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CHAPTER I

Introduction

Human behavior is an essential and complex factor of infectious disease trans-

mission systems. Individuals can change risky or protective behaviors over time in

response to outbreaks or other external conditions such as political or environmental

shifts. In addition, social interactions provide opportunities for pathogens to spread.

Finally, epidemiological interventions often require cooperation from their target

population. Indeed, almost all interventions require the consideration of behavior,

changing or otherwise. Modern infectious disease control programs increasingly seek

to address these concerns, yet disease modeling studies rarely include an explicit

behavioral framework. To do so, mathematical models will need to be developed

that can accommodate behavioral features such as adaptation that are frequently

simplified in current approaches.

In higher income countries, developments in sanitation, hygiene, treatment, and

vaccination have eradicated or nearly eradicated many major sources of disease-

related mortality. Polio, measles, and smallpox have been controlled by aggressive

vaccination campaigns, while the burden of sexually transmitted infections (STIs)

such as syphilis and HIV have been reduced through the promotion of safe-sex and

treatment campaigns. However, maintaining successful control is challenging, due

1
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in part to changes in behavior over time. Recent measles outbreaks suggest that

vaccine fatigue and anti-vaccination sentiment have reduced childhood vaccination

rates, often counter-intuitively in wealthier, well educated communities [1–3]. Simi-

larly, the relative incidence of treatable STIs has increased or remained high among

adolescents, minorities, and men who have sex with men [4–6]. Promoting the use of

prophylaxis and testing and treatment services are crucial, but adherence with both

is likely to vary depending on the degree of perceived risk. In particular, when there

is little risk of infection, individuals may be less inclined to practice safe sex, poten-

tially initiating new outbreaks [7–9]. Currently, relatively few modeling studies of

either vaccine-preventable or sexually transmitted diseases explicitly include behav-

ior change. Those that do have begun to use methods from economics, specifically

game theory, to handle behavior-disease feedback [10–17]. These economic models

are flexible and have a well developed theoretical foundation making them suitable

for integration with existing techniques in mathematical epidemiology.

Emerging disease outbreaks present important opportunities to apply mathemat-

ical models to inform public health responses. However, under these circumstances

the costs of model mis-specification are high, both due to the humanitarian and eco-

nomic ramifications of mis-prediction as well as the degree of public attention focused

on new outbreaks. The 2014 Ebola virus epidemic in West Africa reflects both the

value and hazards of modeling in the early stages of an outbreak. Model projections

were used by global health agencies to estimate the scope of transmission and allot

burial teams and treatment units. However, many of the early models predicted a

larger number of cases than actually occurred [18–22]. Even though projections were

typically reported as worst-case scenarios, mathematical modeling was criticized for

producing inaccurate and alarmist forecasts. While mis-prediction for Ebola does
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not necessarily reflect a fundamental fault in methodology, later findings do suggest

the importance of considering behavioral factors [23]. Scaling the population by a

factor to represent the population at risk and reporting rate improves model estima-

tion and short-term forecasting [24]. A feedback loop between the number of cases,

the strength of control responses, and changes in protective behavior among the

populations affected may also have contributed to errors in predictions from Ebola

models.

Epidemic and emerging diseases are both important, challenging classes of prob-

lems for infectious disease epidemiology. A third class, the control of endemic diseases

in lower income countries is an equally difficult but crucial objective of global pub-

lic health. Among these, waterborne diarrheal diseases remain the second leading

cause of death among children under five years [25]. Diarrheal disease also incurs

large costs in terms of lost productivity and reduced quality of life for both children

and adults. Improving drinking water security is therefore a major objective in the

United Nations (UN) Sustainable Development Goals (SDG) for 2030 [26]. Doing so

will require large scale expansions of existing water treatment programs as well as

the development of new intervention strategies.

From an intervention design and implementation perspective, it is necessary to

consider whether control measures are compatible with regional attitudes and cus-

toms. Decentralized water, sanitation, and hygiene (WASH) interventions exemplify

these challenges. Household water treatment (HWT) can achieve high efficacy, re-

moving over 99.9999% of pathogens in small scale trials. However, HWT often

underperforms when implemented at a population level [27–30]. Low uptake and

continued use may be due to undesirable usability and reliability characteristics of

HWT methods. For example, boiling requires a large amount of energy and does
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not scale well with large volumes of water. Chemical treatment can alter the taste

of water such that it becomes unpalatable [31, 32], while highly efficacious filters can

have slow flow rates and are prone to clogging [33–35]. Designing and evaluating

interventions without considering these factors may perpetuate poor compliance and

impair progress toward development and health targets.

The work presented here demonstrates how mathematical models of behavior

can be integrated with transmission models to address the three infectious disease

contexts above. This dissertation is structured as follows: Chapter II contains a sum-

mary of mathematical modeling approaches for infectious disease and human behav-

ior. Chapter III investigates the effects of adaptive prophylaxis use for the prevention

of sexually transmitted infections by integrating Bayesian game theory and evolu-

tionary dynamics with the susceptible-infected-susceptible (SIS) model. Chapter IV

addresses changes in burial practices during the 2014 Ebola virus outbreak in West

Africa. This work addresses parameter estimation, model selection, and forecasting

for coupled behavior-disease models. Chapter V presents a decision theory aug-

mented quantitative microbial risk assessment (QMRA) model for the evaluation of

household water treatment (HWT) interventions with incomplete compliance. This

model connects behavioral modeling and risk assessment to intervention policy eval-

uation. Finally, Chapter VI contains concluding remarks. Throughout the following

chapters we focus on both methodological developments as well as insights gained

regarding infectious disease dynamics and the implementation of control programs.



CHAPTER II

Background

2.1 Modeling infectious disease

2.1.1 Compartmental transmission models

Mathematical models are frequently used in infectious disease epidemiology to

study transmission processes. The SIR compartmental model,first developed by Ker-

mack and McKendrick in 1927 [36], is a fundamental approach from which numerous

others have been derived. The population is divided into compartments that repre-

sent stages of a disease and individuals move between compartments based on rate

equations. These can be represented as a system of differential equations such as the

example given below:

Ṡ = µ− βSI − µS

İ = βSI − γI − µI

Ṙ = γI − µR

(2.1)

where S, I, and R are the fractions of the population that are susceptible, infectious,

and recovered respectively. β represents the transmission rate, the product of the

contact rate and the probability of transmission per contact. γ is the recovery rate.

This model assumes that new individuals are born into the susceptible compartment

at rate µ, which is also the per-capita death rate, maintaining a constant population

size.

5
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The popularity of compartmental models is due in part to their flexibility. Dis-

ease natural history can be captured by extending the infectious compartments, an

approach often used for HIV, Tuberculosis, and recently, Ebola. Contact patterns

can similarly be addressed by classifying groups according to their activity levels.

Most infectious disease transmission models are nonlinear and cannot be solved

analytically. However, many algorithms exist to numerically solve systems of differ-

ential equations [37]. In addition, it is possible to calculate some epidemiologically

relevant values such as steady states without solving the full system of equations.

The basic reproduction number (R0) The basic reproduction number is a key

concept in infectious disease epidemiology [38]. This term characterizes the expected

number of secondary infections caused by a single infected individual in a completely

susceptible population over the duration of their infection [38–40]. When R0 < 1

there are not enough new cases to sustain transmission. By contrast when R0 >

1 the number of cases grows over time, leading to an outbreak. Given that this

threshold acts as a condition for the stability of the disease free equilibrium (DFE)

in a compartmental model, it is useful for outbreak control. Interventions which

can reduce R0 below 1 are expected to prevent the spread of infection through a

population. R0 can be calculated by linearizing the system of differential equations

about the DFE, or using the Next-Generation Matrix approach [40] for more complex

models.

2.2 Modeling human behavior

Mathematical models of human behavior have been a subject of interest among

social and physical scientists as early as the 17th century. Contributions by Blaise

Pascal, Daniel Bernoulli, the Marquis de Condorcet, and others integrated proba-
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bility theory, enlightenment philosophical concepts, and Newtonian physics to form

the basis of modern decision and social choice theory. Later, John von Neumann

and Oskar Morgenstern developed the formal specifications for decision and game

theory in their seminal work The Theory of Games and Economic Behavior [41].

These methods are widely used in economics and political science, but have been

adopted by other fields as well. The development of evolutionary game theory [42]

provided an extended framework to model animal competition and natural selection

for theoretical ecology. Both classical and evolutionary game theory have been used

to represent behaviors in transmission models. For example, Reluga and Galvani de-

veloped a differential game approach to vaccination and social distancing [11, 43, 44],

while Bauch, Reluga, and others have used evolutionary dynamics to model changes

in vaccination behavior [10, 13]. In general however, integrating economic models of

behavior into epidemiological models remains uncommon.

2.2.1 Decision theory

Decision problems represent situations where an individual actor must make a

choice between some set of alternatives. Formally, a decision problem is characterized

by the following features:

• Actions: the choices available to an individual.

• Outcomes: the result of each possible action.

• Preferences: the ranking an individual assigns to the set of outcomes.

We denote the set of actions A and the set of outcomes X. Often the mapping

from A to X is one-to-one and actions and outcomes are described interchangeably.

Formally, preferences are characterized by a preference order R. We use the notation

� to indicate a preference relation under R. For a pair of outcomes x, y ∈ X, x � y
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indicates that x is at least as good as y. Intuitively a preference order should allow

an individual to decide which action or actions lead to the best outcome. As such, a

preference order should satisfy two properties: completeness and transitivity.

Definition II.1. A preference order R is complete if and only if for any pair of

outcomes x, y ∈ X, either x � y, y � x or both.

Completeness states that when an individual is presented with two potential

choices they must rank them according to how much they like each outcome. This

allows individuals to be indifferent by ranking two alternatives equally, but does not

allow them to be indecisive by refusing to provide a ranking.

Definition II.2. A preference order R is transitive if and only if for any three

outcomes x, y, z ∈ X, x � y and y � z implies that x � z.

Transitivity precludes the possibility of cycles in a preference order. This imposes

consistency between binary comparisons and the preference order as a whole, i.e., if

an individual would choose x over y, they should also choose x over anything that

they prefer less than y. Together, completeness and transitivity guarantee that an

individual will always have at least one most-preferred alternative. A preference

order satisfying these properties is known as a rational preference order.

It is possible and often convenient to represent rational preference orders using a

functional form denoted the utility or payoff function.

Definition II.3. A utility (payoff) function u : X → R represents the preference

order R if and only if for any pair of outcomes x, y ∈ X, when x � y, u(x) ≥ u(y).

One key difference between utility functions and preference orders is whether

alternatives are compared based on a cardinal or ordinal relation, respectively. As

a result, in addition to specifying whether one alternative is preferred to another, a
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utility function characterizes the degree to which it is preferred. This is advantageous

in some circumstances but requires stronger assumptions about how individuals form

preferences.

In order to determine which choice an individual is likely to make, decision theory

assumes that actors are rational. In an economic context, this is defined as follows:

Definition II.4. A rational actor knows the set of alternatives A and outcomes

X, forms a rational preference order R over these outcomes, and always chooses an

action a∗ that corresponds to the most preferred outcome x∗ such that for any other

action y ∈ X, x∗ � y.

Note that economic rationality is not identical to colloquial rationality – a most-

preferred action need not be a “good” choice from any perspective other than the in-

dividual making it. However, the assumption of rationality remains actively debated

as behavioral experiments often demonstrate apparently irrational choices among

participants [45, 46]. While these results are noteworthy, it is not clear whether

they demonstrate truly irrational behavior or an incorrect specification of available

actions and preferences [47].

Like a preference order, a utility function can be used to determine which alter-

native an individual is likely to choose. Doing so requires finding the outcome that

maximizes an individual’s utility,

x∗ = argmaxxu(x). (2.2)

Based on the definition of a utility function, a maximum utility outcome must also

be at the top of the preference order.
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2.2.2 Game theory

Game theory was developed in the 1940’s by von Neumann and Morgenstern

[41] to address decision problems involving more than one interacting individual. In

a general game, individuals (referred to as players) select actions from discrete or

continuous alternatives and receive payoffs based on the outcome mapped to the set

of all players’ choices. As an extension of decision theory, the formal specification of

a game theoretic model is similar. A normal form game has the following:

• A set of individuals N = {1, 2, ..., n}.

• Each individual i chooses an action ai from a set Ai.

• A profile of actions for all individuals a = (a1, a2, ..., an) defines an outcome.

• Each individual has a complete and transitive preference orderRi over outcomes.

Actions in a game-theoretic model typically refer to discrete alternatives. More

generally, these may be referred to as strategies, where a strategy si can be either

a specific action, or a probability distribution over multiple actions. We refer to

the former as a pure strategy and the latter as a mixed strategy. A strategy profile

s specifies one strategy for each player. As in decision theory, we can use a utility

function to represent a player’s preference order Ri. However, now the utility function

takes a strategy profile as its argument to reflect that players’ payoffs depend on each

others’ choices. Thus, ui : S → R where S is the set of all possible strategy profiles.

Matrix representation Payoffs for a normal form game can be represented using

a payoff matrix M . Consider the Prisoner’s Dilemma, a classic strategic form game.

Two prisoners must independently decide whether to remain quiet (cooperate) or

confess, implicating the other (defect). If neither prisoner defects, both receive a
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sentence of one year. If one cooperates but the other defects, the defector is released

while the cooperator is sentenced to ten years. If both defect, they receive a sentence

of five years. This game has the following payoff matrix:

C D

C (-1,-1) (-10,0)

D (0,-10) (-5,-5)

where the row entries correspond to Player 1’s strategies and the column entries

correspond to Player 2’s strategies. Each cell gives the payoff to each player of the

specific strategy combination. For example, m1,2 = (u1(C,D), u2(D,C)) = (−5, 0).

Note that the Prisoner’s Dilemma is a member of a special class of games where the

payoffs to each player are symmetrical. For such games we need only specify the

payoffs for one player.

Nash equilibrium Solving a game theoretic problem introduces the complication

of determining which choice is rational given the choices other players may make.

A fundamental solution concept for all games is the Nash equilibrium [48], a set

of choices from which no player can improve their payoff by changing their action.

Formally,

Definition II.5. A strategy profile s∗ is a Nash equilibrium if and only if ui(s
∗) ≥

ui(s
′
i, s
∗
−i) for all players i ∈ N and all strategies s′i ∈ Si.

That is, player i’s utility for any other strategy s′i is lower than s∗i given that

all other players −i are playing according to s∗. This guarantees that no player

has an incentive to deviate from the Nash equilibrium. Similarly, a strict Nash

equilibrium requires that the inequalities be strict. Equivalently, we can describe a

Nash equilibrium as a set of mutual best responses.
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Definition II.6. A strategy s∗i is a best response if and only if ui(s
∗
i , s−i) ≥

ui(s
′
i, s−i) for all s′i.

I.e., the strategy that maximizes a player’s utility, fixing all other players’ strate-

gies. Conveniently, every game is guaranteed to have at least one Nash equilibrium

in pure or mixed strategies. Revisiting the Prisoner’s Dilemma, we can solve for its

Nash equilibrium by examining the payoff matrix.

C D

C (−1,−1) (−10, 0)

D (0,−10) (−5,−5)

Underlined payoffs correspond to Player 1’s best response strategies while over-lined

payoffs correspond to Player 2’s best response strategies. Regardless of whether

the other player chooses to cooperate or defect, a player receives a higher utility

from defecting. Thus the Nash equilibrium of the Prisoner’s Dilemma is for both

players to defect. This example demonstrates an important feature of Nash equilibria:

Equilibrium strategy profiles do not always lead to socially optimal outcomes. Had

both players cooperated, their average payoff would have been higher, but then either

player would have had an incentive to switch to defect.

Subsequent developments in political economy have focused on refinements to

the Nash equilibrium concept, allowing analysis of more complex games where the

assumptions of a classical game may not hold [49–51]. In particular, Bayesian games

allow players to have incomplete information by assigning players belief distributions

over the types of other players (Appendix A.1).
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2.2.3 Evolutionary game theory

While decision and game theory were developed with the intention of model-

ing human behavior, their structures do not preclude application to other domains.

Evolutionary game theory (Maynard-Smith and Price [42, 52]) treats the problem of

natural selection in interacting animal populations. Seminal examples involve com-

petition for food resources and the evolution of cooperation. Unlike the previous

methods, evolutionary game theory does not assume that agents are rational. In-

stead, evolutionary dynamics govern changes in strategies over time [53, 54]. Payoffs

in an evolutionary context are referred to as fitness, often based on the number of

offspring produced by animals playing a given strategy.

The replicator equation is a common form of evolutionary dynamics [53]. Broadly,

a strategy will increase in frequency if its fitness is greater than the average fitness

and decrease otherwise. Let xk be the frequency of the kth strategy. Replicator

dynamics for xk are:

ẋk = xk[uk(x)− ū] (2.3)

where uk(x) is the fitness of the kth strategy. Note that fitness is a function of the

relative frequencies of all strategies. ū is the average fitness. For a symmetrical game,

uk(x) =
∑

j xjmkj and ū =
∑

k uk(x)xk.

Even though replicator dynamics allow players in an evolutionary game to act ir-

rationally, a fundamental result links evolutionary dynamics to classical game theory.

The Folk Theorem of Evolutionary Game Theory [53, 55] demonstrates that stable

steady states of the replicator equation are Nash Equilibria and Nash equilibria are

steady states of the replicator equation. This can often simplify the analysis of evo-

lutionary games, as they can be treated as strategic form games for the purpose of

determining long-term behavior.
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Replicator dynamics can be extended to allow mutation, producing the replicator-

mutator equation [54]:

ẋk =
∑
j

xjuj(x)Qjk − ūxk (2.4)

where Q is a matrix that specifies the probability of a random change between any

pair of strategies.

While replicator (and replicator-mutator) dynamics were developed to treat gen-

erations of organisms adopting phenotypic traits, they can be interpreted in a behav-

ioral context as well. Suppose individuals determine whether to change their strategy

by observing others, switching with some probability if the payoff received by a sam-

pled player is higher than their own. This process is known as imitation dynamics,

and is provably equivalent to replicator dynamics with a scaling factor for the rate

of sampling. Similarly, mutation can represent random changes between behaviors.

Evolutionary game theory can therefore be a useful tool for modeling changing hu-

man behavior – the framework includes differential equations for strategy change and

does not require rationality.



CHAPTER III

Effects of adaptive protective behavior on the dynamics of
sexually transmitted infections

3.1 Introduction

In spite of advances in treatment and prevention, sexually transmitted infections

(STIs) remain endemic worldwide. The CDC estimates that 20 million new cases

occur annually in the United States alone [5], incurring a total cost of $16 billion for

treatment and care. Globally, treatable STIs are responsible for approximately 500

million new cases per year [4], while an estimated 35 million individuals currently live

with HIV. These statistics underscore the importance of understanding the dynamics

that drive and sustain STI transmission. To this end, mathematical epidemiology

has made substantial progress investigating the role of contact patterns such as age-

structure, sexual networks, and levels of sexual activity [56, 57]. However, many

open questions remain in understanding the feedback relationship between behavioral

change and disease dynamics.

From a behavioral standpoint, sexually transmitted diseases are noteworthy as

they require a direct and intimate interaction between individuals. As a result,

many common preventative measures, such as condom use, are not determined uni-

laterally [58, 59]. In addition, assuming individuals form preferences over protective

behaviors based on the associated costs and benefits, we would expect these behav-

15
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iors to respond to the risk of infection as an outbreak progresses [60–62]. While

changes in risky or protective behavior can amplify or suppress outbreaks, adoption

of these behaviors can in turn be driven by the spread of disease, as demonstrated

by increased testing and condom use among men who have sex with men in response

to the HIV outbreak in the US [8, 63].

Methods from game theory provide a framework with which to capture this feed-

back, grounded in well-established mathematical and economic theory. The result-

ing economic- epidemiological models can explicitly represent the decision process

of individuals either in direct interactions (e.g. sexual encounters) or population

interactions (e.g. vaccination behavior) [10–13, 15, 16, 43]. Including the effects of

behavioral change on STI dynamics has been primarily motivated by the HIV epi-

demic among men who have sex with men (MSM) in the 1980s and 1990s, but this

modeling approach is relevant for the study of other pathogens and communities as

well. Indeed, in 2013 the WHO highlighted the need to study behavioral change in

order to design effective interventions [4].

Many economic-epidemiological models rely on two behavioral assumptions that

are worth consideration. The traditional game theoretic framework assumes that

all actors are fully rational, responding optimally at every stage of play [49]. While

convenient, the rationality assumption remains a subject of debate in economic liter-

ature. Empirical studies note circumstances in which individual behavior appears to

depart from a strict payoff maximization foundation [45–47]. In addition, most mod-

els (e.g.[14] and [17]) assume that only susceptible individuals make choices regarding

protective behavior. This assumption is the result of representing the cost-benefit

calculus of individuals as a tradeoff between various private costs of protective be-

havior and the risk of infection. However, infected individuals may have incentives
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to reduce contact or use protection as well, motivated by altruism, self interest, or

other factors [64, 65]. This has been the focus of several intervention strategies in

practice [66, 67].

In this paper, we propose a model of combined behavioral and disease transmis-

sion dynamics that uses the outcome of sexual interactions between susceptible and

infected individuals to determine the effective contact rate for a mass action model

of disease transmission. The combined model bears some similarity to the behavior-

disease model proposed in [15]. There are, however, several critical distinctions. We

use a deterministic ODE framework, while our game-theoretic model collapses the

protection-use game to a single interaction instead of a multi-stage negotiation. In

addition, similar to [13] and [10] we use evolutionary dynamics to represent the pro-

cess of behavioral change over time, allowing for non-optimal but potentially more

realistic behaviors. Unlike the inductive reasoning game developed by Breban et al.

[68], our behavioral dynamics only explicitly consider the current state instead of

a history of actions. While this approach loses some realistic features, it still al-

lows us to relax the assumption of full rationality while also providing a convenient

mathematical formulation for the combined model [42, 53].

3.2 Model

The Susceptible-Infectious-Susceptible (SIS) model has been studied extensively

as a simplified representation of bacterial sexually transmitted diseases [38, 69, 70].

The model equations are

Ṡ = γI − βSI,

İ = βSI − γI,
(3.1)

where S is the fraction of the population which is susceptible, I is the fraction

infected, β is the effective contact rate; the product of the rate of sexual partner ac-
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quisition and the probability of disease transmission from an infected to a susceptible

partner, and γ is the rate of recovery or treatment. The basic reproductive ratio is

R0 =
β

γ
. (3.2)

The disease free equilibrium (DFE) occurs if R0 < 1. Otherwise the endemic preva-

lence is

I∗ = 1− γ

β
. (3.3)

In order to capture the potential for individuals to adapt their protective behav-

iors over the course of an outbreak, we define a Bayesian game [51] between a pair of

players. In A.1, we give a brief overview of the definitions and structure of Bayesian

games, with more complete treatments given in [49–51]. The payoffs for the game

depend on the disease states of both players, which are considered private informa-

tion. Players must infer the type of their partner, reflecting realistic uncertainty

about serostatus [7, 9, 65, 71, 72]. Consistent with the notation for the SIS model,

a player may be one of two types chosen from the type space Θ = {S, I}. Each

player chooses between using protection (P) or no protection (U) for a given sexual

encounter. If both players select the same action, the outcome of the game is the

same as the chosen action. We assume that if both players select different actions the

encounter does not proceed and the effective contact rate for the pair of players is 0.

In order to characterize the strategy space for this game, it is convenient to use the

type-contingent notation σj(θi) = ai ∈ {P,U}1 to denote the action player i would

choose if she was of type θi under the jth strategy. A complete strategy for a player

then specifies a pair of actions σj := σj(θi = S)σj(θi = I) ∈ {PP, PU, UP, UU}.

Without loss of generality, the type-dependent payoff (utility) to player 1 for a given

pair of actions and types is written u1(σj(θ1), σk(θ2), θ1, θ2) (where the first argument
1Players in this game are interchangeable so we do not specify distinct strategy sets for each player.
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specifies player 1’s action assuming type θ1 under strategy j and the second entry

player 2’s action assuming type θ2 under strategy k). Then player 1’s overall expected

payoff for a particular strategy profile (i.e. for a pair of type-contingent strategies

σj and σk for each player) is the double expectation of u1(σj(θ1), σk(θ2), θ1, θ2) over

both players potential types [49], that is,

E[u1(σj(θ1), σk(θ2), θ1, θ2)] =
∑
θ1

Pr(θ1)[
∑
θ2

p1(θ2|θ1)u1(σj(θ1), σk(θ2), θ1, θ2)] (3.4)

where E[u1(σj(θ1), σk(θ2), θ1, θ2)] is sometimes written more simply as E[u1(σj, σk)].

The probabilities for each player being of either type, Pr(θ ∈ {S, I}), are given

by the distribution of susceptible and infected individuals in the population. This

distribution acts as the common prior for the Bayesian game. We assume that partner

selection is not assortative in disease type, so the belief for player 2 being type θ2

given player 1 being type θ1 is p1(θ2|θ1) = Pr(θ2).

Fig. 3.1 shows the two possible payoff matrices for the protected sex game that

determine the type-dependent payoff terms ui(σj(θ1), σk(θ2), θ1, θ2) in Equation 3.4.

For a concrete example, we compute the expected payoff to player 1 of playing

strategy σj = PU if player 2 picks σk = UU when 30% of the population is infected

and we choose a = 1, b = 0.75, c = 0.5, d = 0.25. From Equation 3.4 we have

E[u1(PU,UU)] = 0.7(0.7× 0.5 + 0.3× 0.25)

+ 0.3(0.7× 0.25 + 0.3× 1)

= 0.44.

(3.5)

In general, we suppose the specific payoff entries satisfy a > b > c > d. Thus, indi-

viduals prefer unprotected sex to protected sex with a partner of the same disease

status, preferring either to action pairs resulting in no sexual encounter. However,

individuals prefer protected sex to all other outcomes when their partner is of a dif-
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Player 1
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P b c
U c a

(a)

Player 1

Player 2
P U

P b c
U c d

(b)

Figure 3.1: The two variants of the protected sex game for the cases a: θi = θj and b: θi 6= θj .

ferent disease type. This is intended to capture the notion that both susceptible and

infected individuals have some incentive to avoid infection or transmission respec-

tively. We explore the alternate case where infected individuals do not distinguish

between susceptible and infected partners in A.5.

Consequently, for the protected sex game, the time-varying payoff matrix M is

a 4 × 4 square matrix with elements given by Eq. (3.4). We can compute the

Bayes-Nash equilibrium for any given choice of a, b, c, d, S, I. One case of particular

interest is at the disease free equilibrium, I∗ = 0. Here the game reduces to the

2 × 2 game with payoffs as in Figure 3.1a. This game has two pure strategy Nash

equilibria, (P, P ) and (U,U). However, the (U,U) equilibrium in the reduced game

is both payoff and risk dominant. Since the σ(θi = I) actions do not contribute

to the expected payoff, any mixture of the type-contingent strategies UP and UU

(similarly PP and PU) is a Nash equilibrium in the full model. We will revisit this

point shortly.

Since we are ultimately interested in the dynamics of behavior at more than a

single disease state, we use methods from evolutionary game theory to couple the

dynamics of strategy change over time to the disease trajectory. This allows us to

close the feedback loop between behavior and disease dynamics. In particular, we use

replicator-mutator dynamics with a linear fitness function [53, 73]. The distribution

of strategies in the population using the replicator-mutator approach depends both

on the existing distribution of strategies and their expected payoffs, as well as a
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small degree of random strategy choice. This allows us to capture the notion that

individuals may not respond immediately or strictly optimally to the presence of

an outbreak, as payoff-suboptimal strategies may remain frequent in the population

for some time. In addition, the possibility of mutation prevents any strategy from

becoming extinct. In the behavioral context, this can be thought of as allowing

for a small amount of random choice. This feature is particularly important as the

replicator equation has stable steady states at strict pure strategy Nash equilibria,

such that behavior cannot change after fixation on a particular Nash equilibrium

even if disease conditions change. Both players in the protected sex game have the

same action and type sets, so the relative frequency of the jth strategy in a large

population is f(σj, t). The replicator-mutator equation for a given strategy σj is

ḟ(σj) = s[
∑
k

f(σk, t)qkjφ(σk, t)− φ̄(t)f(σj, t)], (3.6)

where qkj is the probability that an individual playing σj switches to σk, φ(σj, t) =∑
k E[u(σj, σk)]f(σk, t) is the fitness of σj, φ̄(t) =

∑
j φ(σj, t)f(σj, t), and s ∈ [0,∞)

is a scaling term that determines the speed of behavior change. In vector-matrix

form, this can be written as

ḟ = s[DfQ(M f)− (fTM f)f ], (3.7)

where M is the 4 × 4 payoff matrix with elements mjk = E[u1(σj, σk)], f =

(f(PP, t), f(PU, t), f(UP, t), f(UU, t)), Q is the mutation matrix and Df = diag(f).

Note that when Q = I, the evolutionary dynamics are equivalent to standard replica-

tor dynamics. However, for our simulations we use a mutation probability µ = 0.03

so
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Q = (1− 4

3
µ)I +

µ

3
· 1. (3.8)

In a large population, the aggregate effective contact rate is determined by the

average outcome over all pairs, so β = βbSU IU
SI

where βb is the baseline effective contact

rate, SU = S × (f(UP, t) + f(UU, t)) is the proportion of susceptible individuals

playing U , and IU = I×(f(PU, t)+f(UU, t)) is the proportion of infected individuals

playing U .

The combined model equations with evolutionary behavioral dynamics can be

written as

Ṡ = γI − βbSUIU ,

İ = βbSUIU − γI,

ḟ = s[DfQ(M f)− (fTM f)f ].

(3.9)

The system above has six compartments. Of these, only four are strictly necessary as

S + I = 1 and
∑

j f(σj, t) = 1. In a completely susceptible population, action pairs

where both susceptibles play P or U are Bayes-Nash equilibria. In order to restrict

the domain of possible initial conditions, we take the risk dominant equilibria, or

mixtures between UP and UU . This can be interpreted as individuals in a disease

free state preferring unprotected sex because it best hedges against uncertainty in

partner actions. While the σ(θi = I) actions are never realized at the DFE, the

type-contingent strategy framework implies that individuals must be able to specify

an action that they would take if they became infected. The effective contact rate for

a single infected individual is (f(UU, 0) + f(PU, 0))βb, where f(UU, 0), f(PU, 0) ∈

[0, 1]. As a result, the basic reproductive rate of the combined model is

R0 =
(f(UU, 0) + f(PU, 0))βb

γ
. (3.10)
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Thus, R0 depends on the behavioral initial condition, unlike the standard SIS model.

The value of the above expression will lie within the interval [0, βb/γ]. The payoff

and risk dominance of the (U,U) Nash equilibrium at the initial disease-free steady

state (discussed above) suggests that f(PU, 0) is likely to be low, and indeed for the

remainder of this paper we will assume that the initial infected plays the strategy

UU , while the underlying susceptible population at t = 0 will be assumed to take

on a mixture of the UU and UP strategies. It is nonetheless of interest to note

that the dependence of R0 on the initial behavioral conditions suggests the potential

for both high R0 with disease extinction and low R0 with endemic prevalence: if

f(PU, 0) ≈ 1 it may be possible to have high R0 but still have disease extinction due

to all susceptibles playing the protected strategy, while conversely if R0 is low due

to low frequency of UU and PU but otherwise has a high contact rate, it may be

possible to generate endemic prevalence even for R0 < 1 (as explored further below).

3.3 Results

Due to the addition of the replicator-mutator equations, it is not straightforward

to solve for the steady states of the combined model analytically. Instead, we con-

ducted a range of numerical simulations to investigate the effects of behavioral dy-

namics using Python 2.7 with Numpy 1.9, Scipy 0.15.0, and Matplotlib 1.4.2. In order

to explore a range of outcomes generated by the combined model, we focused on both

long-term and short-term dynamics. Given the addition of behavior change, the short

term dynamics provided useful mechanistic insights to explain the steady state prop-

erties of the model. Unless noted otherwise we used a = 1, b = 0.6, c = 0.4, d = 0.2

for the values of the outcome payoffs. In general the qualitative features of the model

do not change substantially for different payoff values provided the overall scale and
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Figure 3.2: Simulated trajectories for the combined model with R0 = 1.2. Disease parameters
βb = 1.2, γ = 0.5 with behavioral parameters a = 1, b = 0.6, c = 0.4, d = 0.2. (a) Disease prevalence,
(b) Type-contingent strategies, (c) Fractional contact reduction, (d) Strategy fitness.
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ordering are preserved. Unless otherwise specified, the disease initial conditions were

S(0) = 0.99, I(0) = 0.01. In the first section below, we consider fixed initial be-

havioral conditions at f(UU, 0) = f(UP, 0) = 0.5, while in the following section we

consider the effects of varying the initial behavioral conditions (for f(UU, 0) between

0 and 1).

3.3.1 Model Dynamics

We began by inspecting an example set of model trajectories, shown in Fig. 3.2

(with βb = 1.2, γ = 0.5, and f(UU, 0) = 0.5 to give R0 = 1.2), to illustrate the inter-

actions between behavioral changes and disease dynamics. Comparing the prevalence

and contact reduction trajectories demonstrated the impact of the adaptive behav-

ioral dynamics on the progression of the simulated outbreak. In this example the

outbreak was relatively small, so susceptible individuals did not have a large incen-

tive to use protection. However, the initial increase in disease prevalence favored

strategies where infected individuals used protection, which in turn decreased the

force of infection enough to halt the initial outbreak. However, as prevalence de-

creased, unprotected strategies became less costly and contact reduction decreased

again. Consequently there was a small secondary outbreak. The timing of the be-

havioral response also appeared to be influential. While contact reduction tracked

prevalence over time, it did so at a delay. Thus the level of contact reduction was

still relatively high at the onset of the second outbreak, preventing a large secondary

peak. This preliminary exploration suggested that both the infectiousness of the

disease and the speed of behavioral adaptation play important roles in the overall

model dynamics.

To explore this issue further, we defined a timescale parameter s for the behavioral

dynamics, given as a scaling factor on the payoff matrix A in Eq. (3.7). From a
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Figure 3.3: Long term dynamics of the combined model with increasing values of R0 and the
behavioral scale parameter s. R0 was adjusted by varying the parameter βb in Eq. (3.10). (a) The
amplitude of steady state prevalence oscillations. (b) The average prevalence at steady state.

behavioral perspective, this parameter can be thought of as controlling the speed

of adaptation in the population. We then evaluated the long-term dynamics of the

model in steady state for a range of values of R0 and s, shown in Fig. 3.3 (with

all remaining parameters as in Fig. 3.2). In the triangular region about R0 = 2.7

and the canyon between 3 < R0 < 3.5 the damped oscillations became sustained

with a substantially higher average steady state prevalence. The triangular region

of oscillations gives way to another endemic steady state region as R0 increases,

followed by the thin band of oscillations and eventually disease extinction in the

triangular region along the right edge.

Figure 3.4 and Supplementary Figure A.1 provide a more detailed examination of

the dynamics in Fig. 3.3 as R0 increases for s = 1. For R0 sufficiently above 2, the

early increase in contact reduction by infected individuals was not sufficient to stop

the spread of the initial outbreak (3.4b). As a result prevalence increased, causing in-

fecteds to begin to switch back to unprotected strategies (A.1 b). However, at higher

prevalence susceptible individuals had an incentive to use protection, compensating

for the behavior of the infected population. As in the initial example, this overall



27

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Prevalence

Contact reduction

(a)

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Prevalence

Contact reduction

(b)

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Prevalence

Contact reduction

(c)

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Prevalence

Contact reduction

(d)

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Prevalence

Contact reduction

(e)

Figure 3.4: Prevalence and contact reduction from the combined model with γ = 0.5, f(0) =
(0.0, 0.0, 0.5, 0.5) for all simulations and (a) βb = R0 = 1.5, (b) R0 = 2.7, (c) R0 = 2.9, (d)
R0 = 3.3, and (e) R0 = 3.5.
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Figure 3.5: Average steady state prevalence of the combined model for increasing R0 with γ =
0.5, f(0) = (0.0, 0.0, 0.5, 0.5). The transition between the disease free and endemic equilibrium
occurs at 1 < R0 < 1.05.

increase in contact reduction reduced the force of infection and halted the growth of

the outbreak. The magnitude of this response appeared to determine the long term

dynamics of the model. When prevalence was reduced to a moderate level neither

protective nor unprotected strategies were able to gain a stable foothold in the pop-

ulation, leading to sustained oscillations in both contact reduction and prevalence

(3.4b, A.1 b). A stronger contact reduction response pushed the disease to a level

where infected individuals again had a strong incentive to use protection. The fit-

ness advantage of this strategy was sufficient to survive the second outbreak, leading

to an endemic steady state (3.4c, A.1 c). Notably, when R0 was high enough that

the resulting behavioral response nearly drove the disease to extinction, sustained

oscillations were again possible (3.4d, A.1 d). Subsequent outbreaks in this scenario

were contained by increasing contact reduction from a higher baseline due to the

initial outbreak, but grew rapidly due to the infectiousness of the disease. Finally,

when the initial outbreak was extremely large, essentially all remaining susceptibles

(including those who recently recovered) played protective strategies, driving the

disease to extinction (3.4e, A.1 e). Since the boundaries of both oscillatory regions

shifted with both s and R0, it appeared that the timescales of infection and adap-



29

0.0 0.2 0.4 0.6 0.8 1.0
f(UU,0)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Steady state
prevalence
R0

(a)

1 2 3 4 5 6 7
βb/γ

0.0

0.2

0.4

0.6

0.8

1.0

P
re

v
a
le

n
ce

f(UU,0) =1.0

f(UU,0) =0.0

f(UU,0) =0.5

(b)

Figure 3.6: The effect of changing the initial condition f(UU, 0) with γ = 0.5. (a) Steady state
prevalence and R0 for βb/γ = 3 (Dashed line indicates where R0 = 1). (b) Steady state prevalence
of the combined model as βb/γ increases for three choices of f(UU, 0). In regions of βb/γ where
sustained oscillations occurred, the solid black line shows the value of the crest while the dashed
line shows the value of the trough.

tation must align in order to produce sustained oscillations (e.g. Figure 3.4b and

A.1b). In particular, oscillatory dynamics appear only to be possible for relatively

slow adaptation speeds, suggesting that the lag induced in the behavioral dynamics

contributes to the potential for oscillations.

Using the same parameters as in Fig. 3.4, in Figure 3.5 we also examined steady

state prevalence near R0 = 1, to evaluate whether behavior changes may affect

the threshold for generating an outbreak. We found that steady state prevalence

remained zero even whenR0 was greater than 1, suggesting that behavioral dynamics

were able to extinguish the disease even when the initial growth rate would have

generated and epidemic.

3.3.2 Behavioral Initial Condition Analysis

For our next set of simulations, we tested the effect of varying the initial behavioral

conditions. Figure 3.6a shows the average steady state prevalence across f(UU, 0) ∈

[0, 1] when βb/γ = 3 (where the remaining population was assumed to take strategy

UP as noted above). As suggested by the form of R0, an endemic steady state
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persisted even for R0 < 1. This counterintuitive phenomenon occurred because,

while the disease initially declined, it did not immediately become extinct (Fig.

A.2). The declining prevalence led to increased adoption of UU , driving the effective

reproductive rate back above one. Figure 3.6b depicts the effect of different levels

of f(UU, 0) on the steady state behavior of the combined model for increasing βb/γ.

A wide range of dynamics were observed as βb/γ varied, including a single stable

equilibrium, bistability, and oscillations. When f(UU, 0) was low (green line in Fig.

3.6b), the model only exhibited damped oscillations, and did not produce the same

extinction behavior at high βb/γ as in the case where f(UU, 0) was substantially

larger than zero. For f(UU, 0) = 0.5 (blue dotted line), the model exhibited the

same bifurcation pattern as in the previous section. At high f(UU, 0) (black line)

the behavior was similar, however the endemic prevalence before the first oscillatory

region was substantially greater. From this, f(UU, 0) appeared to act as a switch

between possible steady state regimes of long term dynamics.

For the constant steady state regions, the endemic prevalence took one of two

values for a given βb/γ depending on f(UU, 0), similar to Fig. 3.6a. More broadly,

for any fixed βb/γ, there were two basins of attraction corresponding to either the

f(UU, 0) = 0 or f(UU, 0) = 1 case, where the unstable equilibrium dividing the two

regions depended on the value of βb/γ. This is illustrated by the f(UU, 0) = 0.5 curve

in Fig. 3.6b, which switches between existing in the f(UU, 0) = 0 and f(UU, 0) = 1

basins around βb/γ = 5. There are also regions of Fig. 3.6b where only a single steady

state exists regardless of the value of f(UU, 0), at very low values of βb/γ (left portion

just above βb/γ = 2) and larger values (between the oscillatory regions).

As noted in the previous section, there were also multiple regions where the long

term dynamics showed disease extinction even though R0 > 1. For f(UU, 0) = 0.5
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and 1, the left corner of Fig. 3.6b shows extinction with R0 > 1, and the right corner

shows the same extinction discussed in the previous section for the f(UU, 0) = 1 basin

at high values of βb/γ.

3.3.3 Comparison with Alternate Models

Finally, we considered how the dynamics of the model compare to other potential

models of the disease dynamics, to examine how neglecting the behavioral dynam-

ics may alter model forecasts of the epidemic trajectory or affect estimates of key

epidemiological parameters such as R0. As a first example, we chose a fixed con-

tact rate SIS model parameterized such that the R0 of both models was identical.

While the trajectories were similar at very early times (at which the epidemic growth

rate can still be characterized by R0), the combined model quickly diverged due to

the reduced effective contact rate, and equilibrated at a substantially lower endemic

level (Figure 3.7a). Similarly, we computed R0 = 1
1−I∞ naively from the steady state

prevalence of the combined model in Figure 3.7a, without accounting for a time-

varying contact rate. The estimated value of 1.03 was substantially lower than the

true R0 of 1.2 for the combined model. This difference can be even more severe when

considering endemic steady states at higher R0’s (such as the area to the right of the

triangular region in Figure 3.3). For example, the endemic steady state in Figure

3.4c yielded an apparent R0 of 1.21, when the underlying R0 for the combined model

was 2.9. Given the simplicity of the SIS model, these discrepancies were not surpris-

ing. Nonetheless, they highlight some pitfalls of neglecting the effects of behavioral

dynamics.

However, as the SIS model is known not to be able to produce oscillations, it

might not be a likely choice given data that came from real-world infection dynamics

similar to the combined model. Due to the delay between recovering from infection
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Figure 3.7: Comparison of simulations of the combined model other compartmental models. (a) SIS
model contact rate β = 0.6, γ = 0.5 to match the R0 = 1.2 of the combined model, (b) Prevalence
trajectories for the combined model and an SIRS model fit to the combined model prevalence
simulated with R0 = 1.2. SIRS best fit parameters: β = 0.274, γ = 0.203, δ = 0.022. (c) A variant
combined model in which only susceptible individuals adapt their behavior fit to the simulated
trajectory from the full model with βb = 1.8, γ = 0.5 and R0 = 2.7. The best fit parameter
β∗
b = 2.84 for the reduced model, giving an R0 = 5.68.
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and returning to susceptibility, the SIRS model is capable of producing damped os-

cillations, and so might make a reasonable initial guess for the model structure if the

length of immunity was unknown. To evaluate how a more realistic but misspeci-

fied model might affect parameter estimation, we fit the SIRS model (A.4) to the

prevalence trajectory of the combined model with R0 = 1.2, using least squares with

Nelder-Mead optimization, as shown in Figure 3.7b. While the best fit SIRS model

conformed well to the target trajectory, the resulting parameter estimates included

both a four fold decrease in the baseline contact rate and a substantial increase in

the average waiting time until a recovered individual becomes susceptible again. The

R0 for the best fit SIRS model was 1.35, a 12.3% increase compared to the behav-

ioral model. In this case, the feedback between behavior and transmission may make

interventions more effective than would appear to be the case if we had assumed a

fixed contact rate.

Finally, most previous work combining game theory with transmission models

to model contact reduction has focused on the adaptive behavior of susceptibles

[13, 14, 17, 43]. This is a natural formulation for vaccination, but may be less

suitable for more general contact reduction behaviors. Thus, to test the effect of

modeling adaptive behavior by both susceptible and infected individuals, we used a

reduced variant of our combined model in which infected individuals always select

the action U . As with the SIRS model, we fit this reduced model to a simulated

trajectory from the full model. In this case, the reduced model overshoots the initial

outbreak curve, but equilibrates to a similar endemic equilibrium to the full model

(Figure 3.7c). However, the best fit parameter and R0 for the reduced model were

nearly two times higher than the true values for the full model. For a wider range

of parameter values of the full model, the reduced model generally failed to provide
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qualitatively accurate fits. In addition, the reduced model did not produce the same

range of dynamics as the full model. We give a full description of the reduced model

in A.4 as well as an expanded set of fits and simulations.

3.4 Discussion

To explore the feedback between behavior and disease dynamics, we developed a

model of disease transmission with adaptive behavior among both susceptible and

infected individuals. Numerical simulations illustrated the effect of behavior-disease

feedback on model dynamics and inferences about STI transmission (Figure 3.2). We

found that phase transitions between damped and sustained oscillations occurred at

an intermediate transmission rate and again at a higher transmission rate (Figure

3.3). Increasing the adaptation rate parameter s reduced the range of transmission

rates at which sustained oscillations could occur.

Disease extinction occurred both for low and high transmission rates (Figures

3.3, 3.6). At lower transmission rates, adoption of protection by infected individuals

lead to extinction above the typical R0 = 1 threshold (Figure 3.5). This suggests

that behavior-disease feedback can create a herd-protection-like effect if the infected

population can be reduced sufficiently to incentivize the use of protection among that

group. At high transmission rates and low-to-mid range levels of initial risky behavior

(f(UU, 0)) in the infected population, we observed the counterintuitive result that

a large initial increase in risky behavior (UU and PU strategies) among infected

individuals preceded disease extinction. However, because susceptible individuals

were also switching to protective strategies (PP and PU) rapidly, the combined

effect of both susceptibles and infected adopting PU resulted in sufficient growth of

PU to drive the disease to extinction as the effective number of susceptible individuals
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remained small and all were largely playing protective strategies (Figure 3.4, A.1).

In fact, both the high R0 and low R0 extinction phenomena (for R0 > 1 but still

low) appear to be driven by a reduction in the effective size of the ‘bottleneck’

population group. The lowR0 extinction (Figure 3.5) seems largely due to increasing

infected protective strategies, while the high R0 extinction seen on the right side

of Figure 3.4 is largely due to increasing susceptible protective strategies. In each

case, the low/high prevalence makes infecteds/susceptibles a bottleneck group, where

sufficient protective response in that group appears to result in disease elimination.

The feedback between disease and behavior thus often constrains endemic outcomes

to scenarios where a disease is only moderately infectious, for a range of realistic

levels of initial risky behavior (Figure 3.6b).

However, simulations predicted a more pessimistic outcome for changes in the ini-

tial strategic distribution. In general, the initial level at which infected individuals

used protection did not determine whether the disease would become extinct. As

long as the value of βb/γ was sufficiently large, any f(UU, 0) led to an outbreak and

endemic disease (Figure 3.6). Instead, the initial distribution acted as a switch be-

tween two steady state regimes: one in which initial risky behavior by infecteds (high

f(UU, 0)) lead to sustained oscillations and higher endemic prevalence could occur

for values of cb below the first oscillatory region, and another in which initial protec-

tive behavior by infecteds (low f(UU, 0)) yielded damped oscillations and generally

lower endemic prevalence. The exception to this pattern is the region where βb/γ is

large. As noted above, in this region extinction occurs when early risky behavior by

infected individuals is then countered by widespread use of protection by susceptible

individuals. However, early widespread protection use by infecteds leads to a smaller

outbreak that is slowed, but not eliminated by susceptible protection use. This com-
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plicates the interpretation of R0 for the combined model, as the standard endemic

threshold property often does not apply. For interventions it is thus important to

understand the interaction between early behavioral patterns, the transmission rate,

and treatment levels. Interventions based on these factors may yield counterintuitive

results depending on the other factors, making comprehensive data collection critical

when optimizing intervention strategies.

It is also interesting to note that while an analysis of the Bayes-Nash equilib-

ria of the protected sex game at DFE indicates that the susceptible-unprotected

strategies (U,U) are risk dominant, our combined model suggests that the actual

initial distribution will depend on a population’s previous experience with disease.

That is, when the outbreak is large (i.e. for high R0, Figure 3.4), adoption of pro-

tective strategies results in disease elimination. However, the increased protective

strategies by susceptibles mean that the model switches to the attraction basin of

the non-dominant (P, P ) Nash equilibrium as it goes to the new disease-free steady

state A.1 (or as close as possible given the mutation rates in the replicator-mutator

equation). By contrast, below the threshold for high Ro extinction, the model tends

to reach a steady state close to the susceptible-unprotected (U,U) Nash equilibrium

since endemic prevalence is low enough to favor susceptible-susceptible contact. This

suggests that in general, the disease-free strategy balance between protected and un-

protected depends on the magnitude of previous outbreaks, with larger outbreaks

yielding disease-free protective behaviors even though they are neither payoff nor

risk dominant. As a result, post-outbreak surveillance and control are crucial to

prevent recurrent outbreaks due to reintroduction.

Based on comparisons between the combined model and similar disease models

with simplified contact dynamics, predictions from fixed-contact rate models may
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omit important dynamical features or yield misleading parameter estimates (Figure

3.7). Similarly, if an STI model is misspecified, the common method of computing

R0 from endemic prevalence when a disease is assumed to be at equilibrium [74] is

not appropriate and yields inaccurate estimates. One advantage of using a game

theoretic framework to model interactive behavior is the flexibility of ordinal util-

ity. Since protective measures can be used by susceptible or infected individuals

to prevent infection or transmission, respectively, we used a preference order that

gave individuals in both disease states an incentive to use protection if paired with a

partner of the opposite state. Our simulation results suggest that disease dynamics

differ in this scenario as opposed to when only susceptible individuals adapt their

behavior, and indeed model fits using the reduced model considering only susceptible

behavior change often yielded both incorrect R0 estimates and dynamic trajectories

(Figure A.4). The role of infected behavior dynamics was particularly notable in the

early stage of outbreaks when disease was not prevalent enough to induce susceptible

individuals to use protection. In addition, the shift between infected and susceptible

adoption of protective strategies appeared to drive sustained oscillations. To more

thoroughly consider the effects of infected behavior dynamics, we also considered an

alternative preference structure in which infected individuals no longer explicitly pre-

fer protected sex with susceptible individuals, but rather have the same preferences

regardless of their partner’s disease status (A.5). This model only exhibits one os-

cillatory region and a higher endemic prevalence than the original model (Fig. A.5).

However, extinction still occurs at high R0, confirming that susceptible protective

strategies drive the high-R0 extinction phenomenon.

In order to focus on the effect of adaptive protective behavior, our combined

model simplifies many other realistic factors that contribute to STI transmission.
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The protected sex game does not include explicit negotiation, which likely biases the

effective contact rate downward, since negotiation or coercion could lead to unpro-

tected sex even when the initial action pair is (U, P ). The combined model presented

here still uses mass action assumptions to determine interactions between individu-

als. Although more complex contact patterns are known to influence transmission

dynamics, we model a homogeneous population to focus on the effect of time-varying

behavior. While this may not be completely implausible in a highly active group such

as MSM frequenting bathhouses, it is almost certainly a poor representation of the

manner in which individuals form sexual partnerships. Typically, adding contact

heterogeneity increases the R0 of a model, so we might expect more rapid early out-

break growth for a wider range of parameters in our model, potentially expanding

the regions in which sustained oscillations or even disease extinction occur. Our gen-

eral framework, however, is amenable to extensions to expand the state space of the

disease model to represent more complex natural histories or population structures

as with standard transmission models. In addition, it is possible to model the com-

bined process on a contact network or using a stochastic framework. One particular

extension that could yield insight into spatial patterns and the effect of local infor-

mation would be a simulation of the model on a regular lattice, where individuals

could use either a global or local prior to estimate the probability of their partner’s

type.

A particularly compelling consequence of developments in economic-epidemiological

models is the potential to estimate more complex behavioral parameters using tra-

ditional surveillance data. In the context of our combined model, this would result

in estimates for the relative payoff values (a, b, c, d), which capture useful informa-

tion about the perceptions of populations facing STI outbreaks. While subject to
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as yet unknown identifiability properties, this manner of parameter estimation could

provide a valuable link between game theoretic methods and the extensive empirical

literature on the epidemiology of STIs.



CHAPTER IV

Modeling behavioral responses to infectious disease
outbreaks: Burial practices during the 2014 Ebola outbreak

4.1 Introduction

Ebola virus disease (EVD) is a serious and frequently lethal infection often iden-

tified with the profuse internal and external bleeding observed in late stage patients

[75, 76]. First identified in 1976, EVD has historically been restricted to small, self-

limiting outbreaks [75, 76]. However, in 2014 West Africa experienced the largest

recorded epidemic with over 25,000 total cases and 15,000 total deaths primarily dis-

tributed among Guinea, Liberia, and Sierra Leone. Unlike prior occurrences of EVD,

the 2014 outbreak reached urban centers, amplifying its transmission potential. In

addition, regional infrastructure was ill equipped to contain EVD, while widespread

poverty and political instability further complicated control measures [77, 78].

The magnitude of the 2014 outbreak sparked a substantial amount of interest

among mathematical epidemiologists, and a variety of models were developed to test

control measures and forecast the trajectory in West Africa [18, 19, 21, 79]. However,

early projections were criticized for frequently overestimated the final size of the

outbreak, leading to a debate regarding the uses and effectiveness of mathematical

models in outbreak situations [22, 80]. Much of the initial forecasting error appears to

be the result of omitting an adjustment for the reporting rate and population at risk

40
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in the output equations. Including such a correction factor improves the accuracy of

short and medium-term forecasting [24]. Nevertheless, the reporting rate/population

at risk adjustment does not mechanistically capture behavior changes that may be

important for long-term prediction [23, 81] and intervention planning. In particular,

we concentrate on funerals as a transmission route and potential source of behavioral

dynamics.

Due to the pathophysiology of EVD and its high mortality rate, regional burial

practices fell under scrutiny as a major source of transmission. Recent studies have

indicated that Ebola virus can remain viable up to seven days postmortem [82], with

high concentrations of pathogen remaining in body fluids. Traditionally, burials in

West Africa involve a substantial amount of direct contact between the family of

the deceased and the cadaver itself. Specifically, these practices include touching,

washing, and kissing the corpse, resulting in a high probability of infection. Indeed,

a single funeral in Guinea resulted in 85 new cases of EVD [83]. The deeply tradi-

tional nature of these burial practices posed a challenge to public health professionals

attempting to reduce funeral transmission. Sanitary procedures such as sterilization,

bagging, and disposal of corpses were viewed as an affront to the deceased and their

family [84], leading to “safe and dignified” burial initiatives [85]. Of the three pri-

mary countries, Liberia instituted mandatory cremations, leading some burials to be

conducted secretly. In spite of these challenges, sanitary burials have been cited as

a key factor in containing the outbreak [86, 87].

We would expect the shift in burial practices from traditional to safe and dignified

methods to have a measurable impact on the course of the outbreak. To capture the

effect of these changes in behavior, it is necessary to address the feedback between

EVD transmission and burial practices. The primary incentive to adopt sanitary
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Figure 4.1: Compartmental flow diagram of the Ebola transmission model. Burial practices influ-
ence the transition between the second infected compartment I2 and the funeral compartment F
(highlighted).

burial techniques is likely related to the degree of EVD transmission, in this case the

contribution to morbidity and mortality from traditional burials. Thus as an EVD

outbreak grows, sanitary burials may become more common, reducing the force of in-

fection. We explicitly model this feedback relationship using a population level game

theoretic model of burial practices coupled to a compartmental model of Ebola trans-

mission. This approach is similar to the influenza and sexually transmitted infection

models of Bauch and others [10, 13, 14, 43]. Discrete individual simulations could

also be used to address changing behavior, however such models are computation-

ally expensive and can be difficult to analyze. Our deterministic model is relatively

simple to implement and enables us to make inferences about behavioral processes

from traditional surveillance data. In addition, the behavior-disease framework is

straightforward to extend to multiple or alternative behavioral mechanisms.

4.2 Methods

Our model and analyses are implemented in Python 2.7 using Numpy, Scipy, and

Matplotlib.



43

4.2.1 Model

Burial practices By definition, individuals cannot make a choice about the man-

ner of their own burial at the time it occurs. However, it is possible to specify what

type of burial would be preferable for family members and others in the community.

In aggregate, we assume that these preferences determine the distribution of burial

practices. Individual choices exist in a feedback cycle with social or cultural norms

about burial. Individuals are influenced by the dominant burial practice, and con-

tinued adherence reinforces the norm. We model this feedback using evolutionary

game theory. Like traditional game theory, we specify the set of choices individuals

can make and the abstract payoff associated with each potential choice. However,

evolutionary game theory is concerned with the dynamics of behavior in large popu-

lations of interacting individuals, which is appropriate to our analysis of changes in

behavioral practices over the course of an outbreak.

As noted above, individuals choose whether they prefer a traditional or a sanitary

burial. Each type of burial incurs a cost that reflects perceived advantages of the

other type of burial. Individuals who prefer sanitary burials may face decreased

social acceptance for acting contrary to the dominant cultural practice. However,

if the contribution of burials to transmission is recognized, traditional burials may

begin to be perceived as dangerous. These factors inform our payoff functions.

The payoff uT for traditional funerals is

uT (I) = −ρI, (4.1)

where I is the total prevalence and ρ is a constant of proportionality. This reflects

perceptions regarding the risk of infection from traditional funerals which is assumed

to be increasing in prevalence. Sanitary burials incur a cost C that reflects cultural
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pressure, so their payoff uS is simply

uS = −C. (4.2)

We assume that this cost does not change significantly on the timescale of an Ebola

outbreak as cultural norms often change at a generational pace in the absence of

major social upheaval.

The fraction of the population that prefers traditional burials at a given time

is fT (t). We assume that behavior change occurs due to a social imitation process

where individuals compare the payoff from their own choice to the payoffs received

by others, switching if the alternative appears to be sufficiently better. This process

can be represented by imitation dynamics [53]. For traditional burials:

ḟT = spfSfT · (C − ρI) (4.3)

Individuals sample others at a rate s. When an individual encounters another with

a different strategy, they may adopt the other strategy with probability proportional

to the difference between payoffs p · ∆E = p · (C − ρI) where p is the constant of

proportionality for imitation (for ḟS, p ·∆E = p · (ρI −C)). We allow individuals to

change strategies randomly with a small probability µ. This approach is analogous

to replicator-mutator dynamics in evolutionary biology. The complete behavioral

dynamics are

ḟT = s[pfSfT · (C − ρI) + µ · (fS − fT )]. (4.4)

The inner term can be interpreted as the possible outcomes when an individual con-

siders whether or not to change their burial preference. Either the individual encoun-

ters another who prefers sanitary burials and (possibly) switches their preference, or

they may switch independently with a small probability. Unfortunately, s, p,and ρ
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Parameter Definition Units Source

β1 First stage transmission rate person-days−1 Estimated
βR Second vs. first stage infectiveness ratio unitless Sampled [18, 19, 88, 89]
α Average incubation period−1 days−1 Sampled [75, 76]
γ1 First stage duration−1 days−1 Sampled [75, 90]
γ2 Second stage duration−1 days−1 Sampled [75, 90]
γF Burial rate days−1 Sampled [18, 75]
δ Overall community mortality unitless Estimated
δ2 Second stage mortality unitless Sampled [90]
k Population at risk unitless Estimated
N Total population size unitless Fixed [91]
c Private/social cost of sanitary burials unitless Estimated
σ Imitation sampling/adoption rate days−1 Sampled
m Random choice rate days−1 Sampled

Table 4.1: Definitions of parameters used in the Ebola transmission model.

cannot be estimated individually. Instead we rescale the above using σ = spρ, c = C
ρ

,

and m = µ
pρ

giving

ḟT = σ[fSfT · (c− I) +m · (fS − fT )]. (4.5)

Ebola virus transmission Clinically, EVD displays a multi-stage presentation with

increasing severity and lethality over time [75, 76, 90]. The initial stage includes non-

specific febrile symptoms, while later stages progressively include diarrhea, vomiting,

hemorrhage, and organ failure [75, 76, 90]. Ebola virus remains viable in host fluids

up to one week postmortem, enabling transmission by contact between uninfected

individuals and infected cadavers [82]. We adapt the transmission model developed

by Eisenberg et al. [24] by introducing the behavioral dynamics specified above. Fig-

ure 4.1 depicts the compartmental structure of our model. The full set of differential
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equations are

Ṡ = −(β1I1 + β2I2 + βFF )S

Ė = (β1I1 + β2I2 + βFF )S − αE

İ1 = αE − γ1I1

İ2 = δ1γ1I1 − γ2I2

Ḟ = fT δ2γ2I2 − γFF

Ṙ = (1− δ1)γ1I1 + (1− δ2)γ2I2

ḟT = σ[(1− fT )fT · (c− I) +m · (1− 2fT )]

(4.6)

S is the fraction of susceptible individuals, E is the fraction exposed but not yet

symptomatic, I1 and I2 are individuals in the first and second stage of infection,

respectively, F is the fraction who have died of EVD but have not yet been buried,

and R is the fraction who have recovered and are assumed to be immune. Table

4.1 describes the parameters used in the above equations. Note that β2, βF , and δ1

are derived parameters computed as follows: β2 = βRβ1, βF = βRβ1, and δ1 = δ/δ2.

Like Eisenberg et al. [24] we estimate δ instead of δ1 or δ2 as the overall community

mortality rate is more likely to be available based on the case fatality rate than

stage-specific mortality. We assume that all individuals practiced traditional burials

before the outbreak, so fT (0) = 1. For our model fitting and simulations, we set

I2(0) = 1/kN, S(0) = 1 − 1/kN . For Guinea, the index case was detected on

December 26, 2013 [92]. For Liberia and Sierra Leone, we used the time of the first

detected case.

The basic reproduction number for this model is

R0 =
β1

γ1

+
β2δ1

γ2

+
fT (0)βF δ1δ2

γF
. (4.7)

This expression contains one term for each transmissible stage of EVD. However,
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the burial transmission term is attenuated by the probability of a traditional burial

at the disease free equilibrium. As we have noted in Chapter III the dependence of

R0 on the behavioral initial condition can complicate its interpretation.

4.2.2 Parameter estimation and sensitivity analysis

We fit the model to cumulative incidence and mortality from the WHO situation

reports (sitreps) [93] using a hybrid approach. While cumulative data can introduce

estimation errors (primarily in variance estimates for deterministic models) [94], cu-

mulative incidence and mortality were the only available data until relatively late in

the outbreak. Deriving incidence (and mortality) from the reported cumulative data

would not be viable, as reporting errors resulted in apparent decreases in cumula-

tive incidence and mortality. Due to the large number of parameters in the model

relative to the amount of available surveillance data, we fit a subset of parameters

by numerical optimization, selecting others from plausible ranges derived from prior

literature using Latin hypercube sampling (Appendix B.1). We use the following

measurement equations [24] to link the model output to the cumulative sitrep data.

yC = kN

∫ t

0

αEdτ

yD = kN

∫ t

0

δ2γ2I2dτ

(4.8)

Based on these equations and case/death data xC/xD respectively, our least-

squares objective function is

Y =
∑
t

(yC(t, θ)− xC(t))2 + (yD(t, θ)− xD(t))2 (4.9)

We use local sensitivity analysis to characterize the degree of uncertainty in our

parameter estimates. In particular, we take the partial derivatives of our objective

function with respect to each estimated parameter [95, 96]. Formally, the relative
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sensitivity coefficient for a parameter θi is

φi = |(dY
dθi

)(
θi
Y

)|θ∗i . (4.10)

Where the second term normalizes the sensitivity coefficient for comparisons between

parameters and trajectories. θ∗i indicates that the partial derivative is evaluated

about the best fit value of a given parameter.

Given that only case and death data is available, it is possible that behavioral

dynamics are not necessary to explain the epidemic trajectory. In order to determine

whether this is the case, we also fit a variant of the transmission model without

behavior change and compare the residual error and Akaike Information Criterion

(AIC) between models.

4.3 Results

Parameter estimation Table 4.2 lists the best-fit values of β1, δ1, k, and c for

each country as well as the LHS values for all other parameters corresponding to the

best sample. The fitted transmission and mortality parameters (β1 and δ) reflect

the incidence and mortality trends in each country depicted in Figures 4.2a–4.2c.

In particular, Guinea has both the highest ratio of total deaths to total cases as

well as the highest estimated mortality rate δ, followed by Liberia and Sierra Leone.

The behavioral parameters c, σ, and m were similar between the three countries.

This could reflect the fact that traditional burial practices are also similar within

the region, so we would not expect the social/cultural pressure to hold a traditional

burial to vary substantially. In addition, the sampling rate σ may reflect factors such

as urbanization or interpersonal connectivity that influence how frequently any given

individual would be exposed to information about burial practices. The remaining

best-fit sampled parameters are also relatively stable between countries with the
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Parameter Guinea Liberia Sierra Leone

β1 0.128 0.106 0.171
βR 2.71 4.66 3.78
α 0116 0.114 0.113
γ1 0.158 0.363 0.189
γ2 0.683 0.674 0.594
γF 0.952 0.319 0.651
δ 0.667 0.454 0.296
δ2 0.825 0.820 0.887
k 8.85×10−3 8.68×10−3 5.25×10−3

c 5.49×10−5 3.92×10−4 1.25×10−4

σ 9.77 9.54 8.93
m 10−4.08 10−4.16 10−4.03

R0 1.46 1.40 1.56
AIC 19775.11 224872.35 206568.72

Reduced AIC 44535.18 607758.09 477497.34

Table 4.2: Best-fit parameter values for the full Ebola transmission model. Underlined parameters
were estimated by numerical optimization while all others were determined by LHS and correspond
to the best sample. Model fit was computed using AIC (lower indicates better fit). The reduced
AIC corresponds to a model without behavior change.

exception of the burial rate in Liberia. In general, this suggests that our selected

transmission and behavioral parameters do inform differences between the outbreaks

in each country. Our estimates of R0 range from 1.4 to 1.56. These values are

relatively consistent between countries and are similar to other published estimates

for Ebola [21, 24, 97]. The best-fit trajectories for each country generally match the

corresponding cumulative case and mortality data from the WHO sitreps (Figure

4.2). Our model is least accurate for Liberia due to the period of apparent linear

growth in the sitrep data from December, 2014 to June, 2015. It is not clear whether

this phenomenon reflects actual transmission dynamics or is an artifact of more

complete case detection catch-up in the later stages of the outbreak. However, our

model is still able to capture the majority of the outbreak growth dynamics as well

as the final size.

Sensitivity analysis indicates that the parameters we selected to fit directly do

influence the quality of the model fit (Figures 4.2g-4.2i). In addition, the behavioral
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Burial dynamics model fit to cumulative cases and deaths in Guinea, Liberia, and Sierra
Leone. The top three plots compare the simulated cumulative cases and deaths to the WHO sitrep
data. The middle three plots show the predicted relative frequency of traditional burials from the
best-fit models for each country. The bottom three panels show the sensitivity coefficients for our
directly estimated parameters (β1, δ, c, and k) as well as the remaining behavioral parameters (σ
and m).
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parameters σ and m appear to have individual influences on the model output.

The scaled cost of traditional burials c has the lowest sensitivity coefficient when

estimated for Guinea and Sierra Leone. Indeed, the range of plausible behavioral

trajectories for the outbreak suggests that c can be estimated or sampled within

approximately a factor of ten (Appendix B.2). Based on simulations using a range

of c close to the best fit, it appears that this parameter influences the general shape

of the behavioral trajectory (Appendix B.2). Thus, for practical purposes, it may be

sufficient to establish which range yields dynamics that broadly match the observed

outbreak.

Figures 4.2d–4.2f depict the predicted frequency of traditional burials over time

from our best fit models. For each country traditional burials decline rapidly between

August and October, 2014. Subsequently, our models predict that some individuals

begin to revert to traditional burials once the outbreak has essentially ended. The

timing of the first behavioral shift is noteworthy. While traditional burials decline

somewhat during the growth phase of the outbreak, the largest change occurs after

the peak simulated incidence. In addition, this period corresponds to a phenomenon

observed in Eisenberg et al. [24] regarding estimates of the reporting rate/population

at risk parameter k: The best fit value varied depending on the amount of data used

to fit the model. In particular, k was relatively stable using data up to September,

2014, but decreased by orders of magnitude once data from October and later was

included. Thus, it appears that transmission-related behavior change can explain

some of the variation of the reporting rate/population at risk over time.

Model comparison and forecasting The reduced model without behavior change

results in a worse fit both quantitatively and qualitatively. Even after adjusting for
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(a)

(b)

(c)

Figure 4.3: Residual error for the full and reduced models with respect to time. The left and right
panels show the error contribution of cumulative cases and cumulative deaths respectively.
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(a) (b) (c)

Figure 4.4: Simulated incidence from the best-fit full and reduced models for 4.4a Guinea, 4.4b
Liberia, and 4.4c Sierra Leone.

an increase in the number of parameters, the full model AICs are substantially lower

than those of the reduced model (Table 4.2). Figure 4.3 shows the squared residual

error from both models for each time point in the sitrep data for each country. Both

models perform similarly early in the outbreak, but the reduced model cannot capture

features of the data after incidence peaks. This can also be seen by comparing the

case and death trajectories from the reduced model to the sitrep data (Appendix

B.2). As a result, the best fit model without behavior change generally mis-predicts

the final size of the outbreak. This discrepancy is likely because the reduced model

does not have a mechanism that can adjust transmission rates or the population at

risk. Figure 4.4 compares the simulated incidence from the full and reduced models.

The full model generally produces a longer tailed incidence curve but lower peak

incidence. This is a consequence of the behavioral dynamics described above. When

traditional funerals decrease, the force of infection from funerals also decreases. As

a result, the susceptible population is depleted more slowly, allowing the outbreak

to continue for a longer period of time.

We also evaluate the performance of our model by testing its forecasting accuracy

relative to the reduced model. To do this, we fit both models to truncated data from

the outbreak then compute the mean squared error (MSE) for our output equations
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(a)

(b)

(c)

Figure 4.5: Comparison of forecasting accuracy between the full and reduced models. Left panels
show the mean squared error for forecasts from the full and reduced model using data up to each
included end point. Right panels compare the forecast final outbreak size from each model to the
surveillance data final size.
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using the full outbreak data. Thus we can test how effectively the model would have

forecast the outbreak at different points in time. Figure 4.5 displays the full model’s

forecasting performance compared to the reduced model. We are concerned with

both how accurately the models predict the full time-course of the outbreak as well

as whether they predict its final size. While the forecasts are highly sensitive to the

last data point included for fitting, the full model generally yields a lower MSE as

well as a smaller difference between the predicted and actual final size (often by a

full order of magnitude). We do note however that neither model performs well until

data from October or November, 2014 is included. This corresponds to the inflection

point in the outbreak data where incidence no longer increases exponentially. The

quality of projections from the full model do improve significantly after this point,

further suggesting that the data contains a signal of behavior change.

Alternate scenarios We compare three hypothetical scenarios to evaluate the im-

pact of changing burial practices as a control measure. In all three scenarios, we

parameterize our model using the best fit values for each country and simulate out-

breaks assuming a single initial infected individual. The first scenario represents

a worst case with respect to burial practices in which all funerals are traditional

(fT = 1) with no change over time. The second scenario considers another fixed-

behavior case – the fraction of traditional burials is set to the average over the

trajectory from the best-fit model. This condition can be interpreted as an approxi-

mation of the actual behavioral dynamics assuming data collection does not capture

the full trajectory. For the final scenario, we set the initial fraction of traditional

burials to its eventual steady state value from our fit to the 2014 outbreak and al-

low burial practices to change. This represents a population that has previously
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(a) (b) (c)

Figure 4.6: Simulated incidence under behavioral scenarios for each country. Baseline curves rep-
resent incidence from the best-fit models shown in Figure 4.2. Total cases (by scenario) for Guinea
(4.6a) Baseline: 3825, fT = 1: 5836, fT = avg: 4281, dynamic: 3647. Total cases for Liberia (4.6b)
Baseline: 10628, fT = 1: 26920, fT = avg: 15459, dynamic: 8461. Total cases for Sierra Leone
(4.6c) Baseline: 13567, fT = 1: 19874, fT = avg: 15148, dynamic: 12907

experienced a large Ebola outbreak and adapted its burial practices accordingly, but

practices continue to evolve. Our model predicts that traditional burial practices do

resume once the initial outbreak is over, so the new initial fT is above zero. Figure

4.6 shows the incidence trajectories for each scenario as well as the best-fit (baseline)

model. We observe a similar phenomenon as in our model comparison. Except for

Liberia, both fixed-behavior scenarios have higher peak incidence than baseline, and

generally symmetrical epidemic curves. All other trajectories and final outbreak sizes

were higher than the dynamic scenario, indicating that prior experience with an out-

break can reduce the overall magnitude of subsequent outbreaks. Adaptation alone

is not sufficient to prevent an outbreak, however, suggesting the need for additional

intervention mechanisms.

4.4 Discussion

Behavior change during infectious disease outbreaks is frequently hypothesized

or anecdotally reported, but rarely included explicitly in mathematical models. We

used evolutionary game theory to address the population dynamics of burial practices

during the 2014 Ebola outbreak in West Africa. In particular, our approach allowed
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us to assess the impact of adaptive behavior change on the scope of the outbreak.

Our model produced substantially more accurate fits to surveillance data than a

reduced model without behavior change for all three countries. This suggests that

a transition from traditional to sanitary burials is a plausible mechanism to explain

the observed outbreak dynamics. In particular, this transition may be responsible

for a decreasing force of infection in the later stages of the outbreak resulting in a

lower total number of cases than would be predicted by a fixed-behavior model, as

well as a longer time until the end of the outbreak.

A noteworthy feature of behavior-disease models is the potential to estimate be-

havioral parameters from surveillance data. We found that the cost term for non-

traditional burials could be directly estimated and the sampling and random choice

rate could be determined by LHS. While these parameters are abstractions of the

true determinants of burial practices and behavior change, they can provide insight

into the relative degree of resistance to non-traditional practices. Behavioral dynam-

ics may explain observed changes in non-mechanistic parameters from fixed-behavior

models. Indeed, the behavioral trajectories from our best-fit simulations correspond

to previously observed changes in the reporting rate/population at risk correction

factor for the reduced model when it is fit to increasing amounts of data [24]. The

predicted decline in traditional burials provides evidence that behavior change may

have reduced the force of infection, tipping the West Africa epidemic towards ending.

However, our model also projects an increase in traditional burials once the epidemic

is over as the risk of infection due to funerals is once again low. Thus while behavior

change can contribute to the end of an outbreak, populations will not necessarily

maintain their adherence with lower risk behaviors.

In order to account for the effect behavioral dynamics, infectious disease surveil-
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lance could be supplemented with time series of risk behaviors such as the fraction

of traditional burials. Behavior-disease models can use these sources with standard

fitting methods. Similarly models can be designed to include behaviors that are ob-

served to change in response to outbreaks. This may be particularly useful given that

epidemics typically have similar early trajectories, characterized by a period of ex-

ponential growth. During this period it is nearly impossible to discriminate between

models of varying complexity with case and mortality data alone. However, be-

havioral data streams may provide enough additional information to improve model

selection or reduce uncertainty in estimates from a given model. In the context of

Ebola, collecting the relative frequency of burial types may have improved forecast-

ing accuracy by signaling the reduction in transmission due to increasing sanitary

burials.

Our forecasting results suggest that including behavior change may enable more

accurate medium and long-term projections even using only standard case and death

surveillance data. Our model gave reasonable predictions of the final size of the out-

break (within 8% of the reported final size), although only once data from November,

2014 onward was included. While final size information is often sought by policy-

makers early in an outbreak, these results underscore how surveillance data from this

period may not be sufficient to provide an accurate estimate. It is also difficult to

determine ex ante whether a model’s final size predictions are likely to be accurate.

However, a time varying force of infection due to behavioral adaptation is a plausible

element in most outbreaks. In particular, behavior change in our model leads to a

reduced force of infection over time, and a lower final size as a result. While still

subject to substantial uncertainty during outbreak conditions, these estimates may

be more plausible than higher estimates from models without behavior change.



59

Our findings consistently indicate that burial practices changed significantly over

the outbreak, however our model does not necessarily distinguish between changes

in behavior due to interventions (e.g. increased burial team activity) and change

due to social adaptation. In particular the sanitary burial strategy represents an

intervention as opposed to a burial type that existed prior to the outbreak. Burial

team deployment also increased as the scope of the epidemic became evident, so

it is reasonable to assume that some of the predicted behavior change is capturing

this phenomenon. Still, burial teams’ effectiveness depended on cooperation from

local citizens. As a result, our model can be interpreted as representing community-

level adaptation to a behavioral intervention. We also note while the qualitative

features of our model’s burial trajectories appear plausible, the exact degree of be-

havior change may be confounded by additional behavioral or intervention activity.

For example, Ebola treatment units (ETUs) were deployed in increasing numbers

and individuals may have reduced their contact frequency while the epidemic was

growing. As current surveillance data is not likely to be sufficient to specify further

behavioral mechanisms, future work may need to integrate alternative data sources

such as anthropological studies. Similarly, we omit healthcare transmission from

our model to reduce its overall complexity. This may bias our estimates of trans-

mission terms somewhat as healthcare workers in Ebola treatment units may have

experienced higher risk due to their frequent contact with late-stage patients.

In spite of these limitations, our model provides a platform to test hypothetical

behavioral scenarios, which can seldom be studied experimentally. For example, we

compared the magnitude of simulated outbreaks between our best fit model and a

combination of fixed and dynamic behavior conditions. Both scenarios with dynamic

burial behavior resulted in lower peak incidence than either fixed scenario. This
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suggests that adaptation can provide protection even in populations that have not

experienced prior outbreaks. However, adaptation alone is not sufficient to prevent an

outbreak from beginning. In general, behavioral practices do not appear to change

substantially until the outbreak is near or past its peak incidence. This reflects

the intuition that individuals may never react instantaneously to changing disease

conditions. Thus, prevention and rapid response to newly detected outbreaks are

still crucial to successful control. As emerging disease outbreaks increasingly occur

in complex socio-political conditions, we argue that it is important to continue to

develop methods that can provide mechanistic insights into behavioral processes as

well as biological ones.



CHAPTER V

Usability, compliance, and household water treatment
recommendations

5.1 Introduction

Between 2000 and 2012, the global population lacking access to safe drinking water

was reduced by over 50%, fulfilling a United Nations (UN) Millennium Development

Goal (MDG) for environmental sustainability three years early. Meeting this goal

substantially improved quality of life by reducing the burden of diarrheal disease

in low and lower-middle income (LMIC) [98]. However, many challenges remain as

nations begin to address the new UN Sustainable Development Goals (SDG). As

of 2012, roughly 11% of the population remained without safe drinking water while

improvements to sanitation fell short of the MDG. Consequently, water, sanitation,

and hygiene feature prominently in the SDG, with the ambitious target of universal

access to safe drinking water and adequate sanitation by 2030. While the MDG and

other initiatives have significantly reduced the burden of diarrheal disease, it remains

the second leading cause of death among children under five [25]. Effective and

sustainable interventions will be critical to expanding the coverage of safe drinking

water. We focus our analysis on the effectiveness of household water treatment

(HWT) considering both compliance behavior and treatment efficacy.

HWT has been promoted as a sustainable intervention to provide safe drinking

61
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water to communities affected by diarrheal disease that lack central treatment sys-

tems [31, 99]. Health gains in theory can be substantial, as treatment methods are

capable of removing or inactivating nearly all pathogens in drinking water. However,

in practice reported risk reductions from HWT are often less than expected [27–30].

Incomplete compliance may be responsible for some of the observed inconsistency be-

tween treatment efficacy from small scale trials [100] and population health outcomes.

In particular, higher treatment efficacy often compromises end-user convenience or

device reliability [30]. For example, chlorine is increasingly detectable by taste as

concentrations increase, and can render drinking water unpalatable [31, 32]. Water

filtration devices can achieve similar pathogen reductions without altering taste, but

slow flow rates and clogging can impede adoption and long-term effectiveness [33–35].

Under these circumstances, the efficacy of a HWT method does not capture its ac-

tual capacity to reduce the burden of disease, as a more efficacious treatment device

may induce lower compliance and therefore be less effective than a less efficacious

but more appealing intervention.

HWT efficacy is typically reported as log10-removal values (LRVs) that quantify

the amount of pathogen removed from treated water, i.e., the proportion of pathogen

remaining after treatment is 10−LRV . LRVs serve as a comparative measure for treat-

ment methods within a given class or between classes. The World Health Organi-

zation (WHO) currently recommends HWT efficacy of 4 LRV for bacteria, 5 LRV

for viruses, and 4 LRV for protozoa in order to attain a ”highly protective” stan-

dard in generic scenarios where contextual information about exposure levels and

the population at risk are not available [31]. The specific LRVs presented in the

Guidelines were computed using analytical quantitative microbial risk assessment

(QMRA) with disability-adjusted-life-years (DALY) as the measure of disease bur-
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den. Notably, the WHO guidelines assume perfect compliance with the treatment

method. However, technological adoption is seldom complete [101]. HWT uptake in

particular is variable but rarely widespread in lower income regions [102].

Current QMRA research has begun to address the impact of compliance on the

effectiveness of HWT interventions [103–105]. However, these studies have treated

compliance as essentially exogenous. That is, compliance is set to a range of hy-

pothetical levels for a given intervention. By contrast, it is likely that uptake and

compliance are determined by the degree to which an intervention matches indi-

viduals’ preferences regarding tradeoffs between treatment efficiency and usability.

Thus overall compliance depends both on the distribution of attitudes and the spe-

cific intervention proposed. We explicitly model this relationship by augmenting the

QMRA approach with a decision-theoretic model of compliance. Decision theory

is a mathematical framework used in economics and other social sciences to ana-

lyze scenarios where individuals must choose between multiple options subject to

cost and benefit comparisons. Applications to public health have largely focused on

cost analysis for institution-level interventions [106, 107]. However, decision theory

is equally appropriate to modeling individual level compliance decisions. We use

our combined model to evaluate current treatment recommendations and estimate

recommendation levels that minimize disease burden given a range of hypothetical

population attitudes toward HWT.

5.2 Methods

5.2.1 Quantitative Microbial Risk Assessment (QMRA) model

QMRA provides a framework to estimate disease risks using a set of equations

that characterize how likely an individual is to become infected given their degree of

exposure to a given pathogen. For waterborne disease, contaminated drinking water
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acts as one of the primary transmission pathways, so exposure levels represent the

quantity of viable pathogen ingested daily based on the quality of available drinking

water (exposure assessment). The probability of infection per organism depends

on interactions between the pathogen and the host immune system (dose-response).

Empirically, infection events can be modeled using a dose-response function fit to

experimental data.

QMRA can be implemented using either an analytical or (stochastic) simulation-

based approach [103, 104]. Using an analytical approach risk is directly calculated

using data for exposure levels. For a stochastic QMRA simulation, risk is estimated

from an ensemble of simulation runs. In a given simulation, exposure levels can

vary, and infection is determined randomly according to the probability distribution

specified by the dose-response function. We use both methods to address the effect

of compliance on HWT interventions. Specifically, we use the analytical version of

our model to compute optimal recommendations and the stochastic model to assess

the burden of disease.

Calculating exposure levels An individual’s daily volume of pathogen ingested is

di =


wv × 10−x̂ with HWT compliance

wv otherwise

, (5.1)

where w is the concentration of pathogen per liter of untreated water, v is the vol-

ume of water consumed per day, and x̂ is the log10-reduction value of the recom-

mended HWT method. Individuals use their HWT device (comply) with probability

Pri(use). Here, we choose to model compliance based on individuals’ attitudes

toward the specific implemented HWT, by developing a decision-theoretic model.

While not implemented in this analysis, it is also possible to treat compliance as
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a dynamic element, responding to disease burden, environmental changes, or social

changes.

The expected dose (E[di]) across all individuals in a population can be character-

ized as:

E[di] = wv[(1− E[Pri(use)]) + E[Pri(use)]10−x̂] (5.2)

where E[Pri(use)] is the expected compliance. On average, individuals are exposed

to fully contaminated water when they do not use their treatment device (wv(1 −

E[Pri(use)])) or reduced pathogen content when they do (wv(E[Pri(use)]10−x̂). Al-

ternatively, expected compliance can be interpreted as the fraction of a given day’s

water that is effectively treated. These interpretations yield identical analytical re-

sults, but do alter the disease outcomes in an explicit simulation.

Dose-response We use an exponential or approximate beta-Poisson dose-response

function to compute the daily probability of infection for a given quantity of pathogen.

Both of these functions assume that a single pathogenic organism has a non-zero

probability of causing an infection, essentially treating infection as the outcome of

Bernoulli trials. The exponential dose-response function is

Pri(infection) = 1− e−kdi (5.3)

with rate parameter k. Mechanistically, this function implies that the dose is Poisson

distributed and that each unit of pathogen has an identical probability of surviving

to reach the target site (1/k) and of causing an infection.

An exact beta-Poisson function is often computationally unstable due to its use

of the confluent hypergeometric function. As a result, the approximate form is often
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used instead.

Pri(infection) = 1− (1 +
di
β

)−α (5.4)

β =
N50

21/α − 1
. (5.5)

where α controls the slope and N50 is the dose required to infect 50% of a population.

This approximation is appropriate when α << β and β >> 1 which are satisfied by

our parameter values for E. coli and rotavirus (Table 5.1). The mechanistic interpre-

tation of the beta-Poisson model is similar to that of the exponential model, however

in this case the probability that a pathogen survives to infect (i.e., infectivity) is

assumed to be given by a beta distribution. The choice of dose-response function is

typically made based on both biological and statistical considerations. We use the

exponential dose-response function for Cryptosporidium [108] while the beta-poisson

dose-response function is used to characterize E.coli [109] and rotavirus [110].

5.2.2 Decision-theoretic compliance

Our QMRA model can accommodate variable individual compliance levels. In

particular, we are interested in the impact of recommendations on compliance. We

construct the following decision-theoretic model to determine the distribution of

individual compliance based on hypothetical attitudes toward recommended HWT

levels.

Suppose we have individuals i ∈ N who must each select a probability of compli-

ance with a recommendation chosen from the intervention space X ⊆ R. This space

represents the range of possible HWT levels quantified by their LRV. We assume

that an individual’s attitude toward HWT properties map to the LRV of any given

treatment method. Each individual has a most preferred LRV denoted xi ∈ X. We

will refer to the distribution of these points as the preference distribution. For our
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analysis we assume that preferences are distributed according to a truncated nor-

mal distribution with mean µ and variance σ2, bounded by [0, 6] (the range from

no intervention to the highest current recommendation). We label the potential

recommended intervention x̂. In our model, the choice of a specific optimal recom-

mendation level can be a function of both the LRV of the device and population

preferences. By contrast, the current WHO recommendations for HWT are based

solely on the microbiological characteristics of a device.

We frame the following decision problem: Given their preferred LRV, individuals

must choose the degree to which they comply with the recommended HWT. As noted

above, this choice is over the probability of compliance as opposed to the binary

choice of compliance on a specific day. This is because we assume that conditions

informing compliance do not change enough between days to alter an individual’s

choice. Instead, individuals set Pri(use) when the intervention is implemented and

draw their daily compliance accordingly, analogous to a mixed strategy in game

theory. To represent this problem we construct a utility function, ui, that represents

an individual’s cost/benefit evaluation of the recommendation x̂. Intuitively, this

function should yield a larger value for compliance with an intervention that is similar

to the preferred LRV and a smaller value for compliance when the recommended

LRV is dissimilar to the preferred LRV. We use the following general form for our

compliance model:

ui(Pri(use)|xi, x̂) = −(1− Pri(use)−∆x)2 (5.6)

where ∆x represents the distance between xi and x̂. The choice of a distance measure

may depend on prior knowledge of how individuals compare HWT alternatives. We

use two similar measures to characterize different potential situations. The first
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measure is the squared Euclidean distance

∆x =
(xi − x̂)2

(max(X)−min(X))2
.

Where min(X) and max(X) are the lowest and highest feasible LRVs, respectively.

This measure implies that individuals dislike treatments that are either more or less

efficient than their ideal preference. Chemical treatment such as chlorination may

be an example of an intervention for which individuals apply a symmetrical distance

measure. This may be because an individual who prefers some level of chlorination

would be unwilling to treat their water at levels that they do not perceive as effective

(lower LRV than preferred), and may not want to treat at high concentrations due

to taste issues [31, 100].

Alternatively, we can use an asymmetrical piecewise distance measure

∆x =


(xi−x̂)2

(max(X)−min(X))2
if x̂ ≥ xi

0 otherwise

. (5.7)

Unlike the first utility function, this variant implies that individuals dislike rec-

ommendations greater than their ideal point, but treat lower recommendations as

equally favorable. This asymmetry may be appropriate for filtration methods, where

individuals may not distinguish between a lower LRV device and the recommended

treatment level, especially if changes in the aesthetic qualities of the filtered drink-

ing water do not vary between devices. They may begin to become non-compliant,

however, with a high LRV filter due to slow water flow or increased breakage rate.

If X is normalized to the [0, 1] interval, the above equations simplify to

∆x = (xi − x̂)2 (5.8)
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and

∆x =


(xi − x̂)2 if x̂ ≥ xi

0 otherwise

(5.9)

Decision theory posits that individuals will choose actions that maximize their

utility. The inner term of Equation 5.6 implies that when the distance between

an individual’s preference and the recommendation is large, utility is maximized by

adopting a low probability of compliance. By contrast, when the distance is small,

utility is maximized by adopting a high probability of compliance. Thus, maxi-

mizing Equation 5.6 with respect to Pri(use) results in the following probability of

compliance that approaches one when an individual’s preference matches the recom-

mendation.

Pri(use) = 1−∆x (5.10)

Equation 5.10 implies that an individual will comply perfectly with their most pre-

ferred HWT intervention. This is not realistic in the sense that even widespread

centralized water treatment never achieves 100% usage. When the maximum pos-

sible compliance is known, it is straightforward to modify Equation 5.10 using a

scaling factor as follows:

Pri(use) = cmax(1−∆x) (5.11)

where cmax is the maximum possible compliance. This does not impact our estimates

of optimal recommendations but does have an impact on our risk estimates. In

particular we would expect a lower cmax to attenuate the risk reduction for any

intervention. This is because risk responds monotonically to compliance for a given

intervention level, so lowering the maximum compliance probability acts as an offset.
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Applying the decision theoretic model to home water filtration Household water

filters include a range of specific technologies including biosand [111], and ceramic

[112] devices. As a result, filters vary with respect to their filtration efficacy for viral,

bacterial, and protozoan parasites as well as properties such as flow rate, capacity,

and durability. While individuals facing endemic diarrheal disease are likely to value

improved pathogen removal, the usability of a filter may significantly impact whether

an individual is willing to treat their drinking water, particularly in resource-limited

settings where individuals may not prioritize water treatment in the face of other

basic survival concerns. In particular, more efficient filters may have reduced usability

as smaller pores decrease the flow rate and are more likely to clog. As a result,

attitudes toward filters are not likely to strictly improve with efficacy. Indeed, the

trade-off between efficacy and usability may result in decreasing favorability once a

filter passes a point that an individual considers acceptable. However, filters below

that threshold may be considered equally acceptable, given that LRV may not be

explicitly evaluated so long as a filter reduces apparent risk.

We illustrate our decision-theoretic approach using this context. Suppose pref-

erences regarding filter efficiency are normally distributed with a mean of 2 LRV

(Figure 5.1a). We wish to determine the distribution of compliance if a 3 LRV filter

is recommended. Each individual selects their compliance level with the 3 LRV de-

vice based on Equation 5.6 using the asymmetric distance measure. All else equal,

this measure implies that individuals dislike filters more efficient than their ideal

point but are ambivalent to filters as efficient or less. Figure 5.1b shows predicted

compliance (Equation 5.10) as a function of the distance between the recommenda-

tion and any given individual’s preference. In this example most of the population

prefers a filter relatively similar to the recommendation, so overall compliance is rel-
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(a) (b) (c)

Figure 5.1: An example of our decision-theoretic framework. The preference distribution (5.1a)
specifies the frequency of each individual preference. Colored circles indicate five specific example
individuals with corresponding LRV preferences. Individual maximum-utility compliance (5.1b)
can be expressed as a function of the distance between an individual’s preference and a given
recommendation. The compliance distribution (5.1c) gives the frequency of predicted compliance
for all individuals by applying the maximum-utility compliance to each individual’s preference given
a recommendation.

atively high (Figure 5.1c). Note that the slope of the compliance function determines

the degree to which individuals dislike dissimilar interventions. When the slope is

steeper, the compliance distribution is broader with more mass at lower compliance

relative to a shallower slope (Appendix C.3).

5.2.3 Optimizing HWT recommendations

In an analytical QMRA approach that assumes perfect compliance, we can always

compute the treatment level (efficacy) necessary to obtain a given risk threshold.

With incomplete compliance it is possible that no feasible treatment level could

reduce risk below current acceptable disease burden standards. However, it is still

important to consider which treatment level would reduce infections the most relative

to baseline conditions. An optimal recommendation from this perspective must take

into account both the microbiological characteristics of the device and behavioral

features of potential users. Formally, this problem can be stated as follows:

x̂∗ = argminx̂Pr(infection|x̂, θ), (5.12)



72

where argminx̂ means that we search for the recommendation x̂∗ that minimizes the

average probability of infection which is a function of the treatment level x̂ and other

parameters θ (i.e. the dose response function).1 Equivalently, when the dose response

function responds monotonically to changes in dose, the optimal recommendation can

be found by minimizing the function representing the expected dose (Equation 5.2).

Notably, this means that the solution does not depend on pathogen or exposure

characteristics beyond the effect of treatment. We compute numerical solutions to

Equation 5.12 assuming normally distributed preferences. Appendix C.1 describes

our procedure in greater detail. We assess the effect of the preference distribution’s

variance using local sensitivity analysis.

5.2.4 Simulation framework

We simulate a population of size N for T days. Each day healthy individuals

may become infected based on their exposure level and probability of infection. Sick

individuals recover based on times drawn from a gamma distribution. Table 5.1

describes the specific dose-response and recovery models used for each pathogen

[104]. Gamma distributions characterize the expected time to recovery for diseases

with multiple infectious stages assuming a Poisson process. When represented by

an integer, the shape parameter denotes the number of stages. In the case where

the shape parameter is one, the gamma distribution is equivalent to an exponential

distribution. For Cryptosporidium and E. coli, gamma distribution parameters were

drawn from existing literature on the infectious period of each disease [113, 114].

Because less data is available for Rotavirus we chose a gamma distribution with an

average waiting time equal to the median recovery time of 5.2 days [115] and a shape

parameter of one (making the distribution effectively exponential). We implemented

1This procedure is equivalent to solving for the subgame perfect Nash equilibrium for a game in which a policy
maker first selects a recommendation and individuals then choose their compliance probabilities (Appendix C.2).
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Dose-Response Dose-Response Parameters Recovery Distribution Recovery Parameters
Cryptosporidium Exponential [108] k = 5.72× 10−2 Gamma shape = 4, scale = 2.5

E. coli Beta-Poisson [109] α = 0.155, N50 = 2× 106 Gamma shape = 1.775, scale = 1.69
Rotavirus Beta-Poisson [110] α = 2.53× 10−1, N50 = 6.17 Gamma shape = 1, scale = 5.2

Table 5.1: Dose-response functions and recovery time distributions for each pathogen. The average
time to recovery for a gamma distribution is the product of the shape and scale parameters. For
an exponential distribution the average time is equal to the scale parameter.

E. coli (STEC) Rotavirus* Cryptosporidium

Organisms/L 1× 103 1 0.1
Daily water consumption (L) 1 1 1
Treatment efficacy (LRV) 4 5 4
DALY/person 5.47× 10−2 0.482 1.47× 10−3

Prevalence/year 2.92× 10−4 0.0136 2.26× 10−3

Disease Burden (DALY/person-year) 1.59× 10−5 6.54× 10−3 3.32× 10−6

WHO threshold 1× 10−6 1× 10−6 1× 10−6

Table 5.2: Simulated disease burden estimates for three waterborne enteric pathogens at 6 Log10
reduction with complete compliance. *Rotavirus assumes 6% population at risk, low income disease
burden [31, 117].

our models and analyses in Python 2.7 using Numpy, Scipy, and Matplotlib.

5.3 Results

5.3.1 The effect of imperfect compliance

We first replicated the scanarios that the WHO used to determine treatment

level guidelines, a 4-log10 reduction in bacterial and protozoa concentration and a

5-log10 reduction in virus concentration with perfect compliance [116]. For each

pathogen type we simulated our stochastic QMRA model for 1 year and computed

the average yearly disease burden. With perfect compliance our simulations for

E.coli and Cryptosporidium correspond to the WHO analytical results (Table 5.2).

We use the low income country disease burden for rotavirus, resulting in a higher

total disease burden. This assumes a higher probability of mortality due to infection

and is more likely to reflect the burden of rotavirus in countries that will receive the

greatest benefit from the 2030 SDG.

Next we relax the assumption of perfect compliance for Cryptosporidium (Results

for other pathogens can be found in Appendix C.3). At all contamination levels over
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99% compliance is necessary to reach the WHO target (Figure 5.2). This finding

is a consequence of two factors: The WHO guidelines are determined by solving

for the lowest efficacy that will result in tolerable disease burden, so we would not

expect a less efficacious intervention to meet the threshold. Additionally, individu-

als face substantially higher disease risk whenever they do not use their treatment

device, causing disease burden to be very sensitive to compliance. While the largest

changes occur between compliance levels of 80-100%, the log-scale for disease burden

compresses its apparent change with respect to compliance. For example, with 1

oocyst/L, if compliance increases from 20% to 60%, the disease burden decreases

from 0.134 DALY/year to 0.0827 DALY/year.

Note that the WHO target threshold of 10−6 DALY/year implies near-zero en-

demic prevalence based on analytical QMRA. This is impossible to verify in practice

due to the large population size required to detect any cases once the risk of infec-

tion is sufficiently low. Our stochastic simulation results reflect this phenomenon,

as many runs with near-perfect compliance had zero cases. As a result, although

the disease burden for incomplete compliance is higher than the 10−6 threshold, con-

tamination levels of 0.01 and 0.001 oocysts/L cause a very small absolute number of

cases on average.

5.3.2 Optimal recommendations

In our model, optimal LRV recommendations are those that most reduce risk

subject to a tradeoff between compliance and device efficacy. Simulating a filter

intervention, we assume that the utility function has an asymmetrical distance mea-

sure, i.e., users accept recommendations lower than their preference but are less likely

to use recommended filters that have higher LRV than their preference (Figure 5.1b).

Based on these assumptions optimal recommendations for filters tend to be higher
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Figure 5.2: Simulated disease burden estimates for Cryptosporidium at varying contamination levels
w as compliance with a 4 Log10-reduction recommendation increases.

than the average user preference µ when the average is low and tend to be lower

than the average preference when the average preference is high (Figure 5.3a). For

our simulation of Cryptosporidium the transition point is approximately at 2 LRV.

This can be seen by comparing the solution line with the dashed line indicating a

recommendation set at the mean of the preference distribution (Figure 5.3a).

We also determine the optimal recommendations for a chlorination intervention.

In this case we assume that the distance measure is symmetrical – individuals are

less likely to treat their water if the recommended LRV is either higher or lower than

their preference. Like filtration, the optimal recommendation for chlorination is

higher than the average preference when the average preference is below 2. However,

between 2 and 5 LRV the optimal recommendation tracks the average preference.

Above an average preference of 5 LRV the optimal recommendation is slightly below

the average user preference.

The symmetrical distance measure results in higher optimal LRV recommenda-

tions than the asymmetrical measure for distributions with an average preference

above 2 LRV. This is because the asymmetrical measure implies that individuals
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(a) (b)

Figure 5.3: Numerical solutions (5.3a) for the optimal recommendations using the decision-theoretic
compliance model. We also compute the sensitivity coefficient for the optimal recommendation x̂∗

with respect to the variance of the preference distribution (5.3b). Blue lines indicate results using
the symmetrical distance function while red lines indicate results using the asymemtrical distance
function. The dashed line tracks the average LRV preference µ. LRV preferences are normally
distributed with variance σ2 = 3.6.

will comply with treatments with lower LRV than their most preferred alternative.

Consequently, overall compliance with any intervention under these conditions is

higher than in the case where individuals also dislike less efficient treatments. Our

sensitivity analysis highlights a further distinction between the two distance mea-

sures. The optimal recommendation is insensitive to the variance of the preference

distribution when individuals use a symmetrical distance measure. However, vari-

ance does have a substantial effect on the optimal recommendation if individuals use

an asymmetrical measure. This phenomenon is also driven by the observation that

recommendations under the asymmetrical distance measure gain compliance from

anyone with a greater preference. Thus, for a given average preference, increasing

variance increases the expected number of people who have a larger LRV preference.

Case study Our model can also be used to estimate optimal recommendations

given data about compliance with existing interventions. We demonstrate this using

a hypothetical water filtration intervention. For our scenario, we assume that the
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maximum compliance for any intervention is 90%. Suppose field trials of a 6 LRV

filter indicate that participants do not use their device 20% of the time on average.

For simplicity we assume that the variance of compliance is not available. From this

we can calculate the average LRV preference E[xi] by solving Equation 5.10:

E[Pri(use)] = cmax(1−∆x)

E[xi] = x̂−

√
x2
max(1−

E[Pri(use)])

cmax
)

(5.13)

where cmax is the maximum compliance. We use the negative square root since

our model for filters assumes an asymmetric distance measure which implies that

incomplete compliance is generally a product of an intervention that is more effi-

cacious than the average user preference. Our scenario specifies that cmax = 0.9,

E[Pri(use)] = 0.8, and xmax = 6 LRV. Solving Equation 5.13 gives an average

preference E[xi] = 4 LRV. We then solve Equation 5.12 numerically to obtain the

optimal recommendation x̂∗ = 4 LRV, the same value as the average user preference.

This is a conservative estimate in the sense that variance in the preference distri-

bution would cause the optimal filter recommendation to be lower than the average

preference (Figure 5.3). However, without an explicit variance estimate, the optimal

recommendation solution resembles the value for a symmetrical distance measure.

5.3.3 Risk reduction

We also examine the degree to which optimal recommendations reduce the burden

of disease for the specific pathogens listed in Table 5.1. Figure 5.4 depicts the abso-

lute risk of Cryptosporidiosis in a simulated population of 10,000 individuals as well

as the relative risk comparing the optimal recommendation level to the current WHO

recommendation for protozoa (4 LRV). We use the stochastic simulation model for

this analysis as discrete cases provide more realistic disease burden estimates, par-
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(a) (b)

Figure 5.4: 5.4a: The simulated endemic prevalence when the optimal LRV is implemented compar-
ing the symmetrical and asymmetrical distance functions. 5.4b: The prevalence ratio comparing
the optimal recommendation from Figure 5.3 vs. the current 4 LRV recommendation for Cryp-
tosporidium for both distance functions.

ticularly when the risk of infection is low. Our simulations assume 1 oocyst per liter

and 2 liters of water consumed per day. We again compare the results using symmet-

rical and asymmetrical distance measures. As noted above, the symmetrical distance

measure can represent attitudes toward chlorination while the asymmetrical distance

measure can represent attitudes toward filters. For concreteness we will refer to the

model with symmetrical/asymmetrical distance as the chlorination/filtration model,

respectively.

The risk estimates in Figure 5.4a demonstrate the effect of a population’s atti-

tudes toward HWT on the intervention’s capacity to reduce disease burden. We

report results for a maximum compliance cmax = 1. Thus these risk estimates are

optimistic in the sense that lower maximum compliance will shift the risk and risk-

ratio curves downward (Section 5.2.2). We show supplementary results for a set of

reduced maximum compliance scenarios in Appendix C.3. For both chlorination and

filtration, optimal interventions become much more effective as the average prefer-

ence increases from 1 to 2 LRV. Beyond this point, the effectiveness of chlorination
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plateaus while optimal filtration continues to reduce risk for populations with greater

average preference. In both cases, Figure 5.4b indicates that optimal recommenda-

tions are generally more effective than the current recommendation. The protective

effect of the optimal recommendation is largest when the average LRV preference does

not align with the current recommendation. Simulations for E. coli and Rotavirus

can be found in Appendix C.3. While specific values differ, the qualitative features

of the absolute and relative risk curves do not vary substantially by pathogen.

5.4 Discussion

Current HWT guidelines focus on treatment efficacy under a perfect compliance

scenario. However, even nearly perfect compliance with a high LRV treatment

method can result in high disease burden when drinking water is sufficiently con-

taminated. Studies of filter adoption have suggested that usability may decline as

a function of LRV. Biosand and clay pot filters have LRV approaching 5 for bacte-

ria, but are prone to breakage and clogging [33, 118, 119]. By contrast cloth filters

have been successfully adopted for Cholera prevention in spite of a much lower ( 2

LRV) efficacy [120, 121]. Chemical treatment involves a similar trade-off as the taste

of treated water typically becomes less palatable as the concentration of disinfec-

tant increases [31, 32]. It is important, therefore, to determine how the interaction

between microbiological and usability characteristics of HWT treatments influences

their effectiveness as interventions.

Recent QMRA analyses have found evidence for diminishing health improvement

returns for increasing LRVs under imperfect compliance [104, 105]. Our results are

broadly consistent with these findings. Additionally, our decision-theoretic frame-

work provides a means to examine the interaction between a population’s attitudes
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and the effectiveness of HWT interventions and to develop optimal recommendations

that account for non-compliance. Applications of our approach are not limited to

HWT contexts, indeed, our compliance model could be adapted for WASH or other

interventions provided the utility function is a reasonable representation of a target

population’s attitudes toward interventions.

Across the range of population attitude scenarios we tested, the optimal LRV

from the perspective of minimizing disease burden was nearly always lower than the

current recommendation that assumes perfect compliance. In addition, we found that

the risk-reduction generated by applying the optimal LRV as opposed to the current

recommendation for each class of pathogen was considerable (risk-ratio: 2-15). This

illustrates how assuming perfect compliance may yield overly optimistic projections

of disease reduction by high efficacy treatment methods. It is important to note

that our optimized interventions did not result in absolute disease risks at or under

the tolerable disease burden threshold of 1 × 10−6. These higher risk predictions

are both a consequence of our explicit inclusion of compliance and the stochastic

nature of our model. Given that the prevalence needed to obtain disease burdens

at or lower than 1 × 10−6 DALY/year are not observable in discrete populations,

stochastic QMRA may be a more realistic approach to assess disease burden and

risk targets. In addition, a combination of intervention strategies (a multiple barrier

approach) may be necessary to sufficiently reduce the burden of diarrheal disease in

developing countries.

Willingness to adopt more efficient (but potentially less usable) HWT methods

is likely to vary substantially by region. Ideally, HWT recommendations could be

informed by data regarding the target group’s preferences and attitudes regarding

treatment. Such attitudes are complex, determined by a wide range of elements
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including private costs, social contexts, and political forces. Our decision-theory

model is designed to accommodate behavioral data at multiple levels of resolution. In

particular, when data on compliance is unavailable or unreliable, attitude surveys and

similar techniques can be used to assess the distribution of preferences and inform the

selection or construction of a utility function. Alternatively, as demonstrated by our

household water treatment case study, data on compliance with existing interventions

can be used to infer the optimal recommendation from an effectiveness perspective.

Our QMRA model relies on a simplified representation of enteric pathogen trans-

mission. In order to focus on the implications of intervention and preference-dependent

compliance we omitted temporal variation in pathogen exposure due to seasonal or

other periodic factors. Additionally, QMRA approaches rely on the simplifying as-

sumptions that infected individuals do not shed pathogen back into drinking water

sources, and that contaminated drinking water is the primary transmission pathway.

Future work may address these factors by implementing a compartmental transmis-

sion model with environmental transmission similar to the EITS or SIWR models

[122, 123]. However, our current approach represents a straightforward extension to

QMRA that functions as a policy evaluation and data integration tool. Even in the

absence of context-specific information, our analyses suggests that it may be advis-

able to focus on cost-efficient and readily usable treatment options. This is likely to

be particularly crucial to the successful deployment of HWT in areas that continue

to lack access to clean drinking water after the MDG.



CHAPTER VI

Conclusion

The contribution of human behavior to infectious disease transmission is complex,

but not intractable. Decision theory and game theory provide a convenient mathe-

matical framework to capture individual and interactive decision problems. Along-

side more common tools such as deterministic compartmental models, these meth-

ods extend the reach of mathematical epidemiology. Such developments are likely

to be of increasing importance as globalization, economic development, and social

progress create challenges for disease control and prevention. The three behavior-

disease models developed in this dissertation cover major infectious disease contexts:

outbreaks in higher income, developed nations, emerging diseases, and control of

endemic pathogens.

Chapter III investigated the impact of adaptive prophylaxis use on the dynamics

of sexually transmitted infections. Our model explicitly represented uncertainty in

sexual partner disease status by treating the prophylaxis use decision as a Bayesian

game. We used evolutionary dynamics to represent non-rational behavior change

over time, linked to an SIS transmission model through the contact rate parameters.

We also included incentives for infected individuals to adopt protective behavior, an

observed phenomenon that is often omitted from STI models – even those that treat

82



83

behavior change. The dynamics of our model depended on the infectivity of disease

as well as the speed with which individuals adapted to changing disease conditions.

Notably, prevalence oscillated when the disease was moderately infectious and the

adaptation rate was slow, as susceptible and infected individuals switched their use

of prophylaxis. These oscillations can represent the temporal trends of diseases over

multi-year time periods. While recurrent outbreaks seldom occur in a single year,

many diseases do exhibit seasonal patterns of incidence [124, 125]. These periodic

outbreaks are often modeled using non-mechanistic forcing functions or are treated

as separate instances for the purpose of model fitting. However, we have demon-

strated that periodic disease trajectories can be caused by behavioral adaptations

that change the effective contact rate based on disease pressure. As a consequence,

unlike a fixed-behavior model, R0 is more complicated to evaluate as a threshold

parameter. Highly infectious diseases (high R0) rapidly became extinct following an

initial outbreak as the rapid growth of prevalence incentivized high levels of prophy-

laxis use. Additionally, due to its dependence on the initial fraction of individuals

using protection, outbreaks were possible for R0 < 1. These findings suggest the

importance of understanding the incentive structures that drive risk behavior. In

addition, increases in unprotected sexual acts once outbreaks decline indicate that

intervention programs may need to invest substantial resources to maintain suffi-

ciently high levels of coverage to prevent recurrent outbreaks, or pursue approaches

that directly target either the perceived costs or benefits of prophylaxis.

Chapter IV we constructed a behavior-disease model to address changes in burial

practices during the 2014 Ebola epidemic in Guinea, Liberia, and Sierra Leone.

Adding behavioral dynamics in this way gives the model a mechanistic way to

change the force of infection over time without using a pre-specified forcing func-
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tion. Our analysis focused on parameter estimation and forecasting to test the value

of a behavior-disease model in a complex emerging disease context. Our best-fit

model substantially outperformed a reduced model with fixed burial practices both

in terms of reproducing the observed surveillance data and forecasting the final size

of the epidemic. Simulated trajectories of the fraction of traditional burials over

time show a sharp decline in traditional burials in favor of sanitary burials between

August and October, 2014. This corresponds both with the period directly after the

peak incidence and a change in the estimated value of the reporting rate/population

at risk parameter k from the reduced model. Combined with the quality of our model

fits, this suggests that behavior change did indeed cause a measurable reduction in

the incidence rate over time. We note that this change was observable using only

cumulative case and death surveillance data. Additional data streams that directly

measure burial practices and other behavioral factors would no doubt improve our

ability to forecast and make inferences about the precise extent of adaptive behavior

change, however it is encouraging that the coupled behavior-disease approach can

provide insight while using commonly available epidemiological data sources. Our

model also projected a slow recovery of traditional burials after the outbreak. Similar

to adaptive prophylaxis use, this suggests that populations do not completely sus-

tain behaviors with disease-related incentives once there is little risk of disease. As a

result, intervention activities may need to be continued for a longer period following

the end of outbreaks.

While Chapters III and IV address the implications of the behavior-disease ap-

proach on dynamics and inference, Chapter V is concerned with disease control

policy. We presented a novel risk model combining decision theory and QMRA to

evaluate household water treatment interventions for the prevention of waterborne
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diarrheal disease. Current recommendations assume perfect compliance, which is

unrealistic even under ideal implementation conditions. In order to assess more re-

alistic compliance levels, we used a rational choice approach to predict compliance

with recommended interventions based on the underlying preferences of the target

population. This allowed us to optimize water treatment recommendations including

both the microbiological characteristics of a device and behavioral characteristics of

its potential users. Recommendations selected in this way were nearly always more

protective than current efficacy-based recommendations and required a lower de-

vice efficacy. These results suggest that incomplete compliance with current HWT

recommendations due to usability concerns may compromise their effectiveness and

sustainability relative to less efficacious but more appealing measures. Our frame-

work was designed to be easy to integrate into existing QMRA-based intervention

policy evaluations, and provides multiple possible avenues to integrate behavioral

data.

These models and analyses have evaluated theoretical implications of including

mechanistic behavioral models as well as applications to inference about transmis-

sion mechanisms and policy evaluation. While our models contain necessary sim-

plifications to allow us to focus on the effect of behavioral pathways, they can be

easily extended or modified for additional mechanistic detail or to address different

pathogens and behaviors. Sample Python 2.7 code for each project can be found at

https://github.com/malhayashi/dissertation.
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APPENDIX A

Supplementary material for Chapter III

A.1 Bayesian Games

This section provides a brief overview of static Bayesian games of incomplete

information. Those desiring a more complete treatment may refer to [49],[50],and

[51].

A.1.1 Definition

A normal form n-player symmetric static Bayesian game includes

• A set of players N = {1, 2, . . . , n}.

• Actions ai ∈ A for each player.

• Types θi ∈ Θ for each player.

• Pure type-contingent strategies σ : Θ→ A. By convention, we use the notation

σj = σj(θ
1
i )σj(θ

2
i )...σj(θ

m
i ) to represent the jth strategy for a finite type space

(assuming the set of strategies is the same for all players).

• Belief distributions pi where pi(θ−i|θi) is the conditional distribution on the

types of other players given player i’s type. −i denotes the set of players except

i.
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• The common prior distribution Pr(θi) which is known by all players.

• Type-dependent payoffs ui : An × Θn → R for each player. The expected

type-dependent payoff (E[ui(a1, ..., an|θi)]) gives the average payoff over player

i’s belief regarding the other players’ types conditional on player i’s own type.

E(ui(a1, ..., an, θ1, ..., θn)) is player i’s unconditional average payoff over all n

player types, sometimes denoted E(ui(σj1 , ..., σjn)) in terms of strategies.

In general, a profile of types, actions, or strategies is defined to be a listing of the

particular types/actions/strategies (respectively) assigned to each player. While the

actions in a static Bayesian game take place simultaneously, it is useful to break the

game down into stages as follows

1. Nature chooses a profile of types (θ1, θ2, . . . , θn) from the common prior distri-

bution.

2. Each player picks a strategy σji

3. Each player learns only his type θi.

4. Using Bayes’ theorem and the common prior, each player forms beliefs pi(θ−i|θi)

over other players’ types.

5. Players choose actions simultaneously according to their strategy (a1 = σj1(θ1))

to form a profile (a1, a2, . . . , an).

6. Players receive their payoffs ui(a1, ..., an, θ1, ..., θn) based on the action profile

and the type profile.

A.1.2 Bayesian Nash Equilibrium

The strategy profile (σ∗j1 , . . . , σ
∗
jn) is a Bayesian Nash equilibrium if for all players

and all types, σ∗ji satisfies
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∑
θ−i

pi(θ−i|θi)ui(σ∗ji(θi), σ
∗
j−i

(θ−i), θi, theta−i) ≥

∑
θ−i

pi(θ−i|θi)ui(σki(θi), σ∗j−i
(θ−i), θi, θ−i)

(A.1)

for any σki 6= σ∗ji . Equivalently

∑
θi

Pr(θi)[
∑
θ−i

pi(θ−i|θi)ui(σ∗ji(θi), σ
∗
j−i

(θ−i), θi, θ−i)] ≥

∑
θi

Pr(θi)[
∑
θ−i

pi(θ−i|θi)ui(σki(θi), σ∗j−i
(θ−i), θi, θ−i)]

(A.2)



90

A.2 Behavioral Trajectories for Simulations in Figure 3.4
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Figure A.1: The distribution of type-contingent strategies as a function of time with f(UU, 0) =
0.5, γ = 0.5 as in Figure 3.4.
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A.3 Endemic Prevalence at R0 < 1
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Figure A.2: Prevalence and contact reduction from the combined model for βb = 2.1, γ =
0.5, f(UU, 0) = 0.

A.4 Alternate Models

A.4.1 SIRS Model

Ṡ = δR− βSI

İ = βSI − γI

Ṙ = γI − δR

(A.3)

A.4.2 Susceptible-only Behavior Change

For the reduced model, we use the fitness functions

φ(PS, t) = Pr(S)[f(PS, t)u1(PS, PS, S, S) + f(US, t)u1(PS, US, S, S)]

+Pr(I)[f(PI)u1(PS, PI , S, I) + f(UI)u1(PS, UI , S, I)]

φ(US, t) = Pr(S)[f(PS, t)u1(US, PS, S, S) + f(US, t)u1(US, US, S, S)]

+Pr(I)[f(PI)u1(US, PI , S, I) + f(UI)u1(US, UI , S, I)]

(A.4)

where the notation PS denotes a susceptible player choosing P (similarly for

US, PI , UI) and f(UI) and F (PI) are fixed over time. Since only susceptible players
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change their strategy, f(t) = (f(PS, t), f(US, t)), the mutation matrix for this game

is 2× 2 and we can use the two-dimensional system

İ = −βbSUf(UI)I + γI

ḟ(US) = qUSPS
φ(PS, t)f(PS, t) + qUS ,US

φ(US, t)f(US, t)− φ̄f(US, t)

(A.5)

where SU = Sf(US, t).

Figure A.3 shows prevalence trajectories for this model at increasing baseline

effective contact rates. Figure A.4 shows the best fit trajectories and parameter

values for the reduced model compared to the full model.
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Figure A.3: Prevalence dynamics for the reduced model from Section 3.2 where only susceptible
individuals adapt their behavior. For the simulations above γ = 0.5, f(0) = (0.0, 1.0).

A.5 Alternate preferences

We examined a case where infected individuals prefer unprotected sex over pro-

tected sex regardless of partner type, a phenomenon that has been observed empiri-

cally [126]. For susceptible individuals, the type-dependent payoffs from the alternate

game are the same as in Figure 3.1. Without loss of generality, for an infected-type

player 1 paired with a susceptible-type player 2, the type-dependent payoff matrix is
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Player 1

Player 2

P U

P b c

U c a

Figure A.5 shows the long-term behavior of the alternate model for a range of

R0 and s. This model only exhibits one oscillatory region and a higher endemic

prevalence than the original model. However, extinction still occurs at high R0.
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Figure A.4: The reduced model of susceptible-only behavior change fit to simulated trajectories
from the full model with γ = 0.5, (a) Full model βb = 1.2, best fit β∗

b = 0.542, (b) full model
βb = 1.8, best fit β∗

b = 3.41, (c) full model βb = 2.4, best fit β∗
b = 2.84, (d) full model βb = 2.7, best

fit β∗
b = 1.99, (e) full model βb = 3, best fit β∗

b = 2.36, (f) full model βb = 3.6, best fit β∗
b = 2.82.
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Figure A.5: Long term dynamics of the combined model where infected individuals always prefer
unprotected sex for increasing values ofR0 and the behavioral scale parameter s. (a) The amplitude
of steady state prevalence oscillations. (b) The average prevalence at steady state.
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APPENDIX B

Supplementary material for Chapter IV

B.1 Parameter ranges for LHS

Parameter Units Range

βR unitless 1.5–5
α days−1 0.1–0.125
γ1 days−1 0.14–0.2
γ2 days−1 0.5–1.0
γF days−1 0.3–1.0
δ2 unitless 0.8–1.0
σ days−1 1–10
m days−1 1×10−6–1×10−4

Table B.1: Ranges used for parameters chosen by LHS.

B.2 Supplemental results

Parameter Guinea Liberia Sierra Leone

β1 (0.0811,0.166) (0.100,0.192) (0.119,0.206)
δ (0.664,0.668) (0.295,0.297) (0.295,0.297)
k (0.000873,0.00246) (0.00491,0.00868) (0.00438,0.00817)
c (8.28× 10−9, 1.61× 10−4) (1.12× 10−7, 5.49× 10−4) (3.01× 10−6, 9.41× 10−4)
σ (5.94,9.99) (6.37,9.95) (5.93,9.90)
m (4.00,4.88) (4.00,5.35) (4.00,5.06)

Table B.2: Parameter intervals within the top 5% of LHS fits for fit parameters (β1, δ, k, c) and
sampled behavioral parameters σ and m.

Table B.2 shows the range of best fit and sampled values for our transmission

and behavioral parameters within the top 5% of LHS. The ranges for transmission

parameters were relatively tight. The cost parameter c had a wider range – Figure
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B.1 shows the distribution of best-fit values. Note that the majority of fits fall within

approximately one order of magnitude. Even with this range, the top 5% of predicted

behavioral dynamics appear relatively well constrained. The range of trajectories

(Figure B.2) display the same general features as the best-fit. In addition, the range

of cumulative case and death trajectories is tight, suggesting that the uncertainty in

fit parameters does not substantially impair our ability to reproduce the outbreak

dynamics (Figure B.3).

We simulated the model for multiple values of c about the best-fit for each country

(Figure B.4. For all countries, changing c by an order of magnitude alters the speed

with which the population reverts to traditional burials after an outbreak as well as

the steady state fraction of traditional burials. For Liberia, some values of c result in

oscillations in the burial trajectory. This is similar to the oscillations in vaccination

and condom use observed in the models of Bauch and Hayashi, respectively [13, 127].

(a) (b) (c)

Figure B.1: Histograms of the best fit values of c for the top 5% of LHS.
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(a) (b) (c)

Figure B.2: Shaded areas indicate the range of traditional funeral trajectories for the top 5% of
LHS.
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(a)

(b)

(c)

Figure B.3: Shaded areas indicate the range of case and death trajectories within the bet 5% of
LHS for each country.
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(a) (b) (c)

Figure B.4: Traditional burial trajectories for varying values of c for each country.

(a) (b) (c)

Figure B.5: Reduced model fit to cumulative cases and deaths in Guinea, Liberia, and Sierra Leone.
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APPENDIX C

Supplementary material for Chapter V

C.1 Extended methods

Maximum utility compliance Here we prove that an individual’s compliance prob-

ability is given by Equation 5.10. We seek to maximize Equation 5.6 with respect

to Pri(use). The utility function is negative quadratic in this argument, so we need

only solve the first order condition

u′i = 2(1− Pri(use)−∆x)

0 = 2(1− Pri(use)∗ −∆x)

Pri(use)
∗ = 1−∆x

(C.1)

as desired.

Optimal recommendations The optimal recommendation for a given preference

distribution is

x̂∗ = argminx̂E[di] (C.2)

where

E[d] = wv[(1− E[Pr(use)]) + E[Pr(use)]10−x̂] (C.3)

From Equation 5.10, the compliance probability is a function of individual preferences

xi, which are normally distributed. As a result, we can compute the expected value
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of Pr(use) (referred to here as p(xi) for simplicity) using the following

E[p(X)] =

∫ ∞
−∞

p(x)f(x|µ, σ)dx (C.4)

where f(x|µ, σ) is the probability density function of the preference distribution.

While an analytical solution to the minimization problem is not straightforward,

numerical optimization and integration perform well. Specifically, we use Brent’s

algorithm for our numerical solutions. This procedure allows our optimal recom-

mendations to take the shape of the preference distribution into account.

For our local sensitivity analysis, we compute the partial derivative of x̂∗ with

respect to the variance σ2 for each average preference tested. We used a baseline

variance of 3.6 for our results in Section 5.3.

C.2 Game theoretic representation of optimal recommendations

The process of selecting an optimal recommendation can be framed as an extensive

form game between a policymaker and the N individuals in a population. This game

has the following structure:

1. A policymaker selects a recommendation x̂.

2. Next, all individuals independently determine their compliance level Pri(use)

given their LRV preference xi.

Individual payoffs for compliance are given as in Equation 5.6 while the payoff for

the policymaker is inversely proportional to the population risk of infection. We use

backward induction [49, 50] to solve for the subgame perfect Nash equilibrium of

this game. To do so, we determine the optimal decision for each player beginning

with the last decision node and proceeding backward to the first decision node. For

individuals, the maximum utility compliance level is shown in Equation 5.10. Next,
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we determine policymaker’s optimal decision, i.e., the recommendation that mini-

mizes the risk of infection given that individuals will play their optimal compliance

strategy. The policymaker’s decision is then given by Equation 5.12.

C.3 Additional figures

(a) (b)

(c) (d)

Figure C.1: The effect of the maximum-utility compliance function slope on the compliance distri-
bution. These plots assume the same preference distribution and 3 LRV recommendation as Figure
5.1.
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(a) (b)

Figure C.2: C.2a: The simulated endemic prevalence when the optimal LRV is implemented com-
paring the symmetrical and asymmetrical distance functions. C.2b: The prevalence ratio comparing
the optimal recommendation from Figure 5.3 vs. the current 4 LRV recommendation for E. coli for
both distance functions.

(a) (b)

Figure C.3: C.3a: The simulated endemic prevalence when the optimal LRV is implemented com-
paring the symmetrical and asymmetrical distance functions. C.3b: The prevalence ratio comparing
the optimal recommendation from Figure 5.3 vs. the current 5 LRV recommendation for Rotavirus
for both distance functions.
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(a) (b)

(c) (d)

(e) (f)

Figure C.4: Endemic prevalence (right) and prevalence ratios (left) for Cryptosporidium for three
different maximum compliance values: cmax = 0.9 (top), cmax = 0.8 (middle), cmax = 0.6 (bottom)
Prevalence ratios compare the optimized recommendation with the current 4 LRV recommendation.
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