D. Optimal Test Functions . 232

E. Trial Space Optimization . 236

xvii

ABSTRACT

Methods for Optimal Output Prediction in Computational Fluid Dynamics

by

Steven M. Kast

Chair: Krzysztof J. Fidkowski

In a Computational Fluid Dynamics (CFD) simulation, not all data is of equal
importance. Instead, the goal of the user is often to compute certain critical outputs –
such as lift and drag – accurately. While in recent years CFD simulations have become
routine, ensuring accuracy in these outputs is still surprisingly difficult. Unacceptable
levels of output error arise even in industry-standard simulations, such as the steady
flow around commercial aircraft. This problem is only exacerbated when simulating
more complex, unsteady flows.

In this thesis, we present a mesh adaptation strategy for unsteady problems that
can automatically reduce errors in outputs of interest. This strategy applies to prob-
lems in which the computational domain deforms in time – such as flapping-flight
simulations – and relies on an unsteady adjoint to identify regions of the mesh con-
tributing most to the output error. This error is then driven down via refinement
of the critical regions in both space and time. Here, we demonstrate this strategy
on a series of flapping-wing problems in two and three dimensions, using high-order
discontinuous Galerkin (DG) methods for both spatial and temporal discretizations.
Compared to other methods, results indicate that this strategy can deliver a desired
level of output accuracy with significant reductions in computational cost.

After concluding our work on mesh adaptation, we take a step back and investigate
another idea for obtaining output accuracy: adapting the numerical method itself.
In particular, we show how the test space of discontinuous finite element methods
can be “optimized” to achieve accuracy in certain outputs or regions. In this work,
we compute test functions that ensure accuracy specifically along domain boundaries.
These regions – which are vital to both scalar outputs (such as lift and drag) and
distributions (such as pressure and skin friction) – are often the most important from
an engineering standpoint.

xviii

CHAPTER I

Introduction

1.1 Motivation

With the growth in computational power over the past few decades, many of the

experiments traditionally used in aircraft design are being replaced by Computational

Fluid Dynamics (CFD) simulations. While CFD simulations can be faster, cheaper,

and more flexible than experiments, their approximate nature inevitably prompts the

question: are they accurate? More importantly, are they accurate where it matters

most – in their prediction of critical quantities (or “outputs”) such as lift and drag?

Unfortunately, for many practical problems, the answer is no. Addressing this

issue is the motivating theme throughout this thesis.

Before attempting to improve output accuracy, we should first ask: what accuracy

do we actually need? And how far are we from achieving it? Here, an example from

aircraft design is illustrative.

Every three years, the American Institute of Aeronautics and Astronautics (AIAA)

asks researchers from around the world to simulate the steady-state flow around a

commercial aircraft. The groups then meet and compare the drag values predicted

from their CFD simulations. Ideally, these values should agree. In reality, errors

associated with the simulations lead to significant variations in the predicted drag. For

example, at the 2006 workshop, variations in the drag of approximately 30 counts were

observed (where one drag count corresponds to 10−4 of the drag coefficient) [40]. From

a design perspective, a variation of just 1 drag count can translate into a difference

of 4-8 passengers for a commercial aircraft with a fixed range and fuel capacity [94].

With the precarious state of modern airlines, this is clearly an unacceptable level of

error.

Since 2006, the accuracy for these types of steady simulations has improved grad-

ually. The latest DPW V results from 2012 show that the spread in drag values has

1

been reduced to approximately 12 counts [93], though achieving even this level of

accuracy can require significant supercomputing resources.

As computing power grows, however, another issue arises: the complexity of the

simulations themselves is increasing proportionally. Engineers are expanding the

envelope of simulations from steady-state problems to more complicated unsteady

problems. Thus, even as the ability to compute accurate outputs improves for steady

cases, the same issues arise for unsteady problems, often with even greater severity.

These problems range from aircraft maneuver and flutter scenarios to low-Reynolds-

number flapping-flight simulations. The latter simulations – which fall in the regime

of bird or insect flight – are especially important due to their application in the

emerging field of Micro Aerial Vehicles (MAVs) [90, 100, 89, 28, 76]. For these cases,

obtaining accuracy in outputs such as the time-averaged lift-to-drag ratio or the peak

power expenditure is critical for determining design feasibility.

(a) Deforming mesh (b) Vorticity contours

Figure 1.1: A cylinder and airfoil pitching and plunging in series at a Reynolds number
of 1000 and a Strouhal number of 0.2. (Str = fc/U , where f is the stroke frequency,
c is the airfoil chord, and U is the freestream velocity.) The mesh must deform to
capture the motion of the bodies, and the resulting complexity of the flow field makes
accurate output prediction difficult.

Simulations of these problems – an example of which is shown in Fig. 1.1 – require

the computational domain to deform in order to capture the motion of the objects

in question. For this reason, they are referred to as deforming domain problems.

Developing a strategy to reduce and control output errors for these problems is one

of the primary goals of this thesis.

After completing our work on deforming domain problems, we then take a step

back to investigate an alternative method for reducing output errors, which in theory

could be applied to both steady and unsteady problems alike.

2

1.2 Numerical Errors

Before we can reduce output errors, we must first understand why they occur.

One potential source of output error is modeling error, which arises if the equations

solved on the computer do not faithfully represent reality. While modeling errors

can be significant for certain simulations – particularly those involving turbulence1

– for the problems considered here the Navier-Stokes equations provide an accurate

description of the fluid flow. Instead, a more prevalent source of output error – and

the focus of this work – is discretization error.

Discretization error, which is the difference between the exact and numerical so-

lution to a differential equation, arises due to the discrete nature of both the com-

putational mesh and the numerical method itself. During a numerical simulation,

“truncation” errors are generated locally wherever the problem is under-resolved,

leading to discretization errors that then propagate throughout the domain, eventu-

ally corrupting the values of relevant outputs.

One way to reduce discretization errors – and hence output errors – is to uniformly

refine the mesh, either through h-refinement (i.e. subdividing the elements) or p-

refinement (i.e. increasing the solution approximation order)2. Theoretically, in the

limit of infinite mesh refinement, discretization errors would vanish and the outputs

would approach their true values.

However, due to the large computational expense, for most problems this type

of uniform mesh refinement is infeasible. Instead, for a given output of interest, a

better strategy is to identify the regions of the mesh contributing most to the output

error, and to then target only those regions for refinement. Performing this type of

output-based mesh adaptation for deforming domain problems will be one of our

primary goals in this work.

There is, however, a second option for reducing the error in certain outputs, which

does not involve refining the mesh. Rather than attempting to reduce the magnitude

of discretization errors (as with mesh refinement), we could instead attempt to re-

distribute the discretization errors in such a way that they have minimal influence

on the outputs of interest. This idea forms the basis for the latter half of the thesis,

and – in the context of finite element methods – will involve optimizing the finite

element test space .

1Note that some of the variation in the DPW results discussed earlier is due to the use of different
turbulence models. However, a further study in [69] indicates that discretization errors contribute a
significant amount to the total drag error in these cases.

2Assuming the numerical method supports variable orders of approximation.

3

Since finite element methods play a central role in this thesis, let us briefly com-

ment on their properties. We will then return to a discussion of how the above options

(mesh adaptation and test space optimization) can be used to reduce output errors

in this context.

1.3 High-order Finite Element Methods

In this work, we employ high-order finite element methods of a discontinuous

Galerkin (DG) type. To approximate the weak form of a partial differential equation

(PDE), these methods first weight the PDE by a set of “test” functions on each

element. They then define a set of “trial” functions on each element that are used

to represent the numerical solution. These test and trial functions are taken to be

identical, and are typically chosen such that the solution can be represented as a

polynomial of arbitrarily high order, p. Between elements, the solution is allowed

to be discontinuous and a numerical flux is defined on element faces. This provides

stability for convection-dominated problems and makes these methods suitable for

aerospace applications.

While second-order finite volume schemes remain the dominant methods within

the aerospace industry, methods of a discontinuous Galerkin type have recently been

gaining in popularity [80, 8, 22, 3, 50, 87]. Some of their relevant advantages include

the fact that:

1. Their variational nature provides a rigorous setting for output error estimation.

2. Their outputs are typically superconvergent (at a rate of 2p for viscous problems

and 2p+ 1 for inviscid problems) [1, 23, 2, 62].

3. Their ability to handle different solution orders on each element makes p-

adaptation possible.

4. For smooth problems (such as low-Reynolds-number flows), increasing p yields

an exponential rate of convergence with respect to degrees of freedom.

5. Their flexibility in the choice of test and trial functions means that we can

attempt to optimize these functions to obtain improved accuracy.3

3Note that if the test and trial space are no longer identical after optimization, we have technically
shifted to a Petrov-Galerkin method.

4

For these reasons and others, we employ discontinuous Galerkin methods (and related

schemes) in this work.

We now discuss how the two strategies for reducing output error mentioned above –

i.e. mesh adaptation and test space optimization – can be carried out in this context.

1.4 Output Error Estimation and Mesh Adapatation

The first option for achieving output accuracy – adapting the mesh – borrows

concepts from control theory in an effort to reduce output errors. Given some output

of interest, the idea is to identify the regions of the mesh contributing most to the

output error. Once identified, these regions are refined (reducing their contribution

to the error), and the problem is solved again. New output errors are then estimated,

new regions of the mesh are refined, and the cycle repeats until the output error drops

below a specified tolerance. Thus, the output error is effectively “controlled” through

an automated, closed-loop process.

The key ingredient to this process is a sensitivity analysis – i.e. an analysis that

identifies how sensitive the output is to perturbations made in different regions of

the domain. This information can be obtained by solving an adjoint problem. The

adjoint quantifies how perturbations in the local residuals (i.e., the continuous form

of the governing equations) propagate to influence the output of interest [57, 43, 29].

In the context of error estimation, residual perturbations occur due to the presence

of truncation errors. If the output happens to be sensitive to a region where the

truncation errors / residuals are large, then this region should be refined, since it is

likely contributing a significant amount of error to the output.

Use of an adjoint-weighted residual to identify sources of output error and drive

mesh adaptation is not new, and has been pursued in a fluid dynamics context for

over fifteen years. Notable works in this area incude those by Giles and Pierce [79],

Giles and Suli [42], Becker and Rannacher [10], Hartmann and Houston [49], and

Venditti and Darmofal [95], among others [6, 42, 36].

While most previous works have focused on steady-state problems [79, 10, 49,

95, 88, 74, 36, 18, 104, 19, 24, 101], recently, output-based strategies for unsteady

problems have also been investigated. In a finite element context, output error esti-

mation for scalar parabolic problems was studied in [70] and [86], with a high-order

reconstructed adjoint used to drive dynamic space-time mesh adaptation. In addi-

tion, spatial-only [7] and combined space-time [12] adaptation have been performed

5

for two-dimensional Navier-Stokes simulations on static domains. Within a finite

volume framework, temporal-only adaptation has been shown for the Euler equa-

tions on deforming domains [67, 68], while on static domains a spatial-only [11] and

preliminary space-time adaptation [38] have been demonstrated. Finally, in recent

work [37, 66, 35, 103], combined space-time adaptation strategies have been pre-

sented for Euler and Navier-Stokes simulations on static domains. In each of the

above works, improvements in output convergence were obtained through the use of

unsteady output-based adaptation.

(a) Entropy; dragonfly flow regime (b) Red elements contribute most to output error

(c) Entropy surf./Mach colors; housefly regime (d) Red regions contribute most to output error

Figure 1.2: Snapshots of CFD simulations for (a) two-dimensional and (c) three-
dimensional wings in flapping flight, taken from Chapter V. Parts (b) and (d) show the
solution order distribution for meshes that have been adapted to achieve accurate lift out-
puts near the final time. (For (b), the output is the lift on the right airfoil.) Red corresponds
to p = 5 while blue corresponds to p = 1. Initially, the red regions in (b) and (d) contribute
the most to the output error, so they are refined to drive the output error down.

In this work, our goal is to extend these output-based techniques to problems with

deforming domains, some examples of which are shown in Fig. 1.2. In particular, we

wish to demonstrate a combined space-time adaptation strategy in which the spatial

order distribution (p) varies dynamically in time, while the time step sizes are refined

or coarsened as needed. This type of adaptation – which will be guided by an unsteady

6

adjoint solution – will allow us to resolve features critical to the output accuracy as

they propagate throughout the domain.

In addition, we will investigate several other aspects of these problems related

to error estimation and mesh adaptation. For these cases, a so-called Geometric

Conservation Law (GCL) must be satisfied in order to enforce conservation as the

mesh deforms. For error estimation purposes, this GCL equation then requires a

corresponding GCL adjoint. In this work, we investigate the relevance of both the

GCL and its adjoint with regard to output accuracy, and test several approximations

that can be made to the adjoint problem to improve computational efficiency. In the

end, we show that the output-based technique can lead to significant computational

savings – in terms of both mesh size and run time – compared to more standard

refinement techniques.

1.5 Test Space Optimization

The strategy described above employs a standard numerical method (in this case a

DG method) and attempts to improve output accuracy through “optimization” of the

mesh alone. However, as mentioned, an alternative strategy is to try to optimize the

numerical method itself. By doing so, we can attempt to redistribute the discretization

errors in a way that is favorable to output accuracy. In the second part of this thesis,

we take a step back and investigate this alternative option.

What benefit is there to optimizing the method rather than the mesh? The first

answer is that these ideas are not mutually exclusive: the ideal strategy may involve

a combination of both. However, theoretically, “method optimization” alone could

provide an advantage over mesh adaptation. Since mesh adaptation generally requires

refining the mesh to reduce output errors, the computational expense increases as the

adaptation proceeds. On the other hand, if we were able to optimize the method

itself, output accuracy could be obtained even on a coarse (i.e. inexpensive) mesh.

In the context of finite element methods, we can be more specific about what

“method optimization” means. As mentioned, finite element methods approximate

the weak form of a PDE and consist of two main components: (1) the trial space,

which determines how the solution is represented within each element, and (2) the

test space, which defines the functions that weight the PDE in the weak form.

While standard Galerkin methods choose the test and trial functions to be iden-

tical, this choice is not necessarily optimal, since the the role of these functions is

different. If we think of our numerical solution as attempting to provide a good “fit”

7

of the true solution, then while the trial functions determine the type of curve used

to perform the fit (e.g. a polynomial of order p), the test functions determine the goal

of the fit itself. In other words, they determine the type of fit obtained, which could

be (say) a least-squares fit or a fit based on some other norm. Thus, if our goal is

to achieve accuracy in certain outputs or regions within the domain, we can attempt

to adjust how the numerical solution fits the exact solution to emphasize accuracy in

these regions. Since this fit is ultimately controlled by the test space, it is the test

space that should be optimized.

In general, we can seek to optimize the test space such that the numerical solution

achieves accuracy in a certain norm of interest. This norm can be defined to weight

certain regions or quantities more heavily than others, and the optimal test functions

can be defined as those that render the numerical solution the best approximation in

the desired norm.

The idea of optimizing the test space has surfaced several times over the last few

decades, in various contexts. In a continuous finite element context, this idea has

been pursued by several authors [5, 27, 44, 17, 51, 4], dating back to the work of

Barrett and Morton in 1984 [5]. In addition, the test functions of stabilized schemes

such as the Streamline Upwind Petrov-Galerkin (SUPG) method (which achieves

H1 optimality for certain problems [55]) can be viewed as optimal in a similar sense.

More recently, Demkowicz and Gopalakrishnan have introduced discontinuous Petrov-

Galerkin (DPG) methods, which employ optimal test functions within a more general,

discontinuous framework [25, 26, 105, 20, 16]. These methods, developed initially

within an “ultra-weak” [26] context and adapted to hybrid methods in [71], have

interior least-squares (L2) optimality as their primary goal.

In the present work, we pursue a different goal. We note that while domain-

interior accuracy is important, from an engineering standpoint the regions of greatest

interest are often the domain boundaries. Indeed, obtaining the forces, fluxes, and

distributions of quantities along the boundaries is often the principal goal of a simu-

lation. We therefore make this our aim, and we pursue this aim within the context of

standard DG and hybrid DG (HDG) methods [75, 87]. When the optimal test func-

tions are employed within this context, we call the resulting method the boundary

discontinuous Petrov-Galerkin (BDPG) method. A preview of this BDPG method is

provided in Fig. 1.3, which illustrates the potential boundary accuracy that can be

achieved.

8

0 0.5 1
−1000

0

1000

2000

3000

4000

5000

Position

S
o

lu
ti
o

n

DG

BDPG
Exact

Boundary
Accuracy

(a) p=1 DG and BDPG solutons for a one-dimensional
advection-reaction problem

(b) Linearized Euler pressure field around air-
foil, computed with BDPG method

Figure 1.3: (a) The goal of BDPG (with optimal test functions) is to achieve greater
boundary accuracy than a standard DG method, as can be seen for this one-dimensional
problem. (b) We also extend these ideas to more practical problems, such as for flow around
airfoils.

1.6 Thesis Objectives

Here, we summarize the primary goals of this thesis, broken into two main parts:

1. Unsteady Output-based Mesh Adaptation on Deforming Domains

(a) Extend output-based error estimation and mesh adaptation techniques to

unsteady problems on deforming domains.

(b) Perform dynamic-p adaptation in space combined with time step refine-

ment/coarsening.

(c) Evaluate the performance of the output-based strategy on low-Reynolds-

number flapping-flight problems, using DG methods in both space and

time. Compare to residual-based and uniform-refinement strategies.

(d) Investigate the need for satisfying a Geometric Conservation Law (GCL),

which helps ensure conservation on deforming domains.

(e) Investigate means of efficient adjoint computation for error estimation,

including use of inexact smoothing, reconstruction, and computing (or not

computing) an adjoint for the GCL.

2. Test Space Optimization for Finite Element Methods

9

(a) Derive optimal test functions for finite element methods that reduce the

error in outputs and distributions (such as pressure distributions) defined

along the boundaries of the computational domain.

(b) Draw connections between optimal test functions and other ideas, such as

adjoints, error estimation, multiscale methods, and numerical upwinding.

(c) Show how these test functions can be employed within both DG and HDG

discretizations, resulting in a new boundary discontinuous Petrov Galerkin

(BDPG) method.

(d) Investigate the ability of this BDPG method to provide accuracy in bound-

ary outputs and distributions for both linear and nonlinear steady-state

problems.

(e) Compare the effectiveness of BDPG to standard DG/HDG methods and

discuss benefits, limitations, and future work.

As we will show, the connection between optimal test functions and output-based

mesh adaptation runs deeper than the fact that both strategies attempt to improve

output accuracy. Indeed, it turns out that both output-based adaptation and optimal

test functions depend in a fundamental way on the concept of an adjoint vector. For

this reason, the following chapter (Chapter II) provides a relatively comprehensive

review of adjoint vectors in both discrete and continuous contexts.

In Chapter III, we discuss the extension of the discrete adjoint to unsteady prob-

lems. Chapter IV then gives a brief overview of the spatial and temporal discretiza-

tions used in this work, while Chapter V presents the output-based mesh adaptation

strategy for deformable domains. In Chapter VI, we return to steady problems and

discuss the theory and implementation of optimal test functions. Finally, conclusions

and suggestions for future work are given in Chapter VII.

10

CHAPTER II

Adjoint and Error Estimation Review

In this chapter, we provide an overview of adjoints and their relationship to error

estimation within the context of partial differential equations. While these ideas have

been discussed extensively in previous works (see e.g. [10, 49, 43, 29]), a review of

the concepts here will serve as the foundation for much of the work in this thesis.

2.1 Discrete Adjoints

Imagine we have a differential equation of the form

Lu = f , (2.1)

where L is some linear differential operator (e.g. L ≡ ∂
∂x

or L ≡ ∇2), f is a pre-

scribed source term, and u is the unknown solution, defined on some domain Ω. For

most operators L (combined with appropriate boundary conditions), this equation

would be difficult to solve analytically, and we must instead approximate the solution

numerically.

After discretizing the above equation with an appropriate numerical method (such

as a finite difference or finite element method), we will arrive at a system of equations

of the form

AU = F , (2.2)

where A ∈ RN×N is a matrix representing the operator L, U ∈ RN is a vector of

unknowns representing u, and F ∈ RN is a vector of source terms and boundary data.

Now, if we are interested in computing the entire solution U – i.e. in finding all

components of the U vector – then we will effectively need to know the entire A−1

11

matrix, since we would then compute U from

U = A−1F . (2.3)

However, what if, instead of the entire solution, we are interested in just a single

component of U? In that case, would we still need to know the entire A−1 matrix,

or would less information suffice?

For example, imagine that we are interested in computing (say) UN , the last entry

in the U vector. This situation is depicted in the diagram below.


U1

U2

...

UN


︸ ︷︷ ︸

U

=


• • ... •
• • ... •
...

...

• • ... •


︸ ︷︷ ︸

A−1


F1

F2

...

FN


︸ ︷︷ ︸

F

(2.4)

By the properties of matrix multiplication, it is clear that to compute UN we require

knowledge of only a single row of A−1. (In this case, the last row – as highlighted

above.) This row, when combined with the source term F, contains all the information

we need to compute our desired “output” UN .

Now, for our purposes, there is another property of this row that is even more

important. Imagine, for example, that the first component of the highlighted row

were zero. Then if we were to change the source term F1, the value of UN would not

change at all (since F1 would just be multiplied by 0 during the computation of UN).

In other words, we could say that our output UN is insensitive to changes in F1. In

a similar manner, this logic could be applied to all entries in the highlighted row:

the smaller a given entry, the less sensitive UN is to changes in the corresponding F

component, and likewise, the larger a given entry, the more sensitive it is. In summary

then, not only does the highlighted row provide the information required to compute

UN , it also provides the sensitivity of UN to perturbations in the source terms F .

This row then – this sensitivity vector – is what is commonly referred to in the

literature as the “dual vector,” the “output adjoint vector,” or simply, the “ad-

joint.” For a given output of interest (in this case UN), it provides the sensitivity of

that output to perturbations in the source terms of the governing equations.

In this work, we will denote the adjoint vector by the symbol Ψ and the corre-

sponding “output of interest” by the symbol J , as depicted in the diagram below.

12

Output J Adjoint ΨT


U1

U2

...

UN


︸ ︷︷ ︸

U

=


• • ... •
• • ... •
...

...

• • ... •


︸ ︷︷ ︸

A−1


F1

F2

...

FN


︸ ︷︷ ︸

F

(2.5)

Note that we will use ΨT to refer to the adjoint in row-vector form, whereas Ψ alone

will denote the adjoint in column form.

Using the above notation, an important point is that the output J can be written

as the inner product between the adjoint and the source vector, i.e. as

J = ΨTF . (2.6)

This is known as the “dual form” of the output, and is just a mathematical restate-

ment of our earlier claim that the only information required to compute the output

is the highlighted row and the source vector F.

The next question is: how should we define the adjoint itself? So far, we have

just labeled it as the last row of A−1, but is there a way to define it mathematically?

It turns out that, in order to define the adjoint formally, it will be helpful to first

compute the derivative of the output J with respect to U. In this case, since J = UN ,

we can write its derivative with respect to U as

∂J

∂U
≡
[
∂J

∂U1

∂J

∂U2

...
∂J

∂UN

]
= [0 0 ... 1] . (2.7)

This is just the Cartesian row vector with the last entry nonzero. In the present case,

we see that the adjoint ΨT can then be defined as

ΨT =
∂J

∂U
A−1 . (2.8)

Here, multiplying A−1 by the Cartesian row vector simply picks off the last row of

A−1 and calls it the adjoint, ΨT .

So far, we do not seem to have gained much from the above derivations. However,

an important fact is that, while this J = UN example may seem trivial, both Eqn. 2.8

(the so-called “adjoint equation”) and Eqn. 2.6 (the “dual form”) hold regardless

13

of what the desired output is.1 For example, rather than a “single-component” output

like J = UN , we might instead be interested in computing an average or sum of certain

components of U. One possibility would be the average of all components, i.e.

J =
1

N

N∑
i=1

Ui . (2.9)

In that case, we would have

∂J

∂U
=

1

N
[1 1 ... 1] , (2.10)

and from Eqn. 2.8, applying this vector to A−1 would then tell us that the adjoint of

J (i.e. its sensitivity to perturbations in the source terms) is just the corresponding

average of all rows of A−1.

In the same way, the sensitivity of any scalar output can be represented as a

weighted average of the rows of A−1, in accordance with Eqn. 2.8. As we will see, in

a CFD simulation where U may represent the density or momentum of a fluid, these

scalar outputs will tend to be quantities of physical importance, such as lift, drag,

moment, or heat flux.

2.1.1 Alternative (CFD) Notation

Before moving on, let us rewrite the adjoint equation (Eqn. 2.8) in a form typically

seen in Computational Fluid Dynamics. In CFD, the governing equations

AU = F

(i.e. Eqn. 2.2), would typically be written as a set of discrete “residuals,” where the

residual vector R ∈ RN is defined as:

R(U) ≡ AU− F . (2.11)

The governing equations are therefore satisfied when the residual vector is zero.

1Strictly speaking, Eqn. 2.6 (the dual form) holds only if J is a linear combination of the
components of U, though Eqn. 2.8 (the adjoint equation) holds even in the nonlinear case, since the
adjoint is always defined to be a linear sensitivity vector.

14

Taking the derivative of R with respect to U, we see that

∂R

∂U
= A . (2.12)

Thus, we can say that the A matrix corresponds to the “residual Jacobian” matrix,

∂R/∂U. Inserting this Jacobian matrix into the adjoint equation (Eqn. 2.8) then

gives

ΨT =
∂J

∂U

∂R

∂U

−1

. (2.13)

To obtain a more common form of this equation, we transpose both sides to get

Ψ =
∂R

∂U

−T ∂J

∂U

T

. (2.14)

Finally, multiplying both sides by the Jacobian transpose gives

∂R

∂U

T

Ψ =
∂J

∂U

T

. (2.15)

This is the adjoint equation often seen in the literature.2

By comparing both sides of this equation, we see that in order for the left-hand

side to have dimensions of ∂J/∂U, the adjoint must behave like

Ψ ≈ ∂J

∂R
. (2.16)

Thus, in general, we can say that the adjoint represents the sensitivity of an output

to perturbations in the residuals. (Note that previously we described the adjoint in

terms of perturbations to F, but since perturbations in F lead directly to perturba-

tions in the residuals, these are different ways of saying the same thing.3)

In the end, Eqn. 2.15 is same as that in the previous section (Eqn. 2.8), but

with one additional benefit. By writing the adjoint equation in terms of a residual

Jacobian matrix as opposed to an A matrix, we have effectively extended its definition

to problems with nonlinear residuals as well. In that case, although we could not

write the residual itself as R = AU−F, we could still compute its derivative ∂R/∂U

2Note that the adjoint equation is sometimes defined with a negative sign on ∂J
∂U

T
. This is a

convention often used within the field of optimization. In that case, the adjoint would represent the
output sensitivity to perturbations on the left-hand rather than right-hand side of the residuals.

3Except for a difference in sign, since F enters the residual with a negative sign.

15

about a given location in state space (just as we could compute the derivative of any

nonlinear function – say, a quadratic – at a given point in space). From Eqn. 2.15, this

first derivative – this Jacobian matrix – is all that is required to define the adjoint.

Thus, for nonlinear problems, we would write the adjoint equation as

∂R

∂U

T
∣∣∣∣
U

Ψ =
∂J

∂U

T
∣∣∣∣
U

. (2.17)

where the Jacobian and output linearization are evaluated at a particular state, U.

Finally, we note that, in general, there are several means by which ∂R
∂U

and ∂J
∂U

can

be computed. These include finite differencing of the discrete residuals and output,

automatic code differentiation, and analytical differentiation. In this work, we rely

primarily on analytical differentiation, which – despite the effort involved – typically

results in a more accurate and efficient implementation.

2.1.2 Adjoint Example

At this point, it is worth giving a practical example. Here, we show results from

a simulation of the Navier-Stokes equations around an airfoil. In this case, the flow

moves upward and to the right at an angle of attack of 5◦ and a Reynolds number of

5000, with contours of the x-direction momentum shown in Fig. 2.1a. A low-velocity

wake forms behind the airfoil, as indicated by the blue region in the figure.

(a) x-momentum of fluid (b) cons. of x-momentum drag adjoint

Figure 2.1: Contours of (a) x-momentum ([blue, dark red] = [-0.035, 0.55]) and (b)
the conservation of x-momentum component of the drag adjoint ([blue, dark red] =
[-1.05, 0.15]) for Re = 5000 flow around an airfoil. The drag is most sensitive to
x-momentum residual perturbations made in the dark blue/red regions of (b).

If we are interested in the drag on the airfoil, we can define this drag to be our

16

“output” J and can compute a corresponding adjoint from Eqn. 2.17. Looking back

at the equations above (e.g. Eqn. 2.5) it is clear that the adjoint is always a vector of

the same dimension as the state vector, U. Thus, if we can plot contours of U, we can

plot contours of Ψ as well.4 These contours are shown in Fig. 2.1b. (Specifically, we

plot the “conservation of x-momentum” component of the adjoint, which represents

the sensitivity of the drag to perturbations in the x-momentum residuals. The adjoint

also has conservation of mass, y-momentum, and energy components.)

The dark blue and dark red regions in Fig. 2.1b are those of strong positive

and negative output sensitivity, respectively. Any residual perturbations made in

these regions would therefore have a large effect on the final drag value, whereas

perturbations made in the lighter red regions (where the adjoint is near zero) would

have a small influence on the drag.

One interesting feature of the adjoint is the blue region extending leftward from the

airfoil leading edge. This adjoint “wake” travels in the opposite direction to the fluid

wake, and is representative of a general feature of adjoints: namely, that information

in the adjoint problem flows in the opposite direction as information in the original

(“primal”) problem. While we will discuss this in more detail later, here, the existence

of an adjoint wake on the left makes sense, since any source perturbations made in

this region will flow rightward and collide with the airfoil, ultimately having a strong

influence on the drag value.

Finally, one potentially suprising fact about the adjoint is that it is smooth . It

is not obvious that this should be the case. Upon plotting its contours, we may have

expected to see more or less random “spikes” in sensitivity. However, this smoothness

can be explained by the fact that, in the end, perturbations in the residuals propagate

via physical mechanisms (e.g. acoustic waves or convective motion) on their way to

influencing the output. Since most physical modes of propagation are by nature

“smooth,” this smoothness is reflected in the adjoint. Indeed, as we will discuss later,

it turns out that just as the discrete system AU = F approximates a continuous (i.e.

smooth) primal PDE, the discrete adjoint equations – if properly posed – approximate

a continuous adjoint PDE.

4Note that we are using a finite element formulation here, so plotting Ψ requires first multiplying
it by the set of finite element basis functions. For non-variational methods the components of Ψ
may have to be scaled in other ways before plotting.

17

2.1.3 Applications of Adjoints

While the idea of an adjoint vector is relatively straightforward, this concept lies

at the heart of several active fields of research, including design optimization, mesh

adaptation, error estimation, data assimilation, and uncertainty quantification. In

this section, we discuss briefly the role of adjoints in the context of design optimization

and mesh adaptation.

2.1.3.1 Design Optimization

In the field of optimization, the goal is typically to minimize or maximize some

output of interest by systematically modifying (or “optimizing”) certain parameters

of the problem at hand. For example, in aircraft design, the goal may be to minimize

the drag of an aircraft by finding the optimal fuselage and/or wing shape at a given

angle of attack.

For these problems, where “gradient-based” techniques are often employed, the

adjoint plays a critical role. This is because any changes in the design parameters

(e.g. the aircraft geometry) would result in corresponding changes to the residuals of

the governing equations. But since the adjoint provides the sensitivity of an output

to perturbations in the residuals, it therefore indicates whether a given design change

would cause the output value to increase or decrease. (Most importantly, it provides

this sensitivity without any additional solves of the primal problem, which would

otherwise be required if a “forward” sensitivity method were used.) Thus, if the goal

is to e.g. minimize drag, design changes can be made that – according to the adjoint

– lead to a reduction in drag. By iterating this process until the design parameters

converge, the “optimal” design that minimizes drag5 can be found.

2.1.3.2 Error Estimation and Mesh Adaptation

Just as design modifications can be treated as perturbations to the residuals, so can

numerical errors. In a CFD simulation, the solution on a given mesh will not satisfy

the differential (i.e. “continuous”) form of the governing equations exactly. Instead,

small truncation errors will exist throughout the domain, which can be viewed as

source-term perturbations to the local (continuous) residual. For a given output of

interest, the adjoint then indicates how these residual perturbations translate into

errors in the final output value.

5At least in a local sense – a global minimum is not guaranteed.

18

Furthermore, in addition to providing an estimate for the total output error,

the adjoint also indicates where in the domain this error originates from. Roughly

speaking, if truncation errors (i.e. residual perturbations) occur in a region where the

adjoint is large, then these perturbations are likely contributing a significant amount

to the output error. To reduce the output error, we should therefore attempt to

reduce these residual perturbations, which can be done via local mesh refinement.

Thus, the adjoint – or more accurately, the adjoint multiplied by the local residuals

– can serve as an effective mesh adaptation indicator. This “adjoint-weighted

residual” method forms the basis for much of the work in this thesis.

2.2 Continuous Adjoints

In the above section, we have given an overview of the discrete adjoint and its

applications within Computational Fluid Dynamics. As mentioned, the discrete ad-

joint – while useful in its own right – turns out to be an approximation to a more

fundamental concept: the continuous adjoint. In this section, we provide an overview

of continuous adjoints and their associated operators, which will play a prominent

role in the latter half of the thesis.

To introduce the relevant ideas, let us return to the differential equation from the

previous section:

Lu = f , (2.18)

where L is a linear differential operator, u is the unknown solution, f is a source term,

and suitable boundary conditions are imposed.

To make the discussion more concrete, we will initially take L ≡ a∂()
∂x

and consider

the following advection equation,

a
∂u

∂x
= f(x) x ∈ Ω (2.19)

u = 0 x = xL , (2.20)

where a is a positive scalar and a homogeneous Dirichlet condition is imposed on the

left side of the domain, defined as Ω ≡ [xL, xR]. Here, since the advection speed a

is positive, information propagates from left to right, making the specification of a

boundary condition on the left well-posed.

Now, imagine that, as in the previous section, we are interested not in solving for

19

the entire solution u, but instead in computing a certain scalar output (or “func-

tional”) of the form:

J =

∫
Ω

g(x)u(x) dx ≡ (g, u) . (2.21)

For example, if – as in the discrete adjoint section – we are interested in computing

the value of u at a single point (say, xp) then we would choose g(x) ≡ δ(x− xp). By

the properties of the Dirac delta function, our output of interest would then be

J =

∫
Ω

g(x)u(x) dx =

∫
Ω

δ(x− xp)u(x) dx = u(xp) . (2.22)

Alternatively, if we were interested in computing (e.g.) the average of the solution

over the domain, we would simply choose g(x) ≡ 1.

For any desired choice of the output J (and hence g)6 the continuous adjoint7 for

that output would satisfy the following differential equation:

−a∂ψ
∂x

= g(x) x ∈ Ω (2.23)

ψ = 0 x = xR . (2.24)

Here, we have labeled the continuous adjoint ‘ψ’, similar to the notation for the

discrete adjoint, Ψ.

Looking at the above adjoint equation (Eqn. 2.23), we see that it is very similar

to the primal equation (Eqn. 2.19), with the only differences being the presence of

g(x) rather than f(x), the inclusion of a negative sign in front of a, and the imposition

of a boundary condition on the right rather than the left side of the domain. (Note

that these last two differences indicate a reversal in the direction of information

flow compared to the primal problem – as mentioned in Sec. 2.1.2 above.)

Now, what is the significance of this equation, and why should we call ψ an

“adjoint”? Consider again the definition of our desired output, from which – in light

6Except g = δ(x− xR), which lies on the boundary.
7Note that the continuous adjoint is sometimes referred to as a generalized Green’s function

due to its similarity to standard Green’s functions [30].

20

of Eqn. 2.23 – we can perform the following manipulations:

J =

∫
Ω

g(x)u dx (output definition)

=

∫
Ω

−a∂ψ
∂x

u dx (by adjoint equation, Eqn. 2.23)

=

∫
Ω

ψ a
∂u

∂x
dx− aψu

∣∣∣∣xR
xL

(integrate by parts)

=

∫
Ω

ψ a
∂u

∂x
dx (ψ and u BCs = 0)

=

∫
Ω

ψ f(x) dx . (by primal equation, Eqn. 2.19) (2.25)

Or, using bracket notation to denote the L2 inner product, we can write simply

J = (ψ, f) . (2.26)

This is the so-called dual form of the output, which is analogous to the one

derived in the discrete case (i.e. Eqn. 2.6). As in the discrete case, it says that the

only information required to compute the desired output is the adjoint ψ and the

source term f . Furthermore, just as the discrete adjoint Ψ represents the sensitivity

of an output to perturbations in the discrete source term F, the continuous adjoint

ψ represents the sensitivity of an output to perturbations in the continuous source

term f .

For the current problem, the continuous adjoint associated with the output J =

u(xp) is plotted in Fig. 2.2. For this output, we have g = δ(x − xp), so the solution

to the adjoint equation (Eqn. 2.23) is just the step function.8 From the figure, we

see that ψ is nonzero only in the region upstream of xp, since any perturbations

made downstream of xp cannot influence the output value. This confirms our earlier

statement that ψ should represent the sensitivity of the output to perturbations made

in various regions of the domain.

2.2.1 Generalization of the Continuous Adjoint

Now, let us generalize the continuous adjoint to cases beyond advection. Looking

back at the dual form derivation (Eqn. 2.25), we see that it hinges on the action

8Note that the “continuous” adjoint is not necessarily a continuous function itself.

21

Output location, J = u(xp)

ψ = const.

ψ = 0

−ψ(x)

xRxp

Perturbations here do

not influence J

xL

Figure 2.2: 1D advection: The adjoint associated with the output J = u(xp). Here,
primal source perturbations (indicated by the squiggle) travel rightward, so only
perturbations made to the left of xp can influence the output value. Thus, for x > xp,
ψ = 0. Furthermore, since all perturbations made in xL < x < xp will propagate to
xp eventually, the output is equally sensitive to all of them, meaning ψ = constant in
this region.

performed between steps 2 and 3 – i.e. the integration by parts. The key point is

that the operator acting on the adjoint ψ should, after integration by parts, recover

the primal differential operator. (E.g., in this case, the −a∂ψ
∂x

term yields the primal

term a∂u
∂x

after integration by parts.)

In general, let us denote the operator acting on ψ as L∗. Then, for a given primal

operator L, we need this L∗ operator to satisfy the following identity:∫
Ω

(Lu)ψ dx =

∫
Ω

u (L∗ψ) dx ∀ suitable u, ψ (2.27)

This says that, if we have a differential term Lu integrated against a function ψ, then

L∗ is the operator that acts on ψ after we integrate by parts enough times to remove

all derivatives from u.9 (As suggested above, the integration by parts can also be

thought of as occuring in the reverse direction, from L∗ to L. However, since we

typically know L from the primal equation, in practice we integrate the left-hand side

9Note that all boundary terms vanish in the integration by parts since we assume homogeneous
boundary conditions on u and ψ.

22

of Eqn. 2.27 by parts in order to determine L∗.)

For example, if L ≡ ∂()
∂x

, only one integration by parts in Eqn. 2.27 is required to

remove the derivative on u. Since this integration by parts introduces a negative sign,

the L∗ in Eqn. 2.27 then turns out to be L∗ = −L ≡ −∂()
∂x

. However, if we instead

had the operator L ≡ ∂2()
∂x2 , then two integrations by parts would be required, and

the two subsequent negative signs would cancel, yielding L∗ = L ≡ ∂2()
∂x2 . This trend

holds in general: for any odd-derivative terms in L, L∗ will contain the negative

of these terms, and for any even-derivative terms in L, L∗ will contain the same

(unmodified) terms.10

To generalize a bit further, we can write the above relation (Eqn. 2.27) in inner

product notation as

(Lu, v) = (u, L∗v) ∀u, v ∈ V , (2.28)

where V is a suitable function space over which the above inner product (which could

be, e.g., the L2 inner product) is defined. In functional analysis, this relation is known

as the adjoint identity. For a given operator L, it serves as the definition of the

so-called adjoint operator , L∗. As suggested, this L∗ is exactly the operator we

need to define the continuous adjoint ψ.

We can now summarize the discussion. For a primal differential equation

Lu = f x ∈ Ω (2.29)

primal b.c. x ∈ ∂Ω (2.30)

and an output of interest J = (g, u), the continuous adjoint equation is defined as

L∗ψ = g x ∈ Ω (2.31)

adjoint b.c. x ∈ ∂Ω (2.32)

where L∗ is the formal adjoint operator defined by Eqn. 2.28, and the adjoint boundary

conditions are chosen such that Eqn. 2.28 is satisfied.11

With the adjoint problem defined in this way, the following derivation can then

10These even-derivative terms are the so-called “self-adjoint” terms.
11We will discuss this more later – it is not always strictly true when the adjoint boundary

conditions are non-homogeneous.

23

be performed:

J = (g, u) (output definition)

= (L∗ψ, u) (by adjoint equation, Eqn. 2.31)

= (ψ,Lu) (by adjoint identity, Eqn. 2.28)

= (ψ, f) . (by primal equation, Eqn. 2.29) (2.33)

Thus, the above definition of the adjoint problem allows us to write the output in

dual form, from which it follows that ψ represents the sensitivity of the output to

perturbations in f .

2.2.2 Further Generalization of the Continuous Adjoint

So far, we have avoided a detailed discussion of boundary conditions for both the

primal and adjoint problems. Our choice of boundary condition for ψ in Eqn. 2.24

happened to work, but we have given little motivation for this choice. In addition,

we have assumed homogeneous boundary conditions for the primal problem, which

will not always be the case. Finally, we have assumed that the output itself can be

represented as an “interior” integral of the form (g, u). However, in practice, the most

important outputs – such as lift and drag – are often those defined on the domain

boundaries .

In order to address these issues, we need to further generalize our definition of the

continuous adjoint. Recall that, in the discrete adjoint section, we initially treated

the adjoint as the sensitivity of an output with respect to F, then later generalized

it to represent the sensitivity of an output with respect to the residual, R. By

following this same path in the definition of the continuous adjoint, we can address

the aforementioned issues.

First, as in the discrete case, we can define a continuous “residual” r(u) to be

the function that is zero when the primal differential equation is satisfied, i.e.

r(u) ≡ Lu− f . (2.34)

Now, if the adjoint ψ is to represent the sensitivity of an output J with respect to

perturbations in r(u), we require that it satisfy the following equation:

24

J ′(δu) =

∫
Ω

ψ r′(δu) dΩ ∀ (permissible) δu . (2.35)

This is the generalized form of the continuous adjoint equation, which serves as

the definition of ψ regardless of output type, boundary conditions, and even prob-

lem nonlinearity. Conceptually, this equation just says that for a given change in

the residual, r′(δu), the adjoint dictates how this change leads to a change in the

output, J ′(δu). Here, a prime denotes taking the “first variation” (or Fréchet

linearization) of a quantity with respect to u. From variational calculus, taking the

first variation of e.g. J means considering how some change in the state, δu (which is

defined over all of Ω – see Fig. 2.3), would change the corresponding value of J .12

u(x)
u + δu

δu = 0

x

u

Figure 2.3: Illustration of the variation, δu. The variation is a function of x and
represents a perturbation to the state, u. If the value of u is fixed at a boundary by
a Dirichlet condition (as it is on the left here) the variation is constrained to be 0 at
that boundary.

A similar idea holds for the variation of the residual, r′(δu). In practice, for linear

problems, computing the variation of the residual simply means inserting a δu term

in place of the original u, and eliminating any terms that have no dependence on u.

For example, for the advection problem above, we have

r(u) ≡ a
∂u

∂x
− f (2.36)

12Thus, rather than a rate of change, J ′(δu) actually represents a direct change in J , which could
be written in shorthand as simply δJ .

25

and would compute its first variation as

r′(δu) = a
∂(δu)

∂x
. (2.37)

Here, since f does not depend on u, it vanishes when the variation is taken.

Finally, an important point is that the variation δu must be a “permissible” one,

which – in particular – means that it must satisfy any boundary conditions imposed

on the primal problem. For example, if a Dirichlet condition is imposed on a given

boundary, then the value of u is fixed there, meaning no variation is allowed and

hence δu = 0 there. Figure 2.3 shows an example of what a permissible δu might

look like in this situation.

Remark 1. (Systems of Equations) Note that Eqn. 2.35 defines the adjoint

in the case of a scalar equaton r(u). If we instead had a system of Ns equa-

tions with state components u = [u1 u2 ... uNs]T and residual components r(u) =

[r1(u) r2(u) ... rNs(u)]T , then the adjoint would be written asψ = [ψ1 ψ2 ... ψNs]T

and the adjoint equation would become:

J ′(δu) =

∫
Ω

ψT r′(δu) dΩ ∀ (permissible) δu . (2.38)

Here, we use boldface to indicate a vector of Ns state components. Furthermore, the

variation is now defined as e.g. J ′(δu) ≡ J ′(δu1) + J ′(δu2) + ...+ J ′(δuNs) – in other

words, it is the sum of the variations with respect to each component of u. Note that

we are being a little loose with notation here: for example, J ′(δu1) should be formally

written as J ′u1
([δu1 0 ... 0]). Here, the u1 subscript means that we are taking the vari-

ation of J with respect to u1, which is then a function of δu1 only. However, when it

is clear from context, we will leave the subscript off and will ignore the zero-valued

inputs.

For the sake of simplicity, let us continue with our scalar advection example to

show how Eqn. 2.35 is used in practice. We will then provide some further examples.

26

2.2.2.1 Example: Continuous Adjoint for Steady Advection

Assume a primal advection problem of the form

a
∂u

∂x
= f x ∈ Ω (2.39)

u = uL x = xL (2.40)

where uL is a Dirichlet boundary condition imposed on the left side of the domain.

As before, we imagine that we are interested in some output J(u), which will be left

unspecified for now.

The variation of the residual, r′(δu), is given by Eqn. 2.37. Inserting this into the

general adjoint equation (Eqn. 2.35) gives:

J ′(δu) =

∫
Ω

ψ a
∂(δu)

∂x
dx ∀ δu . (2.41)

To determine the continuous adjoint PDE and boundary conditions, we now integrate

by parts, giving

J ′(δu) =

∫
Ω

(
−a∂ψ

∂x

)
︸ ︷︷ ︸

L∗ψ

δu dx+ ψ a δu

∣∣∣∣xR
xL

∀ δu , (2.42)

or

J ′(δu) =

∫
Ω

(L∗ψ) δu dx+ ψ a δu

∣∣∣∣xR
xL

∀ δu . (2.43)

Next, since the Dirichlet boundary condition is imposed at x = xL, the variation δu

must be zero there. Eliminating this term in the above equation then leaves

J ′(δu) =

∫
Ω

(L∗ψ) δu dx+ ψ a δu

∣∣∣∣
xR

∀ δu . (2.44)

Now, if, as before, we assume that our output has the form J = (g, u), then its

variaton J ′(δu) would just be J ′(δu) = (g, δu). Inserting this expression into the

27

left-hand side of the above equation then gives∫
Ω

g δu dx =

∫
Ω

(L∗ψ) δu dx+ ψ a δu

∣∣∣∣
xR

∀ δu . (2.45)

We now see that, if the left- and right-hand sides of this equation are to be equal

for all δu, we need ψ to satisfy the following conditions:

L∗ψ = g and ψ
∣∣
xR

= 0 . (2.46)

Inserting these expressions into the right-hand side of Eqn. 2.45 would then leave us

with ∫
Ω

g δu dx =

∫
Ω

g δu dx ∀ δu , (2.47)

which (clearly) holds for all δu.

Thus, for the output J = (g, u), the constraints in Eqn. 2.46 represent the differ-

ential equation and boundary condition that must be satisfied by ψ in order to fulfill

the general adjoint equation (Eqn. 2.35). And indeed, looking back at our original

example in Eqn. 2.23, this is exactly how we defined the adjoint in that case.

At this point, we have recovered our previous definition of the adjoint for outputs

of the form J = (g, u). However, as mentioned, we may also be interested in an

output defined along the boundary of the domain. It turns out that the specific form

of the adjoint equation – in this case Eqn. 2.44 – determines the type of boundary

terms that can be included in the output. Whichever output we choose, we need its

variation to look similar to the right-hand side of Eqn. 2.44. Otherwise, it would

not be possible to choose ψ in such a way that Eqn. 2.44 remains valid for all δu.

In standard terminology, we would say that the output must be compatible with

Eqn. 2.44.

In the present case, since Eqn. 2.44 contains only a right-boundary term (as op-

posed to a left-boundary term), this means that our output can likewise only involve

the state on the right boundary. This makes sense from a logical perspective as well:

since we are imposing a Dirichlet condition on the left boundary, we already know the

value of u there, so there is no sense in treating it as part of an “unknown” output.

This idea holds true in general: compatible outputs are those whose components

have not already been fixed by the boundary conditions, and hence, they are the

outputs we would naturally be interested in anyway.

28

For our current problem, the general form of a compatible output is

J(u) = (g, u) + gR u
∣∣
xR

, (2.48)

where gR is an arbitrary weight on the right-boundary state (i.e the outgoing flux).

The variation of this output, J ′(δu), is then

J ′(δu) = (g, δu) + gR δu|xR . (2.49)

To find the corresponding adjoint equation, we insert this J ′(δu) into Eqn. 2.44, giving∫
Ω

g δu dx+ gR δu

∣∣∣∣
xR

=

∫
Ω

(L∗ψ) δu dx+ ψ a δu

∣∣∣∣
xR

∀ δu . (2.50)

We then see that for this equation to hold for all δu, ψ must satisfy

L∗ψ = g and ψ
∣∣
xR

=
gR
a

. (2.51)

The conclusion is thus that, when the output includes a boundary term, the corre-

sponding boundary condition for the adjoint problem becomes nonhomogeneous.

Remark 2. (Dual Form) In this section, in addition to the adjoint boundary con-

dition, we have also allowed the primal boundary condition (u = uL) to be

nonzero. So far, this has had no influence on the derivation of the adjoint, since

this derivation involves only the variation δu on the boundary, rather than the actual

value there. However, while the primal boundary condition does not influence the

adjoint problem itself, it does change how we would express the output in dual form.

To derive the dual form of the output, we start from the output definition in

Eqn. 2.48 and perform the following steps:

J(u) = (g, u) + gR u
∣∣
xR

(output definition)

= (L∗ψ, u) + ψ au
∣∣
xR

(adjoint equation and BC, Eqn. 2.51)

= (ψ,Lu) − ψ au
∣∣xR
xL

+ ψ au
∣∣
xR

(integration by parts)

= (ψ,Lu) + ψ au
∣∣
xL

(right-boundary term cancellation)

= (ψ, f) + ψ auL
∣∣
xL

(primal equation and BC, Eqn. 2.39) (2.52)

Thus, when the primal boundary conditions are nonzero, the dual form of the output

29

is given by

J(u) = (ψ, f) + ψ f̃
∣∣
xL

. (2.53)

where f̃ ≡ auL is the prescribed boundary flux.

Note that although we now have a boundary term in the dual form, the under-

lying concept remains the same: the dual form involves only the adjoint and the

prescribed data associated with the primal problem. In this case, that prescribed

data includes both the source term f and the boundary data f̃ = auL. Note that this

is still analogous to the dual form in the discrete case. There, the discrete F – which

we referred to as the “source” vector – in practice contains boundary data as well.

2.2.2.2 Example: Continuous Adjoint for Steady Diffusion

To solidfy the above ideas, we provide another example – a steady diffusion prob-

lem. Assume we have the following primal equation

−ν ∂
2u

∂x2
= f x ∈ Ω (2.54)

u = uL x = xL (2.55)

∂u

∂x
= ux,R x = xR (2.56)

where ν is a positive diffusion coefficient, uL is a prescribed Dirichlet condition on

the left, and ux,R is a prescribed Neumann condition on the right.

The residual is then defined as

r(u) ≡ −ν ∂
2u

∂x2
− f, (2.57)

and its variation is

r′(δu) = −ν ∂
2(δu)

∂x2
. (2.58)

We again assume that we are interested in some output J(u), which we will leave

unspecified for the moment. Substituting the above residual variation into the general

adjoint equation (Eqn. 2.35) gives

J ′(δu) =

∫
Ω

ψ

(
−ν ∂

2(δu)

∂x2

)
dx. (2.59)

30

Now integrating by parts (twice) to move all derivatives onto ψ yields:

J ′(δu) =

∫
Ω

(
−ν ∂

2ψ

∂x2

)
︸ ︷︷ ︸

L∗ψ

δu dx + ν
∂ψ

∂x
δu

∣∣∣∣xR
xL

− νψ
∂(δu)

∂x

∣∣∣∣xR
xL

. (2.60)

Next, since the Dirichlet condition constrains u at the left boundary, the variation

δu must be zero there. Likewise, since the Neumann condition constrains ∂u/∂x at

the right boundary, the variation of the derivative must be zero there. (Note that

mathematically, δ (∂u/∂x) = ∂ (δu) /∂x, so we require ∂ (δu) /∂x = 0 at x = xR.)

Applying these constraints then leaves

J ′(δu) =

∫
Ω

L∗ψ δu dx + ν
∂ψ

∂x
δu

∣∣∣∣
xR

+ νψ
∂(δu)

∂x

∣∣∣∣
xL

. (2.61)

We see now that to be compatible with this equation, our output can include

either a “u”-type contribution on the right boundary or a “∂u/∂x”-type contribution

on the left boundary. In other words, our output can be of the form

J(u) = (g, u) + gR u

∣∣∣∣
xR

+ gL
∂u

∂x

∣∣∣∣
xL

. (2.62)

Once again, this makes sense from a logical perspective as well: the output includes

only quantities that are not already prescribed from the boundary conditions. By

taking the variation of this J(u) and comparing it to Eqn. 2.61, we see that the

adjoint must satisfy the following conditions:

L∗ψ = g ,
∂ψ

∂x

∣∣∣∣
xR

=
gR
ν
, and ψ

∣∣
xL

=
gL
ν

. (2.63)

2.2.2.3 Example: Continuous Adjoint for Nonlinear Burgers Equation

Finally, we note that the adjoint equation (Eqn. 2.35) applies to nonlinear prob-

lems as well. For these problems, the adjoint represents the sensitivity of an output

to residual perturbations about some particular state u, in the same way that we

could compute the slope of a standard nonlinear function (say f(x) = x2) about a

particular value of x.

In general, both the residual and the desired output may be nonlinear expressions

(as would be the case with, e.g. a Navier-Stokes simulation and a lift output), and

the variations of these expressions would then represent linearizations about some

31

particular state – say, u0. Thus, while for linear problems we just label the variations

J ′(δu) and r′(δu), for nonlinear problems we must also indicate the state about which

these variations are performed. We can do this by including that state in square

brackets. For example, when linearizing about u0, we would write J ′[u0](δu) and

r′[u0](δu). This notation is common in the literature.

As a simple example, consider the following one-dimensional Burgers equation

(with a u3 source term):

u
∂u

∂x
+ u3 = f x ∈ Ω (2.64)

u = uL x = xL (2.65)

The residual is defined as

r(u) ≡ u
∂u

∂x
+ u3 − f , (2.66)

and its variation about a particular state u0(x) is then given by

r′[u0](δu) = u0
∂(δu)

∂x
+ δu

∂u0

∂x
+ 3u2

0 δu . (2.67)

Here, the first two terms arise from applying the product rule13 to the u ∂u/∂x term

in Eqn. 2.66, while the last term represents the variation of u3.

Similarly, if our output were some nonlinear quantity, such as the right-boundary

flux

J(u) =
1

2
u2

∣∣∣∣
xR

, (2.68)

then its variation could be computed as

J ′[u0](δu) = u0 δu

∣∣∣∣
xR

. (2.69)

Since u0 is treated as a “frozen” state, both r′[u0](δu) and J ′[u0](δu) are now

linear in δu, and the adjoint equations and boundary conditions can be derived as

usual from Eqn. 2.35.

13The variation obeys the product rule in the same way that a standard derivative does.

32

2.3 Summary: Discrete and Continuous Adjoints

With discrete and continuous adjoints discussed, we conclude with a brief discus-

sion of the connections between these concepts. We have already mentioned some

of the similarities between discrete and continuous adjoints, such as how they lead

to a “dual form” of an output, and hence represent an output sensitivity to residual

perturbations. However, we can draw some further parallels between the discrete and

continuous adjoint equations themselves.

We start with a simple side-by-side comparison of these equations. Recall that

the discrete adjoint equation is given by Eqn. 2.15 as

∂R

∂U

T

Ψ =
∂J

∂U

T

.

Transposing both sides of this equation and swapping left- and right-hand sides then

gives:

∂J

∂U
= ΨT ∂R

∂U
.

On the other hand, the continuous adjoint equation (Eqn. 2.38) is defined as

J ′(δu) =

∫
Ω

ψT r′(δu) dΩ .

A clear resemblance is seen between these equations – namely, they both involve an

output linearization on the left and a residual linearization on the right, related via

an adjoint vector.

2.3.1 The Discrete Adjoint Operator and Adjoint Consistency

To draw some further connections, let us look more closely at the discrete adjoint

equation

∂R

∂U

T

Ψ =
∂J

∂U

T

.

If, for simplicity, we call the residual Jacobian matrix A and label the output lin-

earization G (such that, e.g., for a linear output J ≡ GTU), then this equation can

33

be written as

ATΨ = G . (2.70)

On the other hand, from Eqn. 2.31, the differential form of the continuous adjoint

equation is written as

L∗ψ = g.

Recall that the adjoint operator in this equation, L∗, was defined by the adjoint

identity

(Lu, v) = (u, L∗v) ∀u, v ∈ V .

A question which then arises is: if the continuous adjoint operator L∗ satisfies

a so-called “adjoint identity,” can the same be said for the operator in the discrete

adjoint equation – i.e. AT ?

To answer this question, note that we can formulate a discrete version of the above

adjoint identity by: (1) replacing L by a discrete operator A, (2) replacing the inner

product with a discrete dot product, and (3) replacing u and v by discrete vectors U

and V. We then obtain the following identity

AU ·V = U ·A∗V ∀U,V ∈ RN , (2.71)

which defines a certain matrix A∗ as the discrete adjoint operator. To determine

A∗, we rewrite the above relation using the formal definition of the dot product (i.e.

u · v ≡ uTv):

(AU)TV = UT (A∗V) ∀U,V ∈ RN (2.72)

UTATV = UTA∗V ∀U,V ∈ RN (2.73)

=⇒ AT = A∗ . (2.74)

The formal adjoint operator associated with a matrix A is therefore just its trans-

pose, AT . Thus, the presence of AT in the discrete adjoint equation does in fact

“parallel” the continuous adjoint equation, in the sense that both equations involve

formal adjoint operators on the left-hand side and output linearizations on the right.

This connection between AT and L∗ is more than superficial. In fact, just as the

34

discrete primal equation AU = F should (ideally) represent a consistent discretization

of the continuous primal problem,

AU = F ⇐⇒ Lu = f ,

the discrete adjoint equation ATΨ = G should ideally represent a consistent dis-

cretization of the continuous adjoint problem,

ATΨ = G ⇐⇒ L∗ψ = g .

A discretization which satisfies this property – i.e. whose matrix A has a transpose

that is also a consistent discretization of L∗ – is known as adjoint consistent .14

While not every primal discretization is adjoint-consistent, a lack of adjoint-

consistency can lead to suboptimal convergence rates in outputs of interest. Thus,

even if the adjoint equation is never explicitly solved, adjoint-consistent discretiza-

tions are often preferable to adjoint-inconsistent ones. Furthermore, if the discrete

adjoint equation is actually solved using an adjoint-inconsistent discretization, spu-

rious oscillations will appear in the adjoint, limiting its usefulness for applications

such as optimization and error estimation. In order to avoid these issues, adjoint-

inconsistent discretizations can often be modified to recover adjoint-consistency. A

discussion of these issues is provided in e.g. [65, 48, 46].

2.3.2 Summary of Adjoint Properties

1. For a scalar output of interest, both discrete and continuous adjoints can

be used to represent the output in an equivalent “dual form” (provided the

problem is linear).

2. For both linear and nonlinear problems, the discrete and continuous adjoints

represent the sensitivity of a given output to perturbations in the governing

equations (residuals).

3. The discrete adjoint is just a weighted average of the rows of the inverse Jacobian

matrix (i.e. A−1 or ∂R/∂U−1).

14Technically, both the adjoint operator (along with its corresponding boundary conditions) and
the output linearization must be represented in a consistent manner for a method to be considered
adjoint-consistent.

35

4. The continuous adjoint is the solution of a linear “adjoint” PDE involving the

adjoint operator L∗.

5. Any odd-order derivatives in L∗ have the opposite sign as in the primal operator,

leading to a reversal of information flow in the adjoint problem.

6. The adjoint equations – both discrete and continuous – are linear even when

the primal problem is nonlinear. For nonlinear problems, the adjoint equations

represent a local linearization about a given primal state.

2.4 Output-based Error Estimation

With the discussion of adjoints complete, we now turn to one of the primary

uses of adjoints: the estimation of numerical errors. The concept of adjoint-based

a posteriori error estimaton (or simply “output-based” error estimation) can be

treated in either a continuous or discrete context. In this section, we begin with

a simplified discussion in a continuous context before moving on to a more general

discrete formulation.

2.4.1 Continuous Error Estimation

Assume that we are dealing with a linear differential equation of the form

Lu = f x ∈ Ω (2.75)

primal b.c. x ∈ ∂Ω (2.76)

and, for simplicity, that our desired output J(u) can be represented as

J(u) = (u, g) . (2.77)

Now imagine that somehow (e.g. through a numerical method) we have arrived

at an approximate solution, uH .15 If we were to compute our output using this uH ,

its value would be given by

J(uH) = (uH , g) . (2.78)

15Assume that uH is sufficiently smooth to evaluate r(uH). If uH were nonsmooth, similar
arguments would hold, but the residual would have to be treated in a distributional sense.

36

A question we might now ask is: how much error is present in this output? In

other words, what is the difference between the exact and approximate outputs, i.e.

δJ ≡ J(u)− J(uH)?

It turns out that the adjoint is helpful in answering this question. Starting from

the definition of δJ and using the relevant adjoint identities, we find:

δJ = J(u)− J(uH)

= (u, g)− (uH , g) (output definitions)

= (u− uH , g) (linearity of inner product)

= (u− uH , L∗ψ) (adjoint equation, Eqn. 2.31)

= (L(u− uH), ψ) (adjoint identity, Eqn. 2.28)

= (Lu, ψ)− (LuH , ψ) (linearity of inner product)

= (f, ψ)− (LuH , ψ) (primal equation, Eqn. 2.75)

= −(LuH − f, ψ) (linearity of inner product) (2.79)

Now, recall that the residual is defined as

r(u) ≡ Lu− f . (2.80)

Thus, the quantity LuH − f is just the residual evaluated with the approximate

solution, i.e. r(uH). Since uH does not satisfy the primal differential equation exactly,

this r(uH) will in general be nonzero, and represents the local truncation error at a

given region of the domain.

Replacing LuH − f with r(uH) in Eqn. 2.79 then gives the following expression

for the output error:

δJ = −(r(uH), ψ). (2.81)

Or, in integral form, we have

δJ = −
∫
Ω

ψ r(uH) dΩ . (2.82)

Thus, we see that the amount of error in an output is given by an adjoint-

weighted (or “dual-weighted”) residual . This expression indicates that if nonzero

residuals occur in regions where the adjoint is large, then these residuals will con-

37

tribute a relatively large amount to the total output error.16 Thus, not only does it

provide the total output error, it also indicates the regions of the domain that are

responsible for this output error. For this reason, the above expression will play a

critical role in both output error estimation and adaptive mesh refinement.

Remark 3. (Dual Form of Error Estimate) Note that just as we can write the

output itself in both primal and dual forms, the output error can be written in dual

form as well. For a discussion of this topic, see Appendix A (Sec. A.1).

2.4.1.1 Continuous Error Estimation: Approximate Adjoint

In the current derivation, we have made the assumption of a linear primal problem

and a linear interior output. In this context, the above expression for the output error

is exact, provided the exact adjoint ψ is used. In practice, we will not have access

to this exact adjoint and must instead settle for a numerical approximation, ψh. The

error δJ above would then become an error estimate δJest, which could be written

as

δJest = −
∫
Ω

ψh r(uH) dΩ ≈ δJ . (2.83)

The closer ψh is to ψ, the closer δJest will be to the true output error.

2.4.1.2 Continuous Error Estimation: Finite Element Methods

So far, we have not needed to specify how ψh or uH are obtained. However, since

finite element methods play a central role in this work, it is useful to derive a form

of the error estimate particular to these methods.

In general, a finite element method weights the continuous residual r(uH) by “test

functions” v ∈ VH , where VH may be, e.g., the space of polynomial functions of a

certain order p. It then enforces orthogonality of the residual with respect to all

functions in VH , so that∫
Ω

v r(uH) dΩ = 0 ∀v ∈ VH . (2.84)

16Assuming that minimal error cancellation occurs between different regions within the integral.

38

Now, if we were to approximate the adjoint within VH itself, this “ψH” would neces-

sarily satisfy ∫
Ω

ψH r(uH) dΩ = 0 , (2.85)

since ψH ∈ VH . We can thus add this term to the error estimate in Eqn. 2.83 with

no effect, so that for a finite element method, the following form of the error estimate

holds:

δJest = −
∫
Ω

(ψh − ψH) r(uH) dΩ . (2.86)

From this expression, we see that in order to obtain a useful error estimate for a

finite element method, we need to approximate the adjoint ψh in a different (typically

finer) space than VH itself. Otherwise, if we were to take ψh = ψH in the above

formula, we would always obtain an error estimate of zero. In this work, we will

compute ψh in an order-enriched space, though it could also be computed on e.g.

a uniformly h-refined mesh.

Remark 4. (Output Convergence Rate) An additional point of interest is that

Eqn. 2.86 can be used to predict the output convergence rate associated with a finite

element method. First, if we assume that ψh = ψ for simplicity, then this expression

represents the exact output error. It then says that the output error involves the

product of two terms: (ψ − ψH) and r(uH). Therefore, the convergence rate of this

output error should (at least) correspond to the sum of the convergence rates of these

individual terms. Now, if VH is an order-p space, then the quantity (ψ − ψH) will

typically converge at order p + 1. Furthermore, for (e.g.) a first-order operator such

as advection, the residual r(uH) will converge at order p, since it involves taking one

derivative of uH . Summing these respective adjoint and residual rates, we predict

that the output error should converge at a rate of

(p+ 1)︸ ︷︷ ︸
adjoint

+ p︸︷︷︸
residual

= 2p+ 1︸ ︷︷ ︸
output

. (2.87)

This is indeed the rate typically observed for the discontinuous Galerkin methods

employed in this work.17

17Note that although the term (ψ − ψH) will only converge at order p+ 1 when ψ is smooth, in
practice, 2p + 1 output rates are often obtained when ψ is nonsmooth as well. Furthermore, note

39

2.4.1.3 Continuous Error Estimation: Nonlinear Problems

While we have focused on linear problems so far, the above error estimates carry

over to nonlinear problems virtually unmodified, with the caveat that they are no

longer exact due to the presence of a linearization error. See Appendix A (Sec. A.3)

for a discussion of this topic. For now, we will move on and treat the nonlinear case

in the discrete section to follow.

2.4.2 Discrete Error Estimation

We now turn to the primary method of error estimation used in this work – that

of discrete adjoint-based error estimation. The ideas described in this section hold for

general problems – linear or nonlinear, steady or unsteady – and for arbitrary output

types and numerical discretizations.

To start, imagine that we are interested in solving a set of nonlinear equations,

which may be written in discrete form as

RH(UH) = 0 . (2.88)

Here, the subscript H denotes a discretization on a given mesh, while RH(UH) could

represent the residuals associated with, for example, the Navier-Stokes equations.

Assume now that we are interested in a particular output, JH(UH), which could

represent (say) lift or drag. After solving for UH and computing this JH(UH), we

may again like to know: how much error is present in this output?

Ideally, we would like to compute the true output error

δJ = J(U)− JH(UH) . (2.89)

However, without knowledge of the exact solution U, this is infeasible. Instead, as a

surrogate for U, let us consider a so-called “fine-space” solution Uh, and attempt to

compute the error estimate

δJest = Jh(Uh)− JH(UH) . (2.90)

Here, the fine space (which we will denote by Vh) could be a uniformly refined or

order-incremented version of the original space, VH . Thus, the fine space will typically

that for diffusion problems the output error is expected to converge at a rate of just 2p, since r(u)
then contains a second-derivative operator and thus converges at order p− 1.

40

contain the coarse space, i.e. VH ⊂ Vh.
The fine-space solution Uh would then satisfy a corresponding set of fine-space

equations, written as

Rh(Uh) = 0 . (2.91)

While we could attempt to solve these equations directly, this would be impractical.

Instead, we would like to compute δJest without actually solving for Uh.

In order to achieve this, we first define an injection of the coarse solution UH

into the fine space as

UH
h = IHh UH . (2.92)

Here, IHh is a lossless injection operator which effectively “samples” UH on the fine

space, such that the resulting UH
h has the same dimension as Uh but contains only

coarse-space information.18 With this UH
h , we can then define the state perturbation,

δU, as the difference between the fine and (injected) coarse states:

δU = Uh −UH
h . (2.93)

With these definitions in hand, we now turn to computing δJest (Eqn. 2.90). First,

we note that the fine-space output, Jh(Uh), (which is at this point unknown) can be

Taylor-expanded about the coarse-space state UH
h as follows:

Jh(Uh) = Jh(U
H
h) +

∂Jh
∂Uh

∣∣∣∣
UH
h

δU + O(δU2) . (2.94)

Dropping the O(δU2) remainder then leaves

Jh(Uh) ≈ Jh(U
H
h) +

∂Jh
∂Uh

∣∣∣∣
UH
h

δU . (2.95)

Here, the perturbation δU is unknown. In order to determine it, we perform a similar

expansion of the fine-space residuals, Rh(Uh) = 0, about the coarse solution:

Rh(Uh) ≈ Rh(U
H
h) +

∂Rh

∂Uh

∣∣∣∣
UH
h

δU = 0 . (2.96)

18In a finite element context, this injection would just mean representing UH with the fine-space
basis functions rather than the coarse-space bases.

41

From this equation, we can solve for δU, giving

δU = −∂Rh

∂Uh

∣∣∣∣−1

UH
h

Rh(U
H
h) (2.97)

Inserting this δU back into Eqn. 2.95 then gives

Jh(Uh) ≈ Jh(U
H
h) − ∂Jh

∂Uh

∣∣∣∣
UH
h

∂Rh

∂Uh

∣∣∣∣−1

UH
h︸ ︷︷ ︸

ΨT
h

Rh(U
H
h) . (2.98)

The terms multiplying the residual in this equation now look familiar. Indeed,

looking back at the discrete adjoint equation (Eqn. 2.13), we see that they correspond

exactly to the adjoint of J . Specifically, they correspond to a fine-space adjoint,

which we can denote by ΨT
h . By the above definition, this adjoint is computed on the

fine-space, Vh, using a linearization about the injected coarse-space solution, UH
h .

Writing Eqn. 2.98 in terms of ΨT
h then gives

Jh(Uh) ≈ Jh(U
H
h) − ΨT

h Rh(U
H
h) . (2.99)

Finally, since Jh(U
H
h) = JH(UH) as long as the mesh geometry does not change

between the coarse and fine spaces, this equation can be rewritten as

Jh(Uh)− JH(UH) ≈ −ΨT
h Rh(U

H
h) . (2.100)

The left-hand side of this equation is exactly the error estimate we wished to compute,

δJest (Eqn. 2.90). Thus, we have

δJest ≈ −ΨT
h Rh(U

H
h) . (2.101)

We see that, as in the continuous case (Eqn. 2.83), the output error estimate

involves the product of a “fine-space” adjoint and the residuals evaluated with the

coarse-space solution. This Rh(U
H
h) will in general be nonzero, and indicates regions

of the domain where local truncation errors are generated. Weighting this term by

the adjoint then determines to what extent each of these local truncations errors

contributes to the final output error.

42

(a) Lift adjoint, Ψh (b) Residual, Rh(UH
h)

(c) Error indicator

Figure 2.4: (a) Fine-space adjoint for the lift on the airfoil. (b) Fine-space residual
evaluated with the injected coarse state (a measure of local truncation error). (c)
Error indicators, representing the amount of error each element contributes to the
lift. This is given by the product of the adjoint and residual, i.e. (a)·(b). (Figures
reproduced from [31].)

2.4.2.1 Error Localization and Mesh Adaptation

If an element-based method (such as a finite element or finite volume method) is

used to solve for UH , the above error estimate can be localized to individual elements

in the mesh. If there are Nh
e total elements on the fine space, it can be rewritten as

simply

δJest ≈
Nh
e∑

e=1

−ΨT
h, e Rh, e(U

H
h) , (2.102)

where ΨT
h, e and Rh, e(U

H
h) are the components of the adjoint and residual associated

with (i.e. restricted to) a given element e. A local error indicator can then be

defined as the absolute value of this product on each fine-space element, i.e. as

εe =
∣∣ΨT

h, e Rh, e(U
H
h)
∣∣ . (2.103)

43

If order enrichment is used to obtain the fine space, then NH
e = Nh

e , and εe

directly indicates how much error a given coarse-space element contributes to the

output. Alternatively, if uniform h-refinement is used to obtain the fine space, then

εe can be summed over all fine-space elements within a given coarse-space element

to arrive at a final coarse-space indicator. Figure 2.4 shows an example of the error

indicator computation around an airfoil, where order enrichment was used for the fine

space.

Once an error indicator is computed for each element in the coarse-space mesh, the

elements with the highest indicators (or a related “figure of merit”) can be selected

for refinement. Refining these elements then drives down their local residuals, leading

to a reduction in the amount of output error generated. This error estimation and

adaptation procedure can be performed in an iterative fashion to efficiently drive the

output error toward zero.

2.4.2.2 Finite Element Methods

If a finite element method is used to compute UH , a coarse-space adjoint can be

subtracted from the above δJest (and corresponding error indicators) with no effect.

This is due to the orthogonality property of finite element methods, as discussed

previously in the continuous context (Eqn. 2.86).

If we call the coarse-space adjoint ΨH and denote its injection into the fine space

as ΨH
h , then for finite element methods, Eqns. 2.101, 2.102, and 2.103 become:

δJest ≈ −
(
ΨT
h −

(
ΨH
h

)T)
Rh(U

H
h) , (2.104)

δJest ≈
Nh
e∑

e=1

−
(
ΨT
h,e −

(
ΨH
h,e

)T)
Rh, e(U

H
h) , (2.105)

and

εe =
∣∣∣(ΨT

h,e −
(
ΨH
h,e

)T)
Rh, e(U

H
h)
∣∣∣ . (2.106)

In practice, it is not necessary to subtract off a coarse-space adjoint, but these

expressions illustrate that for a finite element method, output errors will be generated

not where the adjoint values are large, but instead where the adjoint is not well-

approximated. In other words, the important regions are those where the difference

44

between fine- and coarse-space adjoints,
(
ΨT
h,e −

(
ΨH
h,e

)T)
, is large. Thus, if the fine-

space adjoint were (e.g.) large but constant in a given region, then since this constant

could also be represented in the coarse space (assuming it includes the p = 0 mode),

no output errors would be generated in this region.

A related point to emphasize is that, while a coarse-space adjoint ΨH may be

useful for optimization applications, for error estimation some type of fine-space ad-

joint is required. If we were to simply inject ΨH to the fine space and use that as

our effective “Ψh,” then the above formulas would reduce to zero, providing no useful

information. In practice, however, we do not need to solve the fine-space adjoint

equations exactly. Oftentimes, injecting ΨH to the fine space and performing a few

smoothing iterations is enough to provide meaningful error estimates.

2.4.2.3 Linearization Error

Finally, we note that for nonlinear problems – where the residuals R(U) and/or

the output J(U) are nonlinear – there is a so-called linearization error associated

with the above error estimate, δJest.

Looking back at the derivation of δJest (Eqn. 2.101), we see that when performing

the Taylor expansion of Jh(Uh) in Eqn. 2.94, we ignored the O(δU2) remainder term.

Likewise, we ignored a similar O(δU2) term in the Taylor expansion of Rh(Uh) in

Eqn. 2.96. If we had carried these terms throughout the derivation, they would have

appeared in the final error estimate, giving:

δJest ≈ −ΨT
h Rh(U

H
h) + O(δU2) . (2.107)

Thus, for nonlinear problems, even if the adjoint Ψh were computed on an in-

finitely refined mesh, there would still be an O(δU2) error in the error estimate, due

to the fact that the adjoint problem represents a linearization about the coarse-space

state, UH
h . Since δU typically converges at order pH +1 (where pH is the coarse-space

approximation order), this O(δU2) term is of order 2(pH + 1) = 2pH + 2. Thus, for

nonlinear problems, the accuracy of the output error estimate overall is limited to

O(h2p+2). (Though we note that, if desired, the accuracy of this error estimate can

be improved to O(δU3) = O(h3p+3) by averaging Eqn. 2.107 with a dual form of the

error estimate. See Appendix A (Sec. A.3.2) for a discussion of this topic.)

45

2.4.2.4 Summary: Discrete Error Estimation and Mesh Adaptation

Here, we summarize the steps involved in the discrete error estimation and mesh

adaptation process:

1. Solve RH(UH) = 0 on the coarse space, VH , to obtain UH .

2. Evaluate the output of interest, J(UH).

3. Inject UH to an order-incremented or uniformly refined space, Vh. (Compute

UH
h .)

4. Evaluate the fine-space residuals with the injected solution. (Compute Rh(U
H
h).)

5. Solve (or approximate) the linear adjoint equation

∂Rh

∂Uh

T
∣∣∣∣
UH
h

Ψh =
∂Jh
∂Uh

T
∣∣∣∣
UH
h

(2.108)

to find Ψh on the fine space.

6. Compute the error estimate δJest ≈ −ΨT
h Rh(U

H
h).

7. Correct the original J(UH) with this error estimate. (Compute Jcorrected =

J(UH) + δJest.) This corrected output is more accurate than J(UH).

8. Localize δJest to individual elements in the mesh. (Compute the indicators εe

from Eqn. 2.103.)

9. Select a certain percentage of elements with the highest error indicators (or a

related “figure of merit”) and refine them.

10. Solve the primal problem on the new mesh and repeat steps 2-10 until the

output error is driven below a desired tolerance.

46

CHAPTER III

Unsteady Problems

While adjoint-based error estimation and mesh adaptation have been investigated

previously for steady problems, one of the goals of this work was to extend these

techniques to unsteady problems. From a mathematical perspective, the extension of

adjoints to unsteady problems is straightforward. Conceptually, the time dimension

can be treated as another “space-like” dimension, and the adjoint can be defined in

a similar manner as before. The differences lie primarly in the details of the adjoint,

error estimation, and mesh adaptation procedures, as well as in the fact that – unlike

space – information propagates in a specific direction in time.

3.1 Unsteady Adjoints

As in the previous chapter, let us start by assuming we have a linear problem.

While in the steady section we considered the system AU = F, here we will include

a time derivative, so that the governing equations become

M
dU

dt
+ AU = F . (3.1)

Here, M is a “mass matrix,” which is often just the identity matrix, but may in

general differ (e.g. for finite element methods). As before, A represents a discrete

spatial operator, while U represents the state and F is a prescribed source term. Many

physical phenomena satisfy this form of equation, including heat diffusion, acoustic

propagation, and the linearized Euler equations, to name a few.

To make the discussion more concrete, let us assume that the temporal derivative

is discretized using a backward Euler method, such that

M
Um −Um−1

∆t
+ AUm = Fm . (3.2)

47

Here, a superscript on a vector denotes a time index, so that e.g. Um represents

the state at time level m. As before, the number of spatial degrees of freedom is

assumed to be N , while the temporal index m ranges from 1 to Nt, with Nt being

the total number of temporal degrees of freedom. (In addition, from now on, when

we write a variable such as U or F without a time index, we are referring to the

column vector containing all space-time components of that variable, so that e.g.

U ≡ {Um}∀m ∈ RN×Nt .)

Returning to the problem, we see that since Eqn. 3.2 is linear, we can rewrite it

as simply

ĀU = F , (3.3)

where Ā is the matrix representing the full space-time operator, i.e.

(
ĀU

)m ≡ M
Um −Um−1

∆t
+ AUm . (3.4)

Here, the bar is used to distinguish the space-time operator Ā from the spatial oper-

ator, A.

Written out in matrix form, Eqn. 3.3 looks like



•
• •

• •

•
• •


︸ ︷︷ ︸

Ā



U1

U2

U3

...

UNt−1

UNt


︸ ︷︷ ︸

U

=



F1

F2

F3

...

FNt−1

FNt


︸ ︷︷ ︸

F

(3.5)

where each dot in the matrix has the dimension of the spatial Jacobian, A:

• = N ×N = Size of spatial A matrix (3.6)

From Eqn. 3.5 we see that, due to the nature of the backward Euler discretization,

the Ā matrix has a block diagonal structure in which the equations at a given time

48

level (i.e. row of Ā) depend on the states at both the current and previous time levels.

This structure arises due to the forward-in-time propagation of physical information,

and would be similar for other temporal discretizations as well.

Now, if we were interested in solving for the entire U vector, this could be accom-

plished by performing a forward time march, which amounts to inverting the entire

Ā matrix:

U = Ā−1F . (3.7)

However, as in the previous chapter (Sec. 2.1), we can again ask: what if, rather

than the entire solution U, we are interested in just a single component of U? Let us

again take as an example the last component of U, i.e. UNt
N , which represents the last

spatial unknown at the final time. Physically, this could represent a “point” output

at a certain location in space, evaluated at the end of the simulation.

The solution vector (given by Eqn. 3.7) can be written out explicitly as

UNt



U1

U2

U3

...

UNt−1

UNt
1
...

UNt
N


︸ ︷︷ ︸

U

=



•
• •
• • •
...

...
...

• • • . . . •
◦ ◦ ◦ . . . ◦ ◦ . . . ◦
...

...
...

...
...

...

◦ ◦ ◦ . . . ◦ ◦ . . . ◦


︸ ︷︷ ︸

Ā−1



F1

F2

F3

...

FNt−1

FNt
1
...

FNt
N


︸ ︷︷ ︸

F

Output J Adjoint ΨT

(3.8)

(3.9)

Here, we have expanded the state at the last timestep, UNt , into its spatial com-

ponents in order to reveal the desired output, J = UNt
N . Also, note that Ā−1 has a

lower block-triangular structure due to the fact that the solution at a given timestep

depends only on the source terms associated with earlier times.

From this equation, we see that (as in the steady case) the only information

required to compute UNt
N is the highlighted row of Ā−1. Likewise, from our earlier

argument, this row also represents the sensitivity of the output J to perturbations in

the source term F, since it multiplies the components of F during the computation of

49

UNt
N . Thus, as before, this row is exactly the adjoint of J , which we can again denote

by ΨT . Finally, note that for unsteady problems, ΨT is now a vector spanning the

entire space-time domain, meaning it can be thought of as a quantity that evolves in

time (similar to the state).

As before, J need not be a point output – it could be any linear combination of

the components of U, and could then be represented in dual form as

J = ΨTF , (3.10)

where the adjoint ΨT is defined to be an output-specific weighted average of the rows

of Ā−1:

ΨT =
∂J

∂U
Ā−1 . (3.11)

Finally, to write this equation in a more common form, we can define the space-time

residual as

R = ĀU− F = 0 , (3.12)

so that

∂R

∂U
= Ā . (3.13)

Making this replacement in Eqn. 3.11 and rearranging then gives the following form

of the adjoint equation:

∂R

∂U

T

Ψ =
∂J

∂U

T

. (3.14)

This is virtually identical to the adjoint equation derived in the steady case

(Eqn. 2.15). Comparing the two, we see that the extension of the adjoint to un-

steady problems consists primarily in drawing a bar over the residual. Indeed, the

true differences lie not in the theory but in how this adjoint equation is solved. We

will discuss this solution procedure later on. First, let us generalize to nonlinear

problems.

50

3.1.1 Nonlinear Unsteady Problems

In practice, we are often interested in problems where both the governing equations

and output are nonlinear. For example, we may wish to solve the unsteady Navier-

Stokes equations around e.g. an airfoil and compute a time-averaged lift or drag

output.

In that case, instead of the equation

M
dU

dt
+ AU− F︸ ︷︷ ︸

R

= 0 , (3.15)

where the spatial residual R is linear, we would instead write the governing equations

as

M
dU

dt
+ R(U) = 0 , (3.16)

where R(U) is a general nonlinear function of U.

Next, if we assume for simplicity that a backward Euler method is used, the

unsteady residual associated with the mth temporal degree of freedom can be written

as

M
Um −Um−1

∆t
+ R(Um)︸ ︷︷ ︸

R
m

(U)

= 0 . (3.17)

Here, the bar over the space-time residual R
m

(U) is used to distinguish it from the

spatial residual, R(U).

Stepping back one level further, the entire set of space-time residuals can then be

written:

R(U) = 0 . (3.18)

Now, recall that our goal in the end is to define the adjoint equation, which

requires the derivative of the residual with respect to U. While in the above section

this derivative was just the constant operator Ā (from Eqn. 3.12), for a nonlinear

R(U), this derivative will be non-constant. Instead, it will be a function of the

particular state about which it is computed. We can write this derivative as the

51

space-time Jacobian

∂R

∂U

∣∣∣∣
U

, (3.19)

which, as shown, is evaluated at a given state U. Note that while the individual

entries in this matrix will depend on U, its sparsity pattern is identical to that of Ā

in Eqn. 3.5.

Likewise, as with the residual, if the output J(U) is nonlinear, its derivative

∂J/∂U will also depend on the state U, and can be written as

∂J

∂U

∣∣∣∣
U

. (3.20)

By substituting these residual and output linearizations into Eqn. 3.14, we then obtain

the definition of the adjoint for nonlinear problems:

∂R

∂U

T ∣∣∣∣
U

Ψ =
∂J

∂U

T
∣∣∣∣
U

. (3.21)

For a given output of interest, this is a linear system of space-time equations that

can be solved for Ψ. If the problem were steady, we would use a standard iterative

method to find the solution. However, for unsteady problems, we can solve this

problem more efficiently by taking advantage of the direction of information flow. We

discuss this below.

3.1.2 Solution of the Unsteady Adjoint Equation

As mentioned, regardless of whether the residual is linear or nonlinear, the primal

Jacobian ∂R/∂U will have the sparsity pattern of the Ā matrix in Eqn. 3.5. (Assum-

ing a two-step temporal discretization is used.) This structure arises due to the fact

that primal information propagates only forward in time. Consequently, the primal

equation is most efficiently solved by performing a forward time march.

Just like the primal equation, the adjoint equation (Eqn. 3.21) also spans the entire

space-time domain, and can therefore be thought of as representing the evolution of

adjoint information in time. This raises the question: can we also solve the adjoint

equation by using a forward time march? To answer this question, we take a closer

52

look at the sparsity pattern of the discrete primal and adjoint operators.

Primal Unsteady Jacobian Adjoint Unsteady Jacobian

•
• •

• •

•
• •


︸ ︷︷ ︸

∂R
∂U



• •
• •

•

• •
•


︸ ︷︷ ︸

∂R
∂U

T

(3.22)

The above diagram shows the primal Jacobian on the left and its transpose on

the right. From Eqn. 3.21, this transpose operator is exactly the one that appears

in the adjoint equation. As before, each “dot” in these matrices represents a spatial

Jacobian matrix (plus any temporal discretization terms), i.e.

• = N ×N = Size of spatial
∂R

∂U
matrix (3.23)

In the primal Jacobian, since there is a single unknown (vector) in the first row, it

is clear that we should first solve for this unknown, then perform forward-substitution

(i.e. a forward time march) to obtain the remaining unknowns. On the other hand,

due to the transposed nature of the adjoint operator, we see that it has a single

unknown in the last row, which corresponds to the final time in the simulation.

Therefore, unlike the primal problem, the most efficient way to solve the adjoint

problem is to perform a back -substitution – in other words, a backward time

march.

To see this more clearly, we can write out the adjoint equation (Eqn. 3.21) explic-

53

itly as 

• •
• •

•

• •
•


︸ ︷︷ ︸

∂R
∂U

T



Ψ1

Ψ2

Ψ3

...

ΨNt−1

ΨNt


︸ ︷︷ ︸

Ψ

=



(∂J/∂U1)
T

(∂J/∂U2)
T

(∂J/∂U3)
T

...(
∂J/∂UNt−1

)T(
∂J/∂UNt

)T


︸ ︷︷ ︸

∂J
∂U

T

(3.24)

The right-hand side of this equation is the output linearization, which is a known

quantity that depends on the particular output of interest. (For example, for a

final-time output, all terms on the right would be zero except for ∂J/∂UNt .) On

the left-hand side, we have the Jacobian transpose weighting the adjoint vector Ψ.

As suggested, it is clear from this diagram that to find Ψ, we should first compute

ΨNt , then perform a back-substitution to find the remaining adjoint values. Since

the backward Euler method is adjoint-consistent1, this is equivalent to performing a

backward time march of the adjoint problem, starting from a final rather than initial

condition.

3.1.2.1 State-Dependence of the Adjoint Equation

Note that for nonlinear problems, both ∂R
∂U

T
and ∂J

∂U

T
in the above equation must

be evaluated at a particular primal state, U. Thus, for these problems, the adjoint

equation cannot be solved until some approximation of the primal solution is obtained.

For this reason, the procedure (as depicted in Fig. 3.1) is typically to:

1. March the primal problem forward in time to compute the state U.

2. Save U to disk.

3. March the adjoint equation backward in time, evaluating ∂R
∂U

T ∣∣
U

and ∂J
∂U

T ∣∣
U

with the corresponding U values at each time level.

1Note that not all temporal discretizations are adjoint-consistent. For example, the second-order
backward difference (BDF2) method is adjoint-inconsistent if non-uniform time steps are used [85].
However, Runge-Kutta methods [84] – as well as the DG-in-time method employed in this work –
are adjoint-consistent regardless of time-step size.

54

P
ri

m
al

S
ol

ve
A

djoint
S

olve

Start

∆t

t = 0

t = T

U1

UNt

U3

U2

Figure 3.1: Unsteady primal and adjoint solution procedure. For nonlinear problems,
the state U is first computed via a forward time march. It is then stored and used in
the adjoint problem, which is solved by marching backward in time.

Remark 5. (Solution Checkpointing) In certain cases, storing the entire space-

time state U may be prohibitive in terms of memory. In that case, a procedure

known as “solution checkpointing” can be performed. This procedure consists of

saving the solution at a relatively small number of “checkpoints” in time, and then

re-solving for the solution between the checkpoints as the backward-in-time adjoint

solve progresses. While this results in additional computational expense, it alleviates

the memory requirements associated with storing the entire U vector.

3.1.2.2 Continuous Unsteady Adjoint

Note that the backward-in-time propagation of adjoint information can also be

revealed by studying the continuous adjoint equation for unsteady problems. In fact,

we have already discussed a continuous unsteady adjoint problem without recognizing

it. In our original steady advection example (i.e. Eqn. 2.39), information flows in

only one direction (to the right), just as in an unsteady problem it would flow only

forward in time. Thus, a steady advection problem is actually “time-like,” so that we

could replace all instances of x with t to no effect. The primal problem would then

become an ordinary differential equation in time, and the adjoint equation given by

55

Eqn. 2.46 would become:

L∗ψ = −adψ
dt

= g(t) and ψ
∣∣
T

= 0 , (3.25)

where T denotes the final time. We see then that we have a final-time condition on

ψ (instead of an initial condition) as well as a negative sign in front of the a dψ/dt

term – both of which indicate a backward flow of information in time.

3.2 Unsteady Error Estimation and Mesh Adaptation

A primary goal of this thesis is to use the unsteady adjoint to perform error

estimation and mesh adaptation for problems of engineering interest. While the

following chapters discuss the implementation of these procedures in a discontinuous

Galerkin (DG) context, in this section we give a summary of the relevant ideas.

3.2.1 Unsteady Error Estimation

Assume that we have computed an unsteady output J(UH) on a coarse space VH ,

and would like to estimate the amount of error in this output. As in the steady case,

we can estimate the error with respect to a “fine space,” Vh. For unsteady problems,

we can choose Vh to be a uniformly refined version of VH in both space and time.

For example, the space-time grid could be uniformly h-refined, or (if the numerical

method allows) the solution order could be uniformly incremented in both space and

time.

In either case, we would then derive the output error estimate

δJest = Jh(Uh)− JH(UH) (3.26)

in the same manner as for steady problems, by performing Taylor expansions of both

the fine-space output and residuals about the coarse-space state. Indeed, looking

back at Sec. 2.4.2, we see that we made no assumptions about whether the problem

was steady or unsteady. Thus, the results from that section carry over directly, with

the only difference being that we must now place a bar over the residual to denote

that it is unsteady. For unsteady problems, the error estimate given by Eqn. 2.107

then becomes

δJest ≈ −ΨT
h Rh(U

H
h) + O(δU2) . (3.27)

56

This is just the product of the adjoint (computed on the fine space) and the fine-space

residuals, Rh(U
H
h).

3.2.1.1 Fine-Space Unsteady Adjoint Solve

For unsteady problems, the cost of a full fine-space adjoint solve can be prohibitive,

due to the fact that it involves a full backward time-march. In practice, rather than

computing the fine-space adjoint Ψh exactly, we can either (1) compute a coarse space

adjoint ΨH and perform several (inexact) smoothing iterations on the fine space, or

(2) compute ΨH and perform a nearest-neighbors reconstruction in space and time to

obtain an approximation for Ψh. Since these procedures depend upon the numerical

discretization, they will be discussed in more detail later on.

3.2.2 Unsteady Mesh Adaptation

In a similar manner as for steady problems, the error estimate in Eqn. 3.27 can

be localized to individual space-time “elements” in the mesh. This enables us to

determine which regions of the mesh are contributing most to the output error, and

to then selectively adapt those regions.

For example, for a backward Euler discretization in time (combined with, e.g., a

finite volume or finite element method in space), the error estimate can be written as

a sum over all space-time elements in Vh as follows:

δJest ≈
Nh
t∑

k=1

Nh
e∑

e=1

−
(
Ψk
h, e

)T
R
k

h, e(U
H
h) . (3.28)

Here, Nh
t is the number of time steps on the fine space Vh, while Nh

e is the number

of spatial elements (which could theoretically depend on time). A pair of indices

(e, k) then corresponds to a single space-time element, which in this case would mean

a spatial element e over a particular time step, [k − 1, k]. If VH ⊂ Vh, the output

error generated on each element (e, k) in Vh could then be summed over the “parent”

element in VH to obtain a coarse-space error indicator.

3.2.2.1 Space-Time Anisotropy

Unlike steady problems, having an estimate for the total amount of output error

generated on each space-time element does not give us enough information to adapt

the mesh. This is because, for unsteady problems, not only do we need to determine

57

which space-time elements to adapt, but also whether to adapt them in space, time,

or both. Thus, we need to determine how much of the output error generated on a

given space-time element is due to the spatial vs. temporal discretization. In other

words, we need a measure of space-time anisotropy .

While the definition of this anisotropy indicator will be discussed later, once com-

puted, it provides us with the fraction of output error on each element due to the

spatial and temporal discretizations, which we will call

βspace
e,k and βtime

e,k , (3.29)

respectively, where

βtime
e,k = 1− βspace

e,k . (3.30)

These error fractions can then be multiplied by the output error indicator on each

element to determine the individual spatial and temporal errors.

3.2.2.2 Adaptation Mechanics

Finally, once we have computed an approximation of Ψh and the spatial/temporal

errors on each element, we are ready to adapt the mesh. The next question is: how

should we adapt the mesh?

In unsteady problems, critical flow features such as vortices move throughout

the domain as time progresses. In order to maintain resolution of these (and other)

features, we would like our mesh adaptation algorithm to “track” them as they prop-

agate, provided they are deemed important by the adjoint. Thus, we would like the

spatial mesh resolution to change dynamically in time (i.e. to be different at each

time step). Furthermore, in order to address temporal errors, we would like to selec-

tively refine or coarsen time step sizes. By combining these two procedures, we can

arrive at an algorithm that is capable of eliminating errors as they propagate in both

space and time.

Note that when deciding which elements and time steps to adapt, we do not

use the error estimates directly as our adaptive indicator. Since in the end we are

interested in reducing the most error for the least computational cost, this cost must

be factored into the adaptive indicator as well. Thus, as our final adaptive indicator,

we compute a “figure of merit” that represents the amount of output error on a

given element or time slab divided by the cost of refinement (i.e. the number of

58

new degrees of freedom introduced). Since refining a single spatial element introduces

a different number of degrees of freedom than refining an entire time step, this figure

of merit will give a different (and ideally, more computationally efficient) result than

refining based on error values alone. Further details on the figure of merit will be

provided in Chapter V.

3.2.2.3 Summary: Unsteady Error Estimation and Mesh Adaptation

Figure 3.2 provides an overview of the unsteady error estimation and mesh adap-

tation process, the steps of which are listed below.

1st Adaptive Iteration 2nd Adaptive Iteration

P
ri

m
al

S
ol

ve

A
djoint

S
olve

Space-Time
Adaptation

P
ri

m
al

S
ol

ve

A
djoint

S
olve

Start

∆t
∆t

t = 0

t = T

Spatially

Adapted Meshes

Figure 3.2: For each adaptive iteration, the primal problem is marched forward in
time, and the adjoint problem is marched backward in time (on a uniformly refined
space-time mesh). An output error estimate is then computed and mesh adaptation
in space and time is performed. The spatial mesh is adapted differently at each time-
step (as indicated by the variable shading in the 2nd iteration above), and time steps
are selectively refined or coarsened.

59

Procedure:

1. Solve RH(UH) = 0 on the coarse space, VH , to obtain UH .

2. Evaluate the output of interest, J(UH).

3. Inject UH to an order-incremented or uniformly refined space-time mesh, Vh.
(Compute UH

h .)

4. Evaluate the space-time residuals on Vh with the injected solution. (Compute

Rh(U
H
h).)

5. Solve (or approximate) the fine-space adjoint equation

∂Rh

∂Uh

T ∣∣∣∣
UH
h

Ψh =
∂Jh
∂Uh

T
∣∣∣∣
UH
h

(3.31)

for Ψh by marching backward in time.

6. Compute the error estimate δJest ≈ −ΨT
h Rh(U

H
h).

7. Correct the original J(UH) with this error estimate. (Compute Jcorrected =

J(UH) + δJest.) This corrected output is more accurate than J(UH).

8. Localize δJest to individual space-time elements in the mesh.

9. Compute space-time anisotropy fractions βspace
e,k and βtime

e,k , which indicate

how much of δJest on each space-time element is due to the spatial vs. temporal

discretization.

10. Compute a figure of merit representing the amount of output error eliminated

by refining a given elment/step divided by the additional degrees of freedom

introduced by the refinement.

11. Select a certain percentage of elements or time steps with the highest figure of

merit and refine them. Coarsen a certain percentage of elements/steps with the

lowest figure of merit.

12. Solve the primal problem on the new mesh and repeat steps 2-12 until the

output error is driven below a desired tolerance.

60

CHAPTER IV

Governing Equations and Discretization

In this chapter, we give a brief overview of the governing equations and numerical

discretizations used in this work. We begin with a review of unsteady conservation

laws (such as the Navier-Stokes equations), which will be the focus of our output-

based error estimation and mesh adaptation. We then describe the numerical dis-

cretizations used to approximate these equations: namely, finite element methods of

a discontinuous Galerkin (DG) type.

4.1 Unsteady Conservation Laws

A general unsteady conservation law can be written as

∂u

∂t
+∇ · ~F = 0, (4.1)

where the flux ~F is given by

~F = ~Fi(u)− ~Fv(u,∇u). (4.2)

Here, u(~x, t) ∈ Rs is the state vector, ~x ∈ Rd is the spatial coordinate, t ∈ R is time,

and ~Fi and ~Fv ∈ Rs are inviscid and viscous fluxes, respectively.

For example, the two-dimensional Navier-Stokes equations – which will be the

focus of the subsequent chapter – have the following state vector and fluxes:

u =


ρ

ρu

ρv

ρE

 , ~Fi =


ρu

ρu2 + p

ρuv

ρuH

 î+


ρv

ρvu

ρv2 + p

ρvH

 ĵ , (4.3)

61

and

~Fv =


0

τxx

τxy

τxxu+ τxyv + κT∂xT

 î+


0

τxy

τyy

τxyu+ τyyv + κT∂yT

 ĵ . (4.4)

Here, τij is the viscous stress tensor given by

τij = µ(∂ivj + ∂jvi) + λδij∂kvk , (4.5)

where µ and λ are the dynamic and bulk viscosities, respectively, δij is the Kronecker

delta function, and summation is implied on k. The variable ρ is the fluid density, u

and v are the x- and y-velocities (respectively), E is the total energy, p is the pressure,

T is the temperature, H is the total enthalpy, and κT is the thermal conductivity.

In this work, we treat the fluid as compressible and assume a calorically/thermally

perfect gas with specific heat ratio γ = 1.4 and Prandtl number Pr = .71. In addition,

we assume µ obeys Sutherland’s law and λ obeys Stoke’s hypothesis (i.e. λ = −2
3
µ).

For additional details, see [33].

In order to solve equations of this form, we must discretize them in both space and

time. In this work, we employ high-order finite element methods of a discontinuous

Galerkin type for both spatial and temporal discretizations. The following sections

provide a brief overview of these methods.

4.2 Discontinuous Galerkin (DG) Method

In this section, we describe the solution approximation and discretization proce-

dures associated with a standard DG method.

4.2.1 Solution Approximation

To approximate the equation

∂u

∂t
+∇ · ~F = 0 (4.6)

on a given domain Ω (subject to appropriate boundary conditions), we first partition

the domain into a tessellation TH which consists of Ne elements – each with its own

subdomain Ωe – such that TH = {Ωe}. (See Fig. 4.1a.)

62

element edomain Ω

Ωe

(a)

x
y

TH

uH(~x)

(b)

Figure 4.1: (a) Unstructured tessellation TH (i.e. mesh) of a domain Ω, which can
be used to compute a DG approximation to the solution of a PDE. (b) Solution
approximation for a DG method, which is discontinuous between elements. (Figures
reproduced from [32].)

As shown in Fig. 4.1b, a DG method then seeks a numerical approximation uH

to the solution, where uH is a smooth function within each element, but is allowed

to be discontinuous between elements.

On each element e, uH is represented using a set of basis functions {φe,j} with local

support, where j ranges from 1 to the total number of basis functions on the element.

These φe,j are usually chosen to span a polynomial space of order pe, which has an

associated number of degrees-of-freedom (i.e. basis functions) Npe . (For example, for

a full-order basis typically used on two-dimensional triangles, Npe = (pe+1)(pe+2)/2,

while for a tensor product basis typically used on quadrilaterals, Npe = (pe + 1)2.)

The state uH can then be written in terms of these basis functions as

uH(~x) =
Ne∑
e=1

Npe∑
j=1

Ue,j(t)φe,j(~x) , (4.7)

where the Ue,j are the solution coefficients (i.e. the unknowns) weighting each basis

function on element e. For unsteady problems, these coefficients are a function of

time and can be updated according to a chosen time scheme.

The above description can be summarized more formally by stating that uH ∈
VH = [VH]s, where

VH = {u ∈ L2(Ω) : u|Ωe ∈ Ppe(Ωe) ∀Ωe ∈ TH} . (4.8)

63

Finally, note that in general, the polynomial order pe can vary from element to element

in the mesh, which is particularly useful if we wish to perform order adaptation – as

employed later in this work.

4.2.2 Weak Form

With the solution approximation defined, a DG method then seeks to approximate

the weak form of Eqn. 4.6. It therefore takes test functions vH ∈ VH , enforces

orthogonality of these test functions with respect to the PDE on each element, and

integrates by parts, giving ∫
Ωe

vTH

[
∂u

∂t
+∇ · ~F

]
dΩ = 0 ∀vH ∈ VH , (4.9)

∫
Ωe

vTH
∂u

∂t
dΩ−

∫
Ωe

(∇vH)T · ~F dΩ +

∫
∂Ωe

vTH
~F · ~n ds = 0 ∀vH ∈ VH , (4.10)

where ~n is the normal vector pointing out of element e.

Next, inserting the state approximation uH and replacing ~F · ~n with a numerical

flux F̂ on the element boundaries gives:∫
Ωe

vTH
∂uH
∂t

dΩ−
∫
Ωe

(∇vH)T · ~F(uH) dΩ

+

∫
∂Ωe

vTH F̂
(
u+
H ,u

−
H ,∇u+

H ,∇u−H , ~n
)
ds + D.C. Term = 0 ∀vH ∈ VH . (4.11)

The ()+ and ()− notation above refers to quantities taken from the element inte-

rior and the neighbor element, respectively. On interior faces, a Roe approximate

Riemann solver [82] is used to compute the convective portion of the flux F̂, while

for the diffusive component, the second form of Bassi and Rebay (BR2) flux is em-

ployed [9]. Note that on boundary faces F̂ is replaced by a separate boundary flux,

which incorporates a boundary state uH,B = uH,B(u+
H ,BC Data), since in that case

no neighbor-element state exists.

Finally, note that there is an additional dual consistency term (represented by

the D.C. Term above) introduced by the BR2 discretization. If the viscous component

of the flux ~F is written in index notation as

F visc
ik = Aijkl∂jul , (4.12)

64

then this dual consistency term has the form

D.C. Term = −
∫
∂Ωe

∂iv
+
k A

+
ijkl(u

+
l − ûl)nj ds . (4.13)

Here, ûl is defined to be the average of left and right states on an interior interface

and uH,B on a boundary face. The inclusion of this term, which vanishes upon mesh

refinement and acts to symmetrize the diffusion discretization, leads to a dual con-

sistent (i.e. adjoint consistent) method. More details on both the BR2 discretization

and the boundary condition treatment can be found in [33, 9].

4.2.3 Discrete Form

To obtain a set of discrete residuals, we note that since VH = span{φe,j}, we

can choose vH = φe,jer as the general form of a test function in Eqn. 4.11. (Here,

er ∈ Rs, r = 1...s, is the Cartesian vector with a 1 in the rth entry and zeros in the

others, which we use to denote the fact that each state component of the governing

equations is weighted by an independent test function). If we then let the index e

range over all Ne elements, j range over all Npe basis functions, and r range over all

s state components, we obtain a set of N = Ne × Npe × s equations (i.e. residuals).

Each residual entry corresponds to a single choice of vH in Eqn. 4.11.

The steady component of these residuals can then be lumped into a discrete spa-

tial residual vector

R(U) ∈ RN , (4.14)

while the unsteady term (i.e. the first term in Eqn. 4.11) can be written in terms of

a discrete mass matrix

M ∈ RN×N , (4.15)

where

Mij = Is

∫
Ω

φiφjdΩ . (4.16)

Here, Is ∈ Rs×s is an identity matrix and 1 ≤ i, j ≤ N range over all global degrees

of freedom. Note that since each φi has support over only a single element, M is

element-wise block diagonal.

65

The resulting equations can then be written in semi-discrete form as:

M
dU

dt
+ R(U) = 0 . (4.17)

The final step is to choose the temporal discretization – i.e. the method used

to approximate dU/dt. In general, a standard multi-step scheme or Runge Kutta

method could be employed. However, for error estimation purposes later on, it is

more rigorous to remain within a finite element framework in both space and time.

For this reason, we will use a so-called “DG-in-time” method to perform the temporal

discretizaton. This method is discussed below.

4.3 DG-in-Time Method

In this section, we describe the solution approximation and discretization proce-

dures associated with a DG-in-time scheme.

4.3.1 Solution Approximation

To integrate the equation

M
dU

dt
+ R (U) = 0 (4.18)

in time, a DG-in-time method first partitions the temporal domain into a set of time

“slabs,” or steps. Next, within a given time slab k (denoted by Tk = [tk−1, tk]), the

state vector – denoted by Uk(t) – is represented as a smooth polynomial of order r.

It can therefore be expressed as

Uk(t) =
r+1∑
n=1

Uk,nϕn(t), for t ∈ Tk , (4.19)

where the ϕn(t) are temporal basis functions spanning a one-dimensional order-r

space.

As with a spatial DG scheme, these ϕn(t) have local support over each slab k,

allowing for discontinuities between neighboring slabs. This situation is illustrated

in Fig. 4.2. (Note that in this work, we assume a nodal Lagrange basis in time, so

that ϕ1(t) and ϕr+1(t) are equal to 1 at the beginning and end of a given time slab,

respectively.)

66

ϕ2(t)ϕ1(t)
ϕ3(t)

t

tktk−1

Uk−1,r+1

Uk−1(t)

Uk(t)Uk,1

slab kslab k − 1

Figure 4.2: The DG-in-time method treats the numerical solution as a set of discon-
tinuous polynomials on each time “slab.” (Figure reproduced from [31].)

4.3.2 Weak Form

To integrate Eqn. 4.18 in time, the DG-in-time method approximates its weak

form in a similar manner as spatial DG. Thus, we multiply Eqn. 4.18 by test functions

ϕm(t) and integrate by parts over each time slab k, resulting in

−
∫
Tk

(
dϕm(t)

dt
MUk(t)

)
dt + ϕm(t)MU(t)

∣∣∣∣tk
tk−1

+

∫
Tk

ϕm(t)R
(
Uk(t)

)
dt = 0 . (4.20)

Next, since the state is double-valued at the ends of each slab, we must choose

whether to use the “upwind” or “downwind” values of the state when evaluating the

above boundary term. To obey the direction of physical information propagation,

we use an upwind flux to evaluate this term. Thus, we replace U(tk−1) in the above

equation with the right-most state on the previous time slab, Uk−1,r+1. Making this

substitution and replacing Uk(t) in the first term with its expansion in (4.19), we

then obtain

−
∫
Tk

(
dϕm(t)

dt
M
∑
n

Uk,nϕn(t)

)
dt+ ϕm(tk)MUk,r+1 − ϕm(tk−1)MUk−1,r+1

+

∫
Tk

ϕm(t)R
(
Uk(t)

)
dt = 0 . (4.21)

67

In the first term, only ϕm(t) and ϕn(t) depend on time, so M and Uk,n can be brought

outside of the integral, giving

−

∫
Tk

ϕn(t)
dϕm(t)

dt
dt

MUk,n + ϕm(tk)MUk,r+1 − ϕm(tk−1)MUk−1,r+1

+

∫
Tk

ϕm(t)R
(
Uk(t)

)
dt = 0, (4.22)

with implied summation over the n index. To further simplify, we can combine the

first and second terms and write:

am,n MUk,n − ϕm(tk−1)MUk−1,r+1 +

∫
Tk

ϕm(t)R
(
Uk(t)

)
dt

︸ ︷︷ ︸
Rk,m

= 0, (4.23)

where Rk,m is now defined to be the unsteady residual vector and the am,n are

constant coefficients given by

am,n = ϕn(tk)ϕ
m(tk)−

tk∫
tk−1

ϕn(t)
dϕm(t)

dt
dt. (4.24)

By the properties of Lagrange bases, the first term in this expression for am,n is

nonzero only when n = m = r+ 1, and we recover the second term in Equation 4.22,

as desired.

Finally, for simulations in which the spatial order pe changes with time, Equa-

tion 4.23 must be altered slightly, since the spatial basis functions (and hence M)

change in time. In these cases, we can write the final form of the unsteady residual

as follows:

am,n Mk,kUk,n − ϕm(tk−1) Mk,k−1Uk−1,r+1 +

∫
Tk

ϕm(t) R
(
Uk(t)

)
dt

︸ ︷︷ ︸
Rk,m

= 0, (4.25)

where Mk,l denotes the mass matrix formed from the spatial basis functions on slabs

k and l, which may in general differ. This Mk,l can be written explicitly on each

68

element as

Mk,l
∣∣
e

=

 ∫
Ωe

φke,i(~x)φle,j(~x) dΩ

⊗ Is , (4.26)

where Is is the s×s identity matrix. If an element transitions from a low p to a higher

p at a given time, then the action of this matrix is the same as if a lossless injection

of the low-p state into the high-p space were performed. On the other hand, if an

element transitions from a high p to a low p, the result is the same as if a least-squares

projection of the high-p state into the low-p space were performed.

4.3.2.1 Newton Solve

Since the spatial residual R
(
Uk(t)

)
in Eqn. 4.25 is evaluated with the current state

on time slab k, the unsteady residual Rk represents an implicit set of equations over

each time slab. (Here, we have dropped the nodal index m, so that Rk ∈ RN(r+1) is

a column vector of the residuals associated with all temporal nodes in slab k.)

To solve this equation, we can therefore perform a Newton iteration on each time

slab, where the update vector ∆Uk ∈ RN(r+1) is computed by solving the following

linear system:

∂Rk

∂Uk

∣∣∣∣
Uk

∆Uk = −Rk
(
Uk
)
. (4.27)

The residual Jacobian in the above equation has dimension N(r + 1)×N(r + 1),

which for large problems may be infeasible to invert or even store. For these problems,

rather than computing ∂Rk

∂Uk exactly, we instead perform an approximate linearization.

This approximation consists of evaluating the linearization of the spatial residual (i.e.

the rightmost term in Eqn. 4.25) at just a single point within the time slab (e.g. the

midpoint of the slab), and then employing an approximate solution scheme introduced

by Richter [81, 37] to solve Eqn. 4.27. In the end, while this linearization procedure is

inexact, so long as the Newton iteration converges, the unsteady residual (Eqn. 4.25)

is satisfied exactly.

69

CHAPTER V

Output-based Mesh Adaptation for Navier-Stokes

Simulations on Deformable Domains

With the DG discretization and the theory of output-based error estimation dis-

cussed, we now attempt to apply these methods to practical aerospace problems.

Specifically, we present an output-based mesh adaptation strategy for high-order

Navier-Stokes simulations on deforming domains. These simulations have far-reaching

applications, from bio-inspired flight to aircraft maneuver and flutter analysis. Af-

ter presenting the method, we evaluate this output-based strategy on a series of low

Reynolds number flapping-wing flight problems in both two and three dimensions.

This work can be found in published form in [61, 58].

5.1 Introduction

As we have discussed, when performing a practical CFD simulation, the primary

interest of the user is often to compute a certain output – such as lift or drag –

accurately. If this is the case, then resolving all regions of the flow with equal precision

is both unnecessary and inefficient. Instead, a better strategy is to (1) compute the

output and estimate its corresponding error, (2) determine where this output error

originates from, and (3) drive this error down by targeting the regions of the mesh

responsible for it. These steps can be accomplished by applying the adjoint-based

error estimation and mesh adaptation techniques discussed earlier.

The concept of adjoint-based (or output-based) error estimation is not new, and

has received considerable attention for steady problems [79, 10, 49, 95, 88, 74, 36,

18, 104, 19, 24, 101]. However, attention has only recently shifted toward use of

these methods for unsteady problems. One issue is that unsteady problems can –

particularly at high Reynolds numbers – become chaotic, making them extremely

70

sensitive to perturbations. This causes the adjoint, which reflects this sensitivity, to

grow unbounded as it is marched backward in time. This is an issue that deserves

attention, and the proper way to define the adjoint for chaotic problems is the subject

of ongoing research [98, 99]. That said, there are many unsteady problems whose

nature is not chaotic, and for these cases, the unsteady adjoint can provide vital

sensitivity data. This is the case for the low-Reynolds-number problems considered

here.

Another issue is that computing an unsteady adjoint is expensive, due in part

to the significant storage requirements for nonlinear problems, in which the entire

space-time state must be saved to disk for use in the adjoint problem. Techniques

for reducing these costs – such as checkpointing methods – are also the subject of

ongoing research [45, 83, 63, 73, 102].

Fortunately, however, the large costs of an unsteady adjoint can come with an even

larger payoff. These payoffs have been observed in optimization problems [72, 97, 92]

where it is vital to obtain accurate sensitivities with respect to a large number of

inputs. This same reasoning extends to unsteady CFD simulations, where small errors

made in remote regions of the space-time domain can coalesce into large errors in the

output of interest. In many cases, identifying these errors with an unsteady adjoint

and eliminating them through mesh adaptation can lead to significant computational

savings.

Some work in this area has already been done. In a finite element context, out-

put error estimation for scalar parabolic problems was studied in [70] and [86], with

a high-order reconstructed adjoint used to drive dynamic space-time mesh adapta-

tion. Recently, spatial-only [7] and combined space-time [12] adaptation have been

performed for two-dimensional Navier-Stokes simulations on static domains. Within

a finite volume framework, temporal-only adaptation has been shown for the Euler

equations on deforming domains [67, 68], while on static domains a spatial-only [11]

and preliminary space-time adaptation [38] have been demonstrated. Finally, in re-

cent work [37, 66, 35, 103], combined space-time adaptation strategies for Euler and

Navier-Stokes simulations on static domains have been presented. In each of the

above works, improvements in output convergence were obtained through the use of

unsteady output-based adaptation.

In this work, we extend these output-based techniques to problems that are receiv-

ing increasing attention: those involving low-Reynolds-number flapping-wing flight.

These problems have applications in the biological fields as well as in the field of

Micro Aerial Vehicles (MAVs), the latter of which has seen rapid growth over the last

71

decade. Obtaining accuracy in quantities such as the time-averaged lift-to-drag ratio

and the total energy expenditure is particularly important for the design of these

vehicles.

To simulate the type of motion inherent in these problems, the mesh must deform

in some way. Thus, extending output-based techniques to these flows means extending

them to problems with deforming domains. In particular, our goal in this work

is to extend these techniques to high-order Navier-Stokes simulations on deforming

domains in both two and three dimensions.

To perform the simulations, we first implement a discontinuous Galerkin Arbi-

trary Lagrangian-Eulerian (ALE) method introduced by Persson et al [78], which

can handle arbitrary deformations of the mesh (which are analytically prescribed).

We then implement an output-based space-time adaptation procedure, with dynamic

p-refinement (as well as time slab refinement and coarsening) used to resolve

the flow features deemed critical by the adjoint.

Furthermore, on deformable domains, satisfaction of a so-called Geometric Con-

servation Law (GCL) requires the adjoint system to change. In this chapter, we

present the required modifications to the adjoint system and derive a discrete adjoint

for the GCL equation itself. We then incorporate this adjoint into the error estima-

tion and adaptation strategy and evaluate its performance on a series of 2D and 3D

test cases. These cases verify the validity of the output-based strategy and show the

computational savings that can be achieved.

5.2 Arbitrary Lagrangian-Eulerian Mapping

The Navier-Stokes equations can be written in conservation form as

∂u

∂t
+∇ · ~F(u,∇u) = 0, ~F = ~Fi(u)− ~Fv(u,∇u), (5.1)

where u(~x, t) ∈ Rs is the state vector, ~x ∈ Rd is the spatial coordinate, t ∈ R is

time, and ~Fi and ~Fv are the inviscid and viscous fluxes, respectively [9]. For the cases

considered in this work, the physical domain in which Eqn. 5.1 holds is deforming

in time, and a direct solution would be difficult to obtain. Instead, we can map the

problem to a fixed reference domain and solve using an arbitrary Lagrangian-Eulerian

(ALE) approach. Since the reference domain remains fixed for all time, standard

numerical methods for static problems can then be employed to obtain the solution.

A simple and effective ALE method for DG was recently introduced by Persson et

72

al.[78], and we follow their approach here. In this method, the physical equations are

transformed to equivalent reference-domain equations, and the deformation of the

mesh is encapsulated within the mapping between these domains.

5.2.1 ALE mapping

Following Persson et al., we begin by assuming we have some physical domain v(t),

which is deforming in time. We would like to map this problem to a fixed “reference”

domain V , which remains static for all time. This V is the domain on which we will

generate the mesh and compute the solution. Thus, in the end, we will be able to

solve the deforming domain problem on a fixed mesh, which will allow us to employ

a standard DG method in both space and time.

We assume that each point ~X in the reference domain can be mapped to a de-

formed location ~x in the physical domain via some analytical mapping

~x = ~x(~X, t) . (5.2)

For example, a mapping we will use later in two dimensions is:

x1 = X1 + 2.0 sin

(
2πX1

20

)
sin

(
πX2

7.5

)
sin

(
2πt

3

)
,

x2 = X2 + 1.5 sin

(
2πX1

20

)
sin

(
πX2

7.5

)
sin

(
4πt

3

)
.

(5.3)

This mapping causes points within the physical domain v(t) to “wave” back and forth

sinusoidally in time. Other useful mappings include rotation, translation, and shear

transformations, which can be found in many texts.

The general transformation between reference and physical domains is summarized

graphically in Fig. 5.1, and definitions of relevant variables are given in Table 5.1.

Table 5.1: Definitions of variables used in the ALE mapping. Bold indicates a state vector
and an arrow indicates a spatial vector.

~X = reference-domain coordinates
uX = state on reference domain
~FX = flux vector on reference domain
dA = differential area on reference domain
~N = unit normal on reference domain
G = mapping Jacobian matrix
g = determinant of mapping Jacobian

~x = physical-domain coordinates
u = physical state
~F = flux vector on physical domain
da = differential area on physical domain
~n = unit normal on physical domain
~vG = grid velocity

Points in the physical domain may contract or expand relative to those in the

73

Ref. domain: V, ~X,uX , ~FX

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~FX(uX ,∇XuX) = 0

Mapping

⇒

~X, t ⇒ ~x(~X, t)

G = ∂~x
∂ ~X

g = det(G)

~vG = ∂~x
∂t

~NdA = g−1GT~nda
uX = gu

~FX = gG−1
(
~F− u~vG

)
⇒

Physical domain: v, ~x,u, ~F

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~F(u,∇u) = 0

Figure 5.1: Summary of the mesh motion mapping. The physical domain deforms ac-
cording to a user-defined analytical mapping, x(~X, t). The equations are then mapped to
and solved on the reference domain, which remains fixed for all time. Note: when denoting
reference domain quantities, we use a subscript X rather than ~X for visual clarity.

reference domain, so that a differential volume dv in the physical domain is related

to that in the reference domain via

dv = gdV, (5.4)

where g is the determinant of the mapping Jacobian defined in Fig. 5.1. Thus, if g

is less than unity, a region in the physical domain is contracted relative to the corre-

sponding region in the reference domain, and vice versa. Furthermore, infinitesimal

vectors transform via the relation

d~l = Gd~L, (5.5)

where G is the mapping Jacobian.

By combining these differential volume and vector relationships and noting that

dV = d~L · ~N dA and dv = d~l · ~n da, it is straightforward to derive the following

relationships between normal vectors and areas1 on the two domains:

~nda = gG−T ~NdA and ~NdA = g−1GT~nda . (5.6)

Here, the transpose appears as a result of expressing the dot products in the definitions

of dv and dV using their equivalent transpose notation.

1Or lengths, in two dimensions.

74

5.2.2 Conservation Law on Reference Domain

With these transformations in mind, our goal now is to express the Navier-Stokes

equations (i.e. Eqn. 5.1) on the reference domain. We begin by taking the conserva-

tion law

∂u

∂t
+∇ · ~F(u,∇u) = 0, (5.7)

and applying the divergence theorem over the physical domain v(t):∫
v(t)

∂u

∂t
dv +

∫
∂v

~F · ~n da = 0. (5.8)

Here, ~n is the outward-pointing normal on v(t), while da is a differential area (or

length, in 2D) on the boundary of v(t).

Next, we transform the flux integral (i.e. the second term in Eqn. 5.8) to the

reference domain by using the relations in Eqn. 5.6:∫
∂v

~F · ~n da =

∫
∂V

~F · (gG−T ~N) dA︸ ︷︷ ︸
~n da

=

∫
∂V

(gG−1~F) · ~N dA. (5.9)

Note that the integrals are now over the reference domain boundary, ∂V . Similarly,

using the relations in Eqn. 5.6 along with Liebniz’s rule2, we can transform the first

term in Eqn. 5.8 (i.e. the time derivative term) as follows:∫
v(t)

∂u

∂t
dv =

d

dt

∫
v(t)

u dv −
∫
∂v

(u~vG) · ~n da

=
d

dt

∫
V

u g dV︸︷︷︸
dv

−
∫
∂V

(u~vG) · (gG−T ~N) dA︸ ︷︷ ︸
~n da∫

v(t)

∂u

∂t
dv =

∫
V

∂(gu)

∂t
dV −

∫
∂V

(guG−1~vG) · ~N dA. (5.10)

In the last step, the time derivative is brought back inside the integral since the

domain V does not change in time.

Substituting Eqns. 5.10 and 5.9 back into Eqn. 5.8 then gives the integral form of

2Note that Liebniz’s rule is just Reynolds Transport Theorem in this case.

75

the conservation law on the reference domain:∫
V

∂(gu)

∂t
dV +

∫
∂V

(gG−1~F− guG−1~vG)︸ ︷︷ ︸
~FX

· ~N dA. (5.11)

If we define the reference-domain state to be the quantity inside the time derivative,

uX ≡ gu, (5.12)

and the reference-domain flux to be the quantity inside the boundary integral,

~FX ≡ gG−1~F− guG−1~vG, (5.13)

then Eqn. 5.11 becomes ∫
V

∂uX
∂t

dV +

∫
∂V

~FX · ~N dA = 0. (5.14)

This is the standard form of an integral conservation law on V . Applying the diver-

gence theorem one more time then gives the differential form of the conservation law

on V :

∂uX
∂t

∣∣∣
X

+∇X · ~FX(uX ,∇XuX) = 0. (5.15)

We see then that by redefining the state variable and flux to be

uX = gu and (5.16)

~FX = gG−1~F− guG−1~vG (5.17)

rather than the standard u and ~F, we can solve a deforming domain problem on a

fixed mesh in a similar manner as any other conservation law.

Looking back at the definition of the physical flux, ~F, we see from Eqn. 5.1 that

it can be split into separate inviscid and viscous components. Inserting these com-

ponents into Eqn. 5.17 then allows us to write the reference domain flux in terms

of inviscid and viscous components as well. If we lump the grid velocity term in

76

Eqn. 5.17 into the inviscid flux, we can define:

~FX = ~Fi
X − ~Fv

X , (5.18)

~Fi
X = gG−1~Fi − uXG−1~vG, (5.19)

~Fv
X = gG−1~Fv, (5.20)

where ~Fi
X and ~Fv

X are the inviscid and viscous components of the reference-domain

flux, respectively.

5.2.3 Implementation

Here, we mention a few points related to the implementation of the above equa-

tions. Additional details can be found in Appendix B.

5.2.3.1 Inviscid Flux

As derived above, the inviscid flux on the reference domain has the form

~Fi
X = gG−1

(
~Fi − u~vG

)
. (5.21)

The u~vG term represents a Galilean transformation due to the change of reference

frames (and is nonzero even in the case of an undeformed – e.g. a purely trans-

lating – grid), while the multiplication by gG−1 takes into account the local grid

contraction/dilation effects. This multiplication by gG−1 can be implemented as a

postprocessing step during the flux computation. The subtraction of u~vG is slightly

more code-intrusive since the Roe flux on interior faces must be modified to act on

the quantity
(
~Fi − u~vG

)
· ~n rather than just ~Fi · ~n. Furthermore, the boundary con-

ditions, which are specified in the physical domain, must incorporate any motion of

the grid boundary itself. For example, near a wall boundary, flow tangency must be

satisfied, which means the fluid velocity near the wall must have a normal component

equal to the normal component of the grid velocity ~vG there.

5.2.3.2 Viscous Flux

The viscous flux on the reference domain is given by Eqn. 5.20 as

~Fv
X = gG−1~Fv. (5.22)

77

While this flux is not influenced by a translation of the grid, the incorporation of mesh

contraction/dilation (i.e. the multiplication by gG−1) can again be performed as a

post-processing step in the flux computation. Furthermore, since the computation

of the physical flux ~Fv involves the application of a diffusion matrix to the physical

gradient ∇u, additional terms arise when this ∇u is computed from the reference-

domain state. These terms arise from applying the chain and product rules, since

∇u =
∂u

∂xj
=
∂(g−1uX)

∂Xd

∂Xd

∂xj
=

(
g−1∂uX

∂Xd

− g−2 ∂g

∂Xd

uX

)
∂Xd

∂xj

= g−1

(
∂uX
∂Xd

− g−1 ∂g

∂Xd

uX

)
G−1
dj . (5.23)

Here, we see the two separate terms that emerge from the computation of ∇u, both

of which must be included in the computation of ~Fv on the reference domain. For

more details, see Appendix B.

5.3 The Geometric Conservation Law

The ability to preserve a free stream is a desirable property of numerical schemes.

However, for a DG method employing a finite-dimensional basis (e.g. a set of poly-

nomials in space-time), a constant state ū in the physical domain will generally not

be a solution to the discrete form of Eqn. 5.15 in the reference domain. This means

that for an arbitrary motion of the mesh, an initially free-stream state will not be

preserved.

This lack of free-stream preservation can be explained by noting that, for general

mappings, the Jacobian g will be non-polynomial in both space and time. Hence, the

reference state uX = gū will likewise be non-polynomial, which means it cannot be

represented exactly with the reference-domain bases. This inexact representation will

introduce both spatial and temporal errors into an initially free-stream state, which

manifest as conservation errors that accumulate in time.

If we wish to eliminate these conservation errors, a separate Geometric Conserva-

tion Law (GCL) can be enforced alongside the governing equations. The idea of the

GCL is twofold: (1) to address the representation issues mentioned above, replace

the analytical g with a new variable, ḡ, which is a polynomial approximation to g in

space-time; and (2) to ensure that this ḡ actually allows for free-stream preservation,

78

compute it from the following equation (as discussed in [78]):

∂ḡ

∂t
−∇X · (gG−1~vG) = 0. (5.24)

This equation ensures that the change in element area (i.e. the change in ḡ) is directly

linked to what the grid velocities on element boundaries “claim” it should be. Hence,

there is no disagreement between grid velocities and Jacobians on what the current

mesh geometry is, and in that sense we have “geometric conservation.”

The strategy then is to use this ḡ to define a new reference-domain state uX̄ =

ḡg−1uX = ḡu, which is used instead of the original state uX = gu. If ḡ is discretized

using the same spatial basis as the state and is marched in time using the same

unsteady solver, a free-stream state ū will be preserved. In the end, what we have

done is replaced the original analytical g with a “best fit” space-time polynomial ḡ,

which then makes the free-stream reference state uX̄ = ḡū exactly representable in

the discrete space.

Once ḡ is obtained on each element, it is used instead of g to convert the stored

reference state to the physical state. The final form of the reference domain equation

is then

∂uX̄
∂t

∣∣∣
X

+∇X · ~FX̄(uX̄ ,∇XuX̄ , ḡ) = 0, (5.25)

where ~FX̄ is just ~FX but with uX̄/ḡ replacing uX/g in the calculation of the physical

state.

Fig. 5.2 shows the effect of the GCL on a free-stream preservation test. In this case,

we solve the Navier-Stokes equations on a rectangular domain using the analytical

sinusoidal mapping defined in Eqn. 5.3. The temporal and spatial discretization are

both discontinuous Galerkin, with order r = 1 and p, respectively. Without the GCL,

the free-stream solution is not preserved, though the L2 error converges with both h

and p refinement of the spatial mesh. With the GCL, the free-stream is maintained

to residual tolerance, which was approximately ten orders of magnitude for these

runs. To achieve this level of accuracy, high-order quadrature rules are required, with

rules of order 6p used in this case to demonstrate the GCL’s full effect. In practical

cases we use more modest rules, namely 2p+ 5 for the Navier-Stokes equations, since

discretization errors tend to dominate and make high quadrature rules unnecessary.

Finally, note that Eqn. 5.24 has introduced an additional numerical quantity, ḡ,

which is subject to discretization errors just like the state quantities. This will be

79

10
−0.1

10
0

10
0.1

10
0.2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Mesh size (h)

F
in

a
l−

T
im

e
 L

2
 E

rr
o

r

p = 1

p = 2

p = 3

p = 4

5.22

4.29

3.71

2.55

GCL

No GCL

Figure 5.2: Free-stream errors with and without the GCL. A large number of time steps
is used so that the spatial error dominates the temporal error in each case.

relevant for error estimation later on.

5.3.1 Blended Mesh Motion

With or without the GCL, the ALE method described above requires an ana-

lytically defined mapping between reference and physical domains. Therefore, the

user must explicitly prescribe the motion throughout the domain. However, for many

applications, we need only a certain object – such as an airfoil – to move. In these

cases, defining a mapping throughout the entire domain would be unnecessary and

(oftentimes) difficult. Instead, if only a portion of the domain needs to move, we can

prescribe a mapping centered about this region, then smoothly blend the mapping to

zero as we move radially outward. This allows the farfield boundaries and any other

objects in the domain to remain uninfluenced by the local region of mesh motion.

A typical scenario is to have an inner disk in 2D (or a sphere in 3D) undergo

a prescribed rigid-body motion, and to then blend this motion into the static mesh

via a so-called blending function. Fig. 5.3 shows a diagram of the rigid-body and

blending regions around a theoretical object, while Fig. 5.4 shows an example of this

blending for 2D airfoil and 3D wing meshes. As Persson et al. present in [78], a

80

static

reference domain

rigid body

blended

Figure 5.3: If an object such as an airfoil needs to move, a rigid-body motion around
that object can be blended into the static mesh further out. This keeps the boundaries
of the domain fixed while the object moves.

(a) (b)

Figure 5.4: Airfoil (a) and wing (b) undergoing analytical motions. The blue regions are
those in which the prescribed inner motion is blended into the static outer mesh. The
boundaries of these blending regions are circular in 2D and spherical in 3D.

polynomial blending function is a simple way to transition between the deforming

and static regions. The strategy is then as follows.

First, we assume that an object centered about some point ~XC in the reference

domain undergoes a transformation T . This transformation could represent e.g. a

81

rigid-body rotation or translation. We then introduce the following parameters:

82

~XC = center of rigid-body motion region (i.e. region where T acts)

C = circle centered about ~XC (or sphere in 3D)

RC = radius of C, within which T applies

D = distance from ~XC beyond which T has no effect (i.e. static region)

d(~X) = || ~X − ~XC || −RC = distance a point ~X lies outside of C

rn(ξ) = 1D nth-order blending polynomial

b(d) = blending function (5.26)

Here, rn(ξ) is an (odd) nth-order polynomial such that rn(0) = 0, rn(1) = 1 and

its first (n− 1)/2 derivatives vanish at ξ = 0 and ξ = 1. For example, for n = 5, it is

given by r5(ξ) = 10ξ3 − 15ξ4 + 6ξ5. The blending function b(d(~X)) is then defined in

the following manner:

b(d) =


0 if d < 0 (rigid body region)

1 if d > D (static region)

rn(d/D) otherwise (blended region)

(5.27)

Here, D is chosen by the user, and represents the furthest distance from ~XC that

any motion due to T is felt. Thus, beyond D, the domain remains static. Note that

D should typically be chosen as large as the problem allows, in order to create a

smoothly blended mapping. If D is too small, then elements in the blending region

could become significantly warped, generating large errors.

With these definitions, the blended mapping over the entire domain is given by:

~x = b(d) ~X + (1− b(d))T (~X) . (5.28)

From this expression, we see that if we are in a region where b(d) is zero, the

mapping reduces to T – i.e. the rigid-body transformation. On the other hand, if

b(d) is unity, ~x = ~X, meaning the region is static. Finally, if 0 ≤ d ≤ D, we are

between these regions and the mapping is blended smoothly by the polynomial rn.

83

5.4 Primal Discretization

With the mapping and blending functions defined, we move on to the solution

procedure. To discretize the state and GCL equations (Eqns. 5.25 and 5.24), we use

a DG finite element method in both space and time. As discussed in Chapter IV,

each element has a spatial approximation order pe, which can differ between elements

and vary dynamically in time. Temporally, the discretization consists of time slabs

on which the solution variation is approximated with polynomials of order r. At a

given time, the width of a time slab (i.e. ∆t) is the same for all spatial elements in

the mesh. However, the widths of slabs at different times will vary once adaptation

is performed.

5.4.1 Approximation

Each space-time element is identified by two indices, (e, k), where e is the spatial

element index and k is the time slab index. On each element (e, k), the state and

GCL variable are approximated as

uX̄,H(~X, t)
∣∣∣
e,k

= Uk,n

X̄,H,e,j︸ ︷︷ ︸
∈ Rs

φkH,e,j(~X)︸ ︷︷ ︸
order pe,k

ϕnH(t)︸ ︷︷ ︸
order r

, (5.29)

ḡH(~X, t)
∣∣∣
e,k

= Ḡk,n
H,e,j︸ ︷︷ ︸
∈ R1

φkH,e,j(~X)︸ ︷︷ ︸
order pe,k

ϕnH(t)︸ ︷︷ ︸
order r

, (5.30)

where s is the number of governing equations, 1 ≤ j ≤ dof(pe,k) is the spatial degree-

of-freedom index, and 1 ≤ n ≤ r + 1 is the temporal degree-of-freedom index. Note

that for a full-order approximation on triangles (which we use for our two-dimensional

simulations), dof(pe,k) = (pe,k + 1)(pe,k + 2)/2. Furthermore, in this work, we use

Lagrange bases in both space and time, with the spatial basis functions φkH,e,j(~X)

specific to a given element and time slab, and the temporal basis functions ϕnH(t) the

same for each time slab. Finally, the subscript H on the above terms just indicates

that these quantities are defined on our current (“coarse”) space-time mesh. When

discussing error estimation later on, we will be dealing with a fine mesh as well, which

will be denoted with a lowercase h.

For compactness of notation, we lump all spatial degrees of freedom associated

with time node n on slab k into one vector, for both the state and the GCL variable,

Uk,n
H =

{
Uk,n

X̄,H,e,j

}
∀e,j
∈ RsNk

H and Gk,n
H =

{
Ḡk,n
H,e,j

}
∀e,j
∈ RNk

H , (5.31)

84

where Nk
H =

∑
e dof(pe,k) is the total number of spatial degrees of freedom on time

slab k. As a shorthand, we will denote by Uk
H and Gk

H the sets of unknowns over a

whole time slab, k. Finally, the set of states over the entire space-time domain will

be referred to simply as UH and GH .

5.4.2 Residuals

A nonlinear system of equations on each time slab is obtained by substituting the

approximations from Eqns. 5.29 and 5.30 into Eqns. 5.25 and 5.24, multiplying by

test functions in the same space as the approximation functions, and integrating by

parts to incorporate discontinuities at time slab and spatial element interfaces. Thus,

we take the equations∫
Tk

∫
Ωe,k

ϕnH(t)φH, j(~X)

[
∂uX̄
∂t

∣∣∣
X

+∇X · ~FX̄ (uX̄ ,∇XuX̄ , ḡ)

]
︸ ︷︷ ︸

Navier-Stokes Eqns.

dΩ dt = 0

∫
Tk

∫
Ωe,k

ϕnH(t)φH, j(~X)

[
∂ḡ

∂t
−∇X · (gG−1~vG)

]
︸ ︷︷ ︸

GCL Eqn.

dΩ dt = 0

(5.32)

(where 1 ≤ j ≤ dof(pe,k), 1 ≤ n ≤ r+1, and Ωe,k and Tk represent a given spatial ele-

ment and time slab, respectively) and express them in terms of the following discrete

r + 1 residual vectors on each time slab k:

State Residual: Rk,m
U,H ≡ am,n Mk,k

H Uk,n
H − ϕ

m
H(tk−1) Mk,k−1

H Uk−1,r+1
H

+

tk∫
tk−1

ϕmH(t) RU,H

(
Uk
H(t), Gk

H(t)
)
dt = 0, (5.33)

GCL Residual: Rk,m
G,H ≡ am,n Mk,k

H Gk,n
H − ϕ

m
H(tk−1) Mk,k−1

H Gk−1,r+1
H

+

tk∫
tk−1

ϕmH(t)RG,H(t) dt = 0, (5.34)

The derivation of these residuals follows from Chapter IV. The temporal ap-

proximations of the state and GCL variable on time slab k are given by Uk
H(t) =∑

n Uk,n
H ϕnH(t) and Gk

H(t) =
∑

nG
k,n
H ϕnH(t), respectively, and the spatial state and

85

GCL residuals lie in RU,H ∈ RsNk
H and RG,H ∈ RNk

H . Note that the GCL residual

is independent of the state, while conversely, the state residual depends on both the

state and GCL variable. This coupling will be reflected in the adjoint system derived

later.

As discussed in Chapter IV, the flux functions used in the spatial discretization are

Roe’s inviscid flux [82] and the second form of Bassi and Rebay (BR2) for the viscous

flux [9]. Finally, the Mk,l
H terms in Eqn. 5.33 refer to the mass matrices formed from

the spatial basis functions on neighboring time slabs k and l, which will in general

differ due to dynamic order refinement. Note that we slightly abuse matrix-vector

product notation with the mass matrix in Eqn. 5.34, since Gk,n
H has a state rank of

1 rather than s. However, there is no rank mismatch in the actual implementation,

since the mass matrix acts independently on the state components of a vector.

5.4.3 Implementation

Since the state residual depends on the GCL variable, the GCL must be advanced

in time before advancing the state. This is a small cost due to the simplicity of

the GCL residual and the fact that ḡH is a scalar field. In addition, because of the

nonlinear nature of the ALE mapping, we increase the default numerical quadrature

order used to evaluate the spatial integrals in RU,H and RG,H . For the results in

this paper, we use a quadrature order of 2p + 5 rather than the standard order of

2p+ 1. Finally, as discussed in Chapter IV, we note that the unsteady solver used in

this work is an iterative technique based on an inexact linearization of the unsteady

residuals, so that the residual Jacobian storage costs do not exceed those of a steady

solve [81, 37].

5.5 Output Error Estimation and Adjoint Formulation

Above, we have described the technique for simulating problems on deforming

domains. Our main purpose is then to answer: for an output like lift or drag at a

given time, (1) what is the error in this output computed with our current space-time

mesh, and (2) how can we adapt the mesh to efficiently reduce this error?

Fundamentally, errors in an output arise due to discretization errors, which are a

consequence of solving the governing equations in a finite-dimensional space. Typ-

ically, outputs of interest such as lift or drag are functions of the physical state, u,

which means errors in these outputs are directly related to errors in the physical state.

However, from the transformations in Sec. 5.2, when the GCL is used, the physical

86

state is a function of both the reference state uX̄ and the GCL variable ḡ. Therefore,

for simulations satisfying the GCL, the error in a given output will be related to errors

in both uX̄ and ḡ.

To estimate the effect of these errors on an output JH , we will again require use

of a fine-space adjoint and a fine-space residual evaluation, as discussed in Chapters

II and III. However, the presence of the GCL makes the adjoint and error estima-

tion procedure more complicated. In this section, we will describe how to modify

this procedure while employing the GCL. The derivation will follow a similar line of

reasoning as in Chapters II and III.

5.5.1 Estimating Errors with the GCL

To estimate the error in an output JH computed on our current mesh (denoted by

subscript H), we consider the value of the output on a finer space-time mesh, denoted

by subscript h. This fine-space output Jh, were it known, could be expanded about

the coarse-space solution with a truncated Taylor series as follows:

Jh (Uh, Gh) ≈ Jh (UH
h , G

H
h)︸ ︷︷ ︸

≈JH

+
∂Jh
∂Uh

∣∣∣∣∣
(UH

h , G
H
h)

δU +
∂Jh
∂Gh

∣∣∣∣∣
(UH

h , G
H
h)

δG , (5.35)

⇒ Jh − JH ≈
∂Jh
∂Uh

∣∣∣∣∣
(UH

h , G
H
h)

δU +
∂Jh
∂Gh

∣∣∣∣∣
(UH

h , G
H
h)

δG . (5.36)

Eqn. 5.36 gives an estimate of the output error Jh − JH between fine and coarse

spaces. Here, UH
h and GH

h are just injections of the coarse solution (UH , GH) into

the fine space, while the perturbations δU = Uh −UH
h and δG = Gh − GH

h are the

differences between fine and coarse solutions, which are at this point unknown.

Next, if we assume the fine space equations are satisfied, our set of state and GCL

residuals over the whole space-time domain, RU, h and RG, h, must be zero. Just as

we did with J , we can expand these residuals about the coarse-space solution to get

RU, h (Uh, Gh) = 0 ≈ RU, h (UH
h , G

H
h) +

∂RU, h

∂Uh

∣∣∣∣∣
(UH

h , G
H
h)

δU +
∂RU, h

∂Gh

∣∣∣∣∣
(UH

h , G
H
h)

δG (5.37)

RG, h (Gh) = 0 ≈ RG, h (GH
h) +

∂RG, h

∂Gh

∣∣∣∣∣
GHh

δG . (5.38)

87

Due to discretization errors, the solution on the coarse mesh will generally not satisfy

the fine-space equations, and hence RU, h (UH
h , G

H
h) and RG, h (GH

h) will be nonzero.

From Eqn. 5.38 we can obtain an expression for δG, which we can then use in

Eqn. 5.37 to obtain δU. Doing so gives

δG ≈ −
[
∂RG, h

∂Gh

]−1

RG, h (GH
h) , (5.39)

δU ≈ −
[
∂RU, h

∂Uh

]−1
(

RU, h (UH
h , G

H
h)− ∂RU, h

∂Gh

[
∂RG, h

∂Gh

]−1

RG, h (GH
h)

)
, (5.40)

where all Jacobian matrices and their inverses are evaluated using the (UH
h , G

H
h)

states injected from the coarse mesh. Since Eqns. 5.39 and 5.40 are computable from

the coarse solution alone, we could in theory calculate δU and δG directly, then insert

them into Eqn. 5.36 to obtain the output error estimate. However, while this would

provide us with a total output error estimate, it would not tell us where in the mesh

that output error originated from. Since we are interested in adapting the mesh to

reduce the error, this is a problem, since it would effectively leave us blind.

The solution to this problem can be found by inserting Eqns. 5.39 and 5.40 into

Eqn. 5.36 and grouping all terms multiplying the residual perturbations:

Jh − JH ≈ −
∂Jh
∂Uh

[
∂RU, h

∂Uh

]−1

︸ ︷︷ ︸
ΨT

U, h

RU, h (UH
h , G

H
h)

−

{
∂Jh
∂Gh

− ∂Jh
∂Uh

[
∂RU, h

∂Uh

]−1
∂RU, h

∂Gh

}[
∂RG, h

∂Gh

]−1

︸ ︷︷ ︸
ΨTG, h

RG, h (GH
h) . (5.41)

We can now define the quantity multiplying the state residual pertubation as the

state adjoint ΨT
U,h, and the quantity multiplying the GCL residual pertubation as

the GCL adjoint ΨT
G,h. These adjoint vectors represent the sensitivity of the output

J to perturbations in the state and GCL residuals, respectively. By rearranging the

terms in the definition of the adjoints, we see that the following equations must hold:

88

State Adjoint Eqn.:

(
∂RU,h

∂Uh

)T
ΨU, h =

(
∂Jh
∂Uh

)T
, (5.42)

GCL Adjoint Eqn.:

(
∂RG,h

∂Gh

)T
ΨG,h =

(
∂Jh
∂Gh

)T
−
(
∂RU,h

∂Gh

)T
ΨU,h . (5.43)

Notice that we have two linear systems for ΨU,h and ΨG,h, which can be solved via

the same iterative method used for the primal problem. Furthermore, once obtained,

ΨU,h and ΨG,h provide the sensitivity of J to residual perturbations at specific loca-

tions in the mesh, which is essential for driving adaptation. Finally, the output error

estimate, defined as δJest = Jh − JH , is readily computable from the adjoints as

δJest ≈ −ΨT
U,h RU, h (UH

h , G
H
h) − ΨT

G,hRG, h (GH
h) . (5.44)

Thus, by solving for the state and GCL adjoints on a finer mesh, we can obtain

both an adaptive indicator and an estimate for the output error using only our original

solution on the coarse mesh.

5.5.2 Some notes on the GCL adjoint

For static simulations (or those not employing a GCL), the state adjoint would

provide all relevant sensitivity information, and the GCL adjoint would not exist. For

deforming domain problems satisfying the GCL, the GCL adjoint relates errors made

in the motion itself to errors in the output of interest. For example, the analytical

g(t) that describes the desired motion could have a sinusoidal variation in space and

time, but ḡ(t) will only approximate this variation with a polynomial. Therefore, on

a given mesh, we may be sufficiently resolving the states U, but could be getting

an accurate answer for the wrong motion! Injecting the coarse GH into the fine-

space RG, h and weighting by ΨG, h tells us where the mesh should be refined to more

accurately represent the true motion.

The form of the GCL adjoint equation (5.43) is also worth noting. We see that the

state adjoint ΨU, h appears as a source term on the right hand side, while conversely,

the state adjoint is independent of ΨG, h in Eqn. 5.42. This is due to the fact that the

state residual depends on the GCL variable, but the GCL residual does not depend

on the state. From an implementation standpoint, it means that on a given time slab

the state adjoint must be computed before the GCL adjoint can be obtained.

89

5.5.3 Unsteady Adjoint Equations

Equations 5.42 and 5.43 represent the adjoint equations at a high level, with all

space-time residuals and adjoints lumped into the RU/RG and ΨU/ΨG terms. To

actually solve them, we need to consider the details of the space-time Jacobian. The

sparsity pattern of the full space-time Jacobian for a DG-in-time discretization is

shown in Fig. 5.5. This pattern reveals the temporal dependencies of the residuals on

Jacobian matrix

U1 G1 U2 G2 U3 G3

R1
U • •

R1
G •

R2
U • • •

R2
G • •

R3
U • • •

R3
G • •

Jacobian matrix transpose

R1
U R1

G R2
U R2

G R3
U R3

G

U1 • •
G1 • • •
U2 • •
G2 • • •
U3 •
G3 • •

Figure 5.5: Sparsity patterns for the coupled state/GCL system in a DG-in-time
discretization, shown for the first three time slabs. Each entry has the dimension of
a Jacobian matrix (with respect to either Uh or Gh) over the temporal nodes and
spatial domain.

the states, which enables us to write the following form of the adjoint equations:(
∂Rk,m

U,h

∂Uk,n
h

)T

Ψk,m
U,h +

(
∂Rk+1,m

U,h

∂Uk,n
h

)T

Ψk+1,m
U,h =

(
∂Jh

∂Uk,n
h

)T

(5.45)(
∂Rk,m

U,h

∂Gk,n
h

)T

Ψk,m
U,h +

(
∂Rk,m

G,h

∂Gk,n
h

)T

Ψk,m
G,h +

(
∂Rk+1,m

G,h

∂Gk,n
h

)T

Ψk+1,m
G,h =

(
∂Jh

∂Gk,n
h

)T

(5.46)

where k represents the time slab index, and m and n index the temporal nodes within

each slab. These equations are just a more explicit form of Eqns. 5.42 and 5.43, and

are marched backward in time to obtain ΨU, h and ΨG, h.

5.5.4 Adjoint Implementation

The adjoint equations above require several derivative terms, including residual

Jacobians and output linearizations. In the current work, we perform all differentia-

tion analytically, with the exception of ∂Rk,m
U,h/∂G

k,n
h , which we evaluate using finite

differences for ease of implementation.

90

In solving the GCL adjoint equation (Eqn. 5.46), the derivatives of RG, h with

respect to G are straightforward to obtain, as the result is just a mass matrix. Ob-

taining the derivative of the output J with respect to Gk,n
h is done by simply applying

the chain rule on derivatives with respect to the physical state, which are already used

in the state adjoint equation. In addition, when solving the adjoint equations, we use

the entire time history of the primal state and GCL, which we store to disk during

the primal solve. While for the present work this storage has not been prohibitive,

for larger problems, solution checkpointing [45] or local-in-time adjoint solvers [102]

may be worth considering.

5.5.5 Error Estimate Implementation

The error estimate in Eqn. 5.44 requires an evaluation of the fine-space unsteady

residuals associated with the coarse solution, as well as the fine-space adjoints ΨU,h

and ΨG,h. In this work, when computationally feasible, we solve the fine-space ad-

joint equations to machine precision to minimize additional sources of error in our

estimates. However, for more complex problems (or when interested in reducing

CPU time), we smooth or reconstruct the coarse-space adjoints in order to minimize

computational cost [34].

When Galerkin orthogonality holds, coarse-space approximations of the adjoints

can be subtracted from the fine space adjoints appearing in Eqn. 5.44. (See e.g.

Chapter II, Eqn. 2.104.) Theoretically this has no effect on δJest, but in practice

it minimizes errors due to converging residuals only to a finite tolerance. We note

however that care must be taken when using the BR2 viscous discretization, which

does not exhibit Galerkin orthogonality for coarse-space solutions injected into an

order-enriched fine space. This is due to an order-dependence of the BR2 stabilization

terms. We employ a simple remedy [103], which consists of using the coarse-space

orders to approximate the stabilization terms when evaluating the fine-space residuals.

In addition, as quadrature effects tend to be more pronounced for simulations on

deformable domains, we use the coarse-space quadrature rules in these fine-space

residuals.

5.5.6 Error Localization

Since our aim is to adapt the mesh to reduce the output error, a global error

estimate is not enough – we need to localize the error contributions to individual

space-time elements in the mesh. As suggested in Chapter III, this can done by

91

noting that the output error estimate in Eqn. 5.44 can be written as a sum over all

space-time elements,

δJest =
∑
k

∑
e

εe,k, (5.47)

where the error contribution of a given space-time element (e, k) is

εe,k =
(
−Ψm

U,h

)T
Rm

U,h

(
UH
h , G

H
h

) ∣∣∣∣
e,k

+
(
−Ψm

G,h

)T
Rm
G,h(G

H
h)

∣∣∣∣
e,k

. (5.48)

This is just the adjoint-residual product restricted to the element (e, k), with a sum

taken over the intra-slab temporal degrees of freedom m (implied by the repeated

index above). The error indicator is then taken as the absolute value of this elemental

contribution to the output error,

error indicator = εe,k =
∣∣εe,k∣∣.

This indicator identifies the space-time elements that contribute most to the out-

put error.

5.5.7 Space-Time Anisotropy

For adaptation purposes, however, we require still more information – specifically,

is the error on a given space-time element due primarily to the spatial or temporal

discretization?

This information is obtained from a space-time anisotropy measure, which we

calculate in the same manner as presented in [34, 35]. Specifically, we calculate

the error anisotropy using separate projections of the fine-space adjoints onto semi-

coarsened spatial and temporal spaces.

The idea is that the amount of spatial error on a given element can be revealed

by keeping the temporal grid fixed and refining the mesh solely in space. Likewise,

the temporal error can be uncovered by keeping the spatial mesh fixed and refining

only in time. The issue, however, is that we have already computed the adjoints on a

mesh refined in both space and time, which leads to these errors becoming “mixed.”

In order to “unmix” the spatial and temporal errors, we take our fine-space adjoint

ΨU,h (likewise for ΨG,h) and perform least-squares projections onto semi-coarsened

92

meshes:

ΨU,Hh = Πspace
H ΨU,h (5.49)

ΨU,hH = Πtime
H ΨU,h . (5.50)

Here, Πspace
H and Πtime

H represent least-squares projections to spatial order pe and

temporal order r, respectively. ΨU,Hh then contains only fine temporal information,

while ΨU,hH contains only fine spatial information. We then project these semi-

coarsened adjoints back to the fine-space mesh to make them dimensionally consistent

with the fine-space residuals, resulting in ΨHh
U,h ∈ RNh and ΨhH

U,h ∈ RNh .

Estimates for the amount of spatial and temporal error on an element (e, k) are

then given by

εspace
e,k =

(
−ΨhH,m

U,h

)T
Rm

U,h

(
UH
h , G

H
h

) ∣∣∣∣
e,k

+
(
−ΨhH,m

G,h

)T
Rm
G,h

(
GH
h

) ∣∣∣∣
e,k

(5.51)

εtime
e,k =

(
−ΨHh,m

U,h

)T
Rm

U,h

(
UH
h , G

H
h

) ∣∣∣∣
e,k

+
(
−ΨHh,m

G,h

)T
Rm
G,h

(
GH
h

) ∣∣∣∣
e,k

(5.52)

Finally, we use the ratio of these values to estimate the fractions (β) of spatial

and temporal error on element (e, k) as

βspace
e,k =

|εspace
e,k |

|εspace
e,k |+ |εtime

e,k |
, βtime

e,k = 1− βspace
e,k . (5.53)

5.6 Spatial and Temporal Adaptation

With the above estimates of spatial and temporal error, we have the fundamental

information needed for adaptation. The next step is to decide what to adapt. In this

work, to address spatial errors, we will adapt the spatial order p on every element

dynamically in time (see Fig. 5.6 for a schematic). To address temporal errors, we

will adapt the temporal grid by selectively reducing or increasing the time slab widths

(while potentially adding or removing time slabs as necessary).

The “objects” to be adapted then are both (1) individual space-time elements and

(2) time slabs. Adaptive indicators identifying the spatial error on each space-time

93

−
+
−
+

time slab k

element (e, k=1)

x

y

t

tk

tk−1
dynamic spatial order

Figure 5.6: An illustration of dynamic-p refinement, in which spatial interpolation
orders change in time to track relevant flow features.

element and the temporal error on each time slab are given by

spatial indicator on space-time element e, k = εspace
e,k = εe,kβ

space
e,k , (5.54)

temporal indicator on time slab k = εtime
k =

∑
e

εe,kβ
time
e,k , (5.55)

where the sum indexed by e is taken over all spatial elements on a given time slab.

With these indicators, we can then conceivably lump all time slabs and space-time

elements into the same “bin,” rank them according to highest and lowest error indica-

tors, and determine which to adapt based on their relative positions in that ranking.

However, from a computational perspective, this is not quite what we want to do.

The issue is that, if (for example) a time slab and a space-time element had the same

error, they would be equal candidates for refinement. But refining an entire time

slab generally results in a much larger increase in degrees of freedom than refining a

single element. Thus, rather than adapting directly on errors, we adapt on a slightly

different figure of merit – the amount of error on a given element or slab (Eqns. 5.54

and 5.55) divided by the additional degrees of freedom associated with adapting that

element or slab. This figure of merit then ensures that we eliminate the most output

error for the least additional cost.

The above figure of merit is used in a fixed-growth adaptive strategy in which

some combination of time slabs and space-time elements is marked for coarsening

or refinement. The user specifies the fraction of degrees of freedom to be coarsened

(f coarsen), as well as the growth factor f growth, which dictates the total number of

94

degrees of freedom in the next mesh as Dnext = f growth Dcurrent (where Dcurrent is the

number of current degrees of freedom). The coarsening and refinement budgets are

then

Bcoarsen = f coarsenDcurrent,

Brefine = (f growth − 1)Dcurrent +Bcoarsen.

In practice, we typically use a coarsening fraction of ∼ 5% (f coarsen = 0.05) and a

growth factor of 1.30-1.35. With these budgets defined, the following algorithm is

then used to decide which space-time elements or time slabs to adapt:

1. Sort

Sort all space-time elements and time slabs based on the figure of merit. As men-

tioned, the figure of merit is the amount of output error addressed, Eqns. 5.54 and 5.55,

divided by the degrees of freedom added if the element/slab were to be refined.

For temporal refinement, the latter is approximated as the degrees of freedom

in the targeted slab k, dofk ≡
∑

e dof(pe,k), and for spatial refinement as the

number of additional degrees of freedom, dof(pe,k + 1) − dof(pe,k), associated

with an order increase of element e, k.

2. Coarsen

(a) Set coarsening degree-of-freedom tally to zero.

(b) Choose an unmarked space-time element or time slab with the lowest figure

of merit.

(c) If a time slab was chosen, mark it for a factor of 2 coarsening and add

0.5 dofk to the coarsening tally.

(d) If a space-time element was chosen, mark it for an order decrement and

add dof(pe,k)− dof(pe,k−1) to the coarsening tally.

(e) If the tally meets or exceeds the coarsening budget, Bcoarsen, stop. Other-

wise return to step 2b.

3. Refine

(a) Set refinement degree-of-freedom tally to zero.

95

(b) Choose an unmarked space-time element or time slab with the highest

figure of merit.

(c) If a time slab was chosen, mark it for a factor of 0.5 refinement and add

dofk to the refinement tally.

(d) If a space-time element was chosen, mark it for an order increment and

add dof(pe,k+1)− dof(pe,k) to the refinement tally.

(e) If the refinement budget, Brefine, is met or exceeded, stop. Else, return to

step 3b.

When we say “factor of 2 coarsening” (in 2c) and “factor of 0.5 refinement” (in 3c),

this essentially means that the width of a slab marked for coarsening will be doubled,

while the width of a slab marked for refinement will be halved. In fact, if only refine-

ment occurs, this is exactly the case – each marked slab will be perfectly bisected.

However, when coarsening also occurs, the boundaries of a coarsened slab will typi-

cally encroach on those of the neighboring slabs, and the entire temporal grid must be

shuffled to make room for the coarsened slab. To perform this “shuffling,” time slabs

are redistributed using one-dimensional metric-based meshing, the details of which

are given below (with an additional schematic provided in Fig. 5.7).

1. For each time slab k, define ∆̃t
desired

k = c∆tcurrent
k where c is 0.5 for refinement, 2

for coarsening, and 1 if the time slab is not marked. ∆̃t
desired

k represents the new

time step size that we desire on the current time slab k. The given choices of c

are consistent with the choices made for the degree-of-freedom counts above.

2. Define Ndesired = d
∑

k(∆t
current
k /∆̃t

desired

k)e, where d e is the greatest integer

(ceiling) function. This will be the total number of time slabs on the new

temporal mesh. Note that the ceiling function ensures that this number is an

integer.

3. To ensure that the desired time step size is consistent with this total number of

time steps, define the new desired time step size as

∆tdesired
k = ∆̃t

desired

k

∑
k(∆t

current
k /∆̃t

desired

k)

Ndesired
.

4. Finally, define a function n(t) that is piecewise-constant over the current time

slabs, and that takes on the value 1/∆tdesired
k on each current slab k. Define the

new time slab breakpoints as times tl where
∫ tl

0
n(t)dt is an integer.

96

∆tcurrent

∆t

new time slab breakpoints

∆̃t
desired

n(t)

trefinecoarsen

c = 1

c = 0.5

c = 1
c = 2

t

Figure 5.7: Demonstration of the one-dimensional remeshing algorithm used to define
new time slab breakpoints.

5.6.1 Summary of Adaptation Procedure

The above procedure describes how output-based adaptation of the current space-

time mesh is performed. For a given number of degrees of freedom, this adaptation

represents our best effort at eliminating errors in the output of interest. During

the overall adaptive process, several of these adaptations are performed, and the

unsteady problem is solved on successively refined space-time meshes. After each

primal solve, the adjoint equations are marched backward in time, new error indicators

are obtained, and a new adapted mesh is generated. This process is repeated until

the output error drops below a specified tolerance.

Fig. 3.2, repeated below, provides a visual summary of this process. A summary

of the steps in the algorithm, which parallels Sec. 3.2.2.3, is also provided below.

97

1st Adaptive Iteration 2nd Adaptive Iteration

P
ri

m
al

S
ol

ve

A
djoint

S
olve

Space-Time
Adaptation

P
ri

m
al

S
ol

ve

A
djoint

S
olve

Start

∆t
∆t

t = 0

t = T

Spatially

Adapted Meshes

Figure 5.8: For each adaptive iteration, the primal problem is marched forward in
time, and the adjoint problem is marched backward in time (on a uniformly refined
space-time mesh). An output error estimate is then computed and mesh adaptation
in space and time is performed. The spatial mesh is adapted differently at each time-
step (as indicated by the variable shading in the 2nd iteration above), and time steps
are selectively refined or coarsened.

Procedure:

1. Solve RG,H(GH) = 0 and RU,H(UH , GH) = 0 on the coarse space to obtain GH

and UH . On a given time slab, GH must be computed first.

2. Evaluate the output of interest, J(UH , GH).

3. Inject UH and GH to a uniformly order-incremented space-time mesh, Vh.
(Compute UH

h and GH
h .)

4. Evaluate the space-time residuals on Vh with the injected states. (Compute

RU,h(U
H
h , G

H
h) and RG,h(G

H
h).)

98

5. Solve (or approximate) the fine-space adjoint equations

∂Rh

∂Uh

T ∣∣∣∣
UH
h ,G

H
h

ΨU,h =
∂Jh
∂Uh

T
∣∣∣∣
UH
h ,G

H
h

∂RG,h

∂Gh

T ∣∣∣∣
UH
h ,G

H
h

ΨG,h =
∂Jh
∂Gh

T
∣∣∣∣
UH
h ,G

H
h

− ∂RU,h

∂Gh

T ∣∣∣∣
UH
h ,G

H
h

ΨU,h (5.56)

for ΨU,h and ΨG,h by marching backward in time. On a given time slab, ΨU,h

must be computed first.

6. Compute the error estimate δJest ≈ −ΨT
U,h RU, h (UH

h , G
H
h) − ΨT

G,hRG, h (GH
h).

7. Correct the original J(UH , GH) with this error estimate. (Compute Jcorrected =

J + δJest.) This corrected output is more accurate than the original J .

8. Localize δJest to individual space-time elements in the mesh.

9. Compute space-time anisotropy fractions βspace
e,k and βtime

e,k , which indicate how

much of δJest on each space-time element is due to the spatial vs. temporal

discretization.

10. Compute the “figure of merit” representing the amount of spatial or temporal

error divided by the cost of refining the element or time slab.

11. Select a certain percentage of elements or time steps with the highest figure of

merit and refine (and/or coarsen) them.

12. Solve the primal problem on the new mesh and repeat steps 2-12 until the

output error is driven below a desired tolerance.

5.6.2 Alternative Adaptive Methods

In the results section below, we compare our output-based adaptation procedure

to three alternative strategies:

1. Uniform h-refinement in space combined with uniform slab bisection in time.

2. Uniform p-refinement in space combined with uniform slab bisection in time.

3. Residual-based dynamic-p adaptation in space combined with slab

coarsening/refinement.

99

The residual indicator is given by a form similar to the output error (Eqn. 5.48),

but without the adjoint and with absolute values on the individual residual compo-

nents:

εres
e,k =

∑
m

∣∣Rm
U, h(U

H
h)
∣∣ ∣∣∣∣∣

(e, k)

.

This indicator targets areas of the space-time domain where the governing equations3

are not well-satisfied (i.e. where truncation errors are large), and is commonly used

in practice as an adaptive metric. A space-time anisotropy measure based on the

size of the solution discontinuities between elements [37] is used to determine βspace
e,k

and βtime
e,k for this metric. Otherwise, the same dynamic-p and temporal adaptation

algorithms are used as for the output-based method, providing a fair comparison of

the strategies.

5.7 Results

In this section, we present the results for several test cases. The first is a verifi-

cation of the adjoint and error estimation procedures described above. The following

cases then employ this error indicator to drive unsteady mesh adaptation for prob-

lems of engineering interest. These problems consist of airfoils and wings pitching and

plunging at low Reynolds number, and the convergence of the lift on these bodies is

compared for the adaptive methods described above.

5.7.1 Error Estimate Verification

Here, we verify the proposed error estimation strategy with a simple Navier-Stokes

problem. The problem consists of a density perturbation in a stagnant fluid, situated

in the corner of a rectangular basin bounded by no-slip walls (Fig. 5.9). The density

perturbation is allowed to diffuse for two time units, and the final vertical force on the

left wall is taken as our output of interest. The force is kept dimensional while using

the following convenient units: density = 1, density perturbation = 0.25, total energy

3Note that we have included only the state residual rather than the GCL residual in this indicator.
We do not expect this to have a large influence on the results. Since the dimensions of the equations
in the residual are different anyway, there is always an ad-hoc choice involved in deciding how to
sum its components. Furthermore, the poor performance seen later with this indicator is not due to
the absence of the GCL residual, since the GCL errors are too small to be generating the observed
effects.

100

= 2.675, gas constant = 1, laminar viscosity = 1. One time unit then corresponds to

t = 1 in the physical evolution of the equations.

(a) Density, t = 0 (b) Density, t = 2

Figure 5.9: Initial and final meshes and densities. The initial density perturbation is 25%
above the nominal value.

Since no boundaries are moving here, mesh motion is not required and the problem

could be solved with a fixed grid. However, to test the error estimation with mesh

motion, we instead choose to wave the mesh in the background, using the formula in

Eqn. 5.3 to map the domain from reference to physical space. Since this mapping is

relatively violent, with large variations in g in both space and time, it should introduce

motion-related errors and provide a good test of our error estimation procedure. Note

that the movement of the mesh should in theory have no impact on the physics of

the problem, and the solution should converge upon refinement to that with no mesh

motion.

To verify the error estimation, three separate cases were run: (i) a no-motion

case; (ii) a case with motion but no GCL; and (iii) a case with both motion and

GCL. These cases were run at interpolation orders ranging from p = 1 to 4, with

a DG1 time scheme and 10, 12, 14, and 16 time steps, respectively. For each run,

the output JH on the current mesh is first recorded. Next, error estimation based

on a (p + 1, r + 1) fine space is performed, and the predicted change in the output

relative to the fine space (δJest) is computed. Finally, the primal problem is solved

directly on the (p+ 1, r + 1) space, and the output Jh is determined. The difference

δJact = Jh− JH between coarse and fine outputs can then be obtained and compared

to δJest. If the error estimation is working properly, these values should correspond

closely. Of course, since the problem is nonlinear, the correspondence will generally

101

not be exact.

10
4

10
5

10
6

0.0315

0.032

0.0325

0.033

0.0335

0.034

0.0345

0.035

0.0355

0.036

0.0365

Total space−time DOF

F
o
rc

e
 o

n
 w

a
ll

Uncorrected, GCL
Corrected, GCL
Uncorrected, no−GCL
Corrected, no−GCL

Actual

(a) With motion

10
4

10
5

10
6

0.0315

0.032

0.0325

0.033

0.0335

0.034

0.0345

0.035

0.0355

0.036

0.0365

Total space−time DOF

F
o
rc

e
 o

n
 w

a
ll

Uncorrected
Corrected

10
5.1

10
5.6

0.0363

0.0364

0.0364

0.0364

0.0364

0.0364

0.0365

Actual

(b) Without motion

Figure 5.10: Output convergence for both motion and no-motion cases, shown with the
same scale. Despite larger-magnitude errors, the corrected output converges rapidly to the
true value for motion cases.

Fig. 5.10 shows both the output and corrected output (J + δJest) convergence

for all cases. Though the errors for the motion cases are significantly larger than

those without motion, the error estimate brings the corrected output very close to

the true value. Table 5.2 gives a more quantitative comparison between the actual

and predicted errors. From the table, we see that the error estimates with mesh

102

motion display 93-99% accuracy relative to the actual output errors. The no-motion

error estimates, despite being relatively less accurate initially, also achieve greater

than 95% accuracy as the mesh is refined. The reason for the initial inaccuracy is not

completely known, but the smaller magnitude of the no-motion errors means low-level

noise due to (e.g.) numerical quadrature has a larger effect on the percent accuracy.

For the GCL runs specifically, the above results verify that the GCL adjoint and

error estimation procedures were implemented correctly. The breakdown of errors

due to the state and GCL individually are given in Table 5.3 (which includes an

additional p = 0 run), and we see that the GCL-related errors constitute from 8-42%

of the total error estimate.

GCL No GCL No Motion
p δJest δJact % Error δJest δJact % Error δJest δJact % Error
1 4.17e-3 4.02e-3 3.7 4.44e-3 4.49e-3 1.0 1.69e-4 2.88e-4 41.4
2 4.75e-4 5.08e-4 6.6 5.78e-4 6.12e-4 5.5 5.92e-5 7.03e-5 15.7
3 1.55e-4 1.54e-4 0.5 2.45e-4 2.44e-4 0.4 1.61e-5 1.55e-5 3.5
4 1.02e-4 1.01e-4 1.4 1.63e-4 1.61e-4 1.1 7.31e-6 7.02e-6 4.2

Table 5.2: Relative accuracy of error estimates for motion and no-motion cases at different
orders p. “% Error” denotes the error in δJest relative to δJact.

p 0 1 2 3 p = 4
State Errors -3.59e-2 4.61e-3 5.93e-4 2.53e-4 1.68e-4
GCL Errors -2.63e-2 -4.38e-4 -1.18e-4 -9.74e-5 -6.53e-5

GCL % of Total 42.3 8.9 16.6 27.8 28.0

Table 5.3: Contribution of GCL and state errors to total error estimate.

While these results demonstrate the qualitative and quantitative accuracy of the

error estimates, it is also worthwhile to look at formal convergence rates. To ensure

that the singularities in the corners of the basin do not inhibit these rates, we change

the problem slightly. The basin walls are replaced by periodic boundaries, and the

perturbed region (which now consists of both density and velocity variations) is shifted

so that it no longer touches the boundary. Since the walls have vanished, the output

is taken to be the final-time integral of pressure over the domain.

We are interested in how the uncorrected and corrected outputs (J+δJest) converge

in both space and time. We first fix the number of time steps and perform error

estimation in space only (relative to a p + 1 fine space), for various values of p and

several h−refinements of the spatial mesh. From these refinements, we can plot the

103

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

S
p

a
ti
a

l
e

rr
o

r

Mesh size, h

p1

p2

p3

p1, corrected

p2, corrected

p3, corrected

2.05

3.54

3.93

3.71

4.19

4.90

(a) GCL, spatial errors

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

S
p
a
ti
a
l
e
rr

o
r

Mesh size, h

p1

p2

p3

p1, corrected

p2, corrected

p3, corrected

2.07

3.81

3.94

3.98

4.14

4.59

(b) No GCL, spatial errors

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

S
p

a
ti
a

l
e

rr
o

r

Mesh size, h

p1

p2

p3

p1, corrected

p2, corrected

p3, corrected

2.03

3.20

2.98

3.41

3.52

3.93

(c) No motion, spatial errors

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

1/(Time steps)

T
e

m
p

o
ra

l
e

rr
o

r

GCL

GCL, corrected

No GCL

No GCL, corrected

No motion

No motion, corrected

3.48

3.00

2.76

3.43

3.46
(averaged over last
5 points)

(d) Temporal errors

Figure 5.11: Spatial and temporal convergence histories for the corrected and uncorrected
final-time output. Average convergence rates are shown next to each curve, and expected
rates are achieved for all runs. Note that different reference values are used for the GCL,
no-GCL, and no-motion cases, so a direct comparison of error magnitudes should not be
made.

spatial convergence rates for GCL, no-GCL, and no-motion runs (shown in Fig. 5.11).

For nearly all runs, we see p + 1 convergence rates for the uncorrected outputs and

the expected p + 2 rates for the corrected outputs. A rate of p + 2 for the corrected

output is anticipated because, ideally, the error estimate should correct the coarse-

space output to the fine-space value, and the fine space value itself converges at a rate

of p + 2 in this case. We note that the p = 2 motion runs are somewhat anomalous,

since they appear to converge at fourth, rather than third, order.4

4It is possible that the true convergence rates here are actually 2p, and that the discontinuity in
the initial condition is limiting the rates for the p > 2 runs.

104

Next, we fix the spatial grid and interpolation order (at p = 2), and perform both

error estimation and refinement in time only, using a DG time scheme with order

r = 1. The results of this temporal convergence study are shown in the final plot

of Fig. 5.11. Since the output is computed at the final time, it lies on a downwind

time node and is expected to super-converge [1] at a rate of 2r + 1 = 3. This rate

was obtained, and is evident in the plot. Error estimation for these runs is performed

relative to an r + 1 space, and a convergence rate of 2(r + 1) = 4 is expected for the

corrected outputs. (Note that while the fine-space output itself would converge at

5th order, the error estimate is limited to 4th-order accuracy due to the linearization

error, which is of order δu2 = 2(r+ 1). See Eqn. 3.27.) The actual corrected outputs

achieve a rate of approximately 3.5 before numerical precision causes a bottoming

out.

5.7.2 Dynamic Mesh Adaptation for Pitching Airfoil

With the performance of the error estimates confirmed, we next use them to drive

mesh adaptation for a case of engineering interest – an airfoil pitching sinusoidally at

low Reynolds number. The airfoil starts from an impulsive free-stream condition and

undergoes three periods of pitching motion (with amplitude 30◦ and period T = 2.5)

at a Strouhal number of 1.0, a Reynolds number of 400, and a free-stream Mach

number of 0.2. The airfoil is a NACA 0012 situated in the center of a 60 x 60

chord-length domain, and the mesh consists of 1,454 triangular elements.

Entropy contours at several phases of the motion are shown in Fig. 5.15. A series

of vortices forms behind the airfoil as it completes the motion cycle, and these vortices

combine with the free-stream flow and inertial effects to generate forces on the airfoil.

Our output of interest is the lift component of these forces integrated over the final

2.5% of the simulation time.

To compute this output, the three adaptive methods described in Sec. 5.6.2

(output-based, residual, and uniform refinement) are considered. Several adapta-

tions are performed starting from an initial p = 1, 70 time step solution. The spatial

order is constrained to lie within the range 0 ≤ p ≤ 5, and an r = 1 DG time scheme

is used for all runs. For the output error and residual methods, 5% of space-time

elements are coarsened during each adaptive iteration, while the overall size of the

space-time mesh is increased by a growth factor of 30%. All simulations are performed

in parallel using 72 processors on the Diamond supercomputing cluster at the U.S.

Army Engineering Research and Development Center (ERDC).

105

5.7.2.1 Results

The output convergence for each adaptive method as a function of total space-time

degrees of freedom (DOF) is shown in Fig. 5.12. For the output-based method, both

the output J and the corrected output J + δJest are given. As seen, the output-based

adaptation converges much faster than uniform refinement, requiring approximately

two orders of magnitude fewer degrees of freedom to converge to the true output value.

It also significantly outperforms residual adaptation, which becomes distracted by

acoustic waves emanating from the airfoil and fails to converge even after 14 adaptive

iterations.

10
5

10
6

10
7

10
8

10
9

10
10

−0.11

−0.108

−0.106

−0.104

−0.102

−0.1

Total space−time DOF

L
if
t

o
u

tp
u

t

Output−based

Output−based, corrected

Residual

Uniform−p

Uniform−h

Actual

Figure 5.12: Single airfoil: Output convergence for the various adaptive methods.
The output-based method outperforms both residual-based and uniform refinement
by orders of magnitude. Note that the red and blue curves come from the same runs,
but the red curve is the “corrected” output, J + δJest, while the blue curve shows J .

The temporal and spatial grids from the final output-adapted run are shown in

Fig.s 5.14 and 5.16, respectively. In Fig. 5.16, we see that the regions where vortex

shedding occurs are heavily targeted, while a circular region surrounding the airfoil

is refined to a lesser extent. In the far field, most elements have been coarsened

to p = 0, as expected. Temporally, the periods of strongest vortex shedding are

targeted, with a preference given to those occurring in the first half of the simulation.

This preference for earlier times makes sense, since the initial vortices influence the

106

vortex shedding during later parts of the simulation, and must therefore be resolved

accurately. The residual indicator also targets this vortex shedding, but does so

blindly, giving roughly equal weight to each vortex shed throughout the simulation

(as evidenced by the equally-spaced refinement in Fig. 5.14).

To highlight one of the factors driving the adaptation, contours of the GCL adjoint

are shown alongside the entropy contours in Fig. 5.15. The first contour shows a

band of inward-moving sensitivity waves converging upon the trailing edge near time

t = T/3 = 0.833. Similar behavior is seen in the other adjoint components, and this

is reflected in the adaptation, which heavily targets the times following t ≈ 0.8. The

final adjoint contour in Fig. 5.15 shows the sensitivity field collapsing onto the airfoil

near the end of the simulation. This collapse occurs because, as the simulation comes

to an end, any errors made in regions farther from the airfoil no longer have time

to propagate to the airfoil and influence the output. Thus, the adjoint goes to zero

everywhere except in regions near the airfoil.

Finally, since the GCL adjoint and error estimates are of particular interest in

this paper, a breakdown of the output error into its state and GCL components is

provided in Table 5.4. From the table, we see that the GCL errors initially make

up only a small percentage of the total error, but as the adaptations proceed, their

contribution increases to over half of the total error estimate. While this alone does

not prove that the GCL is essential to obtaining accurate outputs, it does imply that

if the GCL is used, a corresponding GCL adjoint is necessary to obtain accurate error

estimates.

5.7.3 CPU Time Comparison

Above, we solved the fine-space adjoint to machine precision to ensure accurate

error estimates and efficient allocation of mesh degrees of freedom. In practice, CPU

time is another important factor, and solving the adjoint to machine precision is

generally not the most efficient strategy. Previous work [34] has shown that a few

smoothing iterations on the fine-space can provide acceptable error estimates at re-

duced computational cost. In Fig. 5.21, we show a wall time comparison for the vari-

ous adaptive strategies, with the adjoint smoothed to a residual tolerance of 1×10−4.

This tolerance is not necessarily optimal, and we note that the code itself has not

been optimized for CPU time. However, our aim is simply to give an idea of the

relative timings. While the performance gains for the output-based method are not

as substantial in this context, it does converge faster than the uniform refinement

strategies. It also significantly outperforms the residual-based adaptation, which fails

107

10
−1

10
0

10
1

10
2

−0.11

−0.108

−0.106

−0.104

−0.102

−0.1

Wall Time (hrs)

L
if
t

o
u

tp
u

t

Output−based, corrected

Residual

Uniform−p

Uniform−h

Actual

Figure 5.13: Single airfoil: Wall time comparison for the various adaptive methods.
The output-based method outperforms the other strategies.

to converge by the time of the final adaptation.

0 1 2 3 4 5 6 7

Output error: 170 time slabs

Residual: 169 time slabs

Time

Figure 5.14: Single airfoil: Temporal grids from the seventh adaptation of both adjoint
and residual runs.

108

Adapt Iter. 1 2 3 4 5 6 7 8
State Errors -9.9e-3 -1.1e-2 -3.8e-3 -1.9e-3 -6.6e-4 -4.0e-4 -4.5e-4 -3.1e-4
GCL Errors 1.3e-4 2.7e-4 4.5e-4 4.9e-4 -1.3e-4 8.9e-5 3.5e-4 3.4e-4

GCL % of Total 1.3 2.5 10.6 20.2 16.1 18.2 43.7 51.8

Table 5.4: Single airfoil: Contribution of GCL and state errors to the total error estimate
for all iterations of output-based adaptation.

109

(a) t = T/3

(b) t = 2T

(c) t = 11T/4

Figure 5.15: Single airfoil: Entropy (left) and GCL adjoint (right) contours at various
stages of the pitch motion on a fine mesh. Note that the GCL adjoint contours have
been re-scaled to more clearly show the features. (Black is 1.5, white is -0.75.)

110

(a) t = T/3

(b) t = 2T

(c) t = 11T/4

Figure 5.16: Single airfoil: Output-adapted meshes at various stages of the pitch
motion. Blue is p = 0, red is p = 5.

111

5.7.4 Dynamic Mesh Adaptation for Pitching and Plunging Airfoils

Next, we try a more complicated case – two airfoils pitching and plunging in series.

The airfoils start from an impulsive free-stream condition and undergo three periods

of motion. The plunge amplitude is 0.25 chords, the pitch amplitude is 30◦, and the

period of both motions is T = 2.5. The Strouhal, Mach, and Reynolds numbers are

2/3, 0.3, and 1200, respectively. The airfoils are offset 4.5 chords horizontally and 1

chord vertically, and are situated in a 60 x 60 chord-length mesh with 3, 534 triangular

elements.

Entropy contours at various phases of the motion are shown in Fig. 5.17. A reverse

Kármán vortex street develops behind each airfoil, and the second airfoil interacts

with the wake from the first airfoil near the end of the simulation. Our output of

interest is the lift on the second airfoil integrated from time t = 7.25 to t = 7.5 (the

final time).

To compute this output, the adaptive methods described in Sec. 5.6 (output-

based, residual, and uniform h- and p-refinement) are again considered. Adaptations

are performed starting from an initial p = 1, 90 time step solution, with a 35% growth

factor and 5% coarsening factor used for the output- and residual-based methods. The

spatial order p is constrained to lie between 0 and 5, and an r = 1 DG scheme is used

in time. The simulations are again performed in parallel using 72 processors on the

Diamond supercomputing cluster at the U.S. Army ERDC.

5.7.4.1 Results

The output convergence for each adaptive method as a function of total space-time

degrees of freedom is shown in Fig. 5.18. We see that the output-based adaptation

converges significantly faster than uniform refinement, requiring roughly two orders

of magnitude fewer degrees of freedom. These gains relative to uniform refinement are

impressive, though not necessarily unexpected. Equally interesting is the difference

between the output-based and residual adaptation.

The residual indicator targets regions of the domain where the governing equations

are not well-satisfied, and hence usually performs well for static problems. However,

in this case, its performance is erratic and no better than uniform refinement. As

in the single-airfoil case, this erratic behavior is a consequence of the acoustic waves

that emanate from the airfoils as they pitch back and forth. The residual indicator

becomes distracted by these waves and exhausts degrees of freedom trying to resolve

them as they propagate throughout the domain. The output-based method, on the

112

(a) t = 0.70T

(b) t = 1.25T

(c) t = 2.75T

Figure 5.17: Two airfoil case: Entropy (left) and GCL adjoint (right) contours at various
stages of the motion on a fine mesh. The GCL adjoint contours have been re-scaled to more
clearly show the features (black is 2, white is -1). Both acoustic and convective modes of
error propagation can be seen in the first two contours, while at the final time, the adjoint
field collapses on the second airfoil.

other hand, deems the majority of these waves irrelevant to the output and does not

expend resources on them.

113

10
6

10
7

10
8

10
9

−0.11

−0.105

−0.1

−0.095

−0.09

−0.085

−0.08

−0.075

−0.07

−0.065

−0.06

Total space−time DOF

L
if
t

o
u

tp
u

t

Output−based

Output−based, corrected

Residual

Uniform−p

Uniform−h

Actual

Figure 5.18: Two-airfoil case: Output convergence for various adaptive methods. The
output-based method performs the best.

The spatial and temporal meshes from the final output-based adaptation are

shown in Fig.s 5.19 and 5.20, respectively. We see that the near-airfoil and vortex

shedding regions are targeted for adaptation, as well as the group of large elements

surrounding the mesh motion regions. While somewhat difficult to observe in the

still-frames, the initial vortex shed from the first airfoil is heavily targeted through-

out the simulation, since this vortex later collides with the second airfoil near the

final time.

Contours of the GCL adjoint (which are similar in nature to the state adjoint)

are shown alongside the entropy contours in Fig. 5.17. The time t = 0.70T is the

instant before the initial vortex is shed, and the large sensitivity of the output to this

event can be seen in the adjoint contours. As the simulation proceeds, the output

sensitivity gradually shifts from the first airfoil to the second, before collapsing upon

the second airfoil at the final time.

Some other aspects of the GCL adjoint are worth pointing out. In the first two

contours, the near-circular rings represent inward-moving (adjoint) acoustic waves,

which converge upon a particular region as the simulation proceeds. The existence of

a ring implies that an important event in space-time is about to occur, and any errors

made within the circumference of the ring have the ability to influence this event. In

this simulation, the important events tend to be instances of vortex shedding, and the

114

(a) t = 0.70T

(b) t = 1.25T

(c) t = 2.75T

Figure 5.19: Two-airfoil case: Output-adapted meshes at various stages of the motion.
Blue is p = 0, red is p = 5.

rings converge on the trailing edge regions. Lastly, between the two airfoils, a path

can be seen tethering them together. This path appears because any errors within

it ultimately reach the second airfoil via convection, and can therefore directly affect

115

0 1 2 3 4 5 6 7

Output error: 284 time slabs

Residual: 294 time slabs

Time

Figure 5.20: Two-airfoil case: Temporal grids from the seventh adaptation of both output-
based and residual runs. For clarity, only every other time slab is plotted.

the output.

Finally, a breakdown of the output error into its state and GCL components is

provided in Table 5.5. From the table, we see that the GCL errors initially make

up only a small percentage of the total error, but as the adaptations proceed, their

contribution accounts for a significant fraction of the total – again underscoring the

importance of incorporating the GCL adjoint when the GCL is employed.

Adapt Iter. 1 2 3 4 5 6 7 8
State Errors -1.5e-2 -2.2e-3 -7.4e-4 -3.8e-3 -2.4e-3 -1.0e-3 -3.6e-4 5.8e-4
GCL Errors 1.5e-4 9.3e-5 3.8e-5 3.9e-5 3.5e-4 -1.7e-4 -2.8e-4 -9.5e-4

GCL % of Total 1.0 4.0 4.8 1.0 12.8 14.0 43.4 62.2

Table 5.5: Two-airfoil case: Contribution of GCL and state errors to the total error estimate
for all iterations of output-based adaptation.

5.7.4.2 CPU Time Comparison

For the above results, we solved the fine-space adjoint to machine precision. How-

ever, if we are interested in reducing CPU time, we can again smooth the adjoint

to some finite residual tolerance. In Fig. 5.21, we show a wall time comparison for

the various adaptive strategies, with the adjoint smoothed to a residual tolerance

of 1 × 10−3. We see that the output-based method converges roughly 5-10 times

faster than the uniform refinement strategies. It also significantly outperforms the

residual-based adaptation, which again fails to converge in any amount of time.

116

10
−1

10
0

10
1

10
2

−0.115

−0.11

−0.105

−0.1

−0.095

−0.09

−0.085

−0.08

−0.075

−0.07

−0.065

Wall Time (hrs)

L
if
t

o
u

tp
u

t

Output−based, corrected

Residual

Uniform−p

Uniform−h

Actual

Figure 5.21: Two-airfoil case: Wall time comparison for the various adaptive methods.
The output-based method converges the fastest.

5.7.5 Mesh Adaptation for a Three-Dimensional Flapping Wing

The above cases show the effectiveness of our output-based strategy in two dimen-

sions. Next, we attempt to apply a similar strategy in three dimensions. In 3D, the

underlying ideas for mesh motion and adaptation remain the same, but the increased

algorithmic complexity and new dimensional scaling do not allow for a simple extrap-

olation of the 2D results. In particular, the extra dimension makes the scaling for the

adjoint problem less favorable. For a (p=1, r=1) primal solve in 2D, the dimension

of the fine-space adjoint is approximately 3 times that of the primal, while in 3D this

factor increases to over 5. When combined with additional CPU costs, computing (or

even smoothing) the adjoint on the fine space becomes an expensive proposition.

To address this issue, we give up the idea of computing the fine-space adjoint

directly. Instead, we compute the adjoint in the same space as the primal problem,

and then reconstruct it in both space and time to obtain an approximation to the

fine-space adjoint. This reconstruction is performed locally, with patches of neigh-

boring elements used to generate a least-squares spatial reconstruction, and pairs of

neighboring time slabs used to obtain a high-order temporal interpolant [34]. See

Fig. 5.22 for a depiction of these procedures.

The lower dimension of the coarse-space adjoint combined with the local nature

117

patch

p

p

pp
p + 1

1

(a) Spatial reconstruction tktk−1 tR

reconstructed
r=2 adjoint

solution

IH,k IH,k+1

t

O((∆t)2r+1)

O((∆t)r+2)

r=1 adjoint solution

O((∆t)2r+1)

1

(b) Temporal reconstruction

Figure 5.22: Illustration of spatial and temporal adjoint reconstructions. (a) shows a patch
of nearest-neighbor elements used for spatial high-order reconstruction via least-squares
interpolation. (b) shows reconstruction of an r = 1 adjoint to r = 2 using the left node
from the adjacent future time slab and the super-convergent nodes on the current time slab
(which correspond to the roots of the left Radau polynomial for r = 1).

of the reconstruction makes it cheaper to compute than the true fine-space adjoint.

However, this savings comes at the expense of accuracy, since the reconstructed ad-

joint will only be a good approximation to the fine-space adjoint when the problem is

nearing asymptotic convergence. By employing this strategy then, we accept that our

global output error esimate may be compromised, but assume that the reconstructed

adjoint will still identify the correct regions of the mesh to be adapted.

30°0.2
chords

±10° AoA

Figure 5.23: 3D wing: Schematic of the flapping motion. The flow regime is approximately
that of a small house-fly.

118

To test this strategy, we proceed in a similar manner as in 2D, though now sim-

ulating a full wing rather than just an airfoil. The wing is shown in Fig. 5.23, along

with a schematic of the flapping motion. The wing moves in all dimensions, with a

30◦ stroke angle, a slight vertical plunge simulating movement of the “shoulder joint,”

and an angle of attack variation of ±10◦. The Mach number is 0.3, while the Reynolds

number of 500, Strouhal number of 0.4, and aspect ratio of 2 place the wing in the

flight regime of a small house-fly.

Three periods of motion are simulated, and the solution at various times is shown

in Fig. 5.24. Strong vortex cores develop near the leading edge and wingtip regions

before detaching and shedding into the wake. For adaptation purposes, the output

of interest is taken to be the lift integrated over the final 5% of the simulation time

(from t = 7.1 to t = 7.5). To solve the problem, output-based, residual, and uniform-

p refinement strategies are employed. Adaptations are performed starting from an

initial p = 0, 75 time step solution, with a 30% growth factor and 5% coarsening

factor used for the output- and residual-based methods. As before, the spatial order

p is constrained to lie between 0 and 5, and an r = 1 DG scheme is used in time. The

simulations are performed on the Diamond supercomputing cluster at the U.S. Army

ERDC. The number of processors used for the output-based, residual, and uniform-p

strategies is 304, 48, and 168, respectively. When comparing wall time later on, the

run times are scaled appropriately according to both the number of processors and

the results of a parallel efficiency study performed on the cluster.

5.7.5.1 Results

The convergence for each adaptive method is shown in Fig. 5.25, and the re-

sults are encouraging. We see that although reconstructed adjoints were used, the

output-based adaptation still performs well, and converges with about two orders of

magnitude fewer degrees of freedom than uniform refinement. Note that the accu-

racy of the error estimate itself is not ideal, as expected, but it is enough to guide the

adaptation in the correct direction. Convergence as a function of wall time is shown

in Fig. 5.25, and we see that the method also performs well in this context.

Of additional interest is the performance of the residual-based adaptation, which

is so poor that the curve is easy to miss in the plots. In the 2D cases, the residual

convergence was oscillatory, but at least hovered near the true output value. Here,

the residual adaptation fails outright, and the output value does not converge at all

from its initial value. The reason for this behavior is evident in Fig. 5.26, which shows

the orders midway through the final residual adaptation. The residual indicator flags

119

(a) t = T

(b) t = 2.25T

(c) t = 2.8T

Figure 5.24: 3D Wing: Mach contours projected onto entropy isosurfaces, shown for several
stages of the flapping motion. The maximum Mach number (in red) is approximately 0.5.
The images are taken from the final (p=3) uniform refinement.

only large elements in the blending region for refinement, and leaves all elements near

the wing at their original low order.

The output-based adaptation, on the other hand, refines elements near the wing

as needed. The adapted spatial meshes from the output-based runs are shown in

120

10
6

10
7

10
8

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Total space−time DOF

L
if
t
o
u
tp

u
t

Output−based

Output−based, corrected

Residual

Uniform−p

Actual

(a)

10
−1

10
0

10
1

10
2

10
3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Wall Time (hrs)

L
if
t
o
u
tp

u
t

Output−based

Output−based, corrected

Residual

Uniform−p

Actual

(b)

Figure 5.25: 3D wing: Output convergence as a function of (a) degrees of freedom and (b)
total wall time.

Fig. 5.27, while adapted temporal grids are shown in Fig. 5.26. We see that, at early

times, the output-based indicator leaves the mesh relatively coarse, but progressively

increases the resolution in both space and time as the simulation progresses.

121

Finally, the state vs. GCL error breakdown for the output-based runs is shown in

Table 5.6. As in 2D, the GCL errors make up a relatively large percentage of the total

error estimate, again indicating the importance of the GCL adjoint. Thus, overall, we

find that both the performance of the adaptive algorithm and the conclusions drawn

about the GCL extend from two to three dimensions.

(a) Residual-adapted orders

0 1 2 3 4 5 6 7

Output error: 51 time slabs

Residual: 75 time slabs

Time

(b) Temporal grids

Figure 5.26: 3D wing: (a) Spatial orders from the residual adaptation midway through the
simulation (blue is p = 0, red is p = 3). The adaptation targets only elements far from the
wing, leading to poor output convergence. (b) Temporal grids from the final output-based
and residual adaptations. The residual adaptation refines periodically with the motion,
while the output-based adaptation increases the resolution near the final times.

Adapt Iter. 1 2 3 4 5

State Errors -1.7e-1 -5.6e-2 -2.0e-2 -1.8e-2 -1.8e-2
GCL Errors 1.4e-2 9.9e-3 1.4e-2 1.6e-2 1.9e-2

GCL % of Total 7.8 15.1 41.8 47.0 50.7

Table 5.6: 3D wing: Contribution of state and GCL errors to the total error estimate for
all iterations of output-based adaptation.

5.8 Relevance of the GCL

In the cases presented, we have shown that output-based error estimation and

mesh adaptation lead to efficient output convergence in terms of both mesh size and

122

(a) t = T

(b) t = 2.25T

(c) t = 2.8T

Figure 5.27: 3D Wing: Spatial orders from the final output-based adaptation, shown at
several stages of the flapping motion. Dark blue is p = 0, red is p = 3. The images on the
left show the interpolation orders projected onto entropy isosurfaces.

computational time. For these cases, the GCL was used to ensure conservation, and

we saw that accurate error estimates were obtained only if a corresponding GCL

adjoint was used. However, an important question is: what if the GCL were ignored

123

from the start? If we accept the possibility of conservation errors, we can neglect the

GCL equation and simply solve the original form of the governing equations (Eqn.

5.15). If this is done, no separate GCL adjoint is required, and the state adjoints

provide the information necessary for error estimation and adaptation.

Ignoring the GCL for the airfoil cases presented above gives the output convergence

histories shown in Fig. 5.28. We see that use of the GCL for these cases does provide a

slight improvement in output convergence; however, if error estimation is performed,

both GCL and no-GCL runs show nearly identical corrected outputs. This suggests

that satisfying the GCL may not be critical to obtaining accurate outputs, especially

if those outputs are corrected by an a posteriori error estimate.

Granted, these cases have a relatively low Mach number, and we might expect

the difference between GCL and no-GCL runs to increase as compressibility becomes

more important. In particular, for cases with shocks, it is known that incorrect shock

speeds can be obtained if a numerical method is not strictly conservative [52, 64].

However, we have found that even for cases with relatively strong shocks, correct

solutions are obtained with no-GCL runs provided the order and/or mesh resolution

is high enough (see Appendix C).

Overall, for cases where the GCL can be safely ignored, the primary savings would

be in implementation rather than computation time. The GCL represents a small

(∼3%) addition to the CPU time of the primal problem, while the GCL adjoint adds

roughly 6% to the adjoint solve time. (This adjoint time could be reduced further as

well, since it includes a relatively inefficient finite differencing of the residuals with

respect to the GCL variable.) This means that the total reduction in CPU time

obtained by neglecting the GCL would be about 5%.

5.9 Conclusions

In this work, we derived unsteady adjoints for both the governing equations and

the geometric conservation law, and showed that using these adjoints to drive adap-

tation provides orders-of-magnitude savings in the mesh size required for output con-

vergence. A significant reduction in computational time was also achieved when the

adjoints were reconstructed or smoothed to an appropriate tolerance. More com-

mon adaptation methods, such as uniform or residual-based refinement, were shown

to be either inefficient or erratic for cases with mesh motion. These results were

demonstrated in both two and three dimensions.

The overall impact of the GCL on error estimation was also assessed. While

124

1 2 3 4 5 6 7 8

−0.11

−0.108

−0.106

−0.104

−0.102

−0.1

−0.098

Adaptive iteration

L
if
t

in
te

g
ra

l

GCL

No GCL

GCL, corrected

No GCL, corrected

(a) Single airfoil case

2 3 4 5 6 7 8

−0.108

−0.106

−0.104

−0.102

−0.1

−0.098

Adaptive iteration

L
if
t

in
te

g
ra

l

GCL

No GCL

GCL, corrected

No GCL, corrected

(b) Two-airfoil case

Figure 5.28: Output convergence for the single and two-airfoil runs with and without the
GCL.

the contribution of the GCL to the output error is generally smaller than the state

contribution, it can become significant during later stages of adaptation. Hence, if the

GCL is enforced, a corresponding GCL adjoint is required to ensure accurate error

estimates. However, results indicate that for certain cases, accurate output values

may be obtained while ignoring the GCL altogether, particularly if the output is

corrected by an a posteriori error estimate.

Overall, the proposed output-based adaptation represents an unquestionable im-

125

provement over more heuristic strategies when considering total mesh size. While

reductions in CPU time were also obtained, further gains in this area are possible.

For parallel computations, an algorithm for dynamically repartitioning the mesh could

prove beneficial, while changes to the adaptive strategy itself may provide additional

improvement. These issues are the subject of ongoing research.

Below, we list some additional topics for future work.

• Since DG-in-time schemes are relatively expensive, it would be useful to extend

the above output-based techniques to more common temporal discretizations,

such as Runge-Kutta schemes or multi-step methods. Runge Kutta schemes

are adjoint-consistent for variable time-step sizes [84], so dynamic space-time

adaptation is a viable option. However, since the temporal solution is known

only at discrete nodes/stages with these methods, one question is how to define

an injection into the “fine-space” when performing error estimation. While

there is not a unique choice for this procedure, reconstructing a polynomial by

interpolating a combination of the discrete state values and temporal derivatives

should prove sufficient for error estimation.

• The adaptation performed in this work consists of dynamic-p adaptation in

space and slab bisection/coarsening in time. For flows with sharp gradients

(such as higher-Reynolds-number flows or flows with shocks), it would be useful

to incorporate both h and p adaptation in space. Alternatively, r-adaptation, in

which the nodes defining the mesh elements are adjusted to minimize the error,

could also be incorporated. The adaptation in time could also be improved, by

(for example), refining time step sizes uniquely for each spatial element in the

mesh. While all of the above options are feasible, the challenge is to implement

them in an efficient and robust manner.

• The unsteady output-based techniques presented here should be evaluated on

higher-Reynolds-number problems and extended to chaotic flows. In chaotic

flows, outputs are extremely sensitive to perturbations in the residuals, causing

the magnitude of the adjoint to grow unbounded as it is marched backward in

time. However, from a physical perspective, it should still be possible to define

useful sensitivities for time-averaged outputs in these cases. The most effective

way to define and compute the adjoint for these problems is the subject of

ongoing research [98, 99], and a successful resolution of this issue will be critical

to many engineering applications.

126

CHAPTER VI

Optimal Test Functions for Boundary Accuracy in

Discontinuous Finite Element Methods

As discussed in the preceding chapters, the typical strategy for achieving output

accuracy is to use a standard (e.g. discontinuous Galerkin) method in combination

with output-based mesh adaptation. In this case, the numerical method itself is a

“general-purpose” scheme, while the mesh bears the burden of providing accuracy

in outputs of interest. By successively refining the mesh in the regions indicated

by an adjoint vector, we are – in essence – “optimizing” the mesh while leaving the

numerical method alone.

However, we might wonder: is optimizing the mesh the only way to reduce out-

put errors? Or could the numerical method itself be optimized to achieve output

accuracy?

In this chapter, we take a step back and investigate this alternative – and some-

what overlooked – idea.

Specifically, we investigate whether the test space of a finite element method can

be optimized to obtain accuracy in certain outputs, and – in particular – in those

outputs defined along the domain boundaries. These boundary outputs, which

include quantities such as lift, drag, and moment, are often the most important from

a practical standpoint.

As we will show, it turns out that adjoints play a critical role in the optimization

of the test space, providing a further link between the present chapter and our pre-

vious work. From the previous chapters, we know that an adjoint-weighted residual

represents the error in a certain output. But, by definition, in finite element methods

it is the test functions that weight the residual (in the weak form). Since this test-

function-weighted residual is set to zero when solving the problem, it follows that if

we choose the test functions themselves to be adjoint solutions, we will be directly

127

setting the error in certain outputs to zero. By defining these outputs appropriately,

we can therefore choose which quantities the finite element method achieves accuracy

in.

In the end, to compute the optimal test functions in a practical manner, we will

not be solving global adjoint problems, but rather local ones defined on each element.

As we will show, we will define these local adjoints such that, when used as test

functions, they minimize the amount of error in the fluxes leaving each element. This

accuracy in the local fluxes then propagates globally, leading to accuracy in outputs

along the domain boundaries.

We are not the first to consider optimizing a finite element test space. There have

been several schemes employing the idea of optimal test functions in the past (some

fairly successfully), though for the most part their emphasis has been on obtaining

“stability” rather than accuracy in certain quantities. In the following section, we

discuss the idea of optimal test functions in a more historical context and highlight

the place of our present work (which can be found in published form in [60, 59])

within this context.

6.1 Introduction

Over the years, finite element methods have become the primary computational

tool in many branches of engineering. When initially applied within structural me-

chanics, the principal components of these methods – the test and trial functions –

were chosen to be identical, resulting in a so-called Galerkin formulation. Based on

this choice, the continuous Galerkin (CG) method has since seen wide application,

owing both to its simplicity and provable optimality for many problems of interest.

When CG was applied to fluid dynamics problems, however, the results were

poor. For convection-diffusion equations, spurious oscillations arose in the presence

of gradients and boundary layers, corrupting the numerical solution. Over time, it

became apparent that this lack of “stability” could be blamed on a suboptimal test

space, and many so-called Petrov-Galerkin (or “stabilized”) schemes have since arisen

to address this issue [15, 39, 54, 13]. These schemes, the most popular of which is

the Streamline Upwind Petrov-Galerkin (SUPG) method [15], improve the stability

of CG by modifying its test space in an upwind-biased manner.

With the emergence of discontinuous finite element methods, however, the impetus

for optimizing the test space largely disappeared, since the use of a Riemann flux

provides an inherent measure of stability [14]. Thus, methods of a discontinuous

128

Galerkin (DG) type, which take the simplest possible test space (setting it equal to

the trial space), have come to dominate the literature [8, 22, 3, 50, 56, 96, 41, 87]. But

the question naturally arises: is this the best option? Or, for discontinuous methods,

is there a better – optimal – choice of test space?

This is the question we investigate here. Before doing so, however, we must say

what we mean by “optimal.” For discontinuous methods, this requires a slight shift in

perspective. Rather than viewing the test space as a means to “fix” stability issues,

we can instead view it as a means to obtain a specific, goal-oriented approximation

of the true solution – one that provides accuracy in the regions we care about. This

is, in the end, the role of the test space in any finite element method: to define its

goal. The appearance of oscillations or “instabilities” is just evidence that, in some

sense, that goal has not been well defined.

Typically, the goal of a simulation is to achieve accuracy in a certain norm of

interest. The optimal test functions can then be defined as those that render the nu-

merical solution the best approximation to the true solution in the desired norm. This

idea has been pursued by several authors in a continuous context [5, 27, 44, 17, 51, 4],

dating back to the work of Barrett and Morton in 1984 [5]. In addition, the test func-

tions of stabilized schemes such as SUPG (which achieves H1 optimality for certain

problems [55]) can be viewed as optimal in a similar sense. More recently, Demkowicz

and Gopalakrishnan have introduced discontinuous Petrov-Galerkin (DPG) methods,

which employ optimal test functions within a more general, discontinuous frame-

work [25, 26, 105, 20, 16]. These methods, developed initially within an “ultra-

weak” [26] context and adapted to hybrid methods in [71], have interior L2 optimality

as their primary goal.

In the present work, we pursue a different goal. We note that while domain-

interior accuracy is important, from an engineering standpoint the regions of greatest

interest are often the domain boundaries. Indeed, obtaining the forces, fluxes, and

distributions of quantities along the boundaries is often the principal goal of a simula-

tion. We therefore make this our aim in the current work. In addition, for purposes of

both familiarity and computational efficiency, we pursue this aim within the context

of standard DG and hybrid DG (HDG) methods.

To that end, we present a simple framework for deriving and computing opti-

mal test functions. These test functions render the solution optimal in a desired error

norm, which in this case we choose to emphasize boundary accuracy. While in general

the optimal test functions would satisfy global differential equations, when boundary

accuracy is desired they can be computed in a purely element-local manner. When

129

used within a standard DG or HDG framework, they result in a scheme we call the

boundary discontinuous Petrov-Galerkin (BDPG) method.

Here, we list some relevant properties of the optimal test functions and the corre-

sponding BDPG method:

1. The optimal test functions are elementwise adjoint solutions (i.e. generalized

Greens functions [30]), similar to the fine-scale Greens functions used in

several multiscale methods [54, 53, 55].

2. As adjoints, they ensure that information is properly “upwinded” within

each element, and they attempt to minimize the amount of error that (after

being generated on the element interior) ultimately reaches the element

boundaries.

3. They therefore lead to accuracy in the element-interface fluxes, which prop-

agates globally to the domain boundaries.

4. They have close ties to a posteriori error estimation [10, 36], which explains

their ability to minimize the errors in the fluxes.

5. For one-dimensional linear problems, if the test functions are well-

represented, exact boundary fluxes are obtained.

6. For multi-dimensional linear problems, if the test functions and interface

fluxes are well-represented, exact boundary fluxes are obtained.

7. For nonlinear problems, the optimal test functions lead to boundary flux

rates of order 2p+ 2 (an improvement over the 2p+ 1 rates associated with

a standard DG method).

While the theory applies to general PDEs, here we focus on steady-state fluid

applications, showing results for advection-diffusion, Euler, Navier-Stokes, and other

equations. We begin with a simple approximation problem and a one-dimensional

example that emphasizes the main ideas of the method. We then move on to multiple

dimensions and systems of equations, as well as to nonlinear problems. The benefits

and limitations of optimal test functions are discussed, and remaining challenges are

130

identified.

Finally, we note that we have tried to keep the discussion in this chapter at

a relatively high level, without much of the formalism often associated with finite

element methods. While we are by no means experts in functional analysis, this is

done primarily in the hope that the main concepts can be seen clearly.

6.2 An Approximation Problem

In this section, we begin by discussing a type of “curve-fitting” or function approx-

imation problem, which on the surface has little to do with finite element methods.

However, as we will see, these ideas will be relevant to the derivation of optimal test

functions later on.

6.2.1 One-Dimensional Function Approximation

Imagine we have some one-dimensional function, u(x), the shape of which is known

to us. (See Fig. 6.1.) Now assume that we would like to approximate this u(x) with

a polynomial.1 If we call our polynomial approximation uH(x), then we can expand

this uH(x) as

uH(x) =
N∑
i=1

Ui φi(x) , (6.1)

where the φi are basis functions for our chosen polynomial space, and the Ui are

discrete coefficients. If our polynomial space is of order p, then the dimension N is

N = p+ 1.

Now, we would like to find the coefficients Ui that make uH the “best” approx-

imation to the original curve u. However, before we can do this, we must specify

which norm we would like the best approximation in. For example, if we desire a

least-squares approximation of u, then we need uH to minimize the following norm:

||e||2 =

∫
Ω

(uH − u)2 dx . (6.2)

Here, e ≡ uH − u is the approximation error, while Ω = [xL, xR] is the extent of the

domain over which u is defined.

While the above norm would ensure that uH provides an accurate approximation

on the domain interior, we may also wish to obtain accuracy on the domain bound-

1In other words, we would like to perform a type of continuous “curve fit.”

131

Boundary Accuracy

u(x)

x

u

uH

uH

Figure 6.1: Two p = 1 approximations of a one-dimensional function u(x). The
blue curve provides interior accuracy, while the red curve provides right-boundary
accuracy. The amount of boundary accuracy depends solely on the type of error
norm minimized – not on the type of polynomial itself.

aries. If we are interested in accuracy near the right boundary, for example, then we

could modify our error norm to read:

||e||2 =

∫
Ω

(uH − u)2 dx + wR (uH − u)2

∣∣∣∣
xR

. (6.3)

Here, wR is a weight that determines how much emphasis is placed on the boundary;

if it is taken large, more accuracy is obtained there.

Assume that Eqn. 6.3 is our error norm of interest. Then in order to find the

coefficients Ui that minimize this norm, we take the partial derivative of ||e||2 with

respect to each Ui, and set this equal to zero. By basic calculus, the derivative of a

function is zero at a critical point, and in the case of ||e||2 this critical point is in fact

a minimum.

Since uH =
∑N

i=1 Ui φi, differentiating Eqn. 6.3 with respect to Ui gives:

∂||e||2

∂Ui
= 0 =

∫
Ω

2 (uH − u)φi dx + 2wR (uH − u)φi

∣∣∣∣
xR

. (6.4)

Thus, if uH is to provide the minimum error in ||e||2, it must satisfy the following N

132

equations: ∫
Ω

φi (uH − u) dx + wR φi (uH − u)

∣∣∣∣
xR

= 0 i = 1..N . (6.5)

Fig. 1 shows two potential uH curves that satisfy the above equations – one that

emphasizes boundary accuracy (corresponding to large wR) and another that empha-

sizes interior accuracy (corresponding to small wR). From the figure, a few relevant

conclusions can be drawn.

First, we see that the amount of boundary accuracy obtained depends solely on

the choice of error norm minimized. Thus, if the goal is to achieve boundary accu-

racy, the type of polynomial used in the approximation (i.e. the “trial” space) is not

relevant. While this is strictly true only in one dimension, a similar idea holds in

general: the lower the dimension of a given region of interest (in this case a zero-

dimensional boundary), the more important the choice of error norm becomes and

the less important the choice of trial space becomes.2

As we will show, in the context of a finite element method, the function u plays

the role of the exact solution to a PDE, uH is analogous to the numerical solution,

and the error norm can be controlled by modifying the test space. It is clear then

that if boundary accuracy is desired in this context, it is a test-space optimization

that should play the central role. This idea, along with Eqn. 6.5, will be critical in

deriving an optimal finite element scheme.

6.3 Optimal Test Functions (One-Dimensional Example)

Let us shift focus now and discuss our actual goal: solving PDEs. For the sake of

clarity, consider a differential equation of the following form:

a
∂u

∂x
+ cu︸ ︷︷ ︸

Lu

= f x ∈ Ω

u = uL x = xL (6.6)

This is a linear advection-reaction problem with a source term f(x), where we assume

a > 0 so the Dirichlet condition uL is well-posed. The differential operator L is given

by L ≡ a∂()
∂x

+ c(), and the residual is defined as r(u) ≡ Lu − f . The domain

2Though as we will see, in multiple dimensions the trial space does remain relevant.

133

Ω = [xL, xR] is the same as in Sec. 6.2 and will be assumed here to consist of a single

element.3

To obtain the weak form of the above problem, we multiply the residual by a test

function and integrate, giving∫
Ω

v (Lu− f) dx = 0 ∀v ∈ V , (6.7)

where v is any test function in some continuous space V . For sufficiently smooth4 u

and v, integrating the vLu term by parts then gives∫
Ω

[
−a∂v

∂x
+ cv

]
︸ ︷︷ ︸

L∗v

u dx + vau

∣∣∣∣xR
xL

−
∫
Ω

vf dx = 0 ∀v ∈ V . (6.8)

Here, we have defined the operator that emerges after integration by parts as L∗ ≡
−a∂()

∂x
+ c(). Finally, after inserting the boundary condition and moving the “known”

terms to the right-hand side, we obtain∫
Ω

L∗v u dx + vau

∣∣∣∣
xR︸ ︷︷ ︸

b(u, v)

=

∫
Ω

vf dx + vauL

∣∣∣∣
xL︸ ︷︷ ︸

l(v)

∀v ∈ V . (6.9)

This equation, which relates the bilinear form b(u, v) to the load l(v), is satisfied by

the exact solution u for any smooth test function v.

Now, to compute an approximate solution to the PDE in Eqn. 6.6, a standard

(upwind) DG method attempts to mimic Eqn. 6.9. In other words, it seeks an ap-

proximate solution uH ∈ UH that satisfies∫
Ω

L∗vh uH dx + vhauH

∣∣∣∣
xR︸ ︷︷ ︸

b(uH , vh)

=

∫
Ω

vhf dx + vhauL

∣∣∣∣
xL︸ ︷︷ ︸

l(vh)

∀vh ∈ Vh (6.10)

where vh is any test function in some discrete space Vh. Once a basis {φi} is chosen

for the approximation space UH (typically assumed to be a polynomial space of order

3The single-element setting allows us to assume a smooth numerical solution. While in the end
we are interested in discontinuous finite element methods, the ideas in this section will ultimately
be applied only within each element, where the smoothness assumption is justified.

4We assume that it is valid to evaluate u and v on the domain boundaries.

134

p), the discrete uH can be represented as

uH =
N∑
i=1

Ui φi(x) , (6.11)

where the Ui are the unknown solution coefficients. Then the remaining question

is: what should our test space Vh be? A standard Galerkin method would choose

Vh = UH , so that the test space is identical to the trial space. But is this the best

choice?

We have arrived at the critical point: we have used the word “best.” Best in

what way? Recall that in Sec. 6.2 we encountered the same issue. To get a “best”

approximation, we had to first define the norm we wanted the best approximation in.

In the same way, when solving a PDE, we must say how we would like the numerical

solution uH to approximate the exact u.

Typically, we would like uH to obtain some amount of interior and (particularly

in this work) boundary accuracy. For the current problem, the relevant boundary

to request accuracy in is the right boundary, since the solution on the left is already

known from the Dirichlet condition. Thus, the norm we desire the best approximation

in may look something like:

||e||2 =

∫
Ω

(uH − u)2 dx + wR (uH − u)2

∣∣∣∣
xR

.

This is the same norm used in Sec. 6.2. Recall from that section that if uH is to

minimize this norm, it must satisfy the zero-derivative condition given by Eqn. 6.5,

i.e.

∫
Ω

φi (uH − u) dx + wR φi (uH − u)

∣∣∣∣∣∣
xR

= 0 i = 1..N.

Now, we claim that with a certain (“optimal”) choice of test functions, we can

ensure that Eqn. 6.5 is satisfied by our finite element solution. First, note that since

Vh ⊂ V , we can choose a common test function vh ∈ Vh ⊂ V for Eqns. 6.9 and 6.10.

135

Doing so and subtracting the two equations then results in:∫
Ω

L∗vh (uH − u) dx + vha (uH − u)

∣∣∣∣
xR︸ ︷︷ ︸

b(e, vh)

= 0 ∀vh ∈ Vh . (6.12)

This equation is just the bilinear form evaluated with the solution error, and is sat-

isfied regardless of how the test space is chosen. However, to see how an optimal

scheme can be created, note that the above expression involves some quantity that

is equal to zero. Next, note that the error minimization statement (Eqn. 6.5) also

involves a quantity that is equal to zero. Then the idea is this: if we can make the

above b(e, vh) look like the error minimization statement, our finite element solution

uH will necessarily minimize that error norm.

To make this clearer, we first make a simple notational change. Regardless of how

the test space is chosen, it must have the same dimension (N) as the trial space, in

order for the number of equations to equal the number of unknowns. Therefore, we

can replace the general test function vh above with a specific test function vi, where

i ranges from 1 to N . Doing so gives:∫
Ω

L∗vi (uH − u) dx + a vi (uH − u)

∣∣∣∣
xR

= 0 i = 1..N. (6.13)

Now, our goal is to make this equation look like the error minimization statement in

Eqn. 6.5, which is:∫
Ω

φi (uH − u) dx + wR φi (uH − u)

∣∣∣∣
xR

= 0 i = 1..N.

By simply comparing these equations, we see that the way to make them identical is

to set

L∗vi = φi x ∈ Ω

a vi = wR φi x = xR

 i = 1..N . (6.14)

Thus, if the discrete solution uH is to minimize the error given by Eqn. 6.3, the test

functions vi must satisfy the above differential equation(s) and boundary condition(s).

The test functions that satisfy these equations are the optimal test functions, in

136

the sense that they make uH the best approximation to u in the desired error norm.

At this point, it is worth making a few remarks.

Remark 6. While for simple problems the optimal test functions can be found an-

alytically, in general we must compute them numerically. This can be done by (e.g.)

approximating them in a high-order polynomial space. A similar strategy has been

pursued in much of the DPG literature [26].

Remark 7. The idea of making b(e, vh) reduce to the derivative of a desired error

norm has arisen previously in the context of continuous finite element methods [5, 4,

44, 27]. More recently, the DPG methods of Demkowicz, Gopalakrishnan, et al. have

employed similar ideas, primarily within the context of a discontinuous “ultra-weak”

formulation [25, 26, 105, 20]. In contrast, here we consider standard DG and HDG

formulations5, with the specific goal of achieving boundary accuracy.

Remark 8. Recall that to achieve boundary accuracy we simply choose wR to be

large. This emphasizes the boundary term in the error norm (Eqn. 6.3), which in

the limit of large wR ensures that uH provides the best approximation to u on the

boundary. When the corresponding optimal test functions are used within a DG

or HDG framework, we refer to the resulting scheme as a “boundary discontinuous

Petrov-Galerkin” (BDPG) method.

In practice, the precise choice of wR is up to the user, and its magnitude is cor-

related with the amount of accuracy desired on the boundaries. For example, for

one-dimensional linear problems, choosing wR = 103 will provide O(10−3) accuracy

in the right-boundary state, while choosing wR = 1010 will provide O(10−10) accuracy.

The optimal test functions can also be reformulated with wR taken to infinity, but

since this would make the error norm defined in Eqn. 6.3 no longer strictly a norm,

we will take wR large but finite in this work. Furthermore, in practice, errors in the

computation of the test functions often make the use of an infinite wR unnecessary.

Remark 9. Note that since information propagates to the right in the current ad-

vection example, choosing wR large – i.e. requesting accuracy in the right-boundary

state uH |xR – may also be viewed as requesting accuracy in the outgoing flux. This is

the view we adopt when generalizing to multidimensional systems.

5Note that for certain problems (such as pure advection), the ultra-weak DPG formulation
may be preferable to DG or HDG formulations, since its independent treatment of interior and
flux unknowns enables an independent optimization of each [25]. However, for problems such as
advection-diffusion, the HDG formulation is preferred since its number of globally coupled unknowns
is just half that of the corresponding ultra-weak formulation.

137

Remark 10. We have posed the above derivations in a single-element setting, which

means the equations satisfied by the optimal test functions are in fact global differ-

ential equations. In practice, solving these would be prohibitive, so we will need to

localize them in some way.

Remark 11. Finally, use of the optimal test functions will not, in general, result in

a conservative scheme. This is because the solutions to the test function equations

(Eqn. 6.14) will not always contain the constant mode. However, from a purely

geometric standpoint, when boundary accuracy is desired we do not necessarily want

the scheme to be conservative. For example, imagine that we are in a situation

like the one depicted in Fig. 6.1 and wish to obtain accuracy on both left and right

boundaries. Then requesting that uH interpolate u on both boundaries would preclude

it from satsifying a “conservation” relation such as
∫

Ω
uH dx =

∫
Ω
u dx, since the linear

interpolant of the boundary data would necessarily have a smaller integral value than

u itself. However, if the user does desire conservation, this could theoretically be

added as a constraint during the computation of the optimal test functions.

0 0.5 1
0

0.5

1

x

v

Ensures Boundary
Accuracy

Ensures Interior
Accuracy

(a) Optimal test functions

0 0.5 1
−2

3

8

x

u

Exact
BDPG

Boundary
Accuracy

(b) Single-element BDPG solution

Figure 6.2: One-dimensional advection-reaction: (a) Normalized optimal test func-
tions corresponding to a p = 1 trial space and large wR. The black test function (v2 in
Eqn. 6.15) provides right-boundary accuracy, while the remaining test function (v1 in
Eqn. 6.15) provides interior L2 accuracy. Note the upwind/leftward bias of both func-
tions. (b) The solution obtained using the optimal test functions. Right-boundary
accuracy is achieved.

We will elaborate on these remarks later on. For now, let us return to our one-

dimensional advection-reaction problem. For this problem, we can solve Eqn. 6.14

138

analytically to find the optimal test functions. If we assume a p = 1 trial space with

Lagrange basis functions φ1 = 1 − x and φ2 = x, we can compute two corresponding

test functions. For a parameter choice of a = 1, c = −2, and f(x) = 0 in Eqn. 6.6,

these test functions are

v1 =
1

4
e2(1−x) +

x

2
− 3

4
and v2 =

(
wR −

1

4

)
e2(1−x) − x

2
+

1

4
. (6.15)

These functions are plotted in Fig. 6.2, where wR has been taken large and the

maximum values have been normalized to unity. The solution obtained by using these

test functions in Eqn. 6.10 is also shown. Note that the solution achieves accuracy

on the right boundary, as desired.

From the figure, we see that in contrast to the symmetric nature of the standard

Galerkin test functions, the optimal test functions display a clear upwind bias. Thus,

from a physical perspective, we can think of these test functions as performing a

proper upwinding of information within the domain. This idea is related to another

important property of the optimal test functions – namely, that they are adjoint

solutions.

6.4 Optimal Test Functions as Adjoints

To see that the optimal test functions satisfy adjoint equations, recall from Chap-

ter II (Eqn. 2.28) that for a given differential operator L, the definition of its adjoint

operator L∗ is:

(Lu, v) = (u, L∗v) ∀u ∈ U , ∀v ∈ V , (6.16)

where U and V are function spaces over which the above inner product is defined. In

practical cases, L∗ is simply the operator that emerges after integrating by parts, and

hence is exactly the operator in the test function equations (Eqn. 6.14).

As derived in Chapter II, an adjoint equation provides the sensitivity of a certain

output to perturbations in the residuals of the governing equation. Therefore, if the

optimal test functions themselves satisfy an adjoint equation, this begs the question:

for what output?

By examining Eqn. 6.14, we see that it is identical in form to the continuous

adjoint equation (Eqn. 2.31) derived in Chapter II for steady advection. Thus, just

as the right-hand side of Eqn. 2.31 represents an output linearization, the right-hand

side of Eqn. 6.14 must also represent an output linearization. By inspection, we see

139

that the output whose linearization (with respect to u) matches Eqn. 6.14 is:

Ji =

∫
Ω

φiu dx + wRφiu

∣∣∣∣
xR

. (6.17)

This output represents a projection of the exact solution u against the i-th trial basis

function.

Now, from a posteriori error estimation (e.g. Eqn. 2.82), we know that the adjoint-

weighted residual represents the error in a given output. Thus, since the optimal test

functions vi are adjoints for the outputs Ji, when we ultimately use them in the finite

element weighted residual,∫
Ω

vi (LuH − f)︸ ︷︷ ︸
r(uH)

dx = 0 = −δJi i = 1..N, (6.18)

we are directly enforcing that the error in each projection output Ji, i.e. δJi ≡ Ji(u)−
Ji(uH), is zero. This implies that the discrete solution uH is the direct projection of

the exact solution u into the trial space, with respect to the desired error norm. This

is the same conclusion arrived at in the previous section, but viewed from a different

perspective.

Finally, to further clarify the relationship between the outputs Ji and the min-

imization of the error ||e||2, consider the following. We have said that using the

optimal vi gives zero error in the Ji. But from the above definition of Ji, zero error

in Ji implies

−δJi = Ji(uH)− Ji(u) =

∫
Ω

φi(uH − u) dx + wRφi(uH − u)

∣∣∣∣
xR

= 0. (6.19)

This is identical to the statement that ∂||e||2
∂Ui

= 0, i.e. it is identical to Eqn. 6.5, and

thus implies that ||e||2 is minimized.

Remark 12. Note that if the test functions are approximated numerically (e.g. at

some order ptest), the error in the Ji will not be identically zero. However, from

Eqn. 6.18, the convergence rate of this error will at a minimum correspond to the

sum of the test function and residual convergence rates (i.e. ptest + p + 1), and at

a maximum to a value of 2ptest + 1 (via a Galerkin orthogonality argument). Thus,

taking ptest > p will yield higher output convergence rates than the standard 2p + 1

rates of DG.

140

Remark 13. Since adjoint solutions are a type of “generalized” Green’s function [30],

the optimal test functions are closely related to the fine-scale Green’s functions used in

many multiscale methods, such as the Variational Multiscale Method [53]. Considered

in this context, approximating the optimal test functions with ptest > p can be thought

of as bringing in “fine-scale” information that ultimately leads to improved solution

accuracy.

6.5 Localization of Test Functions

With the nature of the optimal test functions discussed, we now turn to the issue

of localization. In the above sections, we derived the optimal test functions while

assuming a single-element mesh. This means that the adjoint equations satisfied by

the test functions are in fact global differential equations. Since in practice these

would be prohibitive to solve, we need to find a way to localize the test functions

without giving up their accuracy.

Fortunately, for norms ||e||2 emphasizing boundary accuracy, localization is straight-

forward. We simply loop over each element in the mesh and apply the theory from

Sec. 6.3 inside each element. We thus solve purely local adjoint problems (with sup-

port over a single element) to compute the test functions, with the local outputs

defined by

Ji =

∫
Ωe

φiu dx + wRφiu

∣∣∣∣
xe,R

. (6.20)

Here, Ωe represents the domain of a given element, while xe,R represents its right

(downwind) boundary. Note that this output has the same form as in Eqn. 6.17, but

is defined over element Ωe rather than the entire domain.

In this localized context, the optimal test functions then minimize the desired

error norm within each element. Thus, taking wR large in Eqn. 6.20 will provide

accuracy in the outgoing flux on each element boundary, rather than on the domain

boundary. However, the critical idea is that, if flux accuracy is obtained on each

element boundary, then this accuracy will propagate downstream, ultimately yielding

accuracy on the domain boundary. A similar idea holds for more general problems,

including those with diffusion terms. Since the fluxes represent the only means by

which elements in the mesh communicate, if these local fluxes can be made accurate,

global accuracy follows naturally.

This idea is supported analytically as well. Appendix D shows that for the current

141

problem, as wR is taken large, the test space formed by the local adjoints actually con-

tains the global adjoints corresponding to the domain-boundary fluxes. This implies

that (if well-represented) the local test functions are in fact globally optimal.

6.6 Implementation (One-Dimensional Example)

With the localization defined, we are ready to use the optimal test functions

in a practical setting. First, we note that the above ideas can be applied to several

discontinuous formulations. For the current problem, we will apply them to a standard

DG formulation, while later on we will use a hybrid (HDG) method. Regardless of

the method used, there are two main steps to be performed: (1) the computation of

optimal test functions on each element; and (2) the use of these test functions in the

bilinear form.

6.6.1 Computation of Test Functions

For most problems, it will not be possible to solve for the optimal test functions

analytically. Instead, we must approximate them numerically. If the mesh is uniform

or the element-wise adjoint problems are self-similar, the localized test functions can

be computed just once on a reference element and can then be “copied” onto each

element in turn. Otherwise, independent test functions must be computed on each

element. The simplest way to compute the test functions is to solve the local adjoint

problems using a DG method. For the current advection-reaction problem, we thus

solve the following equation for each vi on a given element6:

Find vi ∈ Utest such that:∫
Ωe

L∗vi δu dx + avi δu

∣∣∣∣
xe,R︸ ︷︷ ︸

be(δu, vi)

=

∫
Ωe

φi δu dx + wRφiδu

∣∣∣∣
xe,R︸ ︷︷ ︸

Ji(δu)

∀δu ∈ Utest . (6.21)

Note that this is just the weak form of the adjoint equations given in Eqn. 6.14

(which is analogous to the adjoint equation derived in Eqn. 2.50). These equations are

solved in an enriched space Utest with corresponding order ptest, which must be higher

than the original order p of the space UH . The higher the ptest, the more accurate the

6Of course, for this problem, we know the analytical form of the test functions from the previous
section, but we compute them numerically here to demonstrate the procedure used for more general
problems.

142

test functions, and the more accurate the final solution on the boundaries. Indeed,

in one dimension, if the local test functions are represented exactly (and wR is taken

large), machine-precision element and boundary fluxes are be obtained.

For DG codes that construct a primal Jacobian matrix, the above adjoint equa-

tions do not need to be explicitly discretized. Instead, a discrete adjoint approach

(defined by Eqn. 2.15) can be taken in which the equations

∂R

∂U

T

Vi =
∂Ji
∂U

T

i = 1..N , (6.22)

are solved for the test function coefficients Vi on each element, where ∂R/∂U and

∂Ji/∂U are the elementwise order-ptest Jacobian and output linearization, respec-

tively.

6.6.1.1 Choice of Boundary Weight

As mentioned earlier, the choice of wR in Eqn. 6.21 is up to the user, and the

larger this value is taken, the greater the amount of boundary accuracy achieved.

(For a demonstration of this effect, the reader may look ahead to Fig. 6.9b.) While

it may seem that we should take wR to infinity, in practice we choose wR to be large

but finite. There are several reasons for this:

1. Keeping wR finite allows us to remain within the setting of minimizing an error

norm.

2. Numerical errors in the test function computation itself will typically render

an infinite wR unnecessary. Particularly on coarse meshes or for low values

of ptest, these errors will dominate over the errors associated with a finite wR.

Theoretically, as the mesh is refined or the order ptest is increased, the value

of wR will play a larger role and should be increased proportionally. However,

taking wR to be a large value (e.g. O(1010)) from the beginning also suffices.

3. As we will see, for multi-dimensional and nonlinear problems, additional sources

of error due to the trial space representation and the linearization will again

render an infinite wR unnecessary.

For the problems in this work, we will typically choose wR to be in the range 108−
1015, depending on the problem type and the accuracy desired. Finally, since taking

wR large leads to large test function magnitudes, we orthonormalize the optimal test

143

functions after computation with respect to a discrete or continuous L2 norm. This

ensures that the primal system (discussed below) remains well-conditioned.

6.6.2 Construction of Primal System

Once computed, the optimal test functions can be used in place of the standard

DG test functions, and the primal problem can be solved as usual. Upon doing

so, our first inclination would be to use high-order quadrature rules to perform all

integrations, due to the high-order nature of the test functions. However, it turns out

that high-order quadrature is, for the most part, unnecessary.

For example, for our current problem, the primal equation on a given element Ωe

is (from Eqn. 6.10):∫
Ωe

L∗vi uH dx + viauH

∣∣∣∣
xe,R︸ ︷︷ ︸

be(uH , vi)

=

∫
Ωe

vif dx + viaue−1

∣∣∣∣
xe,L

∀vi ∈ Vtest (6.23)

where we assume the vi have been computed from Eqn. 6.21, and ue−1 is the neighbor-

element state. But note that, since uH is contained in the space Utest, Eqn. 6.21 implies

that the left-hand side of Eqn. 6.23 can be rewritten as:∫
Ωe

φi uH dx + wRφiuH

∣∣∣∣
xe,R︸ ︷︷ ︸

Ji(uH)

=

∫
Ωe

vif dx + viaue−1

∣∣∣∣
xe,L

∀vi ∈ Vtest (6.24)

Thus, for implementation purposes, we can use the above formulation of the primal

problem rather than Eqn. 6.23.7,8 Note that all terms involving the optimal test

functions have vanished from the left-hand side, and have been replaced with low-

order integrals. Furthermore, in practical cases the source term f on the right-hand

side is often zero, so that all high-order interior integrals disappear. If this is the

case, the optimal test functions appear only in the right-most term of Eqn. 6.24 –

i.e. on the upwind boundary. An interesting conclusion is that, for most problems,

the accuracy of BDPG rests solely on obtaining accurate test function values on the

element boundaries.

7A similar idea was proposed in the context of continuous finite elements by Givoli in 1988 [44]
8Note that the left-hand side of this equation (i.e. the element self-block of the Jacobian) is

symmetric and positive definite. However, the coupling to ue−1 via the upwind flux means that
(unlike other DPG methods [26]) the global Jacobian is nonsymmetric.

144

6.6.3 Summary of Method

The BDPG method can be summarized as follows:

1. Loop over each element.

2. Compute the local optimal test functions (adjoints) vi by solving Eqn. 6.22

at order ptest, where ptest ≥ p.

3. Normalize the vi with respect to (e.g.) a discrete or continuous L2 norm.

4. Use the vi in place of the standard DG test functions. To avoid high-order

quadrature, the alternate form of the primal problem (Eqn. 6.24) can be used.

5. Obtain accelerated convergence of the boundary fluxes. In 1D, a minimum

rate of ptest + p + 1 will be obtained, with rates of up to 2ptest + 1 possible.

By choosing ptest > p, these rates are necessarily higher than the maximum

DG rate of 2p+ 1.

6.7 Results (One-Dimensional Example)

With the above procedures established, we are ready to solve a multi-element

problem. As an example, we solve the advection-reaction equation with a = 1,

c = −8.5, and f = 0. To see if BDPG obtains boundary accuracy, we choose the

boundary weight in the error norm to be high – in this case, taking it to be wR = 1012

– and choose the test space order to be ptest = 10. (Note again that we orthonormalize

the test functions after computation, so that the large wR value does not lead to poor

conditioning of the primal problem.)

From Fig. 6.3, we see that BDPG achieves boundary errors approximately 10

orders of magnitude lower than standard DG. This is encouraging, and confirms that

our purely local test space (shown in Fig. 6.4) is capable of achieving global optimality.

Note that the initial convergence rate of the BDPG fluxes (which is observed to be

2ptest + 1) is due solely to the inexact representation of the test functions, and that if

analytical test functions were used, exact boundary fluxes would be obtained. Finally,

while the primary goal of BDPG is to achieve boundary accuracy, from Fig. 6.4 we

see that it also performs well in an L2 sense, exhibiting none of the preasymptotic

behavior seen with standard DG.

145

0 0.5 1
−1000

0

1000

2000

3000

4000

5000

Position

S
o
lu

ti
o
n

DG

BDPG
Exact

Boundary
Accuracy

(a) Numerical solutions

0 20 40 60

10−10

100

Elements

Fl
ux

E
rr

or

DG
BDPG

p=0

p=1

p=0

p=1

(b) Boundary flux error convergence

Figure 6.3: One-dimensional advection-reaction: (a) p = 1 solutions for DG and
BDPG on a 5-element mesh. (b) The error in the right-boundary flux for p = 0 and
p = 1 runs. The BDPG fluxes converge at a rate of 2ptest + 1 and quickly attain
machine precision accuracy.

0 0.5 1

0

0.5

1

Position

T
e

s
t

F
u

n
c
ti
o

n
s

(a) Localized optimal test functions

100 101 102 103

100

105

1010

Elements

L2
E

rr
or

DG
BDPG

p = 0

p = 1

(b) L2 error convergence

Figure 6.4: One-dimensional advection-reaction: (a) Localized optimal test functions
for the 5-element BDPG solution shown in Fig. 6.3a. The two test functions on each
element correspond to the two p = 1 trial bases. (b) L2 error convergence for p = 0
and p = 1 DG and BDPG solutions. The L2 performance of the methods is similar,
with BDPG showing greater stability on coarse meshes.

6.8 General Theory for Multi-Dimensional Systems

So far, we have derived the optimal test functions in the setting of a one-dimensional

advection-reaction problem. However, the relevant concepts extend naturally to sys-

146

tems of equations, as well as to multiple dimensions. We will describe those extensions

here. To simplify the presentation, we will again assume that the domain Ω consists

of a single element.

A general steady-state conservation law in multiple dimensions can be written as

∇ · ~F(u, ~q) = 0, (6.25)

~q−∇u = ~0 , (6.26)

where u is the state vector and ~q represents the gradient of the state. ~F is a flux

vector, which may contain both advective and diffusive components, and consists of

r state components in dim dimensions. (Note that boldface indicates a state vector,

while an arrow indicates a spatial vector.) In general, a source term S(u) could be

added to Eqn. 6.25, though we omit it for brevity here. Furthermore, we assume

that ~q is an independent unknown, since this is the case for the hybridized method

presented later. However, this is not critical to the theory.

To obtain the weak form of the above problem, we weight Eqns. 6.25 and 6.26 by

test functions v and ~τ , respectively, giving a total weighted residual (upon summa-

tion) of

R ≡
∫
Ω

~τ T · (~q−∇u) dΩ +

∫
Ω

vT (∇ · ~F) dΩ = 0 . (6.27)

Note that this residual is just a scalar value. We next integrate both terms in Eqn. 6.27

by parts, giving

R =

∫
Ω

~τ T · ~q dΩ +

∫
Ω

∇ · ~τ T u dΩ −
∫
Ω

(∇v)T · ~F dΩ +

∫
∂Ω

vT (~F · ~n) ds

−
∫
∂Ω

(~τ · ~n)T u ds = 0. (6.28)

If we now assume Dirichlet boundary conditions (denoted by uB), the right-most

term above becomes a “known” value and can be moved to the right-hand side. After

147

making this change and for convenience defining F̂ = ~F · ~n, we obtain:∫
Ω

~τ T · ~q dΩ +

∫
Ω

∇ · ~τ T u dΩ −
∫
Ω

(∇v)T · ~F dΩ +

∫
∂Ω

vT F̂ ds

︸ ︷︷ ︸
b (u, ~q,v, ~τ)

=

∫
∂Ω

(~τ · ~n)T uB ds︸ ︷︷ ︸
l (v, ~τ)

.

(6.29)

From this equation, we are able to define the bilinear form b (u, ~q,v, ~τ).

Next, as in one dimension (i.e. Eqn. 6.9), we would like to write this bilinear

form as a product of the state variables and the adjoint operator applied to the test

functions. In order to do this, we must first write all domain integrals explicitly in

terms of u and ~q. To start, we rewrite the flux ~F, assumed linear, as

~F =
∂~F

∂u
u +

∂~F

∂qj
qj , (6.30)

where summation over the spatial dimension j is implied.9 We now substitute this

expression (Eqn. 6.30) into Eqn. 6.29 and transpose the first three terms, giving

b =

∫
Ω

~qT · ~τ dΩ +

∫
Ω

uT∇ · ~τ dΩ

−
∫
Ω

uT

[
∂~F

∂u

]T
+ qTj

[
∂~F

∂qj

]T · (∇v) dΩ +

∫
∂Ω

vT F̂ ds . (6.31)

Grouping the u and ~q terms then results in

b =

∫
Ω

qTj

τj − [∂~F
∂qj

]T
· ∇v


︸ ︷︷ ︸

L∗q,j(~τ ,v)

dΩ

+

∫
Ω

uT

∇ · ~τ − [∂~F
∂u

]T
· ∇v


︸ ︷︷ ︸

L∗u(~τ ,v)

dΩ +

∫
∂Ω

vT F̂ ds . (6.32)

9Note that for nonlinear problems, a similar expression would hold for the Fréchet linearization
of the flux.

148

Next, if we define group variables (denoted by a tilde) for the states and test

functions as

ũ ≡

[
qj

u

]
and ṽ ≡

[
τj

v

]
, (6.33)

and we define the adjoint operator L∗ (based on the operators L∗q,j and L∗u in

Eqn. 6.32) as

L∗ ≡

 L∗q,j

L∗u

 =


I() −

[
∂~F

∂qj

]T
· ∇()

∂j() −

[
∂~F

∂u

]T
· ∇()


, (6.34)

then Eqn. 6.32 can be rewritten in the following form:

b(ũ, ṽ) =

∫
Ω

ũT (L∗ṽ) dΩ +

∫
∂Ω

vT F̂(ũ) ds = l (ṽ) ∀ṽ ∈ Ṽ , (6.35)

where the operator L∗ acts as a matrix on the group variable ṽ. Note that the above

b(ũ, ṽ) is essentially the same as the one-dimensional bilinear form (i.e. Eqn. 6.9),

except that the states and test functions are now vectors, and we have a general flux

F̂ on the boundary rather than the one-dimensional flux au. Thus, from this point

on, the development will parallel the one-dimensional theory.

To approximate the above equation, a DG method chooses a set of discrete states

and test functions, ũH and ṽh, as well as a numerical flux F̂(ũH), resulting in the

discrete bilinear form:

b(ũH , ṽh) =

∫
Ω

ũTH (L∗ṽh) dΩ +

∫
∂Ω

vTh F̂(ũH) ds = l (ṽh) ∀ṽh ∈ Ṽh .

(6.36)

Once a basis is chosen for the trial space representations of uH and ~qH , these states

can be expanded as

uH,s =

nU∑
m=1

Us,m φs,m(~x) and qH,s,d =

nQ∑
m=1

Qs,d,m φs,d,m(~x) . (6.37)

149

Here, s indexes the state component (ranging from 1 to the state rank, r), m in-

dexes the basis function (ranging from 1 to the number of nodes, nU or nQ), and

d indexes the dimension (ranging from 1 to dim). Finally, Us,m and Qs,d,m rep-

resent the unknown solution coefficients, the total number of which is given by

N ≡ NU +NQ = r nU + r nQ · dim.

The remaining task is to define the test space. In order to derive the optimal test

space, we follow a similar strategy as before: we first define an error norm we wish to

minimize, then choose the test functions such that the bilinear form reduces to the

derivative of that norm. To help determine an appropriate error norm to minimize,

we first choose a common test function ṽh for Eqns. 6.35 and 6.36. This allows us to

equate (and subtract) the exact and discrete bilinear forms, resulting in the equation

b(ẽ, ṽh) = 0 , (6.38)

where ẽ is a group variable representing the errors in the states. If we now set ṽh = ṽi,

where i ranges from 1 to N , then writing out Eqn. 6.38 in a form similar to Eqn. 6.32

gives:

b(ẽ, ṽi) = 0 =

∫
Ω

(qH,j − qj)
T L∗q,j (ṽi) dΩ +

∫
Ω

(uH − u)T L∗u (ṽi) dΩ

+

∫
∂Ω

vTi

[
F̂(uH , ~qH)− F̂(u, ~q)

]
ds . (6.39)

This equation is satisfied regardless of how the test space is chosen. However,

when using optimal test functions, we would like this expression to represent the

minimization of a certain error norm. It is important to note that, due to the form

of b(ẽ, ṽi), only certain types of error norm are valid to minimize. In other words, we

must be careful to select an error norm whose derivative it is possible to represent by

b(ẽ, ṽi). To that end, we propose minimizing the following norm:

150

|| ẽ ||2 =
r∑
s=1

dim∑
d=1

∫
Ω

(qH,s,d − qs,d)2 dΩ

︸ ︷︷ ︸
interior q accuracy

+
r∑
s=1

∫
Ω

(uH,s − us)2 dΩ

︸ ︷︷ ︸
interior u accuracy

+
r∑
s=1

ws

∫
∂Ω

[
F̂s(uH , ~qH)− F̂s(u, ~q)

]2

ds

︸ ︷︷ ︸
boundary flux accuracy

(6.40)

This norm contains errors in the state, its gradients, and the boundary flux –

all of which are present in the above b(ẽ, ṽi). Furthermore, with this norm, we see

that choosing the weights ws to be large emphasizes accuracy in the boundary fluxes,

which, as in one dimension, is our ultimate goal.

Finally, note that the boundary fluxes in the above equation can correspond to

any type of physical boundary – e.g. an outflow boundary, a wall boundary, etc.

Regardless of the type of boundary, the method will seek to minimize the error in

the particular information flowing from the domain interior out of that boundary.

For a true outflow boundary, this information may be the fluid itself, while for a wall

boundary it may be pressure or heat flux information.

If we are to minimize the above norm, we need its derivatives with respect to both

the Uk,m and Qk,d,m coefficients to be zero. Thus, we need

1

2

∂|| ẽ ||2

∂Uk,m
= 0 =

∫
Ω

(uH,k − uk)φk,m dΩ

+
r∑
s=1

ws

∫
∂Ω

[
F̂s(uH , ~qH)− F̂s(u, ~q)

] ∂F̂s
∂uH,k

φk,m ds (6.41)

and

1

2

∂|| ẽ ||2

∂Qk,d,m

= 0 =

∫
Ω

(qH,k,d − qk,d)φk,d,m dΩ

+
r∑
s=1

ws

∫
∂Ω

[
F̂s(uH , ~qH)− F̂s(u, ~q)

] ∂F̂s
∂qH,k,d

φk,d,m ds . (6.42)

151

For these equations to be satisfied by our finite element method, we must choose

the test functions ṽi such that the bilinear form b(ẽ, ṽi) reduces to them. A given

ṽi will then ensure that one of the above equations is satisfied. Since Eqns. 6.41

and 6.42 represent N derivative equations altogether, with N test functions (i.e. a

square system) we can ensure that each of them is satisfied in turn.

By comparing b(ẽ, ṽi) (Eqn. 6.39) to Eqn. 6.41, we see that to make these expres-

sions identical the test functions must satisfy:

i = 1 ... NU



L∗q,j(ṽi) = 0 j = 1 ... dim x ∈ Ω

L∗u,s(ṽi) = φk,m δs,k s = 1 ... r x ∈ Ω

vi,s = ws
∂F̂s
∂uH,k

φk,m s = 1 ... r x ∈ ∂Ω

(6.43)

Here, δs,k denotes the Kronecker delta function, L∗u,s denotes the sth component

(i.e. equation) associated with the operator L∗u, and repeated indices do not imply

summation. As before, we see that the optimal test functions satisfy adjoint equations

in which the trial bases appear as source terms on the right-hand side. The above

equations are solved for each u basis function φk,m, with the test function index i

enumerating all combinations of (k,m). Since 1 ≤ k ≤ r and 1 ≤ m ≤ nU , there

are a total of NU = r nU basis functions altogether, which provides, in the end, a

corresponding NU test functions.

Next, to make b(ẽ, ṽi) reduce to Eqn. 6.42, we see that the remaining test functions

should satisfy:

i = 1 ... NQ



L∗q,j,s(ṽi) = φk,d,m δj,d δs,k j, s = 1 ... dim, r x ∈ Ω

L∗u(ṽi) = 0 x ∈ Ω

vi,s = ws
∂F̂s
∂qH,k,d

φk,d,m s = 1 ... r x ∈ ∂Ω

(6.44)

This set of equations is solved for each q trial basis φk,d,m, with the test function

152

index i enumerating all combinations of (k, d,m), where 1 ≤ k ≤ r, 1 ≤ d ≤ dim,

1 ≤ m ≤ nQ. The result is an additional NQ = r nQ · dim test functions, for a total

of NU +NQ = N . When used in place of the standard Galerkin test functions, these

optimal test functions ensure that Eqns. 6.41 and 6.42 are satisfied, and hence that

the error in Eqn. 6.40 is minimized.

Finally, as in one dimension, the optimal test functions can be interpreted as

adjoint solutions for certain “projection” outputs. These outputs are closely related

to the error norm derivatives. By inspection of Eqns. 6.41 and 6.42, we can write the

effective outputs as

Juk,m =

∫
Ω

uk φk,m dΩ +
r∑
s=1

ws

∫
∂Ω

F̂s(u, ~q)
∂F̂s
∂uH,k

φk,m ds (6.45)

and

J q
k,d,m =

∫
Ω

qk,d φk,d,m dΩ +
r∑
s=1

ws

∫
∂Ω

F̂s(u, ~q)
∂F̂s
∂qH,k,d

φk,d,m ds . (6.46)

It is easy to verify that enforcing zero error in these outputs is equivalent to enforcing

zero derivative of || ẽ ||2 – which of course is the actual goal.

6.8.1 Localization and Adjoint Consistency

As in 1D, the above test functions satisfy global adjoint equations. However, if we

choose the flux weights ws to be large, we can again localize the adjoint problems to

individual elements, since accuracy in the local fluxes will propagate globally. Thus,

for multi-element meshes, the outputs Ju and Jq are defined over each element in turn,

and the F̂s terms are chosen to reflect the fluxes on a given element’s boundaries.

Specifically, to define the adjoint problems for a domain-interior element, the

neighbor-element states are treated as local Dirichlet conditions, and the fluxes F̂s

are defined as if a single-element DG or HDG problem were being solved. Since there

is no physical boundary condition on interior faces, the convective part of F̂s is just

taken to be a Roe flux [82] between the element and the neighbor states. This Roe flux

ensures that information is properly upwinded and that the local adjoint problems

remain well-posed.10

10For these local problems, use of a non-upwinding flux such as local Lax-Friedrichs would result
in an adjoint inconsistency [65, 48], and would lead to oscillations in (and suboptimal performance
of) the test functions.

153

Likewise, for an element with a domain-boundary face, the flux F̂s is defined

as usual for a DG or HDG method – for example, the convective flux is just the

analytical flux function evaluated with a corresponding boundary state. Furthermore,

if the boundary condition specifies a certain flux component directly (e.g. if it is a

wall boundary, where zero mass flux is specified), then there is no need to request

accuracy in this flux component, and it should be removed from the outputs Ju and

Jq. This removal occurs automatically when using a discrete adjoint approach, since

the discrete ∂F̂s/∂uH and ∂F̂s/∂qH will be zero and will hence vanish from both the

output definitions and the residual Jacobian.

Flow

Figure 6.5: Optimal test functions corresponding to the qy (gradient in the vertical
direction) trial basis in the upper-right corner of each element. Blue corresponds to
a large value, while red is near zero. These test functions ensure that accuracy in the
top flux of each element is obtained. Similar test functions ensure accuracy in the
remaining fluxes. Note the upwinding nature of the test functions.

Fig. 6.5 shows a set of localized optimal test functions corresponding to a low

Reynolds number advection-diffusion problem. The “upwinding” nature of the opti-

mal test functions is apparent, and we see that their role is to ensure that the fluxes

on a given element face have the proper domain of dependence within that element.

6.8.2 Boundary Enrichment of Trial Space

Localization of the test functions has obvious advantages: it makes their computa-

tion relatively inexpensive and their application within an existing method straight-

forward. However, in multiple dimensions, localization is – in some ways – a double-

edged sword. By using localized test functions, we are giving up certain global prop-

154

erties of the test space, and focusing all of our attention on achieving accuracy in the

interface fluxes. And while it is true that if these local fluxes can be made accurate,

then this accuracy will propagate globally, it is also true that if these fluxes cannot

be made accurate, then this inaccuracy will propagate globally.

In one dimension, the fluxes are just scalar values, since the boundaries of a given

element are zero-dimensional. Thus, if the optimal test functions are well-represented,

the flux errors can be driven to zero regardless of the trial space. However, in two di-

mensions, the fluxes themselves are one-dimensional profiles along the element bound-

aries. In this case, the pointwise errors in the fluxes cannot in general be driven to

zero: their magnitude depends inevitably on the trial space resolution near element

boundaries. For example, if the exact fluxes happen to be quadratic along a given

face, but the trial space is linear, then O(h2) errors in the fluxes will necessarily

remain. These flux errors will then propagate globally, and, in many cases, would

render methods using localized optimal test functions no better than standard DG

methods.

Figure 6.6: An eighth-order Lobatto function defined along an edge of a quadrilat-
eral reference element. These functions are added to the trial space to improve flux
resolution.

Thus, if optimal test functions are to provide a benefit in multiple dimensions, not

only must the test functions request accuracy in the fluxes, but the trial space must be

capable of providing that accuracy. To ensure that the latter requirement is satisfied,

155

in multiple dimensions the trial space can be enriched near element boundaries. In the

current work, this is done by adding high-order one-dimensional Lobatto functions [91]

along the element faces, which are then blended linearly into the element interior.

Fig. 6.6 shows an example of a blended eighth-order Lobatto function defined on a

single edge of a reference quadrilateral.

In the results section to follow, this is the enrichment strategy used. Note that

we keep the interior interpolation order, pI , at a (low) value of 1, and then enrich

this pI = 1 space with Lobatto functions of some higher order, pB. The combination

of linear interior basis with order-pB Lobatto functions ensures that the trial space

on element boundaries spans a full order-pB space. In the end, this is equivalent to

using a standard order-pB hierarchical basis, but with all interior modes removed.

6.8.3 Benefit in Multiple Dimensions

Before moving on, it is worth pausing to reflect on the potential benefit of optimal

test functions in multiple dimensions. The primary advantage is that, by requiring

trial space resolution only near element boundaries, a BDPG scheme requires fewer

degrees of freedom than a DG method. For example, on a two-dimensional quadri-

lateral mesh, BDPG requires 4pB degrees of freedom on each element, whereas for a

similar level of accuracy DG would require (pB + 1)2. Thus, the number of degrees

of freedom scales as pdim for DG methods, but as pdim−1 for BDPG. In a sense then,

BDPG may be viewed as a form of “hybridization,” since hybridization of a standard

DG scheme results in a similar reduction in the number of globally coupled unknowns.

However, even within an existing hybrid framework (such as HDG), optimal test

functions can still provide a benefit. Since BDPG requires trial space resolution only

near element boundaries, it opens up the possibility of performing a targeted trial

space optimization in those regions. For example, if the trial space were tuned to

include the primary “modes” of the true interface fluxes, then hybridized BDPG

schemes could significantly outperform standard HDG schemes. As a step in this

direction – and to show that optimal test functions can be used within a hybrid

framework – in the following sections we present a hybridized BDPG method.

6.9 A Hybridized BDPG Method

In this section, we first give a brief overview of hybridized discontinuous Galerkin

(HDG) methods [77, 75, 31]. We then describe how these methods can be modified to

incorporate optimal test functions, resulting in a hybridized BDPG scheme. The pri-

156

mary advantage of hybridized methods is that, by introducing new unknowns (which

we call û) on element interfaces, they decouple elements during the linear solve and

result in a smaller global system than DG (for sufficiently high order, p [77]). An

illustration of the primary differences between DG and HDG is provided in Fig. 6.7.

y

x

y

x

HDGDG

uR, ~qR

uL, ~qL
F̂(uL, ~qL, û, ~n)

F̂(uR, ~qR, û, ~n)

û
uR

uL
F̂(uL,uR, ~n)

Figure 6.7: In the HDG method, introducing additional û unknowns on element
interfaces allows for elimination of the element-interior unknowns during the global
solve. This results in a global system in which the number of unknowns scales as
pdim−1 instead of pdim (as for DG).

6.9.1 HDG Discretization

While the HDG method can be applied to general nonlinear systems, here we

consider a linear steady-state problem written as a first-order system:

~q−∇u = ~0, (6.47)

∇ · ~F(u, ~q) = 0, (6.48)

where u is the state, ~q is the state gradient, and ~F is the conservative flux. We assume

that a second-order (diffusive) term is present in the governing equations. If not, then

the first equation is not required, but the derivation is otherwise identical. Weighting

the above equations with test functions ~τH and vH (respectively), discretizing, and

integrating by parts over an element Ωe then gives:

157

RQ
H ≡

∫
Ωe

~τ T
H · ~qH dΩ +

∫
Ωe

∇ · ~τ T
H uH dΩ−

∫
∂Ωe

(
~τ T
H ·~n

)
ûH ds = 0 ∀ ~τH ∈ [VH]dim

(6.49)

RU
H ≡ −

∫
Ωe

∇vTH · ~F dΩ +

∫
∂Ωe

vTH F̂L ds = 0 ∀vH ∈ VH . (6.50)

Here, VH ≡ [VH]s, where VH is typically taken as

VH = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ TH} .

The unknowns uH ∈ VH and ~qH ∈ [VH]dim are approximated as polynomials within

each element and are allowed to be discontinuous between elements. In addition,

note that we have introduced the interface unknown ûH within RQ
H (and, although

not apparent, within RU
H as well through F̂L), which means that we will need an

additional equation to close this system. This additional equation is defined as

RΛ
H ≡

∫
f

µTH

{
F̂L + F̂R

}
ds = 0 ∀µH ∈MH . (6.51)

Here, f denotes an element face, while MH = [MH]r, where MH is the space of

polynomials on the set of interior faces EH , i.e.

MH = {µ ∈ L2(EH) : µ|f ∈ Pp(f) ∀f ∈ EH} . (6.52)

The above RΛ
H equation (Eqn. 6.51) is a weak flux continuity statement required

to close the system (and in so doing, enforce conservation), since the fluxes on either

side of an interface f need not match pointwise. These “one-sided” fluxes are defined

as

F̂L = ~F (ûH , ~qH,L) · ~nL + S (ûH) (uH,L − ûH) (6.53)

and likewise for F̂R, where the L and R indicate the side of a given face with which

the flux is associated. (Note that in Eqn. 6.50 we arbitrarily designate the “left” side

as that lying within element Ωe, and define ~nL to be the outward-pointing normal to

Ωe.) From the definition of the flux in Eqn. 6.53, we see that F̂L communicates only

with the element-interior state uH,L and the interface state ûH . It does not directly

158

communicate with the state on the neighboring element, uH,R, and is for this reason

termed “one-sided.”

Finally, the S term in the above expression is a stabilization tensor, which to

obtain a Roe-like flux can be chosen as

S = R |Λ|L + τvisc I . (6.54)

Here, τvisc = ν/`visc includes the viscosity ν and a user-specified viscous length scale

`visc, while the matrices R,Λ, and L come from an eigen-decomposition of the con-

vective flux Jacobian (dotted with the normal) evaluated about ûH .

The above one-sided fluxes and ûH are defined on all interior faces. For faces

on domain boundaries, no ûH is employed, and the one-sided fluxes are instead re-

placed by a standard boundary flux. As with DG, this boundary flux (which we will

call simply F̂) consists of the analytical flux function evaluated with an appropriate

boundary state uH,B.11 Finally, a stabilization tensor S
B

= τvisc I is also included, so

that the total boundary flux is given by

F̂ = ~F (uB, ~qH,L) · ~nL + S
B

(uH,L − uH,B) . (6.55)

6.9.1.1 Solution of HDG System

After discretizing and inserting known boundary conditions, Eqns. 6.49, 6.50,

and 6.51 can be written as:~R
Q

RU

RΛ

 =

[
A B

C D

] ~QU
Λ

 +

~L
Q

LU

LΛ

 =

~00
0

 . (6.56)

Here, ~Q, U, and Λ are the discrete unknowns in the approximation of ~qH , uH , and

ûH , respectively; ~RQ, RU , and RΛ are the discrete residual vectors; and ~LQ, LU , and

LΛ represent any source terms and boundary conditions. The Jacobian matrix, which

11In certain cases, e.g. at farfield boundaries, a Roe flux is used rather than the analytical con-
vective flux.

159

is shown partitioned into four blocks above, can be written explicitly as:

[
A B

C D

]
≡



∂ ~RQ

∂ ~Q

∂ ~RQ

∂U
∂ ~RQ

∂Λ

∂RU

∂ ~Q

∂RU

∂U
∂RU

∂Λ

∂RΛ

∂ ~Q

∂RΛ

∂U
∂RΛ

∂Λ


. (6.57)

The important point is now that, since the HDG system couples elements only

indirectly through the interface states Λ, the matrix A can be inverted by purely

element-local solves. That is, we can statically condense the element-interior

degrees of freedom out of the system to obtain a smaller global system,

(
D−CA−1BT

)︸ ︷︷ ︸
K

Λ +

(
LΛ −CA−1

[
~LQ,LU

]T)
= 0 , (6.58)

which can be solved for Λ. (Note that static condensation amounts to solving for ~Q

and U in terms of Λ using the first row of Eqn. 6.56, then substituting the result

into the second row of Eqn. 6.56.) Furthermore, note that for high-p simulations, the

dimension of the above K matrix is smaller than the system for a DG discretization of

the same order, so that HDG achieves a reduction in the number of globally coupled

unknowns.

In fact, since only the element-face degrees of freedom are involved in the HDG

global solve, and since faces represent a one-dimension-lower space than element areas,

the number of global degrees of freedom scales like DOF ∼ pdim for DG but only

DOF ∼ pdim−1 for HDG. The approximate degree-of-freedom counts for DG and

160

HDG on triangular and quadrilateral elements (per mesh vertex) are shown below.

DOF on Triangles:

p = 1 p = 2 p = 3 p = 4

DG 6 12 20 30

HDG 6 9 12 15

DOF on Quadrilaterals:

p = 1 p = 2 p = 3 p = 4

DG 4 9 16 25

HDG 4 6 8 10

Finally, note that after solving Eqn. 6.58 for the interface states Λ, the interior

states ~Q and U can be obtained by performing local solves on each element, which

represent an “undoing” of the original static condensation.

6.9.2 Optimal Test Function (BDPG) Implementation

Next, we give a brief overview of using optimal test functions within the above

HDG framework. First, we note that for single-element problems, Eqn. 6.51 vanishes

and the sum of RQ
H and RU

H (Eqns. 6.49 and 6.50) reduces to the bilinear form in

Eqn. 6.29. The test function theory derived in Sec. 6.8 therefore carries over directly,

and the optimal test functions make Eqns. 6.49 and 6.50 reduce to the error norm

derivatives in Eqns. 6.41 and 6.42, thus minimizing the desired error.

For multi-element problems, localized optimal test functions can be computed

as described in Sec. 6.8.1. This amounts to solving the following NU + NQ adjoint

problems for the test functions ṽi = [τj v]T on each element Ωe:

be (δũ, ṽi) = Jui (δũ) ∀ δũ ∈ Ũtest i = 1..NU (6.59)

be (δũ, ṽi) = Jqi (δũ) ∀ δũ ∈ Ũtest i = 1..NQ (6.60)

Here, be(·, ·) is the bilinear form given by Eqn. 6.36 (corresponding to a single-element

problem on element Ωe), J
u
i and Jqi are the outputs defined in Eqns. 6.45 and 6.46,

and Ũtest is an enriched space of order ptest. These equations can be written in discrete

161

form as

∂R̃

∂Ũ

T

Ṽi =
∂Jui

∂Ũ

T

i = 1..NU (6.61)

∂R̃

∂Ũ

T

Ṽi =
∂Jqi
∂Ũ

T

i = 1..NQ (6.62)

and solved to find the test function coefficients Ṽi. Here, the single-element Jacobian

matrix ∂R̃/∂Ũ contains contributions from both the RQ
H and RU

H residuals, while Ṽi

and Ũ contain the coefficients associated with ~τi,vi and ~q,u, respectively.

When used to weight the RQ
H and RU

H residuals, the optimal test functions result

in the following set of equations on each interior element and its faces:

Jui (uH , ~qH) +

∫
∂Ωe

vTi

(
F̂L − F̂

)
ds =

∫
∂Ωe

(~τi · ~n)T ûH ds i = 1..NU (6.63)

Jqi (uH , ~qH) +

∫
∂Ωe

vTi

(
F̂L − F̂

)
ds =

∫
∂Ωe

(~τi · ~n)T ûH ds i = 1..NQ (6.64)

∫
f

µTH

{
F̂L + F̂R

}
ds = 0 ∀µH ∈MH . (6.65)

Here, the F̂L − F̂ terms arise due to the fact that the flux F̂ used in the adjoint

problems is not necessarily identical to the one-sided flux F̂L. This is because, as

discussed in Sec. 6.8.1, F̂ represents the flux of a single-element Dirichlet problem

(and contains a full Roe flux), whereas F̂L depends solely on “one-sided” information

and in most cases is only approximately equal to F̂.

Finally, note that we leave the face residual (Eqn. 6.65) the same as in standard

HDG – i.e. we do not compute optimal test functions for the interface states ûH .

Instead, we view the interface states as a passive “glue” that transmits the boundary

accuracy on a given element to its neighbors across each face. Thus, if the interior trial

space is of order pB on element boundaries, we chooseMH to be a standard order-pB

polynomial space, and take ûH ∈ MH . Lastly, we note that in the final formulation

(Eqns. 6.63-6.65) the optimal test functions appear only on element boundaries, so

that no high-order interior integration is required.12

12Assuming no element-interior source terms are present.

162

6.9.3 Summary of Hybrid BDPG Method

The multi-dimensional BDPG method can be summarized as follows:

1. Use an order-pB hierarchical basis for the trial space of uH and ~qH , but with

all interior modes removed.

2. Use an order-pB space for the interface states ûH .

3. Loop over each element.

4. Compute the local optimal test functions ṽi by solving Eqns. 6.61 and 6.62

at order ptest, where ptest ≥ pB. Choosing ptest = pB often suffices.

5. Normalize the ṽi with respect to a discrete or continuous L2 norm.

6. Use the ṽi within RQ
H and RU

H , while using a standard order-pB test space

for RΛ
H . This amounts to solving Eqns. 6.63-6.65.

6.10 Results

In this section, we present results for the hybrid BDPG method and compare its

performance to standard HDG. We begin with a one-dimensional advection-diffusion

problem before progessing to two-dimensional boundary layer and airfoil cases.

6.10.1 One-Dimensional Advection-Diffusion

We have shown that BDPG performs well for one-dimensional problems with ad-

vection. To demonstrate its performance for viscous problems, we solve the following

advection-diffusion equation:

a
∂u

∂x
− ν ∂

2u

∂x2
= 0 x ∈ Ω

u = 0 x = xL

u = 1 x = xR . (6.66)

As an example, we choose the Reynolds number to be aL/ν = 10 (where L is the

domain width), the trial space orders to be p = 0 and p = 1, and the test space order

163

0 0.5 1
0

0.5

1

Position

u

HDG

BDPG

Exact

(a) Sample p = 0 solutions

0 10 20 30

10−15

10−10

10−5

100

Elements

Fl
ux

E
rr

or

HDG
BDPG

p=0

p=1

p=0

p=1

(b) Right-flux error

Figure 6.8: One-dimensional advection-diffusion: (a) Sample p = 0 solutions for both
HDG and BDPG. (b) Convergence of the right-boundary flux, where w = 1015 was
used for BDPG. BDPG provides interior accuracy while achieving significantly greater
flux accuracy than HDG.

0 0.5 1

0

0.5

1

Position

T
e
s
t
F

u
n
c
ti
o
n
s

(a) Optimal test functions for p = 0

0 10 20 30
10−20

10−10

100

Elements

Fl
ux

E
rr

or

HDG
BDPG

w = 105

w = 1010

w = 1015

(b) Left-flux error

Figure 6.9: One-dimensional advection-diffusion: (a) Normalized v-component of the
optimal test functions for the p = 0 solution in Fig. 6.8a. The black test functions
are associated with the q trial bases, while the remaining test functions are associated
with the u bases. (b) Convergence of the left-boundary flux for p = 0 and various
choices of boundary weight, w. The higher the boundary weight, the more accurate
the flux.

to be ptest = 10. The viscous length `visc is kept fixed at O(1). Sample p = 0 solutions

for HDG and BDPG are shown in Fig. 6.8a, while Fig. 6.8b gives the convergence of

the right-boundary flux for p = 0 and p = 1 runs.

We see that, with a boundary weight of w = 1015, BDPG provides nearly 10

164

orders of magnitude lower flux errors than HDG, while maintaining interior accuracy

in u. Furthermore, Fig. 6.9b shows that (as expected) the choice of w determines the

amount of flux accuracy obtained, with higher w leading to proportionally greater

accuracy. Finally, the optimal test functions for the p = 0 case are shown in Fig. 6.9a.

These test functions provide accuracy in both the left and right fluxes leaving each

element, which leads ultimately to accuracy in the domain-boundary fluxes. As in the

advection-reaction example, the initial convergence rate of the BDPG fluxes (which

is observed here to be ptest + p+ 1) is due solely to the inexact representation of the

test functions. Thus, if analytical rather than numerical optimal test functions were

used, machine-precision flux accuracy would be obtained on any mesh.

Remark 14. Note that for this problem, if we were to consider pure advection or pure

diffusion (by setting ν = 0 or a = 0, respectively), HDG would achieve exact fluxes

without the need for optimal test functions. This is because, in general, the adjoints

for the fluxes satisfy homogeneous equations of the form L∗v = 0. This equation

reduces to L∗v = −a ∂v
∂x

= 0 for advection and L∗v = −ν ∂2v
∂x2 = 0 for diffusion. The

solutions to these equations are just constant and linear functions, respectively. For

p ≥ 1, HDG already contains these adjoint solutions in its test space, so for these

cases it is already optimal.

6.10.2 Two-Dimensional Advection-Diffusion: Manufactured Solution

Next, we move on to two dimensions. Before solving practical problems, we inves-

tigate two ideas related to the multidimensional test function theory: first, whether

adequate trial space representation of the fluxes is actually important (as claimed

in Sec. 8.2); and second, whether, given adequate flux representation, the localized

optimal test functions can actually provide boundary accuracy.

As mentioned, in two dimensions we expect BDPG to perform well only if the

trial space is capable of adequately representing the true fluxes. In order to confirm

this theory, we construct a manufactured solution whose true fluxes lie exactly in a

p = 1 space. This solution is given by

u(x, y) = sin (8πx)2 sin (8πy)2 + x+ y , (6.67)

with contours shown in Fig. 6.10. Note that the sinusoidal terms vanish on all element

boundaries, thus leaving a linear (x + y) variation there. To define the problem, the

advective velocity is chosen to be ~a = [0.4, 0.8], the viscosity is taken to be ν = 0.01,

and the domain has length L = 1.

165

We then solve the problem using BDPG with a standard trial space – i.e. with

no Lobatto enrichment on element boundaries. When using a p = 0 trial space, we

expect the performance of BDPG to suffer, since the true (linear) fluxes cannot be

adequately represented. However, as soon as the trial space order is increased to

p = 1, the true fluxes become representable, and we expect BDPG to be capable of

delivering nearly exact boundary values.

To perform the test, we sweep through trial space orders from p = 0 to p = 4 and

record the error in the boundary fluxes for both BDPG and HDG. For BDPG, we

keep the test space order fixed at a high value of ptest = 10 to ensure that the test

function representation has a minimal influence on the results.

(a) Manufactured solution

0 1 2 3 4
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

p

E
rr

o
r

HDG

BDPG

(b) Top flux error convergence

Figure 6.10: Two-dimensional advection-diffusion: (a) Manufactured solution with
fluxes that are exactly representable in a p = 1 space. (b) Convergence of the top-
boundary flux as a function of p. As the order is increased above p = 0, the fluxes
become representable and BDPG attains machine-precision accuracy. This verifies the
performance of BDPG and highlights the importance of flux resolution in multiple
dimensions.

Fig. 6.10 shows the error in the top-boundary flux for both methods, which is

representative of the fluxes on all boundaries. The results are as we expect: for

p = 0, the BDPG errors are large since the flux is not representable, but as soon

as p = 1 is used, the error drops to machine-precision levels. This highlights the

importance of flux resolution for multidimensional problems, and justifies the idea of

enriching the trial space near element boundaries. Furthermore, the performance of

BDPG for p ≥ 1 confirms that the optimal test space is functioning well, since if it

166

were not, boundary accuracy – even with adequate flux resolution – would not be

achieved. This point is demonstrated clearly by the performance of standard HDG,

which due to its suboptimal test space has nearly 10 orders of magnitude larger errors

than BDPG.

Finally, we note that in order to achieve the machine-precision accuracy shown in

Fig. 6.10, the viscous length scale for BDPG had to be taken small; specifically, a value

of `visc = 10−7 was used for the p ≥ 1 runs. (A more standard value of `visc = 10−1 was

used for all other runs.) This suggests that for multidimensional viscous problems, the

test function localization becomes more effective as the elements become more tightly

coupled, since the effect of a small viscous length is to penalize the inter-element

jumps in u. While this issue warrants further analysis, we find that for practical

problems (where the fluxes are not exactly representable) the performance of BDPG

is relatively insensitive to the choice of viscous length, and more modest values of `visc

can be used. Finally, note that this issue does not arise for inviscid problems, since in

that case no `visc is defined. Indeed, when a similar manufactured solution is solved

with the linearized Euler equations, BDPG attains machine-precision boundary fluxes

with no “free” parameters involved.

6.10.3 Two-Dimensional Advection-Diffusion: Boundary Layer

Next, we try a more practical advection-diffusion problem. With the same domain

as above, we take ~a = [0.8, 0.4], ν = 0.01 (so that Re ≈ 100), and specify a Dirichlet

boundary condition on all sides of the domain given by

u(x, y) = exp

[
1

2
sin (−4x+ 6y)− 4

5
cos (3x− 8y)

]
~x ∈ ∂Ω . (6.68)

This condition generates boundary layers on the two outflow boundaries (the top and

right), and provides a test as to whether BDPG can accurately predict these features.

Fig. 6.11 shows contours of both the solution and the optimal test functions (which

are again computed with ptest = 10) for a p = 1 trial space.

Since we verified above that the resolution of interface fluxes is critical for BDPG,

we enrich the trial space with Lobatto functions near element boundaries. For the

results shown in Fig. 6.12, we consider enrichment orders of pB = 6, 7, 8, while keeping

the interior basis at a low order of pI = 1. We compare the BDPG results to a standard

HDG method with the same interior trial space order of pI = 1. Viscous lengths of

`visc = 10−4 and `visc = 1 are used for BDPG and HDG, respectively, with the results

being relatively insensitive to these values.

167

(a) Solution, u (b) Optimal test function component

Figure 6.11: Two-dimensional advection-diffusion: (a) The solution to a Re = 100
problem on a fine mesh. (b) The optimal test functions associated with the upper-
right qy trial basis on each element. Note the upwinding nature of the test functions.

From Fig. 6.12, we see that BDPG with Lobatto enrichment can provide a nearly

6-orders-of-magnitude reduction in the flux errors, while maintaining accuracy in inte-

rior outputs. Furthermore, in addition to providing accuracy in the total flux through

each boundary, BDPG also achieves accuracy in the solution profiles along the bound-

aries. The solution and gradient profiles along the right boundary of the domain are

shown in Fig. 6.13, from which the enhanced accuracy of BDPG is apparent.

These results, of course, should be kept in perspective: the boundary enrichment of

BDPG represents an additional expense (and additional degrees of freedom) compared

to p = 1 HDG, so the comparison is in that sense unfair. However, the results

demonstrate clearly that, with BDPG, the attainment of global boundary accuracy

depends solely on the ability to resolve the interface fluxes – a fact that is not true

of standard HDG,13 and one that may be capitalized on in the future.

6.10.4 Two-Dimensional Linearized Euler: Manufactured Solution

With the performance of BDPG verified for scalar problems in one and two di-

mensions, we next move on to two-dimensional systems. In particular, we solve the

13Fig. 6.18b provides an explicit demonstration of the fact that, with standard HDG, flux reso-
lution does not guarantee accuracy.

168

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(a) Left flux

10
0

10
1

10
2

10
−10

10
−5

10
0

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(b) Right flux

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(c) Top flux

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(d) Domain u2 ouptut

Figure 6.12: Two-dimensional advection-diffusion: Convergence rates for various out-
puts. Note that pI and pB denote the interior and boundary interpolation orders,
respectively. Higher accuracy is obtained with BDPG as the amount of boundary
enrichment increases. Note that BDPG also achieves accuracy in the interior u2

output.

homentropic linearized Euler equations, with state variables and fluxes given by

u =

[
p

ui

]
, Fj =

[
u0jp+ ρ0a

2
0uj

p
ρ0
δij + u0jui

]
, (6.69)

where 1 < i, j < dim. The state variables u represent velocity and pressure perturba-

tions about the background state, which is described by the parameters a0, u0j , and

ρ0 (speed of sound, velocity, and density, respectively).

As an initial test, we construct a manufactured solution on a square domain

169

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

y

u

"Exact"

HDG P = 1
BDPG P

I
, P

B
 = 1, 8

(a) u right-boundary profile

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

80

100

y

q
x

"Exact"

HDG P = 1
BDPG P

I
, P

B
 = 1, 8

(b) qx right-boundary profile

Figure 6.13: Two-dimensional advection-diffusion: Solution profiles along the right
boundary of the domain. BDPG with enrichment achieves greater accuracy than
standard HDG.

(L = 1) given by

p(x, y) = sin (8.5x) sin (8.5y)

ui(x, y) = 0 . (6.70)

A plot of the pressure contours is provided in Fig. 6.14, along with a set of optimal

test functions. The background state is chosen as ρ0 = 1, a0 = 3, u01 = 0.8, and

u02 = 0.2, so that the Mach number is approximately 0.3. We again choose the test

space order and boundary weights to be high (10 and 1010, respectively), and consider

the same boundary enrichment orders as in the previous section.

The results shown in Fig. 6.15 are encouraging, and mirror those obtained in the

two-dimensional advection-diffusion case. We see that BDPG achieves output error

reductions of over 10 orders of magnitude compared to HDG at the same interior

trial space order. Furthermore, BDPG also obtains accurate boundary profiles, as

shown in Fig. 6.16. These results verify the effectiveness of optimal test functions for

systems of equations.

6.10.5 Two-Dimensional Linearized Euler: Cylinder and Airfoil

Lastly, we consider linearized Euler cases of engineering interest: subsonic flow

over a cylinder and an airfoil. For these cases, the background state is chosen as

170

(a) Manufactured solution (pressure contours) (b) Optimal test function component

Figure 6.14: Two-dimensional linearized Euler: (a) Manufactured solution pressure
contours. (b) Component of the optimal test functions corresponding to the trial
basis in the upper-right corner of each element.

ρ0 = 1, a0 = 3, u01 = 1, u02 = 0, so that the flow is horizontal and the Mach

number is approximately 0.3. In addition, the farfield boundary conditions on the

state variables are p = 1, u1 = 1, and u2 = 1, so that a uniform perturbation travels

upward and to the right. Finally, the mesh elements themselves are curved and are

represented with Q = 4 polynomials, providing a first test of BDPG with curved

geometry.

First, we simulate the flow around a cylinder of radius unity. Solution contours

are shown in Fig. 6.17, while the convergence of the pressure flux along the cylinder

wall is shown in Fig. 6.18a. If the trial space is enriched appropriately, we see that

BDPG can achieve nearly 6 orders of magnitude lower flux errors than HDG.

To demonstrate that these accuracy gains are not just due to the trial space en-

richment, we perform another HDG simulation in which the same boundary-enriched

(pB = 8) trial space is used as for BDPG. In this case, the only difference between

BDPG and HDG is the test space. Fig. 6.18b shows the results of this comparison.

We see that BDPG still achieves flux errors that are nearly 6 orders of magnitude

lower than HDG. This again demonstrates that, in multiple dimensions, it is the com-

bination of both optimal test functions and trial space resolution that is critical to

achieving boundary accuracy.

Finally, to conclude our linear tests, we simulate the flow around a NACA 0012

171

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(a) Left flux

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(b) Right flux

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(c) Top flux

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

E
rr

o
r

1/h

HDG P = 1
BDPG P

I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 7

BDPG P
I
, P

B
 = 1, 8

(d) Domain p2 ouptut

Figure 6.15: Two-dimensional linearized Euler: Output convergence for HDG and
BDPG runs. The flux outputs represent the sum of all state components of the flux
vector. (Note that this sum is taken so that the convergence behavior of all fluxes
can be captured in a single plot – each of the individual flux components converges
similarly to the results shown here.) Higher accuracy is obtained as the amount of
BDPG boundary enrichment increases. BDPG also achieves accuracy in the interior
p2 output.

airfoil. The airfoil has a unit chord and the background state is the same as above.

Pressure contours for this case are provided in Fig. 6.19, which also gives the conver-

gence of the x-velocity flux through the airfoil. Although the trailing-edge singularity

limits the uniform-refinement rates for this problem, we see that, once again, BDPG

achieves superior boundary accuracy.

172

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

y

P
re

s
s
u
re

Exact

HDG P = 1
BDPG P

I
, P

B
 = 1, 8

0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

y

X
 V

e
lo

c
it
y

Exact

HDG P = 1
BDPG P

I
, P

B
 = 1, 8

Figure 6.16: Two-dimensional linearized Euler: Solution profiles along the right
boundary of the domain. BDPG with boundary enrichment is again more accurate
than HDG with the same interior basis.

(a) Pressure contours (b) y-velocity contours

Figure 6.17: Two-dimensional cylinder: (a) Pressure and (b) y-velocity contours from
a high-order HDG solution.

6.11 Nonlinear Extension of BDPG

In this section, we discuss how the BDPG ideas can be extended to nonlinear

problems. We then show preliminary results in one and two dimensions and identify

remaining challenges and limitations.

173

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
rr

o
r

Num Elems

HDG P = 1
BDPG P

I
, P

B
 = 1, 4

BDPG P
I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 8

(a) Pressure flux through cylinder, BDPG vs. p =
1 HDG

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
rr

o
r

Num Elems

HDG P
I
, P

B
 = 1, 8

BDPG P
I
, P

B
 = 1, 8

(b) Pressure flux through cylinder, BDPG vs.
boundary-enriched HDG

Figure 6.18: Two-dimensional cylinder: (a) Convergence of the pressure flux through
the cylinder wall for BDPG and p = 1 HDG. (b) Pressure flux convergence where the
same pB = 8 trial space is used for both BDPG and HDG. Since the only difference is
the test space, the results show that the optimal test functions of BDPG are effective
in reducing boundary errors.

(a) Pressure contours

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

E
rr

o
r

Num Elems

HDG P = 1
BDPG P

I
, P

B
 = 1, 4

BDPG P
I
, P

B
 = 1, 6

BDPG P
I
, P

B
 = 1, 8

(b) Airfoil x-velocity flux

Figure 6.19: Two-dimensional airfoil: (a) Pressure contours from a high-order BDPG
solution. (b) x-velocity flux convergence for both BDPG and HDG. While the conver-
gence rates are limited by the trailing-edge singularity, BDPG still provides a benefit
over HDG.

6.11.1 Nonlinear Extension and Benefit

Our work so far has focused on linear problems. However, since the theory of

optimal test functions is based on the solution of local adjoint problems, this theory

174

can be extended to nonlinear problems in exactly the same way that adjoint problems

can. In other words, we can keep the definition of the optimal test functions the

same, but recognize that the adjoint problems used to define these test functions now

represent a linearization of the full nonlinear governing equations.

There is, of course, a price to be paid for this linearization. Looking back at our

derivation of the nonlinear error estimate in Eqn. 2.107, we see that there is an O(δu2)

error associated with performing a linearization. Since δu itself converges at a rate of

p + 1, this error is of order 2p + 2. Thus, if we base our computation of the optimal

test functions on a (linearized) adjoint problem, the highest rate of convergence we

can hope for is 2p + 2. Note that a rate of 2p + 2 is one order higher than the rate

of a standard DG/HDG method, which typically superconverges at a rate of 2p + 1.

This means that the benefit of using optimal test functions for nonlinear problems is

to increase the order of accuracy by one. Of course, this comes at the additional cost

of computing the test functions, which is not negligible.

On the other hand, there is also an unintended “benefit” associated with the

linearization error, which is that it gives us an indication of what ptest value should

be used to compute the test functions. For nonlinear problems, there is a point

beyond which increasing ptest will provide no further improvement in accuracy, since

the O(h2p+2) linearization error will necessarily remain and eventually dominate. We

can compute this “limiting” ptest value in a straightforward manner. Since BDPG

outputs should converge at a rate of at least ptest +p+ 1 (which comes from summing

the product of the test function and residual rates), choosing ptest = p+ 1 is enough

to obtain an O(h2p+2) output convergence rate.

6.11.2 Nonlinear Test Function Computation

Since the test functions are solutions to elementwise adjoint problems, which for

nonlinear problems depend on the value of the state, a question naturally arises:

which state should the test functions be computed about?

Typically, to solve a nonlinear problem, an initial guess would be chosen and a

Newton iteration would be employed to drive the initial guess to a converged solution.

If the test functions were fixed (say, the standard polynomials used in DG/HDG), each

step in the Newton iteration would just involve computing a state update. However,

since the optimal test functions depend on the state, these test functions should also

(in theory) be updated after each Newton step. In the results shown below, this is

the strategy we adopt when using the BDPG method. This strategy leads to a back-

and-forth in which we attempt to converge the residuals to zero while simultaneously

175

changing their very definition (by virtue of the test functions changing).

In practice, this continual updating of the test functions is not actually required.

An alternative strategy in which they are updated at every few Newton steps often

suffices and is more efficient.

Another option – which is perhaps the most efficient choice – is to first solve a

standard DG/HDG problem and to then compute the optimal test functions based on

the linearization about this DG/HDG state. After this single update/computation of

the test functions, they can be “frozen” for the remainder of the iterations, and the

updated residuals can be smoothed back to machine-precision. Since the test function

linearization is based on the O(hp+1) DG/HDG solution, this procedure allows for the

optimal 2p+ 2 rates to still be obtained. The only difference between this procedure

(which requires only a single test function computation) and the “continual-update”

procedure (which requires as many test function computations as there are Newton

steps) is a potential shift in the error coefficient. However, with sufficiently refined

meshes and/or p > 1, this difference is typically negligible.

Finally, for nonlinear problems, we note that it is less clear how the boundary

weight w should be chosen in the error norm (Eqn. 6.40). For linear problems in

which the fluxes are capable of being resolved, the accuracy obtained in these fluxes is

proportional to 1/w. However, for nonlinear problems, the final accuracy of the fluxes

depends to some extent on the accuracy of the element-interior solution. Furthermore,

due to the linearization error, there is a point beyond which increasing w leads to no

further reduction in the flux errors. In the following examples, we find that choosing

a relatively modest value of w (within the range of 1× 106 - 1× 108) typically works

well. Ideally, a more rigorous means of choosing w can be found in the future.

6.11.3 Nonlinear One-Dimensional Examples

We now show results for one-dimensional nonlinear problems. As mentioned, the

best flux convergence rate we can expect with BDPG is now 2p+ 2, compared to the

DG/HDG rate of 2p+ 1.

176

6.11.3.1 1D Burgers

First, we solve the one-dimensional Burgers equation with the following source

term and boundary condition:

u
∂u

∂x
+ 4u3/2 sin(kx) = 0 x ∈ Ω (6.71)

u = 1 x = xL . (6.72)

The source term is chosen to be a function of relatively high frequency, with k = 7.73

taken as an example. Information flows to the right in this problem, so that the

boundary condition on the left side of the domain (defined as Ω = [−1
2
, 3

2
]) is well-

posed.

For the optimal test function problem, a large boundary weight of w = 1 × 108

is chosen in order to achieve flux accuracy. Furthermore, although not required, we

take ptest = 12 to ensure that the full benefits of BDPG are observed. As mentioned

above (and as shown in the following section) an order of ptest = p + 1 is all that is

needed to obtain optimal rates. Finally, the test functions are recomputed after each

iteration as the problem is converged to a steady-state solution.

Fig. 6.20 shows a side-by-side comparison of p = 1 DG and BDPG solutions for

this problem, with the exact solution shown in red. We see that the optimal test

functions (which are also shown in Fig. 6.20) enable the BDPG solution to achieve

accuracy in the downwind fluxes, which keeps the numerical solution “pinned” to the

exact solution. With DG, on the other hand, inaccuracies in the fluxes compound as

the flow moves downstream, so that the numerical solution eventually deviates from

the exact solution.

The convergence of the flux errors on the domain outflow boundary are shown in

Fig. 6.21 for both DG and BDPG, for trial space orders of p = 0 through p = 3. As

expected, we see that the optimal test functions enable the BDPG fluxes to attain

rates of 2p+ 2, whereas the DG fluxes achieve rates of only 2p+ 1. This confirms our

earlier predictions about the performance of optimal test functions with nonlinear

problems, and shows that they can achieve an order of accuracy that is one order

higher than a standard DG method.

6.11.3.2 1D Euler

Next, we move from a scalar nonlinear problem to a nonlinear system of equations.

In addition, we shift from the standard DG/BDPG methods used in the previous

177

−0.5 0 0.5 1 1.5
0.2

0.4

0.6

0.8

1

1.2

x

V
a

lu
e

(a) BDPG solution, u

−0.5 0 0.5 1 1.5

0.5

1

1.5

2

x

V
a

lu
e

(b) DG solution, u

−0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

V
a

lu
e

(c) BDPG test functions, v1

−0.5 0 0.5 1 1.5

1

2

3

4

5

6

7

x

V
a
lu

e

(d) BDPG test functions, v2

Figure 6.20: 1D Burgers: 6-element, p = 1 (a) BDPG solution and (b) DG solution.
Numerical solutions are shown in blue, while the exact solution is shown in red.
Note the downwind accuracy of BDPG on each element. (c) First and (d) second
BDPG test functions on each element, corresponding to the two Lagrange trial basis
functions on each element. The test functions in (d) have been normalized by the flux
weight, w, to keep their magnitudes O(1). Note that the vertical lines in all figures
are drawn only for convenience – both the test functions and states on each element
are independent and are not actually connected in any way.

section to hybrid DG/BDPG methods.

We first try a 1D subsonic Euler case, which consists of an inflow at the left

boundary (with a total temperature of 7.5 and a total pressure of 3.389), an inviscid

wall at the right boundary, and a source term

ST =
[

0.4 ρ2 0.7 (ρu)2 0.1 (ρE)2
]

(6.73)

178

10
1

10
2

10
−2

10
0

1/h

E
rr

o
r

DG

BDPG

1.92

1.00

(a) p = 0

10
1

10
2

10
−5

10
0

1/h

E
rr

o
r

DG

BDPG

3.99

3.00

(b) p = 1

10
1

10
2

10
−10

10
−5

1/h

E
rr

o
r

DG

BDPG

5.83

4.97

(c) p = 2

10
1

10
2

10
−10

10
−5

10
0

1/h

E
rr

o
r

DG

BDPG

7.88

6.92

(d) p = 3

Figure 6.21: 1D Burgers: Right-boundary flux convergence for BDPG and DG meth-
ods. BDPG achieves rates of 2p+ 2, compared to the 2p+ 1 rates of DG.

added to the left-hand side of the equations. The flow enters from the left and collides

with the wall on the right, while S acts as a sink that relieves the buildup of mass that

would otherwise occur within the domain. Fig. 6.22a shows the steady-state values

of the solution states (density, momentum, and energy) throughout the domain.

We solve this problem numerically with both HDG and (hybrid) BDPG for a trial

space order of p = 1. For BDPG, we choose the test space order to be ptest = p+1 = 2

and the boundary weight to be large; specifically, w = 108. Note that since there are

3 state components associated with the 1D Euler equations, for a p = 1 trial basis, we

must now compute a corresponding nU · r = 2 · 3 = 6 test functions on each element.

Fig. 6.23a shows the convergence of the energy flux on the left boundary for both

HDG and BDPG as the mesh is refined. For the BDPG runs, we observe a rate

179

of 3.72, which is close to (though slightly below) the optimal rate of 2p + 2 = 4.

Similar rates are obtained for the remaining flux components on both left and right

boundaries.

Next, we try a supersonic case, where the inflow Mach number is 1.89, correspond-

ing to Dirichlet values of 1 in all state components on the left boundary. A source

term

ST =
[

0.4 ρ2 0.7 (ρu)2 1.0 (ρE)2
]

(6.74)

is added to the left-hand side of the equations, and steady-state solution profiles are

shown in Fig. 6.22b. To solve the problem, we again use HDG and BDPG, with trial

space orders ranging from p = 0 to p = 2. The test space order and boundary weight

are again taken to be ptest = p + 1 and w = 108, respectively. Fig. 6.23 (parts b-d)

shows convergence rates for various flux outputs and trial space orders p. We see that

for this problem BDPG achieves the optimal rate of 2p + 2 for all fluxes and trial

space orders.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x

V
a
lu

e

Density

Momentum

Energy

(a) Subsonic case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x

V
a
lu

e

Density

Momentum

Energy

(b) Supersonic case

Figure 6.22: 1D Euler: (a) Subsonic case with inflow on the left and inviscid wall on
the right side of the domain. (b) Supersonic case with Dirichlet conditions on left
and outflow on right.

6.11.3.3 1D Navier-Stokes

Next, to confirm the performance of BDPG for nonlinear problems with viscosity,

we try a Navier-Stokes case similar to the first Euler case above. The flow starts out

supersonic at the inflow (with Mach number of 1.5, corresponding to a density of 1.0,

180

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

E
rr

o
r

1/h

HDG

BDPG

2.93

3.72

(a) p = 1, Subsonic, left energy flux

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

E
rr

o
r

1/h

HDG

BDPG

1.99

0.99

(b) p = 0, Supersonic, right sum of fluxes

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

E
rr

o
r

1/h

HDG

BDPG

3.95

2.99

(c) p = 1, Supersonic, right sum of fluxes

10
0

10
1

10
−12

10
−10

10
−8

10
−6

10
−4

E
rr

o
r

1/h

HDG

BDPG

5.94

4.96

(d) p = 2, Supersonic, right sum of fluxes

Figure 6.23: 1D Euler: Various flux outputs for subsonic and supersonic cases. (Note
that “sum of fluxes” means all state components of the flux are summed to compute
the output. The individual flux components converge similarly.) The supersonic
BDPG runs achieve the optimal 2p + 2 rate, while the subsonic BDPG run comes
close to this rate. Standard DG obtains only 2p+ 1 rates for all cases.

momentum of 1.0, and energy of 1.2936) and becomes subsonic as it collides with an

isothermal wall on the right boundary (with temperature of 3.0). The viscosity is

chosen such that the inflow Reynolds number is 10, and the source term

ST = [0.3 ρ2 0.1 (ρu)2 0.1 (ρE)2], (6.75)

is added to the left-hand side of the equations to enable a steady-state solution.

Fig. 6.24 shows the corresponding solution profiles throughout the domain.

The boundary flux convergence for both HDG and hybrid BDPG is shown in

Fig. 6.25, where the same test space properties are used for BDPG as in the Euler

181

cases. We see that BDPG again outperforms HDG, and attains the optimal rate of

2p+ 2 in the fluxes on both the left and right boundaries.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

x

V
a

lu
e

Density

Momentum

Energy

(a) Conservative states

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

V
a

lu
e

Mach

Pressure

(b) Pressure and Mach number

Figure 6.24: 1D Navier-Stokes: (a) State variables within the domain. (b) Mach
number and pressure variation within the domain. Note that the flow transitions
from supersonic to subsonic near the inflow.

10
0

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
rr

o
r

1/h

HDG

BDPG

3.95

2.95

(a) Right x-momentum flux

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

E
rr

o
r

1/h

HDG

BDPG

3.97

2.95

(b) Left energy flux

Figure 6.25: 1D Navier-Stokes: Convergence rates for a mixed supersonic/subsonic
flow with p = 1. BDPG obtains optimal 2p+ 2 rates.

6.11.4 Nonlinear Two-Dimensional Problems

Next, we discuss nonlinear problems in two dimensions. When shifting from one

dimension to multiple dimensions, we again encounter the issue that – if BDPG is to

182

provide any benefit – the trial space on element boundaries must be able to represent

the fluxes well. If it cannot, then BDPG will perform no better than HDG in terms

of accuracy (and would be more expensive due to the test function computations). In

general then, in order for BDPG to be worth pursuing in multiple dimensions, some

type of basis optimization in which the trial space is tuned to include the primary

“modes” of the true fluxes must be performed.

This optimization of the trial space remains a topic for future work. However,

what we can show at this point is that, if the fluxes are well-represented – which

for now we can ensure by adding additional “edge modes” to the trial basis – then

BDPG can attain 2pI + 2 rates for nonlinear problems in multiple dimensions as well.

Here, as before, pI is the order spanned by the trial basis over the element interior. A

standard HDG method, on the other hand, would have a maximum order of 2pI + 1,

regardless of how many edge modes are added to the basis.

6.11.4.1 2D Euler

In order to show that BDPG can attain 2pI + 2 rates with well-represented fluxes,

we solve a two-dimensional Euler problem. This problem consists of inviscid, com-

pressible flow through a venturi at a Mach number of 0.5. (See Fig. 6.26 for pressure

contours and a more detailed problem specification.)

Figure 6.26: Pressure contours (blue=low, red=high) from a BDPG solution with
pI = 2, pB = 3, and ptest = 3. The flow moves from left to right between inviscid
walls at the top and bottom of the domain. A subsonic, horizontal inflow is specified
at the left boundary with Mach number M = 0.5, total temperature T0 = 1.05, and
total pressure p0 = 1.1862. A static-pressure outflow is specified at the right boundary
with p = 1.0.

For both BDPG and HDG, we choose a (full-order) interior basis of pI = 2. The

183

pI = 2 trial basis functions on the unit reference triangle are given by

φ1 = 1− ξ − η

φ2 = ξ

φ3 = η

φ4 = −
√

6 ξη

φ5 =
√

6 (−1 + ξ + η) η

φ6 =
√

6 (−1 + ξ + η) ξ , (6.76)

where ξ and η are coordinates in the two-dimensional reference space.

Next, we add pB = 3 edge modes to this basis, which, after being linearly blended

into the element interior, are given by

φ7 = −
√

10 ξη(η − ξ)

φ8 = −
√

10 (−1 + ξ + η) η(−1 + ξ + 2η)

φ9 =
√

10 (−1 + ξ + η) ξ(2ξ − 1 + η) . (6.77)

Each of these basis functions corresponds to a different edge of the reference triangle

and allows for a cubic polynomial to be represented along the edge.

For HDG, we then solve the problem as usual, employing this pI = 2, pB = 3 basis

for both the trial and test spaces. For BDPG, we employ this pI = 2, pB = 3 basis

for the trial space, but compute the optimal test functions from a full ptest = 3 space,

which is chosen to match the order of pB. (Note that it is not worth computing the

test functions more accurately than this, since we are limited by the interpolation

error on the edges.) Since we have 9 trial basis functions and 4 state components,

we compute a total of 36 test functions on each element. While these problems are

purely local, they represent a relatively significant computational and storage cost.

Contours of the optimal test functions corresponding to a single trial basis function

on each element are shown in Fig. 6.28.

The convergence rates of the vertical forces on both top and bottom walls are

shown in Fig. 6.27. Looking at HDG first, we see that when pI = 2, pB = 2 (so that

we are solving a standard p = 2 HDG problem), the force convergence rates approach

2pI +1, as expected. When we then add the pB = 3 edge modes to the basis, the error

values decrease slightly, but the convergence rate remains 2pI + 1. This is because

the test space of HDG does not take advantage of the extra resolution along the

boundaries.

184

10
1

10
−8

10
−6

10
−4

1/h

E
rr

o
r

BDPG p
B
 = 3

HDG p
B
 = 2 (standard)

HDG p
B
 = 3

5.97

4.79

(a) Vertical force on bottom wall

10
1

10
−8

10
−6

10
−4

1/h

E
rr

o
r

BDPG p
B
 = 3

HDG p
B
 = 2 (standard)

HDG p
B
 = 3

5.94

4.78

(b) Vertical force on top wall

Figure 6.27: 2D Euler: Convergence rates for BDPG and HDG. All runs have interior
order pI = 2, along with the specified edge order pB. For the BDPG runs, we take
ptest = pB. Note that BDPG achieves 2pI + 2 rates when 3rd-order (or higher) edge
modes are added to the trial space. On the other hand, HDG remains at 2pI + 1
when these same 3rd-order edge modes are added.

On the other hand, we see a different result with BDPG. Here, when we add

the pB = 3 edge modes to the pI = 2 trial basis, we obtain the anticipated 2pI + 2

185

rates. This is because the fluxes along the element boundaries are well-resolved by

the pB = 3 modes, and the BDPG test space then requests accuracy in those fluxes.

The limiting factor is then the O(h2pI+2) linearization error.

Overall then, we have confirmed that BDPG obtains 2pI + 2 rates for nonlinear

problems if the fluxes along element boundaries are well-resolved. While this would

certainly represent an improvement over a standard DG method, when compared

to an HDG method, this fact alone does not make BDPG worth pursuing. This is

because, since the pB degrees of freedom are globally coupled, in terms of cost, we

should really be comparing the pI = 2, pB = 3 BDPG scheme to a full p = 3 HDG

scheme. But a p = 3 HDG scheme, converging at order 2p + 1 = 7, would converge

at an even greater rate than the 2pI + 2 = 6th order of BPDG.

Thus, ultimately, whether the cost of computing the optimal test functions is

worth it for nonlinear problems in multiple dimensions will depend on whether a

successful strategy for trial space optimization along element boundaries can be de-

veloped. This optimization would reduce the number of required edge degrees of

freedom for BPDG, potentially allowing it to use fewer globally coupled degrees of

freedom than HDG.

6.12 Optimal Test Function Summary

Here, we provide a brief summary of BDPG / optimal test function properties for

general problems.

1. Optimal test functions can be computed in an element-local manner within

existing DG/HDG formulations.

2. For 1D linear problems, if the optimal test functions are computed in an order-

ptest space, the boundary flux accuracy will be at least order ptest+p+1. In cases

where the local test space includes the global flux adjoints (such as advection),

the boundary flux accuracy will be order 2ptest + 1.

3. For 1D nonlinear problems, if the optimal test functions are computed in an

order ptest = p+1 space, order 2p+2 convergence rates can be achieved. (This is

one order of accuracy higher than the order 2p+1 rates of standard DG/HDG.)

4. For multi-dimensional linear problems, if the optimal test functions and inter-

face fluxes are well-represented, exact boundary fluxes are obtained.

186

(a) Density component

(b) x-Momentum component

(c) y-Momentum component

(d) Energy component

Figure 6.28: 2D Euler: Optimal test function contours. The trial basis here has
pI = 2, pB = 3, with nU = 9. Accounting for the 4 state components then means that
we have 36 trial basis functions on each element. We thus compute a corresponding
36 optimal test functions on each element. Plotted here are the state components of
one of these optimal test functions. Specifically, we show the density, x-momentum,
y-momentum, and energy components of an optimal test function associated with the
energy component of the basis function φ9 on each element.

187

(a) To ensure that the exact multi-dimensional fluxes are representable, enrich-

ment of the trial space basis with order-pB “edge modes” can be performed.

(b) Alternatively, a trial space optimization along element boundaries could be

developed to incorporate the dominant “modes” of the true fluxes within

the trial space basis.

5. For multidimensional nonlinear problems with an element-interior trial basis of

order pI and a boundary enrichment order of pB, optimal test functions lead to

2pI + 2 flux rates if pB > pI and ptest = pB.

(a) As in the linear case, a trial space optimization could be performed instead

of boundary enrichment to achieve 2pI + 2 flux rates.

6.13 Cost of Optimal Test Functions

We next give a summary of boundary flux accuracy vs. global degrees of freedom

(DOF) for DG, HDG, BDPG, and hybrid BDPG (which we will denote here by

HBDPG) schemes. We assume inviscid problems for simplicity, so that DG fluxes

converge at order 2p+ 1. We also assume smoothness of the optimal test functions.

1. For 1D linear problems:

(a) DG: Flux rates of 2p+ 1. Global DOF count ∼ p/h.

(b) BDPG: Flux rates of (at least) ptest + p+ 1. Global DOF count ∼ p/h.

(c) HDG: Flux rates of 2p+ 1. Global DOF count ∼ 1/h.

(d) HBDPG: Flux rates of (at least) ptest + p+ 1. Global DOF count ∼ 1/h.

Thus, for 1D linear problems, BDPG can achieve arbitrary boundary flux accu-

racy independent of p – and hence, independent of the global system size. This

is a definite improvement over DG methods. On the other hand, HDG can also

achieve flux accuracy independent of the global system size, so the difference

between HDG and either BDPG or HBDPG would come down primarily to the

cost of the local solves and ease of implementation.

2. For 1D nonlinear problems:

(a) DG: Flux rates of 2p+ 1. Global DOF count ∼ p/h.

(b) BDPG: Flux rates of 2p+ 2. Global DOF count ∼ p/h.

188

(c) HDG: Flux rates of 2p+ 1. Global DOF count ∼ 1/h.

(d) HBDPG: Flux rates of 2p+ 2. Global DOF count ∼ 1/h.

For 1D nonlinear problems, BDPG gives improved flux convergence over DG

for the same global system size. Likewise, HBDPG also gives improved flux

convergence over HDG for the same global system size. Of course, since both

HDG and HBDPG can achieve flux accuracy independent of the global DOF,

the advantage of this is not always clear. An effective strategy may be to first

solve the nonlinear problem using HDG, then “post-process” this HDG solution

by computing the optimal test functions once and re-converging the residuals.

This would yield an additional order of accuracy for minimal computational

cost.

3. For multi-dimensional linear problems (where pB is the edge enrichment

order and pI is the interior order):

(a) DG: Flux rates of 2p+ 1. Global DOF count ∼ pdim/hdim.

(b) BDPG: Flux rates of 2pB+1 (if ptest = pB). Global DOF count ∼ (pdim−1
B +

pdimI)/hdim.

(c) HDG: Flux rates of 2p+ 1. Global DOF count ∼ pdim−1/hdim.

(d) HBDPG: Flux rates of 2pB + 1 (if ptest = pB). Global DOF count ∼
pdim−1
B /h.

For multidimensional linear problems, since the flux accuracy of BDPG depends

only on the boundary order pB, BDPG (at a minimum) provides a similar global

DOF reduction as HDG when compared with standard DG. However, in general,

a trial basis optimization along element boundaries would be required to make

either BDPG or HBDPG more efficient than HDG itself.

4. For multi-dimensional nonlinear problems (where pB is the edge enrichment

order and pI is the interior order):

(a) DG: Flux rates of 2p+ 1. Global DOF count ∼ pdim/hdim.

(b) BDPG: Flux rates of 2pI + 2 (if ptest = pB = pI + 1). Global DOF count

∼ (pdim−1
B + pdimI)/hdim.

(c) HDG: Flux rates of 2p+ 1. Global DOF count ∼ pdim−1/hdim.

(d) HBDPG: Flux rates of 2pI + 2 (if ptest = pB = pI + 1). Global DOF count

∼ pdim−1
B /h.

189

Here again, for multi-dimensional nonlinear problems, while an additional order

of accuracy can be gained by BDPG, in general a trial space optimization would

be required to give a potential benefit over HDG.

6.14 Remaining Challenges

Overall, the results shown in the above sections are encouraging, and verify the

concept of using local optimal test functions to achieve global boundary accuracy.

That said, before BDPG sees more widespread application, a few challenges remain.

The first of these, as mentioned, is the issue of trial space resolution near ele-

ment boundaries. In the present work, we added order-pB Lobatto functions to the

trial space to ensure that the fluxes are well-represented. While this is an effective

strategy for primal DG formulations, for an already-hybridized method it represents

a relatively large computational expense, since these additional degrees-of-freedom

are globally coupled. Thus, for most problems, to make hybrid BDPG more efficient

than standard HDG a local optimization of the trial space near element boundaries

is required. While a preliminary attempt at trial space optimization is shown in

Appendix E, in general this remains an open problem.

An additional challenge is that, for nonlinear problems, recomputing the test

functions during the Newton iteration can make this iteration less robust. One simple

way to avoid this issue is to first solve a standard DG/HDG problem, then compute

the optimal test functions just once – based on a linearization performed about the

DG/HDG solution. While this can lead to slightly larger errors in the fluxes, the

same 2p+ 2 rates can be achieved.

Finally, another important issue, which has not yet been emphasized, is the rep-

resentation of the test functions themselves. For certain problems, the optimal test

functions can exhibit nonsmooth behavior that makes their approximation difficult.

Nonsmoothness of the test functions arises, for instance, for pure advection problems

in two dimensions. In this case, the exact local adjoints (test functions) contain dis-

continuities within each element. Since polynomials cannot adequately resolve these

discontinuities, the error between the discrete and exact optimal test functions can

be large. This leads to errors in the elementwise fluxes, which propagate globally.

A similar issue arises for high Reynolds number advection-diffusion cases, where –

rather than discontinuities – steep boundary layers appear in the test functions.

These issues exist for many multiscale methods (including other DPG schemes,

as discussed in e.g. [25, 21]), and there are various means of addressing them. One

190

option is the use of a “subgrid” within each element to resolve the relevant fine-scale

features. However, for BDPG methods, an alternative option presents itself. For most

cases – as mentioned in Sec. 6.6.2 – it is only necessary to resolve the test functions

on the boundaries of each element. Thus, if test function discontinuities or boundary

layers exist inside a given element, these features do not actually need to be resolved.

Therefore, when computing the optimal test functions, rather than using a standard

DG or HDG method, we could instead atttempt to tailor the discretization to focus

solely on obtaining boundary accuracy in the test functions. Indeed, since achieving

boundary accuracy has been the primary goal of this work, it may be possible to

apply some of the present ideas to the test function problem itself.

6.15 Conclusion

In this chapter, we presented a strategy for optimizing the test space of both primal

and hybrid DG methods. The theory applies to linear PDEs and can be extended to

nonlinear equations. We have shown that if the primary goal is to achieve boundary

accuracy, the optimal test functions can be localized and computed independently on

each element in the mesh. These test functions satisfy local adjoint equations and

ensure that a proper upwinding of information occurs within each element. As shown,

if the problem is linear and both test functions and fluxes are well-represented, exact

boundary fluxes are obtained. The resolution of both test functions and fluxes are

critical issues, and while we have addressed certain aspects of these issues, additional

challenges remain.

191

CHAPTER VII

Conclusions and Future Work

7.1 Summary and Conclusions

In this section, we summarize the work performed and the conclusions drawn in

this thesis, broken down into the two main topics addressed.

7.1.1 Unsteady Output-based Error Estimation and Mesh Adaptation

In this thesis, we have developed and tested an output-based mesh adaptation

strategy for unsteady problems on deforming domains. This strategy relies on the

solution of an unsteady adjoint problem, and reduces output errors by performing

dynamic-p adaptation in space and slab refinement/coarsening in time. An Arbitrary

Lagrangian-Eulerian (ALE) DG method was implemented to perform the deforming-

domain simulations, along with a Geometric Conservation Law (GCL) to ensure con-

servation. The satisfaction of the GCL (and the introduction of a separate GCL

variable) required the introduction of a corresponding GCL adjoint, which was solved

alongside the state adjoint.

Results from low-Reynolds-number flapping-flight simulations in both two and

three dimensions demonstrate that the output-based strategy outperforms more com-

mon strategies, including a residual-based method and uniform-h and -p refinements.

For a given level of output accuracy, the output-based method required mesh sizes

roughly 100 times smaller than either h- or p-refinements. Reductions in compu-

tational time were also observed – the largest being a factor of 5-10 reduction in

wall time relative to the uniform refinement strategies. Furthermore, in every case

simulated, the residual-based adaptation failed to converge to the true output value,

indicating that this cheaper indicator is not adequate for these problems.

In addition, conclusions were drawn about the relevance of the GCL to output

192

accuracy. For most problems, satisfaction of the GCL led to only a small improvement

in output accuracy. However, if the GCL is employed, it is necessary to incorporate

a GCL adjoint into the error estimation procedure, since errors associated with the

GCL equation can make up more than half of the total output error during the final

adaptive iterations.

7.1.2 Optimal Test Functions

In the latter half of the thesis, we returned to steady-state problems and investi-

gated the idea of optimizing the test space of discontinuous finite element methods

to achieve accuracy in quantities of interest. In particular, our goal was to achieve

accuracy along domain boundaries. We showed that the test space of standard DG

and HDG methods can be optimized to that end, and that this optimization can be

performed in an element-local manner. We call the resulting method a boundary

discontinuous Petrov-Galerkin (BDPG) method.

The optimal test functions satisfy local adjoint equations and ensure that a proper

upwinding of information occurs within each element. For linear problems, if both

test functions and fluxes are well-represented, exact boundary fluxes are obtained. In

multiple dimensions, the use of optimal test functions within a DG method results

in a similar degree-of-freedom reduction as HDG. For these cases, however, making

BDPG more efficient than HDG would in general require a trial space optimization

on element boundaries. This is a topic for future work.

For nonlinear problems, we showed that BDPG can achieve boundary-flux rates

of 2p + 2, which is one order higher than the 2p + 1 rates of standard DG/HDG

methods. However, once again, to improve upon HDG in multiple dimensions, some

type of trial space optimization would be required. Additional topics for future work

are mentioned in the following section.

7.2 Future Work

Some ideas for future work related to the topics in this thesis are given below.

1. Unsteady Output-based Error Estimation and Mesh Adaptation

• Extension to other temporal discretizations: As mentioned in Sec. 5.9,

the error estimation and adaptation techniques demonstrated here for DG-

in-time can be extended to more standard time schemes such as Runge-

Kutta or multi-step schemes. While some multi-step methods (such as the

193

second-order backward difference method) are adjoint-inconsistent for vari-

able time-step sizes [85], this is not an issue for Runge-Kutta methods [84].

Furthermore, while for Runge-Kutta methods there is some question over

how to best represent the data for purposes of error estimation (due to the

non-variational nature of the method), fitting a polynomial interpolant

through some combination of the discrete nodal/stage/derivative values

associated with these schemes should suffice. Some preliminary results to

this effect look promising.

• Unsteady hp- and r-adaptation: As mentioned in Sec. 5.9, while the

dynamic-p adaptation considered here is adequate for smooth problems, for

flows with sharp gradients (such as high-Reynolds-number flows or flows

with shocks), it would be useful to incorporate both h and p adaptation in

space. Alternatively, node movement (r-adaptation) could be performed.

The adaptation in time could also be improved by refining time step sizes

uniquely for each spatial element, rather than refining entire time slabs.

The challenge is to implement these options in a robust and efficient man-

ner within an output-based framework.

• Extension to chaotic problems: As discussed in Sec. 5.9, another goal

is to extend these output-based techniques to chaotic flows. In these flows,

outputs are extremely sensitive to perturbations in the residuals, causing

the magnitude of the adjoint to grow unbounded as it is marched backward

in time. However, for suitably averaged outputs, it should be possible to

obtain meaningful sensitivity data with respect to certain input parame-

ters. Several ideas (such as the Least Squares Shadowing Method) have

been put forward in the literature regarding the most effective way to de-

fine the adjoint for these problems [98, 99], and a successful resolution of

this issue will be critical to many engineering applications.

• Accounting for inter-element error cancellation: Though not em-

phasized in this work, for both steady and unsteady problems, if the ad-

joint for an output has e.g. a discontinuity on a certain element, then the

local output error estimate on that element will converge sub-optimally,

at O(hp+1). (This makes sense mathematically, since the local adjoint

and residual convergence rates will be order 1 and p, respectively, thus

summing to p + 1.) However, oftentimes, the total output error will still

194

superconverge at a rate of 2p + 1, indicating that the local O(hp+1) out-

put errors must be cancelling as they propagate between elements. Some

efficiency may be gained if the output-based adaptation were to take this

inter-element cancellation into account, since it would not target these in-

dividual elements as aggressively.

2. Optimal Test Functions

• More rigorous proofs of BDPG properties: We have presented the

optimal test functions and corresponding BDPG method here as more of

a “proof-of-concept” than a formal method backed by rigorous proofs of

stability and convergence. While many of the ideas here can be mapped

into a more formal setting (for example, the optimal test functions can

be viewed as making the inf-sup and continuity constants equal to unity

with respect to a desired norm – as in other DPG literature [25, 26]), more

rigorous proofs of the optimality of the test-function localization and the

choice of boundary weight should be performed. Furthermore, for viscous

problems, a more formal means of choosing the stabilization parameters

(such as the viscous length scale) should be determined.

• Cheaper computation of optimal test functions: Though the test

functions are computed in an element-local manner, for systems of equa-

tions and high-order trial spaces, their associated computation and storage

costs can be large. Finding a means to reduce these costs would be advan-

tageous. In certain cases (for example, for one-dimensional problems), only

one or two optimal test functions on each element are relevant to achiev-

ing boundary accuracy, while the rest provide interior accuracy. Thus, to

reduce costs in these cases, we could compute only those test functions

relevant for boundary accuracy. Furthermore, in general, since the num-

ber of test functions that must be computed is identical to the number of

trial functions, if a trial-space optimization is performed (particularly in

multiple dimensions), this could significantly reduce both the number of

trial functions and the number of test functions required on each element.

• Resolution of non-smooth test functions: As mentioned in Sec. 6.14,

for certain problems (such as two-dimensional advection), the optimal test

functions contain singularites. A better method for resolving these singu-

larities – such as the use of a “subgrid” within each element – could be

195

developed. We note however that if the primal problem has no element-

interior source terms, accuracy in the test functions is required only along

element boundaries. While a singularity such as a discontinuity could still

exist on the element boundaries, this fact alleviates many of the represen-

tation issues.

• Optimization of the trial space: As discussed, to make BDPG / opti-

mal test functions more efficient than HDG in multiple dimensions, some

type of optimization of the trial space near element boundaries is required.

While we have demonstrated preliminary trial space optimization results

for two-dimensional advection in Appendix E, much work remains to be

done. Trial-space optimization is an open-ended problem even for standard

DG/HDG methods, and many strategies can be imagined.

• Improvement in nonlinear BDPG rates: For nonlinear problems, the

current BDPG convergence rates are limited to 2p+2 due to the lineariza-

tion error associated with the local adjoint (i.e. test function) problems.

While this is one order of accuracy higher than a standard DG method, it

may be possible to improve on this rate. Specifically, from the theory of

error estimation, it is known that by using a combined primal-dual form

of the error estimate, the second-order (2p + 2) linearization error can be

improved to third-order (3p+ 3). (See Appendix A or [10].) Thus, it may

be possible to improve the nonlinear BDPG convergence rates to 3p+ 3 if

some type of local primal-dual problem is solved.

• Extension to unsteady problems: It is possible to extend BDPG ideas

to unsteady problems as well. If a space-time finite element method were

used, the ideas would carry over directly, since the theory would be the

same as for a multi-dimensional steady-state problem. It may also be

possible to make an effective time-marching scheme based on the idea of

optimal test functions. Since the temporal direction is one-dimensional,

computing optimal test functions in time could give similar results as for

(e.g.) a one-dimensional, steady advection problem.

• Targeting of outputs/regions besides boundaries: While we have

focused on achieving accuracy in boundary outputs/distributions here, the

idea of optimizing a numerical method (whether a finite element method

or otherwise) to achieve accuracy in specific outputs could be pursued in a

more general context. Pursuing boundary accuracy here turned out to be

196

the most practical goal, not only because it is often of engineering interest,

but also because it enabled a straightforward localization of the optimal

test functions.

197

APPENDICES

198

APPENDIX A

Output Error Estimation: Additional Details,

Including Dual and Primal-Dual Forms

In this appendix, we derive some additional forms of the output error estimate

discussed in Chapter II. In particular, we derive both “dual” and “primal-dual” forms

of the error estimate, and discuss their use within the context of linear and nonlinear

Galerkin methods.

A.1 Dual Form of Output Error Estimate

Assume we are solving a differential equation Lu = f and are interested in an

output written as

J = (g, u) . (A.1)

If we have some approximate solution uH , the output is approximately

J(uH) = (g, uH) . (A.2)

Recall from Sec. 2.4.1 that the amount of error in this output is then given by

δJ(uH) = −(r(uH), ψ) = −
∫
Ω

ψ r(uH)dx , (A.3)

199

where r(uH) = LuH − f is the residual evaluated with the approximate solution and

ψ is the (exact) adjoint for J , which satisfies the adjoint equation

L∗ψ = g . (A.4)

While Eqn. A.3 is often the most useful, we can derive a slightly different form

of the output error. In Chapter II, we showed how an output J = (g, u) can be

equivalently written in “dual form” as J = (f, ψ). It stands to reason that if we can

write the output itself in two ways, we should also be able to write the output error

in two ways.

When deriving the so-called “primal” form of the output error (Eqn. A.3), we

started with the output definition J = (g, u) and proceeded from there. If we instead

start from the relation J = (f, ψ), we can derive a corresponding “dual” form of the

output error.

Note that if we knew ψ exactly, the error in the output would be zero, since we

could compute the exact output value from the above dual form. However, assume

that we do not know the exact adjoint, but instead know only an approximation,

ψh. This ψh could come from numerically approximating the adjoint equations on a

given mesh. In general, ψh may be computed in a different space (or on a different

mesh) than uH , so we use the subscript h rather than H to emphasize this potential

difference. If ψh happened to be computed in the same space as uH , we would write

ψh = ψH .

With ψh in hand, the output can be computed as J(ψh) = (f, ψh). The amount

of error in this output can then be expressed as:

δJ(ψh) = J(ψ)− J(ψh)

= (f, ψ)− (f, ψh) (dual form of output)

= (f, ψ − ψh) (linearity of inner product)

= (Lu, ψ − ψh) (primal equation)

= (u, L∗(ψ − ψh)) (adjoint identity)

= (u, L∗ψ)− (u, L∗ψh) (linearity of inner product)

= (u, g)− (u, L∗ψh) (adjoint equation)

= −(u, L∗ψh − g) (linearity of inner product). (A.5)

Now, we know that ψ satisfies L∗ψ − g = 0, so the expression L∗ψh − g is an

adjoint residual , in the same way that the quantitiy LuH − f is a primal residual.

200

If we define this adjoint residual to be:

r∗(ψh) ≡ L∗ψh − g ,

then we can write the above form of the output error as

δJ(ψh) = −(u, r∗(ψh)) .

Or, by symmetry of the inner product:

δJ(ψh) = −(r∗(ψh), u) . (A.6)

This is known as the dual form of the output error.

For comparison, recall that the primal form of the output error is

δJ(uH) = −(r(uH), ψ) . (A.7)

We see that the above expressions have the roles of ψ and u switched, but otherwise

have the same form. Thus, there is a certain “duality” between them. In summary

then: if we have computed a given output using ψh, the corresponding output error

is given by Eqn. A.6. On the other hand, if we have computed the output using uH ,

the corresponding output error is given by Eqn. A.7. Depending on how ψh and uH

were obtained, these errors could potentially differ.

In the next section, we will show that if ψh is computed in the same space as uH

(so that ψh = ψH) and a Galerkin-type finite element method is used, then the primal

and dual forms of the output error are identical. In other words, δJ(ψH) = δJ(uH).

A.2 Galerkin Methods: Equivalence of Primal and Dual Forms

of Output Error

Above, we derived both a primal and dual form of the output error. For a primal

problem Lu = f with corresponding adjoint problem L∗ψ = g, we have the output

errors:

δJ(uH) = J(u)− J(uH) = −(r(uH), ψ) ,

201

and

δJ(ψh) = J(ψ)− J(ψh) = −(r∗(ψh), u) ,

where the residuals are given by r(uH) = LuH − f and r∗(ψh) = L∗ψh − g.

In general, since the h and H spaces may differ, there is no reason to think that

these error values will be the same. Even if we use the same mesh to compute both

primal and adjoint solutions, Eqns. A.6 and A.7 may give different values for δJ

depending on the method used. However, it turns out that for Galerkin methods in

particular, the two error values are in fact identical. In other words, if we compute

ψH and uH in the same space using a Galerkin method, then we will have δJ(uH) =

δJ(ψH).

This is straightforward to show. The Galerkin formulation of both primal and

adjoint problems is (respectively):

(LuH , vH) = (f, vH) ∀vH ∈ VH (A.8)

(L∗ψH , vH) = (g, vH) ∀vH ∈ VH , (A.9)

where VH is a discrete space of choice.

Furthermore, the exact solutions u and ψ will satisfy

(Lu, v) = (f, v) ∀v ∈ V , (A.10)

(L∗ψ, v) = (g, v) ∀v ∈ V , (A.11)

where V is an appropriate continuous space. Note that in general we will have VH ⊂ V .

Define the primal error to be e = u−uH and the adjoint error to be e∗ = ψ−ψH .

Next, since VH is contained in V , we can choose the test functions in A.10 and A.11

to be the discrete ones – i.e. we can take v = vH . We can then subtract equations

A.8 and A.9 from A.10 and A.11, respectively. This gives, for the primal problem:

(Lu, vH)− (LuH , vH) = (f, vH)− (f, vH) ∀vH ∈ VH
(L(u− uH), vH) = 0 ∀vH ∈ VH

(Le, vH) = 0 ∀vH ∈ VH , (A.12)

202

and for the adjoint problem:

(L∗ψ, vH)− (L∗ψH , vH) = (g, vH)− (g, vH) ∀vH ∈ VH
(L∗(ψ − ψH), vH) = 0 ∀vH ∈ VH

(L∗e∗, vH) = 0 ∀vH ∈ VH . (A.13)

The relations A.12 and A.13 are statements of primal and adjoint Galerkin orthogo-

nality. They say that the errors e and e∗, after application of the primal and adjoint

operators (respectively), are orthogonal to the discrete space VH .

Now, our goal is to show that for Galerkin methods, we have δJ(uH) = δJ(ψH).

Since δJ(uH) = (g, u− uH) = (g, e) and δJ(ψH) = (f, ψ − ψH) = (f, e∗), we need to

show that (g, e) = (f, e∗).

Noting that both e and e∗ are ∈ V (and hence can be used as test functions in

Eqns. A.10 and A.11), we have:

(g, e) = (L∗ψ, e) (adjoint equation)

= (Le, ψ) (adjoint identity and symmetry)

= (Le, ψ)− (Le, ψH)︸ ︷︷ ︸
0

(Galerkin orthogonality)

= (Le, ψ − ψH) (linearity of inner product)

= (Le, e∗) (definition of e∗)

= (L(u− uH), e∗) (definition of e)

= (Lu, e∗)− (LuH , e
∗) (linearity of inner product)

= (Lu, e∗)− (uH , L
∗e∗)︸ ︷︷ ︸

0

(adjoint identity)

= (Lu, e∗) (adjoint Galerkin orthogonality)

= (f, e∗) (primal equation)

=⇒ (g, e) = (f, e∗) . (A.14)

Thus, we have shown that for Galerkin methods, both primal and dual forms of the

error estimate are identical if ψH and uH are computed in the same space. So we can

write the single error esimate δJ as

δJ = −(r(uH), ψ) = −(r∗(ψH), u) . (A.15)

203

Furthermore, as mentioned in Chapter II, by Galerkin orthogonality we can subtract

coarse-space approximations ψH and uH from the above estimates, resulting in the

following equivalent forms:

δJ = −(r(uH), ψ − ψH) = −(r∗(ψH), u− uH) . (A.16)

A.3 Continuous Error Estimation: Nonlinear Problems

Up until now, we have focused on linear problems. However, in practice, the most

relevant problems are nonlinear. This raises the question: how do we perform error

estimation for nonlinear problems? Can we use a similar adjoint-based strategy to

approximate the error?

The answer is yes. We will show how this is done in the following sections.

A.3.1 A Second-Order Nonlinear Error Estimate

Recall that the generalized adjoint equation (Eqn. 2.35) defines the adjoint as the

function ψ satisfying

J ′u(δu) =

∫
Ω

ψ r′u(δu) dΩ ∀ (permissible) δu , (A.17)

where J ′u and r′u denote the variations of the output and residual with respect to

u, respectively. For a nonlinear problem, these variations must be taken about a

particular state. If we assume that this state is an approximation denoted by uH ,

then we can rewrite the adjoint equation as

J ′u[uH](δu) =

∫
Ω

ψ r′u[uH](δu) dΩ ∀ (permissible) δu . (A.18)

We can use this adjoint definition to derive a second-order error estimate for a given

output of interest, J(uH).

To obtain an output error estimate, we Taylor expand our true output J(u) about

the current state uH as follows:

J(u) ≈ J(uH) + J ′u[uH](δu) + O(δu2) . (A.19)

204

From Eqn. A.18, the first-order term in this expansion can be written as

J ′u[uH](δu) = (ψ, r′u[uH](δu)) (inner product notation)

= (r′u[uH](δu), ψ) (symmetry of inner product) . (A.20)

Thus, from Eqns. A.19 and A.20, we can write the output error as

J(u)− J(uH) ≈ (r′u[uH](δu), ψ) + O(δu2) . (A.21)

Our final step is to write the quantity r′u[uH](δu) in a simpler form. To do this, we

expand the true residual r(u) about the current solution uH , just as we did with J :

r(u) = 0 ≈ r(uH) + r′u[uH](δu) + O(δu2)

=⇒ r′u[uH](δu) ≈ −r(uH) +O(δu2) . (A.22)

Substituting Eqn. A.22 into A.21 gives the second-order error estimate:

J(u)− J(uH) ≈ −(r(uH), ψ) + R(2) , (A.23)

where R(2) = O(δu2) is the remainder.

Now, once again, for a Galerkin discretization the weak form of the primal equation

is ∫
Ω

r(uH) vH dx = (r(uH), vH) = 0 ∀vH ∈ VH . (A.24)

Therefore, if we have a coarse-space approximation to the adjoint, denoted by ψH , the

quantity (r(uH), ψH) will be 0 and can be subtracted from the above error estimate

to no effect, allowing us to write it as:

J(u)− J(uH) ≈ −(r(uH), ψ − ψH) + R(2) . (A.25)

Overall, this error estimate looks exactly like the linear one derived in Chapter II,

except that we now have an O(δu2) error in the error estimate.

A few points worth emphasizing are:

• It is important to note that the ψ in the above expressions is the exact adjoint

for the inexact linearization r′u[uH](δu). In other words, for the current state

205

uH , it is the adjoint solution that would be obtained by solving the adjoint

equations on an infinitely fine mesh. It is not, however, the “true” adjoint

solution, unless the approximate solution uH happens to be the exact solution

u.

• The O(δu2) error that comprises the remainder is a linearization error, which

arises due to the fact that we kept only the first two terms in the Taylor ex-

pansions of J(u) and r(u). If J(u) and r(u) are both linear, this error will

disappear, and we will recover our earlier (linear) form of the error estimate.

However, if either J(u) or r(u) is nonlinear, then R(2) will be nonzero, and the

error estimate will be inexact.

• The question then arises: can we eliminate the R(2) remainder and obtain a

more accurate error estimate? One obvious way to do this is to simply keep

more terms in the expansions of J(u) and r(u). However, this is an expensive

proposition and would require computation of the primal Hessian r′′u[uH](δu).

It turns out that there is a better way to eliminate R(2). This is described in

the next section.

A.3.2 A Third-Order Nonlinear Error Estimate for Galerkin Methods

In this section, which follows the work of Becker and Rannacher [10], we describe

how to eliminate the second-order remainder R(2) and hence obtain a third-order

error estimate. We assume that a Galerkin discretization method is used, so that the

equations being solved can be written as∫
Ω

vH r(uH) dΩ = 0 ∀vH ∈ VH = UH . (A.26)

In order to set the stage for the derivation, we will first need to review some

calculus.

From basic calculus, the change of a function f(x) over an interval [a, b] can be

written as:

f(b)− f(a) =

b∫
a

f ′(s)ds , (A.27)

where the prime denotes a standard derivative. If we take a = x and b = x + ∆x,

206

this becomes:

f(x+ ∆x)− f(x) =

x+∆x∫
x

f ′(s)ds. (A.28)

Now, we can parameterize the variable s by a new variable t, which goes from 0 to 1

over the interval [x, x + ∆x]. Taking s = x + t∆x and rewriting the above equation

in terms of t gives:

f(x+ ∆x)− f(x) =

 1∫
0

f ′(x+ t∆x︸ ︷︷ ︸
s

) dt

 ∆x︸︷︷︸
ds
dt

. (A.29)

Thus, we get the following representation for the change in the function f :

f(x+ ∆x)− f(x) =

 1∫
0

f ′(x+ t∆x) dt

∆x . (A.30)

The term in brackets is the “mean value” of the slope of f between x and x+ ∆x. In

other words, in a plot of f vs. x, it is just the slope of the line connecting f(x) and

f(x+ ∆x).

Above, f was a function of the single variable x. If instead f depends on two

variables (say x and y), we can write a similar formula for the change of f between

the points (x, y) and (x+ ∆x, y + ∆y):

f(x+ ∆x, y + ∆y)− f(x, y) =

 1∫
0

∂f

∂x
(x+ t∆x, y + t∆y) dt

∆x

+

 1∫
0

∂f

∂y
(x+ t∆x, y + t∆y) dt

∆y . (A.31)

Here, the variable t again goes from 0 to 1 as we traverse the diagonal between (x, y)

and (x+ ∆x, y + ∆y).

We now need to make one further generalization. What if, rather than a function,

f is actually a functional, which depends now on two functions x and y (as opposed

to coordinates)? Let us call this functional F rather than f . Then our new goal is to

find how F changes when we perturb the functions x and y from the original “point”

207

(x, y) to some new “point” (x+ δx, y+ δy). Note that we use a lowercase δ to denote

that these perturbations are now variations rather than scalar values.

While functionals cannot be differentiated in the classic sense, they do have

Fréchet derivatives. And we can use these Fréchet derivatives of F (x, y) to deter-

mine how it changes when we go from (x, y) to (x + δx, y + δy). We denote the

Fréchet derivative of F with respect to x as

F ′x[·, ·](δx), (A.32)

and the Fréchet derivative of F with respect to y as

F ′y[·, ·](δy), (A.33)

where the terms in brackets denote the “point” in state space about which F is being

linearized. For example, the Fréchet derivative of F with respect to x at the point

(x0, y0) would be denoted by F ′x[x0, y0](δx).

Since the Fréchet derivatives play a similar role as the multi-dimensional deriva-

tives in Eqn. A.31, we can write our formula for the change in F as follows:

F (x+ δx, y + δy)− F (x, y) =

1∫
0

F ′x [x+ t δx, y + t δy] (δx) dt

+

1∫
0

F ′y [x+ t δx, y + t δy] (δy) dt , (A.34)

where again t parameterizes the space between (x, y) and (x + δx, y + δy). We will

use this formula to obtain a third-order output error estimate.

Assume that we have obtained a state approximation uH ∈ UH and an adjoint

approximation ψH ∈ UH , which have been computed using Galerkin discretizations of

the primal and adjoint problems, respectively. Note that the Galerkin discretization

of the adjoint problem (linearized about uH) is defined by

J ′u[uH](δv) =

∫
Ω

ψH r
′
u[uH](δv) dΩ ∀ δv ∈ UH , (A.35)

for some discrete space UH .

In the following derivation, we will also make use of the true adjoint, ψ, which is

208

associated with the exact solution u and defined to satisfy

J ′u[u](δv) =

∫
Ω

ψ r′u[u](δv) dΩ ∀ δv ∈ U . (A.36)

Note that the definition of ψ here is different than in the previous section, where ψ

represented the infinite-dimensional adjoint for the inexact state uH .

To obtain an error estimate for some output of interest J(uH), we then construct

two functionals, F (u, ψ) and F (uH , ψH):

F (u, ψ) ≡ J(u)−
∫
Ω

ψ r(u) dΩ

︸ ︷︷ ︸
0 since r(u)=0

(A.37)

F (uH , ψH) ≡ J(uH)−
∫
Ω

ψH r(uH) dΩ

︸ ︷︷ ︸
0 by Galerkin orthogonality

(A.38)

Since the adjoint-weighted residual terms in the above equations are exactly zero,

we have that:

F (u, ψ)− F (uH , ψH) = J(u)− J(uH) .

Next, we define the difference between the true and approximate adjoints to be δψ =

ψ−ψH and the difference between the true and approximate states to be δu = u−uH .

We then have that ψ = ψH + δψ and u = uH + δu, which means the above formula

can be written:

F (uH + δu, ψH + δψ)− F (uH , ψH) = J(u)− J(uH) .

We have now expressed the output error in terms of a change in some functional

F , and from Eqn. A.34, we know a formula for computing this change. Just swapping

209

[x, y]→ [uH , ψH] and [δx, δy]→ [δu, δψ] in Eqn. A.34 allows us to write:

J(u)− J(uH) =

1∫
0

F ′u [uH + t δu, ψH + t δψ] (δu) dt

+

1∫
0

F ′ψ [uH + t δu, ψH + t δψ] (δψ) dt . (A.39)

Now the question is: how should we compute the integrals in this expression?

Since in general we cannot evaluate them analytically, we will instead approximate

them using the trapezoidal rule. For a classic function f , the trapezoidal rule over

the interval [a, b] is shown in blue below:

b∫
a

f(x) dx =
1

2
[f(a) + f(b)] −1

2

b∫
a

f ′′(x)(b− x)(x− a) dx

︸ ︷︷ ︸
remainder

(A.40)

=
1

2
[f(a) + f(b)] −∆x3

12
f ′′(x̄)︸ ︷︷ ︸

remainder

(A.41)

(Here, either form of the remainder may be used, and ∆x = b − a while x̄ is a

particular point inside the interval.) From Eqn. A.41, we see that the trapezoidal

rule gives a third-order approximation to the integral by using only the “endpoint”

values of f .

We can use the trapezoidal rule to approximate each of the Fréchet derivatives

in the above output error equation. The “endpoints” of the intervals correspond to

parameter values of t = 0 and t = 1, so we have:

1∫
0

F ′u [uH + t δu, ψH + t δψ] (δu) dt ≈ 1

2

[
F ′u[uH , ψH](δu) + F ′u[u, ψ](δu)

]
1∫

0

F ′ψ [uH + t δu, ψH + t δψ] (δψ) dt ≈ 1

2

[
F ′ψ[uH , ψH](δψ) + F ′ψ[u, ψ](δψ)

]

With these equations, we have converted our integrals into simple point evalua-

tions of the Fréchet derivatives at (uH , ψH) and (u, ψ). The only thing that remains

is to actually write out the derivatives at these points. We can obtain these by just

taking variations of Eqns. A.37 and A.38 with respect to u and ψ, then inserting our

210

particular values of δu and δψ. The four terms in the above trapezoidal approxima-

tions then become:

F ′u[uH , ψH](δu) = J ′u[uH](δu)−
∫
Ω

ψH r
′
u[uH](δu) dΩ (A.42)

F ′u[u, ψ](δu) = J ′u[u](δu)−
∫
Ω

ψ r′u[u](δu) dΩ (A.43)

F ′ψ[uH , ψH](δψ) = −
∫
Ω

r(uH) δψ dΩ (A.44)

F ′ψ[u, ψ](δψ) = −
∫
Ω

r(u) δψ dΩ (A.45)

Now, looking at these expressions, we see that the last term (Eqn. A.45) is exactly

zero, since the residual r(·) evaluated with the exact solution u vanishes. Likewise,

Eqn. A.43 is also zero. This is because the exact adjoint equation (Eqn. A.36) holds

for all δv ∈ U , so it must hold for our particular δu ∈ U as well.

So out of our four original terms, we are left with only two that are nonzero.

Thus, our error estimate in Eqn. A.39, after approximation by trapezoidal rule, can

be written as:

J(u)− J(uH) ≈ 1

2

[
F ′u[uH , ψH](δu) + F ′u[u, ψ](δu)︸ ︷︷ ︸

= 0

]

+
1

2

[
F ′ψ[uH , ψH](δψ) + F ′ψ[u, ψ](δψ)︸ ︷︷ ︸

= 0

]

≈ 1

2

[
F ′u[uH , ψH](δu) + F ′ψ[uH , ψH](δψ)

]

≈ 1

2
F ′u[uH , ψH](δu) − 1

2
(r(uH), δψ) . (A.46)

Now, let us look more closely at the F ′u[uH , ψH](δu) term in the above expression,

which is given by Eqn. A.42 as

F ′u[uH , ψH](δu) = J ′u[uH](δu)− (ψH , r
′
u[uH](δu)) . (A.47)

We will show that this term can actually be written as an adjoint residual weighted

by δu.

Since the r′u[uH](δu) term in the above expression represents the linearized resid-

211

ual, it can be rewritten as simply some linear operator L applied to the perturbation

δu. Thus, we have that

r′u[uH](δu) = Lδu . (A.48)

Now, we can define the adjoint operator (L∗) to this linear operator L in exactly the

same way as usual, i.e. via the identity

(Lu, v) = (u, L∗v) ∀u, v ∈ U . (A.49)

Furthermore, since δu ∈ U , this implies that

(Lδu, v) = (δu, L∗v) ∀v ∈ U . (A.50)

Inserting r′u[uH](δu) back in for Lδu then gives

(r′u[uH](δu), v) = (δu, L∗v) ∀v ∈ U . (A.51)

Finally, since ψH ∈ U , using the above relation, the last term in Eqn. A.47 can be

rewritten as

(r′u[uH](δu), ψH) = (δu, L∗ψH) , (A.52)

or

(ψH , r
′
u[uH](δu)) = (L∗ψH , δu) . (A.53)

Next, let us rewrite the J ′u[uH](δu) term in Eqn. A.47 in a slightly different form

as well. If we assume the output J is defined as

J(u) =

∫
Ω

j(u) dΩ , (A.54)

where j(u) is some nonlinear function of our choosing (e.g. j(u) = u2), then the

Fréchet linearization of this output (about uH) can be written as

J ′u[uH](δu) = (j′[uH], δu) . (A.55)

Recall that for linear problems, our output was defined to be J = (g, u) and its

212

variation was just J ′u(δu) = (g, δu). Then, comparing to the above equation, we see

that j′[uH] is effectively our “g” for a nonlinear problem.

Inserting Eqns. A.55 and A.53 back into Eqn. A.47 gives

F ′u[uH , ψH](δu) = (j′[uh], δu)− (L∗ψH , δu)

= −(L∗ψH − j′[uH], δu) . (A.56)

Now, just as the continuous adjoint equation is defined as

L∗ψ = g (A.57)

for a linear problem, it is straightforward to verify that the continuous adjoint equa-

tion is defined as

L∗ψ = j′u[uH] (A.58)

for a nonlinear problem. (This follows from the fact that, as discussed, j′u[uH] plays

effectively the same role as g.) Thus, for a nonlinear problem, the adjoint residual

can be defined as

r∗[uH](ψ) ≡ L∗ψ − j′u[uH] . (A.59)

Looking back at Eqn. A.56, we see then that it can be rewritten as

F ′u[uH , ψH](δu) = −(r∗[uH](ψH), δu) , (A.60)

i.e. as an adjoint residual weighted by δu. This is exactly what we sought to show.

Inserting the above expression (Eqn. A.60) back into the original output error

estimate (Eqn. A.46) and including the remainder term from the trapezoidal rule

then yields

J(u)− J(uH) ≈ −1

2
(r(uH), δψ) − 1

2
(r∗[uH](ψH), δu) + R(3) . (A.61)

Finally, expanding δu and δψ, the output error estimate becomes:

J(u)− J(uH) ≈ −1

2
(r(uH), ψ − ψH)− 1

2
(r∗[uH](ψH), u− uH) +R(3) . (A.62)

213

We have now done what we set out to do – we have derived a third-order accurate

error estimate for our output of interest. By including both primal and adjoint terms

in the error estimate, we have taken advantage of the duality between these two

vectors, allowing us to obtain a more accurate estimate than if we had used the

primal form alone.

Some further observations about the error estimate are:

• The error estimate depends on the perturbations ψ−ψH and u−uH . In practice,

we do not know ψ or u, so we must approximate them in some way. This can be

done, for example, by smoothing coarse approximations to the state and adjoint

on a finer mesh. Note that for linear Galerkin problems, our error estimate also

involved a factor of ψ − ψH . In that case, we could approximate ψ by just

solving the adjoint problem on a finer mesh. However, for nonlinear problems,

the adjoint equations themselves depend on the current value of the primal

state. Thus, to approximate the true ψ in the ψ − ψH term, we could consider

approximating the adjoint equations on both a finer mesh and using a better

approximation to the state.

• In the above analysis, we have claimed that the trapezoidal rule is third-order

accurate. However, it is typically thought of as a second-order method. So

which is correct? The answer is that it is second-order globally, but third-

order locally. In other words, if we partition our domain of integration into

subintervals, then the trapezoidal rule will be third-order accurate over each

subinterval, but when we sum all of the errors, the total error will be second-

order. This is the same thing that happens, for example, when numerically

integrating ODEs in time. The local accuracy on each time step is one order

higher than the global accuracy of the time scheme. In the case of our error

estimate, the important point is that we have only one interval (from (uH , ψH)

to (uH + δu, ψH + δψ)), so we obtain third-order accuracy over that interval.

• We have said that the remainder R(3) is third-order in the adjoint/state per-

turbations, but we can give a more detailed description of this term. From the

trapezoidal rule in Eqn. A.40, the remainder is given by:

−1

2

b∫
a

f ′′(x)(b− x)(x− a) dx.

Now, in our output error estimation, the term we approximated with the trape-

214

zoidal rule (in Eqn. A.39) was F ′u[·, ·](δu) + F ′ψ[·, ·](δψ). So this is our effective

“f(x)” in the above formula. Thus, to compute the remainder, we need to take

two more derivatives of this quantity. Noting that our interval ranges from

a = 0 to b = 1, we can write our output error remainder as:

R(3) = −1

2

1∫
0

D(2)
[
F ′u[·, ·](δu) + F ′ψ[·, ·](δψ)

]︸ ︷︷ ︸
effective f ′′

(1− t) t dt. (A.63)

Here, for ease of notation, we simply use dots [·, ·] to denote the states about

which the linearization is performed. These dots actually represent the states

[uH + tδu, ψH + tδψ]. Furthermore, note that D(2) denotes a full second Fréchet

derivative, which requires linearizations with respect to both u and ψ. In other

words, we can write the first Fréchet derivative of our “f(x)” term as:

f ′[·, ·] ≡ D(1)
[
F ′u[·, ·](δu) + F ′ψ[·, ·](δψ)

]
=F ′′uu[·, ·](δu2)

+F ′′uψ[·, ·](δu δψ)

+F ′′ψu[·, ·](δψ δu)

+F ′′ψψ[·, ·](δψ2), (A.64)

and the second Fréchet derivative as:

f ′′[·, ·] ≡ D(2)
[
F ′u[·, ·](δu) + F ′ψ[·, ·](δψ)

]
=F ′′′uuu[·, ·](δu3)

+F ′′′uuψ[·, ·](δu2 δψ)

+F ′′′uψu[·, ·](δu2 δψ)

+F ′′′uψψ[·, ·](δu δψ2)

+F ′′′ψuu[·, ·](δψ δu2)

+F ′′′ψuψ[·, ·](δψ2 δu)

+F ′′′ψψu[·, ·](δψ2 δu)

+F ′′′ψψψ[·, ·](δψ3). (A.65)

This second Fréchet derivative is the term we are interested in. Now, recall that

from Eqns. A.37 and A.38, our functional F depends only linearly on ψ. This

means that any terms above containing more than one derivative with respect

to ψ will be zero. Eliminating these terms and combining equivalent mixed

215

partials causes our second derivative to reduce to:

f ′′[·, ·] = F ′′′uuu[·, ·](δu3) + 3F ′′′uuψ[·, ·](δu2 δψ). (A.66)

Finally, writing out these variations of F explicitly (based on its definition in

Eqn. A.37) gives:

f ′′[u, ψ] = J ′′′uuu[u](δu3)−
∫
Ω

ψ r′′′uuu[u](δu3) dx

︸ ︷︷ ︸
F ′′′uuu

−3

∫
Ω

δψ r′′uu[u](δu2) dx

︸ ︷︷ ︸
3F ′′′uuψ

(A.67)

Here, we have inserted [u, ψ] as the state about which we are linearizing, just

to avoid confusion.

Finally, inserting this f ′′ into our expression for the remainder gives:

R(3) = −1

2

1∫
0

[
J ′′′uuu[u](δu3)−

∫
Ω

ψ r′′′uuu[u](δu3) dx

−3

∫
Ω

δψ r′′uu[u](δu2) dx

]
(1− t) t dt (A.68)

Again, for simplicity here we are using the states [u, ψ] to represent the actual

parameterized states [uH + tδu, ψH + tδψ].

With the form of the remainder derived, it is useful to consider what it means

in practice. First, it says that if the output and primal equations are linear (so

that the above derivatives vanish), then the remainder is zero and the output

error estimate is exact. This is expected, since we previously showed that the

error estimates for linear Galerkin problems are exact. Also, it follows from

this (and from the equivalence of primal and dual forms for Galerkin methods)

that for linear problems, the combined primal-dual error estimate will reduce

precisely to the single adjoint-weighted residual estimate derived previously.

We also see that, if J is quadratic in u (so that its third derivative vanishes)

then the corresponding term in the remainder will vanish. Thus, if our output is

quadratic and the primal equations linear, the third-order error estimate will

again be exact. However, for any nonlinear primal residual, there will always be

at least one nonzero remainder term, and the error estimate will not be exact.

216

Note also that since all terms in the above equation involve δu, but only one

involves δψ, there is an asymmetry. This asymmetry means that if we have the

exact primal solution, then the remainder (as well as the error estimate as a

whole) will reduce to zero; however, if we have the exact adjoint solution, then

both the output error and the remainder may still be nonzero. This reflects

the fact that, while for linear problems the adjoint and primal problems were

independent (and therefore of equal “importance”), for nonlinear problems the

adjoint is strictly dependent on the primal problem, and hence of less fundamen-

tal importance for computing the output. (Another way of saying this is that

for nonlinear problems, outputs cannot be written in an equivalent “dual” form,

so more information is required to compute the output than just the adjoint.)

• Finally, after deriving the third-order error estimate, we might wonder: is it

actually worth using? Or is the second-order form typically good enough?

The remainder terms of both the second- and third-order error estimates depend

on the perturbations δu = u − uH and δψ = ψ − ψH . Since uH and ψH are

assumed to be approximated on a coarse mesh with order p, we expect them to

converge at order p + 1. Therefore, the exected rates for the remainder terms

are:

R(2) = O((δu)2) = O((δψ)2) ∼ ((∆x)p+1)2 ∼ (∆x)2p+2 (A.69)

R(3) = O((δu)3) = O((δψ)3) ∼ ((∆x)p+1)3 ∼ (∆x)3p+3. (A.70)

Now, given some coarse-space output and corresponding error estimate, we can

write “corrected” forms of the output as:

J
(2)
corrected = J(uH) + δJ

(2)
est = J(uh) +R(2) (A.71)

J
(3)
corrected = J(uH) + δJ

(3)
est = J(uh) +R(3) (A.72)

Here, δJ
(2)
est refers to the second-order form of the error estimate, while δJ

(3)
est

refers to the third-order form. Also, we assume that in computing these error

estimates, a “fine” space has been used to approximate the true u and ψ (the

fine-space state is denoted by uh above). For this reason, our corrected output

is actually an approximation to J(uh) rather than the true J(u).

Looking at the above equations, we see that in general, the convergence rate of

the corrected output will be limited by the rate of either J(uh) or R. So the

217

question is, which of these quantities is more restrictive?

Consider the case where the output converges at a standard p + 1 rate – i.e.

it does not superconverge. Also, assume that our fine space is a p+ 1 space, as

is often used in practice. Then we have the following expected rates:

J(uh) ∼ (∆x)p+2

R(2) ∼ (∆x)2p+2

R(3) ∼ (∆x)3p+3

Here, we see that both R(2) and R(3) converge at a higher order than J(uh).

Thus, Jcorrected will achieve the same convergence rate as the fine-space output,

regardless of whether the second- or third-order form of the error estimate is

used. So we see that in this case, it is not necessarily worth using the third-order

estimate.

However, now consider the case where our output superconverges at a rate

of 2p+ 1, as is often true of integral outputs. Then our new expected rates are:

J(uh) ∼ (∆x)2(p+1)+1 ∼ (∆x)2p+3

R(2) ∼ (∆x)2p+2

R(3) ∼ (∆x)3p+3

In this case, we see that the rate of R(2) is one order lower than J(uh). This

means that if we were to use the second-order form of the error estimate, our

corrected output would converge sub-optimally, at a lower order than J(uh). On

the other hand, using the third-order error estimate would allow us to achieve

the optimal rate of J(uh).

218

APPENDIX B

ALE DG Implementation

This appendix provides implementation details for the deforming-domain (ALE)

DG method of Persson et al [78]. The following text is reproduced with minor modi-

fications from the XFlow DG solver documentation, which is written and maintained

primarily by K. Fidkowski.

B.1 Mesh Motion Implementation

As derived in Chapter 5, the PDE on the reference domain is given by

∂uX
∂t

∣∣∣
X

+∇X · ~FX(uX ,∇XuX) = 0, (B.1)

where

uX = gu,

~FX = gG−1~F− uXG−1~vG,

and ∇X denotes the gradient with respect to the reference coordinates. The flux ~FX

can then be broken into inviscid and viscous components by lumping the grid-velocity

term into the inviscid flux,

~FX = ~Fi
X − ~Fv

X , (B.2)

~Fi
X = gG−1~Fi − uXG−1~vG, (B.3)

~Fv
X = gG−1~Fv. (B.4)

219

We will need to transform the gradient from reference to physical, and this is done

by the chain and product rules,

∇u =
∂u

∂xj
=
∂(g−1uX)

∂Xd

∂Xd

∂xj
=

(
g−1∂uX

∂Xd

− g−2 ∂g

∂Xd

uX

)
G−1
dj

= g−1

(
∂uX
∂Xd

− g−1 ∂g

∂Xd

uX

)
G−1
dj , (B.5)

where d and j index the reference and physical coordinates, respectively. Also, the

following relationships involving G are useful

G = Gjd =
∂xj
∂Xd

, (B.6)

δji =
∂xj
∂xi

=
∂xj
∂Xd

∂Xd

∂xi
= GjdG

−1
di , (B.7)

⇒ G−1 = G−1
di =

∂Xd

∂xi
. (B.8)

B.2 Discretization

B.2.1 Weighted Residual Statement

Eqn. B.1 is solved on the reference domain using the DG method described in

Chapter IV. The weighted residual statement is obtained from the PDE by multiply-

ing by test functions (defined in the reference domain) and integrating over reference-

domain elements, κ. The resulting terms are as follows:

(total) RX(uX ,v) = Ru
X(uX ,v) +Ri

X(uX ,v) +Rv
X(uX ,v)

(unsteady) Ru
X(uX ,v) =

∫
κ

∂uX,k
∂t

vkdV

(inviscid) Ri
X(uX ,v) = −

∫
κ

∂XdvkF
i
X,dkdV +

∫
∂κ

v+
k F̂

i
X,dkNd dA

(viscous) Rv
X(uX ,v) =

∫
κ

∂XdvkF
v
X,dkdV −

∫
∂κ

v+
k F̂

v
X,dkNd dA

where v is a test function, d indexes the reference domain spatial coordinates, and

k indexes the state vector. The hats on quantities defined at the element bound-

aries indicate numerical fluxes, inviscid or viscous, on element interfaces or domain

boundaries – these will involve information from the neighboring element or boundary

220

condition. Also the + superscript indicates quantities taken from the element interior.

The solution would be straightforward were it not for the fact that fluxes and

boundary conditions are specified on the physical domain. A natural approach that

minimizes intrusion into the code is to express the reference-space fluxes and boundary

conditions in terms of the physical fluxes and boundary conditions.

B.2.2 Inviscid Flux

As derived in the previous section, the inviscid flux takes the following form,

~Fi
X = gG−1~Fi − uXG−1~vG (B.9)

= gG−1
(
~Fi − u~vG

)
. (B.10)

Thus, it includes the standard Galilean transformation and a multiplication by gG−1,

which is done by post-processing the equation-set specific flux.

On inter-element boundaries, evaluation of the numerical flux F̂ i
X,dkNd also re-

quires changes. Using the fact that

~NdA = g−1GT~nda

⇒ NddA = g−1(GT)djnjda,

and njda = g(G−T)jdNddA,

where (GT)dj = Gjd and (G−T)jd = G−1
dj , we obtain

F i
X,dkNd dA = gG−1

dj

(
F i
jk − ukvG,j

)
Nd dA

=
(
F i
jk − ukvG,j

)
gG−1

dj Nd dA

=
(
F i
jk − ukvG,j

)
nj da

Without mesh motion the numerical flux calculation returns F̂ i
jknj. With mesh mo-

tion present, the flux has to be modified to operate on
(
F i
jk − ukvG,j

)
instead of F i

jk.

This is a simple but intrusive change because we need to modify equation-set specific

functions (i.e. the Riemann solvers) to take as input a grid velocity, vG,j.

For example, given two states uL and uR, the Roe flux without mesh motion reads

[
F i
jknj

]Roe
=

1

2

(
FL
jknj + FR

jknj
)
− 1

2

∣∣∣Akl(uRoe)
∣∣∣(uRl − uLl).

221

With mesh motion present, the Roe flux becomes

[
(F i

jk − ukvG,j)nj
]Roe

=
1

2

(
FL
jknj + FR

jknj
)
− 1

2

(
uLk + uRk

)
uG −

1

2

∣∣∣Akl(uRoe)

−δkluG
∣∣∣(uRl − uLl), (B.11)

where uG = vG,jnj is the component of the grid velocity in the direction of the

physical normal ~n. The new terms consist of an addition to the flux of the average

state multiplied by the mesh velocity, and a shift of the eigenvalues of the linearization

about the Roe-average state, uRoe.

B.2.3 Viscous Flux

The contribution of viscous terms to the residual semilinear form is

Rv
X(uX ,v) =

∫
κ

∂XdvkF
v
X,dkdV −

∫
∂κ

v+
k F̂

v
X,dkNd dA. (B.12)

The reference-domain viscous flux is related to the physical viscous flux (which we

know how to compute) through

F v
X,dk = gG−1

di F
v
ik. (B.13)

The physical viscous flux is calculated using a diffusion matrix and the physical state

gradient,

F v
ik = Aijkl∂xjul. (B.14)

Using Eqn. B.5 for the physical gradient, the reference-domain viscous flux is

F v
X,dk = gG−1

di Aijkl∂xjul

= gG−1
di Aijklg

−1
(
∂XcuX,l − uX,lg−1∂Xcg

)
G−1
cj

= G−1
di AijklG

−1
cj︸ ︷︷ ︸

AX,dckl

(
∂XcuX,l − uX,lg−1∂Xcg

)
, (B.15)

where c, d index the reference domain coordinates. AX,dckl represents the diffusion

matrix on the reference domain. It can be re-written in a more symmetrical form as

AX,dckl = G−1
di AijklG

−1
cj = G−1

di AijklG
−T
jc .

222

The residual contribution in Eqn. B.12 then becomes

Rv
X(uX ,v) =

∫
κ

∂XdvkAX,dckl∂XcuX,ldV

−
∫
κ

∂XdvkAX,dckluX,lg
−1∂XcgdV

−
∫
∂κ

v+
k F̂

v
X,dkNd dA.

In the above expression the middle term is new – it is specific to the reference-to-

global mesh motion transformation. Of course, mesh motion is also included in the

transformed diffusion matrix, but there the transformation is hidden through the

definition of AX,dckl. The new middle term is unique because it cannot be rolled into

any of the other terms. Fortunately, the new term does not interfere with the viscous

discretization, which is obtained by integrating the first term twice by parts. This

integration pulls off a dual-consistency term (as mentioned in Chapter IV) evaluated

along the element boundary. The resulting terms in the final BR2 discretization are:

Rv
X(uX ,v) =

∫
κ

∂Xdvk AX,dckl ∂XcuX,ldV (interior term)

−
∫
κ

∂Xdvk AX,dckl uX,lg
−1∂Xcg dV (new interior term)

−
∫
∂κ

∂Xdv
+
k A

+
X,dckl (u

+
X,l − ûX,l)Nc dA (dual-consistency term)

−
∫
∂κ

v+
k F̂

v
X,dkNd dA (viscous flux term) .

We lump the two interior terms together in the implementation. The dual-consistency

term involves a unique definition of the state on the boundary, which is ûX,l = (u+
X,l+

u−X,l)/2 for BR2.

The viscous flux term is evaluated using Eqn. B.15,

(viscous flux term) = −
∫
∂κ

v+
k F̂

v
X,dkNd dA = −

∫
∂κ

v+
k [AX,dckl ∂XcuX,lNd] dA (B.16)

+

∫
∂κ

v+
k [AX,dckluX,lg−1∂Xcg Nd] dA (B.17)

223

where we use an overline to denote flux averaging on long expressions because the

hat symbol is not wide enough. The first term in the result is the standard viscous

flux. Its evaluation involves bringing in a jump-penalty (e.g. BR2) stabilization. All

expressions in this term are evaluated on the reference domain (they are the “X”

quantities), but aside from that there is no difference compared to the viscous flux

evaluation without mesh motion.

On the other hand, the second term is new. Noting that for an analytically

specified mesh motion g – whose derivatives are continuous across interfaces – the

averaging only has to be performed on the diffusion matrix and state,

[AX,dckluX,lg−1∂Xcg Nd] = [AX,dckluX,l]g
−1∂Xcg Nd

= {AX,dckluX,l} g−1∂Xcg Nd.

The curly brackets in the last line refer to equal averaging of the left and right

quantities at the interface in calculating the state and the diffusion matrix. This

is consistent with the definition of the state on the interface in the BR2 viscous

discretization (i.e. that it is just the average).

B.3 Boundary Conditions

The physical convective boundary flux, ~Fib, is modified to account for mesh motion

as given in Eqn. B.10,

~Fib
X = gG−1

(
~Fib − ub~vG

)
.

We note that the physical boundary flux must be aware of motion on the boundary,

~vG. For example, on a moving wall, the flow tangency boundary condition states that

the normal component of the fluid velocity is equal to the normal component of the

boundary motion velocity (which would be zero without mesh motion). This physical

consideration is separate from the subtraction of ub~vG above – both must be included.

Calculation of the viscous contribution on a boundary requires not only the bound-

ary state, ub, but also the boundary flux. Using Eqn. B.17, the transformed viscous

flux on the boundary is[
F̂ v
X,dkNd

]b
=
[
AX,dckl ∂XcuX,lNd

]b − [AX,dckluX,lg−1∂Xcg Nd

]b
. (B.18)

Although we always have access to a boundary state, ub (constructed for use in the

224

convective flux), the gradient on the boundary is not necessarily available from the

boundary conditions. In these (Dirichlet) cases, the state gradient information is

taken from the interior, and we write[
F̂ v
X,dkNd

]b
= AbX,dckl (∂XcuX,l)

+ Nd − AbX,dcklubX,lg−1∂Xcg Nd

= AbX,dckl
[
(∂XcuX,l)

+ − ubX,lg−1∂Xcg
]
Nd.

In other cases, the physical viscous flux is prescribed directly on the boundary (e.g.

zero heat flux for an adiabatic wall). In these cases, Eqn. B.18 is not used and

instead the viscous flux contribution is added directly to the residual. Let us call Qb
k

the prescribed boundary viscous flux dotted with the physical normal. Then in our

residual contribution, we will be integrating,

Qb
kda = F v

iknida = g−1GidF
v
X,dk gG

−1
ci NcdA = F v

X,dkNddA.

This means that the prescribed boundary viscous flux is the same in both the physical

and the reference domains. That is, no transformation needs to be applied to Qb
k when

adding the viscous flux contribution to the residual.

Finally we note that for systems of equations, boundary conditions will generally

be of the mixed type, in that for some k a boundary value of the state will be

prescribed while for other k a boundary flux will be prescribed.

B.4 Geometric Conservation Law

If we wish to preserve a free-stream state, we must satisfy a Geometric Conser-

vation Law (GCL). Persson et al [78] describe one technique for satisfying the GCL,

which we follow here. This technique relies on approximating (in reference space)

uX̄ = ḡu instead of uX = gu, where ḡ is a separate variable approximated using

the same basis and marched using the same unsteady solver as the state to solve the

following equation:

∂ḡ

∂t
−∇X · (gG−1~vG) = 0

Note that now a constant physical state (ū) is representable, since uX = ḡū is a

polynomial in the discrete approximation space.

Implementing a GCL requires integrating another vector, ḡ in time. In addition,

the formulas above need to be modified given that we now need to store uX̄ instead

225

of uX . Let’s see how these formulas change. First, some useful relations,

uX = gu, uX̄ = ḡu, uX̄ = ḡg−1uX , uX = gḡ−1uX̄ .

The expression for the physical gradient in Eqn. B.5 changes,

∇u =
∂u

∂xj
=
∂(ḡ−1uX̄)

∂Xd

∂Xd

∂xj
=

(
ḡ−1∂uX̄

∂Xd

− ḡ−2 ∂ḡ

∂Xd

uX̄

)
G−1
dj

= ḡ−1

(
∂uX̄
∂Xd

− ḡ−1 ∂ḡ

∂Xd

uX̄

)
G−1
dj . (B.19)

The convective flux requires no modifications as long as the physical state is computed

correctly (using ḡ). The viscous flux in Eqn. B.15 does change because the gradient

changes,

F v
X,dk = gG−1

di Aijkl∂xjul

= gG−1
di Aijklḡ

−1
(
∂XcuX̄,l − uX̄,lḡ−1∂Xc ḡ

)
G−1
cj

= gḡ−1G−1
di AijklG

−1
cj︸ ︷︷ ︸

AX̄,dckl

(
∂XcuX̄,l − uX̄,lḡ−1∂Xc ḡ

)
, (B.20)

The resulting terms in the BR2 discretization are as follows:

Rv
X(uX ,v) =

∫
κ

∂Xdvk AX̄,dckl ∂XcuX̄,ldV (interior term) (B.21)

−
∫
κ

∂Xdvk AX̄,dckl uX̄,lḡ
−1∂Xc ḡ dV (new interior term) (B.22)

−
∫
∂κ

∂Xdv
+
k A

+
X̄,dckl

(u+
X̄,l
− ûX̄,l)Nc dA (dual-consistency term) (B.23)

−
∫
∂κ

∂Xdv
+
k

[
−A+

X̄,dckl
(ḡ+)−1u+

X̄,l

]
(ḡ+ − ˆ̄g)Nc dA (GCL d.c. term)

(B.24)

−
∫
∂κ

v+
k F̂

v
X,dkNd dA (viscous flux term) . (B.25)

Note that ˆ̄g = 1
2
(ḡ+ + ḡ−). The GCL dual-consistency term accounts for the use of

the gradient of ḡ in the viscous flux. We derive it by considering an augmented state,

226

[ul; ḡ], for which the viscous flux from Eqn. B.20 is

F v
X,dk = AX̄,dckl

(
∂XcuX̄,l − uX̄,lḡ−1∂Xc ḡ

)
, (B.26)

⇒

[
F v
X,dk

0

]
=

[
AX̄,dckl AX̄,dckluX̄,lḡ

−1

0 0

][
∂XcuX̄,l

∂Xc ḡ

]
(B.27)

Note that the GCL component of the viscous flux is zero, hence the zeros in the

bottom row of the matrix. Applying the BR2 discretization to the above system

results in two dual-consistency terms, as written above. These can be combined to

yield:

Rv
X(uX ,v) =

∫
κ

∂Xdvk AX̄,dckl ∂XcuX̄,ldV (interior term) (B.28)

−
∫
κ

∂Xdvk AX̄,dckl uX̄,lḡ
−1∂Xc ḡ dV (new interior term) (B.29)

−
∫
∂κ

∂Xdv
+
k A

+
X̄,dckl

(
u+
X̄,l

ˆ̄g

ḡ+
− ûX̄,l

)
Nc dA (combined d.c. term)

(B.30)

−
∫
∂κ

v+
k F̂

v
X,dkNd dA (viscous flux term) . (B.31)

The viscous flux term, Eqn. B.17 also changes,

(viscous flux term) = −
∫
∂κ

v+
k F̂

v
X,dkNd dA = −

∫
∂κ

v+
k

[
AX̄,dckl ∂XcuX̄,lNd

]
dA (B.32)

+

∫
∂κ

v+
k

[
AX̄,dckluX̄,lḡ−1∂Xc ḡ Nd

]
dA (B.33)

Note that now quantities involving ḡ need to be averaged across element interfaces

since ḡ may be discontinuous at an element interface.

[
AX̄,dckluX̄,lḡ−1∂Xc ḡ Nd

]
=

[
AX̄,dckluX̄,lḡ−1∂Xc ḡ

]
Nd

=
{
AX̄,dckluX̄,lḡ

−1∂Xc ḡ
}
Nd.

There is no boundary condition on ḡ, since there is no PDE for this variable,

and so when imposing boundary conditions, we take the interior state: ḡb = ḡ+. We

sometimes need to linearize the boundary state with respect to ḡ+, and the required

227

equations read,

ubl = ubl (u
+
l) = ubl

(
u+
X̄,l

ḡ+

)

⇒ ∂ubl
∂ḡ+

=
∂ubl
∂u+

l

(
−
u+
X̄,l

(ḡ+)2

)

When penalizing boundary jumps (e.g. in the BR2 viscous discretization), we take

the difference of the interior reference state, u+
X̄,l

and the boundary reference state,

ub
X̄,l
≡ ḡ+ubl .

228

APPENDIX C

Relevance of GCL for Shock Tube Problem

In this appendix, we investigate how important satisfaction of the Geometric

Conservation Law (GCL) is for a one-dimensional shock-tube problem, within the

context of the DG ALE method discussed in Chapter V.

C.1 Relevance of the GCL for a 1D Shock Tube Problem

It is known that a lack of strict conservation can cause certain numerical methods

to give incorrect shock speeds and/or strengths, even upon mesh refinement [52, 64].

For simulations with mesh motion, we know that if we do not satisfy the GCL, conser-

vation errors can (and do) arise. An important question is whether these conservation

errors actually lead to incorrect shock properties for the DG ALE method. If they

do, then satisfying the GCL would be a necessity for problems with shocks.

To investigate this issue, we solve a one-dimensional Euler shock tube problem.

The initial condition is a standard Riemann problem, with a discontinuity located at

the center of the tube, and the left and right states shown in Table C.1. We solve

the problem with (i) no mesh motion, (ii) mesh motion and GCL, and (iii) mesh

motion without the GCL. For the motion cases, a strong left-right “plunge” motion

is introduced into the 1D mesh, which consists of 50 elements and spans the domain

[−1, 1]. The temporal discretization consists of a DG1 scheme with 400 time slabs.

The motion itself is defined by the mapping

x = X + 0.45 sin(2πt) (C.1)

and is blended to zero at the domain boundaries using a quintic blending polynomial

229

and parameters XC = 0, RC = 0.01, and D = 0.98 (as defined in Chapter V).

Theoretically, this motion should have no influence on the physics of the problem.

State Left Right

ρ 1.0 0.4
u 0.0 0.0
p 1.0 0.32

Table C.1: Left and right states for the shock tube initial condition. ρ, u, and p refer to
density, velocity, and pressure, respectively.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

1.1

x

D
e

n
s
it
y

No−GCL
GCL
No−Motion

(a) p = 0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

1.1

x

D
e
n
s
it
y

No−GCL
GCL
No−Motion

(b) p = 1

Figure C.1: Density profiles for a 1D shock tube problem, solved at (a) p = 0 and (b)
p = 1. The profiles shown are snapshots taken at time t = 5, after the shock has reflected
several times off of the domain boundaries.

By the end of the simulation, the initial shock has reflected several times off of

the domain boundaries, and the mesh has undergone 5 periods of motion. Snapshots

of density at the final time are shown in Figure C.1. We see that satisfaction of the

GCL makes a large difference for the under-resolved (i.e. p = 0) runs, but essentially

no difference at all as soon as p = 1 is used. For the p = 0 case, the no-GCL run

gives an incorrect shock speed, as expected, while the run satisfying the GCL gives

approximately correct shock properties. However, for p = 1, both GCL and no-GCL

runs give the correct shock position and strength, suggesting that satisfying the GCL

is not critical for this method so long as the solution is sufficiently resolved.

Of course, a more rigorous study could be performed to ensure that this trend

holds for even stronger shocks, and this conclusion about the GCL may not hold for

other methods. The fact that the current (DG ALE) method is conservative on the

reference domain – combined with the fact that it approximates the integral form of

230

the conservation law – likely explains its correct placement of shocks despite the lack

of strict conservation on the physical domain.

231

APPENDIX D

Optimal Test Functions

In this section, we show that for a one-dimensional advection-reaction problem, the

localized optimal test functions discussed in Chapter VI are in fact globally optimal

with respect to boundary accuracy.

D.1 Localization of the Test Space (One-Dimensional

Advection-Reaction)

Our primary goal in this work is to achieve accuracy in the fluxes through the

domain boundaries. For the advection-reaction problem in Section 6.5, this means

that we would like the flux on the right boundary,

J = auH(xR) , (D.1)

to be accurate. Ideally we would like it to have zero error.

From a posteriori error estimation, the error in a certain output (including the

above J) can be represented as the inner product of a corresponding adjoint solu-

tion and the residual of the governing PDE [10, 47, 36]. For our one-dimensional

advection-reaction problem, it is straightforward to show that the adjoint solution v

corresponding to J satisfies the following equation:

L∗v = −a∂v
∂x

+ cv = 0 v(xR) = 1 . (D.2)

232

This is a global differential equation, which can be solved analytically to obtain

v(x) = e−cxR/a︸ ︷︷ ︸
const.

ecx/a . (D.3)

The output error δJ = J(uH)− J(u) can then be written as a product of this v and

the residual of the PDE:

δJ =

∫
Ω

v r(uH) dx = b(uH , v)− l(v) . (D.4)

From this expression, it is clear that if the adjoint v happens to lie in the test

space of our finite element method, then the error in the flux J will be zero. This is

because if v were in the test space, one of our finite element equations would be

b(uH , v) = l(v) =⇒ b(uH , v)− l(v) = 0 =⇒ δJ = 0 . (D.5)

Our goal in this appendix is to show that, when using the local optimal test functions

defined in Section 6.5, this v is in fact contained in the test space, and therefore the

local test space can in fact deliver zero error in the domain-boundary flux.

As described in Section 6.5, to compute the local optimal test functions, we solve

elementwise adjoint problems for the following outputs on each element Ωe:

Ji =

∫
Ωe

φiu dx + wRφiu

∣∣∣∣
∂Ωe,R

. (D.6)

Now, for a trial basis φi that is nonzero on the right boundary, taking wR large will

make the boundary term in Ji dominate the interior term. Therefore, in the limit of

large wR, the interior term can be neglected and the output effectively becomes

Ji = wRφiu

∣∣∣∣
∂Ωe,R

. (D.7)

This is just a constant multiple of the flux through the downwind boundary of the

element. Since the constant makes no difference to the final test space, for purposes of

analysis we can treat the above Ji as a pure (local) flux output. This means that, on

any given element, one of the local optimal test functions (denoted by v̄(x̄)) satisfies

233

the following adjoint equation:

−a∂v̄
∂x̄

+ cv̄ = 0 v̄(∆x) = 1 . (D.8)

This equation is analogous to that for a global flux output (i.e. Eqn. D.2), but is

defined over an individual element rather than the entire domain. Here, x̄ is a local

coordinate associated with the element in question (see Figure D.1 for a definition of

the relevant quantities). Solving this equation for the test function v̄ gives

∆xd

x̄

x

v (x)

v̄ (x̄)

Figure D.1: Local and global coordinate systems and test functions. Note that a bar
designates local quantities.

v̄(x̄) = e−c∆x/a︸ ︷︷ ︸
const.

ecx̄/a . (D.9)

Finally, writing x̄ in terms of x using the transformation x̄ = x− d results in

v̄(x) = e−c∆x/a e−cd/a︸ ︷︷ ︸
const.

ecx/a . (D.10)

Comparing this local test function v̄ to the global adjoint v in Eqn. D.3, we see

these functions are indeed just constant multiples of each other. Thus, regardless of

where a given element is located (i.e. regardless of d) and regardless of the size of

the element (i.e. regardless of ∆x), one of the local test functions on each element

satisfies

v̄(x) = C v(x) (D.11)

for some constant C. Since by definition the test space includes all constant multiples

of v̄, this means that the global adjoint v is in fact contained in the test space. From

234

our earlier discussion, this then implies that the error in the domain-boundary flux J

is zero. Thus, the local optimal test space is in fact globally optimal with respect to

the domain-boundary flux. While we have focused on an advection-reaction problem

here, similar logic holds for more general problems (such as advection-diffusion).

235

APPENDIX E

Trial Space Optimization

In this section, we show some proof-of-concept results for a trial basis “optimiza-

tion” on element boundaries. The problem is two-dimensional advection. We show

that if the trial space is optimized near element boundaries (while simultaneously

employing optimal test functions) the errors in the domain-boundary fluxes can be

driven toward zero while keeping the total number of trial space basis functions fixed.

E.1 2D Advection: Trial Basis Optimization with Optimal

Test Functions

As discussed previously, if BDPG is to provide an advantage over standard HDG

in multiple dimensions, some type of trial space optimization on element boundaries

is required. If this trial-space optimization were performed, the number of globally

coupled degrees-of-freedom could be reduced relative to standard HDG.

In the end, our goal is to have the trial basis functions near element boundaries

be capable of representing the shape of the true fluxes well. One simple attempt at

accomplishing this consists of the following strategy:

1. On a given mesh (consisting of e.g. quadrilateral elements), solve a standard

DG problem at order p.

2. Next, in an element-local manner, obtain an estimate for the solution on a finer

space. (Here, we inject the order-p solution on each element to a p + 1 space,

then apply a single iteration of an elementwise block-Jacobi smoother. This

provides a cheap estimate/surrogate for the solution in the full p+ 1 space.)

236

3. Next, along each element boundary, pull off the “trace” of this p+ 1 surrogate

and add this trace shape to the trial space basis. (Since we need each basis

function to be two-dimensional, these one-dimensional traces are multiplied by

a linear function that smoothly blends them to zero at the opposite face of the

quadrilateral element.)

4. Delete any undesired interior modes in the original order-p trial space, since

these will not be relevant to achieving boundary accuracy.

5. Compute optimal test functions for the new trial space basis, which contains

the blended trace shapes. Use ptest = p + 1 to match the order of these trace

functions.

6. Solve the problem again, now using the optimal test functions and the “opti-

mized” trial functions.

7. After solving again, the errors in the boundary fluxes should be lower than

before, since the optimal test functions are now requesting accuracy in the

fluxes, and the trial space actually has the ability to provide that accuracy

(since we have added basis functions that approximate the true boundary/flux

modes).

This process can be repeated indefinitely to drive the flux errors lower and lower.

Note that after each iteration, we can simply update the shape of the “trace modes” in

the trial basis. We do not have to keep adding more trace modes. Thus, the number

of trial space degrees-of-freedom can be kept fixed as the flux errors are driven lower.

Another important point is that it is not always necessary to increase the order

of the “fine space” after every iteration. If we keep, say, 4 trace modes in the trial

basis (one corresponding to each edge of a quadrilateral element), then even if these

modes are, say, a p = 3 function at a certain iteration, they will still not span a full

p = 3 space. Thus, taking a full p = 3 space as the fine space even when the current

trace modes already contain some p = 3 information can still improve the solution.

This is the strategy we employ for the results shown below.

To test this preliminary trial space optimization, we solve a two-dimensional ad-

vection problem with veclocity ~a = [1.0 0.7], using a BDPG method based on the

DG formulation. The solution is manufactured to be

u(x, y) = 2 sin2(
3

5
πx) sin2(

3

5
πy) (E.1)

237

(shown in Fig. E.1) and the mesh is chosen to consist of 64 quadrilateral elements.

Figure E.1: Two-dimensional advection manufactured solution.

To compute the optimal test functions for BDPG, we use a large flux weight in the

error norm: specifically, w = 109.

We then perform the strategy outlined above. Specifically, for this problem, we:

1. Solve a p = 1 DG problem.

2. Use a p = 2 fine space for computing the surrogate/approximate solution for

the first “iteration” of the above algorithm.

3. Delete all undesired interior modes from the trial space, leaving only a constant

mode along with 4 blended “trace” basis functions. (From this point on, the

number of trial space basis functions is kept fixed at 5, and the trace modes are

simply updated during each iteration of the algorithm.)

4. For all subsequent iterations of the algorithm, keep the fine-space fixed at p = 3

and continue performing a block Jacobi smoothing/trace basis update after

every iteration.

Now, theoretically, if we perform enough block Jacobi smoothings (over the course

of the above algorithm), we should eventually reach the accuracy of the full p = 3 DG

238

solution, since this is the fine space we are smoothing on. However, the question is:

does updating the trial basis itself, combined with the use of optimal test functions,

cause us to reach this p = 3 level of accuracy before a more standard strategy? In this

case, a “standard” strategy would be to solve the p = 1 DG problem above, inject this

solution to a p = 3 space, then (rather than modifying the trial/test basis) simply

perform block Jacobi smoothings on this p = 3 space until the solution converges.

Fig. E.2 shows the convergence of the right-boundary flux error for both the

test/trial basis optimization strategy and the standard Jacobi smoothing. As we see,

both strategies eventually reach the same p = 3 level of accuracy (which happens to

be approximately 10−9 in this case), but the method using an optimized test/trial

space converges with only half the number of iterations. This is a promising result,

and verifies the idea of optimizing both test and trial functions simultaneously.

0 2 4 6 8 10 12 14 16 18
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Iteration number

R
ig

h
t−

F
lu

x
 E

rr
o
r

BDPG/TrialOptim, pmax=3, n=5, Ne=64

Jacobi Smoothing to p=3, Ne=64

Figure E.2: Convergence of the flux along the right boundary of the domain for both
(1) a standard block-Jacobi smoothing procedure, starting from a p = 1 DG solution
and smoothing to a p = 3 solution, and (2) a trial space “optimization” procedure,
in which the number of trial space basis functions n is kept fixed at 5 during later
iterations, while only the shape of these functions is updated. Optimal test functions
are computed simultaneously to request accuracy in the fluxes.

Finally, while the above problem was solved on a 64-element mesh, we can inves-

239

tigate how the same strategy performs on meshes with various numbers of elements,

Ne. This performance is shown in Fig. E.3, along with the performance of standard

block-Jacobi smoothing. We see that the optimal test/trial function strategy scales

more favorably with mesh size compared to the Jacobi method. Indeed, it is nearly

(though not quite) h-independent, so that the finer the mesh it is employed on, the

more efficient it is compared to block-Jacobi smoothing. Of course, block-Jacobi

smoothing is not the most efficient standard to compare against, but preliminary

comparisons to a p-multigrid technique show that the optimal test/trial functions

can outperform this method as well.

0 5 10 15 20 25 30 35 40 45
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Iteration number

R
ig

h
t−

F
lu

x
 E

rr
o

r

BDPG/TrialOptim, pmax=3, n=5, Ne=16
Jacobi Smoothing to p=3, Ne=16
BDPG/TrialOptim, pmax=3, n=5, Ne=49
Jacobi Smoothing to p=3, Ne=49
BDPG/TrialOptim, pmax=3, n=5, Ne=196
Jacobi Smoothing to p=3, Ne=196
BDPG/TrialOptim, pmax=3, n=5, Ne=441
Jacobi Smoothing to p=3, Ne=441

BDPG/TrialOptim, pmax=3, n=5, Ne=784

Figure E.3: Performance of test/trial function optimization compared to elementwise
block Jacobi smoothing. Convergence is shown for various mesh sizes, each with a
given number of elements Ne. The optimal test/trial functions strategy scales better
than Jacobi smoothing with increasing mesh size.

While these results are preliminary, they suggest that a similar strategy of test/trial

function optimizaiton could be worth pursuing for more general problems.

240

BIBLIOGRAPHY

241

BIBLIOGRAPHY

[1] Slimane Adjerid, Karen D. Devine, Joseph E. Flaherty, and Lilia Krivodonova.
A posteriori error estimation for discontinuous Galerkin solutions of hyper-
bolic problems. Computer Methods in Applied Mechanics and Engineering,
191(11):1097–1112, 2002.

[2] Slimane Adjerid and Thomas C. Massey. A posteriori discontinuous finite el-
ement error estimation for two-dimensional hyperbolic problems. Computer
Methods in Applied Mechanics and Engineering, 191(5152):5877 – 5897, 2002.

[3] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella
Marini. Unified analysis of discontinuous Galerkin methods for elliptic prob-
lems. SIAM Journal on Numerical Analysis, 39(5):1749–1779, 2002.

[4] P. Barbone and I. Harari. Nearly H1-optimal finite element methods. Com-
puter Methods in Applied Mechanics and Engineering, 190:5679–5690, Novem-
ber 2000.

[5] JW Barrett and Karen W Morton. Approximate symmetrization and Petrov-
Galerkin methods for diffusion-convection problems. Computer Methods in Ap-
plied Mechanics and Engineering, 45(1):97–122, 1984.

[6] Timothy Barth and Mats Larson. A posteriori error estimates for higher order
Godunov finite volume methods on unstructured meshes. In R. Herban and
D. Kröner, editors, Finite Volumes for Complex Applications III, pages 41–63,
London, 2002. Hermes Penton.

[7] Timothy J. Barth. Space-time error representation and estimation in Navier-
Stokes calculations. In Stavros C. Kassinos, Carlos A. Langer, Gianluca Iac-
carino, and Parviz Moin, editors, Complex Effects in Large Eddy Simulations,
pages 29–48. Springer Berlin Heidelberg, Lecture Notes in Computational Sci-
ence and Engineering Vol 26, 2007.

[8] F. Bassi and S. Rebay. A high–order discontinuous finite element method for
the numerical solution of the compressible Navier-Stokes equations. Journal of
Computational Physics, 131:267–279, 1997.

[9] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the com-
pressible Navier-Stokes equations. In Cockburn, Karniadakis, and Shu, editors,

242

Discontinuous Galerkin Methods: Theory, Computation and Applications, pages
197–208. Springer, Berlin, 2000.

[10] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. In A. Iserles, editor, Acta Numerica,
pages 1–102. Cambridge University Press, 2001.

[11] A. Belme, A. Dervieux, and F. Alauzet. Error estimation and adaptation for
functional outputs in time-dependent flow problems. Journal of Computational
Physics, 231:6323–6348, 2012.

[12] Michael Besier and Rolf Rannacher. Goal-oriented space-time adaptivity in the
finite element galerkin method for the compution of nonstationary incompress-
ible flow. International Journal for Numerical Methods in Fluids, 70:1139–1166,
2012.

[13] F. Brezzi, L.P. Franca, and A. Russo. Further considerations on residual-free
bubbles for advective-diffusive equations. Computer Methods in Applied Me-
chanics and Engineering, 166:25–33, January 1998.

[14] Franco Brezzi, Bernardo Cockburn, L Donatella Marini, and Endre Süli. Sta-
bilization mechanisms in discontinuous Galerkin finite element methods. Com-
puter Methods in Applied Mechanics and Engineering, 195(25):3293–3310, 2006.

[15] A. Brooks and T.J.R Hughes. Streamline upwind/Petrov-Galerkin formulations
for convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations. Computer Methods in Applied Mechanics and Engi-
neering, 32:199–259, September 1982.

[16] Tan Bui-Thanh, Leszek Demkowicz, and Omar Ghattas. A unified discontin-
uous Petrov–Galerkin method and its analysis for Friedrichs’ systems. SIAM
Journal on Numerical Analysis, 51(4):1933–1958, 2013.

[17] M. Celia, T. Russell, I. Herrera, and R. Ewing. An Eulerian-Lagrangian local-
ized adjoint method for the advection-diffusion equation. Advances in Water
Resources, 13:187–206, December 1990.

[18] Marco Ceze and Krzysztof J Fidkowski. Anisotropic hp-adaptation framework
for functional prediction. AIAA journal, 51(2):492–509, 2012.

[19] Marco Ceze and Krzysztof J Fidkowski. Drag prediction using adaptive discon-
tinuous finite elements. Journal of Aircraft, 51(4):1284–1294, 2014.

[20] Jesse Chan, Leszek Demkowicz, Robert Moser, and Nate Roberts. A new discon-
tinuous Petrov-Galerkin method with optimal test functions. Part V: Solution
of 1d Burgers and Navier–Stokes equations. The Institute for Computational
Engineering and Sciences, The University of Texas at Austin, Tech Report No.
10-25, 2010.

243

[21] Jesse Chan, Norbert Heuer, Tan Bui-Thanh, and Leszek Demkowicz. A robust
DPG method for convection-dominated diffusion problems II: Adjoint boundary
conditions and mesh-dependent test norms. Computers & Mathematics with
Applications, 67(4):771–795, 2014.

[22] Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. The develop-
ment of discontinuous Galerkin methods. Springer, 2000.

[23] Bernardo Cockburn, Mitchell Luskin, Chi-Wang Shu, and Endre Süli. Enhanced
accuracy by post-processing for finite element methods for hyperbolic equations.
Mathematics of Computation, 72(242):577–606, 2003.

[24] Johann P.S. Dahm and Krzysztof J. Fidkowski. Error estimation and adaptation
in hybridized discontinous Galerkin methods. Proceedings of the 52nd Aerospace
Sciences Meeting, 2014.

[25] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin
methods. Part I: The transport equation. Computer Methods in Applied Me-
chanics and Engineering, 199:1558–1572, April 2010.

[26] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin
methods. II. Optimal test functions. Numerical Methods for Partial Differential
Equations, 27:70–105, 2011.

[27] L Demkowicz and JT Oden. An adaptive characteristic Petrov-Galerkin fi-
nite element method for convection-dominated linear and nonlinear parabolic
problems in one space variable. Journal of Computational Physics, 67:188–213,
1986.

[28] Haibo Dong, Zongxian Liang, and Michael Harff. Optimal settings of aero-
dynamic performance parameters in hovering flight. International Journal of
Micro Air Vehicles, 1(3):173–181, 2009.

[29] Donald Estep. A short course on duality, adjoint operators, Greens functions,
and a posteriori error analysis. Lecture Notes, 2004.

[30] Donald Estep, Michael Holst, and Mats Larson. Generalized Green’s functions
and the effective domain of influence. SIAM Journal on Scientific Computing,
26(4):1314–1339, 2005.

[31] K. Fidkowski. High-order output-based adaptive methods for steady and un-
steady aerodynamics. In H. Deconinck and R. Abgrall, editors, 37th Advanced
VKI CFD Lecture Series. von Karman Institute, 2013.

[32] K. Fidkowski. Output-based error estimation and mesh adaptation for steady
and unsteady flow problems. In H. Deconinck and T. Horvath, editors, 38th
Advanced VKI CFD Lecture Series. von Karman Institute, 2015.

244

[33] Krzysztof J. Fidkowski. A Simplex Cut-Cell Adaptive Method for High–order
Discretizations of the Compressible Navier-Stokes Equations. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 2007.

[34] Krzysztof J. Fidkowski. Output error estimation strategies for discontinuous
Galerkin discretizations of unsteady convection-dominated flows. International
Journal for Numerical Methods in Engineering, 88:1297–1322, 2011.

[35] Krzysztof J. Fidkowski. An output-based dynamic order refinement strategy
for unsteady aerodynamics. AIAA Paper 2012-77, 2012.

[36] Krzysztof J. Fidkowski and David L. Darmofal. Review of output-based error
estimation and mesh adaptation in computational fluid dynamics. American
Institute of Aeronautics and Astronautics Journal, 49(4):673–694, 2011.

[37] Krzysztof J. Fidkowski and Yuxing Luo. Output-based space-time mesh adap-
tation for the compressible Navier-Stokes equations. Journal of Computational
Physics, 230:5753–5773, 2011.

[38] Bryan T. Flynt and Dimitri J. Mavriplis. Discrete adjoint based adaptive error
control in unsteady flow problems. AIAA Paper 2012-0078, 2012.

[39] Leopoldo P Franca, Sergio L Frey, and Thomas JR Hughes. Stabilized finite
element methods: I. Application to the advective-diffusive model. Computer
Methods in Applied Mechanics and Engineering, 95(2):253–276, 1992.

[40] Neal T. Frink. Test case results from the 3rd
AIAA drag prediction workshop. NASA Langley,
2007. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/

Workshop3/final results jm.tar.gz.

[41] Haiyang Gao and ZJ Wang. A conservative correction procedure via recon-
struction formulation with the chain-rule divergence evaluation. Journal of
Computational Physics, 232(1):7–13, 2013.

[42] M. B. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis
and postprocessing by duality. In Acta Numerica, volume 11, pages 145–236,
2002.

[43] M.B. Giles and N.A. Pierce. Analytic adjoint solutions for the quasi-one-
dimensional Euler equations. Journal of Fluid Mechanics, 426:327–345, 2001.

[44] D. Givoli. Non-local and semi-local optimal weighting functions for symmetric
problems involving a small parameter. International Journal for Numerical
Methods in Engineering, 26:1281–1298, 1988.

[45] Andreas Griewank and Andrea Walther. Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Transactions on Mathematical Software, 26(1):19–45, 2000.

245

[46] K. Harriman, D. Gavaghan, and E. Süli. The importance of adjoint consistency
in the approximation of linear functionals using the discontinuous Galerkin
finite element method. Technical Report Technical Report NA 04/18, Oxford
University Computing Lab Numerical Analysis Group, 2004.

[47] R. Hartmann and P. Houston. Error estimation and adaptive mesh refinement

for aerodynamic flows. In H. Deconinck, editor, 36th CFD/ADIGMA course
on hp-adaptive and hp-multigrid methods: VKI Lecture Series 2010-01 (Oct.
26-30, 2009). von Karman Institute for Fluid Dynamics, 2010.

[48] Ralf Hartmann. Adjoint consistency analysis of discontinuous Galerkin dis-
cretizations. SIAM Journal on Numerical Analysis, 45(6):2671–2696, 2007.

[49] Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite ele-
ment methods for the compressible Euler equations. Journal of Computational
Physics, 183(2):508–532, 2002.

[50] Ralf Hartmann and Paul Houston. An optimal order interior penalty discon-
tinuous Galerkin discretization of the compressible Navier-Stokes equations.
Journal of Computational Physics, 227:9670–9685, 2008.

[51] I. Herrera. Trefftz method: A general theory. Numerical Methods for Partial
Differential Equations, 16:561–580, November 2000.

[52] T.Y. Hou and P. LeFloch. Why non-conservative schemes converge to the wrong
solutions: Error analysis. Mathematics of Computation, 62:497–530, 1994.

[53] Thomas JR Hughes, Gonzalo R Feijóo, Luca Mazzei, and Jean-Baptiste Quincy.
The variational multiscale method – a paradigm for computational mechanics.
Computer Methods in Applied Mechanics and Engineering, 166(1):3–24, 1998.

[54] T.J.R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-
Neumann formulation, subgrid scale models, bubbles and the origins of sta-
bilized methods. Computer Methods in Applied Mechanics and Engineering,
127:387–401, March 1995.

[55] TJR Hughes and G Sangalli. Variational multiscale analysis: the fine-scale
Green’s function, projection, optimization, localization, and stabilized methods.
SIAM Journal on Numerical Analysis, 45(2):539–557, 2007.

[56] H.T. Huynh. A flux reconstruction approach to high-order schemes including
discontinuous Galerkin methods. AIAA Paper 2007-4079, 2007.

[57] Antony Jameson. Aerodynamic design via control theory. Journal of Scientific
Computing, 3:233–260, 1988.

[58] Steven M. Kast, Marco A. Ceze, and Krzysztof J. Fidkowski. Output-adaptive
solution strategies for unsteady aerodynamics on deformable domains. ICCFD7
-3802, 2012.

246

[59] Steven M Kast, Johann P.S. Dahm, and Krzysztof J Fidkowski. A hybrid
Petrov-Galerkin method for optimal output prediction. In 53rd AIAA Aerospace
Sciences Meeting. AIAA, 2015.

[60] Steven M. Kast, Johann P.S. Dahm, and Krzysztof J. Fidkowski. Optimal
test functions for boundary accuracy in discontinuous finite element methods.
Journal of Computational Physics, 298:360–386, 2015.

[61] Steven M. Kast and Krzysztof J. Fidkowski. Output-based mesh adaptation
for high order Navier–Stokes simulations on deformable domains. Journal of
Computational Physics, 252(0):468–494, 2013.

[62] Lilia Krivodonova and Joseph E Flaherty. Error estimation for discontinuous
Galerkin solutions of two-dimensional hyperbolic problems. Advances in Com-
putational Mathematics, 19(1-3):57–71, 2003.

[63] Ki-Hwan Lee, Juan J. Alonso, and Edwin van der Weide. Mesh adaptation
criteria for unsteady periodic flows using a discrete adjoint time-spectral for-
mulation. AIAA Paper 2006-692, 2006.

[64] Randall J. LeVeque. Numerical methods for conservation laws. In Lecture Notes
in Mathematics, pages 122–129. Birkhauser, 1992.

[65] James Lu. An a Posteriori Error Control Framework for Adaptive Precision Op-
timization Using Discontinuous Galerkin Finite Element Method. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2005.

[66] Y. Luo and K.J. Fidkowski. Output-based space time mesh adaptation for
unsteady aerodynamics. AIAA Paper 2011-491, 2011.

[67] Karthik Mani and Dimitri J. Mavriplis. Discrete adjoint based time-step adap-
tation and error reduction in unsteady flow problems. AIAA Paper 2007-3944,
2007.

[68] Karthik Mani and Dimitri J. Mavriplis. Error estimation and adaptation for
functional outputs in time-dependent flow problems. Journal of Computational
Physics, 229:415–440, 2010.

[69] D. J. Mavriplis. Results from the 3rd drag prediction workshop using the
NSU3D unstructured mesh solver. AIAA Paper 2007-256, 2007.

[70] D. Meidner and B. Vexler. Adaptive space-time finite element methods for
parabolic optimization problems. SIAM Journal on Control Optimization,
46(1):116–142, 2007.

[71] D Moro, NC Nguyen, and J Peraire. A hybridized discontinuous Petrov–
Galerkin scheme for scalar conservation laws. International Journal for Nu-
merical Methods in Engineering, 91(9):950–970, 2012.

247

[72] Siva K. Nadarajah and Antony Jameson. Optimum shape design for unsteady
flows with time-accurate continuous and discrete adjoint methods. AIAA Jour-
nal, 45(7):1478–1491, 2007.

[73] Siva K. Nadarajah and Antony Jameson. Optimum shape design for unsteady
three-dimensional viscous flows using a nonlinear frequency-domain method.
AIAA Journal of Aircraft, 44(5):1513–1527, 2007.

[74] Marian Nemec and Michael J. Aftosmis. Error estimation and adpative re-
finement for embedded-boundary Cartesian meshes. AIAA Paper 2007-4187,
2007.

[75] NC Nguyen, J Peraire, and B Cockburn. Hybridizable discontinuous galerkin
methods. In Spectral and High Order Methods for Partial Differential Equations,
pages 63–84. Springer, 2011.

[76] Michael Ol and et al. Unsteady aerodynamics for micro air vehicles. NATO
Research and Technology Organisation AVT-149, 2009.

[77] J. Peraire, N. C. Nguyen, and B. Cockburn. An embedded discontinuous
Galerkin method for the compressible Euler and Navier-Stokes equations. AIAA
Paper 2011-3228, 2011.

[78] P.-O. Persson, J. Bonet, and J. Peraire. Discontinuous Galerkin solution of the
Navier-Stokes equations on deformable domains. Computer Methods in Applied
Mechanical Engineering, 198:1585–1595, 2009.

[79] Niles A. Pierce and Michael B. Giles. Adjoint recovery of superconvergent
functionals from PDE approximations. SIAM Review, 42(2):247–264, 2000.

[80] W. Reed and T. Hill. Triangular mesh methods for the neutron transport
equation. Los Alamos Scientific Laboratory Technical Report LA-UR-73-479,
1973.

[81] Thomas Richter. Discontinuous Galerkin as time-stepping scheme for the
Navier-Stokes equations. In Fourth International Conference on High Perfor-
mance Scientific Computing Modeling, Simulation and Optimization of Complex
Processes, Hanoi, Vietnam, 2009.

[82] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 43:357–372, 1981.

[83] Markus P. Rumpfkeil and David W. Zingg. A general framework for the optimal
control of unsteady flows with applications. AIAA Paper 2007-1128, 2007.

[84] Adrian Sandu. On the properties of Runge-Kutta discrete adjoints. In Compu-
tational Science–ICCS 2006, pages 550–557. Springer, 2006.

248

[85] Adrian Sandu. On consistency properties of discrete adjoint linear multistep
methods. Technical Report TR-07-40, Department of Computer Science, Vir-
ginia Polytechnic Institute and State University, 2007.

[86] Michael Schmich and Boris Vexler. Adaptivity with dynamic meshes for space-
time finite element discretizations of parabolic equations. SIAM Journal on
Scientific Computing, 30(1):369–393, 2008.

[87] Jochen Schütz and Georg May. A hybrid mixed method for the compressible
Navier–Stokes equations. Journal of Computational Physics, 240:58–75, 2013.

[88] S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen, and A.T. Patera.
“Natural norm” a posteriori error estimators for reduced basis approximations.
Journal of Computational Physics, 217:37–62, 2006.

[89] W. Shyy, Y. Lian, J. Tang, H. Liu, P. Trizila, B. Stanford, L. Bernal, C. Ces-
nik, and P. Friedmann. Computational aerodynamics of low Reynolds number
plunging, pitching and flexible wings for MAV applications. Acta mechanica
Sinica, 24(4):351–373, 2008.

[90] Wei Shyy, Mats Berg, and Daniel Ljungqvist. Flapping and flexible wings for
biological and micro air vehicles. Progress in Aerospace Sciences, 35:455–505,
1999.

[91] Pavel Soĺın, Karel Segeth, and Ivo DoleŽel. Higher–Order Finite Element Meth-
ods. Chapman and Hall, 2003.

[92] D.N. Srinath and Sanjay Mittal. An adjoint method for shape optimization
in unsteady viscous flows. Journal of Computational Physics, 229:1994–2008,
2010.

[93] Ed Tinoco, David Levy, and Olaf Brodersen. Test case results
from the 5th AIAA drag prediction workshop. NASA Langley,
2012. http://aiaa-dpw.larc.nasa.gov/Workshop5/presentations/

DPW5 Presentation Files/14 DPW5%20Summary-Draft V7.pdf.

[94] John C. Vassberg, Mark A. DeHaan, and Tony J. Sclafani. Grid generation
requirements for accurate drag predictions based on OVERFLOW calculations.
AIAA Paper 2003-4124, 2003.

[95] D. A. Venditti and D. L. Darmofal. Anisotropic grid adaptation for functional
outputs: application to two-dimensional viscous flows. Journal of Computa-
tional Physics, 187(1):22–46, 2003.

[96] Peter E Vincent, Patrice Castonguay, and Antony Jameson. A new class of
high-order energy stable flux reconstruction schemes. Journal of Scientific Com-
puting, 47(1):50–72, 2011.

249

[97] Li Wang, Dimitri Mavriplis, and W. Kyle Anderson. Adjoint sensitivity for-
mulation for discontinuous galerkin discretizations in unsteady inviscid flow
problems. AIAA Journal, 48(12):2867–2883, 2010.

[98] Qiqi Wang. Forward and adjoint sensitivity computation of chaotic dynamical
systems. Journal of Computational Physics, 235:1–13, 2013.

[99] Qiqi Wang, Rui Hu, and Patrick Blonigan. Least Squares Shadowing sensitivity
analysis of chaotic limit cycle oscillations. Journal of Computational Physics,
267:210–224, 2014.

[100] David J. Willis, Emily R. Israeli, Per-Olof Persson, Mark Drela, Jaime Peraire,
Sharon M. Swartz, and Kenneth S. Breuer. A computational framework for
fluid structure interaction in biologically inspired flapping flight. AIAA Paper
2007-3803, 2007.

[101] Michael Woopen, Georg May, and Jochen Schütz. Adjoint-based error esti-
mation and mesh adaptation for hybridized discontinuous Galerkin methods.
International Journal for Numerical Methods in Fluids, 76(11):811–834, 2014.

[102] Nail K. Yamaleev, Boris Diskin, and Eric J. Nielsen. Local-in-time adjoint-based
method for design optimization of unsteady flows. Journal of Computational
Physics, 229:5394–5407, 2010.

[103] Masayuki Yano. An Optimization Framework for Adaptive Higher-Order Dis-
cretizations of Partial Differential Equations on Anisotropic Simplex Meshes.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
2012.

[104] Masayuki Yano and David L Darmofal. An optimization-based framework
for anisotropic simplex mesh adaptation. Journal of Computational Physics,
231(22):7626–7649, 2012.

[105] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, and V. M. Calo.
A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test
norm and time-harmonic wave propagation in 1D. Journal of Computational
Physics, 230:2406–2432, 2011.

250

