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ABSTRACT 

 
 The Earth’s climate is influenced by complex interactions of physical, chemical, and 

biological processes that link terrestrial ecosystems and the atmosphere. One of these 

interactions involves the use of light in photosynthesis, which allows plants to remove CO2 from 

the atmosphere and slow the unprecedented rate of climate change the Earth is experiencing. 

However, modeling future climate remains challenging, in part because of limited knowledge of 

mechanisms controlling the effects of light on gross ecosystem CO2 uptake (conceptually, 

photosynthetic activity integrated across all leaves in a plant canopy). Unlike previous studies, 

this dissertation uses data from atmospheric science, ecosystem ecology, and plant physiology to 

provide evidence for mechanistic links between physical, biophysical, and ecological controls on 

the effects of light on processes tied to gross ecosystem CO2 uptake—specifically, ecosystem 

gross primary production (GPP) and leaf photosynthesis. First, this dissertation empirically 

demonstrates that the dominant effect of clouds is to reduce total light above canopies. However, 

optically thin clouds increase scattered, diffuse light, which canopies use more efficiently than 

they use direct light. This offsets reductions in total light and results in no net change in GPP 

under thin clouds, while GPP decreases under optically thick clouds because both diffuse and 

direct light decrease. Second, ground-based measurements indicate that the rate of increase in 

GPP with diffuse light changes throughout the day. The magnitude of increase depends on how 

canopies interact with the angle of incoming light to biophysically alter the distribution of light 

within canopies and thus, the proportions of leaves contributing to GPP. Third, the distribution of 

species and light within one forest canopy leads to differences in some of the rate-limiting 

biochemical reactions in leaf photosynthesis. These field-based data indicate which assumptions 

representing canopies in Earth system models may not have support in situ, and could be 

contributing to errors in model estimates of future climate. Overall, this dissertation identifies 

mechanisms through which clouds and plant canopy structure alter land-atmosphere CO2 fluxes 

and subsequently, Earth’s climate. It also provides an important interdisciplinary framework for 

testing assumptions about the feedbacks that living organisms form with their environment.
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Chapter 1      

Introduction 

 

1.1 Impacts of Land-Atmosphere Interactions on Climate 

 The Earth system consists of a complex set of physical, chemical, and biological 

interactions that shape our environment and form feedbacks with climate (Bonan 2015). 

Globally, atmospheric circulation controls precipitation and surface temperature patterns 

(Ropelewski and Halpert 1987, Halpert and Ropelewski 1992, Hurrell 1996, Dai and Wigley 

2000), which influence the distribution of plant species and functional traits (Westoby and 

Wright 2006, Kreft and Jetz 2007). In turn, the global productivity of plants influences climate in 

several ways, including through the carbon cycle (Bonan 2008). Currently, terrestrial ecosystems 

remove the equivalent of ~25% of annual anthropogenic CO2 emissions from the atmosphere and 

store it as organic carbon in plant biomass and soil (Friedlingstein et al. 2014). Through this 

process, terrestrial ecosystems play an important role in slowing the Earth’s unprecedented rate 

of climate change (IPCC 2013). 

However, the scientific community has a limited understanding of the mechanisms 

controlling land-atmosphere interactions and how they will respond to climate change (Peñuelas 

et al. 2013, Richardson et al. 2013, Bahn et al. 2014). This affects how accurately Earth system 

models simulate concentrations of atmospheric greenhouse gases and limits confidence in future 

projections of climate. In phase 5 of the Coupled Model Intercomparison Project (CMIP5), Earth 

system models project a range of atmospheric CO2 fluxes into terrestrial ecosystems of anywhere 

from -6 to 9 Pg C yr-1 for the year 2100 (Friedlingstein et al. 2014). This level of uncertainty is 

predominately attributed to differences in how models represent the terrestrial carbon cycle. 

Improving this representation relies on identifying the mechanisms that mediate land-atmosphere 

interactions and quantifying how they change leaf photosynthesis and ecosystem uptake of CO2. 
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My dissertation extends our understanding of how land-atmosphere interactions affect 

climate by empirically testing assumptions about how light (i.e., photosynthetically active 

radiation; 400-700 nm) affects gross ecosystem CO2 uptake (Figure 1.1). Historically, definitions 

for terms describing photosynthesis at leaf and ecosystem scales differ among scientific 

disciplines (Wohlfahrt and Gu 2015). In this dissertation, gross ecosystem CO2 uptake refers to 

the conceptual integration of leaf photosynthesis for all leaves within a plant canopy. The 

datasets in individual chapters define leaf photosynthesis or gross ecosystem CO2 uptake 

differently than the conceptual definition of gross ecosystem CO2 uptake because of 

measurement limitations. However, the data describe processes related to gross ecosystem CO2 

uptake within the context of each question addressed. Analyzing these datasets therefore adds to 

our understanding of how plants use CO2 at the leaf and ecosystem scales. Overall, this 

dissertation achieves this by combining theory, tools, and data from atmospheric science, 

ecosystem ecology, and plant physiology to examine the following: 1) the physical mechanisms 

through which clouds alter the amount and type of light available for plant canopies to use in the 

process of photosynthesis, 2) how the biophysical features of plant canopies control the 

distribution of light available to leaves within the canopy, and 3) how ecological variation in 

canopies changes the photosynthetic limitations of terrestrial ecosystems.  
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Figure 1.1: The effect of light (photosynthetically active radiation; 400-700 nm) on gross 
ecosystem CO2 uptake (conceptually, the sum of leaf photosynthesis in all leaves within the plant 
canopy) is mediated through physical controls (i.e., clouds) on ecosystem light availability, 
biophysical controls (i.e., plant canopy structure) on leaf light availability within a canopy, and 
ecological controls (i.e., species composition, leaf light environment, and leaf temperature) on 
how light is used by plant canopies in photosynthesis. 
 

1.2 Role of Light in Terrestrial Carbon Cycling 

In terrestrial ecosystems, the importance of light is captured by plant adaptations and 

photosynthetic responses to changing light conditions. At the leaf level, photosynthesis increases 

with light until the leaf is light saturated and then decreases because absorbed light not used or 

dissipated by plants can damage leaves (Demmig-Adams and Adams III 1992). Because of the 

positive and negative effects of light on photosynthesis, plants have evolved the ability to 

produce leaves that are adapted to their light environment. In a plant canopy, light levels are 

highest at the top and decrease non-linearly with depth in the canopy according to equations in 

Monsi and Saeki (2005). As a result, leaves at the top of a plant canopy (i.e., sun leaves) are 

generally smaller in area and angled vertically to limit excess light absorption (McMillen and 



 4 

McClendon 1979). In contrast, leaves in low light environments (i.e, shade leaves) have larger 

leaf area and are angled horizontally to maximize light capture. In addition, sun leaves generally 

have higher rates of photosynthesis at saturating light levels than do shade leaves (Bohning and 

Burnside 1956). These leaf-level processes and adaptations scale to the plant community, with 

light-demanding species dominating early stages in ecological succession and shade-tolerant 

species dominating in later successional stages (Bazzaz 1979). Shifts in species composition and 

leaf area distribution during succession or after moderate disturbances can maintain ecosystem 

productivity by limiting the decrease in canopy light absorption and increasing canopy light use 

efficiency (Gough et al. 2013).  

 

1.3 Role of Diffuse Light in Ecosystem Carbon Cycling 

The amount and type of light available for a plant canopy to use is modified by clouds in 

two ways. First, clouds absorb or reflect incoming solar radiation (Twomey 1991, Cess et al. 

1995), which reduces the total amount of light that reaches the top of a plant canopy. Second, 

clouds change the type of light available by scattering direct solar radiation and producing 

diffuse light (Fritz 1954). One of the first theoretical models for light transmission discussed how 

light extinction coefficients within a hypothetical canopy could differ under direct and diffuse 

light (Anderson 1966). This conclusion was supported by a field study of grass canopies that 

measured steeper extinctions of light under clear skies than under overcast conditions (Sheehy 

and Chapas 1976). Thus, clouds have the potential to change gross ecosystem CO2 uptake by 

increasing the amount of diffuse light available above plant canopies and, therefore, the 

distribution of light within canopies. 

One of the first model simulations of leaf photosynthesis under different types of light 

demonstrated that diffuse light can increase CO2 uptake in plants (Oker-Blom 1985). These 

simulations of a Scots pine shoot demonstrated that photosynthesis increased because more 

needles on the shoot intercepted radiation when more of the light was diffuse, rather than direct. 

This theory can be applied to the canopy-level, where on a clear day, leaves at the top of a 

canopy can intercept more light than leaves at the bottom (Figure 1.2a). If clouds are present in 

the atmosphere and produce diffuse light, more light can reach deeper through canopies, 

reducing shading and changing the distribution of light among leaves (Figure 1.2b). Under this 

scenario, an increase in light absorption by lower-canopy “shade” leaves under higher levels of 
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diffuse light is hypothesized to compensate for the decrease in absorption by upper-canopy “sun” 

leaves (Roderick et al. 2001). 

 
a) 

 

b) 

 

Figure 1.2: a) Diffuse light (dashed lines) reaches deeper into canopies and illuminates more 
shade leaves. b) Gross ecosystem CO2 uptake is hypothesized to be higher under cloud-created 
diffuse light (B+C) than under direct light on clear days (A+D). 

 

The conclusions from theoretical models of how diffuse light influences plant canopies 

are biased by how they simplify the variability in light and ecology that occurs in ecosystems. 

However, the development of the eddy covariance technique changed the study of ecosystem 

ecology by providing direct measurements of ecosystem fluxes—allowing the scientific 

community to gain insight into such variability. This technique is based on wind moving across 

the top of canopies and forming eddies that transfer gases between the ecosystem and the 

atmosphere. In the 1990s, the first towers were installed with infra-red gas analyzers to measure 

water vapor and CO2, and sonic anemometers to measure wind speed and direction (Baldocchi 

2003). The fluxes of CO2 and water vapor between plant canopies and the atmosphere are then 

calculated over specified time intervals as the products of air density and the covariance between 

the vertical velocity of air and the mixing ratio of the gas (Baldocchi et al. 1988). Unlike 

previous methods of measuring gas exchange between plants and the atmosphere, the eddy 

covariance technique directly measures ecosystem-level CO2 exchange (i.e, net ecosystem 

exchange; NEE) for long periods of time at relatively high temporal resolution (e.g., at 10 Hz, 

although often averaged at 30-minutes or 1-hour). Multiple statistical methods have been 

developed to partition NEE into gross primary production (GPP) and ecosystem respiration 
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(Desai et al. 2008). GPP is calculated as the combination of NEE and ecosystem respiration, 

where daytime ecosystem respiration is predominately based on a correlation between nighttime 

ecosystem respiration and a set of environmental variables, such as soil or air temperature (Desai 

et al. 2008). Because photorespiration cannot be measured at the ecosystem level, GPP from the 

eddy covariance method does not represent gross ecosystem CO2 uptake, and is instead, gross 

ecosystem CO2 uptake minus photorespiration (Wohlfahrt and Gu 2015). However, these GPP 

data still allow us to examine how changes in environmental conditions, including incoming 

direct and diffuse radiation, influence other processes in photosynthesis at the ecosystem level. 

Studies using eddy covariance towers have tested the hypothesized positive effect of 

diffuse light on plant productivity in actual ecosystems. For example, eddy covariance data from 

a temperate beech forest and a boreal spruce forest showed that light use efficiency (LUE) was 

higher under cloudy conditions compared to clear skies (Hollinger et al. 1994, Fan et al. 1995). 

In these studies, cloud conditions were deduced in one of two ways. In Hollinger et al. (1994), 

overcast days were defined as days when diffuse light comprised 33-84% of the light above plant 

canopies. In Fan et al. (1995), diffuse light was not measured and overcast conditions were 

defined as times when the measured total light was less than 50% of the expected value for clear 

skies.  

The impact of diffuse light on photosynthetic activity has also been examined at larger 

spatial scales using a variety of models. For example, Roderick et al. (2001) adjusted a LUE 

model so that the LUE parameter changed with the proportion of total light that is diffuse. When 

this model was scaled to the continental level, predictions of net primary production were within 

an order of magnitude of other studies. More recently, simulations from a global land surface 

model demonstrated that the global land carbon sink may have been ~25% higher because of 

increases in the proportion of diffuse light that occurred predominately from aerosol emissions 

during 1960-1999 (Mercado et al. 2009). These studies provide a compelling reason to 

incorporate the effect of diffuse light into Earth system models and couple them to changes in 

atmospheric drivers of diffuse light. However, modifying one portion of an Earth system model 

is difficult to do without causing errors in other components of the model. Thus, it is critical to 

rigorously examine whether the effect of diffuse light on gross ecosystem CO2 uptake has a) a 

large impact relative to other drivers, b) occurs independently of other environmental conditions 



 7 

that co-vary with diffuse light, c) is generalizable across ecosystems, and d) is empirically 

supported through direct mechanisms that mediate this effect.  

 

1.4 Limitations in Current Understanding  

Recent studies that combine larger eddy covariance datasets, derived data, and models 

have yielded conflicting results on how large and generalizable the effect of diffuse light on 

ecosystem productivity is. One of the first studies using eddy covariance measurements in 

multiple ecosystems and a set of LUE models concluded that forests, a prairie, and a wheat field 

used diffuse light more efficiency than they used direct light (Gu et al. 2002). In addition, 

ecosystem LUE of diffuse light varied across these ecosystems by up to a factor of two. Niyogi 

et al. (2004) found that when there were more light-scattering particles in the atmosphere, NEE 

into forests and croplands increased by different rates, but decreased in grasslands. However, 

LUE did not vary across 23 grasslands, croplands, and a forest under patchy clouds, defined as 

conditions when 40-80% of the total light was diffuse (Wang et al. 2008). These studies suggest 

that ecosystems vary in how they respond to diffuse light. Canopy simulations provide support 

for this by showing that light within a modeled canopy is redistributed as light conditions change 

(Knohl and Baldocchi 2008). However, it is unclear why responses should differ. One possibility 

is that these differences occur only between ecosystems with drastically different canopy 

structures, such as between a forest and a grassland, which could create a strong difference in 

how light is distributed within these two canopies. Another possibility is that species differ in 

physiological response to light environments enough to mediate ecosystem-specific responses to 

diffuse light in canopies from the same land cover type.!
In addition, no consensus exists on the magnitude or direction of the effect of diffuse 

light on ecosystem productivity or how this is directly linked to atmospheric drivers of diffuse 

light. NEE from eddy covariance measurements was estimated to be up to 140% higher under 

cloudy conditions than under clear skies (Urban et al. 2007). However, analyses of field-based 

data and canopy model simulations suggest that increases in GPP are small, and may only occur 

when atmospheric conditions that produce diffuse light do not concurrently reduce total light 

availability (Alton 2008, Knohl and Baldocchi 2008, Oliphant et al. 2011). The inconsistency 

across modeling and field studies may stem from the different tools and experimental designs 

used.  
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There are three ways in which the methods used may distort our understanding of how 

diffuse light influences ecosystem productivity. First, conclusions from these studies would 

depend on the assumptions these models make about how light is partitioned between direct and 

diffuse light as it moves through the atmosphere. For example, the difference between ecosystem 

light use efficiencies for diffuse and direct light changed when using direct measurements 

instead of calculations of direct and diffuse light (Gu et al. 2002). Second, additional 

environmental factors, aside from light (i.e., air temperature and vapor pressure deficit), and 

ecological processes that influence photosynthesis also change under atmospheric conditions that 

increase diffuse light, and may confound existing estimates of the diffuse light effect (Gu et al. 

1999, Gu et al. 2002). Understanding the role of air temperature and light in photosynthesis is 

particularly important because both influence the leaf’s energy balance and leaf temperature 

(Gates 1968), which subsequently affect rates of leaf biochemical reactions (Bernacchi et al. 

2012). Third, cloud conditions are primarily inferred from calculations or measurements of 

diffuse light without testing for a direct link (Hollinger et al. 1994, Rocha et al. 2004, Urban et 

al. 2012). These limitations must be addressed before evaluating whether inclusion of the 

interaction between diffuse light and photosynthesis in Earth system models can improve 

estimates of land-atmosphere fluxes of CO2. 

 

1.5 Summary of Dissertation Objectives 

The overall objective of my dissertation is to begin addressing the limitations discussed 

above by empirically investigating mechanisms that alter the effects of light on gross ecosystem 

CO2 uptake. By linking datasets and tools from atmospheric science, ecosystem ecology, and 

plant physiology, my dissertation links the transformation of light into organic carbon from the 

atmosphere, through the canopy, and finally, to the leaf for photosynthesis (Figure 1.1). My 

dissertation achieves this in the following chapters by addressing three questions: 
 

• How do clouds change the amount and type of light available for plant canopies to use in 

photosynthesis? Theoretically, clouds can increase gross ecosystem CO2 uptake by producing 

diffuse light. However, clouds can also counteract that effect by absorbing and reflecting 

solar radiation and reducing the total amount of light reaching plant canopies (Section 1.3). 

Despite the role that clouds play in radiative transfer, few studies have examined how clouds 

directly influence the amount of diffuse and direct light above plant canopies. Instead, 
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“cloudiness” is often defined based on the fraction of total incoming light that is diffuse as in 

Hollinger et al. (1994) and Rocha et al. (2004). This assumes a mechanistic link between 

clouds and diffuse light that may not be as strongly correlated as is assumed under current 

definitions. In addition, these studies compared changes in ecosystem productivity only 

under a few qualitative categories of cloudiness. This limits the capacity to predict how 

ecosystem productivity responds to changes across the spectrum of sky conditions.  

 

In Chapter 2 (Cheng et al. in review-a), I address the limitations in our understanding of how 

clouds influence GPP in three ways. First, I empirically link clouds to above-canopy light 

environments using satellite-derived data on cloud properties and ground-based eddy 

covariance tower measurements of diffuse and direct light. Second, I quantify the direct 

relationship between cloudiness and diffuse light during the mid-day along a continuous 

measure of cloud optical thickness, which is an integrative measure of the scattering and 

absorbing properties of clouds and accounts for variations in cloud phase, thickness, and 

particle size and distribution. Third, I examine whether the response of GPP to diffuse light 

can be directly predicted by cloud optical thickness, data on which are available at the global 

scale. This allows me to test whether a relationship between clouds and GPP can be used to 

scale changes in light availability from the single site to the global-level. This chapter adds to 

our understanding of how light controls the magnitude of gross ecosystem CO2 uptake by 

empirically examining a physical process that mediates the effect of the atmosphere on 

ecosystem light availability and GPP. 

 

• How does GPP respond to diffuse light and change with ecosystem canopy structure, 

independent of co-varying environmental variables? Previous research shows inconsistent 

patterns in the way ecosystem productivity responds to diffuse light (Section 1.4). This 

inconsistency may be a consequence of using theoretical estimates of diffuse light in place of 

direct measurements (Gu et al. 2002). In addition, the impact of diffuse light on ecosystem 

productivity may be overestimated. This could occur because clouds not only alter the 

amount of diffuse light above plant canopies, but also change direct light levels, air 

temperature, and atmospheric vapor pressure deficit, all of which influence the rate of 

photosynthesis. As a result, it is unclear whether diffuse light itself increases ecosystem 
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productivity. This makes it difficult to evaluate whether adding this process into Earth system 

models would improve projections of land-atmosphere CO2 fluxes. 

 

In Chapter 3 (Cheng et al. 2015), I refine our understanding of how GPP responds to diffuse 

light by addressing the limits of the methods used in previous studies. First, I use eddy 

covariance measurements of diffuse light and GPP to examine how broadleaf deciduous 

forests, mixed forests, soy croplands, and maize croplands respond to diffuse light. Second, I 

determine whether diffuse light has a direct effect on GPP by removing the confounding 

effects of direct light, vapor pressure deficit, and air temperature, before calculating the 

response of GPP to increases in above-canopy diffuse light. Third, I determine whether GPP 

responds differently to diffuse light depending on the time of day. This identifies whether the 

relationship between diffuse light and GPP is constant during daylight hours, or if it depends 

on how the angle of incoming light interacts with the distribution of leaf area, gaps, and 

species within plant canopies (i.e., canopy structure). This chapter extends our understanding 

of how light influences GPP by using ecosystem-level measurements to test how biophysical 

features of plant canopies alter the effects of incoming light from the atmosphere.  

 

• How does the variation in species and light within plant canopies alter leaf-level 

photosynthesis? In Chapters 2 and 3, I examine the physical factors of the atmosphere (i.e., 

clouds) and biophysical factors of canopies (i.e., canopy structure) that influence the 

distribution of solar radiation to leaves within canopies. At the leaf-level, the total amount of 

light drives the rate of photosynthesis. However, the light environment of individual leaves 

influences how leaf photosynthesis scales to the canopy (Section 1.2) through changes in leaf 

light availability and leaf temperature. In Earth system models, this process is based on three 

rate-limiting biochemical reactions in photosynthesis (Von Caemmerer 2000, Dietze 2014). 

Due to limited computational power and field-available data, models simplify how these 

rates respond to environmental and ecological change. These simplifications include using 

one of the rate limiting reactions, the maximum rate of CO2 carboxylation (Vc,max), to 

calculate the other two reaction rates (the maximum rate of electron transport; Jmax and triose 

phosphate utilization; TPU) as well as assuming that all species within the same model-

designated plant functional type (PFT) have the same Vc,max. However, recent analyses using 
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plant traits or environmental conditions to estimate Vc,max show that Vc,max varies widely 

within a biome or PFT (Kattge et al. 2009, Verheijen et al. 2013, Ali et al. 2015). This 

implies that ecological variation within plant canopies may alter the photosynthetic potential 

of the whole canopy.  

 

In Chapter 4 (Cheng et al. in review-b), I extend our understanding of how variation in 

species, leaf temperature, and leaf light environment within canopies alters the 

photosynthetic limitations of terrestrial ecosystems. I accomplish this by making net 

photosynthesis measurements at different CO2 concentrations on leaves of mature, canopy-

dominant trees and using plant physiological methods to derive values for the rate-limiting 

processes involved in both gross and net photosynthesis. Using these field-based data, I 

examine which rate-limiting reactions in photosynthesis vary with species and leaf light 

environment and whether they differ in their response to leaf temperature. In completing this 

analysis, I concurrently test Earth system model representations of photosynthetic limitations 

and how they scale them from leaf to canopy. This chapter adds to our understanding of the 

relationship between light and gross ecosystem CO2 uptake by examining how ecological 

variation within canopies alters leaf-level light use and photosynthesis within a plant canopy. 

 

Overall, this dissertation provides mechanistic explanations for how physical, 

biophysical, and biological characteristics of the atmosphere and plant canopies modify gross 

ecosystem CO2 uptake by terrestrial ecosystems. It achieves this by 1) identifying a mechanism 

that links the physical transformation of light by clouds to above-canopy light availability, 2) 

empirically quantifying how plant canopies biophysically mediate the response of GPP to diffuse 

light, and 3) examining how within-canopy variation in species and light ecologically modify the 

rate-limiting reactions in leaf photosynthesis. Linking the effect of light on photosynthesis in this 

way from the atmosphere to leaf biochemistry provides a foundation for the scientific 

community to predict how future changes in light and plant canopy structure will alter gross 

ecosystem CO2 uptake. Mechanistically linking processes in the atmosphere to those within the 

plant canopy also improves our understanding of how land-atmosphere interactions influence the 

land carbon sink. Finally, it also identifies which processes may improve Earth system model 
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projections of how the terrestrial carbon cycle and land-atmosphere interactions will respond to, 

and influence, feedbacks to climate. 
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Chapter 2      

Using Satellite-Derived Optical Thickness to Assess the Influence of 

Clouds on Terrestrial Carbon Uptake 1 

!
Abstract 

Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of 

direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly 

regulate climate by altering the terrestrial carbon cycle. However, past research primarily uses 

proxies or qualitative categories of clouds to connect the effect of diffuse light on CO2 uptake to 

sky conditions. We mechanistically link and quantify effects of cloud optical thickness (τc) to 

surface light and plant canopy CO2 uptake by comparing satellite retrievals of τc to ground-based 

measurements of diffuse and total photosynthetically active radiation (PAR; 400-700 nm) and 

gross primary production (GPP) in forests and croplands. Overall, total PAR decreased with τc, 

while diffuse PAR increased until an average τc of 6.8 and decreased with larger τc. When diffuse 

PAR increased with τc, 7-24% of variation in diffuse PAR was explained by τc. Light use 

efficiency (LUE) in this range increased 0.001-0.002 µmol m-2 s-1 GPP per µmol m-2 s-1 total 

PAR. Although τc explained 10-20% of the variation in LUE, there was no significant 

relationship between τc and GPP (p > 0.05) when diffuse PAR increased. We conclude that 

diffuse PAR increases under a narrow range of optically thin clouds and the dominant effect of 

clouds is to reduce total plant-available PAR. This decrease in total PAR offsets the increase in 

LUE under increasing diffuse PAR, providing evidence that changes within this range of low 

cloud optical thickness are unlikely to alter the magnitude of terrestrial CO2 fluxes.  

 

 

 
1 To be published by S.J. Cheng, A.L. Steiner, D.Y. Hollinger, G. Bohrer, K.J. Nadelhoffer. In review at the Journal 
of Geophysical Research: Biogeochemistry.!
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2.1 Introduction!

Clouds alter the Earth’s energy balance in multiple ways, including through the 

greenhouse effect and changes in planetary albedo (Arking 1991, Stephens 2005). Calculating 

the net effect of clouds on climate in Earth system models remains an important challenge 

(Boucher et al. 2013, Bony et al. 2015). Much of the research addressing this has focused on 

understanding the radiative effects of clouds (Andrews et al. 2012, Lauer and Hamilton 2013). 

However, clouds can also influence Earth’s climate through the carbon cycle by changing the 

amount and type of light available for plants to use in photosynthesis (Jenkins et al. 2007). 

Similar to modeling clouds, difficulties in modeling the carbon cycle lead to projections of CO2 

fluxes into terrestrial ecosystems that carry large uncertainty. The most recent Earth system 

model intercomparison project estimates that terrestrial ecosystems can be either a source of or 

sink for carbon by 2100, with fluxes ranging from -6 to 9 Pg C yr-1 (Friedlingstein et al. 2014). 

One way to identify a potential source of uncertainty in land surface models while also 

improving understanding of how clouds impact climate, is to mechanistically link and quantify 

the effects of clouds on terrestrial CO2 fluxes. 

Clouds can influence the terrestrial carbon cycle by changing light availability in two 

ways. First, clouds can reduce the amount of light that reaches plant canopies by absorbing and 

reflecting solar radiation (Twomey 1991, Cess et al. 1995). Second, cloud droplets and ice 

crystals interact with incoming solar radiation to produce scattered, diffuse light (Hansen 1971, 

Davis and Marshak 2010). Regional climate model simulations demonstrate that model skill for 

estimating variability in summer temperatures improves only up to 3% when radiation is 

explicitly partitioned into direct and diffuse components (Davin and Seneviratne 2012). In 

addition, when more of the photosynthetically active radiation (PAR; 400-700 nm) above a light-

saturated plant canopy is diffuse rather than direct, a greater percentage of PAR reaches more 

leaves within the canopy and increases canopy light-use efficiency (LUE) (Hollinger et al. 1994, 

Gu et al. 2002, Niyogi et al. 2004, Knohl and Baldocchi 2008, Still et al. 2009). Studies using 

modeled and measured diffuse PAR to predict ecosystem productivity infer that forest CO2 

uptake is greater under cloudy skies than under clear skies (Law et al. 2002, Rocha et al. 2004). 

However, a series of modeling studies collectively show that increases in LUE under diffuse 

light conditions may be too small to compensate for decreases in shortwave radiation on longer 

timescales (Alton et al. 2005, Alton 2008, Knohl and Baldocchi 2008). In contrast, additional 
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studies show that carbon uptake can be higher under diffuse light conditions, despite reductions 

in total PAR (Hollinger et al. 1994, Gu et al. 1999, Mercado et al. 2009).  

Although studies have examined the effect of diffuse light on terrestrial carbon 

processing, few have directly linked this relationship to clouds. Most studies have examined the 

assumption that clouds alter plant canopy uptake using proxies for cloud cover, rather than 

measurements of cloud properties (Gu et al. 1999, Alton et al. 2005, Alton et al. 2007, Jenkins et 

al. 2007). For example, cloud conditions have been inferred from the ratio of surface radiation to 

extraterrestrial radiation at the top of the atmosphere calculated from the solar constant and 

Earth-Sun geometry (Liu and Jordan 1960). Similarly, Gu et al. (1999) quantified cloudiness 

using the ratio of total radiation at the surface under a given sky condition to a modeled clear sky 

radiation. However, these proxies are biased by the assumptions used to model and partition 

radiation (Kanniah et al. 2012). The use of direct observations of cloud cover would provide key 

empirical evidence of the impact of clouds on plant carbon uptake.   

 Of the studies using direct cloud observations, most use categorical descriptions of cloud 

cover (e.g., “cloud-free”, “mixed”, “cloudy”) (Niyogi et al. 2004, Oliphant et al. 2011). This 

limits our ability to predict the effects of small changes in cloud optical thickness that have been 

observed over the last few decades (Marchand 2013, Free and Sun 2014). One study using 

ground-based measurements of diffuse light and cloud measurements found that surface diffuse 

light changes non-linearly over a narrow range of cloud optical thickness (0 to 5), with a peak in 

diffuse light at a cloud optical thickness of 2 (Min 2005). However, this analysis was done at a 

single site, making it difficult to determine whether the effect of cloud optical thickness on 

carbon uptake can be applied to broader spatial scales. One study used a satellite-retrieved 

measure of clouds (i.e., cloud fraction) from the International Satellite Cloud Climatology 

project (ISCCP) to show that satellite data over the Amazon can predict site-specific surface light 

conditions (Butt et al. 2010). However, this work did not connect cloud fraction to primary 

production or beyond the region. 

In this study, we use satellite-derived cloud optical thickness from Moderate Resolution 

Imaging Spectroradiometer (MODIS) as a metric to mechanistically link and quantify the 

influence of clouds on surface diffuse light and canopy CO2 uptake across multiple ecosystems. 

We use MODIS data because they are still collected, whereas ISCCP data are available only 

through 2009. We choose cloud optical thickness because it describes the cumulative depletion 
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of light through a cloud (Platnick et al. 2003). It also combines the influence of cloud presence, 

physical thickness, and phase (i.e., liquid, solid) on the amount of surface radiation that is 

reflected, transmitted, and absorbed by the atmosphere (Leontyeva and Stamnes 1994, Platnick 

et al. 2003, Kikuchi et al. 2006). Cloud optical thickness (τc) is a dimensionless factor defined as: 

    !! = ! !(!)!"!
!     (1) 

where d is the height of the atmosphere and β is the cloud extinction coefficient, which is the 

sum of the scattering coefficient and absorption coefficient (Mayer et al. 1998). MODIS provides 

cloud τc at 1-km2 resolution across the globe (Platnick et al. 2003).  

To identify whether there is an empirical link among clouds, diffuse PAR, and ecosystem 

carbon uptake, we combine MODIS τc values with ground observations of surface total, direct, 

and diffuse PAR and gross primary production (GPP) collected from a set of sites in the 

AmeriFlux network. We also use these data to identify if there is a signal of τc in GPP. Results 

from our study provide insights into how biosphere-atmosphere interactions influence the Earth’s 

climate in two important ways. First, we evaluate the use of satellite-derived τc to determine the 

relationship between diffuse light and canopy CO2 uptake identified in previous studies. This 

allows us to quantify the effects of clouds on carbon uptake and to identify how changes in 

clouds may alter fluxes of CO2 into terrestrial ecosystems. Second, we quantify this effect at 

multiple sites of contrasting temperate zone ecosystem types (i.e., broadleaf forest, mixed forest, 

cropland). By linking and quantifying the relationships among τc, surface PAR, and GPP, we 

provide insight into how changes in clouds may impact climate through the carbon cycle by 

altering radiation regimes in terrestrial ecosystems.  

!
2.2 Methods 

2.2.1 Site Selection and AmeriFlux Data 

To examine the relationships between τc, surface PAR, and GPP, we used ground-based 

observations provided through the AmeriFlux program (http://ameriflux.lbl.gov/). AmeriFlux is a 

network of flux and meteorological towers in the United States (U.S.) that measures fluxes of 

water vapor and CO2 between the land surface and the atmosphere using the eddy-covariance 

technique (Baldocchi 2003), along with site-level soil, vegetation, radiation, and meteorological 

conditions. The online AmeriFlux data we used are available online are standardized, reviewed, 

and quality controlled.  
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For the first part of our analysis, we analyzed the relationships between τc and both 

surface total and diffuse PAR. We chose AmeriFlux sites designated as unmanaged, temperate 

ecosystems, for which at least three years of CO2 flux, total PAR, diffuse PAR, and MODIS data 

were available (2000-present) (Platnick et al. 2003). Eight sites (Table 2.1) met these criteria. For 

these sites, we used May through September diffuse PAR data from Level 2, with-gap files 

(processed and quality controlled) that have data available at 30-minute or 1-hour resolution to 

capture the primary Northern Hemisphere growing season. For Howland Forest, we included 

April data when this month was calculated as part of the site’s peak growing season (see below 

for details).  

Diffuse PAR was measured at Sherman Island with a custom-designed rotating shadow 

band radiometer. As the shadow band rotates around the photodiode in the radiometer, 

measurements of global (i.e., direct and diffuse) and diffuse light are recorded when the sensor is 

fully shaded and covered (Michalsky et al. 1988). At the remaining sites, diffuse PAR was 

measured with a model BF2, BF3, or BF5 sensor (Delta-T Devices, Ltd., Cambridge, UK).  

For the second part of the analysis, we analyzed the relationship between τc and GPP, 

which is directly linked with light and, unlike net ecosystem exchange (NEE), does not include 

respiration. Of the eight sites with diffuse PAR measurements, only four had Level 2 NEE and 

with-gap GPP data. These sites represent mixed forest (Howland Forest), deciduous broadleaf 

forest (Morgan Monroe and UMBS), and cropland (Mead Irrigated Maize). At these sites, 

ecosystem respiration is modeled and then subtracted from observed NEE to calculate GPP. 
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Table 2.1: AmeriFlux site information and ecosystem characteristics 

Site 
(SiteID) 

Lat, Lon 
(°N, °W) 

Years of 
Diffuse 
PAR 
Data 

Canopy 
Height 

(m) 
Vegetation Community Management LAI 

(m2 m−2) 

Average 
Cumulative 
May-Sept 

Precipitation 
(mm) 

GPP 

Average 
Peak 

Growing 
Season 

Start Date 
(DOY) 

Growing 
Season 

Length in 
Days  

(Min, Max) 

Howland 
Forest  
(US-Ho1) 

45.204,
68.740 

2006-
2008 20a  

Red spruce (Picea rubens) and 
Eastern hemlock (Tsuga 
canadensis) with balsam fir 
(Abies balsamea), white pine 
(Pinus strobus), white cedar 
(Thuja occidentalis), red maple 
(Acer rubrum), and paper birch 
(Betula papyrifera)b. 

None ~ 6a 
358 

(includes 
April) 

Yes 141 106, 141 

Mead  
(US-Ne1) 

41.165,
96.476 

2001-
2012 2.9c  Maize (Zea mays)d Center-pivot 

irrigationd 5.7c 630 Yes 184 31, 56 

Morgan 
Monroe 
(US-
MMS) 

39.323, 
86.413 

2006-
2013 27e 

Sugar maple (A. saccharum), 
tulip poplar (Liriodendron 
tulipifera), sassafras (Sassafras 
albidum), white oak (Quercus 
alba), and black oak (Q. nigra)e.  

None 5f 

 495 Yes 142 41, 121 

UMBS 
(US-
UMB) 

45.559,
84.713 

2007-
2012 22g 

Bigtooth aspen (Populus 
grandidentata), red oak (Q. 
rubra), red maple (A. rubrum), 
and white pine (P. strobus) with 
trembling aspen (P. tremuloides), 
white birch (B. papyrifera), sugar 
maple (A. saccharum), red pine 
(P. resinosa), and American 
beech (Fagus grandifolia)g. 

None ~3.5g 
 355 Yes 164 51, 106 

Bartlett 
(US-Bar) 

44.064,
71.288 

2004-
2011 22h 

American beech (F. grandifolia), 
sugar maple (A. saccharum), 
yellow birch (Betula 
alleghaniensis) with red maple 
(A. rubrum), paper birch (B. 
papyrifera), eastern hemlock (T. 
canidensis), eastern white pine 
(P. strobus), and red spruce 
(Picea rubens)h. 

None 3.6h 589 No -- -- 

Flagstaff 
(US-Fuf) 

35.089, 
111.762 

2006-
2010 

18i Pinus ponderosa (Ponderosa 
pine)i 

None 2.3i 301 No -- -- 



! 23 

Sherman 
Island 
(US-Snd) 

38.037, 
121.753 

2010-
2013 

-- Grasses, including pepperweed 
(Lepidium latifolium) and mouse 
barley (Hordeum murinum L.)j 

None 0.68-
0.81j 

13 No -- -- 

Vaira 
Ranch 
(US-Var) 

38.406, 
120.950 

2006-
2013 

0.55k 
(Xu 
2004) 

Grasses, including purple false 
brome (Brachypodium 
distachyon L.), smooth cat’s ear 
(Hypochaeris glabra L.), lesser 
trefoil (Trifolium dubium Sibth.) 
rose clover (Trifolium hirtum All.), 
twinning 
snakelily (Dichelostemma 
volubile A.), and Big Heron bill 
(Erodium botrys Cav)k 

Grazedk <2l 35 No -- -- 

aScott et al. (2004), bHollinger et al. (2004), cpersonal communication with site investigator, dSuyker and Verma (2008),eDragoni et al. 
(2011), fOliphant et al. (2011), gGough et al. (2013), hJenkins et al. (2007), iDore et al. (2012), jMa et al. (2012), kXu and Baldocchi 
(2004), lMiller et al. (2007)



! 24 

2.2.2 MODIS Cloud Optical Thickness (τc) 

MODIS τc measurements are globally available at 1-km2 resolution (Platnick et al. 2003). 

The MODIS instrument is a 36-band spectroradiometer measuring radiation between 0.415-

14.235 µm from 705 km above Earth’s surface aboard two satellites, Terra and Aqua (Platnick 

2003). Terra moves in a descending orbit and crosses the equator at approximately 10:30 local 

time and Aqua moves in an ascending orbit with an overpass at the equator of approximately 

13:30 local time (Qu 2006). MODIS has a 2,330 km swath width, which leads to global coverage 

approximately every 2 days (King 2003). Level 2 MODIS data are stored in 5-minute data 

granules typically containing 2,030 along-track pixels (Baum and Platnick 2006). 

Daytime τc values over land are retrieved using look-up tables to find the combinations of 

τc and cloud droplet effective radius values that best match solar reflectance measurements from 

one visible band (0.645 µm) and two near-infrared (1.6, 2.13, and 3.75 µm) bands (Platnick 

1997, Platnick 2003). Calculations are made assuming plane-parallel, homogenous clouds over a 

black surface with no atmosphere and use separate libraries for ice and liquid water clouds 

(Baum and Platnick 2006). Additional algorithms correct for the effects of surface albedo and 

atmospheric transmittance on reflectance measurements, such as Rayleigh scattering and trace 

gas and water vapor absorption (Platnick 2003, Platnick 1997).  

An uncertainty value is also calculated for each τc that accounts for several types of 

errors. These include errors in the models and libraries used in the retrieval, changes to 

instrument calibration, and changes in the composition of the atmosphere above the cloud, such 

as aerosols and water vapor (Platnick 1997). Uncertainties in the retrieval process, such as for 

cloud cover, phase, particle size and shape, and homogeneity, bias estimates of τc, particularly 

for thin and thick clouds (Zeng et al. 2012). To minimize the effect of bias from retrieval 

uncertainties in our study, we limit our analysis to values of τc with uncertainty < 25%.  

We used daytime, Level 2 Terra and Aqua cloud products (MOD06_L2, MYD06_L2) 

from Collection 5.1 from NASA’s Level 1 and Atmosphere Archive and Distribution System 

(https://ladsweb.nascom.nasa.gov/index.html). The algorithms in this collection retrieve τc for 

pixels with a cloud mask designation of cloudy or probably cloudy (King et al. 2013). However, 

they do not process pixels that are identified as partly-cloudy (King et al. 2013), which are 

included in the most recent collection (Pincus et al. 2012). Our results therefore reflect the effect 

of overcast skies within a 3x3 km2 area on surface light and GPP. Latitude and longitude 
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coordinates from MODIS Level 1 Geolocation product (MOD03) were used to find the closest 

pixel within 0.01° of each AmeriFlux site. We compared the influence of τc on diffuse PAR 

using τc at two spatial resolutions: (1) τc from the 1x1 km2 pixel that includes the AmeriFlux site 

and (2) the mean τc from nine pixels covering a 3x3 km2 area with the AmeriFlux site in the 

center pixel of the pixel array. We did not apply filters to the pixels surrounding the center pixel. 

Calculations of mean τc therefore include pixels surrounding the center pixel with missing data 

and any uncertainty level. At 1x1 km2 resolution, all sites showed a similar non-linear response 

of diffuse PAR to τc, except for Flagstaff (Appendix A, Figure A1). However, when we used the 

average τc from a 3x3 km2 area, the response at Flagstaff matched the other sites. The larger 

spatial resolution may better explain the response of diffuse PAR to τc because a broader spatial 

area captures the spatial heterogeneity that may affect the half-hour or hourly ground-based 

diffuse PAR measurements. For the remainder of this paper, τc refers to the average τc from a 3x3 

km2 area with the site at the center. 

 

2.2.3 Peak Growing Season Calculations 

For each site, we analyze GPP data for the most photosynthetically active time of year. 

To define this time period, we use changes in NEE to identify phenological changes in the plant 

canopy (Garrity et al. 2011). We calculate 5-day averages from daytime NEE (AmeriFlux Level 

2 gap-filled data when available, otherwise Level 2 with-gap data) and define the first day of the 

peak growing season when the 5-day NEE average is within 90% of the year’s fourth highest 5-

day NEE average. We used the fourth-highest NEE average to account for extreme values due to 

anomalous weather. Next, we define the end of the peak-growing season as the last day when the 

5-day NEE average is within 75% of the year’s fourth-highest NEE average. We use different 

cutoffs for the beginning and end of the season because phenological changes in the canopy are 

quicker in the beginning of the season (e.g., leaf out) than they are at the end (e.g., senescence). 

Although this approach cannot detect the exact beginning and end of the peak-growing season, it 

provides a uniform method to define the period of time during which plants are at full seasonal 

growth and activity across our sites. In addition, only using data from the peak-growing season 

allows us to quantify the maximum effect that clouds and diffuse light have on GPP. 
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2.2.4 Data Analysis 

After obtaining τc values retrieved from MODIS, we matched each τc timestamp to the 

closest AmeriFlux tower time. The τc retrievals at our sites occurred during midday (10:00-

15:00) and fell within a small range of zenith angles (16-30°). We excluded data points with 

missing vapor pressure deficit (VPD), air temperature, diffuse PAR, and total PAR and only used 

total PAR values > 20 µmol m-2 s-1, assuming that lower radiation levels indicate sensor errors or 

marginal weather conditions (e.g., rain events). Under clear skies, aerosols, ozone, and humidity 

also affect the partitioning of direct solar radiation into diffuse light (Bird and Riordan 1986). 

We do not specifically include the effect of aerosols on surface PAR or GPP in our analysis 

because: (1) aerosols have a relatively low optical depth compared to clouds (usually τ < 1.0), (2) 

satellite-derived aerosol optical depth is not retrieved when clouds are present, which is the focus 

of this study, and (3) remote sites such as ours generally have low aerosol optical depths relative 

to areas closer to anthropogenic activity (Steiner et al., 2013).  

Because clouds both transmit and absorb diffuse light, we expected diffuse light to 

increase and then decrease with τc. To identify the point of τc where the relationship between 

these two variables first changed from positive to negative (i.e., τc for maximum diffuse PAR), 

we used a smoothing spline function (R Core Team 2014). This identifies the range of τc when 

clouds increase diffuse light and are most likely to increase GPP. The region where diffuse PAR 

increases with τc met the statistical assumptions of linear regression analysis, which we used to 

quantify the relationship between cloud τc and surface light. We also analyzed the relationship 

between τc and diffuse PAR by month and found no large variation across the season. We used a 

spline function to assess the response of total PAR across the entire range of τc. For two of the 

sites (Flagstaff and Howland), the residuals from the linear models between total PAR and τc 

while diffuse PAR increased did not pass the Shapiro-Wilk test or visual inspection for 

normality. However, we kept these data untransformed to display the information in a consistent 

format as the other sites and for the diffuse PAR data.  

We also used linear regression analysis to examine the relationship between τc and GPP 

across the entire range of available τc data, which met statistical assumptions of this analysis 

method. The residuals from linear models between LUE and τc below the peak τc were not 

normal at all sites, but applying a log transformation to LUE produced normal residuals. 

However, because the difference in R2 did not increase more than 0.04, we report untransformed 
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LUE data in the following analysis. Regressions between τc and transformed LUE are shown in 

Appendix A, Figure A2. For LUE data above the τc for maximum diffuse PAR, all but one site 

met the assumptions for linear regression. We kept the data untransformed to keep all data in a 

consistent format.  

 

2.3 Results and Discussion 

2.3.1 τc and Diffuse PAR 

Our analysis of τc from overcast pixels and surface light above plant canopies at eight 

AmeriFlux sites shows a non-linear relationship between τc and diffuse PAR (Figure 2.1). Across 

all sites, diffuse PAR increases with τc until an average value of 6.8, above which diffuse PAR 

decreases. There is some site-level variation in this value of τc, ranging from 5.2 at Flagstaff to 

9.7 at Sherman Island (Figure 2.1). To our knowledge, only one study has used measurements of 

τc to examine cloud effects on surface diffuse PAR (Min 2005). That study used measurements 

from a multi-filter rotating shadowband radiometer at one location (Harvard Forest) during one 

growing season to demonstrate that diffuse PAR increases up to τc = 2 and decreases thereafter. 

Using new data, including satellite retrievals of τc and direct measurements of diffuse PAR from 

tower-mounted sensors, we expand this analysis across both space and time. We find that the 

response of diffuse PAR to τc is consistent across sites, yet diffuse PAR peaks at greater τc values 

than previously reported by Min (2005). Our estimated values for the τc where diffuse PAR 

reaches its maximum may be larger because we used data from a solar zenith angle of 16-30°, 

whereas Min (2005) used data from across zenith angles. 

Quantifying ranges across which diffuse PAR and τc increase together is important for 

understanding canopy GPP fluxes because total PAR decreases across the entire range of τc 

(Figure 2.2). Below the τc value at which diffuse PAR peaks, we found significant positive 

relationships between τc and diffuse PAR at all sites (Figure 2.3, p < 0.05) except Flagstaff. The 

variation in diffuse PAR that is explained by τc at these sites ranges from 7 to 24% (Figure 2.3). 

The increase in diffuse PAR across this range of optically thin clouds ranged from 30  

µmol m-2 s-1 per unit τc at Sherman Island to 71 µmol m-2 s-1 per unit τc at Vaira Ranch. These 

results illustrate the variability in light extinction in the atmosphere that occurs across sites.  

Limitations in the retrieval and measurement methods of cloud properties and surface 

light may explain some of the remaining variation in the relationship between τc and diffuse 
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PAR. For example, satellite retrieval methods and ground-based sensors cannot entirely capture 

the impact of vertical and horizontal cloud heterogeneity on surface light. Cloud particle size, 

phase, and shape alter scattering properties of clouds (e.g., single scattering albedo) (King 1987, 

Chou et al. 1998, Macke et al. 1998), which could cause clouds with the same τc to produce 

different amounts of diffuse light. The effect of cloud heterogeneity can also cause additional 

biases in satellite retrievals of τc by violating the MODIS algorithm assumption that clouds are 

homogenous (Dim et al. 2007, Zeng et al. 2012). This has been seen in cloud resolving 

simulations and radiation schemes that demonstrate that the parameterization of cloud overlap 

influences model estimates of surface radiation (Barker et al. 1999, Shonk et al. 2010). In 

addition, inaccurate algorithm selection of phase and cloud-scattering properties for 

inhomogeneous skies can bias retrievals of τc (Várnai and Marshak 2002, Koren et al. 2008, 

Pincus et al. 2012). Our use of the nine-pixel average of τc allows us to capture some of the 

horizontal inhomogeneity in clouds that would not be possible if we only used the τc from one 

pixel alone. The average minimum and maximum standard deviation of τc over a 3x3 km2 area 

ranged from 0.11 to 4.36 (Table 2.2). This suggests the potential importance of spatial variability 

in cloud conditions (Table 2.2). Finally, some of the site-level variation may result from the 

difference in temporal resolutions in MODIS retrievals (near instantaneous; 5 minutes for a 

granule) and AmeriFlux data (30-min or 1-hour) or calibration and measurement errors in 

ground-based PAR sensors. Despite these limitations in τc retrieval assumptions and the 

differences in the spatial and temporal resolution between datasets, we detect a signal of cloud 

optical thickness in surface diffuse PAR measurements. 

! !
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Figure 2.1: The response of AmeriFlux-tower measured diffuse photosynthetically active 
radiation (PAR; µmol m-2 s-1) to 3x3 km2 average cloud optical thickness (τc; unitless) with 
uncertainty < 25% retrieved from MODIS satellites. “Peak” refers to the highest value of τc 
associated with an increase in diffuse PAR. Data points include measurements from May through 
September from years with available data (see Table 2.1). For Howland Forest, April data are 
included when this month is calculated as part of the site’s peak growing season. Plotted lines 
represent the general relationship between diffuse PAR and τc as estimated by a smoothing spline 
function.  
!
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Figure 2.2: The response of AmeriFlux-tower measured total photosynthetically active radiation 
(PAR; µmol m-2 s-1) to 3x3 km2 average cloud optical thickness (τc; unitless) with uncertainty < 
25% retrieved from MODIS satellites. Data points include measurements from May through 
September from years with available data (see Table 2.1). For Howland Forest, April data are 
included when this month is calculated as part of the site’s peak growing season. Plotted lines 
represent the general relationship between total PAR and τc as estimated by a smoothing spline 
function.  
!
!
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Figure 2.3: Relationship between diffuse and total photosynthetically active radiation (PAR; 
µmol m-2 s-1) measured at AmeriFlux sites and 3x3 km2 average cloud optical thickness (τc; 
unitless) retrieved from MODIS satellites. Data points include measurements from May through 
September from years with available data and for τc values lower than the peak of the diffuse 
PAR-τc curve (values listed in Figure 2.1). For Howland, April data are included when they are 
calculated as part of the site’s peak growing season. R2 and slopes (m) are listed for significant 
linear relationships with a p < 0.05. 
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Table 2.2: Standard deviation (SD) of τc for retrievals within a 3x3 km2 area of each AmeriFlux 
site. Data include points with a 3x3 km2 τc that is below the peak τc for diffuse PAR and during 
the sites' peak growing seasons.  
!

Site Mean SD of τc  Min SD Max SD 
Flagstaff  0.82 0.08 3.29 
Sherman Island 1.73 0.48 3.79 
UMBS 1.29 0.14 4.78 
Bartlett 1.05 0.04 4.45 
Mead 0.99 0.07 5.38 
Howland 0.91 0.03 3.89 
Vaira Ranch 0.92 0.00 4.21 
Morgan Monroe 0.82 0.06 5.05 

!
2.3.2 τc and Light Use Efficiency 

For the four AmeriFlux sites with GPP measurements, we examined how τc changed the 

amount of GPP produced per unit of total PAR, which describes ecosystem-level LUE. To 

capture any negative or positive effects of clouds on ecosystem carbon processing, we analyzed 

how LUE changes when diffuse PAR increases separately from when diffuse PAR decreases 

with τc. The calculated values of τc for maximum diffuse PAR are shown in Figure 2.1 and 

explained in section 2.3.1. 

When diffuse PAR increases with τc, LUE also increases with τc (Figure 2.4, p < 0.01). 

The increases in LUE in this region of τc are 71% at Howland, 22% at Mead, 62% at Morgan 

Monroe, and 60% at UMBS. Although the percent increases are large in the forests, the increase 

in LUE was only 0.001-0.002 µmol m-2 s-1 of GPP per µmol m-2 s-1 of total PAR. Our results are 

consistent with increases in LUE found on cloudy days compared to sunny days in a Sitka spruce 

forest (Dengel and Grace 2010) and with a 39% increase in LUE in a deciduous temperate forest 

under thin clouds compared to skies with aerosols (Min 2005). Another study reported increases 

in LUE ranging from 6-18% in a boreal needleleaf forest, 15-28% in a temperate broadleaf 

forest, and 30-33% in a tropical broadleaf forest depending on time of day (Alton et al. 2007). 

These rates may differ from ours because Alton et al. (2007) calculated LUE as the increase in 

GPP when diffuse fraction moves from below 0.5 to above 0.5, whereas we calculated LUE 

across a broader range of diffuse fraction for τc below the peak value for each site. 

We found site-level variation in the strength of the relationship between τc and LUE 

below the τc for maximum diffuse PAR, with the strongest relationship observed at Howland 

Forest and Morgan Monroe (R2 = 0.20) and the weakest relationship at Mead (R2 = 0.10). This is 
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consistent with previous work demonstrating that diffuse PAR alone has no effect on GPP during 

the mid-day at Mead, but has a positive effect on GPP at the other three forest sites in this study 

(Cheng et al. 2015). LUE may be less strongly correlated with τc at Mead than at other sites 

because maize is a C4 plant and thus, leaves are generally farther from light saturation than 

leaves in forests, which are C3. Site-specific increases in LUE may be a result of the way plant 

canopy structure influences the distribution of light within the canopy (Cheng et al. 2015). The 

distribution of leaf area and the location of gaps in a plant canopy control light extinction and 

thus, how efficiently leaves absorb incoming PAR. Model simulations and field measurements 

demonstrate that different parts of the forest canopy contribute to total canopy photosynthesis 

when diffuse light changes (Knohl and Baldocchi 2008, Urban et al. 2012). Thus, canopy 

characteristics can interact with above-canopy meteorological conditions to create canopy 

microclimates that change the effect of clouds and diffuse PAR on ecosystem productivity.  

Finally, LUE continues to increase past the τc for maximum diffuse PAR (Figure 2.4). 

LUE may increase with τc despite the reduction in diffuse and direct light because clouds can 

improve water and air temperature conditions for photosynthesis (Urban et al. 2007). However, 

the rate of increase in LUE under optically thick clouds is one order of magnitude smaller than 

compared to under optically thin clouds when diffuse PAR increases with τc. Overall, these 

results suggest that clouds can increase carbon processing in plant canopies through increases in 

diffuse PAR. 
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Figure 2.4: During the peak growing season (average start date and length listed in Table 2.1), 
light use efficiency (gross primary production per unit total PAR) increases with cloud optical 
thickness (τc) at a) Howland Forest, b) Mead, c) Morgan Monroe, and d) UMBS. The vertical 
dotted line represents the τc for maximum diffuse PAR at each site. Regression lines for below 
and above this peak τc are shown for relationships with p < 0.01. The peak-growing season only 
covers a portion of time from May through September, which are shown in Figures 2.1-2.3.  
!
2.3.3 τc and GPP 

Despite the positive relationship between optically thin clouds and LUE, we found no 

significant relationship between τc and canopy GPP at any of the sites while diffuse PAR 

increases (p > 0.05) (Figure 2.5). The lack of an observed relationship between GPP and low τc 

likely occurs because the decrease in direct PAR is greater than the increase in diffuse PAR at 

these sites (Figure 2.3 and Figure A3 in Appendix A). Although sites use light more efficiently 

under optically thin clouds, the increase in LUE is not large enough to compensate for the 
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decrease in direct PAR that occurs under optically thin clouds. In addition, we observed that GPP 

decreases as τc increases under optically thick clouds (Figure 2.5).  

Previous studies have inferred the influence of clouds on ecosystem productivity using 

diffuse light as a proxy for cloud conditions. Some of these studies concluded that clouds do not 

increase total canopy productivity (Alton et al. 2005, Alton 2008, Knohl and Baldocchi 2008, 

Oliphant et al. 2011), while others have suggested that small changes in optically thin clouds will 

not increase canopy carbon uptake (Oliphant et al., 2011). By using satellite-derived τc, our 

results empirically demonstrate that optically thin clouds do not correlate with any changes in 

ecosystem productivity. The up to 5% decrease in cloud cover observed from satellites during 

1984-2007 over the contiguous U.S. (Sun et al. 2015) is thus, unlikely to have affected the global 

carbon sink.  

Given the lack of correlation between GPP and τc, our study suggests that the diffuse light 

effect may not be a significant driver of GPP at regional or global scales. Importantly, however, 

one limitation of our analysis is that we were only able to retrieve τc at mid-day when the effect 

of diffuse PAR on GPP is smallest in temperate ecosystems (Cheng et al. 2015). The effect of τc 

on GPP could be stronger at larger zenith angles or in ecosystems located at higher latitudes. 

However, the larger effect of diffuse light on GPP at larger zenith angles found in Cheng et al. 

(2015) could be independent of cloud conditions, given that diffuse PAR levels are higher at 

larger zenith angles (Earl et al. 2012). In addition, MODIS Collection 5.1 data only retrieve τc for 

pixels assigned as overcast (Otkin and Greenwald 2008). The response of GPP to clouds could 

be higher under partly cloudy skies if plants located under clear skies receive diffuse light from 

nearby clouds (Law et al. 2002). However, the effect of clouds on ecosystem carbon processing 

is smaller than what previously was concluded from studies using diffuse light data as a proxy 

for cloud cover.  

!
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Figure 2.5: During the peak growing season, there is no relationship between cloud optical 
thickness (τc) and gross primary production (GPP) within the site-specific range of τc where 
diffuse photosynthetically active radiation (PAR) increases. Regression lines are drawn for 
relationships with p > 0.05. The vertical dotted line represents the peak τc for diffuse PAR at the 
site. 
!

2.4 Conclusions 

In this study, we quantify the effect of cloud conditions on surface light and ecosystem 

carbon uptake and determine the consistency of these relationships across ecosystems with 

different canopy structures. We evaluate the use of satellite retrievals of globally available τc to 

directly link the effect of clouds to the previously identified positive relationship between diffuse 

PAR and GPP. Our study expands on previous work by using direct measurements of diffuse 
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PAR and satellite-derived τc at several ecosystems instead of using proxies for diffuse light and 

categories of sky conditions.  

We show that only optically thin clouds lead to increases in surface diffuse PAR, during 

which total PAR decreases. In addition, optically thick clouds decrease levels of total and diffuse 

PAR entering plant canopies. Specifically, we define a threshold value of τc = 6.8 as the τc where 

diffuse PAR fluxes peak. Moreover, this value is relatively consistent across the ecosystems we 

studied. Across the range of τc where diffuse PAR increases, LUE in forest and maize canopies 

increases. However, the increases in LUE under optically thin clouds were too small to 

compensate for the decreased fluxes of direct surface light due to increasing optical thickness. As 

a result, τc has no discernable net influence on ecosystem GPP over the growing season. Despite 

finding no net effect of clouds on ecosystem GPP, our study provides observational evidence for 

the processes that link atmospheric light conditions to ecosystem carbon uptake. This allows for 

further examination of how connections between clouds and other drivers of LUE, such as water 

stress and nutrients, may influence ecosystem GPP. For example, if water stress or nutrient 

availability become stronger drivers of LUE than the effect of clouds on surface radiation, the 

relationship between clouds and LUE may be even weaker than we observed.  

Overall, satellite measurements and eddy co-variance data show that satellite-derived τc 

can be used to estimate the range of cloud conditions that increases surface diffuse light. In 

addition, the use of satellite-derived τc allows us to move past inferences of cloud conditions 

from diffuse PAR. This comprehensive measure of scattering and absorbing properties of clouds 

allows us to empirically evaluate how clouds directly influence surface diffuse PAR and the 

terrestrial carbon cycle. Using this combination of observations, our results provide evidence that 

optically thin clouds do not increase ecosystem productivity. However, an increase in the 

frequency of optically thick clouds will likely reduce the amount of diffuse and total PAR 

available for plant canopies and decrease ecosystem GPP. These results suggest that the diffuse 

light effect from clouds is not as strong of a driver of regional or global ecosystem productivity 

in temperate ecosystems during the mid-day as previously suggested in other studies. We 

conclude that there is not a strong relationship between optically thin clouds and climate through 

diffuse light and the carbon cycle. However, the decreases in diffuse and direct light under 

optically thick clouds could remain an important effect on climate. By empirically linking and 

quantifying the relationships between τc, diffuse PAR, and GPP, we provide insight into how 
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changes in atmospheric conditions alter radiation regimes for terrestrial ecosystems to use for 

carbon uptake.  
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Chapter 3 

Variations in the Influence of Diffuse Light on  

Gross Primary Productivity in Temperate Ecosystems 2 

!
Abstract 

The carbon storage potential of terrestrial ecosystems depends in part on how 

atmospheric conditions influence the type and amount of surface radiation available for 

photosynthesis. Diffuse light, resulting from interactions between incident solar radiation and 

atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial 

ecosystems. However, the magnitude of the diffuse light effect is unclear because existing 

studies use different methods to derive above-canopy diffuse light conditions. We used site-

based, above-canopy measurements of diffuse light and gross primary productivity (GPP) from 

ten temperate ecosystems (including mixed conifer forests, deciduous broadleaf forests, and 

croplands) to quantify the GPP variation explained by diffuse photosynthetically active radiation 

(PAR) and to calculate increases in GPP as a function of diffuse light. Our analyses show that 

diffuse PAR explained up to 41% of variation in GPP in croplands and up to 17% in forests, 

independent of direct light levels. Carbon enhancement rates in response to diffuse PAR 

(calculated after accounting for vapor pressure deficit and air temperature) were also higher in 

croplands (0.011-0.050 µmol CO2 per µmol photons of diffuse PAR) than in forests (0.003-0.018 

µmol CO2 per µmol photons of diffuse PAR). The amount of variation in GPP and carbon 

enhancement rate both differed with solar zenith angle and across sites for the same plant 

functional type. At crop sites, diffuse PAR had the strongest influence and the largest carbon 

enhancement rate during early mornings and late afternoons when zenith angles were large, with 

greater enhancement in the afternoons. In forests, diffuse PAR had the strongest influence at  

 
2Published as S.J. Cheng, G. Bohrer, A.L. Steiner, D.Y. Hollinger, A. Suyker, R.P. Phillips, K.J. Nadelhoffer (2015) 
in Agricultural and Forest Meteorology, 201:98-110. doi:10.1016/j.agrformet.2014.11.002.
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small zenith angles, but the largest carbon enhancement rate at large zenith angles, with a trend 

in ecosystem-specific responses. These results highlight the influence of zenith angle and the role 

of plant community composition in modifying diffuse light enhancement in terrestrial 

ecosystems, which will be important in scaling this effect from individual sites to the globe. 
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3.1 Introduction 

Forests are estimated to remove up to 27% of human-emitted CO2 annually (2.6 ± 0.8 Gt 

C yr-1), with temperate forests responsible for about half of this uptake globally (Sarmiento et al. 

2010, Le Quéré et al. 2013). It is uncertain how this amount of carbon uptake will change in the 

future because forest carbon processes are affected by complex interactions driven by changes in 

climate and natural- and human-caused shifts in plant species composition and canopy structure. 

Isolating and quantifying the impacts of individual drivers of land-atmosphere CO2 exchange 

could improve these calculations of the future terrestrial carbon sink.  

One important factor influencing photosynthesis and hence forest CO2 uptake is light 

availability. Rates of leaf-level CO2 uptake increase with solar radiation until leaves are light 

saturated (Mercado et al. 2009). This implies that forest CO2 uptake is greater on sunny days 

when leaves are fully exposed to direct light. However, increases in diffuse light, which is 

produced when clouds and aerosols interact with and scatter incoming solar radiation, may be 

even more beneficial than equal increases in direct light. At the ecosystem level, key processes 

related to photosynthesis, including gross primary productivity (GPP), net ecosystem exchange 

(NEE), and light-use efficiency (LUE), can increase in magnitude when the proportion of light 

entering a forest canopy is more diffuse (Hollinger et al. 1994, Gu et al. 1999, Jenkins et al. 

2007, Oliphant et al. 2011, Zhang et al. 2011, Urban et al. 2012). In addition, global simulations 

from 1960-1999 indicate that increases in the proportion of diffuse light reaching plant canopy 

surfaces may have amplified the global land carbon sink by 24% (Mercado et al. 2009).  

Several mechanisms have been proposed to explain how diffuse light increases 

ecosystem CO2 uptake and LUE. First, diffuse light can penetrate deeper into a forest canopy and 

reach lower canopy leaves that would normally be light-limited on clear days when light is 

mostly direct (Hollinger et al. 1994, Oliphant et al. 2011). Second, the same amount of light is 

distributed across more leaves when diffuse light is dominant, which can minimize light 

saturation and photo-inhibition of upper canopy leaves and increase canopy LUE or 

photosynthesis (Gu et al. 2002, Knohl and Baldocchi 2008). Third, diffuse light can create 

conditions favorable for photosynthesis by reducing water and heat stress on plants (Steiner and 

Chameides 2005, Urban et al. 2012). Finally, a fourth hypothesis suggests that diffuse light has a 

higher ratio of blue to red light, which may stimulate photochemical reactions and stomatal 

opening (Urban et al. 2012).   
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There is no consensus regarding the magnitude of effect that diffuse light has on 

ecosystem carbon processing. Studies using derived values of diffuse light suggest that LUE is 

higher when most incident light is diffuse and can result in maximum carbon uptake under 

moderate cloud cover (Gu et al. 2002, Rocha et al. 2004, Min and Wang 2008). However, studies 

using a three-dimensional canopy model and a land surface scheme predict that diffuse radiation 

will not lead to significant increases in carbon uptake on cloudy days as compared to clear days 

because of reductions in total shortwave radiation (Alton et al. 2005, Alton et al. 2007). If clouds 

decrease surface radiation enough to lower total canopy photosynthetic activity, this could offset 

any potential GPP gain resulting from increased LUE under diffuse light conditions (Alton 

2008).  

Several studies using measurements of diffuse light support the hypothesis that LUE is 

higher under diffuse light, consistent with studies using derived diffuse light data (Jenkins et al. 

2007, Dengel and Grace 2010). In addition, total carbon uptake can be greater under cloudy, 

diffuse light conditions compared to clear skies in three forest types (Hollinger et al. 1994, Law 

et al. 2002). Aerosol-produced diffuse light also leads to an increase in the magnitude of NEE in 

forests and croplands (Niyogi et al. 2004). Additional observation-based analyses indicate that 

diffuse light increases carbon uptake when compared to the same level of direct light, but also 

when total light levels decrease (Hollinger et al. 1994, Urban et al. 2007, Urban et al. 2012).  

The magnitude of the diffuse light effect on terrestrial carbon uptake may depend on 

ecosystem type or canopy structural characteristics. A regional modeling study suggests that 

diffuse light can increase net primary productivity (NPP) in mixed and broadleaf forests, but has 

a negligible effect on croplands (Matsui et al. 2008). Another study using derived diffuse light 

data suggests that LUE increases with diffuse light, and that differences among ecosystems are 

potentially dependent on vegetation canopy structure (Zhang et al. 2011). The influences of 

ecosystem type and vegetation structure are also supported by an observation-based study 

showing that under diffuse light, CO2 flux into a grassland decreased, but increased by different 

amounts in croplands depending on the species of crop planted (Niyogi et al. 2004). However, 

another study using derived diffuse light data found no difference in the effect of patchy clouds 

on LUE among 23 grassland, prairie, cropland, and forest ecosystems in the Southern Great 

Plains (Wang et al. 2008). Inconsistencies among these studies may be due to differences in the 

methods and models used to obtain diffuse light or sky conditions and assess their impacts on 
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ecosystem carbon processing (Gu et al. 2003). 

Climate modelers have begun incorporating the influence of diffuse light on ecosystem 

carbon uptake into land surface schemes as more details of canopy structure are added to models 

(Dai et al. 2004, Bonan et al. 2012, Davin and Seneviratne 2012). Our study provides insight into 

the importance of diffuse light on ecosystem carbon processing for improving projections of the 

terrestrial carbon sink. We seek here to 1) quantify how much variation in ecosystem GPP is 

explained by diffuse light, independent of direct radiation levels, 2) compare the influence of 

diffuse light on GPP among temperate ecosystems differing in canopy structure and species 

composition, and 3) determine the strength of diffuse light enhancement of GPP while 

accounting for its correlation with zenith angle, vapor pressure deficit (VPD), and air 

temperature. Unlike many previous studies (Gu et al. 1999, Alton 2008, Min and Wang 2008, 

Butt et al. 2010, Zhang et al. 2010), we drive our analyses only with direct field measurements of 

diffuse light, rather than with derived values from radiation partitioning models, which may be 

biased by incorrect representations of clouds and aerosols. Finally, our paper highlights the 

changes in the diffuse light effect across the diurnal cycle and the role of time of day on the 

diffuse light enhancement in terrestrial ecosystems, which will be important in scaling this effect 

from individual sites to the globe.   

 

3.2. Materials and Methods 

3.2.1 Data Sources 

All analyzed data were collected and processed by investigators participating in the 

AmeriFlux program (http://ameriflux.lbl.gov/), a network of meteorological towers in the United 

States (U.S.) that measures net fluxes of water vapor and CO2 between the land surface and the 

atmosphere and corresponding meteorological, soil, and vegetation conditions (Baldocchi 2003). 

Data collection, analysis, and metadata are standardized, reviewed, and quality controlled by 

AmeriFlux for all sites. GPP is calculated by subtracting the modeled ecosystem respiration from 

observed NEE. Respiration is modeled empirically based on NEE observations during the night, 

when GPP is assumed to be zero. We focus our study on GPP instead of another measure of 

carbon processing because it describes ecosystem CO2 uptake, is affected directly by radiation, 

and is the first step in processing atmospheric CO2 into long-term storage in ecosystems. 
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3.2.2 Site Selection 

We selected temperate AmeriFlux sites within the contiguous U.S. with at least three 

years of Level 2 (processed and quality controlled) NEE and GPP. Among these, we specifically 

selected sites that contain equipment to measure above-canopy total and diffuse 

photosynthetically active radiation (PAR, 400-700 nm) and report at least three years of diffuse 

PAR values to AmeriFlux. For the University of Michigan Biological Station (UMBS), we 

obtained updated total and diffuse PAR data from site coordinators that were not yet available on 

the AmeriFlux website at the time of our analyses. After separating sites with crop rotations by 

species, there were sufficient data for ten sites covering three ecosystem types, including mixed 

forest (Howland Logged, Howland N Fertilized, Howland Reference), deciduous broadleaf forest 

(Morgan Monroe and UMBS), and cropland (Mead Irrigated Maize, Mead Irrigated Rotation: 

Maize, Mead Irrigated Rotation: Soybean, Mead Rainfed Rotation: Maize, Mead Rainfed 

Rotation: Soybean). Site characteristics and data availability are listed in Table 3.1.
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Table 3.1: AmeriFlux site information and ecosystem characteristics 
Site 

(SiteID) 
Lat, Lon 

(°) 
Years of 

Data 
Canopy 
Height 

(m) 

Vegetation Community Management LAI 
(m2 m−2) 

Climatic 
Annual 

Precipitation 
(mm) 

Mean 
Growing 
Season 

Temperaturea 
(°C) 

Mean 
Growing 
Season 
VPDa 
(kPa) 

Howland 
Logged 
(US-Ho3) 

45.207,  
-68.725 

2006-2008 20b  Dominated by red spruce (Picea 
rubens) and eastern hemlock 
(Tsuga canadensis).  Also 
contains balsam fir (Abies 
balsamea), white pine (Pinus 
strobus), white cedar (Thuja 
occidentalis), red maple (Acer 
rubrum), and paper birch (Betula 
papyrifera)c. 

Selected logging 
and harvest 
(2001)b  

2.1 to 
~4e 

1000b 16.7 0.83 

Howland 
Reference 
(US-Ho1) 

45.204,  
-68.740 

2006-2008 Minimal 
disturbance since 
1900sd 

~ 6b 17.6 0.87 

Howland  
N 
Fertilized 
(US-Ho2) 

45.209,  
-68.747 

2006-2009 N addition (2001-
2005)d,e  

~ 6b 16.5 0.82 

Mead 
Irrigated 
Maize  
(US-Ne1) 

41.165, 
 -96.476 

2001-2012 2.9f  Maize (Zea mays) Center-pivot 
irrigationf  

5.7e 887f 27.0 1.33 

Mead 
Irrigated 
Rotation: 
Maize 
(US-Ne2) 

41.164,  
-96.470 

2001, 2003, 
2005, 2007, 
2009-2012 

2.9e Maize (Z. mays) Center-pivot 
irrigationf  

5.3e  
 

26.2 
 

1.14 

Mead 
Irrigated 
Rotation: 
Soybean 
(US-Ne2) 

2002, 2004, 
2006, 2008 

1.0e Soybean (Glycine max)  4.9e   

Mead 
Rainfed 
Rotation: 
Maize 
(US-Ne3) 

41.179,  
-96.439 
 

2001, 2003, 
2005, 2007, 
2009, 2011 

2.6e Maize (Z. mays) Naturally rainfedg 
 

4.2e 26.7 
 

1.39 
 

Mead 
Rainfed 
Rotation: 
Soybean 
(US-Ne3) 

2002, 2004, 
2006, 2008, 
2010, 2012 

0.9e Soybean (G. max)  3.8e 
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Morgan 
Monroe 
(US-MMS) 

39.323,  
-86.413 

2007-2010 27h Dominated by sugar maple (A. 
saccharum), tulip poplar 
(Liriodendron tulipifera), 
sassafras (Sassafras albidum), 
white oak (Quercus alba), and 
black oak (Q. nigra)h.  

None 5i  

 
1012j 24.3 1.12 

UMBS 
(US-UMB) 

45.559,  
-84.713 

2007-2011 22k  Dominated by bigtooth aspen 
(Populus grandidentata) with red 
oak (Q. rubra), red maple (A. 
rubrum), and white pine (P. 
strobus), as co-dominants. Also 
contains trembling aspen (P. 
tremuloides), white birch (B. 
papyrifera), sugar maple (A. 
saccharum), red pine (P. 
resinosa), and American beech 
(Fagus grandifolia).k 

None ~3.5k 
 

817k 21.2 1.05 

aValues calculated from AmeriFlux data, bScott et al. (2004), cHollinger et al. (2004), dAmeriFlux website, epersonal communication 
with site investigator, fYan et al. (2012), gVerma et al. (2005), hDragoni et al. (2011), iOliphant et al. (2011), jCurtis et al. (2002), 
kGough et al. (2013) 
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3.2.3 Definition of Analysis Period 

To determine the maximum effect of diffuse light on GPP, we limited our period of 

analysis to the portion of the year when ecosystems are most productive. We used a carbon-flux 

phenology approach, where NEE is the defining variable for phenological transitions and the 

peak-growing season is the time period when NEE is at its maximum magnitude (Garrity et al. 

2011). To do this, we first calculated 5-day NEE means for each site and year. Climate, 

vegetation composition, and inter-annual weather variability lead to phenological variation 

among sites (Richardson et al. 2013). Therefore, we adjusted our definition for the beginning and 

end of the peak-growing season to uniformly capture a representative portion of the NEE peak 

across sites and years. We defined the start of the growing season as the first day when the 5-day 

NEE average was within 90% of the year’s fourth highest 5-day NEE average. The fourth-

highest value was used to account for any extreme NEE values that may have occurred because 

of anomalous weather conditions. We set the end of season as the last day within 75% of the 

year’s fourth-highest 5-day NEE average. The cutoff for the start of the peak-growing season is 

higher than the cutoff for the end of the season because canopy leaf-out and growth initiation 

typically occur quickly in seasonal sites, whereas canopy phenological changes are slower at the 

end of the season. While this approach cannot detect the exact beginning and end of the season, 

the criteria we used provide a uniform method for defining the period during which plants were 

at full seasonal growth and activity at our sites. We included only daytime values by excluding 

points with total PAR values < 20 µmol m-2 s-1, assuming such low radiation levels are 

characteristic for nighttime. 

 

3.2.4 Data Analysis 

For each site, we combined all available peak-growing season daytime data and removed 

observations with negative measurements of diffuse PAR, direct PAR, or GPP, as these were 

likely sensor errors or marginal weather conditions (e.g., rain events). We also excluded data 

points with missing air temperature and VPD. We divided the remaining data into nine 

categorical groups based on solar zenith angle and the time of observation. We chose to bin by 

zenith angle to account for the effect of the sun’s position on the amount of direct and diffuse 

PAR above a canopy, differences in radiation penetration through the canopy, and changes in 

plant hydraulics throughout the day. Zenith angle was calculated as the following: 
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cos φ = sin ϕ sin δ + cos ϕ cos δ cos [15(t − t0)]   (2) 

where φ is the zenith angle, ϕ is the latitude, δ is the solar declination angle, t is time, and t0 is the 

time of solar noon (Campbell and Norman 1998). Given the latitudes of the sites, we defined 

mornings to begin at zenith angles between 76-100°, noon to occur at the minimum calculated 

zenith angles of 16-30°, and the end of daylight to occur around 76-100°. 

The effect of diffuse PAR on GPP may depend on total light conditions. For example, 

little scattering occurs under clear skies, which results in low diffuse and high direct PAR levels. 

As a result, small increases in diffuse PAR are unlikely to have a strong impact on canopy 

photosynthesis due to large amounts of direct PAR available for photosynthesis. If direct PAR 

levels are low, however, such as on cloudy days or during the morning and evening, the increase 

in diffuse PAR will have a larger effect because canopy leaves are below light-saturation. To 

calculate direct PAR, we subtracted the observed diffuse PAR from the observed total PAR. 

Because GPP and PAR are known to have a strong relationship that can be empirically described 

by a rectangular hyperbola, we used the non-linear regression function in the R program (R Core 

Team 2014) to fit the following relationship: 

GPPfitted = (α γ PARdir) / (γ + α PARdir)   (3) 

where GPPfitted is the value of GPP predicted by total PAR using a rectangular hyperbola model 

(Eq. 3), α is the canopy quantum efficiency, γ is the canopy photosynthetic potential, and PARdir 

is direct PAR (Gu et al. 2002). The α and γ are the fitted parameters and are solved iteratively. 

We used the initial conditions of 0.044 µmol CO2 per µmol photons and 23.7 µmol CO2 m-2 s-1 

for α and γ, respectively (Ruimy et al. 1995). The resulting empirical relationships for each site 

are presented in Appendix B.  

To remove the confounding effect of direct PAR, we first calculated the residuals 

between observed GPP and GPPfitted. We then compared those residuals against diffuse PAR for 

ten sites and nine zenith angle bins. For each zenith angle category, we estimated the variation in 

GPP residuals that can be explained by diffuse PAR alone using the following simple linear 

regression: 

GPPr = GPP – GPPfitted = β0 + β1 PARdiff  + ε    (4) 

and a combination of diffuse PAR, VPD, and air temperature using the following multiple linear 

regression: 

GPPr = GPP – GPPfitted = β0 + β1 PARdiff  + β2 VPD + β3 Ta  + ε   (5) 
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where GPPr represents the residuals between the observed GPP and GPPfitted and PARdiff is 

diffuse PAR. Ta is air temperature measured at the eddy covariance tower and β0, β1, β2 and β3 

are the fitted parameters estimating the model intercept and the linear slopes of the effects of 

diffuse PAR ,VPD, and air temperature at each solar zenith bin, respectively. The ε is the error 

term.  

ANOVA comparisons between the simple (diffuse PAR only) and multiple linear 

regressions (including VPD and air temperature) showed that the multiple linear regression 

model (Eq. 5) was significantly better (p < 0.05) than the simple regression model, with the 

exception of nine site/bin combinations. We did not include interactions in the multiple linear 

regression because ANOVA tests indicated that the interaction terms did not improve the model 

consistently, and improvements to the residual sum of squares averaged only 3.5% in cases 

where interaction terms were significant. We also accounted for multiple testing over solar zenith 

angle bins and different sites by using the Bonferroni correction to calculate a new critical p-

value. Light-response curves could not be fit to all scenarios, reducing the final number of 

comparisons to 83. Thus, for the simple and multiple linear regression comparisons, we consider 

a relationship significant if p < 6.02 x 10-4 (= 0.05/83).  

 

3.3. Results 

3.3.1 Relationship between diffuse PAR and GPP 

We found significant positive relationships between diffuse PAR and GPPr throughout 

the day, except in a few cases where diffuse PAR was not a significant predictor of GPPr (Figure 

3.1, Figure 3.2, black bars). Exceptions to these relationships occurred mainly at the Mead crop 

sites during mid-day and to a lesser extent at the UMBS forest during early mornings and late 

afternoons (Figure 3.2, black bars). In addition, a rectangular hyperbola could not be fit to the 

direct PAR and GPP data in the afternoon at large zenith angles at the Mead sites and Morgan 

Monroe (Appendix B, Table B1). Overall, the linear fits between diffuse PAR and GPPr indicate 

that across sites and zenith angles, diffuse PAR explains 3-22% of variation in GPPr in the 

morning and 3-41% of variation in GPPr in the afternoon (Figure 3.2, black bars). 

The amount of variance in GPPr attributable to diffuse PAR varied considerably between 

forests and crop sites (Figure 3.2, black bars). At the deciduous broadleaf and mixed conifer 

forests, diffuse PAR accounts for more of the variance in GPPr at the smallest zenith angle bins 
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(mid-day) and less at larger zenith angles in the early mornings and late afternoons (Figure 3.2a-

e, black bars). However, the opposite pattern occurs at the Mead crop sites, where more of the 

variance in GPPr is associated with diffuse PAR at larger zenith angles (Figure 3.2f-j, black 

bars). Diffuse PAR accounted for the largest portion of GPPr variance at crop sites during 

afternoon zenith angles of 61-75°, corresponding to approximately 17:00-18:00 standard time.  
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Figure 3.1: Simple linear regressions (Eq. 4) between diffuse PAR and GPPr for observations 
around 10:00 – 14:00 standard time (zenith angles from 16-30°, other zenith angle bins not 
shown). Regression lines are only plotted for models with p < 6.02 x 10-4 (Bonferroni-corrected 
critical value). 
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Figure 3.2: Proportions of variation in GPPr explained by environmental variables. Solid bars 
represent R2 values from simple linear regressions that include only the effect of diffuse PAR 
(Eq. 4). The total height of the bars (solid and white together) represents the R2 from multiple 
linear regressions that include effects of air temperature (Ta) and vapor pressure deficit (VPD) 
with diffuse PAR (Eq. 5). Only R2 values with p < 6.02 x 10-4 (Bonferroni-corrected critical 
value) are plotted. The minimum calculated zenith angle for these sites was ~16°. 
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3.3.2 Diffuse PAR cross-correlation with VPD and air temperature 

Concomitant with changes in the partitioning of PAR into direct and diffuse streams, 

clouds and aerosols change surface VPD and air temperature. These two environmental factors 

influence stomatal conductance and photosynthesis, and thus affect rates of ecosystem GPP. 

When including the effects of these two variables on GPPr with diffuse PAR (Eq. 5), the amount 

of variation in GPPr explained increases up to an additional 31% during mornings and up to 32% 

during afternoons (Figure 3.2, white bars). This increase with VPD and air temperature is 

greatest across the most zenith angles at the Howland sites, where the multiple linear regression 

increases explanatory power of GPPr by an additional 9-27% and 11-30% in the mornings and 

afternoons, respectively. VPD and air temperature also account for a relatively larger fraction of 

the variation of Mead Rainfed Rotation: Soybean GPPr during the mid-day. Although we 

expected an increase in explanatory power with more variables in the regression, the increase in 

the explanation of GPPr with the addition of these correlated environmental variables is small for 

the deciduous forests (Morgan Monroe and UMBS). This suggests that the effect of diffuse PAR 

at the deciduous forests is due to changes in light availability and not from indirect effects driven 

by the cross-correlation between diffuse PAR and other environmental conditions. Overall, the 

multiple linear regressions indicate that diffuse PAR is a significant predictor of GPPr (except 

for the sites and zenith angle bins noted in Table 3.2). In addition, VPD and air temperature 

could not account for significant amounts of GPPr variation under some conditions (Table 3.2). 
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Table 3.2: Parameter estimate values from relationships between GPPr and diffuse PAR, vapor pressure deficit (VPD), and air 
temperature (Ta). All βi estimate values (Eq. 4) have p < 6.02 x 10-4 (Bonferroni-corrected critical value), except for those designated 
as NS.  

Site βi 
Zenith Angle (°) 

AM PM 
76-100 61-75 46-60 31-45 16-30 31-45 46-60 61-75 76-100 

Howland Logged Diffuse PAR 0.014 0.007 0.004 0.004 0.005 0.003 0.004 0.008 0.009 
VPD -3.629 -2.627 -2.234 -3.847 -3.271 -3.205 -2.605 -2.339 -1.307 
Ta 0.183 0.343 0.427 0.546 0.352 0.495 0.383 0.296 0.172 

Howland 
Reference 

Diffuse PAR 0.010 0.005 0.004 0.005 0.005 0.005 0.008 0.010 0.011 
VPD -2.004 NS -1.914 -3.290 -2.728 -2.768 -2.309 -1.715 -1.208 
Ta 0.125 0.266 0.358 0.432 0.260 0.311 0.237 0.152 0.131 

Howland  
N Fertilized 

Diffuse PAR 0.014 0.007 0.006 0.005 0.006 0.006 0.007 0.012 0.014 
VPD -2.625 NS -1.876 -3.266 -3.204 -2.735 -2.052 -2.072 -1.330 
Ta 0.150 0.270 0.287 0.380 0.252 0.254 0.156 0.145 0.143 

Morgan Monroe Diffuse PAR NS 0.010 0.011 0.010 0.008 0.009 0.008 0.008 NS 
VPD NS NS NS NS -1.611 -1.734 -1.917 -2.479 NS 
Ta NS NS NS NS NS NS NS 0.224 NS 

UMBS Diffuse PAR NS 0.018 0.015 0.010 0.011 0.009 0.012 0.018 NS 
VPD NS 4.218 3.078 NS NS NS NS -1.156 NS 
Ta NS NS NS -0.298 NS NS NS NS NS 

Mead Irrigated 
Maize 

Diffuse PAR 0.021 0.022 0.013 NS NS NS 0.024 0.050 NS 
VPD NS NS NS NS -5.650 -3.061 NS -1.252 NS 
Ta 0.304 0.445 0.811 1.315 1.215 0.660 NS 0.245 NS 

Mead Irrigated 
Rotation: Maize 

Diffuse PAR 0.019 0.021 0.012 0.011 NS NS 0.027 0.042 NS 
VPD NS NS NS NS NS NS NS NS NS 
Ta 0.332 NS 1.115 0.950 NS 1.135 NS NS NS 

Mead Irrigated 
Rotation: Soybean 

Diffuse PAR 0.017 0.015 NS NS NS NS 0.011 NS NS 
VPD NS NS NS NS NS NS NS NS NS 
Ta 0.213 NS NS NS 0.598 0.534 NS NS NS 

Mead Rainfed 
Rotation: Maize 

Diffuse PAR 0.011 0.021 NS NS NS NS 0.021 0.045 NS 
VPD NS NS NS NS -6.365 -4.205 NS NS NS 
Ta 0.281 NS NS NS NS NS NS NS NS 
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Mead Rainfed 
Rotation: Soybean 

Diffuse PAR 0.014 0.021 NS NS NS NS NS 0.028 NS 
VPD -3.148 NS -5.123 -8.292 -8.021 -6.898 -5.035 -1.971 NS 
Ta 0.277 NS NS 0.812 0.524 0.582 0.479 NS NS 
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3.3.3 Magnitude of the effects of diffuse PAR on GPPr  

Howland Forest Reference, Morgan Monroe, and UMBS have not undergone any 

experimental manipulation (e.g., selective logging, N addition). At these sites, the sign of the 

significant parameter estimates indicate that in mornings and afternoons, GPPr increased with 

diffuse PAR (Table 3.2). The predicted increases in GPPr in the morning were calculated to be 

0.004-0.010, 0.008-0.011, and 0.010-0.018 µmol CO2 per µmol photons of diffuse PAR at 

Howland Forest Reference, Morgan Monroe, and UMBS, respectively (Figure 3.3). In the 

afternoon, the increases in GPPr were similar in magnitude, and ranged from 0.005-0.011, 0.008-

0.009, and 0.009-0.018 µmol CO2 per µmol photons of diffuse PAR at Howland Forest 

Reference, Morgan Monroe, and UMBS, respectively (Figure 3.3).  

 

 
Figure 3.3: Diurnal patterns in diffuse PAR β estimates for unmanaged forests across zenith 
angles from a multiple linear regression that includes VPD and air temperature as covariates (Eq. 
5). Error bars indicate one standard error. Only β estimates with p < 6.02 x 10-4 (Bonferroni-
corrected critical value) are plotted.  

 

The effect of diffuse PAR on rates of GPPr varied among forest sites. UMBS had the 

largest increases in GPPr with increases in diffuse PAR, and Howland Forest Reference had the 
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smallest increases in GPPr. In addition, the calculated increases in GPPr with diffuse PAR 

appear to depend on zenith angle at two of the sites. At UMBS, the influence of diffuse PAR on 

GPPr is greatest in the early morning and late afternoon (zenith angles 61-75°) and decreases at 

mid-day (zenith angles 16-45°). At Howland Forest Reference, the response to zenith angle 

differs and the influence of diffuse PAR on GPPr generally increases as the day continues and is 

highest in the late afternoon (zenith angles 76-100°). However, at Morgan Monroe, the influence 

of diffuse PAR on GPPr did not vary with zenith angle. When we compare across these 

ecosystems, deciduous forests (UMBS, Morgan Monroe) appear to differ from the mixed conifer 

forest, particularly in the morning, with differences diminishing in the afternoon. 

At Howland Forest, one site underwent selective logging while a second site was 

fertilized with 18 kg N/ha on a 21-hectare plot centered around the eddy covariance tower in five 

to six applications per growing season from 2001-2005 (David Dail, personal communication, 

2013). Analysis of data at these manipulated sites indicates that the magnitude of increase in 

GPPr with diffuse PAR was similar to that of the un-manipulated Howland forest (Figure 3.4). 

Differences among forest treatments are not apparent in the morning. In the afternoon, however, 

we observe a trend where diffuse PAR leads to the biggest GPPr increase in the forest fertilized 

with N and the smallest change in GPPr in the forest that has been selectively logged. 
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Figure 3.4: Diurnal patterns in diffuse PAR β estimate values for Howland Forest sites across 
zenith angles from a multiple linear regression that includes VPD and air temperature as 
covariates (Eq. 5). Error bars indicate one standard error. Only values with p < 6.02 x 10-4 
(Bonferroni-corrected critical value) are plotted. 

 

At the Mead Irrigated Rotation and Mead Rainfed Rotation sites, soybean and maize are 

planted in different years, allowing us to examine variations in the effect of diffuse PAR on 

GPPr between crop types (Figure 3.5). The increases in GPPr for maize were calculated to be 

0.011-0.022 µmol CO2 per µmol photons in the morning and 0.021-0.050 µmol CO2 per µmol 

photons in the afternoon. For soybean, the increases in GPPr in the morning were 0.014-0.021 

µmol CO2 per µmol photons and in the afternoon were 0.011-0.028 µmol CO2 per µmol photons. 

Diffuse PAR led to increases in GPPr at large zenith angles, but had no effect on GPPr at small 

zenith angles for both crop species (values are only plotted in Figure 3.5 if they are significant). 

In addition, we observed no difference in the magnitude of the effect of diffuse PAR on GPPr 

between soybean and maize in the morning. However, we did observe a greater effect of diffuse 

PAR on GPPr for maize than soybean in the afternoon for zenith angles 46-75°. Irrigation did 

not appear to influence the magnitude of the diffuse PAR effect on GPPr. 
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Figure 3.5: Diurnal patterns in diffuse PAR β estimate values for Mead crop sites across zenith 
angles from a multiple linear regression that includes VPD and air temperature as covariates (Eq. 
5). Error bars indicate one standard error. Only β values with p < 6.02 x 10-4 (Bonferroni-
corrected critical value) are plotted. 
  

3.4. Discussion 

Diffuse light influences Earth’s climate by changing the amount and character of light 

available for photosynthesis, and thus, indirectly controls atmospheric CO2 (Mercado et al. 

2009). Depending on future anthropogenic emissions and their effects on atmospheric aerosols 

and clouds, the influence of diffuse light on the terrestrial carbon sink may increase. A more 

quantitative and mechanistic understanding of the link between diffuse light and land carbon 

uptake in different ecosystems would allow us to model how changes in diffuse light influence 

atmospheric and terrestrial carbon stocks, particularly as land-use change (e.g., deforestation, 

afforestation, and conversion of natural systems to cropland) continues (Arora and Boer 2010).  

Past research has identified a positive correlation between diffuse light and ecosystem 

carbon uptake. However, this result may be due to a cross-correlation with total light availability, 

where diffuse light could more strongly influence photosynthesis when total light levels are low 

on overcast days as compared to high light levels on clear days (Gu et al. 1999, Zhang et al. 
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2010, Oliphant et al. 2011). The method we use in this paper addresses this confounding factor 

by removing the effect of direct light on ecosystem carbon uptake before calculating the rate of 

additional carbon uptake from diffuse light. Importantly, we tested for this potential independent 

effect using only direct field measurements of diffuse light, as opposed to deriving diffuse light 

levels with radiation partitioning models that make assumptions about aerosol and cloud 

conditions over terrestrial ecosystems. Our analysis of ten temperate ecosystems indicates that 

diffuse PAR correlates positively with GPPr and this relationship is independent of direct PAR 

levels. Specifically, diffuse PAR independently explained up to 22% of the variation in GPPr in 

mornings and up to 41% of the variation in GPPr in afternoons. 

Prior research shows that morning and afternoon responses to diffuse light can differ for 

the same zenith angles (Alton et al. 2005) and that in multiple ecosystems, rates of carbon 

enhancement vary across zenith angles (Zhang et al. 2010, Bai et al. 2012). However, to our 

knowledge, no other studies have investigated full diurnal patterns of diffuse light enhancement. 

We accomplished this by separating data according to zenith angle and time of day. Our results 

indicate that in forests, the proportion of variation in GPPr explained by diffuse PAR (evaluated 

through R2) is greatest at mid-day, and decreases as the sun moves closer to the horizon. The 

opposite pattern occurs at crop sites, where diffuse PAR did not predict GPPr at small zenith 

angles (mid-day), but did correlate with variation in GPPr at larger zenith angles (morning and 

afternoon). When we examined the magnitude of increase in GPPr in response to diffuse PAR 

(β1), the greatest increases were at larger zenith angles in crop sites (0.028 - 0.050 µmol CO2 per 

µmol photons at 61-75° in the afternoon). In forests, however, diffuse PAR had the strongest 

influence (R2) on GPPr at small zenith angles when the sun is overhead (mid-day), but the largest 

carbon enhancement rate (β1) at larger zenith angles (early mornings and late afternoons) when 

the sun is closer to the horizon.  

In addition, some sites show a trend in an asymmetrical diurnal cycle of diffuse light 

enhancement, most notably in the crop sites. Although increases in GPPr with diffuse PAR at 

forest sites appear to be similar in magnitude throughout the day, some of the zenith angle bins 

differed between the morning and afternoon. For example, the largest difference in carbon 

enhancement rates from a morning zenith angle bin to the same bin in the afternoon were 0.005 

µmol CO2 per µmol photons for mixed conifer forests, 0.003 µmol CO2 per µmol photons for 

deciduous forests, 0.017 µmol CO2 per µmol photons for soy, and 0.028 µmol CO2 per µmol 
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photons for maize, though changes were usually within the standard error of the measurements. 

The response of GPPr to diffuse light may differ in the morning and afternoon because 

environmental conditions influencing photosynthesis also vary during the day. For example, time 

lags between the effects of diurnal cycles of radiation and VPD on evapotranspiration (Zhang et 

al. 2014), stronger hydraulic stresses in the afternoon (Matheny et al. 2014), and morning and 

afternoon differences in leaf surface wetness that affect stomatal conductance (Misson et al. 

2005) might explain the increased importance of diffuse light in the afternoon. These results can 

be used to evaluate ecosystem and global land surface models by testing if they capture the 

diurnal patterns we identified.  

Our results indicate that there are ecosystem-specific responses of carbon uptake to 

diffuse light. The observed differences between crops and forests are consistent with (Niyogi et 

al. 2004) who used measured diffuse shortwave data to show that a crop site with a corn and 

soybean rotation was more sensitive to increases in aerosol-produced diffuse light than broadleaf 

and mixed conifer forests. Previous studies have hypothesized that differences in canopy 

structure among forests, grasslands, and croplands are responsible for differential responses of 

these ecosystems to diffuse light (Gu et al. 1999, Niyogi et al. 2004, Oliphant et al. 2011). 

However, they have not reported site-level canopy architectural measurements to test this 

potential modifier of land carbon uptake because they are difficult to collect and describe.  

There are several hypotheses explaining why canopy structure may modify the effect of 

diffuse light on ecosystem carbon uptake. Canopy gaps, which interact with the angle of incident 

light, may influence how much light is distributed vertically through a canopy (Hutchison et al. 

1980). For example, on clear days in a 30-m tall tulip poplar forest, the amount of radiation 

reaching the mid- and lower-parts of the canopy is lowest at large zenith angles (Hutchison et al. 

1980). The authors attributed this to the low level of total radiation and reduced canopy gaps 

when the sun is near the horizon. Our analysis of UMBS gap fraction data derived from LAI-

2000 measurements shows that as gap fraction decreases, carbon uptake with diffuse light 

increases (Figure 3.6). Because gap fraction here is the ratio of below-canopy PAR to above-

canopy PAR, this indicates greater light extinction at larger zenith angles. Greater light 

extinction in the canopy may increase light scattering, which could expose more leaves to diffuse 

light. Thus, the response of GPP to diffuse light may be greater at larger zenith angles because of 

more complete canopy participation in photosynthesis. However, more gap fraction data and 
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canopy light profiles from across sites and collected with uniform methods are needed to test this 

idea, particularly in crop ecosystems. This would allow us to identify why crops and forests 

respond differently to diffuse PAR. 

 

 

Figure 3.6. The relationship at UMBS (data from 2007-2011) between a) gap fraction and zenith 
angle and b) diffuse PAR β (carbon enhancement rate) and zenith angles (same data as shown in 
Figure 3.3). Error bars indicate one standard error. 

 

Second, the distribution of photosynthetic tissues within a canopy depends on the plant 

community at each site and may contribute to observed differences between crops and forests. 

Forests have more stratified layers of vegetation and are much taller than crops. This means that 

leaf area index (LAI) in a forest is distributed over a larger volume than in crop sites. When the 

sun is overhead, forest canopies shade leaves at lower layers and diffuse light has a greater 

potential of reaching leaves near the bottom of the forest canopy as compared to direct light. 

Thus, the opportunity for diffuse light to reach more leaves in the canopy is greater when the sun 

is overhead (larger R2). This explanation is supported by a study in a Norway spruce forest, 

which showed that needles deeper in the canopy contribute more to overall net ecosystem 
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production on cloudy days than on sunny days (Urban et al. 2012). However, the relative 

increases in GPP (β1) may be smaller than those at crop sites because forest canopies are denser, 

which increases self-shading. On the other hand, crops are planted to minimize self-shading 

when the sun is overhead. In addition, β1 may be higher at crop sites than at forests because 

multi-directional diffuse light at large zenith angles may reach deeper into crop canopies more 

effectively than direct light and increase light availability for crop stems, which are more 

photosynthetic than tree trunks.  

Modeling studies have shown that species-dependent canopy characteristics, such as leaf 

clumping, LAI, and leaf inclination angle can affect the influence of diffuse PAR on carbon 

processing in ecosystems (Gu et al. 2002, Alton 2008, Knohl and Baldocchi 2008). This could be 

due to the penumbral effect, which occurs when the position and types of leaves (e.g., broadleaf 

and conifer) alter the amount and distribution of light to lower-level leaves (Denholm 1981, Way 

and Pearcy 2012). Although the arrangement of leaves in tall canopies with small leaves (e.g., 

forests) can increase shading of lower canopy leaves, it also increases the probability that leaves 

and branches scatter light, resulting in more distribution of light in the canopy. However, in 

shorter canopies with larger leaves (e.g., maize), there is less plant material that can scatter light 

and these sites may be more dependent on incident diffuse light. This may explain the higher 

carbon enhancement rates observed at crop sites compared to forests.  

A few studies have measured how the distribution of light through plant canopies 

changes under diffuse light, but they are limited in their ability to test the influence of canopy 

structure on carbon enhancement from diffuse light because they have been conducted in a single 

ecosystem (Urban et al. 2012, Williams et al. 2014). Because site-level measurements of canopy 

structure are difficult to obtain, support for the mechanisms through which specific 

characteristics of canopy structure (e.g., leaf area distribution, leaf clumping) change ecosystem 

carbon uptake under diffuse light conditions has thus far depended on model assumptions (Alton 

et al. 2007, Knohl and Baldocchi 2008). To test whether canopy structural differences in height, 

canopy gaps, or leaf distribution within a canopy facilitate a diffuse light enhancement, a 

uniform method of collecting canopy structural data is needed. Methods are available for 

capturing some of this information, including light detection and ranging (LIDAR) remote 

sensing (Hardiman et al. 2013). However, no standardized method of collecting data has been 

applied among sites to allow for inter-site comparisons of canopy structure. Future research 
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should consider collecting data on canopy gaps, leaf distribution, and vertical light distribution to 

provide datasets that can be used to test whether gaps or leaf distribution within a canopy lead to 

an enhanced carbon uptake because of increased light distribution. Without this mechanistic 

connection, modelers cannot determine whether this missing biosphere-atmosphere connection 

results in a significant under- or over-prediction of the future terrestrial carbon sink. As scientists 

collect these canopy structural data, we suggest making these data publically available so they 

can be used to better interpret patterns seen using eddy covariance data.  

We also observed differences in diffuse light effects among sites described as the same 

forest type (e.g., Morgan Monroe and UMBS). This argues for the consideration of site-specific 

responses to diffuse light because plant community composition of individual forest types (or 

ecosystems) determine unique canopy structures that can drive how strongly canopy gaps, leaf 

distribution, and penumbral qualities influence the effect of diffuse light on ecosystem carbon 

uptake. In particular, there were differences in afternoon carbon enhancement rates between the 

fertilized and formerly logged Howland Forest sites, which only differ in disturbance activity. 

Differences in nutrient availability for plants may explain why the N fertilized site correlated 

more strongly with diffuse light than the logged site. After two years of fertilization, foliage was 

one of the most N-enriched ecosystem pools (Dail et al. 2009). Increased soil N availability 

could lead to an increase in leaf N, which correlates with higher concentrations of Rubisco and 

chlorophyll (Evans 1989), implying an interaction between diffuse light and nutrient levels.  

The effect of diffuse light on carbon uptake between maize and soybean also differed. 

This may be due to species differences in canopy structure as discussed above, but could also be 

due to the different photosynthetic pathways soy (C3) and maize (C4) use. Maize had a greater 

increase in carbon uptake with diffuse light than soy did, potentially because C4 plants have a 

higher light saturation point (Greenwald et al. 2006). Because maize would be farther away from 

light saturation than soy, an increase in diffuse light (after accounting for cross-correlation with 

direct light) would bring maize closer to light saturation and thus, increase photosynthesis. In 

addition, C4 plants are better adapted to warmer environments, which may cause environmental 

conditions, such as temperature and water availability, to change crop responses to diffuse light.  

Finally, our results show that other environmental drivers that co-vary with diffuse PAR 

also contribute to GPPr at some sites. In mixed conifer forests (e.g., the Howland sites), VPD, air 

temperature, and diffuse PAR together account for substantially more variation in GPPr than 
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diffuse PAR itself does, implying a lesser role for radiation and a larger one for conditions that 

improve stomatal conductance under cloudy conditions at mixed conifer forests. In contrast, 

VPD and air temperature, within the ranges of values characteristic of measurement periods at 

the sites studied here, appear to have small effects on GPPr in the broadleaf forests. This implies 

that the diffuse PAR effect at the broadleaf forests is due to the effect of scattered light itself. At 

the mixed conifer forests, the peak growing season temperature ranges from 16.5-17.6°C while 

the temperature is 21.2-24.3°C in the broadleaf forests. Comparing these site temperatures to the 

optimum temperature range of temperate deciduous trees (20-25°C) and evergreen coniferous 

trees (10-25°C), broadleaf forests are closer to their optimum temperature range (Larcher 2003). 

Considering that photosynthesis varies non-linearly with temperature, the same per unit change 

in temperature for a cooler site will lead to greater changes in GPP than in a warmer site. 

Increases in VPD in water-limited situations, on the other hand, should cause photosynthesis to 

drop because stomata will close to conserve water. However, VPD is actually lower in the mixed 

forests than in the deciduous broadleaf forests, implying that air temperature is a stronger driver 

of GPP than is VPD under our study’s field conditions.  

 

3.5. Conclusions 

Field measurements show that diffuse PAR accounts for a substantial amount of variation 

in GPP once the quantity of direct PAR is removed. The observed changes in the diffuse PAR 

effect on GPPr vary across zenith angles, ecosystem types, and plant functional groups, 

highlighting additional ways that ecosystem structural characteristics and the diurnal cycle 

influence ecosystem carbon cycling. In addition, observed site-level variation suggests that 

grouping forests together in regional or global models as the same plant functional type, without 

considering species composition or canopy structure, may lead to inaccuracies in assessing the 

impacts of radiation partitioning on modeled surface carbon fluxes.  

To robustly extend these results, direct measurements of diffuse PAR and ecosystem flux 

data are needed from a wider range of ecosystems. Furthermore, research that can evaluate 

mechanisms (e.g, canopy gaps, leaf distribution, and species-specific characteristics) driving 

terrestrial carbon enhancement under diffuse light will remain stagnant without consistent field 

measurements of canopy structure at sites with diffuse light and eddy covariance measurements. 

The incorporation of standard methods for measuring canopy structure and within-canopy light 
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distribution and the availability of these data in common formats from across networks of eddy 

covariance towers (e.g., AmeriFlux, NEON) would enable the development of better predictive 

models of carbon exchange in relation to direct and diffuse solar radiation.  

The interactions between diffuse light and ecosystem productivity may be of increasing 

importance as the community composition of our terrestrial ecosystems continues to change 

because of human land use change, natural ecological succession, and climate change. Thus, a 

more refined understanding of how diffuse PAR modifies atmosphere-land carbon cycling and 

subsequent representations of this relationship in models will likely advance our understanding 

of how human management of ecosystems will influence the land carbon sink as well as improve 

future calculations of atmospheric CO2 concentrations for global climate projections.    
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Chapter 4      

Photosynthesis from Leaf to Canopy: Species and Leaf Light Availability 

Drive Within-Canopy Variation in Forest Photosynthetic Capacity 3 

!
Abstract 

Plant canopies vary in physical structure, species composition, and in spatial distributions 

of environmental conditions that influence photosynthesis. The effects of canopy heterogeneity 

on the rate-limiting reactions in photosynthesis (i.e., photosynthetic capacity) may scale up to 

change canopy-level CO2 uptake. To examine how leaf photosynthetic capacity varies within a 

plant canopy and among species grouped into the same plant functional type in Earth system 

models, we derived the rates of maximum carboxylation (Vc,max), electron transport (J), and triose 

phosphate utilization (TPU) from in situ measurements made on sun and shade leaves on adult, 

canopy-dominant trees of three temperate broadleaf species. We then compared model equations 

representing hypotheses about how species, leaf temperature, leaf nitrogen, and light availability 

(sun v. shade leaves) influence Vc,max, J, and TPU. Results showed that Vc,max was best explained 

by a model that included leaf temperature and nitrogen per leaf area (Narea). The best model for J 

included leaf temperature, species, and leaf light environment. TPU was best explained by leaf 

light environment, with leaf temperature minimally improving the model’s predictive power. The 

variations in J and TPU that occur with species or light environment suggest that species or leaf-

type specific traits, in addition to Narea, are needed to explain patterns in J and TPU. We suggest 

that Earth system models test whether less-simplified parameterizations of these processes 

improves model estimates of land-atmosphere CO2 fluxes. Our results thus provide future 

opportunities for models to quantify how canopy heterogeneity scales up to influence global 

terrestrial carbon uptake.  

 
2 To be published by S.J. Cheng, R.Q. Thomas, J.V. Wilkening, P.S. Curtis, T.D. Sharkey, K.J. Nadelhoffer. In 
review at the Journal of Geophysical Research: Biogeosciences.!



!

77 

4.1 Introduction  

At the global scale, plants slow the increase of atmospheric CO2 by storing the equivalent 

of approximately 25% of annual anthropogenic emissions in terrestrial ecosystems (Le Quéré et 

al. 2014). However, future rates of terrestrial CO2 uptake depend on how interactions between 

climate and plant ecology alter rates of leaf photosynthesis. For example, when growing 

temperature increases, net photosynthesis in juvenile trees can increase or decrease, depending 

on whether the trees grow near the warm or cold edge of their species’ range (Reich et al. 2015). 

Accurately predicting CO2 uptake from the leaf to ecosystem level requires identifying how the 

biochemical mechanisms that control photosynthesis respond to environmental and ecological 

changes in plant canopies. 

Leaf CO2 assimilation is limited by three main photosynthetic sub-processes. The first is 

the maximum rate of carboxylation (Vc,max), which represents how quickly ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco) catalyses the reaction between a saturated supply 

of ribulose-1,5-bisphosphate (RuBP) and CO2 (Diaz-Espejo et al. 2012). The second rate-

limiting reaction occurs when photosynthesis is constrained by RuBP regeneration, which 

depends partially on the maximum rate of electron transport (Jmax) (Diaz-Espejo et al. 2012). 

Finally, triose phosphate utilization (TPU) releases phosphates for regenerating RuBP when the 

products of photosynthesis (i.e., triose phosphates) are converted to sugars and starches (Sharkey 

et al. 2007, Diaz-Espejo et al. 2012). Other factors influence Vc,max, Jmax, and TPU, or a leaf’s 

photosynthetic capacity, including leaf temperature (Walcroft et al. 1997, Hikosaka et al. 2007) 

and leaf allocation of nitrogen to photosynthetic machinery (Evans 1989, Harley and Baldocchi 

1995, Reich et al. 1995). Often, the slowest rate of CO2 uptake under these rate-limiting 

conditions is then used to estimate net leaf CO2 assimilation (Von Caemmerer 2000, Sharkey et 

al. 2007).  

 Earth system models typically use either a subset or all three of these rate-limiting 

reactions to parameterize photosynthesis. This is primarily done by assigning a value of Vc,max to 

each plant functional type (PFT) and adjusting Vc,max based on a few leaf or canopy conditions, 

such as leaf nitrogen and leaf temperature (Oleson et al. 2013, Kim et al. 2015). Reviews of field 

studies demonstrate that the effects of leaf temperature on Vc,max and Jmax in seedlings can be 

somewhat generalized (Leuning 2002, Medlyn et al. 2002) and that PFTs have different Vc,max 

values. For example, Vc,max and Jmax are higher in deciduous tree species (e.g., oaks and maples) 
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than in conifers (e.g. pines and spruces) (Wullschleger 1993). However, Vc,max in deciduous 

seedlings ranges from 11-119 µmol m-2 s-1 and Jmax ranges from 29-237 µmol m-2 s-1, with leaf 

temperature only accounting for a portion of the variation in these values (Wullschleger 1993). 

Recent analyses using plant traits or environmental conditions to estimate Vc,max also show that 

Vc,max varies widely within a biome or PFT (Kattge et al. 2009, Verheijen et al. 2013, Ali et al. 

2015). This suggests that parameterizing photosynthesis by PFT may exclude the impacts of 

species variations and distributions of light and leaf nitrogen in plant canopies (Ellsworth and 

Reich 1993, Canham et al. 1994, Frelich and Reich 1995) on canopy-level photosynthetic 

capacity.  

Although there are environmental and ecological variations within forest canopies, field 

studies of adult trees lead to no consensus on whether Vc,max, Jmax, and TPU at a leaf temperature 

of 25°C differ among species that are traditionally grouped into the same PFT. For example, 

Vc,max and Jmax do not differ between upper-canopy sun leaves of narrow-leafed ash (Fraxinus 

angustifolia) and English oak (Quercus robur) in a sub-Mediterranean forest plantation in Italy 

(Grassi et al. 2005). However, in a temperate, deciduous forest in the United States (Walker 

Branch, Tennessee), Vc,max was higher in white oak (Q. alba) and chestnut oak (Q. prinus) than in 

sugar maple (Acer saccharum) and red maple (A. rubrum) (Wilson et al. 2000). Similarly, Vc,max 

and Jmax differed among five species sampled in a temperate, deciduous forest (Swiss Canopy 

Crane facility, Switzerland) undergoing CO2 enrichment (Bader et al. 2010). Other forest sites 

also show species-specific responses in the rate-limiting reactions of photosynthesis. For 

example, in another temperate, deciduous forest (Harvard Forest, Massachusetts, United States), 

Vc,max was higher in red oak (Q. rubra) than in paper birch (Betula papyrifera), but Jmax did not 

differ between the two species, resulting in species-specific Jmax:Vc,max ratios (Dillen et al. 2012). 

These in situ measurements from multiple species of mature trees in the same forest are limited, 

which may contribute to the difficulty in generalizing photosynthetic capacity by species. 

Leaf photosynthetic capacity in canopies also tends to exhibit vertical gradients that 

follow canopy environmental conditions. For example, leaves exposed to more light have higher 

Vc,max, Jmax, and TPU than leaves with less light in several forests, including a Mediterranean 

evergreen oak woodland, a tropical rainforest, and temperate forests with different dominant 

species (Meir et al. 2002, Vaz et al. 2010). Previous studies also demonstrate that leaf nitrogen 

correlates with differences in Vc,max and Jmax between sun and shade leaves of European beech 
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(Fagus sylvatica), oaks, and maples (Harley and Baldocchi 1995, Wilson et al. 2000, Montpied 

et al. 2009, Cano et al. 2013). In addition, both species and canopy position influenced Vc,max and 

Jmax in red oak (Q. rubra), chestnut oak (Q. prinus), and red maple (A. rubrum) (Turnbull et al. 

2002), while there were no differences in Vc,max and Jmax between sun and shade leaves in two of 

the five species sampled in a deciduous forest in Thuringia, Germany (Legner et al. 2014). 

Although most studies show consistent declines in Vc,max and Jmax from the top to the bottom of 

the canopy, less is known about the interactive effects that species and leaf environment have on 

Vc,max, Jmax, and TPU.   

Although a number of field studies have examined differences in Vc,max, Jmax, and TPU 

among species or between sun and shade leaves, few have linked the combined effects of these 

variables to leaf nitrogen and leaf temperature (which simultaneously influence rates of 

photosynthesis) in mature trees of dominant, upper-canopy species in the same location. To 

examine how photosynthetic capacity varies within a forest canopy, we ask: (1) how do Vc,max, J, 

and TPU vary among species traditionally grouped into the same PFT, (2) how do these rates 

vary with leaf light environment (i.e., between sun and shade leaves), and (3) do the effects of 

leaf nitrogen and leaf temperature differ among species and between sun and shade leaves in the 

same forest canopy? In this study, we report values of J at light levels for saturating assimilation 

rates, as opposed to Jmax, as is commonly reported. This practice is recommended by Buckley 

and Diaz-Espejo (2015) because saturating light is not the only condition that maximizes 

photosynthesis and because J at saturating light levels is often lower than actual Jmax values.   

We addressed our questions by making in situ net photosynthesis measurements on 

mature trees in a forest that is representative of the Great Lakes region. Most synthesis papers on 

the rates that biochemically limit photosynthesis rely heavily on studies of seedlings and saplings 

(Wullschleger 1993, Medlyn et al. 2002, Kattge et al. 2009). Our study adds to current 

understanding of photosynthetic capacity by providing measurements from an age cohort of trees 

that dominates the canopy and constitutes the majority of aboveground ecosystem productivity 

(Gough et al. 2013, Stuart-Haëntjens et al. 2015). In addition, sampling sun and shade leaves 

across a range of leaf temperatures on early and mid-successional tree species that are typically 

grouped into the same PFT allows us to test assumptions about model representations of forest 

photosynthesis.  
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We test which quantitative relationships among ecological and environmental conditions 

best explain variations in Vc,max, J, and TPU by evaluating contrasting model equations that 

isolate the influences of these conditions on leaf photosynthetic capacity. Our sampling and 

analysis methods improve understanding of forest carbon cycling in two important ways. First, 

modelers can use our data to evaluate and develop improved parameterizations of photosynthesis 

(Dietze 2014, Rogers et al. 2014) that capture the variation in photosynthetic capacity observed 

within a PFT (Verheijen et al. 2013). Second, by identifying differences in photosynthetic 

limitations within a forest canopy, we show how variations in leaf-level processes may control 

land-atmosphere CO2 fluxes as species composition or canopy structure change due to natural 

processes or management practices.  

!
4.2. Methods  

4.2.1 Site Location 

Our study site is in an approximately 90-year-old, temperate, mixed-broadleaf deciduous 

forest located at the University of Michigan Biological Station in northern, lower Michigan 

(45.55984°N, 84.71382°W). The average canopy height is 22 m and the mean leaf area index 

(LAI) is 3.5 (Gough et al. 2013). The upper canopy is composed of early successional bigtooth 

aspen (Populus grandidentata), trembling aspen (P. tremuloides), and paper birch, and to a lesser 

extent, contains mid-successional red maple and red oak. White pine (Pinus strobus) and 

American beech (F. grandifolia) are also of increasing abundance in the lower- to mid-canopy. 

Soils in this area are well drained, coarse-textured, Haplorthods of the Rubicon, Blue Lake, or 

Cheboygan series (Nave et al. 2011). The mean annual temperature at this site is 5.5°C (1942-

2003) and the mean annual precipitation is 817 mm (Nave et al. 2011). 

!
4.2.2 Tree Selection and Sampling 

To estimate how Vc,max, J, and TPU vary in early successional and mid-successional tree 

species, we sampled three mature, canopy-dominant individuals each of bigtooth aspen, red 

maple, and red oak. The number of individuals sampled was limited by accessibility to branches 

from a canopy access vehicle (JLG M600JP™). Diameter-at-breast height (DBH) of individuals 

ranged from 19.2 to 44.6 cm.   
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For red maple and red oak, we sampled upper-canopy sun leaves (high light environment) 

and lower-canopy shade leaves (lower light environment). For bigtooth aspen, we only sampled 

sun leaves because bigtooth aspens have fairly uniform, bulbous crowns with few, if any, shade 

leaves. Sun-exposed branches of sampled individuals were located 12.0 to 17.4 m above the 

ground and shaded branches were 6.2 to 12.6 m above the ground.  

!
4.2.3 Gas exchange measurements 

We measured net photosynthesis across a range of CO2 concentrations, also known as net 

assimilation versus intercellular CO2 response curves (A/Ci curves), using a LI-COR 6400 

portable photosynthesis system (LI-COR, Inc., Lincoln, NE, USA) fitted with a red/blue light 

source (6400-02B Red/Blue LED Light Source, LI-COR, Inc.). We sampled trees from 12 July 

to 16 August 2013 and from 9:00 to 14:30 EDT to avoid measurements during afternoon 

stomatal closure.   

Before beginning an A/Ci curve, we acclimated each leaf in the cuvette at 400 ppm CO2. 

We then increased CO2 and recorded assimilation at stepwise decreases of CO2 at the following 

concentrations: 2000, 1800, 1500, 1200, 800, 600, 400, 325, 250, 175, 100, and 50 ppm, similar 

to methods in Dungan et al. (2003) and Dreyer et al. (2001). Before each measurement, leaves 

acclimated to a new CO2 concentration for three to five minutes. A full response curve took 

approximately one hour to complete. Each curve was measured at a photosynthetically active 

radiation (PAR) level of 2000 µmol m-2 s-1 for sun leaves and 1500 µmol m-2 s-1 for shade leaves. 

These values were selected based on light response curves previously collected at this site and 

represent light levels for saturating levels of leaf assimilation. We also maintained the sample 

relative humidity at 45 to 70% for optimal stomatal conductance. 

We measured A/Ci curves at constant leaf temperature and each curve was measured at a 

different average leaf temperature that spanned: 23.0-29.5°C for red maple sun leaves (n=7), 

24.0-29.8°C for red maple shade leaves (n=6), 24.8-30.1°C for red oak sun leaves (n=8), 22.9-

29.8°C for red oak shade leaves (n=8), and 23.0-32.1°C for bigtooth aspen (n=7). The standard 

deviation of leaf temperature during an A/Ci curve ranged from 0.06-0.75°C. We controlled leaf 

temperature in the cuvette using the LI-COR 6400 temperature control feature and a reflective 

covering that allowed us to control how much sunlight could warm the outside of the leaf 

chamber during the measurement period.  
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4.2.4 Leaf Properties 

After completing each curve, we collected the sampled leaf and measured leaf area, dry 

mass, and nitrogen (N) content. We measured the area of leaves using a LI-COR LI-3100 Area 

Meter and dried them at 60°C. Both leaf area and dry mass were measured without the petiole. 

To obtain N content, we ground samples using a ball mill and analyzed samples with a 

Costech Analytical CHN analyzer (Costech International, Valencia, California, USA).   

 

4.2.5 A/Ci Curve Analysis 

We derived Vc,max, J, and TPU using the method described in Sharkey et al. (2007). We 

examined each curve and assigned points below 20 Pa as Rubisco-limited and points above 30 

Pa as RuBP regeneration-limited. Points between 20 to 30 Pa were assigned as either Rubisco- or 

RuBP-limited so the model would return the smallest sum of squares. Although not all leaves 

experience TPU limitation at high CO2 concentrations (Harley et al. 1992), we estimated a 

minimum value of TPU by assigning the highest assimilation rate and any subsequent 

measurements at higher CO2 concentrations as TPU-limited (Sharkey 2015). We saw evidence 

for TPU limitation in data from bigtooth aspen and red oak, but not in red maples. To account for 

curves with a decline in assimilation at high chloroplast CO2 concentrations, we modified the 

method to allow for the lack of glycerate re-entry into the Calvin-Benson cycle Harley and 

Sharkey (1991) by using the equation: 

A = TPU – Rd + ΘvO      (6) 

where Rd is daytime respiration, Θ is the proportion of carbon that leaves the photo-respiratory 

cycle as serine or glycine, and vO is the velocity of oxygenation. This allowed us to more 

accurately fit the TPU-limited points. We used the average leaf temperature during the 

measurement period for the curve as the input for leaf temperature, adjusted the atmospheric 

pressure to 91 kPa, and constrained calculations of mesophyll resistance to be between 0.5 and 

2.0 µmol m-2 s-1 Pa-1.   

!

4.2.6 Data Analysis 

We tested our hypotheses about how environmental and ecological characteristics 

influence rates of Vc,max, J, and TPU using maximum likelihood estimation and model selection 

techniques, as described below. We used maximum likelihood and model selection, rather than 
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an analysis of covariance, to fit and analyze non-linear models that reflect how variations in 

Vc,max, J, and TPU are often represented in photosynthesis models (De Pury and Farquhar 1997, 

Bernacchi et al. 2001). The key to maximum likelihood estimation and model selection is the 

development of contrasting equations (i.e., models) that isolate the influence of a factor on the 

dependent variable. For example, we can compare a model with one parameter relating nitrogen 

per leaf area (Narea) to Vc,max to another that does the same, but also includes a unique parameter 

for each species. If the model with a unique parameter for each species is identified as the most 

parsimonious model, despite the additional parameters, then this indicates that species identity, 

in addition to species differences in Narea, is important for explaining patterns in Vc,max.   

For Vc,max, we developed a set of 20 models that included one or more of the following 

variables in each equation: leaf temperature, Narea, leaf light environment (i.e., sun and shade 

leaves), and species identity (see Appendix C, Table C1]). For J and TPU, we used the same 20 

models, but added two models that tested how well Vc,max can estimate J and TPU, for a total of 

22 models (see Appendix C, Tables C2 and C3). Each set of models for Vc,max, J, and TPU 

included equations that tested whether leaf temperature responses vary among species or 

between sun and shade leaves. We incorporated the effect of leaf temperature on Vc,max, J, and 

TPU into our models as an exponential relationship represented by a Q10 coefficient, which is the 

ratio between the reaction rates at two temperatures that are 10°C apart (Tjoelker et al. 2001). 

We calculated the Q10 coefficient with a base rate at 25°C because it is a leaf temperature 

commonly used in model parameterizations (Farquhar et al. 1980). Because photosynthesis can 

decrease at high leaf temperatures due to enzyme denaturation (Sage and Kubien 2007), we 

separately tested a temperature function where Vc,max, J, and TPU increased with temperature and 

then decreased after an optimum temperature. However, this functional form received less 

support than the Q10 temperature response function based on the model selection criteria 

described below. Thus, we only present results using the more parsimonious Q10 function.   

For each model, we solved for the maximum likelihood estimate of each parameter using 

simulated annealing, which is an algorithm that searches for an approximation to the global 

optimum in a large solution space (Kirkpatrick 1984).  Estimation was done using R version 

3.1.1 (R Core Team 2014) and the R maximum likelihood package (Murphy 2014). For each 

model, we ran the simulated annealing process with 20,000 iterations and assumed a normal 

probability density function (PDF). We tested the assumption that residuals followed a normal 
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PDF using the Shapiro-Wilk test. Residuals for Vc,max and J were normally distributed (p > 0.05), 

but the distribution of residuals for TPU did not have an obviously normal distribution (p =  

0.03). We explored other continuous PDFs, including gamma, exponential, log-normal, and a 

normal distribution with a standard deviation that increases as a power function of the mean. 

Compared to these alternate PDFs, the normal distribution had the strongest support. Therefore, 

we present the TPU analysis using the normally distributed model uncertainty. In addition, the 

upper and lower support limits, or two-unit support interval, is calculated for each parameter and 

is analogous to the 95% confidence interval (CI) (Murphy 2014). The support interval is 

calculated as the range of values for each parameter that result in a two-unit or less reduction in 

the likelihood when all other parameters are held at their maximum likelihood estimated value.  

Finally, we selected the most parsimonious model for explaining patterns in our data for 

Vc,max, J, and TPU using the Akaike Information Criterion corrected for small samples (AICc), 

which has been shown to be appropriate for model selection when many hypothesized models 

are evaluated (Aho et al. 2014). We considered models with a difference in AICc score < 2 units 

to be equally as likely (Burnham and Anderson 2002). 

 

4.2.7 Derivation of Jmax 

Our study focused on the ecological and environmental controls on rates of electron 

transport at saturating light levels (J), and not on the maximum rate of electron transport (Jmax). 

However, to compare J to Jmax, we derived Jmax from light response curves.  

Light response curves were available for sun and shade leaves of the same individuals we 

used to measure A/Ci curves (n=6 for each group), but only during the year after we collected the 

A/Ci curves used in this study. For each leaf, net photosynthesis was measured at the following 

light levels: 10, 25, 50, 100, 250, 500, 750, 1000, and 1500 µmol m-2 s-1, with an additional 

measurement at 2000 µmol m-2 s-1 for sun leaves. Measurements were taken at a CO2 

concentration of 400 ppm and the sample relative humidity was kept between 46% and 72%. 

Before a measurement was recorded, the leaf acclimated to a new light level for two to three 

minutes. 

We used these light-reponse curves to derive Jmax with the method described in Sharkey 

(2015) that uses the equations from Buckley and Diaz-Espejo (2015) to fit the initial slope of J 

versus light, the convexity parameter of a light response curve, and Jmax. We did not use the 
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highest light levels in the analysis when there was evidence that something other than electron 

transport became limiting at high light. We used the average leaf temperature of the light 

response curve for the leaf temperature, 91 kPa for the atmospheric pressure, 21 kPa for the 

oxygen level, and 0.5 µmol m-2 s-1 as the day respiration as suggested by Sharkey (2015). For the 

stomatal conductance, we used 10% of the highest assimilation rate of the light response curve, 

as suggested by Caemmerer and Evans (1991).  

!
4.3. Results 

4.3.1 Photosynthesis measurements and parameter derivations 

For red maple, red oak, and bigtooth aspen, photosynthesis increased with CO2 and either 

plateaued or decreased at the highest CO2 concentrations (Figure 4.1). Overall, bigtooth aspen 

had higher rates of net photosynthesis at the higher CO2 concentrations than red maple or red 

oak. Some of the variation among A/Ci curves could result from differences in leaf temperature, 

leaf nitrogen, physiological variation among leaves and individual trees, or the interactions 

among these variables. 

The A/Ci curves in Figure 4.1 were then used to derive values of Vcmax, J, and TPU using 

the Sharkey et al. (2007) method (n=36 curves). Across a leaf temperature range of 22.9 to 

32.1°C and Narea range of 0.66 to 2.23 g m-2, Vcmax ranged from 44 to 327 µmol m-2 s-1 (Figure 

4.2), J ranged from 65 to 235 µmol m -2 s-1 (Figure 4.3), and TPU ranged from 3.2 to 11.7 µmol 

m -2 s-1 (Figure 4.4).      
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!
Figure 4.1: The response of assimilation (i.e., net photosynthesis) to increases in 
intercellular CO2 (Ci) in sun and shade leaves. A/Ci curves were taken in situ on adult, 
canopy-dominant individuals of a) red maple, b) red oak, and c) bigtooth aspen in a 
temperate, deciduous forest. Points represent data used to derive values of the 
maximum rate of carboxylation (Vc,max), rate of electron transport (J), and rate of 
triose phosphate utilization (TPU).   

!

!!!!
Figure 4.2: Derived values of the maximum rate of carboxylation (Vc,max) from A/Ci 
curves taken in situ on adult, canopy-dominant red maple, red oak, and bigtooth aspen 
trees. Points are separated according to variables (Narea, leaf temperature) included in 
the model with the most support for explaining patterns in Vc,max (Model 4, Table 4.1), 
as indicated by the smallest Akaike information criterion adjusted for small sample 
sizes (AICc). Lines represent values of Vc,max estimated from Model 4 using the 
midpoint of each leaf temperature range shown in the plot.  
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!!!!
Figure 4.3: Derived values of the rate of electron transport (J) from A/Ci curves taken 
in situ on adult, canopy-dominant red maple, red oak, and bigtooth aspen trees. Points 
are separated according to variables (species, leaf light environment, leaf temperature) 
included in the model with the most support for explaining patterns in J (Model 11, 
Table 4.2), as indicated by the smallest Akaike information criterion adjusted for 
small sample sizes (AICc). Lines represent values of J estimated from Model 11. 

!
! !
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!!! !
Figure 4.4: Boxplot of derived values for triose phosphate utilization (TPU) from A/Ci 
curves taken in situ on adult, canopy-dominant red maple, red oak, and bigtooth aspen 
trees. Points are separated according to the variable (leaf light environment) included 
in one of the two models with the most support for explaining patterns in TPU (Model 
5, Table 4.3), as indicated by the smallest Akaike information criterion adjusted for 
small sample sizes (AICc). The box shows the 25th and 75th percentiles and the 
median. The whiskers outline the minimum and maximum values for TPU in sun and 
shade leaves. The dot represents TPU estimated for sun and shade leaves using Model 
5. 

!

4.3.2 Environmental and Ecological Influences on Vcmax 

We compared 20 models to test for the influence of species, leaf light environment, leaf 

temperature, and Narea on Vc,max. Based on the AICc scores of the models we tested, the model 

that best explained Vc,max included a Q10 leaf temperature response and Narea (Model 4 in Table 

4.1; R2 = 0.64). Increases in both leaf temperature and Narea led to increases in estimates of Vc,max 

(Figure 4.2).  

Using the mean Narea (1.35 g m-2) of our sample population in our most parsimonious 

model, Vc,max at a leaf temperature of 25°C was estimated to be 101.1 µmol m-2 s-1. Results from 

our model selection also indicate that models explicitly incorporating differences among species 

or between sun and shade leaves that occur in addition to variations in Narea (e.g., Models 7, 10, 

and 12 in Table 4.1) do not better explain patterns in Vc,max. This does not imply that differences 

in Vc,max do not exist among species or between sun and shade leaves. Instead, this suggests that 

variations in Vc,max among species and between sun and shade leaves can be predicted by Narea 
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and that additional information on species or leaf light environment beyond Narea may not be 

needed for estimating Vc,max.   

In addition, we found that including a separate leaf temperature response for each species 

or for sun and shade leaves did not improve Vc,max predictions. This suggests that using the same 

leaf temperature function for the three species we sampled and for sun and shade leaves is 

sufficient for estimating Vc,max at our field site. The Q10 coefficient for the best model explaining 

patterns in Vc,max, along with other parameter estimates for all the models we tested, can be found 

in Appendix C Table C1.   

 

Table 4.1: Comparison of the 10 alternative models explaining patterns in the maximum rate of 
carboxylation (Vc,max) with the smallest Akaike information criterion adjusted for small sample 
sizes (AICc).   

Model 
No. Model Equationa No. of 

Parameters 
bΔAICc cR2 dm 

4 Vc,max = V × Q10
(T-25)/10 × Narea 3 0.00 0.64 0.82 

10 Vc,max = V[spp] × Q10
(T-25)/10 × Narea 5 2.09 0.68 0.81 

7 Vc,max = V[loc] × Q10
(T-25)/10 × Narea 4 2.14 0.65 0.78 

20 Vc,max = V × Q10[loc](T-25)/10 × Narea 4 2.61 0.64 0.80 
6 Vc,max = V[loc] × Q10

(T-25)/10  4 3.13 0.64 0.66 
16 Vc,max = V × Q10[spp](T-25)/10 × Narea 5 4.62 0.65 0.82 
19 Vc,max = V × Q10[loc](T-25)/10  4 5.18 0.62 0.63 
11 Vc,max = V[spp_loc] × Q10

(T-25)/10  7 5.44 0.70 0.69 
12 Vc,max = V[spp_loc] × Q10

(T-25)/10 × Narea 7 6.76 0.69 0.75 
17 Vc,max = V × Q10[spp_loc](T-25)/10  7 10.52 0.65 0.71 

a  “V” is the coefficient for each model equation.  Model equations containing “spp” estimate 
parameters for each species, equations with “loc” estimate parameters for sun and shade 
leaves, and equations with “spp_loc” estimate parameters for species-specific canopy 
locations (i.e., red maple sun leaves, red maple shade leaves, bigtooth aspen sun leaves, red 
oak sun leaves, and red oak shade leaves). Q10 is the ratio between the reaction rates at two 
temperatures that are 10°C apart.  Narea is leaf nitrogen per area in mg cm-2. 

b  ΔAICc is the difference between the AICc score of a model and the one with the lowest 
AICc. ΔAICc scores for all 20 models are included in the Appendix C, Table C1.   

c  R2 is the goodness-of-fit of the model. 
d   m is the slope of the linear relationship between the predicted and observed values for 

Vc,max.   
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4.3.3 Environmental and Ecological Influences on J 

The model that best explained patterns in J differed from the best model for predicting 

Vc,max.  This model, along with the most parsimonious model for Vc,max, included a Q10 

temperature function. However, unlike the model that best explained the variation in Vc,max, the 

most parsimonious model for J includes separate species-specific coefficients for sun and shade 

leaves (Model 11 in Table 4.2; R2 = 0.72). In addition, this model had more support than a model 

that estimated J as a proportion of Vc,max. Therefore, values of J are best explained by species 

identity and canopy location traits that are separate from the traits that control variation in Vc,max. 

Overall, sun leaves had higher values of J than did shade leaves (Figure 4.3). Bigtooth 

aspen had the highest values of J, followed by red oak, and then by red maple (Figure 4.3). Using 

our best model for explaining patterns in our data for J, we estimated J at a leaf temperature of 

25°C to be 148.9 µmol m-2 s-1 for bigtooth aspen, 134.4 µmol m-2 s-1 for red oak sun leaves, 

116.0 µmol m-2 s-1 for red maple sun leaves, 102.2 µmol m-2 s-1 for red oak shade leaves, and 

69.4 µmol m-2 s-1 for red maple shade leaves. The inclusion of separate coefficients for species 

and sun and shade leaves in the most parsimonious model for predicting J suggests that 

variations in Narea are insufficient for explaining the effect of species and leaf light environment 

(i.e., sun v. shade leaves) on this particular limitation to photosynthesis.  

Similar to results for Vc,max, estimates of J were not improved with separate leaf 

temperature responses for each species or for sun and shade leaves.  Estimates for the Q10 

coefficient for the best model explaining patterns in J, along with other parameter estimates for 

all the models we tested, can be found in Appendix C, Table C2.   

 

!  
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Table 4.2: Comparison of the 10 alternative models explaining patterns in the rate of electron 
transport (J) with the smallest Akaike information criterion adjusted for small sample sizes 
(AICc).   

Model 
No. Model Equationa No. of 

Parameters 
bΔAICc cR2 dm 

11 J = CJ[spp_loc] × Q10
(T-25)/10  7 0.00 0.72 0.74 

22 J = CJ × Vc,max 2 6.45 0.50 0.86 
6 J = CJ[loc] × Q10

(T-25)/10  4 6.84 0.56 0.57 
19 J = CJ × Q10[loc](T-25)/10  4 13.85 0.47 0.47 
10 J = CJ[spp] × Q10

(T-25)/10 × Narea 5 13.90 0.51 0.94 
12 J = CJ[spp_loc] × Q10

(T-25)/10 × Narea 7 14.34 0.58 0.87 
9 J = CJ[spp] × Q10

(T-25)/10  5 15.21 0.49 0.51 
13 J = CJ[spp_loc] 6 15.76 0.52 0.52 
5 J = CJ[loc] 3 17.83 0.36 0.36 
17 J = CJ × Q10[spp_loc](T-25)/10  7 18.09 0.53 0.59 

a   “CJ” is the coefficient for each model equation.  Model equations containing “spp” 
estimate parameters for each species, equations with “loc” estimate parameters for sun 
and shade leaves, and equations with “spp_loc” estimate parameters for species-specific 
canopy locations (i.e., red maple sun leaves, red maple shade leaves, bigtooth aspen sun 
leaves, red oak sun leaves, and red oak shade leaves). Q10 is the ratio between the 
reaction rates at two temperatures that are 10°C apart.  Narea is leaf nitrogen per area in 
mg cm-2. Vc,max is the maximum rate of carboxylation as derived from the A/Ci curves 
shown in Figure 4.1. 

b   ΔAICc is the difference between the AICc score of a model and the one with the lowest 
AICc. ΔAICc scores for all 22 models are included in Appendix C, Table C2.   

c   R2 is the goodness-of-fit of the model. 
d   m is the slope of the linear relationship between the predicted and observed values for J.   

 
4.3.4 Environmental and Ecological Influences on TPU 

Our model selection analysis provided equivalent support (ΔAICc < 2) for two models 

explaining patterns in TPU, both of which differ from the best models used to explain variations 

in Vc,max and J. The first model includes separate coefficients for sun and shade leaves that take 

into the account the influence of leaf light environment on TPU (Model 5 in Table 4.3, R2 = 

0.44). The second model also includes separate coefficients for sun and shade leaves, but 

includes a Q10 temperature function (Model 6 in Table 4.3, R2 = 0.46).   

In both models, TPU values were higher in sun leaves than in shade leaves. Model 5 

estimates TPU in sun leaves as 9.4 µmol m-2 s-1 (95% CI 8.7-10.1 µmol m-2 s-1) and in shade 

leaves as 6.2 µmol m-2 s-1 (95% CI 5.3-7.1 µmol m-2 s-1). Using Model 6, estimates of TPU are 

9.1 µmol m-2 s-1 in sun leaves and 6.0 µmol m-2 s-1 in shade leaves at a leaf temperature of 25°C.  
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These results suggest that differences between sun and shade leaves, in addition to the vertical 

canopy gradient in Narea, influence values of TPU.  

Similar to results for Vc,max and J, the inclusion of separate leaf temperature response 

functions for each species or for sun and shade leaves did not improve explanation of patterns in 

TPU of the leaves we sampled. Additional information on the estimates for all 22 models used 

are included in Appendix C, Table C3. 

 
Table 4.3: Comparison of the 10 alternative models explaining patterns in triose phosphate 
utilization (TPU) with the smallest Akaike information criterion adjusted for small sample sizes 
(AICc).   

Model 
No. Model Equationa No. of 

Parameters 
bΔAICc cR2 dm 

5 TPU = CTPU[loc] 3 0.00 0.44 0.44 
6 TPU = CTPU[loc] × Q10

(T-25)/10  4 1.56 0.46 0.45 
13 TPU = CTPU[spp_loc] 6 5.49 0.48 0.49 
19 TPU = CTPU × Q10[loc](T-25)/10  4 5.78 0.39 0.39 
11 TPU = CTPU[spp_loc] × Q10

(T-25)/10  7 8.03 0.49 0.51 
17 TPU = CTPU × Q10[spp_loc](T-25)/10  7 13.86 0.40 0.41 
8 TPU = CTPU[spp] 4 16.01 0.19 0.21 
9 TPU = CTPU[spp] × Q10

(T-25)/10  5 18.58 0.19 0.22 
1 TPU = CTPU 2 18.69 0.00 0.00 
10 TPU = CTPU[spp] × Q10

(T-25)/10 × Narea 5 20.60 0.15 0.71 
a    “CTPU” is the coefficient for each model equation.  Model equations containing “spp” 

estimate parameters for each species, equations with “loc” estimate parameters for sun 
and shade leaves, and equations with “spp_loc” estimate parameters for species-specific 
canopy locations (i.e., red maple sun leaves, red maple shade leaves, bigtooth aspen sun 
leaves, red oak sun leaves, and red oak shade leaves). Q10 is the ratio between the 
reaction rates at two temperatures that are 10°C apart. Narea is leaf nitrogen per area in mg 
cm-2.   

b    ΔAICc is the difference between the AICc score of a model and the one with the lowest 
AICc. ΔAICc scores for all 22 models are included in Appendix C, Table C3.   

c    R2 is the goodness-of-fit of the model. 
d   m is the slope of the linear relationship between the predicted and observed values for 

TPU.   
 
4.3.5 Comparison of J and Jmax 

Although we measured A/Ci curves at saturating light levels for CO2 assimilation, we 

report derivations of electron transport as values of J at light levels where assimilation saturates, 

and not as Jmax. We report our data for electron transport in this way because a recent review 
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found that only 23% of 71 peer-reviewed papers provided enough detail to confirm that they did 

not report J as Jmax, which can lead to underestimated values of Jmax in Earth system models 

(Buckley and Diaz-Espejo 2015). To compare differences in J at saturating light levels and Jmax, 

we calculated Jmax at 25°C using methods in Sharkey (2015). To do this, we used light response 

curves measured on leaves from the same trees we sampled our A/Ci curves on, but taken a year 

after our A/Ci curves were collected (Table 4.4). 

Our estimated values of J at leaf temperatures of 25°C from the most parsimonious 

model in our study (Table 4.2, Model 11) are lower than the values of Jmax at 25°C that we 

calculated using methods in Sharkey (2015). In addition, we found that the species patterns in J 

and Jmax differed. For example, among sun leaves, bigtooth aspen had the highest values for J, 

but the lowest values for Jmax compared to red oak and red maple leaves. This may be because 

Jmax is extrapolated from photosynthetic rates under light-limiting conditions while J is the rate 

when light is “saturating”. This is similar to underestimating the maximum CO2 assimilation rate 

when using data at low CO2, where Rubisco activity determines the maximum rate, as opposed 

to using data when RuBP regeneration becomes limiting. The difference between species 

patterns in J and Jmax could be due to variations in the relative capacity of different components 

of electron transport and their effects. Although it is not clear what causes Jmax and J at saturating 

light levels to have different values, data on both Jmax and J are useful for informing global 

models as long as it is clear which rate is reported (Buckley and Diaz-Espejo 2015). 

!
Table 4.4: Rates of electron transport at 25°C using multiple estimation methods for sun and 
shade leaves of bigtooth aspen, red oak, and red maple.  

Group of leaves 
J at 25°C  

(µmol m-2 s-1) 
Jmax at 25°C 

(µmol m-2 s-1) 
MLE Modela Sharkey et al. 2015b 

Bigtooth aspen sun 149 220 
Red oak sun 134 334 
Red maple sun 116 398 
Red oak shade 102 212 
Red maple shade 69 181 

a  Derivations made using the parameters determined by maximum likelihood 
estimation from the most parsimonious model with ΔAICc = 0.00 (Model 11, 
Table 4.2). 

b  Derivations made using methods in Sharkey (2015) with light response curves 
taken at the same field site one year later. 
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4.4. Discussion 

Vc,max, J, and TPU limit rates of leaf assimilation and subsequently, canopy-level 

photosynthetic capacity and CO2 uptake. We examined how these photosynthetic rate-limiting 

reactions vary with environmental and ecological conditions that differ vertically and 

horizontally within a forest canopy. This provides insight into the role of canopy heterogeneity in 

explaining the large ranges in photosynthetic capacity that exist within biomes or PFTs 

(Verheijen et al. 2013, Ali et al. 2015). To determine how photosynthetic capacity varies in a 

forest canopy, we derived Vc,max, J, and TPU from photosynthesis measurements taken from sun 

and shade leaves of mature, canopy-dominant species typically grouped into the same PFT. We 

then used maximum likelihood estimation and model selection techniques to test hypotheses 

about how leaf temperature, leaf nitrogen, species identity, and leaf light environment influence 

Vc,max, J, and TPU. This allowed us to identify which variables best estimate rates of 

photosynthetic capacity and to evaluate some methods used to parameterize photosynthesis in 

Earth system models.  

Of the factors tested, leaf temperature and Narea explained most of the variation in Vc,max 

within a forest canopy. The observed increase in Vc,max across leaf temperatures from 22.9 to 

32.1°C is consistent with the positive relationship that stomatal conductance and enzyme kinetics 

have with increasing temperatures below a certain threshold (Berry and Bjorkman 1980). In 

addition, the positive relationship we found between Narea and Vc,max is consistent with the 

importance of plant-available nitrogen in photosynthesis. For example, plants allocate up to 30% 

of nitrogen to the synthesis and maintenance of Rubisco (Jensen 2000, Raven 2013), which is the 

limiting factor of leaf carboxylation rates. Previous studies have also found positive relationships 

between Narea and Vc,max in trees from various species ranging from 0 to 30 years in age (Medlyn 

et al. 1999, Ripullone et al. 2003), which has led some Earth system models to adjust Vc,max 

within or among PFTs based on leaf nitrogen (Oleson et al. 2013, Rogers 2014). Our results from 

mature, canopy-dominant trees support current model parameterizations of Vc,max based on a leaf 

nitrogen gradient in the canopy.  

We found that aside from leaf temperature, different biological variables were included in 

the models that explained the most variation in Vc,max and J. For Vc,max, the most parsimonious 

model includes Narea, which varies with canopy height (or leaf light exposure) and species 

(Ellsworth and Reich 1993, Wright et al. 2004, Legner et al. 2014). However, including leaf light 
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environment and species in the most parsimonious model for Vc,max does not improve the model’s 

explanatory power, likely because species identity and canopy location co-vary with leaf 

nitrogen. However, the most parsimonious model for J did include species identity and leaf light 

environment, but did not include Narea. This suggests that differences among species and sun and 

shade leaves, in addition to Narea, are important in estimating J. Leaf light availability likely 

influences J because the regeneration of RuBP increases with the amount of light available for 

electron transport (Sharkey et al. 2007). Because light decreases from the top of the canopy to 

bottom, we expect J to be higher in sun leaves than shade leaves (Niinemets et al. 2015). We also 

hypothesize that species identity influences J if canopy allocation of leaf nitrogen per area in 

response to stress (e.g, wind, light) (Hollinger 1996, Kull and Niinemets 1998) or if leaf 

arrangement of chlorophyll, which affects light absorbance (Brugnoli and Björkman 1992), is 

species-specific. Our results provide ecosystem-specific data consistent with a recent global-

level study that demonstrates that leaf nitrogen explains half as much of the variation in Jmax as it 

does in Vc,max (Ali et al. 2015).  

Our results also show that Vc,max increases faster than J does across a 10°C leaf 

temperature range (Q10 coefficient for Vc,max = 3.7, 95% CI 3.0-4.5 and for J = 1.8, 95% CI 1.6-

2.1, Appendix C, Tables C1 and C2). Because J and Jmax are mutually dependent (Farquhar et al. 

1980), factors influencing one rate are likely to influence the other. Therefore, our results on the 

response of J and Vc,max to temperature support previous findings that Jmax:Vc,max at a leaf 

temperature of 25°C decreases with higher growth temperature (Kattge and Knorr 2007). Our 

results are also consistent with a greater sensitivity of Vc,max than Jmax to leaf temperature in 

Monterey pine (Pinus radiata) seedlings and Balsam poplar (Populus balsamifera) stem cuttings 

grown in pots (Walcroft et al. 1997, Silim et al. 2010). However, our model selection results 

(Model 11 v. Model 22 in Table 4.2) contradict current Earth system model estimates of Jmax 

from Vc,max. Because we found that species traits, in addition to the ones influencing Vc,max (i.e., 

leaf nitrogen), and leaf light environment best explained J, estimating Jmax from Vc,max might not 

accurately capture variations in Jmax that occur in plant canopies. Although the Jmax:Vc,max ratios 

used in Earth system models are supported by meta-analyses of several plant species 

(Wullschleger 1993, Medlyn et al. 2002, Rogers et al. 2014), there are also field studies showing 

that this ratio differs between mature trees of red oak and paper birch (Dillen et al. 2012). 

Identifying which leaf traits, beyond those that we examined in this study, are different across 
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species may help identify potential improvements to the parameterizations of J and Jmax in Earth 

system models.  

Our analysis also shows that the variation in the minimum estimates of TPU in all three 

species was best explained by leaf light environment alone, with leaf temperature only minimally 

increasing model predictive power. The small response of TPU to leaf temperature (Q10 

coefficient = 1.2, 95% CI 0.9-1.4, Appendix C, Table C3) is similar to results by Bauerle et al. 

(2007), who showed that TPU in red maple remained relatively unchanged to leaf temperature 

alterations. Vertical changes in light distribution may explain why TPU is higher for leaves at the 

top of the canopy than near the bottom. TPU limitation can also occur under extreme conditions, 

including long exposure periods to high light levels that are more commonly experienced by sun 

leaves (Sharkey 1985). Vertical gradients of water stress within forest canopies can affect 

stomatal conductance and drive differences observed between sun and shade leaves (Williams et 

al. 1996).  

Similar to results for J, the model that estimated TPU from Vc,max did not have the lowest 

AICc score.  As such, estimating TPU from Vc,max may not accurately capture photosynthetic 

capacity in plant canopies (Model 5 v. Model 22 in Appendix C, Table C3). We suggest that 

future modeling efforts compare canopy CO2 uptake between simulations where J and TPU are 

calculated from Vc,max and where they are calculated independently from Vc,max. This would 

identify whether incorporating additional details about species and leaf light environment in 

model parameterizations of photosynthesis improve calculations of canopy CO2 uptake.   

Our results highlight how changes in leaf-level photosynthesis could scale to the canopy-

level and alter forest CO2 uptake. Observations from a succession experiment near our field site 

indicates that the canopy becomes more structurally complex as red oak and red maple assume 

greater canopy dominance after aspen are removed (Gough et al. 2013). This shift from aspen to 

red oak and red maple implies that canopy-level J may decrease. Canopy-level J and TPU may 

also change if a shift in the distribution of leaves in the canopy alters light distribution and thus, 

the proportion of sun to shade leaves. A study by Meir et al. (2002) showed that light strongly 

correlates with Vc,max in five different forest canopies spanning multiple biomes. However, 

changes in J and TPU would only affect forest CO2 uptake and Earth system model estimates of 

CO2 uptake if J and TPU are more limiting to photosynthesis than Vc,max (Oleson et al. 2013, 

Rogers et al. 2014). Thus, model simulations could quantify how often changes in J and TPU 
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among species and between sun and shade leaves alter total canopy CO2 uptake. In addition, the 

implications of our results on canopy CO2 uptake should be used with the understanding that we 

only examined two later-successional species. The addition of multiple species with different 

crown architectures, such as European beech (F. sylvatica) and white pine, could increase light 

absorption in the canopy and increase forest productivity (Ishii and Asano 2010). 

There are some limitations to this study that should be considered when using our results 

to understand how canopy CO2 uptake may change on longer temporal or larger spatial scales 

and to inform model parameterizations of photosynthesis. First, our derived values of Vc,max, J, 

and TPU represent the effect of instantaneous changes in leaf temperature at one time during the 

growing season. Long-term estimates of canopy CO2 uptake should consider how biochemical 

limitations to photosynthesis change across growing seasons (Grassi et al. 2005, Hikosaka et al. 

2007, Dillen et al. 2012) and as plants acclimate to warmer growing conditions (Hikosaka et al. 

2006, Bauerle et al. 2007, Smith and Dukes 2013). Model simulations with ED2, for example, 

show that for an oak-dominated forest, including seasonal variation in Vc,max leads to a difference 

in gross primary productivity of 0.05 kg C m-2 month-1 (Medvigy et al. 2013). Second, we were 

limited in how many leaves we could sample (n=36 across species, leaf light environment, and 

individuals) because of limited access to adult, canopy-dominant trees and because we did not 

want seasonal variation in photosynthetic capacity to influence our results. However, even with 

our sample size, we were able to identify drivers of photosynthetic capacity with respect to 

species differences and variation in leaf light environments. The patterns and model analyses 

here should be of value in scaling from leaf to canopy levels. Third, effects of increasing 

atmospheric CO2 concentrations should be addressed in future studies, because studies show 

either no effect or a change in Vc,max or Jmax in canopy-dominant deciduous trees grown under 

elevated CO2 (Ellsworth et al. 2004, Liberloo et al. 2007, Bader et al. 2010). Fourth, changes in 

plant resource use should be considered because plants can change nitrogen allocation to produce 

enzymes and proteins needed for photosynthesis. For example, leaves can allocate more nitrogen 

for chlorophyll synthesis when light levels are low (Liberloo et al. 2007). Finally, although our 

values for Vc,max, J, and TPU are based on field measurements in a forest canopy, they may differ 

if we had used another derivation method or made different assumptions about leaf physiology 

(Miao et al. 2009, Bernacchi et al. 2013, Sun et al. 2014). Despite these limitations, our results 

add in situ evidence to the limited amount of data that are available for understanding how 
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photosynthetic capacity in adult trees varies with leaf temperature, nitrogen, leaf light 

environment, and species identity in forest canopies. 

 

4.5. Conclusions 

Our study advances understanding of terrestrial carbon cycling from the leaf-to-canopy 

level in three ways. First, our in situ measurements from sun and shade leaves of upper-canopy 

trees show that forest canopy heterogeneity influences photosynthetic capacities of co-dominant 

species that are typically grouped into a single PFT in Earth system models. Second, our results 

indicate that J varies with species and leaf light environment and that TPU varies with leaf light 

environment. This provides insight into how leaf-level differences in physiology can scale up to 

change canopy-level CO2 uptake, which will become increasingly important as climate change, 

land management, and ecological succession change forest canopy structure, species 

composition, and microclimate. Third, our data respond to climate model community requests 

for additional leaf-level measurements and photosynthesis response curves to scale and evaluate 

parameterizations of photosynthesis (Dietze 2014, Rogers et al. 2014) as plant traits are being 

incorporated into the development of new PFTs (Wullschleger et al. 2014, Verheijen et al. 2015). 

Our results also suggest testing the sensitivity of Earth system model estimates of canopy CO2 

uptake to variations in canopy species composition and leaf light environment and the separation 

of J and TPU calculations from Vc,max. This type of integration of field data with model 

development will allow us to better predict how canopy heterogeneity affects leaf-level 

photosynthetic capacity and scales up to drive carbon uptake across species, ecosystems, and the 

globe. 
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Chapter 5      

Conclusions and Synthesis 

!
The Earth holds an expansive array of habitats that support a dynamic number and 

diversity of organisms. We find life at the great depths of the Atlantic Ocean (Sogin et al. 2006), 

in the canopy tops of the Amazon rainforest (Moura et al. 2013), and within the extreme, cold 

and dry environment of Antarctic soils (Cowan 2009). Whether with our eyes or with more 

refined scientific tools, we see evidence at different spatial and temporal scales of how biomes 

differ in organisms, climate, and their interactions. These differences partially arise from a 

common set of processes that move energy, carbon, water, and nutrients across the globe. 

Photosynthesis is one of these processes, and is the nearly universal foundation that supports 

differences in population, community, and ecosystem dynamics, because it converts sunlight into 

a form of energy that is useable by living organisms. 

My dissertation reveals that the role of light in photosynthesis and ecosystem carbon 

cycling is not as straightforward as previously thought. Photosynthesis at the leaf and ecosystem 

scales depends not only on the amount of solar radiation that reaches the Earth’s surface, but also 

on the physical and ecological differences within a plant canopy. I reach this conclusion by 

answering three questions that mechanistically demonstrate how this canopy heterogeneity 

modifies the effects of light on gross ecosystem CO2 uptake, which conceptually, is the 

integration of photosynthetic activity across all leaves within a plant canopy.  

 

5.1 Summary of Dissertation Goals and Conclusions 

This dissertation uses theory and tools from atmospheric science, ecosystem ecology, and 

plant physiology to empirically test how three physical, biophysical, and ecological processes 

alter the effects of light (photosynthetically active radiation; 400-700 nm) on photosynthetic 

processes tied to gross ecosystem CO2 uptake. The primary goals and findings of each chapter 

are listed below.
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Chapter 2: Determine how clouds change the amount and type of light available for 

plant canopies to use in photosynthesis. Before plants can absorb light and use it in 

photosynthesis, clouds reflect, transmit, and scatter incoming solar radiation (Fritz 1954, 

Twomey 1991). As a result, the interaction between clouds and incoming solar radiation is the 

first process to modify the relationship between light and gross ecosystem CO2 uptake. However, 

a mechanistic link between cloud properties and the effects of scattered, diffuse light on 

ecosystem carbon cycling has not been previous demonstrated with observations from multiple 

plant canopies. In this chapter, I combined NASA satellite-retrieved data on cloud optical 

thickness, an integrative measure of how strongly clouds scatter and absorb light, with ground-

based measurements of above-canopy light and gross primary production (GPP). Using these 

datasets, I tested for links between clouds, surface light, and GPP and also quantified the 

response of GPP to cloud optical thickness in different ecosystems (Cheng et al. in review-a). 

 Conclusions: Across the entire range of cloud optical thickness measured by NASA (0 to 

100; unitless), total light (i.e, the sum of diffuse and direct light) decreased nonlinearly. 

However, diffuse light increased under a narrow range of optically thin clouds (optical thickness 

< 7) and then decreased under optically thick clouds (optical thickness > 7). Under thin clouds, 

the increase in diffuse light compensated for the decrease in total light because canopies used 

diffuse light more efficiently than they used direct light. This led to no net change in GPP in 

temperate forest and maize canopies under optically thin clouds, but a decrease in GPP under 

optically thick clouds. These results suggest that future GPP is unlikely to change if the optical 

thickness of thin clouds stays below 7. However, future GPP could decrease if the optical 

thickness of thin clouds increases to above 7.  

In addition, optically thin clouds only accounted for 7-24% of the variation in surface 

diffuse light, suggesting that other cloud properties and atmospheric constituents may be more 

important drivers of canopy light availability. For example, aerosols produced from natural 

sources and anthropogenic fossil fuel combustion can scatter and absorb light (Mahowald et al. 

2011). Aerosols have a smaller range of optical thickness than clouds do, where events with 

optical thickness > 1.5 are considered a high aerosol event (Eck et al. 2003). Aerosol optical 

thickness thereby generally falls within the range of optical thickness where GPP does not 

decline (optical thickness < 7). This suggests that aerosols may more frequently have a positive 

effect on GPP than clouds do, as is hypothesized in Mercado et al. (2009) and Oliphant et al. 
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(2011). However, because many forests are in remote locations and have a low frequency of high 

aerosol optical thickness events (Steiner et al. 2013), I did not examine the separate role of 

aerosols in this dissertation. This chapter expands on previous understanding of atmospheric 

controls of canopy light by 1) empirically demonstrating a mechanistic link between clouds and 

surface diffuse light, 2) quantifying the characteristics of clouds that increase or decrease surface 

light conditions, and 3) calculating the magnitude of change in GPP under clouds. 

 

Chapter 3: Identify how GPP responds to diffuse light and canopy structure, 

independent of co-varying environmental variables. Previous research on diffuse light and 

ecosystem productivity heavily relied on theoretical estimates of diffuse light and did not isolate 

this relationship from other environmental factors that co-vary with diffuse light. These analysis 

methods can bias estimates of how GPP responds to diffuse light. In this chapter, I use ground-

based measurements of above-canopy light and GPP to empirically demonstrate and quantify the 

response of GPP to diffuse light, after removing the effects of total light, vapor pressure deficit, 

and air temperature on GPP (Cheng et al. 2015). 

Conclusions: After removing the effect of direct light on GPP, diffuse light explained up 

to 17% of variation in forest GPP and up to 41% of variation in crop GPP. After additionally 

accounting for impacts of vapor pressure deficit and air temperature on GPP, I found that GPP 

increased with diffuse light for most hours of the day. However, the rate of increase in GPP 

ranged from 0.003 to 0.050 µmol CO2 per µmol photons of diffuse light and varied with time of 

day. The increases in GPP with diffuse light also differed across ecosystems in this study, even 

between plant canopies of the same plant functional type. This variation may result from an 

interaction between the angle of incoming light (i.e., zenith angle) and plant canopy structure, 

which could change the proportions of leaves within canopies that intercept incoming light. This 

suggests that a canopy’s physical structure or community composition alters the response of GPP 

to incoming solar radiation. This chapter expands our understanding of how light influences 

gross ecosystem CO2 uptake by empirically demonstrating that plant canopy structure interacts 

with zenith angle to alter the effects of incoming light on GPP. The calculated rates of increase in 

GPP to diffuse light in this chapter can also be used to calculate the global impact of diffuse light 

on GPP while accounting for 1) how time of day and plant canopy structure modify the response 
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of GPP to diffuse light and 2) how other environmental factors that co-occur with diffuse light 

conditions affect GPP. 

 

Chapter 4: Examine how leaf biochemical limitations in photosynthesis change with 

within-canopy heterogeneity in species, leaf light, and leaf temperature. After light moves 

through the atmosphere and is distributed through plant canopies, it is intercepted by leaves and 

used in photosynthesis. The interaction between incoming radiation and canopy structure creates 

a wide range of microclimates within the canopy, particularly in light and air temperature. Both 

air temperature and the amount of light a leaf absorbs can change leaf temperature and 

subsequently, alter rates of photosynthesis. Because plants can produce leaves adapted to their 

microclimate, leaves within the canopy could photosynthesize differently and scale up to alter 

gross ecosystem CO2 uptake. Photosynthesis is primarily limited by three biochemical reactions, 

the maximum rate of carboxylation (Vc,max), maximum rate of electron transport (Jmax), and triose 

phosphate utilization (TPU). However, data on how Vc,max, Jmax, and TPU change within a plant 

canopy are limited. In this chapter, I measured net photosynthesis at different CO2 concentrations 

on leaves from high and low light environments and from three species in a temperate, broadleaf 

forest. I used the data to derive Vc,max, J (which is calculated using Jmax), and TPU and to identify 

whether the limitations in photosynthesis vary in the canopy through species-specific responses 

to leaf light environment and leaf temperature (Cheng et al. in review-b). 

Conclusions: Vc,max, J, and TPU in leaves from different species and light environments 

increased with leaf temperature at similar rates. In addition, differences in Vc,max within the 

canopy varied with leaf nitrogen per area, which is known to decrease from the top to the bottom 

of a plant canopy (Ellsworth and Reich 1993). However, this nitrogen gradient was not enough 

to explain the within-canopy variation in J or TPU. Generally, J was higher in early successional 

species (Populus grandidenta) and lower in later successional species (Quercus rubra, Acer 

rubrum), but species did not differ in TPU. In addition, leaves exposed to more light had higher J 

and TPU than leaves exposed to low light. An ecosystem scale experiment at the forest where I 

conducted this study indicates that ecological succession changes the distribution of foliage 

within the canopy (Hardiman et al. 2013). As a result, values of J and TPU within a canopy 

could change in the future as succession alters both the distribution of species and microclimates 

within a plant canopy.  
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This chapter adds to our understanding of how light influences gross ecosystem CO2 

uptake by providing evidence that the biochemical limits to photosynthesis vary with canopy 

heterogeneity. In addition, simplified representations of how Vc,max, Jmax, and TPU respond to 

environmental and ecological variation are used in Earth system models to scale photosynthesis 

from the leaf to canopy. This chapter showed that some of the simplifications used to scale 

photosynthesis from the leaf to ecosystem is not supported by field-based data collected from a 

temperate forest canopy. If these patterns are found in other canopies, these simplifications of 

photosynthesis in Earth system models may be leading to errors in calculations of CO2 fluxes 

into terrestrial ecosystems. However, to assess the impact of within-canopy variation in J and 

TPU on model estimates of CO2 fluxes into plant canopies, sensitivity studies need to be 

conducted. Variation in J and TPU with species or light environment would only affect model 

estimates if these two rates more frequently limit photosynthesis than does within-canopy 

variation in Vc,max. This chapter provides suggestions for how experiments with Earth system 

models can identify whether leaf-level biochemical variations within plant canopies impact 

ecosystem and global-level CO2 flux calculations.  

 

5.2 Application to Earth System Modeling 

The outcomes of this dissertation have two important applications to Earth system 

modeling. First, Chapters 2 and 3 demonstrate the importance of using data to test conclusions 

from model experiments. For example, a site-based empirical model estimated an 8-23% 

increase in photosynthesis and an offline global land surface model estimated a 25% increase in 

the land carbon sink when there was an increase in diffuse light produced predominately by 

aerosols (Gu et al. 2003, Mercado et al. 2009). Similarly, other studies used measurements or 

derivations of diffuse light to claim that clouds increase CO2 fluxes into ecosystems (Hollinger et 

al. 1994, Gu et al. 1999). These results led to the inference that clouds and aerosols substantially 

alter the magnitude of the global land carbon sink. However, other studies testing this inference 

with various combinations of radiative transfer models, light use efficiency models, and a limited 

set of field measurements came to inconsistent conclusions about the impact of diffuse light on 

ecosystem productivity (Hollinger et al. 1994, Rocha et al. 2004, Urban et al. 2007, Alton 2008, 

Knohl and Baldocchi 2008). My dissertation research tested these hypotheses using satellite and 

ground-based data and demonstrated that the mechanistic links between clouds, diffuse light, and 
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ecosystem productivity do exist. However, these processes do not have as large of an effect as 

some studies previously found. Overall, models are useful for identifying potentially significant 

drivers of Earth system patterns (i.e., land-atmosphere CO2 fluxes) across temporal and spatial 

scales. However, models should be used in concert with empirical studies to test if these patterns 

are mechanistically observable in situ. 

Second, Chapter 4 demonstrates the importance of using field observations to improve 

Earth system model projections of land-atmosphere CO2 fluxes. Earth system modelers are 

required to simplify photosynthesis, and in some cases, tweak key parameters (e.g., Vc,max) to 

minimize unrealistic model output as opposed to mechanistically representing processes (Rogers 

et al. 2014). The modeling community has suggested that additional leaf photosynthesis 

measurements would add to their capacity to improve representations of leaf photosynthesis in 

land surface models (Dietze 2014, Rogers 2014). Chapter 4 meets this request by providing a 

new set of net photosynthesis measurements across a range of CO2 concentrations from mature, 

canopy-dominant trees taken from multiple species in one plant canopy. The results provided 

support for the current method of using leaf nitrogen and leaf temperature to scale Vc,max within 

the canopy. However, results did not support the calculation of Jmax and TPU from Vc,max or from 

nitrogen per leaf area alone. Our results indicate that leaf traits that are not captured in a canopy 

nitrogen gradient influence Jmax and TPU. This provides support for recent interest in moving 

away from the traditional groupings of plants in Earth system models and instead, creating a new 

set of plant functional types that capture dynamic patterns in plant canopies (Wullschleger et al. 

2014).  

Despite the in situ observation that canopy heterogeneity alters limitations to leaf 

photosynthesis in one canopy, these data alone are not enough to conclusively say that canopy 

heterogeneity is a dominant driver of gross ecosystem CO2 uptake. Because the net rate of 

photosynthesis is calculated based on the most limiting of the three biochemical processes, plant 

trait variation in Jmax and TPU may not affect gross ecosystem CO2 uptake if Vc,max is the 

dominant limitation to photosynthesis or if the gradient of change in Jmax and TPU within a plant 

canopy is small. To quantify the global impact of canopy heterogeneity on the rate-limiting 

reactions in photosynthesis, model sensitivity experiments are required. Multi-layer canopy 

models are scale-appropriate tools for this research because they allow us to mechanistically link 

and quantify changes at the leaf-level to the ecosystem-level (Bonan et al. 2011, Bonan et al. 
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2014). Results of these canopy level simulations will provide evidence for whether changes in 

the parameterizations of Jmax and TPU can narrow the range of uncertainty around future 

projections of the land carbon sink. This dissertation provides an example of how an iterative 

process of using models and in situ measurements to develop research questions is a more 

rigorous way of developing our understanding of the terrestrial carbon cycle, as suggested in 

Medlyn et al. (2015). 

 

5.3 Synthesis 

 This dissertation demonstrates that several physical, biophysical, and ecological 

processes modify the impacts of light on photosynthetic processes (i.e., GPP and leaf 

photosynthesis) linked to gross ecosystem CO2 uptake. Unlike previous research, this 

dissertation tests and finds evidence for mechanistic links between clouds, surface diffuse light, 

and ecosystem productivity that were previously assumed to exist. As a result, this dissertation 

addresses conflicting results in the literature about the impact of diffuse light on ecosystem 

carbon processing and suggests that the response of gross ecosystem CO2 uptake to increases in 

cloud-produced diffuse light may be small. There are conditions when this relationship could be 

important, but other drivers of gross ecosystem CO2 uptake (e.g., total light and leaf temperature) 

may have larger short-term and long-term impacts. Further analysis indicates that canopy 

heterogeneity (i.e., the distribution of leaves, gaps, and species within the entire canopy) 

influences the way ecosystems use light. First, the plant canopy alters the effect of incoming 

diffuse light on GPP. Second, the distribution of species and light within a plant canopy changes 

the rates of biochemical reactions that limit leaf photosynthesis. Both of these processes 

demonstrate how canopy heterogeneity influences carbon cycling at the leaf and ecosystem 

scales. They also illustrate how clouds and canopy structure influence land-atmosphere CO2 

fluxes and subsequently, Earth’s climate.  

 This dissertation also provides an important framework for testing our assumptions about 

how living organisms form feedbacks with their environment. A model is not only a 

representation of how we understand an interactive system. It also shapes the way we ask 

questions about the drivers and patterns in that system. An opportunity arises, when we combine 

tools from multiple disciplines and questions from across temporal and spatial scales, to break 

apart that model, test assumptions, and reshape it with new, empirically based information. For 
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example, in atmospheric science, the discussion on the relationship between light and ecosystem 

carbon cycling is focused on atmospheric drivers. In ecology, the discussion is focused on how 

leaves and species process that light. This dissertation provides a third option of framing this 

relationship by demonstrating that canopy heterogeneity is a mediator of relationships that both 

atmospheric drivers and ecological drivers have with gross ecosystem CO2 uptake. Thus, the 

conclusions in this dissertation support the current restructuring of methods used to represent 

canopy processes and plant functional types in Earth system models. 

 In addition, an iterative process, where models and observational data are used in tandem 

to develop and empirically answer questions, increases our mechanistic understanding of the 

global carbon cycle. This approach also applies to outstanding questions in ecosystem ecology, 

such as the response of ecosystems to changes in nitrogen cycling and how to best represent 

them in Earth system models (Galloway et al. 2008, Thomas et al. 2015). More broadly, this 

framework of testing assumptions with models and empirical data empowers us to question other 

assumptions about climate-species interactions. This is key to ensuring that the foundations in 

other models, such as ecological niche models (Araújo and Peterson 2012) or species distribution 

models (Elith and Leathwick 2009, Thuiller et al. 2011), are reliable, so that we can more 

accurately uncover the drivers of population, community, and ecosystem dynamics across the 

Earth.  
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Appendix A      

Supplementary Figures for Chapter 2 
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Figure A1: The response of Ameriflux-tower measured diffuse PAR to increases in 1x1 
km average cloud optical thickness (τc; unitless) retrieved from MODIS satellites. “Peak” 
refers to the highest value of τc that is associated with an increase in diffuse PAR. Data 
points include measurements from May through September from years with available 
data (Table 2.1). For Howland Forest, April data are included when this month is 
calculated as part of the site’s growing season. 
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Figure A2: During the peak growing season, light use efficiency (gross primary 
productivity per unit total photosynthetically active radiation - PAR) increases with cloud 
optical thickness (τc) at a) Howland Forest, b) Mead, c) Morgan Monroe, and d) UMBS. 
UMBS. Light use efficiency is plotted on a natural log scale to meet statistical 
assumptions for linear regressions. Regression lines are drawn for relationships with p < 
0.01. 
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Figure A3: Relationships between cloud optical thickness and direct PAR at a) Howland, 
b) Mead, c) Morgan Monroe, and 3) UMBS. Regression lines are drawn for relationships 
with p < 0.05
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Appendix B      

Supplementary Table for Chapter 3 

 
Table B1: Values of α and γ predicted by best-fit rectangular hyperbolas describing the response 
of GPP to direct PAR. The α represents the quantum yield and γ represents the maximum GPP 
value. All α and γ values listed have p < 6.02 x 10-4 (Bonferroni-corrected critical value), except 
for those in italics, which have p < 0.01 and those in bold, which were not significant because p 
> 0.05. NS indicates we were unable to fit a light response curve. 

Site   
Zenith Angle (°) 

AM PM 
76-100 61-75 46-60 31-45 16-30 31-45 46-60 61-75 76-100 

Howland 
Forest 
Logged 

α 1.16 2.64 2.82 2.74 3.41 2.58 2.61 2.07 1.10 
γ 7.41 11.84 14.67 16.52 18.12 14.57 12.93 10.04 6.39 

R2 0.39 0.37 0.34 0.26 0.27 0.29 0.33 0.37 0.39 
Howland 
Forest 
Reference 

α 1.28 2.15 2.41 2.30 2.27 2.21 2.13 1.89 1.91 
γ 4.74 9.89 14.15 16.16 17.15 13.93 11.64 8.35 4.53 

R2 0.23 0.34 0.34 0.34 0.35 0.33 0.38 0.39 0.21 
Howland 
Forest  
N Fertilized 

α 1.81 2.85 2.93 2.38 2.82 3.28 3.79 2.85 2.01 
γ 5.27 10.32 14.20 17.14 17.77 14.71 12.05 8.82 5.04 

R2 0.25 0.32 0.35 0.37 0.29 0.24 0.21 0.27 0.18 
Morgan 
Monroe 

α 2.01 1.43 1.59 1.50 2.03 1.99 2.09 2.58 NS 
γ 4.66 12.39 19.83 25.72 27.29 22.99 16.78 10.31 NS 

R2 0.06 0.13 0.23 0.32 0.29 0.31 0.22 0.25 NS 
UMBS α 1.05 3.57 4.06 3.08 2.99 3.96 1.59 1.43 3.00 

γ 6.07 12.36 20.38 25.32 27.10 23.78 19.17 13.25 6.94 
R2 0.28 0.09 0.11 0.15 0.12 0.14 0.24 0.34 0.21 

Mead 
Irrigated 
Maize 

α 0.73 3.95 4.49 3.35 2.98 3.51 1.61 2.07 NS 
γ 16.11 30.91 48.21 59.92 64.10 49.94 35.94 17.71 NS 

R2 0.49 0.21 0.22 0.31 0.23 0.29 0.20 0.13 NS 
Mead 
Irrigated 
Rotation: 
Maize 

α 0.40 1.65 2.60 2.48 3.30 1.20 1.29 0.64 NS 
γ 17.61 32.62 48.64 58.70 65.20 50.15 38.13 21.68 NS 

R2 0.51 0.47 0.43 0.38 0.42 0.41 0.36 0.38 NS 
Mead 
Irrigated 
Rotation: 
Soybean 

α 0.59 2.24 6.35 5.37 5.29 6.48 3.51 NS NS 
γ 12.20 23.63 31.62 37.67 36.42 31.74 23.52 NS NS 

R2 0.59 0.45 0.27 0.29 0.27 0.21 0.23 NS NS 
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Mead 
Rainfed 
Rotation: 
Maize 

α 0.54 3.39 4.67 4.21 3.78 3.23 2.31 0.94 NS 
γ 17.47 31.51 44.79 55.53 56.19 46.60 33.49 18.65 NS 

R2 0.66 0.53 0.48 0.53 0.37 0.39 0.29 0.44 NS 
Mead 
Rainfed 
Rotation: 
Soybean 

α 0.75 4.69 16.67 9.43 15.38 31.88 5.89 1.35 NS 
γ 13.11 23.44 29.27 34.98 30.74 29.40 20.29 13.47 NS 

R2 0.53 0.16 0.08 0.05 0.01 0.00 0.04 0.18 NS 

 



!
!

! 124 

Appendix C      

Supplementary Tables for Chapter 4 

 
Table C1: List of equations, maximum likelihood parameter estimates, differences in AICc scores compared to the model with the 
lowest AICc (ΔAICc), standard deviation (sd) and R2 for the models used to test for patterns in Vc,max (n=36). 

Model 
# Model Equationa # of 

Parameters V1b V2b V3b V4b V5b Q10,1 Q10,2 Q10,3 Q10,4 Q10,5 sd AICc R2 

4 Vc,max = V × Q10
(T-25)/10 × Narea 3 750.74 -- -- -- -- 3.73 -- -- -- -- 39.18 0.00 0.64 

10 Vc,max = V[spp] × Q10
(T-25)/10 × Narea 5 796.38 921.18 739.63 -- -- 3.18 -- -- -- -- 38.74 2.09 0.68 

7 Vc,max = V[loc] × Q10
(T-25)/10 × Narea 4 746.98 795.25 -- -- -- 3.63 -- -- -- -- 39.87 2.14 0.65 

20 Vc,max = V × Q10[loc](T-25)/10 × Narea 4 742.52 -- -- -- -- 3.67 3.94 -- -- -- 39.59 2.61 0.64 

6 Vc,max = V[loc] × Q10
(T-25)/10  4 122.79 77.99 -- -- -- 3.67 -- -- -- -- 40.29 3.13 0.64 

16 Vc,max = V × Q10[spp](T-25)/10 × Narea 5 760.18 -- -- -- -- 3.85 3.87 3.36 -- -- 39.58 4.62 0.65 

19 Vc,max = V × Q10[loc](T-25)/10  4 107.37 -- -- -- -- 4.89 1.68 -- -- -- 40.58 5.18 0.62 

11 Vc,max = V[spp_loc] × Q10
(T-25)/10  7 106.34 73.24 129.31 137.36 93.28 3.46 -- -- -- -- 34.82 5.44 0.70 

12 Vc,max = V[spp_loc] × Q10
(T-25)/10 × Narea 7 734.92 911.41 902.78 717.42 839.68 3.15 -- -- -- -- 37.60 6.76 0.69 

17 Vc,max = V × Q10[spp_loc](T-25)/10  7 108.18 -- -- -- -- 3.91 0.74 4.72 7.26 2.28 39.38 10.52 0.65 

18 Vc,max = V × Q10[spp_loc](T-25)/10 × Narea 7 763.72 -- -- -- -- 4.00 4.04 4.20 3.41 4.07 40.49 11.27 0.65 

9 Vc,max = V[spp] × Q10
(T-25)/10  5 89.82 128.68 116.28 -- -- 3.48 -- -- -- -- 45.22 14.71 0.54 
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3 Vc,max = V × Q10
(T-25)/10 3 104.41 -- -- -- -- 3.76 -- -- -- -- 49.82 16.89 0.43 

15 Vc,max = V × Q10[spp](T-25)/10  5 106.68 -- -- -- -- 2.40 4.82 3.85 -- -- 47.62 17.21 0.51 

2 Vc,max = V × Narea 2 1012.10 -- -- -- -- -- -- -- -- -- 59.99 28.02 0.17 

5 Vc,max = V[loc] 3 164.10 105.62 -- -- -- -- -- -- -- -- 59.60 30.42 0.17 

14 Vc,max = V[spp_loc] × Narea 6 859.56 1239.07 1407.58 919.84 1075.72 -- -- -- -- -- 56.21 33.12 0.29 

1 Vc,max = V 2 141.60 -- -- -- -- -- -- -- -- -- 65.91 34.87 0.00 

8 Vc,max = V[spp] 4 118.21 176.89 148.29 -- -- -- -- -- -- -- 63.30 35.46 0.11 

13 Vc,max = V[spp_loc] 6 139.59 86.23 175.96 181.59 118.60 -- -- -- -- -- 59.68 35.53 0.24 
aModel equations containing “spp” estimate parameters for each species, where V1 and Q10,1 are parameters for red maple, V2 and 
Q10,2 are for bigtooth aspen, and V3 and Q10,3 are for red oak. Model equations containing “loc” estimate parameters for each canopy 
location, where V1 and Q10,1 are parameters for sun leaves and V2 and Q10,2 are parameters for shade leaves. Model equations 
containing “spp_loc” estimate parameters for each species-specific canopy location, where V1 and Q10,1 are parameters for red maple 
sun leaves, V2 and Q10,2 are parameters for red maple shade leaves, V3 and Q10,3 are parameters for bigtooth aspen sun leaves, V4 and 
Q10,4 are parameters for red oak sun leaves, and V5 and Q10,5 are parameters for red oak shade leaves. 
bParameters of V are in units of µmol CO2 / (10,000 mg N s). 
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Table C2: List of equations, maximum likelihood parameter estimates, differences in AICc scores compared to the model with the 
lowest AICc (ΔAICc), standard deviation (sd) and R2 for the models used to test for patterns in J (n=36). 
Model 

# Model Equation # of 
Parameters  CJ1

b CJ2
b CJ3

b CJ4
b CJ5

b Q10,1 Q10,2 Q10,3 Q10,4 Q10,5 CV sd AICc 

11 J = CJ[spp_loc] × Q10
(T-25)/10  7 116.02 69.42 148.92 134.37 102.23 1.79 -- -- -- -- -- 21.25 0.00 

22 J = CJ × Vc,max 2 0.86 -- -- -- -- -- -- -- -- -- -- 28.62 6.45 

6 J = CJ[loc] × Q10
(T-25)/10  4 134.23 89.60 -- -- -- 1.80 -- -- -- -- -- 27.30 6.84 

19 J = CJ × Q10[loc](T-25)/10  4 117.46 -- -- -- -- 2.42 0.85 -- -- -- -- 30.03 13.85 

10 J = CJ[spp] × Q10
(T-25)/10 × Narea 5 845.76 1134.42 765.60 -- -- 1.57 -- -- -- -- -- 28.48 13.90 

12 J = CJ[spp_loc] × Q10
(T-25)/10 × Narea 7 827.47 912.62 1163.37 735.27 905.15 1.54 -- -- -- -- -- 27.09 14.34 

9 J = CJ[spp] × Q10
(T-25)/10  5 95.80 157.34 120.75 -- -- 1.66 -- -- -- -- -- 29.30 15.21 

13 J = CJ[spp_loc] 6 130.15 82.26 173.29 150.09 116.90 -- -- -- -- -- -- 27.58 15.76 

5 J = CJ[loc] 3 151.72 101.54 -- -- -- -- -- -- -- -- -- 32.22 17.83 

17 J = CJ × Q10[spp_loc](T-25)/10  7 117.53 -- -- -- -- 2.10 0.58 2.89 2.75 1.09 -- 26.29 18.09 

14 J = CJ[spp_loc] × Narea 6 836.42 1117.89 1268.55 785.34 1037.22 -- -- -- -- -- -- 31.92 21.82 

15 J = CJ × Q10[spp](T-25)/10  5 121.37 -- -- -- -- 0.97 2.60 1.71 -- -- -- 32.64 22.89 

8 J = CJ[spp] 4 109.07 171.58 132.78 -- -- -- -- -- -- -- -- 33.58 23.12 

4 J = CJ × Q10
(T-25)/10 × Narea 3 815.79 -- -- -- -- 1.84 -- -- -- -- -- 36.08 24.45 

16 J = CJ × Q10[spp](T-25)/10 × Narea 5 843.49 -- -- -- -- 1.82 2.27 1.26 -- -- -- 31.72 24.93 

7 J = CJ[loc] × Q10
(T-25)/10 × Narea 4 806.69 887.74 -- -- -- 1.77 -- -- -- -- -- 35.12 26.13 

21 J = CJ × CV × Q10
(T-25)/10 × Narea 4 5492.60 -- -- -- -- 1.78 -- -- -- -- 0.15 35.65 26.99 

20 J = CJ × Q10[loc](T-25)/10 × Narea 4 833.02 -- -- -- -- 1.74 1.73 -- -- -- -- 34.93 27.10 

3 J = CJ × Q10
(T-25)/10 3 117.13 -- -- -- -- 1.75 -- -- -- -- -- 37.20 27.28 

18 J = CJ × Q10[spp_loc](T-25)/10 × Narea 7 855.80 -- -- -- -- 1.99 1.05 2.44 0.78 2.15 -- 33.44 29.37 

2 J = CJ × Narea 2 926.21 -- -- -- -- -- -- -- -- -- -- 40.13 30.63 

1 J = CJ 2 131.54 -- -- -- -- -- -- -- -- -- -- 40.83 31.73 
aModel equations containing “spp” estimate parameters for each species, where CJ1 and Q10,1 are parameters for red maple, CJ2 and 
Q102 are parameters for bigtooth aspen, and CJ3 and Q10,3 are parameters for red oak.  Model equations containing “loc” estimate 
parameters for each canopy location, where CJ1 and Q10,1 are parameters for sun leaves and CJ2 and Q10,2 are parameters for shade 
leaves.  Model equations containing “spp_loc” estimate parameters for each species-specific canopy location, where CJ1 and Q10,1 are 
parameters for red maple sun leaves, CJ2 and Q10,2 are parameters for red maple shade leaves, CJ3 and Q10,3 are parameters for bigtooth 
aspen sun leaves, CJ4 and Q10,4 are parameters for red oak sun leaves, and CJ5 and Q10,5 are parameters for red oak shade leaves.  Vc,max 
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is the maximum rate of carboxylation as derived from the A/Ci curves shown in Figure 4.1.  CV is the parameter estimate for Vc,max. 
bParameters of V are in units of µmol CO2 m-2 s-1. 
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Table C3: List of equations, maximum likelihood parameter estimates, differences in AICc scores compared to the model with the 
lowest AICc (ΔAICc), standard deviation (sd) and R2 for the models used to test for patterns in TPU (n=36). 

Model 
# Model Equationa # of 

Parameters  CTPU1 CTPU2 CTPU3 CTPU4 CTPU5 Q10,1 Q10,2 Q10,3 Q10,4 Q10,5 CV sd AICc R2 

5 TPU = CTPU[loc] 3 9.41 6.21 -- -- -- -- -- -- -- -- -- 1.73 0.00 0.44 

6 TPU = CTPU[loc] × Q10
(T-25)/10  4 9.09 6.04 -- -- -- 1.16 -- -- -- -- -- 1.74 1.56 0.46 

13 TPU = CTPU[spp_loc] 6 9.25 5.98 10.35 9.10 6.49 -- -- -- -- -- -- 1.71 5.49 0.48 

19 TPU = CTPU × Q10[loc](T-25)/10  4 8.00 -- -- -- -- 1.64 0.46 -- -- -- -- 1.83 5.78 0.39 

11 TPU = CTPU[spp_loc] × Q10
(T-25)/10  7 8.57 5.46 9.95 8.38 6.22 1.19 -- -- -- -- -- 1.75 8.03 0.49 

17 TPU = CTPU× Q10[spp_loc](T-25)/10  7 8.00 -- -- -- -- 1.86 0.57 1.81 1.48 0.41 -- 1.81 13.86 0.40 

8 TPU = CTPU[spp] 4 7.59 10.42 7.61 -- -- -- -- -- -- -- -- 2.09 16.01 0.19 

9 TPU = CTPU[spp] × Q10
(T-25)/10  5 7.58 10.15 7.30 -- -- 1.16 -- -- -- -- -- 2.09 18.58 0.19 

1 TPU = CTPU 2 8.14 -- -- -- -- -- -- -- -- -- -- 2.34 18.69 0.00 

10 TPU = CTPU[spp] × Q10
(T-25)/10 × Narea 5 63.23 73.92 47.59 -- -- 1.07 -- -- -- -- -- 2.25 20.60 0.15 

14 TPU = CTPU[spp_loc] × Narea 6 61.26 76.42 73.18 44.89 55.29 -- -- -- -- -- -- 2.11 20.73 0.21 

3 TPU = CTPU× Q10
(T-25)/10 3 8.04 -- -- -- -- 1.08 -- -- -- -- -- 2.33 20.89 0.01 

15 TPU = CTPU× Q10[spp](T-25)/10  5 8.05 -- -- -- -- 1.13 1.71 0.82 -- -- -- 2.32 22.03 0.12 

12 TPU = CTPU[spp_loc] × Q10
(T-25)/10 × Narea 7 62.14 75.82 71.08 44.95 54.65 1.03 -- -- -- -- -- 2.05 23.86 0.21 

16 TPU = CTPU× Q10[spp](T-25)/10 × Narea 5 57.11 -- -- -- -- 1.81 1.59 0.56 -- -- -- 2.24 24.75 0.04 

2 TPU = CTPU× Narea 2 56.58 -- -- -- -- -- -- -- -- -- -- 2.68 28.27 0.00 

4 TPU= CTPU× Q10
(T-25)/10 × Narea 3 55.15 -- -- -- -- 1.16 -- -- -- -- -- 2.66 30.29 0.00 

18 TPU= CTPU× Q10[spp_loc](T-25)/10 × Narea 7 59.18 -- -- -- -- 1.81 1.07 1.22 0.52 0.31 -- 2.33 31.48 0.02 

7 TPU= CTPU[loc] × Q10
(T-25)/10 × Narea 4 54.35 59.69 -- -- -- 1.16 -- -- -- -- -- 2.64 32.40 0.00 

20 TPU = CTPU× Q10[loc](T-25)/10 × Narea 4 55.54 -- -- -- -- 1.16 0.89 -- -- -- -- 2.64 32.44 0.00 

21 TPU = CTPU × CV × Q10
(T-25)/10 × Narea 4 8066.

87 -- -- -- -- 1.13 -- -- -- -- 0.01 2.67 32.83 0.00 

22 TPU = CTPU × Vc,max 2 0.05 -- -- -- -- -- -- -- -- -- -- 3.26 42.35 0.00 
aModel equations containing “spp” estimate parameters for each species, where CTPU1 and Q10,1 are parameters for red maple, CTPU2 
and Q10,2 are parameters for bigtooth aspen, and CTPU3 and Q10,3 are parameters for red oak. Model equations containing “loc” estimate 
parameters for each canopy location, where CTPU1 and Q10,1 are parameters for sun leaves and CTPU2 and Q10,2 are parameters for shade 
leaves. Model equations containing “spp_loc” estimate parameters for each species-specific canopy location, where CTPU1 and Q10,1 
are parameters for red maple sun leaves, CTPU2 and Q10,2 are parameters for red maple shade leaves, CTPU3 and Q10,3 are parameters for 
bigtooth aspen sun leaves, CTPU4 and Q10,4 are parameters for red oak sun leaves, and CTPU5 and Q10,5 are parameters for red oak.  Vc,max 
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is the maximum rate of carboxylation as derived from the A/Ci curves shown in Figure 4.1.  CV is the parameter estimate for Vc,max.  
bParameters of V are in units of µmol CO2 m-2 s-1. 

 


