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Abstract 

 

 

Development of a Time-Resolved Laser-Induced Fluorescence  

Technique for Nonperiodic Oscillations 

 

by 

 

Christopher J. Durot 

 

Chair: Alec D. Gallimore 

Time-resolved measurements of ion dynamics could be key to understanding the physics 

of instabilities, electron transport, and erosion in Hall thrusters. Traditional measurements of the 

ion velocity distribution in Hall thrusters using laser-induced fluorescence (LIF) are time-

averaged since lock-in amplifiers must average over a long time constant for a reasonable signal-

to-noise ratio. Over about the past decade, at least four other time-resolved LIF techniques have 

been developed and applied to Hall thrusters or similar plasma devices. One limitation of these 

techniques is the implicit assumption of periodic oscillations in the averaging scheme. There is a 

need for a more general technique since Hall thrusters can operate with nonperiodic oscillations 

that vary unpredictably. This dissertation presents the development of a time-resolved LIF 

(TRLIF) technique that addresses this need. This system averages the signal using a combination 

of electronic filtering, phase-sensitive detection, and Fourier analysis. A transfer function is 

measured to map an input signal (such as discharge current) to an output signal (TRLIF signal). 

The implicit assumption of this technique is that the input is related to the output by a time-

invariant linear system, a more general assumption than periodicity. The system was validated 

using a hollow cathode with both periodic and random discharge current oscillations. A series of 

benchmark tests was developed to validate the signal by verifying that it satisfies theoretical 

expectations. The first campaign with the H6 Hall thruster demonstrated signal recovery in both 

periodic and nonperiodic modes. Measurements of the evolution of the ion flow downstream 

show that kinematic compression explains the width of the ion velocity distribution only at 

certain phases of the oscillation. A distinct change in ion dynamics was detected as the magnetic 

field magnitude increased: a high-amplitude, relatively periodic oscillation in the ion velocity 

distribution gave way to a low-amplitude, chaotic oscillation. High amplitude oscillations of the 

mean ion velocity suggest that the bimodal distributions detected at many operating conditions 

(with time-averaged measurements) are the result of oscillations.
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Chapter 1 

 

Introduction 

 

The journey of a thousand miles begins with one step. 

– Lao Tsu 

 

1.1 Context of Study 

 Although Hall thrusters have a conceptually simple design and have been in development 

since the 1960s with abundant research in the US [1] and former USSR [2], among others, one of 

the main threads in Hall thruster research to this day is to understand the fundamental plasma 

physics at work in a thruster. One of the most important topics of research in Hall thruster 

physics is to understand the nature of oscillations and instabilities and how they affect thruster 

performance [3], [4]. Another important topic of research is to identify the sources of the 

anomalous electron transport across the magnetic field to the anode; the effective electron 

mobility is found to be orders of magnitude higher than the classical collisional cross-field 

mobility (e.g. [5], [6]). These two topics overlap significantly since there is evidence that some 

oscillations can affect electron mobility and can be caused by insufficient mobility to sustain the 

discharge. Clearly, progress in these topics depends in part on measurements of oscillations of 

plasma properties in Hall thrusters.  

 To that end, several high speed plasma diagnostic techniques have been developed in 

recent years to resolve oscillations in Hall thrusters to a bandwidth of about 100 kHz or more, 

which contains two of the largest amplitude instabilities: breathing and spoke oscillations [4]. 

Each technique yields different plasma properties, and together they can give complementary 

information  that leads to a more complete picture of thruster oscillations The high speed dual 

Langmuir probe technique has allowed observations of oscillations in electron density, electron 

temperature, and plasma potential [7]. Specialized signal processing of the video from fast 

framing cameras have shown oscillations in light emission intensity [8], which is related to 

discharge current density [9]. Time-resolved laser-induced fluorescence measurements have 
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given a glimpse of the dynamics of the ion velocity distribution and the electric field. Due to 

limitations in the averaging techniques currently in use, these measurements have been made 

only where natural oscillations are quasiperiodic or where an external perturbation drives 

periodic oscillations with operating conditions that would normally give rise to nonperiodic 

oscillations. The place of this dissertation in the field of research above is to develop, validate, 

and demonstrate a new time-resolved laser-induced fluorescence (TRLIF) technique that can be 

used to interrogate Hall thrusters in all normal operating conditions regardless of the nature of 

the oscillations. 

1.2 Problem Statement 

 The main difficulty of LIF measurements in plasma sources such as Hall thrusters is that 

there is a large proportion of background light that is necessarily collected with the LIF signal 

light. The background light in this case comes primarily from fluorescence from electron impact 

excitation of the same transition for which the laser induces fluorescence. All LIF measurement 

techniques perform averaging in some sense over data taken during an interval in time to recover 

the signal from the noise. Since the signal-to-noise ratio of the raw data is far less than unity (see 

Subsection 5.5.2), truly time-resolved measurements are impossible to make in real time, and it 

is difficult to investigate short time scales.  

 Though there are techniques previously developed to measure time-resolved LIF signal 

and some those techniques has been demonstrated with Hall thrusters (see Section 3.3), all 

techniques used thus far share an important disadvantage for Hall thrusters. They all work based 

on the assumption that the physical process being measured is at least quasiperiodic and 

therefore many repeated cycles of the process can be averaged in some sense to recover the 

signal from the noise. This is a significant disadvantage for interrogating Hall thrusters because 

the amplitude and frequency of breathing and spoke oscillations can vary unpredictably (cf. the 

broad power spectral density plots and the turbulent discharge current and spoke surfaces in 

Refs. [6], [10]). Thermal issues can cause measurements to drift over time, which can be 

problematic for a method that assumes a repeatable oscillation while averaging over a time scale 

comparable with the drift time scale [11]. The oscillations of Hall thrusters may have a well-

defined spectral density, but they are often not periodically repeating. Thus, many studies of 

TRLIF in Hall thrusters to date have used a perturbation to the operating condition to force 

periodic oscillations that are amenable to the averaging techniques in use (see Section 3.3). 
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 The problem that this dissertation addresses is the need for a technique to measure TRLIF 

in plasma sources with nonperiodic oscillations. This feature would give TRLIF measurements 

the same general applicability that current high-speed Langmuir probe and high-speed camera 

diagnostics have to make measurements on normal Hall thruster operating conditions without 

forcing periodic oscillations. Such a general technique may also enable similar measurements in 

other plasma sources with nonperiodic oscillations.  

1.3 Aim and Scope 

 The aim of this dissertation is to investigate how this problem may be solved with a new 

TRLIF measurement technique. The goal is to achieve a bandwidth of about 100 kHz so that 

breathing and spoke oscillations are well within the bandwidth. The initial validation 

experiments are limited to a discharge between a hollow cathode and anode because it allows 

flexibility in driving the discharge current oscillation, enabling testing the new technique with a 

precisely periodic or truly random oscillation. An initial campaign with the H6 demonstrates that 

the new technique can be used to gain useful information with a Hall thruster. The study is 

restricted to the Xe II (singly charged xenon) 5d2F7/2 − 6p2D5/2
o  transition commonly used for 

Hall thruster experiments, but in principle the technique can apply to any level scheme 

appropriate for LIF as long as the upper level lifetime is much shorter than the desired time 

resolution. 

 An important limitation to the scope is the sense in which a measurement can be made. 

Noise completely obscures the signal (see Subsection 5.5.2) and a large amount of raw data must 

be averaged to recover the signal from noise. As already mentioned, a real-time, direct 

measurement of TRLIF signal is a hopeless task. The sense in which the measurement of this 

technique (and the others) is "time-resolved" is restricted to a characteristic signal that is 

calculated based on some assumptions about the nature of the signal and an averaging scheme 

that takes advantage of those assumptions. For example, the previous TRLIF techniques assume 

periodic oscillations (see Section 3.3). The new technique presented in this dissertation assumes 

that a time-invariant linear system relates some input signal (e.g. discharge current or floating 

probe potential) to the output of TRLIF signal. In that case, there is a transfer function that can 

be measured that maps the input signal to the output signal. It is important to keep in mind that 

all TRLIF measurements are indirect in the sense that they all average in some way over a large 
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quantity of data that includes many thousands of different periods of the oscillation, but the 

averaging scheme reduces the large dataset down to a single waveform only a few milliseconds 

long at most.  

1.4 Contributions 

 This dissertation adds two main contributions to the field. Firstly, a technique to measure 

TRLIF signal in plasmas with nonperiodic oscillations is developed and demonstrated. The 

system is analyzed theoretically and a number of tests are performed to help determine optimal 

analysis parameters. The measurements are validated using both periodic and random discharge 

oscillations of a hollow cathode. A series of benchmarks are proposed and used to help validate 

the characteristic TRLIF signal. Finally, the new technique is compared with other TRLIF 

techniques in terms of key features such as data acquisition time, signal bandwidth, and the 

required financial investment. 

 Secondly, the TRLIF technique developed at the Plasmadynamics and Electric 

Propulsion Laboratory (PEPL) was applied in an initial campaign with the H6 Hall thruster at the 

150-V, 10-mg/s operating condition. Several new results have been obtained that will help guide 

a future TRLIF campaign on the H6. Ion dynamics are strongly dependent on magnetic field 

magnitude, with high-amplitude, periodic oscillations at low field and low-amplitude, chaotic 

oscillations at high field. An analysis of the axial evolution of the ion VDF with nominal 

magnetic field indicates that kinematic compression explains the distribution spread at certain 

phases of the oscillation but not at others. This implies that other effects intermittently widen the 

VDF such as ionization or collisions between the two points probed. 

1.5 Overview of the Dissertation 

 This dissertation is organized as follows. Chapters 2 and 3 contain the background 

material, while Chapters 4 through 8 constitute the main contributions of this dissertation to 

research in electric propulsion. 

Chapter 2 expands on the background and context necessary to appreciate this research. It 

covers the principles of electric propulsion, the basic design and operation of Hall thrusters, the 

current state of relevant research in Hall thruster physics, and the high speed diagnostics used to 

interrogate Hall thrusters.  
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Chapter 3 provides the necessary background on laser-induced fluorescence. It first 

covers the principles of how LIF measurements are made and the main challenges commonly 

faced. The line broadening mechanisms that both enable and hinder velocity measurements are 

described next. The chapter concludes with a description of other time-resolved LIF techniques 

recently developed for use with Hall thrusters and an argument that there is a need for a new 

technique. 

 Chapter 4 describes the PEPL TRLIF scheme, including the physical apparatus and the 

theory behind the signal processing. The main signal processing technique is known as Transfer 

Function Laser-Induced Fluorescence (TFLIF). A secondary technique used for benchmarking is 

called Triggered Average Laser-Induced Fluorescence (TALIF). Finally, the chapter concludes 

with a proposed general-purpose benchmark that can be used validate signals synthesized using 

the transfer function. 

 Chapter 5 delves into three general categories of details to making a practical 

implementation of a TFLIF measurement in the laboratory. The first section covers the 

specialized hardware considerations concerning the digitizer, AOM, RAID, and multichannel 

function generator that determine how those parts are chosen and the limits that they impose. 

Secondly, there are many software considerations such as modulation phase locking, data 

recycling, memory management, and parallelization to consider. Ultimately, thousands of lines 

of MATLAB code are used in the data analysis and presentation of results. The final section 

presents preliminary experiments that guided the choice of parameters and algorithms to 

maximize the signal-to-noise ratio (SNR). 

 Chapter 6 presents the basic validation experiments of the PEPL TFLIF system using 

both periodic and random oscillations in a hollow cathode discharge with an external anode. The 

chapter demonstrates a number of benchmarks as unambiguously as possible since the 

oscillations are explicitly controlled. Section 6.4 demonstrates that the TFLIF technique is 

capable of recovering chaotic or even random oscillations, a key result necessary for truly time-

resolved measurements at some Hall thruster operating conditions. 

 Chapter 7 presents the first campaign in a Hall thruster using the TFLIF technique. It 

demonstrates that a practical campaign with a Hall thruster is possible and gives interesting new 

results on the ion dynamics in the H6 Hall thruster at the 150-V, 10-mg/s operating condition. 
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 Chapter 8 concludes the dissertation with three discussions. First, it compares the 

advantages and disadvantages of many of the TRLIF techniques that have been used in electric 

propulsion, including the technique developed in this dissertation. Second, the main results and 

their implications for both the development of the technique in general and Hall thruster physics 

are discussed. Finally, potential avenues for future research are listed before closing the 

dissertation.
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Chapter 2 

 

Background 

 

If I have seen further than others, it is by standing upon the shoulders of giants.  

– Isaac Newton (Letter to Robert Hooke, 15 February, 1676) 

 

This chapter provides the necessary background regarding electric propulsion (EP). A 

complete survey of EP is beyond the scope of this dissertation. The first two sections are meant 

only to provide some context and motivation for the study of EP. They set the stage for the 

following two sections, which provide an introduction to Hall thrusters (Section 2.3) and 

introduce the Hall thruster used in this dissertation (Section 2.4). The final two sections review 

high-speed diagnostics used with Hall thrusters (Section 2.5) and review recent research on the 

physics of Hall thrusters relevant to this dissertation (Section 2.6). 

2.1 Spacecraft Propulsion 

 The principle of conservation of momentum requires that any spacecraft maneuver 

changes not only the momentum of the spacecraft but also the momentum of something else, in 

general called a reaction mass. This presents a challenge for spacecraft since in general they are 

isolated from other objects. In the absence of other objects to push, the standard solution to this 

problem is the rocket, which carries its reaction mass (propellant) onboard to expel in the 

direction opposite the desired thrust. Solar sails, space tethers, and the more exotic Bussard 

ramjet are examples of some concepts that cleverly manipulate some external reaction mass to 

generate thrust and therefore require no propellant to be carried. Rockets are nevertheless the 

mainstay space propulsion system for the foreseeable future due to technological limitations and 

the fundamental limits on the availability of the naturally occurring reaction mass that such 

concepts exploit. It is therefore critical to the future of space exploration to understand and push 

the limits of the capabilities of rockets. 

 Spacecraft missions are often characterized by the velocity increment necessary for the 

mission (Δv). The Tsiolkovsky rocket equation provides a basic understanding of how the 
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velocity increment imparted by a rocket is related to mass delivered (md), propellant mass used 

(mp), and the exhaust velocity (vex). It can be derived using the conservation of momentum [12]. 

It is valid given certain simplifying assumptions such as a single stage rocket under no force of 

gravity and that all mass is exhausted at a single, constant velocity with no plume divergence. 

One form of the rocket equation is: 

/ exd p v v

d

m m
e

m




 .     (2.1) 

 The key takeaway is that the propellant required is an exponential function of the ratio of 

velocity increment to exhaust velocity (Δv/vex). Therefore, exhaust velocity should be at least 

close to the magnitude of Δv, otherwise the rocket may only reach the desired velocity increment 

with an absurdly high mass ratio, the ratio of the delivered mass plus propellant to the delivered 

mass (left hand side of Equation (2.1). It follows that the exhaust velocity is a key figure of merit 

for rocket performance. It is normally quoted in terms of specific impulse Isp, which is defined to 

be the thrust per rate of propellant use by weight on Earth: 

ex ex
sp

mv v
I

mg g
  .      (2.2) 

2.2 Electric Propulsion 

 It is not enough to have propellant mass to eject; all rockets have a source of energy that 

is converted into the kinetic energy of the spacecraft as well as losses such as heat and the kinetic 

energy of the propellant. The energy for chemical rockets is stored within the propellant itself 

and is released during a chemical reaction. The exhaust velocity of chemical rockets is 

fundamentally limited, as Jahn notes [13], by (1) the energy available in the chemical reaction, 

(2) the heat load on the combustion chamber or nozzle, and (3) losses to internal modes of the 

gas or radiation. Due to these limitations, the exhaust velocity for chemical rockets is at most 

about 5000 m/s (see Table 1-2 in Ref. [13] and Table 1-1 in Ref. [12]). This is poorly matched to 

the velocity increment necessary for many interplanetary missions from Earth orbit, often on the 

order of 104-105 m/s (see Table 1.1 in Ref. [13]). 

 Electric propulsion (EP) systems have one common feature: they use electrical energy to 

accelerate the propellant. There is a wide variety of electric propulsion systems in terms of the 

physical mechanisms they exploit and the propellants used [14], and a correspondingly wide 
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variety of features such as thrust, Isp, power, weight and lifetime [15]. There is typically some 

form of plasma discharge, and thrust is generated primarily by ion acceleration since they are 

much more massive than electrons. There are three main forms of EP distinguished by the form 

of propellant acceleration used: (1) electrothermal propulsion uses an electrical current to heat 

the propellant, (2) electrostatic propulsion accelerates ions using an electric field, and (3) 

electromagnetic propulsion accelerates ions through an interaction of an electrical current within 

the plasma with a magnetic field. 

 Typical EP systems have an exhaust speed of several tens of kilometers per second (see 

table 1-1 in Ref. [12]), well above the limits of chemical rockets. It can exceed the limits of 

chemical rockets because (1) the source of energy is decoupled from the propellant and limited 

by the power supply available, not the intrinsic energy density of the propellant, and (2) the heat 

load on the thruster is tolerable since the plasma is low density. 

 As discussed above, higher exhaust speed dramatically reduces the required mass of 

propellant, which leads to a number of potential advantages. EP can enable missions that would 

otherwise be impractical or cost-prohibitive. For example, EP enabled the Dawn mission to reach 

more than one target with a significantly smaller launch mass compared to using a chemical 

propulsion system, which would only be practical to reach a single target [16]. EP can allow a 

larger payload or a reduced mission budget by reducing the mass lifted to orbit (at a cost on the 

order of several thousands of dollars per kilogram with current launch systems [17]), or extend 

the lifetime of satellites by efficient use of propellant for station keeping. 

 Though the potential benefits of EP systems are significant, there are tradeoffs and 

limitations. Most EP systems produce thrust under 1 N, much smaller than is possible with 

chemical rockets. Though high power exceptions with thrust above 1 N do exist (e.g. [18]), all 

EP systems produce low thrust. The main consequence of low thrust is that maneuvers require a 

very long burn time, often on the order of weeks or months, to achieve the desired velocity 

increment.  

 The main reason for low thrust is that accelerating the propellant to high speed requires a 

high power input, and the power available from the onboard power supply is limited. The 

problem only worsens at higher Isp. Since thrust is proportional to exhaust velocity but the power 

required is proportional to velocity squared, there is a fundamental tradeoff between Isp and the 

best thrust-to-power ratio that could be achieved by an ideal EP system: 



 

10 

 

21
2

2ex

ex ex

mvT

P mv v
  .     (2.3) 

 Another tradeoff in that vein is that higher Isp systems will require more powerful and 

therefore larger and more massive power supplies. Assuming the mass of a power supply is 

proportional to the output power, a simple analysis [13] shows that the effective propellant mass 

including propellant and power supply is: 

,
2power supply
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where T is thrust, Δt is the burn time, α is the constant of proportionality between output power 

and power supply mass (mpower supply = αP), and η is the efficiency of conversion from power 

supply power to ion beam kinetic power. There is an optimal Isp that minimizes effective 

propellant mass because the propellant itself is too massive if Isp is too low and the power supply 

is too massive if Isp is too high. This effect is known as the power supply penalty. Although EP 

in general can greatly reduce propellant mass compared with chemical propulsion, a higher Isp is 

not necessarily better, and mission designers must carefully take into account all variables. 

2.3 Elementary Hall Thruster Design and Operating Principles 

2.3.1 Magnetic Layer Hall Thrusters 

 A magnetic layer Hall thruster has a conceptually simple design shown schematically in 

Figure 2.1. Propellant gas feeds into the discharge channel through the anode at the upstream end 

of the channel. The discharge voltage, Vd, on the order of hundreds of volts is applied across the 

anode and cathode. A hollow cathode external to the discharge channel supplies electrons for the 

discharge. Electromagnets apply an approximately radial magnetic field that reduces electron 

mobility across the field toward the anode. Reduced electron mobility in the magnetic field 

causes most of the discharge voltage drop to occur near the region of strong magnetic field to 

ensure discharge current continuity on average [3]. The insulating channel walls are typically 

made of boron nitride (BN) for its insulation, heat resistance, and secondary electron emitting 

properties. 

 The magnetic field magnitude is set so that electrons are magnetized and drift 

azimuthally in the fields due to E×B drift, but magnetic field is sufficiently weak that ions are 
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unmagnetized. The azimuthal electron drift, known as the Hall current, is the origin of the 

thruster's name. The Hall parameter is defined theoretically as the ratio of electron cyclotron 

frequency to collisional frequency [12] or more empirically as the ratio of azimuthal electron 

current density to axial electron current density [19]. In either case, it is much greater than unity, 

ensuring a long residence time for electrons. This improves efficiency by increasing the number 

of ionizing collisions per electron to sustain the discharge and create new ions to be accelerated 

[19]. Since the relatively massive ions are unmagnetized, they are accelerated out of the 

discharge channel with a characteristic residence time on the order of microseconds [20]. This 

time scale implies that collisional effects are not important for ions and the ions can be 

considered to be in "free fall" in the field. Most of the ion VDF width originates in overlap 

between the ionization and acceleration regions. The ion beam is neutralized with electrons 

supplied by the hollow cathode. 

 

Figure 2.1. Cross-sectional diagram of a basic, magnetic layer Hall thruster. The key parts in 

construction, electric and magnetic fields, and representative paths of ions, electrons and neutrals 

are shown. Reproduced from Figure 7-1 in [12]. 
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2.3.2 Orificed Hollow Cathodes 

 The goal of this section is to describe the cathode's role in a HET and the basic operating 

principles of hollow cathodes. The discussion is important for this dissertation not only because 

the cathode is critical to Hall thrusters, but also because the initial validation campaign of the 

TRLIF system used a hollow cathode as the plasma source. 

 Virtually all of the power to sustain the discharge comes from the discharge power supply 

(neglecting the heater and keeper of the cathode and the electromagnets of the thruster), which 

biases the anode to a few hundred volts relative to the cathode. The (conventional) discharge 

current from the anode to cathode is necessary to supply the power consumed by the discharge. 

Ions are mostly born downstream of the anode and those born in the discharge channel are 

accelerated into the ion beam and do not continue all the way to the cathode. Hence, electrons 

are critical to carry much of the current to close the circuit. The cathode provides electrons, some 

of which neutralize the charge and current of the ion beam and some of which contribute current 

toward the anode. Though the cathode provides some electrons that eventually arrive at the 

anode, most of the electrons of the anode current are created in ionizing collisions in the region 

of the Hall current [3]. 

Early Hall thrusters used a hot filament cathode (e.g. [5]), but modern Hall thrusters use 

an orificed hollow cathode (commonly shortened to "hollow cathode" or simply "cathode") due 

to the increased current output and lifetime. In addition, hollow cathodes have lower power 

requirements since hollow cathode inserts have lower emissive temperatures than hot cathode 

filaments [12].  

The key components of an orificed hollow cathode are shown in Figure 2.2 [12]. It is 

composed of a hollow cylindrical shell of a thermionically emitting material such as LaB6 or 

BaO (the "insert") in a conducting and highly heat resistant tube made of graphite or a refractory 

metal (the "cathode tube"). There is a gas inlet on the far end of the cathode tube and an orifice 

typically smaller than the insert radius on the near end. An electrical heating element is wrapped 

around the cathode tube near the location of the insert. 

 To operate the cathode, the heater heats the insert to thermionic emission and a potential 

is applied across the keeper and cathode while gas flows steadily. A DC discharge is lit across 

the keeper and cathode, with electrons ionizing the neutral gas in the cathode tube, which is at a 

relatively high density regulated by the orifice diameter. The plasma density in the cathode is 
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greater than any other part of a Hall thruster, up to the order of 1020 m-3 [21], [22]. After lighting, 

the insert is heated by ion bombardment from the very dense plasma inside the cathode tube and 

the heater may be turned off. Ideally, the cathode is operated so that bombardment by ions 

accelerated in the sheath sufficiently heats the insert without sputtering the insert material. If 

there is an external anode in use (such as with a Hall thruster), the keeper power supply may be 

turned off after the discharge is transferred to the external anode.  

 

Figure 2.2. Cross-sectional diagram of an orificed hollow cathode. Image reproduced from 

Figure 6-4 in [12]. 

 Like Hall thrusters, hollow cathodes have been studied and have been in service for many 

years, but the details of the physical processes at work are not fully understood [21]–[23]. There 

is also a great deal of current research on how cathodes couple to Hall thrusters and their effects 

on thruster efficiency. The cathode flow fraction (CFF) is the ratio of cathode mass flow rate to 

anode mass flow rate. The cathode coupling voltage, the difference of cathode to beam potential, 

is a useful figure of merit because it indicates the potential necessary for  electrons couple to the 

anode [12], therefore lower values generally indicate better performance. CFF is traditionally 7-

10% because early studies showed that high CFF minimizes cathode coupling voltage. In a 

recent paper [24], Goebel summarized research in this area since about the year 2000 and 

showed that the total thruster efficiency is in fact constant over a range of CFF values since 

higher flow leads to lower mass utilization. He argued that lower cathode mass flow may be 
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optimal since total thruster efficiency is invariant and cathode lifetime is optimized with lower 

CFF. 

2.3.3 Propellant 

 A wide variety of propellants have been considered [25] and tested on Hall thrusters 

including mercury, cesium, bismuth [26], iodine [27], and noble gasses. Xenon has become the 

standard propellant for Hall thrusters and other electric propulsion thrusters for many reasons. It 

is nontoxic and stray propellant will not condense on or react with spacecraft [12]. It has the 

lowest first ionization potential of all nonradioactive noble gasses [28]. The heavy atomic mass 

enables the storage of a higher mass density of gas for a given pressure and gives a greater 

thrust-to-power ratio than lighter atoms. The lower velocity of heavy ions also implies a higher 

ion density and electron density by quasineutrality, facilitating sufficient electron transport to the 

anode to sustain the discharge [3].  

 Unfortunately, xenon is found in the atmosphere in the trace amount of 87 nl/l [28], 

making it expensive to extract. For example, I received a quotation in November 2013 of $22.50 

per liter, or almost $4000/kg, rivaling the cost per mass to launch a payload to orbit. This cost, 

however, is only significant for laboratory experiments since an actual mission could net a large 

savings from launching a much smaller weight of propellant compared to the mass necessary for 

a chemical propulsion system. 

2.3.4 Hall Thruster Design Variations 

 Note that there are many variations to the design of Hall thrusters that optimize different 

features. For example, a thruster with anode layer (TAL) has electrically conducting channel 

walls. The reduced secondary electron emission from channel walls results in a higher electron 

temperature and a shorter acceleration zone, leading to a shorter discharge channel design [1]. 

 A cylindrical Hall thruster (CHT) has a cusped magnetic field geometry with a short 

annular region followed by a cylindrical region since the inner channel wall is shorter than the 

outer wall. The design is better for small scale thrusters (channel diameter of a few centimeters 

or less) in part because it reduces losses to the walls by increasing the ratio of volume to surface 

area [29] and also because magnetic field scaling is less of an issue [30].  

 Clusters of identical Hall thrusters can provide a high maximum power, a wide throttling 

range at high efficiency, and layers of redundancy. One main benefit is also the reduced cost in 
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research and development compared to a high power monolithic thruster since a cluster uses 

lower power thrusters that are easier to test with existing vacuum facilities. Clusters can operate 

with increased thrust than the sum of the individuals and with slightly increased efficiencies due 

to interactions between the thrusters and their plumes [31]. 

Nested Hall thrusters have multiple discharge channels of different radii built on the same 

thruster centerline. Like clusters, they have a high maximum power and large and efficient 

throttling range due to the different combinations of operation. The X3, a 100-kW class, 3-

channel nested Hall thruster developed at PEPL, benefits from a smaller footprint and mass-to-

power ratio than a monolithic thruster or clustered configurations of smaller thrusters [18]. 

 An important and relatively recent variation is the development of magnetically shielded 

thrusters, which have a magnetic field topology designed to reduce interactions sputtering of the 

walls by reducing both the kinetic and sheath energy and the ion flux to wall surfaces [32]. This 

design reduces the wall erosion rate by orders of magnitude with minimal efficiency loss [33], 

thus promising to improve thruster lifetime since the eventual failure by wall erosion has been 

the main failure mode for Hall thrusters. Unlike typical magnetic layer or anode layer thrusters, 

ceramic or conducting walls make little difference in the performance of a magnetically shielded 

thruster [34], providing compelling evidence that wall interactions are not significant for 

magnetically shielded Hall thrusters. 

 This dissertation and all the discussion of Hall thrusters hereafter is concerned only with 

the single channel, unshielded, magnetic layer type of Hall thruster. This is also known as a Hall 

effect thruster (HET), or stationary plasma thruster (SPT). Future use of the term "Hall thruster" 

will refer to this type unless otherwise stated.  

 Although practical Hall thrusters were developed in the 1960s and the first Hall thruster 

on a satellite was launched by the Soviets in 1971 [2], significant questions still remain about the 

physics of Hall thrusters. The following sections describe some of the major topics of research in 

Hall thruster physics that are relevant to this dissertation. Much of current research can be 

organized in two related categories. One category is to understand the sources of anomalous 

electron transport, which generally refers to an electron mobility that is observed to be much 

greater than classically expected. The other is to understand different thruster operating modes, 

the oscillations and instabilities that occur in each mode, as well as the conditions that bring 

about a transition from one mode to another. 
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2.4 H6 Hall Thruster 

 The H6 is a laboratory model Hall thruster developed jointly by the NASA Jet Propulsion 

Laboratory (JPL), the Air Force Research Laboratory at Edwards Air Force Base, and the 

Plasmadynamics and Electric Propulsion Laboratory (PEPL) at the University of Michigan to 

study Hall thruster physics at multiple institutions on a single, modern Hall thruster design. Each 

laboratory has its own copy of the thruster, though Michigan and JPL use slightly different 

nominal operating. It can be operated in the range of 0.6-12 kW for discharge power, 1000-3000 

s for specific impulse, and 50-500 mN for thrust [33]. The original H6 achieves a relatively high 

total efficiency of up to 64% at the nominal 300-V discharge current, 6 kW operating condition 

and 7% cathode flow fraction and 70% at the 800 V, 6 kW operating condition [33].  

 It has a centrally mounted hollow cathode with lanthanum hexaboride emitter material. 

The outer electromagnet comprises eight coils in series uniformly spaced around the discharge 

channel, while the inner magnet is a single coil. The magnetic field inside the channel has a 

plasma lens topology, with field lines that are concave and symmetric about the channel 

centerline, when the ratio of outer magnet current to inner magnet current is 1.12. Magnetic field 

lines are approximately electrical equipotential lines, and therefore this configuration helps to 

focus the ions away from the channel walls to reduce losses and beam divergence [35]. The trim 

coil was unused for this dissertation. With boron nitride channel walls, it is a magnetic layer Hall 

thruster.  

 Chapter 7 of this dissertation covers the first test of the PEPL TRLIF technique on the 

H6. A photograph of the H6 mounted in position for the campaign is shown in Figure 7.2. As a 

way of simultaneously introducing concepts related to Hall thruster physics and background on 

the previous work on the H6 Hall thruster, the following Hall thruster physics section focuses 

largely on results specific to the H6. 

2.5 High-Speed Diagnostics 

With the mounting evidence that oscillations are important in influencing Hall thruster 

operation, time-resolved studies have become more commonplace and many high-speed 

diagnostics have been developed to directly measure oscillations in plasma parameters in Hall 

thrusters. This subsection is not intended to be a complete survey of all high-speed diagnostics 

developed for Hall thrusters but only those that are most relevant for this dissertation. The high-
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speed dual Langmuir probe system discussed in Subsection 2.5.1 is extremely important to this 

dissertation since it was the first use of the transfer function averaging scheme with Hall 

thrusters. High-speed imaging is also covered in Subsubsection 2.5.2 for two reasons. First, 

because the general results for the spoke instability and how it relates to mode transitions of the 

H6 motivate the design of the initial campaign of the new time-resolved LIF system with the H6. 

Second, high-speed imaging analysis was used during that campaign to detect a possible mode 

transition during a magnetic field sweep. The discussion of subsubsection 2.5.2 is necessary to 

appreciate those results and understand how the analysis was done. 

2.5.1 High-Speed Dual Langmuir Probe 

Lobbia and Gallimore [7], [36] developed a high-speed dual Langmuir probe (HDLP) 

system that allows fully-swept Langmuir probe IV characteristics to be measured on the order of 

100 kHz. The system uses specialized filtering and amplifier circuitry and a “null probe” that is 

insulated from the plasma but is built with nearly identical cabling and position as the true 

Langmuir probe. The null probe signal can be subtracted from the active probe signal to removed 

noise and interference from the leakage currents of stray capacitance, plasmadynamic 

capacitance, and EM pickup, all common impediments to high-speed Langmuir probe 

measurements [36]. It was found that the high-speed LP system actually has relatively high SNR 

compared with a traditional LP system that sweeps over the millisecond time scale due to the 

noise and distortion introduced to the IV trace by rapidly changing plasma parameters [7]. 

The system was first demonstrated on an operating condition of the BHT-600 with strong 

breathing oscillations (see Subsection 2.6.2). The plasma density and discharge current oscillated 

with a peak-to-peak oscillation magnitude of nearly 80% of the mean values with a delay time 

between the two corresponding to the ion transit time. The traveling wave of ion density was 

taken as evidence of an approximately toroidal expulsion of ions with each “breath.” The 

electron temperature and plasma potential oscillated similarly to the discharge current without a 

time delay, implying a faster, electron-driven process determines them. The oscillation in 

electron temperature and the absence of a delay from the discharge current also lends some 

empirical support to the more recent theoretical work of Hara proposing that the breathing mode 

may be excited by oscillations in electron temperature (discussed in Subsection 2.6.2). 

The high-speed Langmuir probe system was a key precursor to the work of this 

dissertation due to its use of transfer functions to model the plume plasma properties as the 
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“output” from thruster system resulting from the “input” discharge current signal. At each spatial 

location, the transfer function itself is measured. The transfer function maps an input signal (e.g. 

discharge current) to an output signal (e.g. electron density at a point in space). The transfer 

function analysis enables the synthesis of a characteristic output signal of the linear system that 

corresponds to a particular input signal. As a part of the signal processing used in this 

dissertation, the transfer function averaging scheme is described in Subsection 4.3.3 and is not 

reproduced here.  

The main purpose of transfer function averaging for the HDLP system is synchronizing 

the system outputs at all spatial locations to correspond to a single input signal. With only one 

probe, the datasets at each individual spatial point were measured serially and therefore each 

original time series cannot be directly compared or plotted with another in the time domain since 

oscillations vary in a non-repeatable way. The characteristic output signals as a function of time 

for all spatial locations are synthesized from the transfer functions using a single input discharge 

current trace (e.g. the discharge current trace displayed in the line plot of Figure 2.3). It can be 

shown that the characteristic output signal of the transfer function corresponds to the actual 

output signal that occurred at the time of the input signal (see Subsection 4.3.3). Therefore, the 

characteristic output signals generated for a given input signal all correspond to the same time. 

This allows a coherent visualization of the plume properties across many points in space even if 

oscillations are non-repeatable and the measurements of the transfer functions at each spatial 

location were made at different times. Figure 2.3 shows an example of several heat maps of 

electron density at many different points in space all synchronized in time over a period of 

oscillation because all characteristic output signals (electron density at each spatial location) 

were generated for a single input signal (discharge current). 

 One of the key questions concerning this dissertation is whether there is indeed a linear 

system relating input signal to output signal, a requirement for the existence of the transfer 

function. Lobbia provided some evidence to support this assumption by pointing out several 

features of the output signal that are physically expected or agree with independent 

measurements. For example, the oscillations in electron density at different axial locations have a 

high cross-correlation with a time delay corresponding to the ion transit time between the two 

positions [7], [36]. Also, the ultimate velocity of the ion density wave corresponds within 1% to 

the thruster Isp measured independently [36].  
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Figure 2.3. Heat maps showing how the electron density changes over one period of a breathing 

oscillation of the BHT-600. The data are synthesized as the output of the transfer functions at 

each spatial point for a single input discharge current trace. Reproduced from [36]. 

The HDLP system has an opportunity to validate the characteristic output signal of the 

transfer function by comparing directly to the original time series of the output signal from 

Langmuir probe analysis. Figure 2.4 shows that the characteristic electron density from the 

average transfer function (red) is nearly identical to the original time series (black) when 

averaging over 10 or 100 transfer function estimators. Note that the transfer function is measured 

by averaging over Q different transfer function estimators to reduce noise (see Subsection 4.3.3). 

The Q = 1 case is an exact match by definition since there is no averaging over the transfer 

function coefficients; they are simply defined to be the ratio of the single output to input discrete 

Fourier Transform components. The close match of the characteristic output of the transfer 

function to the original signal unambiguously validates the transfer function approach.  

As mentioned previously, the direct comparison between the characteristic signal and the 

original signal that it models is possible for the HDLP system due to the high signal-to-noise 

ratio of the raw time series following LP analysis. It is not possible for LIF results because 

transfer function averaging is the primary averaging scheme to recover the signal from the 

background noise, and the raw data are completely buried in noise before transfer function 

averaging. It is for this reason that much of the dissertation is concerned with various 
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benchmarks to help validate the accuracy of the characteristic LIF signal from the transfer 

function. 

 

Figure 2.4. The synthesized characteristic electron density from the average transfer function 

(red) reproduces the key features of the original signal (black). Reproduced from [37]. 

2.5.2 High-Speed Imaging and the Spoke Instability 

Capturing high-speed video of the light emission from a Hall thruster has emerged as a 

powerful, though qualitative, diagnostic of thruster operation. The main advantage of the use of a 

high-speed camera is the ease with which it can collect information about events occurring 

simultaneously at all azimuthal and radial positions. This contrasts with most other probe and 

optical diagnostics that typically measure plasma properties within a small volume or a single 

line-integrated path, and are therefore typically give an incomplete picture of the plasma 
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properties in the discharge or plume. Therefore, the high-speed camera is most useful to 

characterize azimuthal instabilities, primarily the low-frequency spoke instability.   

Though others have also investigated thrusters with high-speed imaging (e.g. [38], [39]), 

the discussion here focuses on the work of McDonald, and Sekerak. A portion of this dissertation 

in Chapter 7 involving high-speed imaging is related to their work by both the H6 Hall thruster 

and the high-speed imaging analysis scheme, therefore their work provides the most relevant 

background. 

The spoke instability refers to one or more regions with brighter than average light 

emission rotating azimuthally around the discharge channel in the E×B direction. Spokes are 

generally within the radial extent of the discharge channel, but can be observed between the 

channel and a centrally mounted cathode [8]. Azimuthal instabilities in Hall thrusters have been 

known and studied to a certain degree for decades [4], but the application of high-speed cameras 

is relatively new. Spokes have been observed across a wide range of Hall thrusters [8] and vary 

widely in terms of amplitude, frequency, coherence, and the number of spokes depending on 

thruster operating conditions [8], [40]. The onset of strong spokes in the H6 was found to be 

related to a transition from a high-current/global thruster mode to the low current/local mode as 

discussed in Subsubsection 2.6.1.2. 

Spokes are suspected to contribute to anomalous electron transport since azimuthal 

perturbations in plasma properties could lead to azimuthal electric field, which would generate 

an axial E×B drift. McDonald used the approach of Janes and Lowder [5] to estimate that the 

spokes carry nearly half of the total current [6]. If true, that would explain much of the 

anomalous electron transport at some thruster operating conditions. Note that a time-resolved 

LIF system could potentially detect azimuthal electric field perturbations and provide another 

method to verify calculations such as these. 

The high-speed image analysis technique was described in detail by McDonald [8] and 

later modified by Sekerak [10]. The basic analysis scheme can be succinctly described as 

follows. The raw video is often taken at a resolution of 256×256 at a frame rate of 87.5 kHz for a 

short length of time up to about 1 s at most. The resulting data can be considered a 3D array of 

dimensions 256×256×Nf, where Nf is the number of frames. The signal is AC coupled by 

subtracting the pixel-wise mean image from each frame. The discharge channel annulus is 

divided into 180 azimuthal bins of 2-degree extent. For each frame of the video, the average 
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intensity of all pixels in each bin is taken to be the bin intensity. The resulting 1D array of length 

180 representing bin intensity as a function of the azimuthal angle for each frame in time is 

illustrated in Figure 2.5. This process converts the 3D array representing the whole video into a 

2D array of dimensions 180× Nf.  

 

Figure 2.5. The 2D array of a single frame of the video is azimuthally binned and the intensity is 

averaged over 180 bins to generate a 1D array of bin intensity as a function of azimuthal angle. 

The complete video is then represented by a 2D array of dimensions 180× Nf. Reproduced from 

Ref. [40]. 

A 2D discrete Fourier transform (DFT) gives Fourier coefficients for a basis set of 

sinusoidal functions with frequencies and wavenumbers up to the Nyquist frequency and Nyquist 

wavenumber. The top frame of Figure 2.6 shows an example of the 2D power spectral density, 

another 2D array of the same dimensions. It is proportional to the magnitude of the DFT 

coefficients (which are complex numbers). The wavenumbers corresponding to an integer 

number of periods around the thruster annulus are of particular interest and denoted by the mode 

number m. The mode number corresponds to the number of spokes rotating around the discharge 

channel. The m = 0 mode is defined to correspond to zero wavenumber. It corresponds to 

oscillations as function of time that do not depend on space, or in other words it captures 

fluctuations of light intensity over the whole channel. In general, there is a mix of many different 
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modes occurring simultaneously. A 1D array for each relevant spoke mode can be taken out of 

the 2D array of power spectral density. This last simplification allows the power spectral 

densities of the spoke modes to be plotted in line plots for a simple and intuitive comparison with 

each other and the power spectral density of the discharge current, as illustrated in the bottom 

frame of Figure 2.6. 

 

Figure 2.6. Top: example 2D power spectral density of a 180×Nf array of azimuthal intensity as a 

function of time. Bottom: vertical cross-sections of the 2D power spectral density are taken for a 

number of spoke modes with m > 0 and the m = 0 mode. Reproduced from Figure 6 of Ref. [6]. 

High-speed imaging has yielded several interesting trends for the spokes observed. An 

increase in magnetic field strength tends to make spokes stronger and more stable, with higher 
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spoke modes appearing and becoming dominant and their velocity decreasing [8], [9], [40]. 

Higher spoke modes travel faster than lower modes. The spoke strength relative to breathing 

mode reaches a maximum with operating conditions near settings corresponding to optimal 

thruster performance with the H6 [40], though that is not always true for other thrusters. 

The light intensity in the high-speed video has been shown to be intimately related to the 

discharge current. High-speed video taken with the H6 modified with an azimuthally segmented 

anode verified that local current to a segment is strongly correlated to the spokes, with all of the 

same peaks appearing in the m > 0 power spectra [6]. The variation of current at the anode 

segments attributable to spokes actually dominated that of the breathing mode, but power 

spectral density of the total discharge current of all the segments or the discharge current of an 

unsegmented anode show little or no peaks at spoke mode frequencies since azimuthal variation 

tends to be averaged out. In addition, the power spectral density of the average optical emission 

of each video frame [37] and the m = 0 spoke mode [40] both correlate very well with the 

discharge current power spectrum. The RMS pixel fluctuation of the camera also correlates very 

linearly with RMS discharge current over many operating conditions (see Figure 10 in [40]), 

unsurprisingly since the RMS can be found by integrating over the power spectral density. 

One drawback of the high-speed image analysis technique is that there is no precise 

physical interpretation of the data corresponding one-to-one to a single plasma property. The 

light emission is usually unfiltered and corresponds primarily to emission from electron-impact 

excitation, but its intensity can vary according to electron energy distribution and densities. 

Estimates of time-resolved electron temperature or other plasma properties might be possible by 

filtering light by wavelength, capturing multiple lines with the high-speed camera, and applying 

a collisional-radiative (or simpler) model. This approach would essentially use the high-speed 

camera to quickly perform a measurement of optical emission spectroscopy with spatial and 

temporal resolution. Dale and Gallimore [41] recently reported initial tests in this vein, but noise 

prevented useful time-resolved estimates of electron temperature. Based largely on the 

relationship of the high-speed video to the discharge current discussed above, Sekerak argued 

that the instantaneous light emission from a region of the discharge channel is likely strongly 

correlated with the discharge current density in that region. To help bridge the gap to a 

measurement of a physical property, he therefore scaled the light intensity to units of discharge 

current density [10], but the accuracy of that estimate remains unclear. 
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2.6 Hall Thruster Physics 

2.6.1 Mode Transitions 

2.6.1.1 Definition of Hall Thruster Mode Transitions 

 A hall thruster operating condition is defined by the set of mass flow rate, discharge 

voltage, and magnetic field topography and magnitude. Some thruster designs allow some 

adjustment of the field topology due to the presence of multiple electromagnets, but authors 

often hold some nominal field topology constant while varying the magnitude alone by changing 

current in all electromagnets by the same factor. This definition of an operating condition is a 

useful concept because the thruster's performance (e.g. thrust, efficiency, Isp) and plasma 

dynamics (e.g. plasma properties, oscillation spectra, and instabilities) are typically found to be a 

function of these parameters [42], [10]. Nevertheless, hysteresis is sometimes observed, for 

example, where the thruster can operate in either a high or low discharge current regime at a 

single operating condition by either raising mass flow rate and magnetic field magnitude from 

lower values or by decreasing them from higher values, respectively [43]. 

 There is no precise definition of Hall thruster operating modes (sometimes called 

regimes) or of mode transitions. The general idea common among authors is that changes to 

operating conditions yield gradual changes in measured properties and typically follow a 

consistent trend within the bounds of a single mode. Authors use the term "mode transition" to 

refer a sharp change in measured properties, such as mean discharge current or oscillation 

spectra, that occurs over a small change in operating condition parameters. Another key feature 

of a mode transition is a departure from some preceding trends that accompanied changes in 

operating condition parameters. 

 In 1976, Tilinin published one of the most complete studies of Hall thruster mode 

transitions. A laboratory model "Hall accelerator" that predates modern Hall thruster designs was 

tested, leading Sekerak to point out that the results may have limited applicability to current 

thrusters [44]. The results are nonetheless instructive as a complete study of mode transitions and 

there are distinct parallels to mode transitions found in modern Hall thrusters. Tilinin found that 

measured oscillations were only weakly dependent on discharge voltage and mass flow rate and 

carried out a study of oscillatory behavior as a function of magnetic field magnitude. High-

frequency oscillation amplitude (on the order of megahertz and higher) was found be related to 
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low frequency (kilohertz) amplitude oscillations such that an abrupt change in one often 

accompanied a change in the other, though the correlation is not always positive or negative.  

 

Figure 2.7. Left: Plot of mean discharge current versus magnetic field magnitude over the six 

mode regions. Right: High-frequency oscillation amplitude plotted as a function of magnetic 

field magnitude for frequencies of (1) 20; (2) 60; (3) 140 MHz at a floating probes just 

downstream of the exit plane. Reproduced from figures 5 and 4d in [42]. 

 Six distinct modes were identified and shown in the plot of discharge current versus field 

magnitude on the left side of Figure 2.7. In the "collisional (classical) conductivity" regime (I), 

the cycloid path of electrons is comparable to the dimensions of the device and classical 

collisional conductance explains the observed conductance. High and low frequency oscillations 

are very low amplitude. An azimuthally propagating wave at approximately the E×B velocity 

appears in the "regular electron drift wave" regime (II). Low conductivity causes loop 

oscillations to appear in the "transitional" regime (III). The "optimal regime" (IV) is so called 

because the ratio of ion beam current to discharge current is maximized here. Low frequency 

oscillations are minimized. Regime V is called the "macroscopic instability" regime because 

there are oscillations of low enough frequency to be visible by eye and strong enough to 

spontaneously extinguish the discharge. There is a distinct jump in discharge current and the 

electron drift wave is not detected. The thruster becomes stable again in the "magnetic 

saturation" regime (VI), where high frequency oscillations tend to approach a maximum 

amplitude and low frequency oscillations are minimal. 
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2.6.1.2 Mode Transitions of the H6 Hall Thruster 

 Brown and Gallimore [43] discovered transitions between two distinct operating modes 

on the H6 Hall thruster (see Section 2.4) in a study of operation at low discharge voltages of 100-

120 V and anode mass flow rates of 10-20 mg/s. The thruster transitioned from a "low-current" 

mode to an undesirable "high-current" mode as discharge voltage was reduced.  A lower CFF 

lead to a transition to high-current mode at a higher voltage, but auxiliary neutral flow outside of 

the cathode could stave off the transition.  

 The two modes were called "low-current" and "high-current" modes due to an 

approximately 10% difference in mean discharge current. The high current mode also featured 

larger amplitude discharge current oscillations by about a factor of ten. The other key features 

that Brown and Gallimore [43] found to distinguish them are that the high-current mode has 

generally poorer performance in terms of a lower thrust-to-power ratio, lower current utilization 

(ratio of ion beam current to discharge current), and a larger beam divergence. A hysteresis 

effect enabled operation in both modes at some operating conditions. Though the amplitude of 

oscillations changed in different modes, the peak frequencies were the same in both modes at the 

same operating condition. Brown also observed a sudden visual change in the plume at the 

transition, shown in Figure 2.8. The luminous plume in high-current mode extends further 

downstream, has a more prominent central spike, and is generally brighter. 

 Using an E×B probe and a retarding potential analyzer, measurements of the ion energy 

and ion energy per charge distributions in the far field plume were well defined in low-current 

mode but highly diffuse in high-current mode, possibly even showing bimodal distributions. 

Though the ion distributions clearly differed between the two modes, gaining quantitative 

information about ion distributions was difficult since the exact contributions from different 

ionization states were unknown.  

 LIF would help uncover more information about the ion distributions in the two modes 

because it can be spatially resolved in the discharge and near-field plume (e.g. [45], [46]), and 

the ion velocity distribution is measured directly without confounding multiple charge states. 

Bimodal ion velocity distributions have been observed at a number of operating conditions of the 

H6 (e.g. [45]). A new TRLIF technique would enable measurements of oscillations in the 

distribution, possibly shedding light on the apparently bimodal form of the ion energy and 

velocity distributions. 
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Figure 2.8. Photos of the H6 plume (left) and contours of constant  intensity (right) for both low-

current mode (upper) and high-current mode (lower) [43]. Reproduced from Figure 1. 

 Sekerak et al. [10] conducted a study of thruster mode transitions as a function of 

magnetic field magnitude at discharge voltage of 300-450 V and anode mass flow rate of 14.7-

25.2 mg/s. Sekerak found transitions between two modes with the same general features as the 

modes observed by Brown for low voltage conditions. The higher current mode (by about 15% 

in mean discharge current) was again found to be related to ten times higher amplitude discharge 

current oscillations (almost 100% of the mean value) and a 25% lower thrust-to-power ratio. 

Figure 2.9 shows the trends in discharge current and oscillation amplitude as a function of 

magnetic field. Very similar changes in light emission in the plume were also observed. The 

higher current mode has generally brighter emission, a more prominent central spike, and more 
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emission that occurs further downstream. In contrast with Brown's findings, the thruster was 

more sensitive to a transition to a high-current mode for higher discharge voltage and higher 

anode flow rate operating conditions [10].  

 Sekerak et al. [10] also conducted an extensive test of oscillations in the plume during the 

two modes using a high-speed camera and Langmuir probes. In general, the higher-current mode 

was found to be associated with a global oscillation in phase at all azimuthal locations, and the 

lower-current mode was associated with localized, azimuthally propagating spokes (see 

Subsection 2.5.2), which lead to the terms "global mode" for the higher-current mode and "local 

mode" for the lower-current mode. The global oscillations are the breathing oscillations 

described in Subsections 2.5.1 and 2.6.2. 

 

Figure 2.9. Examples of magnetic field sweeps showing transitions in mean discharge current 

(solid lines) and RMS oscillation amplitude (dotted lines) as a function of magnetic field 

magnitude from Sekerak et al. [10]. Reproduced from Figure 20 (a). 

 Sekerak [44] found trends in three quantities to be sufficiently repeatable at all operating 

conditions tested to define guidelines for the mode transition in terms of certain criteria. One, the 

ratio of the m = 0 peak (𝑃𝑆𝐷𝑚0
) to the strongest m > 0 peak in the high speed image analysis 

(𝑃𝑆𝐷𝑚𝑚𝑎𝑥
) (see Subsection 2.5.2 for further discussion of spoke modes). Two, the RMS 

discharge current oscillation amplitude (𝐼𝐷) normalized by the mean discharge current (𝐼𝐷̅). 

Three, the normalized difference of the average discharge current at the given operating 

condition (𝐼𝐷̅) from the minimum average discharge current during the magnetic field sweep 
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(𝐼𝐷̅𝑚𝑖𝑛
). Table 2.1 summarizes the conditions determined by Sekerak. In short, the thruster is in 

"global mode" when: (1) the m = 0 peak is at least fifty times larger than all other spoke mode 

peaks in the FASTCAM power spectrum, (2) the discharge current RMS oscillation amplitude is 

at least 15% of the mean value, and (3) the mean discharge current is more than 2% greater than 

the minimum mean discharge current during the magnetic field sweep. Conversely, the thruster 

is in local mode when: (1) the m = 0 peak is less than 10 times the largest spoke mode peak, (2) 

the RMS current oscillation amplitude is less than 10% of the mean, and (3) the mean discharge 

current is less than 2% larger than the minimum mean current. Otherwise, the thruster is in a 

transition region and possibly exhibiting the characteristics of both modes simultaneously or 

alternating between them, and therefore a specific transition point was difficult to define. 

Table 2.1. A summary of the quantitative criteria for defining H6 mode transitions in terms of 

FASTCAM power spectrum peaks and discharge current magnitude and oscillation amplitude 

developed by Sekerak [44]. Reproduced from Table 4.2. 

 

 Unlike Brown and Gallimore [43], Sekerak et al. [10] observed an absence of hysteresis 

when inducing mode transitions by changing operating conditions, meaning the thruster mode 

was a function of operating condition parameters and did not depend on the path taken in 

changing parameters to arrive at the final operating condition. Note that Sekerak induced mode 

transitions by changing magnetic field magnitude while Brown induced them by changing anode 

flow and discharge voltage. It is unknown whether the difference in hysteresis is related to the 

difference in operating conditions tested, the different methods of inducing mode transitions, or 

possibly some other difference between the two campaigns. 

 This subsubsection has introduced the two main operating modes of the H6 and briefly 

described the oscillations that occur in the two modes. Though the breathing oscillations of the 

global or high-current mode are reasonably well understood (see Subsection 2.6.2), the rotating 

spoke oscillation and the processes that lead to a transition from one mode to the other are not as 
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well understood. This deficit and the significantly reduced performance of the global mode 

motivate the development of time-resolved diagnostics to measure the processes at work in the 

two modes and during transitions.  

It is of particular interest to understand the modes and transitions better because, as 

Sekerak [10] notes, the transition tends to occur near the setting with an optimal thrust-to-power 

ratio, and small changes over time to the magnetic field or the discharge channel wall could 

potentially change the thruster operating mode. In addition, considering that Brown and 

Gallimore [43] found that the location of the transition changes with auxiliary gas flow, it is 

possible that facility effects could change the operating mode between ground testing and actual 

operation in flight. The initial campaign of the new time-resolved LIF system on the H6 in 

Chapter 7 was designed similarly to the campaign of Sekerak et al [10]. It included a magnetic 

field sweep and measurements of time-resolved LIF, high-speed video, and discharge current 

oscillations to characterize the change in ion dynamics during a thruster mode transition. 

2.6.1.3 Similar Mode Transitions in Different Hall Thruster Designs 

 Similar transitions and modes have been described by a number of authors for a variety 

of Hall thruster designs. For example, an ATON Hall thruster, having completely different 

neutral gas distribution and magnetic field shape with a null point upstream of the exit plane 

[47], was found to have two very similar modes [48]. The mode corresponding to "low-current" 

mode was called "swallow tail" mode due to the prominence of two points near the edges of the 

plume, and "high-current" mode was called "spike mode" due to the prominence of the spike 

along the thruster centerline; both features are also easily visible in the H6 in Figure 2.8. Many 

other features that parallel the findings of Brown and Sekerak in the H6 were reported, such as a 

69% larger divergence angle in spike (high-current) mode, and light emission from deeper within 

the channel in swallow tail (low-current) mode. They concluded that the visual difference was 

largely due to the interaction of intersecting ion jets from different parts of the channel, which 

occurs further downstream for swallow tail mode, where there is less light emission. 

 Yamamoto found a "thruster with anode layer" (TAL) (see Subsection 2.3.4) to have 

distinct modes and transitions [49]. Similar to Sekerak's findings, "regime 1" at relatively low 

magnetic field strength featured high amplitude discharge current oscillations, while "regime 2" 

at slightly higher magnetic field magnitude featured a slightly smaller mean discharge current 

and greatly reduced oscillation amplitude. Regime 2 was also similar to low-current mode with a 
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maximum in thrust efficiency and minima in plume divergence and wall erosion rate. Yamamoto 

also explored "regime 3" at higher magnetic field, where the mean discharge reaches a constant 

value as a function of magnetic field, while discharge current oscillations again reach large 

amplitude and discharge extinguishes at a critical magnetic field value, similar to the high 

magnetic field regimes described by Tilinin (see 2.6.1.1). 

These examples demonstrate that qualitatively similar operating modes and transitions 

are found across a variety of Hall thruster designs. Though the details of the designs surely affect 

many quantitative differences, this is strong evidence that the physical phenomena associated 

with these modes and transitions are common to Hall thrusters in general, regardless of the 

details of the thruster design. 

2.6.2 Breathing Mode Theory and Simulation 

 A Hall thruster discharge often exhibits low-frequency oscillations in the band of 10-30 

kHz. These oscillations are historically called "loop" or "circuit" oscillations in Russian literature 

because they are highly sensitive to the properties of the power supply and can be damped by 

appropriate power supply filtering [4], [50]. Though known since at least the 1970s, significant 

research into the physical mechanism involved has only been carried out since the 1990s [50]. 

Broadly speaking, the breathing mode involves the discharge current and plasma density 

oscillating in phase and an out-of-phase oscillation in neutral density. 

 There are two competing interpretations as to the mechanism that sets the frequency. One 

is an ionization instability where the oscillation is generally considered to be a standing wave 

and the frequency is set largely by the ionization rate and densities alone (independent of particle 

transport), and the other is a convective interpretation that the frequency is determined by the 

time neutrals take to refill the discharge channel after an ionization event depletes the neutral 

density. 

 The simplest and most well-known ionization instability theory of the breathing mode 

dates to the predator-prey model of Fife et al. [51] in the late 1990s. The model takes a simple 

0D perspective (it considers the ionization zone as a box of length L with plasma parameters 

varying only in time and not space). Ions are all created within the volume by ionization and 

leave at the nominal ion velocity Vi. neutrals enter the zone at the nominal neutral speed Vn and 

ionization is the only loss mechanism. The conservation equations for ion density ni and neutral 

density nn under these conditions are: 
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where ξ(Te) is the rate constant for electron impact ionization, which is a function of electron 

temperature. These equations can be linearized and combined into the form of an undamped 

harmonic oscillator with the frequency: 

2 2

,0 ,0 ,0 ,0 ,02 ( ) /e i n i i nf T n n n n n     ,    (2.6) 

where 𝑛̇𝑖,0 , 𝑛𝑖,0, and 𝑛𝑛,0 are the equilibrium values for ionization rate, ion density, and neutral 

density, respectively. 

The model provides testable predictions useful for comparing with both numerical 

models and experiments. Fife compared the model's prediction with one of the first numerical 

models to use a physical model for enhanced electron mobility via wall interactions instead of a 

nonphysical tunable parameter for anomalous mobility. The predicted frequency was close to the 

result of the numerical model, but there was a significant discrepancy from experimental results 

that was thought to be due to the numerical model under-predicting electron temperature. 

Boeuf and Garrigues [52] simulated low-frequency oscillations for the SPT-100 by 

treating ions with a collisionless Vlasov equation and electrons as a fluid. The most physical 

results were found by adding a conductivity term from electron-wall collisions as well as a 

corresponding electron energy loss term from wall collisions. Without conductivity from 

electron-wall collisions, the classical conductivity alone is not large enough where the neutral 

density is low. Furthermore, without an energy loss term from wall collisions, the ionization rate 

is always too high, leading to ionization deep inside the channel. Bohm conductivity was also 

tried but was not able to match experimental results as well as the model with electron-wall 

interactions.  

The electron-wall collision model was not completely from first principles and included a 

tunable parameter, to which the oscillations were highly sensitive. Even so, the sensitivity of the 

results to electron-wall interactions and the qualitative agreement with experimental results 

reinforce the notion that Hall thruster operation is strongly influenced by electron-wall 

interactions. Further support for that general conclusion is that Gascon et al. [53] observed 
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changes to thruster operation depending on wall material. In addition, Hofer et al. [33] found that 

magnetic shielding, which greatly reduces plasma-wall interactions, significantly changes the 

power spectral density of the discharge current and increases oscillation amplitude by 25%, 

among other changes to thruster operation. The Boeuf and Garrigues model was tested 

extensively under a variety of conditions. Changes in magnetic field magnitude and discharge 

voltage influenced oscillations. In general, either a stable regime with no oscillations or an 

unstable regime with low-frequency oscillations near 15-20 kHz were found, depending on the 

combination of magnetic field magnitude and discharge voltage. The frequency was an 

increasing function of discharge voltage but a decreasing function of magnetic field. It was 

particularly sensitive to the magnetic field profile. A field profile with a small tail of less than 

10% that extends nearly to the anode allowed oscillations of a different character near 80 kHz. 

 At the operating conditions where the 15-20 kHz oscillations were found, the model 

predicted a periodic depletion and replenishment of neutrals near the exit plane. The high 

electron temperature and ionization rate quickly ionizes the neutral flow in this region, and the 

front of neutral flow recedes upstream. The neutral depletion causes the ionization rate and ion 

density to fall. With a low ionization rate, the neutral front is then allowed to return near the exit 

plane, which makes another large ionization burst possible. This cycle was described as 

"breathing," apparently the first use of the term for low-frequency Hall thruster oscillations. This 

explanation is similar to the predator-prey interpretation, but a key difference is that Boeuf and 

Garrigues emphasized the role of neutral flow, suggesting the oscillation frequency should scale 

neutral flow speed, or gas temperature. The numerical simulations also predicted increasing 

frequency with gas speed. This contrasts with the Fife model that neglects flow entirely with a 

0D model. The most relevant results reported by Boeuf and Garrigues that could be testable by 

time-resolved LIF would be the standing wave of ion density and a slight oscillation in the 

location of the electric field, which are reproduced in Figure 2.10. 
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Figure 2.10. Examples of the standing wave in ion density (left, in units of 1012 cm-3) and slight 

oscillation in the position of the electric field (right in units of V) from the numerical model of 

Boeuf and Garrigues [52]. Reproduced from Figures 9 and 10. 

 Barral and Ahedo [50] developed a more rigorous analytical model around the mid-

2000s. The mathematically complicated details of the theory need not be reproduced here1, but it 

is a self-consistent model starting from 1D fluid equations and does not use imprecise 

parameters, such as the ionization zone length L. To work toward an analytical prediction of 

frequency, a number of successive approximations are applied. The fluid equations are 

approximated by a "quasi-static" model in which terms relating to change of the ion distribution 

are assumed negligible, and the QS model is then linearized. A further approximation for short 

wavelength oscillations was shown to reproduce the frequency from a numerical simulation. 

 The main advantage of the Barral model is that it starts from first principles and does not 

assume either the standing wave or traveling wave interpretations. The theory bares out that there 

are both standing wave and traveling wave components in the solution, but only the standing 

wave determines the oscillation frequency to first order [50], [54], contradicting the convective 

interpretation. To first order, Barral et al. [54] showed that the frequency has the same scaling as 

the Fife model, leading to an interpretation that the Barral model is a more complete version of 

the simple predator-prey model. A shortcoming of the theory is that the analytical form of the 

frequency depends on a "discharge current sensitivity function" that has no analytical form and is 

                                                 
1 And the author will not feign a complete understanding of the complicated mathematical details. 
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calculated in the model, but is unknown for a real thruster, hence the theory cannot be directly 

compared with experiments. 

 Hara et al. [55] investigated how the electron transport and energy balance are affected 

by the mode transition between breathing oscillations and a stable mode using a 1D direct kinetic 

model treating ions and a fluid model for electrons, an approach known as a hybrid-direct kinetic 

simulation. Firstly, the ionization cost, or the ratio of energy lost to all processes compared to the 

energy lost by ionization, is somewhat reduced near the anode in the breathing mode. In other 

words, ionization is suppressed near the anode in the stable mode. Secondly, the energy balance 

changes. Increasing magnetic field magnitude tends to reduce the axial electron drift velocity, 

reducing the electron energy loss rate from convection near the exit plane. The reduced kinetic 

energy from axial and azimuthal drift contributes to a higher thermal energy in the stable mode. 

The higher temperature leads to the formation of a space charge saturated sheath and causes 

much larger energy loss to the wall than with the normal sheath that occurs in the breathing 

mode, and wall loss replaces convection as the main balance to Joule heating. These changes are 

visualized in Figure 2.11. These findings that the mode transition is associated with changes in 

electron transport and energy balance suggest that the stability or excitation of the breathing 

mode may actually be determined by the dynamics of the electrons, despite the fact that the 

breathing mode is ostensibly an instability between the heavy species. 
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Figure 2.11. Simulations show that Joule heating is balanced mostly by convection in the 

breathing mode (a) but by wall loss in the stable mode (b) [55]. Reproduced from Figure 11. 

 Hara et al. [56] further investigated the stability conditions of low-frequency oscillations. 

He pointed out that the oscillation amplitude of the predator-prey equations is constant and 

determined only by the initial conditions, and so cannot be used to study stability conditions. A 

0D analytical model with state variables (densities, temperatures, velocities) averaged over the 

discharge channel can be written as: 

,

int

2
( )

( ) ( ) ,

i i wi i
i e i n

ch

n n
n e i n

ch

nUn V
n T n n

t L R

n V
n n T n n

t L








  




   



    (2.7) 

where nint is the neutral density at the anode flowing into the discharge channel, Ui,w=(eTe/Mi)
1/2 

is the ion acoustic speed, and RΔ is the channel width. This model is similar to the original Fife 

equations, but note that it is more correct with a constant incoming neutral flow from nint, with 

ion diffusion to the channel walls included, and with the ambiguous ionization length L replaced 
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with the channel length Lch. The model considers parameters averaged over the length of the 

channel. 

 Hara showed that oscillations of these equations are unconditionally stable (always 

damped) if the electron temperature is constant because the constant neutral flow damps 

oscillations. They can be made unstable if the ionization rate constant, or equivalently electron 

temperature, oscillates. Simulations showed that the oscillation in ion density is still damped 

when then ionization rate constant has an oscillation amplitude of 0.1%. Surprisingly, a linear 

mode with an ion density oscillation amplitude about 50% of the average resulted from an 

oscillation amplitude of only 1% in the ionization rate. Surprisingly, an oscillation amplitude of 

only 1% in the ionization rate resulted in a linear mode with oscillation amplitude of 50% of the 

average value in ion density. A nonlinear mode with amplitude much larger than the average ion 

density resulted from only 5% peak-to-peak amplitude in ionization rate (cf. Figure 10 in Ref. 

[57]). It was thus argued that an oscillation in electron temperature could determine the 

stability/excitation of low-frequency oscillations. Note that oscillations in electron temperature 

are known to be associated with the breathing mode. Lobbia measured an electron temperature 

oscillation in both the BHT-600 [7] and X2 [58] Hall thrusters well over the 1% level of relative 

oscillation amplitude. 

 To further investigate the effect of electron temperature, an electron energy equation and 

ion momentum equation were added to the system of equations. It is difficult to derive analytical 

solutions to the complete system of equations, but numerical simulations showed that the growth 

rate generally increased if either discharge voltage or anode mass flow rate were increased, a 

result that he noted was in qualitative agreement with the experimental findings of Sekerak that 

the stable "local" mode occurred in a narrower range of magnetic field at higher discharge 

voltage and anode flow rate. 
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Chapter 3 

 

Laser-Induced Fluorescence 

 

When God said “Let there be light” he surely must have meant perfectly coherent light. 

– Charles Townes  

 

 This chapter contains the necessary information to understand laser-induced fluorescence 

measurements. Section 3.1 discusses the basic principles of how LIF measurements work in 

terms of pumping a transition with the laser and collecting fluorescence light. Second, Section 

3.1 touches on how a low signal-to-noise ratio requires typical LIF experimental setups to 

average-out time-resolved information. Section 3.2 describes the details of line broadening 

mechanisms. Doppler broadening is the effect enabling measurement of the velocity distribution 

and as such is the most important subsection. Other broadening mechanisms tend to obscure the 

VDF in the LIF profile, but fortunately they are usually negligible for the conditions of this 

dissertation and do not necessarily need to be accounted for (see Subsection 3.2.5). Finally, 

Section 3.3 introduces the other time-resolved LIF techniques that were developed a few years 

before or concurrently with the work of this dissertation. A basic description of how they work, 

their technical capabilities, and some key results are presented as an argument motivating the 

development of a new time-resolved LIF technique.  

3.1 Principles of LIF Measurements 

 Producing laser-induced fluorescence (LIF) is a two-step process. The laser excites an 

electronic transition in atoms or ions of interest from a well populated state (typically a 

metastable or ground state is chosen) to some upper state. By spontaneous emission, the excited 

atoms then decay to a lower state in a characteristic time on the order of nanoseconds and emit a 

photon with energy equal to the energy difference between the two states. This process of 

absorption and subsequent emission of light is called fluorescence.  

The particular transitions used are commonly called the LIF scheme. The scheme is 

called resonant if the same transition is used for both the laser and fluorescence, or called non-
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resonant if different transitions (and therefore different wavelengths) are used. Non-resonant LIF 

is generally desirable to avoid possible interference from collected laser light.  

 In this dissertation, we use a common three-level system for LIF experiments on singly-

charged xenon (Xe II) in Hall thrusters. The laser excites the 5d2F7/2 − 6p2D5/2
o  transition at 

834.7 nm (in air). Ions in the upper level quickly decay via the 6s2P3/2 − 6p2D5/2
o  transition, 

fluorescing at 541.9 nm (in air). The laser-excited transition is highlighted in red and the 

fluorescence transition is highlighted in green in a partial Grotrian diagram of Xe II energy levels 

and transitions in Figure 3.1. The lifetime of the upper state is between about 7 and 9 ns [59]. 

The lifetime is of particular interest for time-resolved measurements because the excitation and 

fluorescence processes set a fundamental limit on the time resolution possible with a particular 

LIF scheme. The transitions used are attractive because (1) the transition is easily accessible by 

diode lasers, (2) there is a high branching ratio to the 541.9 nm transition, and (3) the line is 

narrow enough to allow a reasonable resolution of the VDF (see the discussion of hyperfine and 

isotopic splitting in Subsection 3.2.2 and the lineshape in Subsection 3.2.5). 

 

Figure 3.1. Partial Grotrian diagram of Xe II energy levels and relatively strong transitions 

between them. The laser transition at 834.7 nm is highlighted in red and the fluorescence 

transition at 541.9 nm is highlighted in green. Note energy is in wavenumbers relative to the Xe 

II ground state. Modified from FIG. 2 of reference [60]. 
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If not in saturation, then the LIF signal is approximately proportional to the laser intensity 

and to the density of ions in the lower state of the laser transition (see Subsection 3.2.4 and 

Equations (3.14) and (3.15)). The background light from spontaneous emission excited by 

electron impact excitation typically dominates the laser-induced fluorescence signal (see 

Subsection 5.5.2). Collected light is filtered within some wavelength band by a monochromator 

or other band-pass filter to remove the background from lines far from the laser transition. The 

pass band must be wide enough to pass the Doppler shifted fluorescence without distortion from 

variations in gain as a function of wavelength. Background still dominates even after wavelength 

filtering within about 1 nm, necessitating some method of signal recovery.  

A typical time-averaged experiment modulates the beam with an optical chopper at a 

frequency on the order of kilohertz, thereby modulating the LIF signal. The modulated signal 

amplitude can then be recovered from the noise using a lock-in amplifier. The lock-in amplifier 

averages over a length of time proportional to the time constant setting, which is typically 

between 100 ms and several seconds for the conditions of an LIF experiment in a Hall thruster. 

Time-resolved information about oscillations on the order of kilohertz or more is necessarily lost.  

3.2 Line Broadening Mechanisms 

 If the Doppler-free lineshape were a Dirac delta function, the measured LIF profile would 

correspond exactly to the velocity distribution function (VDF) due to Doppler broadening. In 

reality, there are many other broadening mechanisms that can significantly influence the LIF 

profile and may need to be taken into account. The unsaturated LIF profile is a convolution of 

the Doppler lineshape with all other line broadening mechanisms (e.g. lifetime broadening, 

hyperfine structure, isotopic shifts) as well as with the laser frequency profile [46], [61]–[64]:  

 ( ) ( ) ( ) ( )LIF D La         , (3.1) 

where 𝜑𝐿𝐼𝐹(𝜈) is the LIF profile as a function of frequency, a(ν) is the Doppler-free lineshape, 

sometimes known as the point spread function or the kernel, 𝜑𝐷(𝜈) is the Doppler lineshape, and 

𝜑𝐿(𝜈) is the laser frequency profile. The Doppler-free lineshape a(ν) is itself a convolution of the 

contributions primarily from hyperfine and isotopic splitting and natural broadening [62]. The 

laser frequency profile has a negligible width of about 1 MHz. The  symbol denotes 

convolution, a mathematical operation on two functions that generally “mixes” the two functions 

(see Equation (4.14)).  
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 In general, the Doppler lineshape must be recovered from the LIF profile by 

deconvolving the other broadening processes out of the LIF profile [62], [65]. In practice, the 

convolution of the VDF with the kernel representing other broadening mechanisms significantly 

broadens the LIF profile only if the width of the kernel is relatively close to the width of the LIF 

profile. This is seldom the case since Doppler broadening tends to be the dominant broadening 

mechanism of the LIF profile, as will be discussed in the following subsubsections.  

 The following subsections cover the main sources of line broadening that are relevant to 

this dissertation. Doppler shift and broadening is the effect that we exploit to measure the 

velocity distribution (Subsection 3.2.1). Hyperfine and isotopic splitting (Subsection 3.2.2) and 

lifetime broadening (Subsection 3.2.3) are the main fundamental sources of the line broadening. 

If the laser power is set too high, the population will saturate and power broadening will distort 

the line (Subsection 3.2.4). Finally, Subsection 3.2.5 shows empirical measurements of the 

lineshape and argues that deconvolution is not necessary for the purposes of this dissertation. 

Pressure broadening and Stark broadening are neglected because they tend to be important at 

higher heavy particle density and electron density [66], [67]. Huang reviewed data in the 

literature and estimated that stark broadening for the Xe II 541.9 nm transition is only 20 MHz 

[68] for an electron density of 1019 m-3, a typical maximum electron density in the H6 Hall 

thruster [69]. 

3.2.1 Doppler Shift and Broadening 

 The Doppler shift leads to a shift in the resonance frequency of the electronic transition 

excited by the laser if atoms are moving relative to the laser source. For a nonrelativistic ion 

velocity 𝑣⃗ and a laser of frequency L  in the lab frame with a unit wave vector 𝑘̂, the change in 

the laser frequency observed in the ion frame is: 

 ˆ k
L L

vv
k

c c
       

, 
(3.2) 

where 𝑣𝑘 is the projection of the velocity along the laser beam and c is the speed of light. Since 

the laser frequency is approximately the transition frequency, Equation (3.2) implies a handy 

rule: each gigahertz of Doppler detuning corresponds to a velocity (m/s) of nearly the same 

numerical value as the transition wavelength (nm). 
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 The frequency of the laser at which excitation and fluorescence occur then gives 

information about the velocity distribution of the ions via the Doppler shift. If fluorescence 

occurs at a given laser frequency in the lab frame 𝜈𝐿, then the Doppler-shifted laser frequency 

observed in the ion frame equals the zero-velocity transition frequency for the ions that 

fluoresce: 
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where 𝜈𝑡𝑟𝑎𝑛𝑠 is the zero-velocity transition frequency. This relationship implies a one-to-one 

transformation between a given laser frequency and the velocity of a group of ions that 

correspond to that frequency: 
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Hence, an LIF experiment scans a range of laser frequencies near a particular transition 

and measures the LIF signal profile as a function of laser frequency. The LIF signal at each 

frequency is essentially sampling the population of ions at the corresponding velocity. The 

measured Doppler lineshape in laser frequency 𝜑𝐷(𝜈𝐿) maps directly to the velocity distribution. 

Assuming the Doppler lineshape 𝜑𝐷(𝜈𝐿) is integral normalized, the velocity distribution is: 
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The multiplicative factor on the right hand side comes from imposing the normalization that the 

integral over both distributions equals unity and the change of variable in the integral. Though 

Equation (3.5) gives the relationship to the formal definition of the 1D velocity distribution, all 

velocity distributions shown in this dissertation are actually normalized with a peak value of one 

for ease of interpreting the experimental results. 

 The relationship between the Doppler shifted/broadened LIF lineshape and the velocity 

distribution is strongly related to the discussion of Doppler broadening in many spectroscopy 

texts (e.g. [61], [70]). In the usual development, a Maxwell-Boltzmann velocity distribution is 

assumed and the resulting broadening of the emission lineshape from the Doppler shift is 
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calculated. Here we measure the absorption lineshape with LIF and infer the velocity distribution 

that lead to it, assuming that Doppler broadening is the only broadening mechanism responsible 

for the measured excitation lineshape. 

 Note that the Doppler shift is only observed for the projection of velocity in the direction 

of the laser wave vector, so the LIF profile corresponds to the projection of the ion velocity 

distribution along the wavevector. In other words, if we define a coordinate system with the laser 

in the x direction, then the Doppler broadening corresponds only to the one-dimensional velocity 

distribution: 

 
( ) ( , , )x x y zf v f v v v dydz

 

 

   , (3.6) 

where 𝑓(𝑣𝑥, 𝑣𝑦 , 𝑣𝑧) is the general velocity distribution from kinetic theory. Orthogonal laser 

beams can give the 1D velocity distribution in all three dimensions, but the information about 

how velocity in one dimension is related to velocity in another dimension is lost. Consider, for 

example, the intersection of two ion beams that together produce two distinct peaks in both x and 

y velocity projections. With the two 1D VDFs, the information about which peak in the x 

projection corresponds to the same ions as which peak in the y projection is lost. 

 This subtlety is important to keep in mind in interpreting LIF data, but is not usually 

important for electric propulsion thrusters, where there is usually only one ion population at a 

given point in space and time. Even for special cases where more than one ion population exists, 

such as the intersection of ions from all sides of the annulus at a Hall thruster centerline, the 

origin of the main features of the LIF profile can be generally understood without a direct 

measurement of the general velocity distribution (see the discussion of Fig. 2 in [71]). In that 

example, however, a measurement of the full velocity distribution might help explain the origin 

of the ions with low radial speed at the thruster centerline. It is possible to infer the full velocity 

distribution from LIF data by using tomographic reconstruction, but it requires LIF profiles in 

more than three directions, and a sophisticated optical setup inside the chamber [72]. 

3.2.2 Hyperfine and Isotopic Splitting 

The most significant contribution to the Doppler-free lineshape comes from hyperfine 

and isotopic splitting. Xenon gas contains 9 stable isotopes in the abundances listed in Table 3.1. 

The total nuclear spin is zero (quantum number I = 0) for the seven isotopes with an even 

number of nucleons. The odd-numbered isotopes, however, have a non-zero total nuclear spin 
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quantum number of I = ½ for Xe-129 and I = 3/2 for Xe-131. The coupling of the total electron 

spin and total orbital angular momentum gives rise to the fine structure, a splitting of the energy 

states for different values of the total electron angular momentum quantum number J. Similarly, 

the electromagnetic coupling of the total nuclear spin and total electron angular momentum leads 

to hyperfine splitting different states of the total angular momentum quantum number F [73].  

Table 3.1. Xenon isotopic abundance in percent from reference [28]. 

Isotope 124 126 128 129 130 131 132 134 136 

Abundance 0.0096 0.0090 1.919 26.44 4.075 21.18 26.89 10.44 8.87 

 

The total angular momentum quantum number F can take values in the range: 

 , 1, ... , 1,F I J I J I J I J       . (3.7) 

The selection rule for allowable transitions between upper and lower states with total angular 

momentum quantum numbers FU and FL is that F must change by at most 1 up or down. The one 

exception is that a transition between states with FU = FL = 0 is forbidden: 

 [0, 1], 0 0U L U LF F F F F        . (3.8) 

The shift in energy due to nuclear spin coupling is given by the following [73]: 
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 (3.9) 

where C and D are functions of the quantum numbers of the states and A and B are known as the 

magnetic dipole and electric quadrupole constants, which are different for each transition and 

isotope. For the 5d2F7/2 − 6p2D5/2
o  transition, this energy splitting gives rise to 3 distinct 

components for Xe-129 and 9 for Xe-131. 

 The seven even-numbered isotopes, having no total nuclear spin (I = 0), do not have the 

splitting described above from nuclear spin coupling. Differences in the mass and volume of the 

different isotopes, however, do lead to line splitting among the even-numbered isotopes and a 

further shift that is the same for the line components of each odd-numbered isotope. Then there 

are a total of 19 different line components for the 5d2F7/2 − 6p2D5/2
o  transition. The line 
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splitting can be modeled as a series of Dirac delta functions as shown on the left frame of Figure 

3.3. The “normal mass effect” is due to movement of the nucleus since the nucleus is not 

infinitely heavy relative to electrons [73]. The “specific mass effect” is due to correlations 

between outer electrons. Mass effects tend to dominate for light atoms, while volume effects 

dominate for heavy atoms. With moderate weight, xenon is affected by both. The volume effect 

occurs because heavier atoms have a larger nuclear radius, into which the electron charge 

distribution can penetrate, changing the interaction from just the Coulomb field. Each isotope 

and transition therefore has a different isotopic shift. These effects can be on the same order of 

magnitude as hyperfine splitting. Calculating isotopic shift is difficult for complicated atoms like 

xenon, and the shift is most often measured experimentally.  

 The relative intensity of line components for the even isotopes is simply proportional to 

the relative abundance of the isotopes. The relative intensity of the nuclear spin-splitting line 

components is also proportional to the abundance of the isotope to which they belong, as well as 

to the following factors for a J → J – 1 transition [74]: 
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(3.10) 

 If the hyperfine splitting constants are known, then the contribution to the lineshape from 

hyperfine splitting can be modeled and deconvolved out of the LIF profile. Unfortunately, the 

constants are not full known for the 5d2F7/2 − 6p2D5/2
o  transition. If unknown, then the 

hyperfine contribution to the lineshape can be estimated from measurements as shown in 

Subsection 3.2.5. 

3.2.3 Lifetime Broadening 

Lifetime broadening, or natural broadening, is one mechanism that ensures that all atomic 

lines have finite width. It can be intuitively understood by considering the Heisenbug uncertainty 

principle in quantum mechanics. Just as position and momentum are complementary observables 
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that cannot together be known to an arbitrary accuracy, so are energy and time. The product of 

their uncertainties has a lower bound: 

 

2
E t  

, 
(3.11) 

where ΔE is the uncertainty in energy and Δt is the uncertainty in the time interval during which 

energy is measured (the standard deviations of the distributions). For stationary states with small 

relative energy uncertainty, the equality holds. The exponential distribution, which describes the 

probability distribution of the time between events, has uncertainty equal to the average:   

 
pt   , (3.12) 

where τp is the radiative lifetime of the state p, which is the inverse of the sum of all rate 

constants (Einstein coefficients) for transitions out of state p. Because the energy of the transition 

is the difference between the initial and final energy levels, the uncertainty in the photon energy 

depends on the lifetime of both the upper and lower states. The lineshape from this process as a 

function of angular frequency for a transition from state p to state q is Lorentzian with a half 

width of Δω where [70]: 
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 (3.13) 

The lifetime of the upper state is about 7 to 9 ns [59], and the lower state is metastable 

and can be considered infinite relative to the lifetime of the upper state. Taking the lower bound 

for a worst case estimate of the natural linewidth in ordinary frequency results in Δν = 23 MHz, 

or about 19 m/s in velocity. Lifetime broadening is therefore negligible for the typical LIF 

measurement in a Hall thruster. 

3.2.4 Fluorescence Signal Saturation and Power Broadening 

At low laser power, the fluorescence signal is proportional to the input laser power. This 

trend does not continue indefinitely; the fluorescence signal eventually reaches an asymptotic 

limit and becomes independent of the laser power. More importantly for LIF measurements of 

the VDF, this saturation also causes an apparent broadening of the spectral lineshape, called 

saturation broadening or power broadening, which is another influence to the LIF profile that 

may need to be removed to measure the VDF. As we will see, Power Broadening is a subtle 
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effect that is difficult to fully account for in general, and therefore it is usually preferable to 

avoid saturation rather than treat it.  

The concept of saturation can be readily understood by considering a two-level system. 

Starting from a simplified rate equation for the density of the upper state population, we have 

[61]: 
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    , (3.14) 

where B12, B21, A21 are the Einstein coefficients for photon absorption, stimulated emission, and 

spontaneous emission for the transition between the states 1 and 2, Q21 is the quenching rate 

constant, I0 is the laser intensity, and 𝑛1(𝑡) is the lower state density. With the simplifying 

assumption of a constant number of particles 𝑛0 = 𝑛1(𝑡) + 𝑛2(𝑡), the steady-state solution is: 
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Notice that at low intensity, specifically when the quenching and spontaneous emission constants 

dominate the denominator, the upper state population is proportional to laser intensity. At high 

intensity, when the term with photon absorption and stimulated emission dominate the 

denominator, the upper state population (and therefore fluorescence intensity) is invariant to 

laser intensity.  

The saturation intensity is defined as the laser intensity corresponding to an upper-state 

population or fluorescence intensity of half of the limiting value. The above equation can be re-

written in the form of: 
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 (3.16) 

where 𝐼𝑠𝑎𝑡 is the saturation intensity and 𝑔1 and 𝑔2 are the degeneracies of the two levels. The 

dimensionless ratio of laser power to saturation intensity is called the saturation parameter. The 

saturation intensity can depend not only on constants but also on the conditions of the 

experiment via the quenching rate. The definition of saturation intensity in Equation (3.16) is 

intuitive because the spontaneous emission and quenching rate constants make it harder for the 

system to reach the ultimate upper-state density. Conversely, the photon absorption rate constant 
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makes it easier, reducing the laser intensity necessary for saturation. It can be shown by an 

argument equating the rate equation formalism to collisional cross section formalism that the 

saturation intensity essentially corresponds to one photon per ion per lifetime of the upper state 

[75]. In other words, laser power near and above the saturation intensity is less efficient at 

producing LIF because many photons are incident on already-excited ions. 

  In measuring the LIF profile, the narrow-bandwidth laser (~1 MHz) is applied to the line 

not only at the peak but sequentially swept across the lineshape. The laser will be less effectively 

absorbed and not saturate the population as easily at the edge of the lineshape than at the center. 

Hence, for a narrow-bandwidth laser applied at some arbitrary frequency, the saturation intensity 

actually varies as a function of laser frequency inversely proportionally to the lineshape [62], 

[75]. As laser power rises, the peak of the lineshape will saturate first and stop responding as 

strongly to the laser, and therefore the edges of the LIF profile will have disproportionately high 

signal, leading to an apparent broadening of the line.  

The specifics of the broadening depend on the unbroadened lineshape. The traditional 

treatment of power broadening for a Lorentzian lineshape transforms it into another Lorentzian 

function with the width broadened by [75]: 

 
01 /b sat aI I     , (3.17) 

where ∆𝜔𝑏 is the broadened width and ∆𝜔𝑎 is the unsaturated width. Smith developed a method 

to model the power broadening for an arbitrary lineshape and to measure the unbroadened 

lineshape [62]. Figure 3.2 shows the simulated power broadening of the Xe II 5d4D7/2 −

6p4P5/2
0  transition. 

Huang pointed out that removing the effect of saturation broadening from the LIF profile 

can be very complicated because the saturation parameter will vary with the laser intensity 

profile in space [68]. If it is a Gaussian beam, then the center of the beam/interrogation volume 

will have a higher saturation parameter than at the edges, and removing the effects of saturation 

broadening would require detailed measurements of the beam profile and interrogation volume. 

He concluded that it would be best to avoid saturation rather than treat it.  

Fortunately, saturation is not typically a problem for the laser power, beam waist, 

transition, and vacuum facility used in the experiments of this dissertation. Beam power is often 

about 10 mW at the interrogation volume with a beam diameter about 1 mm. Saturation was 
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checked during some of the cathode experiments of this dissertation by measuring the peak 

signal level as a function of laser power using neutral density filters. The plot of fluorescence 

signal versus laser power was in the linear regime. The saturation test data are not presented here 

because it is not important for the cathode campaign since it was solely for validating the system 

and the actual lineshape was not of interest. Unfortunately, saturation tests only provide an ad 

hoc check that would have to be redone with each experiment unless carefully calibrating for 

changes to the laser power in the chamber, the beam size/shape, and the background pressure. 

Time did not allow for saturation tests with the H6 campaign, but Huang et al. [45] performed a 

saturation study with the same thruster, vacuum facility and similar optics as this dissertation and 

did not detect saturation. 

 

Figure 3.2. A simulation of the power broadening of the Xe II 5d4D7/2 − 6p4P5/2
0  transition for a 

variety of laser power levels. The first profile where the side peak is noticeably higher 

corresponds to max(𝐼0/𝐼𝑠𝑎𝑡(𝜈)) = 0.79, and the first profile with a significantly broadened main 

peak is at max(𝐼0/𝐼𝑠𝑎𝑡(𝜈)) = 7.92. Reproduced from [62]. 

3.2.5 Lineshape of the Transition 

With known values for isotopic shift and hyperfine splitting constants, the kernel can be 

modeled and deconvolved out of the LIF profile by a method such as developed by Smith [62]. 

Alternatively, the kernel can be measured empirically with a source whose VDF shows only 

minor Doppler broadening [46] or, more accurately, by a Doppler-free method [65]. The 

hyperfine constants for the 5d2F7/2 − 6p2D5/2
o  transition were not known until recently, and 

measurements are still not entirely accurate or complete, particularly for the isotopic splitting 

[67]. The difficulty in measuring the constants for this line is that many line components 



 

51 

 

completely overlap under only natural broadening and slight Doppler broadening. The FWHM of 

a slightly Doppler broadened line used to calculate hyperfine constants was about 750 MHz (left 

panel in Figure 3.3) [67], while the FWHM of the Doppler-free lineshape from another study 

was 440 MHz (right panel in Figure 3.3) [65]. These widths correspond to 626 m/s and 367 m/s 

in speed. 

 

Figure 3.3. Left: A slightly Doppler broadened lineshape of the 5d2F7/2 − 6p2D5/2
o  transition 

has a FWHM of 750 MHz (reproduced from [67]). Right: the Doppler-free lineshape measured 

in another study has a FWHM of 440 MHz (reproduced from [65]). The widths are only 626 m/s 

and 367 m/s in speed. 

 Though the narrow lineshape confounds measurement of the hyperfine splitting and 

isotopic shift constants; on the other hand, it is fortunate that the narrow lineshape rarely 

significantly affects the VDF measurement. Conceptually, if the kernel is much narrower than 

the VDF then it can be regarded approximately as a Dirac delta function, and the convolution of 

the VDF with a delta function is the VDF (see the definition of convolution in Equation (4.14)). 

The width of the LIF profile is normally well over 1 GHz (a few km/s in speed) at most 

locations. Convolution of such a wide VDF with a kernel of a width about 440 MHz may smooth 

out fine features but does not strongly affect the LIF profile or its width. 

This is true especially since the widths of convolved functions do not generally add 

directly (though they do add for the special case of Lorentzian functions [70]). For example, the 

convolution of two Gaussian functions with widths FWHMG1 and FWHMG2 is another Gaussian 

with the widths added in quadrature [70]: 

 2 2 2

1 2 1 1G G G GFWHM FWHM FWHM   . (3.18) 
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For the example of a very narrow Doppler profile with a width of only 1 GHz and a kernel with a 

width of 440 MHz, the resulting LIF profile is broadened by only 93 MHz if both are Gaussian. 

In other words, the width of the resulting LIF profile would have an error of less than 10% for a 

kernel that is 44% as wide as the Doppler profile (again, assuming that both are Gaussian). This 

error is likely insignificant for most experiments, especially for a time-resolved measurement 

that may have worse SNR than a time-averaged measurement and resolve only about 20 points in 

velocity space. Even for a very narrow profile with a width of 1 GHz, 20 points implies a step 

size of about 50 MHz, almost the magnitude of the broadening. For a more realistic LIF profile 

with a larger width, not only would the broadening be reduced, but the step size between points 

in velocity space would increase, rendering the error undetectable. 

Similarly, Huang et al. [65] concluded that the deconvolution is only significant with the 

H6 for the very narrow LIF profiles found upstream of most of the acceleration and ionization. 

Even there, the difference in the FWHM was less than 10%, though he noted that the error in the 

estimate of temperature could be more than 10%. Hargus and Nakles [46] also found that 

deconvolving an empirically measured kernel is insignificant for the BHT-200-X3. Since 

Doppler broadening alone is the dominant contribution to the LIF profile, some authors using 

this transition report the LIF profile directly as the VDF without deconvolving the kernel 

corresponding to other sources of broadening and splitting [46], [64], [71], [76].  

No deconvolution has been performed in this dissertation; all VDFs are the raw LIF 

profiles. This was a practical decision to avoid overcomplicating the already complicated signal 

processing of the time-resolved technique. As discussed above, time-resolved measurements 

with only about 20 points in velocity space already have a poor resolution in velocity, and 

deconvolution would not help much. In future work with more points and a better SNR, 

however, deconvolution of time-resolved LIF profiles may be necessary to accurately resolve 

features of the VDF since the instantaneous LIF profile can be much narrower than the time-

averaged LIF profile. 

3.3 Time-Resolved LIF Techniques 

 The main difficulty in measuring LIF signal in Hall thrusters is the strong background 

emission that obscures the LIF signal (see Subsection 5.5.2). The background emission makes a 

direct measurement of LIF signal as a function of time impossible and requires any signal 

recovery technique to average over a large amount of data collected over many oscillation 
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periods. An indirect measurement of the time-resolved LIF signal can be possible if the signal 

adheres to certain assumptions that can be exploited by an averaging scheme. This subsection 

provides an overview of the time-resolved LIF techniques that have been used with Hall thrusters 

or related plasma sources to date, as well as a sampling of some key results when relevant to the 

results of this dissertation.  

Some of the advantages and disadvantages of each technique are highlighted in this 

discussion. In particular, note that these techniques generally have limitations to some form of 

periodically repeating oscillation due to the need to average over many cycles of the oscillation 

in some way. This limitation motivates the need for a new TRLIF technique that is capable of 

recovering the signal from nonperiodic oscillations such as undriven/unperturbed Hall thruster 

breathing and spoke oscillations despite averaging over many oscillation periods. Though some 

advantages and disadvantages are mentioned here, a more comprehensive comparison of each 

TRLIF technique, including the new technique developed in this dissertation, is left for Section 

8.1 of the concluding chapter. 

3.3.1 Combination of Phase-Sensitive Detection and Triggered Averaging 

 Perhaps the most straightforward way to modify a time-averaged LIF experiment for 

time-resolved signal recovery would be to reduce the time constant τ of the lock-in amplifier to 

smaller than the normal value for a time-averaged experiment, about 100 ms, which sets the time 

scale over which data are averaged. For reasons we will see in Subsection 4.3.2, the time 

constant τ cannot be made smaller than the laser modulation period, hence a high-speed 

modulator such as an acousto-optic modulator (AOM) must be used instead of a mechanical 

chopper for sub-millisecond time resolution. The signal-to-noise ratio, proportional to √𝜏, will 

quickly become unacceptable as the time constant is reduced, which is why a large time-constant 

is used in the first place. One way to keep a small time constant but improve SNR to an 

acceptable level would be to use a second form of averaging in addition of the phase-sensitive 

detection (PSD) of the lock-in amplifier. For example, an oscilloscope could be set to average 

over a large number of waveforms output from the lock-in amplifier triggered based off of some 

reference signal such as the phase of the discharge current oscillation. 

 The straightforward technique described is essentially the technique developed by Scime 

et al. for use with pulsed plasma sources [77]. They implemented it using only the equipment of 

a normal, time-averaged LIF experiment: a commercial lock-in amplifier, oscilloscope, and a 
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mechanical chopper. The use of the chopper limited time resolution to about 1 ms, and the 

system was later upgraded with an AOM to achieve a better time resolution [78] on the order of 

tens of microseconds.  

 This general technique of combining phase-sensitive detection with a triggered average 

can also be achieved by digitizing raw data from the photomultiplier and applying the PSD and 

triggered average in software in post-processing. That is significant because it is the method of 

the "triggered averaging" technique that will often be used in this dissertation to compare with 

the transfer function averaging method. 

 One advantage of this system is that the phase-sensitive detection that demodulates the 

signal acts as a narrow band-pass filter that rejects much of the noise spectral density before the 

primary averaging process (see Subsections  4.3.1 and 4.3.2). This allows for a trade-off between 

time-resolution and SNR tuned to an appropriate value for the experiment. It generally has a 

shorter acquisition time than techniques that use a triggered average more directly as the only 

form of signal recovery, such as the synchronized photon counting of the following 

subsubsection. Biloiu, reports averaging over only "a few hundred" plasma pulses, but the results 

for a pulsed RF plasma source with LIF operating on an argon line are completely incomparable 

with the results for Hall thrusters operating on a Xenon line. The triggered averaging reported in 

this dissertation for a single-wavelength, 60-s-long dataset averages over about 50 thousand 

triggered waveforms. 

 The main disadvantage of the technique is that it implicitly assumes a repeatable process 

occurs after trigger so that averaging the triggered waveforms together will remove noise and 

recover the signal waveform (see Subsection 4.3.4). While this may be a very reliable 

assumption for pulsed plasma sources, it is not an accurate assumption for most Hall thruster 

oscillations. If triggered averaging is applied to nonperiodic oscillations with a varying period, 

the resulting waveform unphysically decays as the many time series begin in phase at the trigger 

but drift out of phase from each other in time (see Section 6.4). 

3.3.2 Synchronized Photon Counting 

 The first technique used to measure time-resolved LIF in Hall thrusters was pioneered by 

Mazouffre et al. It involves low speed laser modulation (~20 Hz) and a photon counting 

technique that discriminates signal counts from noise by adding (subtracting) counts that were 

collected while the laser is on (off) . The system triggers the averaging at a given phase of the 
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oscillation and counts are added to and subtracted from the time bins over many trigger cycles. 

Hence this technique essentially performs a triggered average over an ensemble of waveforms to 

recover an ensemble average waveform, but it does so over photon counts instead of a digitized 

voltage signal.  

 Since low-frequency Hall thruster oscillations under normal operating conditions are 

nonperiodic, all tests using this technique on Hall thrusters have perturbed the operating 

conditions to force oscillations more amenable to the triggered average. In the initial series of 

papers [79]–[81], the discharge current was periodically cutoff to create a high-amplitude, 

repeatable oscillation (the reignition of the thruster). Periodically cutting the discharge current 

was found to change the average ion VDF [80]. More recently, a low-amplitude, sinusoidal 

perturbation to the cathode keeper potential has been used [82]–[84], which does not change the 

average ion VDF or average plasma parameters [82]. The power spectral density of the discharge 

current is mostly unchanged except for the introduction of a very sharp peak at the driving 

frequency. The discharge current oscillation amplitude is increased. It is unknown how the 

perturbation changes the time-resolved LIF signal other than simply forcing a more periodic 

oscillation and increasing amplitude. 

 The tests using a periodic cutoff of the discharge current found an oscillating mean 

velocity near the exit plane and a front of electric field (calculated from the measured ion VDF) 

propagating from outside the exit plane to slightly upstream [80], [81]. Because the velocity 

spread remained approximately constant, they suggested the ionization zone and acceleration 

zone (E-field) may oscillate together axially in phase, a finding consistent with some simulations 

[52]. The velocity of the front is found to be approximately the neutral speed, taken as evidence 

of the importance of the neutral gas temperature. 

 The discharge stabilization with the keeper potential enabled interrogation of high-

frequency (100 kHz - 1 MHz) oscillations in the ion VDF and electric field [83] and comparison 

of the observed oscillations with simulations of ion transit time oscillations [84]. Ion transit 

oscillations were predicted and found only outside the exit plane in the negative magnetic field 

gradient region. An example ion VDF measured near the exit plane of a 200-W Hall thruster is 

shown in Figure 3.4. High-frequency oscillations were detected in an average over many cycles 

while triggering the averaging based on the low-frequency driving signal of the cathode. This 
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implies that the high-frequency oscillations are controlled by and coherent with low-frequency 

oscillations. 

 

Figure 3.4. Ion VDF measured 4 mm downstream of the exit plane of a 200-W permanent 

magnet Hall thruster [84]. Reproduced from Fig 5. 

 The main advantage of the synchronized photon counting technique is the superior time 

resolution, which is limited by the bin size of the multichannel scaler (100 ns for the references 

in this subsubsection). Observation of the high-frequency oscillations mentioned above may not 

necessarily be beyond the capabilities of other techniques, but the above publications are the first 

to report on such high-frequency oscillations in LIF measurements in Hall thrusters. 

 One disadvantage is the longer acquisition time necessary for a reasonable signal-to-noise 

ratio, on the order of many minutes per laser wavelength. The earlier experiments with the 

discharge current cutoff reported averaging over 1 million cycles, and the later experiments with 

the keeper oscillation reported "hundreds of thousands." The same xenon line is used, but the 

plasma sources and optics are completely different, so this is not directly comparable with the 

number from triggered averaging as a fundamental measure of the averaging efficiency of the 

techniques. Nonetheless, the order-of-magnitude difference in the number of triggers averaged 

does stand out and is likely partially due to the averaging techniques. The improvement factor for 
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the signal-to-noise ratio is analyzed more rigorously in Appendix B, which confirms that the 

SNR rises as the square root of the number of triggers averaged and the square root of the time 

bin size. 

 The necessity to perturb the natural oscillations to create periodic oscillations amenable 

to the triggered average is another main disadvantage. Since this technique is essentially a 

different implementation of the triggered average, the key implicit assumption is that a 

repeatable event occurs at each trigger. Synchronized photon counting certainly is a powerful 

technique that has so far shed more light on Hall thruster ion dynamics than any other TRLIF 

technique. Even so, synchronized photon counting as it has been implemented will not be able to 

recover the TRLIF signal for unperturbed, nonperiodic Hall thruster oscillations. 

3.3.3 Heterodyne TRLIF Signal Recovery 

 A heterodyne technique was developed by Diallo et al. during the time of this dissertation 

work [11], [85]. It does not involve a triggered average, but nonetheless the key assumption of 

the heterodyne technique is that the oscillation is periodic at some frequency. An arbitrary 

periodic signal can be decomposed into a Fourier series that includes components only from the 

oscillation frequency and its harmonics. The heterodyne technique involves injecting the laser at 

some modulation frequency and then using a normal lock-in amplifier to recover the heterodyne 

signal at a frequency of 𝑛𝜔𝐷 ± 𝜔𝐿, where 𝜔𝐷is the driving frequency (or natural frequency of at 

least quasi-periodic oscillations), 𝜔𝐿is the laser modulation frequency, and n is the order of the 

frequency component collected.  

 In the reported experiments to date, the anode potential was driven at the peak frequency 

of the natural breathing oscillations, forcing more periodic oscillations. The system was able to 

reconstruct the time-resolved ion VDF based on the zero and first order components. The results 

generally bear a resemblance to ion VDFs measured with the synchronized photon counting 

technique and the measurements of this dissertation in Chapter 7. Figure 3.5 shows an example 

of a reconstructed VDF at the exit plane of a cylindrical Hall thruster (see Subsection 2.3.4). 

Similar to the low-field condition of the H6, there is a broad oscillation with a weak low-energy 

tail, and the signal briefly collapses to the noise floor. 



 

58 

 

 

Figure 3.5. The time-resolved ion VDF at the exit plane of a cylindrical Hall thruster, 

reconstructed to second order in the harmonic decomposition [11]. Reproduced from FIG. 4. 

 One advantage of this technique is that it can be performed with essentially the same 

equipment as a standard time-averaged LIF experiment in a slightly different configuration. The 

laser is modulated at a low frequency with a chopper, and a lock-in amplifier recovers the 

heterodyne signal of the Fourier frequency components instead of the time-averaged RMS signal 

amplitude at the frequency 𝜔𝐿.  

 Another advantage is that the Fourier series components for each laser wavelength can be 

measured in about the same acquisition time as the time-averaged signal of a normal experiment. 

The entire VDF scan was reportedly done in under 10 minutes. The acquisition per laser 

wavelength is therefore fast enough to allow very good resolution in velocity space with 

hundreds of points. This compares very favorably with most other TRLIF techniques, where it is 

typically only practical to capture 10 to 20 points. 

 A significant disadvantage, like the other two methods described so far, is that it requires 

a periodic oscillation for the assumption of decomposing the signal into a Fourier series. 

Therefore, the heterodyne technique will not be appropriate for many natural Hall thruster 
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oscillations, though it may be possible to acquire data at some quasi-periodic operating 

conditions.  

 In addition, the reconstruction is inherently limited to some maximum measurable 

harmonic order. This limitation raises questions about the accuracy of the low-order 

reconstructed waveform. The accuracy of the low-order reconstruction is unknown even if the 

assumption of a periodic oscillation is valid for the driven oscillation and the low-order Fourier 

series components are measured to perfect accuracy. The technique was originally demonstrated 

to first order due to noise issues in recovering higher order signal [85]. It was later demonstrated 

to second order, with the second order component apparently giving only a small contribution for 

the sinusoidal driving waveform [11]. 

 This limitation means that not only is the accuracy of the waveform of each velocity 

group unknown, but the actual time resolution of the system is unclear. If the reconstruction is a 

partial Fourier series that includes only the fundamental frequency and a small number of 

harmonics, what is the smallest feature in time that can be accurately resolved? If a small feature 

is resolved, will it introduce ringing in the rest of the time series? The smoothness in velocity 

space is an impressive result of the large number of different laser wavelengths used for the 

reconstruction. The smoothness in time, however, should be taken with some skepticism because 

it is an artifact of reconstructing the waveform as a sum of sine waves, a continuous function that 

can be sampled with an arbitrary sampling frequency. 

3.3.4 Sample-And-Hold TRLIF Signal Recovery 

 MacDonald, et al. developed a TRLIF system that is "tolerant of natural drifting in the 

current oscillation frequency." The system, developed around the same time as much of this 

dissertation work [86],  uses a voltage comparator to trigger at a consistent discharge current 

level, approximately corresponding to a given phase of the discharge current oscillation. A delay 

generator and a gated sample-and-hold circuit then hold the signal level at a given delay time 

after each trigger. The output from the sample-and-hold circuit, updated at each trigger, is sent to 

a lock-in amplifier to recover the signal from the noise. Note that the laser is modulated at a 

frequency lower than the discharge oscillations so that the sample-and-hold output is updated 

many times per modulation period. The modulation frequency was 11 Hz for the 60-Hz 

oscillations of a xenon lamp in the original paper [86] and 2.5 kHz for the 48-kHz oscillations of 

the BHT-600 Hall thruster in a more recent paper [87]. Since only the signal during a short gate 
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at a fixed phase point is input to the lock-in amplifier, the lock-in amplifier's output is the TRLIF 

signal at the time corresponding to the delay time after the trigger. A typical lock-in amplifier 

used for time-averaged LIF can recover TRLIF signal at a number of desired delay times to 

recover a complete waveform. The total acquisition time was reduced by using six separate 

sample-and-hold circuits and lock-in amplifiers to collect the TRLIF at many delay times 

simultaneously [87]. Together, they enable recovery of the time-averaged signal and 23 phase 

points in four laser scans. 

 Strictly speaking, only the trigger itself is locked to a discharge current level. Each of the 

phase points after the initial point at the trigger are taken after some fixed delay time from the 

trigger. Therefore, they are not quite locked to a discharge current level or phase of the 

oscillation since the period may jitter or drift. In this sense, the technique is strongly related to 

the triggered average and synchronized photon counting techniques, both of which trigger at 

some phase of the discharge current oscillation and then average either voltage or photon counts 

occurring in fixed time bins after the trigger. The gated sample-and-hold circuit, however, is set 

to average over a time commensurate with the expected jitter in the oscillation period, 1 μs in the 

case of BHT-600 nominal operating condition, averaging out the jitter/drift and also limiting the 

time resolution of the system. The averaging effect of the gated sample-and-hold circuit is 

similar to the averaging effect of phase-sensitive detection in the technique discussed in 

Subsection 3.3.1 in that they both raise SNR by averaging TRLIF signal over a time scale about 

1 microsecond. 

 An advantage of this technique is that it is more tolerant to acquire quasiperiodic 

waveforms than a triggered averaging using smaller time bins such as the synchronized photon 

counting technique. Assuming a constant waveform shape and amplitude but possibly drifting or 

jittering oscillation period, the comparator triggers at the same phase. Then, as discussed above, 

the signal is averaged over a gate that is about the size of the jitter so that the signal 

approximately corresponds to the TRLIF signal at a certain phase of the oscillation. 

 Another advantage is that the velocity resolution can be nearly the same as a time-

averaged experiment. A complete time-series for a single-wavelength is effectively captured in 

four scans with a time constant of 3 s on the lock-in amplifiers, for a total of 12 s per laser 

wavelength. This is faster than all other techniques except for the heterodyne technique. 
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 One disadvantage is that this technique resolves a small number of points in time 

compared with the other techniques and only a single period of oscillation. The time resolution 

of the scheme is limited by the width of the gate over which data are averaged. A larger number 

of points could help resolve more than one period, but acquiring data at longer delay times from 

the trigger would likely result in the typical dephasing of a triggered average over nonperiodic 

waveforms. 

 

Figure 3.6. Axial time-resolved ion VDF of the BHT-600 at 15 mm downstream of the exit plane 

on the thruster centerline [87]. Reproduced from Figure 8.  
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Chapter 4 

 

The Theory of the TFLIF Technique 

 

Experience without theory is blind, but theory without experience is mere intellectual play.  

– Immanuel Kant 

 

 Armed with the overview of the problem in Chapter 1, the background regarding EP in 

Chapter 2, as well as further background on LIF in Chapter 3, we are now in a position to begin 

describing a solution to the problem. This chapter introduces the theory of the transfer function 

laser-induced fluorescence (TFLIF) technique, the solution that was developed over the course of 

this dissertation research.  

 First, Section 4.1 defines the terms used in the dissertation that could be misunderstood. 

To provide context for how the measurement is made, Section 4.2 outlines the equipment 

necessary for a TFLIF measurement, though many of the technical details regarding the 

hardware are left for Section 5.1. Finally, Section 4.3 details the signal processing theory 

underlying TFLIF measurements: band-pass filtering (Subsection 4.3.1), phase-sensitive 

detection (Subsection 4.3.2), and Fourier analysis (Subsection 4.3.3). Subsection, 0, describes 

triggered averaging as an alternate averaging method to use in lieu of the Fourier analysis at the 

heart of the TFLIF technique. The alternate method is useful as a benchmark to demonstrate that 

the Fourier analysis converges to the expected result in certain special cases. 

4.1 Definitions and Conventions 

 To avoid possible confusion, this section explains the meaning and context of the 

terminology commonly used in this dissertation that may not be familiar to general reader, that 

was coined specifically in writing this work, or whose precise definition may vary depending on 

convention. 

 Since the raw signal is a voltage drop across a resistor, the unnormalized LIF profile out 

of the analysis 𝜑𝐿𝐼𝐹
𝑟𝑎𝑤(𝜈[𝑖], 𝑡[𝑛]) actually has units of volts and is often on the order of millivolts 

or tens of millivolts. Note that it is a function of the discrete set of values probed for velocity v[i] 
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and time t[n], where i is the index of the velocities probed and n is the index of points in time. 

This signal is proportional to the intensity of LIF light by some unknown factor that depends on 

the details of the optics and electronics. The signal that is presented is normalized, meaning that 

the raw LIF profile 𝜑𝐿𝐼𝐹
𝑟𝑎𝑤(𝜈[𝑖], 𝑡[𝑛]) is divided by a normalization factor A(t[n]) (in general, the 

normalization factor can change as a function of time): 

 ( [ ], [ ]) ( [ ], [ ]) / ( [ ])raw

LIF LIFv i t n v i t n A t n  . (4.1) 

 The term "average signal normalization" denotes that the LIF profile is normalized at 

all times by the average signal at the peak of the distribution. The normalizing factor is: 

 ( [ ]) max( ( [ ], [ ]))raw

LIFA t n A v i t n  , (4.2) 

where the bar indicates an average over time that is done independently for each velocity (i.e. the 

result is the time-averaged LIF profile). The max function is then evaluated over the velocity 

dimension to return a scalar value (the peak value of the time-averaged LIF profile). After this 

normalization, the unit of the normalized LIF profile 𝜑𝐿𝐼𝐹 can be considered dimensionless or 

arbitrary units (arb. u.). Since the signal is normalized by the same factor at all times, this 

normalization is useful to compare the signal level at one time to another. This normalization is 

the primary one used throughout this dissertation unless otherwise specified. It so happens in the 

cathode experiments of Chapter 6 that change in the raw signal level is much more apparent than 

change in the VDF itself. It also useful because the normalization is equivalent to the usual 

normalization of time-averaged LIF signal with a value of 1 at the peak of the distribution, 

enabling a simple comparison with the LIF profile from a lock-in amplifier. 

 On the other hand, "integral normalization" is used when the actual ion VDF is 

important and we wish to deemphasize the changes in signal level that may occur due to a 

change in ion density or metastable population. In this case, the normalization factor changes at 

each time step but is constant as a function of velocity to ensure that the integral over the 

normalized distribution is unity:  

 max

min

( [ ]) ( [ ], [ ])

v

raw

LIF

v

A t n v i t n dv  , (4.3) 

where 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 are the minimum and maximum velocity groups interrogated. Note that the 

integral is calculated numerically with the trapezoid rule because the LIF profile is measured at a 

discrete set of points in velocity. Though this normalization yields a proper distribution function 



 

64 

 

and emphasizes changes in the distribution rather than changes in signal level, the signal level at 

two different times cannot be directly compared since the normalization factor varies. As a 

proper velocity distribution (which is a probability density function), in this case the unit of the 

normalized LIF profile 𝜑𝐿𝐼𝐹 is s/m since it represents the probability density per unit velocity 

that a particle has a velocity between v and v + dv. 

 “Chunk” is the term commonly used for the shorter time-series over which averaging is 

performed, typically about 1 ms. The complete dataset for a single laser wavelength streamed for 

60 s contains tens of thousands of chunks that are used to calculate either an average transfer 

function estimator or the triggered average LIF signal. 

 The term "TRLIF" is an abbreviation for "time-resolved laser-induced fluorescence." 

"TRLIF signal" or "TRLIF light" refer to the actual fluorescence light signal that may be 

measured by a number of different techniques. It is the ideal signal that all TRLIF techniques 

seek to measure. The phrase "TRLIF technique" is an umbrella term used to refer to any 

technique capable of measuring the TRLIF signal, including all of the techniques discussed in 

Section 3.3. 

 "TFLIF" is short for "transfer function laser-induced fluorescence." The term "TFLIF 

technique" is used to specifically refer to the new TRLIF technique that is the subject of this 

dissertation. Likewise, "TFLIF system" refers to the associated equipment and software 

implementing the technique at PEPL, and "TFLIF signal" refers to the signal measured using 

this system. 

 "TALIF" abbreviates "triggered average laser-induced fluorescence." Similarly to the 

usage of TFLIF, "TALIF technique" refers to the combination of filtering, phase-sensitive 

detection, and triggered averaging presented as an alternative to the TFLIF technique in this 

chapter. "TFLIF signal" refers to the signal measured using this technique. Usage of "TALIF 

system" will be rare because it is designed to use the same hardware as the TFLIF system; the 

only difference between the two systems is the analysis software. Note that the abbreviations 

"TALIF" and “TA-LIF” have been used in related literature by other authors to refer to “two-

photon absorption LIF” [88] or “time-averaged LIF” [82], but those abbreviations are not related 

to the usage of "TALIF" in this dissertation. 
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4.2 Apparatus 

 A diagram of the experimental setup is shown in Figure 4.1. The laser probes the 

5d2F7/2 − 6p2D5/2
o  transition of the singly-charged xenon ion (Xe II) at a wavelength of 834.7 

nm (in air). The corresponding metastable Xe II ion velocity distribution function (VDF) is 

measured by collecting fluorescence from the 6s2P3/2 − 6p2D5/2
o  transition at 541.9 nm. We use 

a CW tunable diode laser (Toptica TA Pro) that has a typical output power of about 200 mW 

near the working wavelength range and a 20-50 GHz mode hop free range.  

The beam is sampled at a few locations and the sample beams are sent to various 

diagnostics. (1) A Burleigh SA-91 etalon assembly with 2-GHz free spectral range ensures 

single-mode laser operation. (2) A HighFinesse WS/7 wavemeter with an accuracy of 60 MHz 

measures the wavelength. (3) An opto-galvanic cell (Hamamatsu L2783-42 XeNe-Mo galvatron) 

provides a stationary wavelength reference. (4) A Thorlabs PDA36A photodiode before the 

AOM monitors laser power. 

 

Figure 4.1. Diagram of the experimental setup showing a block diagram of airside optics sans 

mirrors, a schematic of the optics and hollow cathode plasma source inside the chamber, and a 

block diagram of instruments post collection outside the chamber. 

 The main laser beam is modulated by a NEOS 23080-1 acousto-optic modulator (AOM) 

that permits laser modulation frequencies up to about 5 MHz without significant distortion of the 

modulation waveform. A Thorlabs PDA10A photodiode after the AOM monitors the modulation 

waveform. A pair of 200-mm-focal-length focusing and collimating lenses provide a reasonable 

balance between diffraction efficiency (~70%) and rise time (32 ns) for the AOM. Following the 
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AOM, the beam is coupled to a 50-µm optical fiber with a numerical aperture of 0.22 and 

delivered into the chamber by an optical fiber feed through.  

 The beam is injected axially into the plasma source and focused down to a beam waist of 

approximately 1 mm in diameter at the interrogation volume. A 75-mm-diameter lens with 85-

mm focal length images light collected from the interrogation volume onto a 1-mm optical fiber 

with a unity magnification. The interrogation volume, defined by the intersection of laser 

injection and light collection, is approximately cylindrical with a diameter of 1 mm and a length 

of 1 mm. 

 Collected light in the fiber is fed out of the chamber and into a SPEX-500M 

spectrometer, set to pass wavelengths near the 541.9 nm LIF transition with a bandwidth of 

about 1 nm. Light is then converted to an electrical signal by a Hamamatsu R928 photomultiplier 

tube (PMT), which is simply terminated by a 10-kOhm resistor for fast response. To remove 

noise away from the modulation frequency, a Krohn-Hite 3945 electronic filter provides fourth-

order Butterworth band-pass filtering with cutoff frequencies 10% above and below the 

modulation frequency. Finally, the output from the filter is digitized by an Alazartech 9462 

digitizer set to stream continuously to disk for 60 s per wavelength. Input and output 

amplification on the filter are set to fill the digitizer input range as well as possible without 

excessive saturation. The digitizer has 16-bit resolution and a maximum sample speed of 180 

MHz, and a selection of input full scale ranges from ±200 mV to ±4 V. The discharge current, 

measured by a Tektronix TCP 312 current probe, is simultaneously sampled by the second 

channel of the 9462 digitizer for use in post-processing. 

 Since the data rate at the full 180 MHz sample speed is nearly 1 GiB/s, we solve the 

considerable data transfer and storage requirements by streaming directly to an array of 10 hard 

drives in RAID 6 with a net capacity of 16 TB, or 14.6 TiB. After optimizing system parameters, 

we found good results with a 30-MHz sample rate; thus, each 60-s measurement results in a 6.7 

GiB data set in two-channel operation. A custom-built PC with dual hexacore Intel Xeon CPUs 

and 72 GiB of RAM houses the digitizer and RAID for data acquisition and analysis. The 

specifications enable it to analyze multiple data sets in parallel to save time. 

4.3 Signal Processing 

 A simplified block diagram of the main steps in signal processing to recover the TRLIF 

signal from the noise is shown in Figure 4.2. The new method uses high speed laser modulation 
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(on the order of megahertz, well above the oscillation frequencies of interest), allowing two 

stages of as signal conditioning before the main averaging scheme. First, band-pass filtering 

improves SNR before digitization. After digitization, phase-sensitive detection (with a short time 

constant) demodulates the signal and provides a small boost to the SNR. There are two branches 

of signal processing following phase-sensitive detection. First, the demodulated signal with 

improved but still extremely poor SNR is used as the "output signal" together with an “input 

signal” such as the discharge current to calculate transfer function estimators. Unlike the 

techniques described in the previous chapter, which generally assume a periodic signal, the 

assumption here is that the input and output are related by a linear system (see Subsubsection 

4.3.3.1). The series of transfer function estimators are ultimately averaged together to improve 

the SNR. A characteristic LIF output signal can then be synthesized for any input signal using a 

high-SNR average transfer function estimator. Alternatively to transfer function averaging, 

triggered averaging of the signal waveform in the time domain is also used to compare with the 

transfer function result as part of the validation test. 

 

Figure 4.2. Flowchart of the post-processing steps on the PMT signal to recover the TRLIF 

signal. Though not explicitly shown in the flowchart, note that a high-speed signal related to the 

LIF signal (e.g. discharge current or floating probe) is necessary either to form transfer function 

estimators or to define the triggers used for triggered averaging. 

 It will be helpful to keep in mind a model of the voltage measured at the PMT 

terminating resistor as:  

 ( ) ( ) ( ) ( )NV t F t M t V t  , (4.4) 
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where F(t) is the envelope of the TRLIF signal (i.e. the signal that would exist for a CW laser at 

constant power), M (t) is the laser modulation waveform, and VN (t) is some additive noise signal 

with a much larger RMS than the TRLIF signal. The laser modulation waveform may be an 

arbitrary function that is bounded between zero and one and periodic at the modulation 

frequency fref, but typically is a sine or square wave. The noise VN (t), or background signal, 

comes primarily from non-LIF light emitted in the plasma that the optics collect in addition to 

the LIF light. As mentioned previously, the noise light is orders of magnitude more intense than 

LIF (see Subsection 5.5.2), necessitating a signal recovery technique. The noise is random but 

has a well-defined spectral density generally weighted at frequencies below 1 MHz (for example, 

Figure 5.11 shows noise spectral densities measured from the H6). 

 In the following development of the signal processing theory, we calculate the SNR 

(signal-to-noise ratio), I (SNR improvement factor), and ENBW (equivalent noise bandwidth) at 

a number of different steps in the signal processing. The signal processing step with which the 

SNR, I, or ENBW are associated are given by the subscripts "raw" (raw signal measured at the 

PMT terminating resistor), "BP" (band-pass filter), "PSD" (phase-sensitive detection), "TF" 

(transfer function average), and "TA" (triggered average). For example, SNRBP is the signal-to-

noise ratio following the band-pass filter. 

 The goal of each of the following subsections is to describe the process that occurs at 

each step and the significance of it in the analysis, as well as to estimate the SNR improvement 

factor at each step. We model the final output SNR as a series of improvement factors for each 

step multiplied by the initial SNR in the raw PMT signal. The first three subsections cover the 

band-pass filter, phase-sensitive detection, and the Fourier analysis underpinning the transfer 

function average. Subsection 4.3.4 analyses the triggered average technique used as an 

alternative to the transfer function average. Subsection 4.3.5 proposes a benchmark based on a 

theoretical property linking the transfer function average to the triggered average even when the 

triggered average is not physically meaningful due to a nonperiodic signal. 

4.3.1 Band-Pass Electronic Filter 

 A band-pass filter with a passband centered on the laser modulation frequency passes the 

TRLIF signal (first term in Equation (4.4)) while greatly reducing the frequency components of 

the noise (the second term) outside the passband. It improves the SNR of the digitized signal, 

thereby allowing a better effective voltage resolution. In other words, if the RMS noise is 



 

69 

 

reduced then the digitizer can use a smaller voltage input range, which reduces the size of digital 

voltage step compared to the signal scale.  

The band-pass filter used for this signal conditioning, provided by the Krohn-Hite 3945, is 

composed of 4th-order Butterworth high-pass and low-pass filters in series. The goal of this 

subsection is to provide a theoretical basis for the function of the band-pass filter in the TFLIF 

system and to estimate appropriate values for the bandwidth. The filter bandwidth is the 

difference between the cutoff frequencies of the high-pass and low-pass filters (note that these 

are the -3dB points of the individual filters, which are slightly different from the -3 dB points of 

the series band-pass filter). We will consider filters with a bandwidth centered on the modulation 

frequency so that the cutoff frequencies are given by f± = fmod ± Δf /2, where Δf is the bandwidth.  

The transfer function H(iω) of a filter is a complex number that is a function of frequency. 

The magnitude gives the gain of the filter and the argument gives the phase shift. The amplitude 

gain profile for the nth-order series band-pass filter described above is given by: 

    
2

2 2

1 1
( )

1 1
n n

H i


 







 

. (4.5) 

To give a sense of the overall frequency response of the filter, a Bode plot for the band-pass filter 

in a broad range of frequencies for fmod = 1 MHz and Δf  = 100 kHz is plotted in Figure 4.3. The 

filter has a linear response in the sense that an input signal at a constant frequency is mapped to 

an output signal at the same frequency with amplitude and phase offset shifted by the appropriate 

values in Figure 4.3. A more complicated input signal with some combination of Fourier 

frequency components will have each frequency component independently transformed by the 

appropriate gain and phase shift. 
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Figure 4.3. Bode plot of the frequency response of the series high-pass/low-pass filter with cutoff 

frequencies fmod ± 0.1 fmod for fmod = 1 MHz. 

The filter with Δf  = 100 kHz was ultimately chosen as an appropriate filter for the 

measurements of this dissertation at a modulation frequency of fmod = 1 MHz. Subsubsection 

4.3.1.1 derives a formula that can be used to calculate the SNR improvement factor for a given 

filter and noise spectral density, while Subsubsection 4.3.1.2 discusses the equivalent noise 

bandwidth, which is a convenient approximation to compare the noise rejection of different 

filters.  Subsubsection 4.3.1.3 calculates the SNR improvement factor for different filters as a 

function of bandwidth and finds that it is a weak function of bandwidth and there is no local 

maximum in SNR improvement. Subsubsection 4.3.1.4 calculates the bandwidth of the 

modulated signal that is necessary to pass without distortion. The result leads Subsubsection 

4.3.1.5 demonstrating that distortion is negligible within the required band for the filter with Δf  

= 100 kHz at fmod = 1 MHz. The Δf  = 100 kHz filter was a reasonable choice because SNR 

improvement would not significantly increase for a narrower bandwidth, while a narrower 

bandwidth could potentially give borderline levels of distortion of the signal envelope. 
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4.3.1.1 Signal-to-Noise Ratio Improvement Factor 

 To calculate the SNR improvement factor, first consider the RMS LIF signal level 

following filtering. The RMS signal following the filter, Vs,BP, is:  

, mod ,( )s BP BP s rawV G H i V ,     (4.6) 

where G is the collective gain of input/output amplifiers of the Krohn-Hite 3945, |HBP(iωmod)| is 

the gain of the band-pass filter itself at the modulation frequency (or the magnitude of the 

transfer function evaluated at the modulation frequency), and Vs,raw is the RMS TRLIF signal 

voltage at the terminating resistor. 

Second, the RMS noise levels before and after band-pass filtering can be calculated by 

integrating over the spectral noise density and gains. We summarize both equations with a 

subscript X that can be either "BP" to indicate signal following filtering, or "raw" to indicate 

signal before filtering: 

 
22 2

,

0

1
( ) ( )

2
n X D X XV V G H i d  





  , (4.7) 

where 𝑉𝐷(𝑓) is the noise spectral density in the raw resistor signal in units of 𝑉/√𝐻𝑧. GBP = G 

and Graw = 1 since there is no amplification without the filter. |HBP(iω)| is the magnitude of the 

band-pass filter transfer function and |Hraw(iω)| is the magnitude of a low pass filter transfer 

function that would be used at the Nyquist frequency for the anti-aliasing in the absence of the 

band-pass filter.  

As is a common convention with LIF signals, the SNR here is defined as the ratio of 

RMS signal to RMS noise. The definitions above can be used to calculate the SNR before and 

after the band-pass filter. The SNR improvement factor of the band-pass filter is then the ratio of 

the SNR before and after band-pass filtering: 
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 (4.8) 

The improvement factor is invariant to the magnitude of signal and noise but is highly sensitive 

to the noise spectral density profile. Note that this signal conditioning gives a large improvement 

when the noise spectral density is relatively low near the modulation frequency and high for 

some other frequency band. It was estimated that the improvement factor is about an order of 

magnitude larger for the actual noise spectral density than for white noise [89].  

4.3.1.2 Equivalent Noise Bandwidth 

The above description is exact in that it takes into account the noise spectral density 

profile as a function of frequency. Equivalent noise bandwidth (ENBW) is a convenient concept 

when the noise spectral density is approximately white (constant as a function of frequency) in 

the frequency band of interest. 

 In general, the equivalent noise bandwidth of a filter is defined as: 

2

2

0

( )1

2 max( ( ) )

H i
ENBW d

H i




 



  ,     (4.9) 

where, as above, |H(iω)|2 is the square magnitude of the filter transfer function, which is the 

frequency dependent power gain of the filter. The ENBW of a filter is typically a small factor 

larger than the bandwidth defined by the cutoff frequencies of a band-pass or low-pass filter 

since the finite filter roll-off passes “extra” noise that would be cutoff for a brick-wall filter at the 

cutoff frequency. Tabulated values are available for common filters, but the series of low-pass 
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and high-pass filters used here are uncommon and the factor by which the ENBW differs from 

the Δf bandwidth varies if Δf is small enough that the transition regions overlap. If the Noise 

Spectral density is constant, then it can be factored out of the integral and the RMS noise 

calculation simplifies to: 

 max( ( ) )n DV V H i ENBW . (4.10) 

If also the gain at the modulation frequency is at or near the maximum in the filter gain (as it 

should be), then Equation 3.5 simplifies to:  

 
raw

ENBW
I

ENBW
 , (4.11) 

a well-known result for the SNR improvement of filtering. 

 Note that this formula is not useful for calculating the SNR improvement of the BP filter 

since the noise spectral density is not white (see Subsection 5.5.1). The concept of ENBW is still 

defined for a filter regardless of the actual noise spectral density, and its definition is included 

here because a need for ENBWBP arises in the improvement factor of phase-sensitive detection in 

Section 4.3.2. The use of ENBW does apply there because the noise spectral density is 

approximately white within the narrow bandwidth of the band-pass filter. 

4.3.1.3 Optimal Bandwidth in Terms of Signal-to-Noise Ratio Improvement 

The main parameter to consider for the band-pass filter is the bandwidth Δf of the pass 

band, defined as the difference between the upper and lower cutoff frequencies. An optimal 

setting would be one that maximizes the SNR improvement factor while the distortion of the 

signal is minimal. 

Ignoring distortion of the time-resolved signal and considering a theoretical brick-wall 

filter, the answer is simple: an infinitesimally narrow pass band centered on fmod will reject 

almost all broadband noise while fully passing the signal. The problem is more complicated for 

real-world filters that have some transition region and roll-off instead of a sharp transition at the 

cutoff frequencies. Figure 4.4 shows examples of gain profiles for bandpass filters implemented 

with 4th-order Butterworth high-pass and low-pass filters in series. As the bandwidth of the pass 

band is reduced and the upper and lower cutoff frequencies approach the modulation frequency 

(fmod = 1 MHz for this example and most of the experiments in this dissertation), the modulation 
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frequency enters the transition region and the signal gain is significantly reduced from unity. In 

addition, the finite roll-off ensures a significant ENBW even for Δf = 0 Hz. 

 

Figure 4.4. Amplitude gain profiles of band-pass filters centered on 1 MHz for three 

representative bandwidths from 0 to 1 MHz. 

The first question is whether the SNR continues improving as the pass band is reduced to 

zero. In other words, does the improvement in noise rejection from a narrower pass band always 

outweigh the loss in signal from the decreasing signal gain at fmod = 1 MHz, or does the loss of 

signal eventually outweigh the noise rejection, leading to a local maximum in IBP versus Δf ? The 

answer depends on the gain profile of the filter and the noise spectral density in the region of the 

pass band as shown by Equation (4.8). For simplicity, suppose the noise spectral density is 

approximately white (constant density as a function of frequency) in the region of the band-pass 

filter, then the answer depends only on the gain profile of the filter. This is likely a good 

approximation for narrow filters that only span a short frequency range but possibly not a good 

approximation for a wide bandwidth.  

The SNR improvement factor calculated by numerically solving Equation (4.8) for a range 

of bandwidths is shown in Figure 4.5. The code was validated by reproducing the known ENBW 
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of low-pass filters. The SNR improvement factor monotonically increases but converges to a 

value of about 5.5 as the bandwidth is reduced to zero. The result means that the loss of noise 

from reducing the ENBW of the filter nearly cancels the loss of signal from reduced peak gain 

for very narrow-bandwidth filters. The SNR improvement factor can be about an order of 

magnitude larger for the none-white noise spectral density of an actual plasma source [89], but it 

will still converge to some value since there is still a finite gain profile at Δf = 0. 

Two important consequences follow from the result. First, there is theoretically no local 

maximum in the SNR improvement beyond which the SNR actually falls for a tighter bandwidth, 

and therefore an acceptable filter bandwidth Δf  is limited only by the distortion within the 

desired signal bandwidth that a narrower filter introduces. Second, the improvement factor 

weakly depends on the bandwidth only weakly for reasonable bandwidths, with about a 15% 

difference between Δf = 500 kHz and Δf = 0 Hz. 

 

Figure 4.5. The SNR improvement factor calculated by solving Equation (4.8) for fmod = 1 MHz 

and varying the bandwidth of a band-pass filter centered on fmod. The calculation, assuming white 

noise, shows that the SNR improvement monotonically increases but converges to a value of 

about 5.5 as the bandwidth approaches zero. 
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Regardless of the SNR improvement from the band-pass filter, the final SNR of the 

TFLIF signal may not depend on the band-pass filter bandwidth because, as discussed in the 

following subsection, phase-sensitive detection will have a narrower transmission window that 

will reject more of the noise spectrum anyway. The final SNR could depend on the filter 

bandwidth only when the RMS noise is sufficiently larger than the RMS signal that the effective 

voltage resolution of the signal is small enough that quantization noise becomes significant. The 

main purpose of the band-pass filter, therefore, is to increase the dynamic range of the system by 

rejecting some portion of the noise before digitization and thereby raise the effective voltage 

resolution because a smaller voltage scale can be used to digitize the signal (see Subsubsection 

5.1.1.2). As long as the system is out of the regime of quantization noise, however, an increase in 

the band-pass filter SNR improvement will not result in a corresponding improvement in the 

final SNR of the TFLIF signal.  

4.3.1.4 Bandwidth of the Modulated Signal 

A second question to address is at what point a narrow band-pass filter begins to distort the 

signal envelope that we seek to measure. The first step to answering this question is to define the 

bandwidth containing the modulated signal. Recall from Equation (4.4) that a model of the 

voltage measured at the PMT terminating resistor is:  

 ( ) ( ) ( ) ( )rawV t F t M t N t  , (4.12) 

where F(t) is the envelope of the TRLIF signal (i.e. the signal that would exist for a CW laser at 

constant power), M (t) is the laser modulation waveform, and Nraw (t) is some additive noise 

signal with a much larger RMS than the TRLIF signal. Consider the Fourier transform of this 

signal and the convolution theorem: 

 ( ) ( ) ( ) ( )rawV f F f M f N f   . (4.13) 

In frequency space, the signal is the convolution (denoted by ⊗) of the Fourier transforms of the 

signal envelope F(t) and the modulation waveform M (t). Convolution is a mathematical 

operation that generally “mixes” two functions and is defined by: 

 ( ) ( ) ( ) ( )f t g t f g t d  



   . (4.14) 

If the modulation is purely sinusoidal, then its frequency domain description is a pair of 

Dirac delta functions (recall that real-valued functions have symmetric positive and negative 



 

77 

 

frequency components in the complex exponential form of the Fourier transform). Let the 

modulation waveform be a cosine with frequency fmod and phase offset φmod: 

 mod mod

mod mod

mod mod

( ) 1 cos(2 )

( ) ( )
( ) ( ) .

2

i i

M t f t

f f e f f e
M f f

 

 

 




  

  
 

 (4.15) 

In this case, the signal bandwidth is retained but shifted both left and right into two bands 

centered on f = ±fmod instead of f = 0: 
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 (4.16) 

Note that the final step explicitly showing complex conjugate symmetry about the y-axis holds if 

𝐹̃( f) itself is complex conjugate symmetric about the y-axis, which is true for any real-valued 

signal envelope function F(t). The first term in Equation (4.16) is the Fourier transform of the 

envelope and is present at the input of the band-pass filter but is not passed because the passband 

is near the modulation frequency. The result, illustrated in Figure 4.6, is that if the signal 

envelope has a bandwidth within the interval [- fB, fB], where fB is the single-sided bandwidth of 

the signal, then the modulated signal will have a bandwidth in the interval [ fmod - fB,  fmod + fB] 

and [- fmod - fB, -fmod + fB]. Therefore, the band-pass filter must pass the signal with minimal gain 

and phase distortion within that band. 

 

Figure 4.6. An illustration showing that signal modulation of the envelope with a cosine 

waveform shifts the signal bandwidth from centered on zero to two sidebands centered on the 

modulation frequency fmod with the same bandwidth as the double-sided bandwidth of signal 

envelope F(t). 

fB

( )F f

0-fB- fmod + fB- fmod - fB

f

fmod - fB fmod + fB

mod( )F f fmod( )F f f

Signal Envelope Bandwidth

Modulation at fmod

shifts bandwidth

Modulation at fmod

shifts bandwidth
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4.3.1.5 Distortion from the Band-Pass Filter on the Modulated Signal 

 We have determined above the bandwidth of the modulated signal. To faithfully pass the 

modulated signal, there must be negligible distortion within this bandwidth. Now we determine 

the distortion that a given filter may introduce into a signal in that band. Consider the band-pass 

filter described earlier that is composed of 4th-order Butterworth high-pass and low-pass filters in 

series. For this example, we take fmod = 1 MHz and the cutoff frequencies of the individual filters 

to be fmod ± 100 kHz, the modulation frequency and filter used for the experiments of Chapter 6 

and Chapter 7.  

The experiments in Chapter 6 have a signal contained within the single-sided bandwidth 

fB = 20 kHz, hence we consider the filter’s frequency response in the interval [fmod – 20 kHz, fmod 

+ 20 kHz], shown in Figure 4.7. The goal is to show that the distortion of the modulated signal is 

negligible within this band.  

 

Figure 4.7. Gain and phase shift from the Bode plot of Figure 4.3, zoomed in on the bandwidth 

interval [fmod – 20 kHz, fmod + 20 kHz].  

There are two types of distortion that may be introduced by the filter. First, distortion 

could occur if two frequency components are passed with a significant difference in gain. Figure 
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4.7 shows that this is not a problem in the bandwidth of interest since gain varies by less than 

1%. Though the gain is significantly less than unity, it effectively applies the same scaling factor 

to all components and does not appreciably affect the envelope waveform.  

Second, there may be distortion from variation in the phase shift between about -10° and 

5° in the band of interest. The objective is to determine how this phase shift in individual 

frequency components may distort the resulting modulated envelope waveform. It is illustrative 

to consider the modulation of a signal envelope of a cosine at frequency fen and phase offset φen:  
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(4.17) 

The second term of Equation (4.16), the only part of the desired signal to be passed by the band-

pass filter, becomes: 
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 (4.18) 

As this signal is passed through the filter, each term is transformed by the appropriate gain and 

phase shift since the delta functions each correspond to a fixed frequency:  
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 (4.19) 

where the transfer function gain and phase shift variables are: 
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The numerical values of the gain and phase shift can be found in the Figure 4.7. We can 

recognize the Fourier transform of the sum of two cosines to transform Equation (4.20) back to 

the time domain. Assume the gain factors are equal, a very good approximation as noted above. 

Then we can show by applying a trigonometric identity: 

mod modcos(2 )cos(2 ) ( )
2 2

BP en en BPV AG f t f t N t
   

      


 
      . (4.21) 

The signal passed by the band-pass filter is essentially the same as the input except both 

the envelope and the carrier are shifted by a phase offset term. The phase offsets can be 

converted into time delays known as the group delay and phase delay: 

mod mod

mod

cos(2 ( ) )cos(2 ( ) )

1.1 μs
4

5 ns.
4

BP en g en

g

en

V AG f t f t

f

f





     

 




 






 

 

    


  


  

 
(4.22) 

These are more general definitions for the group and phase delay of a modulated cosine than the 

typical textbook formulae. The textbook definitions of the delay times assume that the phase is a 

linear function of frequency, in which case the delay times are: 
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



 

 

 (4.23) 

Though the phase in this example is linear in the region of interest, as shown in Figure 4.7, the 

more general forms of the delays could be helpful in a more borderline case where the phase is 

not extremely linear, such as if we use the same filter to acquire a broader bandwidth. 

 One key conclusion of the above result is that both group and phase delay are 

approximately constant (independent of the envelope frequency) in a region where phase shift is 

approximately a linear function of frequency. This is an important result because the previous 

discussion holds not only for a modulated cosine but also for envelope functions composed of 

arbitrary frequency components in the approximately linear band. All of the frequency 

components in the envelope are delayed by the group delay time and each of them are all 
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modulated with the same phase delay so that there is no distortion of either the envelope or the 

carrier wave except for a slight shift in time.  

 The final task is to specify the actual value of the group and phase delay and determine 

whether they need to be taken into account. The group delay calculated by Equation (4.22) is 

about 1.1 μs. Numerical simulations of passing a modulated cosine through a digital filter 

corroborated this value. This is a small delay time compared with the scale of the ~10 kHz 

oscillations and is near the time resolution of the TFLIF system when used with the phase-

sensitive detection parameters discussed in the next subsection, and therefore it was not taken 

into account in any results reported in this dissertation. There is no distortion of the TFLIF signal 

since all frequency components will be delayed by the same group delay, but the delay will 

desynchronize the TFLIF signal from other measurements, and therefore a comparison to 

discharge current, Langmuir probe, and FASTCAM data should ideally take the TFLIF group 

delay into account (as well as any possible delay in the other measurements). The phase delay 

was found to be about 5 ns from both Equation (4.22) and numerical simulations. This delay is 

negligible as it is even smaller than the digitizer’s sampling period. Even a significant phase 

delay would not be a problem because the phase locking discussed in Section 5.2 locks to the 

actual measured signal phase without a reference to the original phase before the filtering. 

4.3.2 Phase-Sensitive Detection 

By the flowchart in Figure 4.2, the signal is digitized after the signal conditioning by the 

electronic band-pass filter. All signal processing following occurs digitally in post processing 

after the experiment. As discussed previously, the SNR is somewhat improved following band-

pass filtering, but the TRLIF signal is still modulated at the laser modulation frequency and 

buried in noise. The desired TRLIF signal is the envelope F(t) in Equation (4.4). Phase-sensitive 

detection (PSD) is applied in software to demodulate the signal so that the averaging procedure 

in the next analysis step can recover the envelope with high SNR.  

 Phase-sensitive detection is the algorithm used by lock-in amplifiers to recover a small 

signal at a known reference frequency from a strong noise level or background signal. As 

discussed in Section 3.1, the standard method of time-averaged LIF measurements involves 

modulating the laser on the order of kilohertz with a mechanical chopper and then recovering the 

LIF signal with a lock-in amplifier set to integrate over a long time constant of at least about 100 
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ms to improve SNR sufficiently. The long time constant averages over time-varying information; 

hence a short time constant must be used if PSD is to be used with a time-resolved technique. 

 Phase-sensitive detection involves two steps. It multiplies the input signal by a reference 

signal at a known reference frequency (a sine wave reference is used in this work) and then 

applies a low-pass filter. The low-pass filter effectively integrates over a few time constants in 

time. The time constant τ depends on the cutoff frequency of the low-pass filter as τ = 1/(2πfc), 

where fc is the cutoff frequency.  

4.3.2.1 Frequency Domain Interpretation 

 To understand how this process demodulates a signal, consider the case where the input 

modulated signal and reference signals, Vmod(t) and Vref(t), are both sinusoidal and described by 

the same equation:  

,( ) 2 sin( )x x RMS x xV t V t   ,    (4.24) 

where the subscript x is "mod" for the input modulated signal or "ref" for reference. Vx,RMS is the 

RMS amplitude, ωx is the angular frequency, and φx is the phase offset. By a trigonometric 

identity, the product of the input and reference signals contains components at the sum and 

difference of the two frequencies: 

   
mod

mod, , mod mod mod mod

( ) ( )

cos ( ) cos ( ) .

ref

RMS ref RMS ref ref ref ref

V t V t

V V t t                

 (4.25) 

The key to phase-sensitive detection is prior knowledge of the input signal frequency to be 

recovered so that the reference can be set to the same frequency. Since ωmod = ωref, there are 

frequency components at 2ωmod and DC. The low-pass filter cutoff frequency is set low enough 

to reject the 2ωmod component while passing the DC component. The net effect is that original 

sine wave input is converted to a DC signal proportional to the amplitude of the input, i.e. it is 

demodulated. 

 It is important to note that the output DC amplitude following the low-pass filter, Vout, is 

proportional to the cosine of the difference between the two phase offsets: 

  mod, , modcosout RMS ref RMS refV V V    . (4.26) 
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Consequently, not only must the modulation frequency be known to high precision, but the 

reference phase should also be equal to the signal phase, hence the name "phase-sensitive 

detection." This requirement leads to the practical problem of phase locking when the signal is 

noisy, covered in Subsection 5.2. Fortunately, the cosine function is somewhat forgiving; the 

signal is above 98% of the maximum even at a difference of ± 10°. Of course, it falls rapidly 

after that point, necessitating a reasonably accurate measurement of the signal phase. 

 If we consider the input signal as composed of the signal to be recovered Vmod(t) plus 

some noise with some distribution of spectral density, then the product will still have a DC 

component proportional only to the input sine wave amplitude Vmod(t) as in Equation (4.26). This 

is true because the DC signal only appears for signal frequencies at the reference frequency. 

Even random incoherent noise near the reference frequency produces a zero mean output from 

Equation (4.26) because the phase of the noise randomly varies. A coherent interference signal 

near the reference frequency could produce a "false" DC output, so it is important to use a 

modulation frequency away from any sources of interference. This is also what makes resonant 

LIF tricky: scattered laser light can be registered by the lock-in amplifier just like LIF. 

 The low-pass filter acts to pass the desired DC signal while removing contributions from 

noise at other frequencies. We can think of a phase-sensitive detector as having a "transmission 

window" [90] that is centered on the signal frequency and that will pass the signal and noise 

components near the signal frequency that satisfy | fmod - fref | < fc. A lower filter cutoff frequency 

rejects more noise while passing the signal (thereby raising SNR). As we are about to see, 

however, this SNR improvement comes with a tradeoff from the time domain interpretation: 

reducing the cutoff frequency also raises the integration time constant, thereby destroying time-

resolved information.  

4.3.2.2 Time Domain Interpretation 

 A first order low-pass filter can be modeled by the following differential equation in the 

time domain: 

out out indV V V

dt  
  ,     (4.27) 
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where Vin and Vout are the input and output voltages and τ = 1/(2πfc) is the time constant. For an 

arbitrary continuous input voltage function with an initial value of Vout(t = 0) = 0, the particular 

solution is: 
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

  . (4.28) 

This is a weighted average over the input voltage with a weight function w(t) = exp(t/τ), in other 

words an exponentially weighted average. This is a more precise statement that phase-sensitive 

detection (with a low-pass filter) averages the input over a few τ in time. Instead of using a low-

pass filter, which leads to the exponentially weighted average, the averaging could alternatively 

be done with a uniformly weighted average integral or a direct average of the mixed input signal 

and reference over a better defined length of time. The low-pass filter is used here since it is the 

classic method of phase-sensitive detection, easy to implement in MATLAB, not 

computationally intensive, and easy to analyze theoretically since it has a well-defined gain 

profile.  

Theoretically, the exponentially weighted average is over all time, but the weight factor 

at t' = t - 5τ is less than 1% of the weight factor at t' = t, hence the average is practically carried 

out over four or five time constants, with earlier input signal giving a negligible contribution 

unless the signal was much larger at earlier times. The settling time for a step change in the 

signal output with a first order filter is above 99% signal after 5τ time or 90% after 2.5τ time. A 

non-step change in the signal will be followed even more closely. Thus, the time resolution of 

the output is considered to be limited to about a few time constants, though the raw data are 

sampled much faster. 

 The preceding paragraph considers the input and output of a low-pass filter only. 

Consider the full phase-sensitive detector with the input voltage multiplied by a reference signal. 

In addition, consider that the input voltage can be decomposed into a form of the Fourier 

transform with real-valued sine and cosine components at all frequencies: 

0
( ) ( )cos(2 ) ( )sin(2 )inV t a f ft b f ft df 



  .   (4.29) 

Including the reference sine wave factor and the Fourier decomposition of the input signal, the 

exponentially weighted average results in: 
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This form is highly suggestive of the orthogonality of sine and cosine functions. By the 

orthogonality of sines and cosines, the integral over t' will tend to zero for all Fourier frequency 

components except those near the reference frequency. Hence, phase-sensitive detection picks 

out the component in the input signal at the reference frequency by exploiting the orthogonality 

of sinusoidal function. Further, this form gives insight into how phase-sensitive detection is in 

fact phase-sensitive. Since sines and cosines are orthogonal, the out-of-phase component of the 

input at the reference frequency (the cosine term) is not recovered. This leads again to the 

conclusion that the phase of the signal must be known in addition to the frequency to eliminate 

the out of phase component of the signal. As a final note, the definition of orthogonality for 

functions is an integral from negative infinity to positive infinity. Then the integral of the 

exponentially weighted average will be a better approximation of that when the time constant is 

large enough that the averaging is done over many reference periods. 

 Now suppose that the input signal is a sine wave whose phase offset has been measured 

and the reference signal is a sine wave set to the same phase offset and frequency, which is the 

condition to maximize the output signal from Equation (4.26). Then Equation (4.28) becomes: 
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

  . (4.31) 

This can be solved analytically, or alternatively the low-pass filtering of the mixed input signal 

and reference can be done numerically in MATLAB to generate a solution equivalent to the 

analytic one. The solution for a few values of τ with a 1-MHz modulation frequency are plotted 

in Figure 4.8. When viewed from the time domain, the 2ωmod ripple from the frequency domain 

discussion can be interpreted as coming from the weight factor favoring different parts of the 

sin2(ωref t) waveform at different times. This form intuitively shows the need to use a time 

constant larger than the modulation period so that the weighted average integrates over many 

reference periods to reliably detect the DC signal and reject the transient part of the waveform. 

Most importantly, it also demonstrates the loss of time resolution from increasing the time 

constant since increasing the time constant increases the response time to a change in the signal 

envelope. 
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Figure 4.8. The output of phase-sensitive detection Vout(t) given by solutions to Equation (4.31) 

for a few τ values, which show the increasing response time and decreasing ripple as τ increases. 

4.3.2.3 Relevant Features for TRLIF Measurements 

 If the noise spectral density within the pass band of the band-pass filter is approximately 

white, which it is for a small pass band, then the SNR improvement for PSD (in terms of RMS 

voltages) can be shown to be the ratio of the equivalent noise bandwidths of the band-pass filter 

and the phase-sensitive detector [90]: 

BPPSD
PSD

BP PSD

ENBWSNR
I

SNR ENBW
  .    (4.32) 

The SNR improvement comes from reducing the width of the transmission window that passes 

noise near the reference frequency. Now, ENBWPSD is the bandwidth of the low-pass filter used 

in phase-sensitive detection. For a first-order filter, this is: 

1 1

2 2 2 4
PSD cENBW f

 

 
   .    (4.33) 

Note that the improvement factor is proportional to the square root of the time constant.  
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 Unlike the conceptual discussion above, the TRLIF signal is not a simple sine wave but a 

carrier wave at the reference frequency that is amplitude modulated within an envelope F(t) as in 

Equation (4.4). If the envelope F(t) is approximately constant on the integration time scale of 

about 5τ, then the above analysis for a constant amplitude sine wave approximately applies and 

the PSD output at any time will be proportional to the carrier amplitude during that integration 

time. The net effect over a time scale longer than the integration time is that the signal will be 

demodulated and passed as a low-pass filtered version of the envelope [90]. Hence the envelope 

will be faithfully passed if there are no significant frequency components above the low-pass 

cutoff. Therefore, the cutoff frequency of the low-pass filter of PSD (inversely proportional to τ) 

limits the bandwidth detected in the TRLIF signal. 

 Conversely, if all significant AC components are above the cutoff, then only the DC 

component will be passed and the output will be proportional to the time-average of the envelope 

waveform. This fact implies that a lock-in amplifier set to a long time constant measures time-

averaged LIF signal. This is the theoretical foundation of the benchmark comparing the time-

averaged TRLIF profiles with the average LIF profile from a lock-in amplifier set to a long time 

constant. If the two time-averaged profiles do not agree, then the time-resolved data acquisition 

or analysis likely failed somehow. 

4.3.2.4 Upper and Lower Bounds of the Time Constant 

 Ideally we would like to satisfy the following double inequality in order to sufficiently 

preserve time-resolved information while using phase-sensitive detection: 

 refT T , (4.34) 

where Tref = 2π/ωref is the period of the reference sine wave at a frequency of ωref and τ is the 

integration time constant. T is a time scale of interest over which we would like to resolve 

change in the TRLIF signal envelope F(t). The left hand inequality follows from the requirement 

of phase-sensitive detection to average over more than one reference period to recover the DC 

signal while rejecting the 2ωmod ripple. The right hand inequality is a statement that time-

resolved information is destroyed when averaging over a few time constants. 

 The output signal will not be proportional to the TRLIF envelope if the requirement is 

insufficiently satisfied. If the left side is poorly satisfied, then the ripple will be excessive and 

obscure the DC signal proportional to the envelope amplitude. If the right side is poorly satisfied, 
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then features will be "smoothed over" because PSD is averaging data over a relatively long time. 

Or, in the frequency domain this means that the low-pass filter in PSD is removing significant 

frequency components of the envelope F(t). 

 Consider an oscillation of about 10 kHz, such as the Hall thruster breathing and spoke 

modes. A measurement of this oscillation requires a resolved time scale of order T = 10-5 s, since 

we require at least several points inside each period to reasonably resolve the oscillation. The 

fastest reference frequency possible would be ideal to reduce 2ωmod ripple and since the noise 

spectral density tends to decrease with frequency. Unfortunately, the AOM can reach at most less 

than 10 MHz, and the SNR is found to reach a maximum around 1 to 2 MHz (order Tmod = 10-6 

s). These bounds leave little room for the time constant, and apparently it will not easily satisfy 

Equation (4.34). We require a more careful analysis to determine appropriate bounds on τ. 

 The requirement that the low-pass filter rejects the 2ωmod ripple implies that the time 

constant is ideally larger than the modulation period. We can define a minimum allowable ratio 

of τ/Tmod that results in a maximum allowable ratio of ripple amplitude to DC amplitude. Since 

the filter gain for the DC signal is unity for any time constant, the ratio of output ripple 

amplitude to the DC amplitude is simply the amplitude gain at the 2ωmod frequency. We require 

the amplitude gain to be smaller than some maximum threshold gain G2ω: 
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This leads directly to a minimum allowable ratio of τ/Tmod: 

 2

mod 2

1 1
1

4T G 




  . (4.36) 

The minimum allowable ratio min(τ/Tmod) is given for a few values of G2ω in Table 4.1. A 

common standard for phase-sensitive detection in general is that the time constant is at least 10 

reference periods, leading to a negligible ripple under 1%. In the case of TRLIF, the SNR is 

likely to be poor enough that the noise will obscure a ripple of even a few percent, making such a 

stringent requirement unnecessary. Apparently by this requirement, τ must only be a small factor 

larger than the modulation period; a time constant of about 1 to 2 times larger than Tmod should 

work. 
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Table 4.1. Select values of the minimum allowable ratio of time constant to modulation period 

min(τ/Tmod) given values of G2ω, a threshold of the maximum ripple amplitude to DC amplitude 

in the phase-sensitive detection signal. 

G2ω min(τ/Tmod) 

0.1 0.7918 

0.05 1.5896 

0.01 7.9573 

 

 The TRLIF signal envelope must be passed with little distortion, i.e. little difference in 

the gain of the relevant frequency components. Conversely to the previous calculation, a 

maximum allowable frequency component in the TRLIF envelope can be defined by imposing 

some minimum threshold amplitude gain Gmin by the low-pass filter on the maximum relevant 

TRLIF signal frequency component fmax: 
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This requirement leads to an upper bound on the maximum relevant frequency component of: 
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 Putting the two requirements together results in a more precise inequality on τ: 
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Note that the lower bound depends on the modulation period and a gain threshold, while the 

upper bound depends on the maximum relevant frequency component in the TRLIF envelope 

and the other gain threshold. The "maximum relevant frequency component" may not be well 

defined if the envelope is not sharply peaked in the frequency domain (which may be true for 

many conditions of a Hall thruster), in which case fmax can be defined empirically by testing a 

number of different time constants to detect where significant distortion occurs (see Subsection 

5.4.4). The condition is still useful to conceptually determine the approximate range of 

appropriate time constant values. 

 These conditions to choose an appropriate value for the time constant are visualized in 

Figure 4.9 with G2ω = 0.05 and Gmin = 0.95. The blue curves depict the gain of the 2ωmod ripple 
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for modulation frequencies of 1 MHz (dashed curve) and 2 MHz (dotted curve). The vertical 

lines indicate the minimum acceptable time constant from the condition of Equation (4.36). The 

red curve shows the condition on the maximum relevant frequency component from Equation 

(4.38). Frequencies below the curve satisfy the gain requirement Gmin. 

 The intersection of the vertical lines with the red curve indicate the maximum allowable 

signal frequency component at the minimum acceptable time constant for each modulation 

frequency. This demonstrates how raising the modulation frequency allows the acquisition of 

higher signal frequencies. Thus we see that, given the threshold values used, the bandwidth of 

the system is about 35 kHz for fmod = 1 MHz and 65 kHz for fmod = 2 MHz. 

 The maximum acceptable time constant occurs where the red curve crosses below fmax, 

the maximum relevant frequency component of the TRLIF signal (not explicitly shown on the 

plot since it depends on the physical system under study). For example, the maximum acceptable 

time constant for a 10 kHz signal would be τ = 5.2 μs.  

 

Figure 4.9. Gain of the 2ωmod ripple for 1-MHz and 2-MHz modulation frequencies (blue dashed 

and dotted lines) plotted together with the maximum frequency with gain exceeding Gmin = 0.95. 

Both are functions of the time constant τ. The ripple gain determines the minimum acceptable τ 

while the maximum frequency passed determines the maximum acceptable τ.  
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 Figure 4.9 shows the bounds of acceptable time constant values, but the improvement 

factor is proportional to the square root of the time constant. It would therefore generally be 

advisable to use the largest time constant possible to raise the SNR. Capturing high-frequency 

signals may require a low time constant, which may require a longer acquisition time to collect 

sufficient data to perform more averaging after the phase-sensitive detection stage. Thanks to the 

square root dependence, the difference is limited. A relatively large change of factor of four in 

the time constant only results in a change of a factor of two for the SNR improvement, which 

may not make a major difference for the final SNR while allowing a wide range of bandwidth. 

 The time constant is bound to the order of microseconds for the TFLIF technique to 

work. This time constant is about a factor of 105 to 106 smaller than typically used for time-

averaged LIF experiments, and therefore it provides only a modest improvement to SNR because 

the SNR improvement factor is proportional to the square root of the time constant. Therefore, 

further averaging is necessary to recover the TRLIF signal from the noise after the PSD stage. 

 The final step in analysis is one of two averaging techniques. Averaging can be done over 

either the triggered time-domain PMT signal after filtering and phase-sensitive detection (called 

"triggered averaging"), or over transfer function estimators relating the PMT signal to some other 

input signal (called "transfer function averaging"). Both techniques, the topics of the following 

two subsections, are used with the same dataset to compare with each other for benchmarking. 

The final averaging step is the signal processing step responsible for the largest SNR 

improvement factor.  

4.3.3 Fourier Analysis 

4.3.3.1 The Assumption of a Linear System and the Existence of a Transfer Function 

 The main assumption in our use of Fourier analysis is that the thruster acts as a linear 

system in that there is a linear operator mapping some "input" signal (e.g. discharge current) to 

some "output" signal (e.g. LIF). If true, then knowledge of how the system maps input to output 

and a measurement of the input signal are sufficient to calculate the output. That is the strategy 

of TFLIF. The TRLIF signal is not measured directly; the transfer function and the input signals 

are measured, and the characteristic TFLIF output signal can then be calculated. 

 To avoid possible confusion with the many definitions of the word "linear" in other 

contexts, let us explicitly state here what it does not mean in this context. It does not mean that 
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the output is related to the input by a linear equation ( ) ( )y t m x t b   . Nor does it necessarily 

imply a high linear correlation coefficient. Nor is the cross correlation necessarily high at any 

time delay.  

 We assume only that there is a time-invariant linear system in the sense of the use of the 

term in linear algebra or systems and signals. Suppose O is the operator that describes the 

relationship between the input and output of the system. Given two time-varying input signals 

𝑥1(𝑡) and 𝑥2(𝑡), suppose the system has output signals 𝑦1(𝑡) and 𝑦2(𝑡) such that 

 
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1 1

2 2

( ) ( )

( ) ( ) .

y t O x t

y t O x t




     (4.40) 

Then the system is linear if and only if it satisfies the following for any two input signals and 

constants α and β: 

 1 2 1 2( ) ( ) ( ) ( )O x t x t y t y t      .   (4.41) 

In other words, if we take a linear combination of the original input signals to construct a third 

input signal, then the output of O associated with the new input signal is the same linear 

combination of the original output signals. 

 Consider discrete signal vectors ID[n] and F[n], which are ideal discharge current and 

fluorescence signals in the absence of noise. This ideal fluorescence signal is proportional to the 

density of a population of ions in the interrogation zone having a velocity corresponding to the 

Doppler-shifted laser wavelength. Since this stage follows phase-sensitive detection, the ideal 

fluorescence signal F[n] is a discrete, low-pass filtered version of the envelope F(t) in Equation 

(3.3). Both ID[n] and F[n] are discretely sampled a total of N times with n as the index of a 

particular sample, so 0 1n N   . If the system is time-invariant and linear, then it can be 

shown that there is a constant transfer function relating the Fourier spectra of any two 

simultaneous input and output signals: 

[ ] [ ] [ ]DF k H k I k ,     (4.42) 

where k is the index for the Fourier space, which has the same range as n. It is our convention in 

this dissertation to use a tilde to denote the discrete Fourier transform, i.e. any signal A[n] is 

related to 𝐴̃[𝑘] by the discrete Fourier transform (DFT):  
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 A linear system relating input and output signals is a much more general relationship than 

the other meanings of the word "linear" mentioned above. It is possible for a linear system to 

map input to output such that output has different phase and relative frequency content from the 

input, though any frequency present in the output must be present in the input to some degree. It 

is also much looser than the assumption of periodicity used in the other TRLIF techniques 

discussed in Section 3.3. The assumption underpinning all of those techniques is that the physical 

process is periodically repeatable. In this analysis, the input and output waveforms may change 

and never be repeated while retaining the linear relationship.  

In fact, the assumption is entirely based on the relationship between the input and output 

signals, not on the properties of the oscillations themselves. Since the characteristic output signal 

can be calculated for an arbitrary input signal, it is theoretically possible to capture even chaotic 

or stochastic oscillations that vary is some unpredictable way as long as the relationship between 

the input and output remains defined by the transfer function. Of course, the transfer function 

cannot capture oscillations where both input and output signals vary unpredictably and 

independently of one another, in which case it is clearly impossible to define a map between the 

two signals. It can, however, capture oscillations where the input signal varies chaotically or 

stochastically and the output signal is determined by the linear response of the system to the 

input signal.  

As long as the relationship between the input and output remains time-invariant and 

linear then there is a transfer function relating the two signals. Then it is possible to measure the 

transfer function and calculate the characteristic output for any input signal. That characteristic 

output converges to the actual TRLIF signal as the average transfer function estimator 

approaches the true transfer function of the system. 

4.3.3.2 Empirical Transfer Function Estimator 

 The simplest and most intuitive transfer function estimator is called the empirical transfer 

function estimator in the literature. Lobbia used this estimator in research on high-speed 

Langmuir probe measurements in Hall thrusters [36]. As discussed above, the idea is to assume 

the thruster acts essentially as a linear, time-invariant system in the sense that the TRLIF signal 

at a point in space is related to some input signal (e.g. discharge current) by a linear system. 
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Though some plasma behavior is stochastic and therefore necessarily nonlinear, linear 

characteristic features can exist and dominate behavior.  

 The assumption of a linear system relating Langmuir probe data and discharge current 

was ultimately justified by Lobbia by noting that the synthesized signals from the average 

transfer function matched all the key features of the original density signals for the same input 

current signal [37]. This comparison between the raw data and the characteristic signal from the 

average transfer function was possible because the raw data had a reasonable SNR, but it is not 

possible with TRLIF data since the raw signal is buried in noise. Another method of justifying 

the assumption of linearity that will be used for TFLIF is the benchmark proposed in Section 

4.3.5. 

 Now, consider the measured signals, which we model to be composed of the ideal signals 

plus an additive noise sequence of random variables with some probability distribution with zero 

mean (since this signal is following filtering and phase-sensitive detection). The fluorescence 

signal is buried in noise, while the discharge current signal from the current probe is very 

precise: 
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Then we can estimate the transfer function by simultaneously measuring the input and output 

signals and dividing their Fourier spectra elementwise: 
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  (4.45) 

 HETFE[k] is called the empirical transfer function estimator (ETFE). It is also buried in 

noise since the fluorescence signal is. During the experiment, we simultaneously digitize a series 

of N points of discharge current ID,measured[n] and the band-pass filtered photomultiplier signal, 

which becomes Fmeasured[n] after phase-sensitive detection, for a total duration of about 60 s at a 

sampling frequency of about fs = 30 MHz with the laser set to a constant wavelength. The 60-s 

series of N points is split into Q sub-series of N/Q points each. An empirical transfer function 
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estimator is found for each sub-series and they are all averaged together to obtain an average 

ETFE: 

, , ,
1 1 1

1 1 1
[ ] [ ] [ ] [ ] [ ] [ ]

Q Q Q

ETFE q H q H q
q q q

H k H k H k N k H k N k
Q Q Q  

       .  (4.46) 

 Note that NH,q[k] is a complex random variable sequence with zero mean since 𝑁̃𝑓,𝑞[𝑘] is 

and they are related by a linear transformation with no additive constant. 𝑁̃𝑓,𝑞[𝑘] has zero mean 

since Nf,q [n] does and they are related by the discrete Fourier transform, which is a linear 

transformation. Then by well-known properties of sums and linear transformations of random 

variables, the sum in the second term in Equation (4.46 is itself a sequence of complex random 

variables with zero mean and variance reduced by a factor of √𝑄 relative to the average variance 

of NH,q[k]. This an example of the classic result that in general averaging Q measurements 

improves SNR by a factor of √𝑄. This simplistic analysis implies that the average transfer 

function estimator converges to the exact transfer function in the limit that Q approaches 

infinity. 

 The average transfer function is characteristic of the linear behavior of the thruster. 

Approximate values of Q = 10 or Q = 100 were used to average out turbulence and noise in 

Lobbia's work. Transfer function averaging is the primary form of averaging to improve SNR in 

a TFLIF measurement, hence values on the order of Q = 100,000 are used. 

4.3.3.3 Advanced Transfer Function Estimators 

 The average ETFE in Equation (4.46 is the most intuitive estimator possible, following 

directly from the definition of a transfer function. There are other possible estimators and there is 

actually a significant collection of published research related to transfer function estimators that 

dates back to at least the mid-twentieth century. Casting the ETFE of Equation (4.45 into a more 

general notation common in the literature, we have: 

ˆ i
i

i

y
g

u
 ,      (4.47) 

where yi and ui are the DFT of the measured system output and input, respectively.  

 The problem with average of the ETFE is that the ETFE actually has theoretically infinite 

variance, and consequently the expected number of inaccurate frequency components remains 
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constant as the sample size (the variable Q in this dissertation) increases [91]. There is, therefore, 

a limit to the accuracy of the resulting synthesized output signal, regardless of the quantity of 

data included in the average. The simplistic analysis of Subsubsection 4.3.3.2 is perhaps 

intuitively helpful but flawed because it assumed a finite variance. The average ETFE does not 

converge properly to the exact transfer function because the variance is in fact infinite. 

Intuitively, the issue arises because when the measured system input (true system input plus 

noise) happens to be near zero for a particular frequency component, then the ETFE for that 

frequency component can be very large. The large and inaccurate instance of the ETFE then 

imposes a disproportionate influence that skews the average.  

 A significant body of research has focused on considering different transfer function 

estimators and averaging schemes. For example, the Welch estimator is a weighted average of 

the ETFE with the magnitude of measured input as the weighting factor: 
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where ˆ
ig  is the ith instance of the ETFE and iu  is the corresponding measured system input. This 

is considered the "classical" scheme to ameliorate the problems of the ETFE. It helps by 

reducing the weight given to an erroneous ETFE. Heath showed not only that the Welch 

estimator has finite variance, but that it is the optimal weighting for both deterministic or 

stochastic inputs, two common models of input used to analyze transfer function estimators [92]. 

Deterministic input means the input is assumed to have definite values and the measured input 

varies only by random noise that is modeled as a zero mean complex Gaussian random variable. 

Stochastic input is a model for input where the input frequency components themselves are 

modeled as random variables with complex normal distribution. 

 Other exotic estimators and averaging schemes have been analyzed and can be useful in 

certain cases. For example, one scheme is to simply exclude from the average any instances of 

the ETFE inside a small region around the singularity, and another example is averaging the 

logarithm of the ETFE [93]. These have been shown to have value as well, but are more 

complicated to implement than the Welch average. 
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4.3.3.4 Synthesizing the Characteristic Fluorescence Signal 

Suppose that the transfer function exists and has been measured by averaging over a large 

data set, yielding an average transfer function 〈𝐻[𝑘]〉. Then we can synthesize the characteristic 

response Fcharacteristic[n] of the system to any input signal of our choice 𝐼𝐷
∗ [𝑛]. Given an average 

transfer function 〈𝐻[𝑘]〉 , the characteristic response of the system to the input is: 

 
*[ ] [ ] [ ]characteristic DF k H k I k , (4.49) 

and we transform back to the time domain by an inverse DFT on the characteristic spectrum: 
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 Note that there is a separate transfer function for every spatial location and laser 

wavelength, and the output signals of each one correspond to the TRLIF signal of a velocity 

group at that point. The characteristic output of each transfer function is interpreted as the VDF 

amplitude as a function of time within the interrogation zone at a velocity corresponding to the 

Doppler-shifted ion absorption wavelength. The same synthesis procedure is repeated for all 

wavelengths desired to build up the time-resolved ion VDF profile at a single point in space. At 

least about 10 wavelengths are necessary to reasonably resolve the VDF in velocity space. 

 It is important to determine how the characteristic TRLIF signal can be interpreted. First, 

consider an arbitrary discharge current measurement 𝐼𝐷
∗ [𝑛] of length N/Q. If the assumption of 

linearity holds, then the average transfer function converges to the exact system transfer function 

as described in Subsubsection 4.3.3.2. Then by Equation (4.42) the characteristic LIF signal 

spectrum converges to the exact spectrum of the LIF signal corresponding to the same time 

as the input 𝐼𝐷
∗ [𝑛], and therefore Fcharacteristic[n] (the inverse DFT) converges to the time domain 

fluorescence signal corresponding to that time. Therefore, the output of the linear model is the 

actual TRLIF signal at the time of the input discharge current trace, if the assumption of a linear 

system is justified. 

 It is important to note that the same input discharge current signal, 𝐼𝐷
∗ [𝑛], is used to 

synthesize the characteristic signal for all wavelengths. This is so that the synthesized response at 

each wavelength corresponds to a common input signal, ensuring coherent responses at all 

outputs regardless of how the input may randomly vary. From the discussion of the last two 

paragraphs, the characteristic output signals are regarded as the TRLIF signal at each laser 

wavelength that occurred at the time of the input trace. This is an important feature of the TFLIF 
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technique. The raw data series at each wavelength are all incoherent with each other since they 

are taken with some arbitrary time delay between them and the thruster oscillates chaotically. 

The TFLIF technique requires no triggering to measure the transfer function, yet signals 

synthesized from the same input are all coherent and can be meaningfully plotted together in a 

visualization of the VDF. 

Note that the transfer function can be used to calculate a characteristic output signal for 

any input signal. The input 𝐼𝐷
∗ [𝑛] can be an arbitrary signal of length N/Q. The characteristic 

output will only be physically meaningful, however, if the input physically occurred. 

Furthermore, Lobbia pointed out that the characteristic output signal may only be accurate for 

input signals containing similar frequency components as the input/output signals originally used 

in the average to generate the average transfer function [37]. The average transfer function is 

likely to have large uncertainty at frequencies that were not well represented in the input/output 

signals used in the average. For a thruster operating in thermal equilibrium with constant 

operating conditions, chunks of input signal of length N/Q are all similar in terms of power 

spectral density. Since they are all similar, the particular trace used for the input does not make a 

major difference, so the last discharge current trace used in post-processing is often chosen.  

4.3.4 Triggered Average 

 Following phase-sensitive detection, the signal is demodulated and following its original 

envelope, which corresponds to the population of ions in the interrogation volume with the 

velocity associated with the laser wavelength. We again model this measured signal as composed 

of the sum of the ideal TRLIF signal and some noise signal, which is assumed to be a sequence 

of independent random variables distributed by some probability distribution function with zero 

mean and some variance 𝜎𝐹
2. The noise will have zero mean at this stage because noise signals 

near the modulation frequency that are passed by PSD will have randomly varying phase and 

therefore have randomized sign.  

 As an alternative to transfer function averaging, we use triggered averaging as part of the 

validation argument. A triggered average takes an ensemble of traces, each measured after an 

instance of some trigger signal, and averages them all together elementwise (i.e. all of the same 

time points are averaged together). The main implicit assumption of triggered averaging is that 

there is a repeatable process that reoccurs at each trigger, thus we can consider the ideal LIF 

signal at the nth time point after the qth trigger to be composed of the average signal and some 
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fluctuation that may change due to small differences in the processes that occur after each trigger 

event. If the assumption that the same process reoccurs is exactly true, then the fluctuation is 

zero for all traces; but in general this is not true. The measured signal is modeled as: 

, , ,[ ] [ ] [ ] [ ]measured q av fluc q f qF n F n F n N n   ,   (4.51) 

where Fav[n] is the average TRLIF signal, Ffluc,q[n] is some small fluctuation in LIF signal from 

the average, and Nf,q[n] is the noise sequence. The index of the time bin is n, and the subscript q 

indicates that the signals occur on the qth trigger. This is equivalent to the model given in 

Equation (4.44, with the only differences being the inclusion of the subscript q to denote 

different traces for each trigger and writing the ideal fluorescence signal as F[n] = Fav[n] + 

Ffluc[n]. 

  The idea of a triggered average scheme is to find triggers in the phase of the discharge 

current (or other reference signal) that indicate the phase of the repeatable process so that we can 

average the TRLIF signal traces at the same phase to recover the average signal waveform: 

, , ,
1 1 1

1 1 1
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

Q Q Q

q q av fluc q f q av f q
q q q

F n F n F n F n N n F n N n
Q Q Q  

        , (4.52) 

where Ffluc,q[n] averages to zero in the limit Q→∞ since by definition the average LIF signal is 

Fav[n]. We split the modeled signal into time-averaged and fluctuation components to highlight 

that the measured TRLIF signal 〈𝐹𝑞[𝑛]〉 converges to the actual TRLIF signal after the triggers if 

and only if the assumption of a repeatable process is valid (i.e. that fluctuations from the average 

signal after each trigger are negligibly small).  

 Nf,q[n] is a sequence of random variables, so the average of Q such sequences is another 

sequence of random variables with the same mean (μ=0) and a variance reduced by a factor of Q: 

2 2[ ] [ ] ( 0, / )[ ]q av FF n F n R Q n      .    (4.53) 

Ignoring the small contribution from the random fluctuations of the TRLIF signal from the 

average, the SNR improvement for this simple averaging process is the classic result for 

averaging Q measurements: 
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 The triggered average has two applications for our purposes. First, in the case that we 

have both a linear system and a repeatable process that begins at some trigger, then both of the 

transfer function and triggered average techniques converge to the actual LIF signal, and 

therefore we can compare measurements of the two techniques to validate the TFLIF system. 

That is the idea behind the experiment with a periodic cathode oscillation in Section 6.3. 

Secondly, the triggered average is used for the benchmark in Subsection 4.3.5 since it can be 

shown that the transfer function can reproduce the triggered average even if the triggered average 

is not physically meaningful. This benchmark is demonstrated for a random cathode oscillation 

in Section 6.4 

 Note that the use of the triggered averaging technique following filtering and PSD is 

equivalent to the technique Scime et al. developed employing a lock-in amplifier and triggered 

averaging by an oscilloscope (see Subsubsection 3.3.1). The difference is that in this case the 

experiment is somewhat more flexible but has much more overhead because the analysis is done 

in software in post processing, whereas in that case PSD and averaging were done in real time 

with a commercial lock-in amplifier and oscilloscope. 

4.3.5 General-Purpose Benchmark 

4.3.5.1 Motivation for a New Benchmark 

 To be clear, the term "benchmark" is used here in the same way as it is commonly used in 

validating code for physical simulations or sometimes used in advanced diagnostics 

development. It refers to a special case where a known solution exists that can be compared with 

the results from the simulation or the new diagnostic to validate its accuracy. It is a consistency 

check that provides evidence that the new system works as intended, but does not provide a 

logically deductive argument that the system has no issues. There may be issues that for some 

reason did not surface in the case of the benchmark test. Successfully passing a number of 

benchmark tests may give researchers more confidence in the system, but of course the system 

can never be proven to be "perfect" by such tests. Therefore, it is important to keep in mind the 

possible fallibility of the system and to compare with other high speed diagnostics when 

possible. Using many different high speed diagnostics will, of course, give better insight into the 

physical processes at work in the thruster and also, critically, a better sense of whether some of 

the diagnostics may not be returning accurate results. 
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 Although the validation tests based on periodic oscillations in Section 6.3 are positive, 

they do not necessary lend much confidence to the technique when used with other plasma 

sources with nonperiodic oscillations. It would be desirable to have a general-purpose 

benchmark to test the results of the new technique under the circumstances of any arbitrary 

measurement.  

 One possible benchmark, in principle, would be to compare results on the same 

experiment with another TRLIF technique. Though possible, this presents logistical challenges 

since no single laboratory is equipped to perform two TRLIF techniques, nor do any two 

laboratories capable of different TRLIF techniques have copies of the same plasma sources. In 

addition, the main advantage of the PEPL TRLIF system is that it enables probing of nonperiodic 

oscillations that are not accessible with other TRLIF techniques anyway, thus such a test could 

not validate the system in the desired cases. 

 A general-purpose benchmark is proposed here that can be used to help validate the 

results for an arbitrary transfer function measurement, and therefore also validate the assumption 

of a linear map between the input and output of an arbitrary system of interest. It can be shown 

that if the system of interest is linear, then the transfer function is theoretically capable of 

reproducing the result of the triggered average. Therefore, the results of those two independent 

analysis techniques used on the same data set can be compared as a benchmark that helps to 

validate the transfer function.  

4.3.5.2 The Reproduction of the Triggered Average by the Transfer Function 

 Most of the time, we will be interested in calculating the characteristic output for an input 

trace that physically occurred, since Subsection 4.3.3.4 argued that the characteristic output then 

corresponds to the actual output signal that occurred at the time of the input signal. But it is 

important to remember that the transfer function can be used to calculate a characteristic output 

signal for any possible input signal of length N/Q. If the input signal did not physically occur 

then, of course, the characteristic output signal will not correspond to an actual output that 

physically occurred. 

 Nonetheless, consider the characteristic TRLIF signal calculated from the transfer 

function using the triggered average of discharge current traces as the input to the transfer 

function: 
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If the system is time-invariant and linear, then the transfer function mapping input to output 

exists and Equation (4.42, the formula for calculating output signal, is valid. Insert the input 

signal above into the formula for characteristic output signal and convert to the time domain by 

applying the inverse discrete Fourier transform to both sides: 
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Note that the discrete Fourier transform can move inside the sum and act on each individual term 

in the sum because the discrete Fourier transform is a linear transform: 
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Now, recognize that each term in the sum in fact corresponds to the right hand side of the 

formula for characteristic output signal of each of the q traces in the triggered average: 
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The inverse discrete Fourier transform is also a linear transform, thus it can move inside the sum 

and act to convert terms to the time domain: 

 * 1

, ,
1 1

1 1
[ ] [ ] [ ]F

Q Q

characteristic characteristic q characteristic q
q q

F n F k F n
Q Q



 

   .  (4.59) 

 It was argued in Subsection 4.3.3.4 that, if the system is linear, the characteristic output 

signal converges to the actual TRLIF signal that occurred during the time of the input trace. That 

means in this case that the Fcharacteristic,q[n] corresponds to the TRLIF signal that occurred during 
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the qth discharge current trace. If so, then average on the right hand side converges to the 

triggered average of TRLIF signal if the system is indeed linear: 

( , ) ( , )*
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F n F n F n
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  



  ,   (4.60) 

where Fav[n] is the triggered average of TRLIF signal from Subsection 4.3.4. We have shown 

that the characteristic output of the average transfer function will theoretically reproduce the 

triggered average TRLIF signal if the triggered average discharge current is used as the input 

signal and the system is indeed linear.  

4.3.5.3 Significance of the Benchmark 

 The result of Subsubsection 4.3.5.2 suggests a possible benchmark. The "reproduction" 

of the triggered average TRLIF signal that is calculated using the transfer function can be 

compared to the actual triggered average TRLIF signal to verify that calculations based on the 

average transfer function are accurate.  

 A direct comparison of the triggered average TRLIF signal with the characteristic TRLIF 

signal of an actual input discharge current trace is only valid in the special case of periodic 

oscillations, where both signals converge to the actual TRLIF signal. This special case for 

periodic oscillations is the concept behind the experiment in Section 6.3. The new concept for a 

benchmark is a significant development because it does not rely on the special case of periodic 

oscillations to make triggered averaging valid. Instead, the transfer function can reproduce the 

triggered average signal whether the triggered average is physically meaningful or not. This 

allows a direct comparison between the triggered average TRLIF signal and the characteristic 

signal of the transfer function using the triggered average discharge current trace as input. Thus 

the benefit of the proposed benchmark is that is it "general-purpose" in that it can be used for any 

arbitrary oscillation.  

 If the two signals agree, as is theoretically expected if the system is linear, then this 

benchmark provides evidence that the Fourier analysis works as expected for the particular case 

tested. Specifically, the comparison simultaneously provides evidence that system of interest is 

indeed linear and that the parameters chosen in analysis (such as chunk size, windowing, and 

total length of the data set) are reasonable for the system of interest.  The logic for this is that if 

those conclusions were incorrect then we would expect some significant error in the transfer 
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function's reproduction of the triggered average signal. Hence, if there is not significant error in 

the comparison then we can reasonably conclude that the system of interest is likely linear and 

that the analysis parameters are reasonable for the system of interest. 
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Chapter 5 

 

A Practical Implementation of the TFLIF Technique 

 

Experience without theory is blind, but theory without experience is mere intellectual play.  

– Immanuel Kant 

 

 Building on the foundation laid out in the previous chapter, this chapter covers many of 

the details of the implementation of a practical TFLIF system at PEPL. The preceding chapter 

covered the theory of the signal processing technique. If the theoretical considerations were 

changed significantly, then the result could likely be considered a distinct measurement 

technique. This chapter focuses on the finer details of the hardware, experimental setup, and 

algorithms that define exactly how that system is implemented. These details could be changed 

and the underlying technique largely would remain the same, though different implementations 

could have vast differences in efficiency and reliability. In fact, this chapter represents a major 

thread of the research presented in this dissertation: to approach the best implementation 

possible, starting from the simplest and naivest implementation possible. Only after developing a 

system that reliably and efficiently makes measurements can we begin to validate the accuracy of 

those measurements in Chapter 6 and demonstrate useful measurements in a Hall thruster in 

Chapter 7.  

The essential goal of this chapter is to recount the salient details of this progression so 

that the reader understands why certain choices were made and the general idea of how to 

implement a TFLIF system. This chapter is concerned with three broad areas. Firstly, hardware 

considerations are covered in Section 5.1. Secondly, there a number of important software 

considerations. The TFLIF technique would not be possible without a reliable phase-locking 

scheme (Section 5.2) and not practical without the savings from data recycling (Section 5.3). 

Other important software topics are included in Section 5.4. Finally, Section 5.5 presents the 

efforts to optimize the SNR and raise the operating modulation frequency to enable better signal 

bandwidths. 
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5.1 Hardware Considerations 

 TFLIF relies on hardware that was not readily available just a few years ago. It requires a 

high-speed digitizer capable of continuously streaming about 10 GiB of data to the PC, a storage 

system with a sufficiently fast transfer speed and large capacity to support the massive datasets, 

and the computational power to process the datasets in a practical time frame. TFLIF only 

became a practical possibility within the past several years as these features became available. 

 The goal of this section is not to present an exhaustive trade study that was done to select 

the particular hardware for the implementation of TFLIF at PEPL; that is already obsolete. 

Rather, the goal is to convey the important considerations in selecting and using appropriate 

hardware for a TFLIF system. The focus is especially on the requirements, limits, and optimal 

values of relevant parameters for TFLIF. Subsection 5.1.1 covers the digitizer and the main 

concerns of data transfer, sampling frequency, and voltage resolution. Subsection 5.1.2 discusses 

how the RAID is the only feasible solution for the data transfer and storage requirements. 

Subsection 5.1.3 considers the acousto-optic modulator (AOM) necessary for high-speed 

modulation. The other significant piece of hardware for TFLIF, the band-pass filter, has been 

covered in Subsections 4.3.1 and 5.5.7.  

5.1.1 Digitizer 

 A dataset for a single laser wavelength continuously sampled in time is about 10 GiB (cf. 

Subsection 5.1.2), precluding acquisition to memory onboard the digitizer card since onboard 

memory is usually only in range of 64 MiB to a few gigabytes. Even if possible, acquiring to 

memory on the card and then transferring to permanent storage would add an extra step and 

waste time during the experiment. It is much more practical for this application to stream directly 

to permanent storage on the PC. At the time of building this system, Alazartech was the only 

digitizer manufacturer with PCI express models capable of streaming directly to PC memory or 

storage at the full sample speed. Though the feature is more common now, this was the deciding 

factor in selecting the digitizer at the time.  

 The following subsubsections discuss the requirements, limits, and optimal settings on 

the parameters of the digitizer that are relevant to the TFLIF system. The requirements and limits 

on the sample frequency are discussed in Subsubsection 5.1.1.1, as well as an argument that 

efficiency could be improved with a more complete test of the SNR versus sample frequency. 
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The input voltage scale is the subject of Subsubsection 5.1.1.2, where the importance of 

matching the output band-pass filter signal to the input scale is emphasized. 

5.1.1.1 Sampling Frequency 

 Since the modulation frequency must be on the order of megahertz (see Subsection 

4.3.2), the sample speed fsa must be at a minimum on the order of tens of megahertz to resolve 

the modulation waveform for phase-sensitive detection. This requirement is not difficult; the 

Alazartech ATS9462 digitizer selected for TFLIF is capable of a sample frequency up to 180 

MHz. It is important to note, however, that the maximum sample speed is limited by the function 

generator providing the clock signal when operating with an external digitizer clock, and 

operating in the external clock mode is critical for this application (see Section 5.2). The Agilent 

33522A, the function generator used to generate the external clock, is limited to 30 MHz.  

 To save on storage and computational expense, the optimal sample speed setting may be 

considered to be the lowest sample speed that still reliably captures the signal with no significant 

reduction in SNR. A test of the effect of the sample frequency in Figure 5.13 in Subsection 5.5.5 

shows that the SNR is not consistently affected by the changing the sample frequency from 20 

MHz to 30 MHz for modulation frequencies in the range of 0.1 to 3 MHz. Previous analyses 

using an older analysis code had shown a SNR slightly but consistently higher at 30 MHz than at 

20 MHz for all modulation frequencies. The reason for the change is currently unknown, but 

could be related to a problem with the earlier code such as a less reliable phase-finding routine. 

Much of the data presented in this dissertation were captured at 20 or 30 MHz, but if the latest 

analysis is correct, then the sample speed may be higher than optimal. More work is necessary to 

determine the optimal ratio of sample frequency to modulation frequency. 

5.1.1.2 Voltage Resolution 

 The voltage resolution of the digitizer is an important feature to consider. The ATS9462 

has 16-bit resolution, meaning that voltage measurements are recorded as 16-bit integers and 

there are 216 = 65536 voltage levels uniformly spread between the positive and negative full 

scale voltage. The actual analog voltage value is rounded to the nearest voltage level resolved. 

Digitizers with higher sample frequency tend to have lower voltage resolution, and 16-bit 

resolution is generally the maximum available. 216 levels may seem sufficient to well resolve the 

signal, but it is more difficult for a noisy signal. For example, the background light collected can 
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be about 1000 times the amplitude of the LIF signal. The SNR improvement factor of the band-

pass filter is estimated to be about 50 [89], so the SNR of the digitized signal may be about 

53:1000. In order to not destroy the signal by saturating the digitizer above/below full scale, the 

full scale must be set to at least about the scale of the background noise, leaving only about 

65536 ∗ 53/1000 = 3473 levels near the full scale of the signal. The effective voltage 

resolution of the signal is therefore between 11-bit and 12-bit levels at best. Clearly, it is 

important to have the best voltage resolution possible in an application where the goal is to 

resolve a weak signal in a strong noise background. 

 The signal is not resolved extremely coarsely at this resolution, but reducing the effective 

signal resolution even further by a significant factor could have deleterious effects. The voltage 

quantization introduced by the digitizer is a source of noise that becomes increasingly significant 

as the effective signal voltage resolution is reduced, though it only strongly affects SNR at very 

low effective voltage resolution of a few bits [94]. The danger is that a careless choice of 

digitizer input scale to band-pass filter output voltage can annihilate the signal either by 

saturating the digitizer or by setting the voltage resolution much larger than the background 

signal scale. 

 To help ensure that the effective signal voltage resolution is not unnecessarily reduced, 

the best practice is to match the output voltage of the band-pass filter to the input scale of the 

digitizer. There are several parameters to change to make a good match. The digitizer full scale 

and input/output gains of the bandpass filter may be changed in a discrete set of selections to 

roughly match the output voltage to the input scale. The PMT bias voltage may then be adjusted 

to continuously change the voltage level since the current gain is a monotonically increasing 

function of bias. Quantum efficiency also increases as a function of bias. Therefore, the 

parameters should optimally be adjusted so that the PMT bias is as large as possible without 

exceeding the maximum (1000 V for the Hamamatsu R928 currently in the TFLIF system) to 

maximize the photoelectron rate.  

 No comprehensive test of how the matching affects SNR is available, but three points 

were tested early on when the system still used the internal digitizer clock. The signal at five 

different points was measured, but only three null signals were measured (for unknown reasons), 

enabling the SNR measurement at those points. The ratio of saturated to unsaturated points (Rsat) 

is measured by sampling the filtered PMT signal for about 1 s, adding together the number of 
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points saturated at the maximum and minimum full scale, and dividing by the total number of 

points sampled. The ratio was adjusted during the test by changing the photomultiplier bias 

between 864 V and 949 V while holding all other parameters constant. The results are 

summarized in Figure 5.1. Surprisingly, SNR increases somewhat as a function of Rsat in the 

range of values tested.  

 

Figure 5.1. The SNR moderately increases as a function of Rsat. 

 This result suggests that the effective voltage resolution may actually be worse than 

estimate above because apparently the contribution of quantization noise may be significant. The 

SNR will surely have a maximum value before Rsat = 1 since at that point the digitized signal 

will be saturated at all samples and the signal lost. It may be possible to improve performance by 

operating at a higher value of the ratio, but it is unclear when the loss of signal from saturation 

will dominate the gains from a better effective signal voltage resolution. A more comprehensive 

test with a larger range of values is necessary to determine the optimal conditions.  

Testing for distortion in the TFLIF signal due to the digitizer saturation in addition to 

measuring the time-averaged SNR would be a sensible precaution. Caution must be taken with 

such a test with a higher range of Rsat values to ensure that the maximum voltage encountered is 

safe for the digitizer electronics. In addition, operating at a high Rsat value in the long term would 

also increase the risk that some unexpected change would expose the digitizer to unsafe voltages, 

which may not be worth a modest SNR improvement unless some overvoltage protection is 

added to the system.  

0

5

10

15

20

25

30

35

40

45

50

0.00E+00 2.19E-05 4.20E-03

SNR

Ratio of Saturated to Unsaturated Points (Rsat)



 

110 

 

 In the absence of a more comprehensive test and careful overvoltage protection, a general 

rule is that the match is sufficient when the fraction of saturated to unsaturated points is between 

about 10-6 to 10-4. It is the middle of the range of R values tested and corresponds to at most a 

few saturated points in a chunk of size 0.001 s used to compute an empirical transfer function, 

which likely have negligible effect. The benefits of the rule are that the two-order-of-magnitude 

range is easily achievable, and it prevents either pitfall of the saturation or unnecessary reduction 

in the effective signal voltage resolution that would result from an extremely poor match. 

5.1.2 Redundant Array of Independent Drives (RAID) 

 One of the most challenging requirements of the technique is the sheer volume of data 

that must be acquired. The dataset is collected a rate of Bit Resolution × Number of Channels × 

fsa bits per second. This is about 114.4 MiB/s for an acquisition with fsa = 30 MHz and 2 channels 

(the configuration of the hollow cathode tests in Chapter 6) or about 171.7 MiB/s for the 3-

channel configuration of the H6 campaign in Chapter 7. This leads to about 6.7 or 10.1 GiB 

respectively for a 60-s acquisition per wavelength. With a 60-s dataset for each of 20 laser 

wavelengths, for example, that totals to 134.1 or 201.2 GiB per VDF. Clearly a campaign 

containing a map of VDF measurements at many locations or operating conditions can easily 

reach into the terabyte range.  

 A Redundant Array of Independent Disks (RAID) was at the time of the equipment 

purchase, and as of writing still is, the only solution that satisfies these requirements for both 

capacity and transfer speed. Hard disk drives were available up to about 3 TB but are limited to 

between 100-200 MiB/s sustained write speed. The fastest solid state drive offered write speed 

up to 720 MB/s for the OCZ RevoDrive X2, but capacities were under 1 TB. The capacity and 

write speed of RAID, on the other hand, scales with the number of drives in the array as long as a 

high quality RAID controller efficiently manages the transfer.  

 Technical details of RAID are beyond the scope of this dissertation, but for completeness 

we briefly outline the salient ideas to appreciate how the RAID fits into the TFLIF system. A 

RAID takes data that would normally be consecutively written to a single drive (for example, a 

10 GB data file) and splits it into many "blocks" of some standard size (often on the order of KiB 

or MiB) that are then written to the n drives in the RAID simultaneously. The unit of n blocks 

written to the n drives is called a stripe, and this process is called striping. A RAID can have a 

large data rate advantage over a single drive since the data are written to or read from many 
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drives simultaneously. A RAID is redundant since it can be set to write copies of the same 

information on different drives (mirroring) or to write "parity" information that can be used to 

recover the data in the event that some of the drives in the RAID fail. The RAID controller 

manages all of the overhead involved with calculating parity data and reading from/writing to the 

drives, and it presents the RAID to the OS as a single drive.  

 There are many different schemes defining how blocks are written to the drives, called 

RAID levels. The level RAID 6 was chosen as a good balance between robustness and storage 

efficiency. Two blocks of parity information are added to each stripe so that it can operate with 

no loss of data with up to two failed drives. Since two of the n blocks written to the drives 

simultaneously contain "extra" parity information, the write speed of the RAID is theoretically a 

factor of n 2 faster than a single drive, and the effective capacity is a factor of 1  2n times the 

sum of the capacity of the n drives.  

 The 10-drive RAID at PEPL, designed to exceed the transfer and storage requirements, is 

composed mostly of Western Digital Red drives2 with a capacity of 2 TB and internal transfer 

rate of 147 MB/s. This leads to a net capacity of 16 TB (14.9 TiB) and a theoretical transfer rate 

of 1176 MB/s (1122 MiB/s). The RAID is capable of sustained streaming at the maximum 

sample speed for minutes at a time, whereas the digitizer has buffer overflow issues within 

seconds even with the OCZ RevoDrive X2, despite the nominal transfer speed matching the 

streaming requirement of 720 MB/s (686.6 MiB/s). The net capacity has proven enough for the 

several initial tests, validation campaigns with a hollow cathode, and the initial Hall thruster 

campaign. As of this writing, the RAID is about 75% full. More capacity will be necessary for 

more extensive TFLIF campaigns in the future, but fortunately hard drive technology has 

advanced significantly since building the RAID. RAID controllers supporting drives larger than 

2 TB and 6-TB Western Digital Red drives are now readily available. 

5.1.3 Acousto-Optic Modulator 

 While a mechanical chopper wheel is sufficient for a normal LIF experiment, there are 

drawbacks that make it unacceptable for a time-resolved experiment up to the bandwidth desired. 

The most significant is simply that choppers are limited to modulation frequencies on the order 

                                                 
2 The RAID was initially built with Hitachi Deskstar drives with a higher transfer rate of 160 MB/s. Most of these 

have failed over the years and were eventually replaced with the Western Digital Red drives, which have proven to 

fail at a far lower rate. Unbeknownst to the author when originally building the RAID, the Hitachi Deskstar series 

has the popular but dubious appellation of "Deathstar". 
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of kilohertz, but Section 4.3.2 shows that the use of phase-sensitive detection requires 

modulation frequencies on the order of megahertz. Another potential issue even if they offered 

sufficient speed is that they do not output a stable frequency. The display shows random 

variation in the modulation frequency about a few percent of the setting. A lock-in amplifier can 

handle the instability if the reference is directly measured, but such variation could be difficult 

for the phase-locking necessary for TFLIF. In order to allow higher modulation frequency, we 

must use a more complicated instrument and sacrifice the ideal operating characteristics of the 

chopper. The maximum transmission is 100% because the laser simply passes through holes in 

the chopper wheel. The contrast extinction ratio, the ratio of maximum to minimum 

transmission, is infinite because the laser is completely blocked by the solid sectors of the wheel.  

 An acousto-optic modulator (AOM) provides a similar effect modulating the laser power 

in a much larger range of frequency. It uses a piezo actuator to drive an acoustic wave in a 

transparent crystal, creating periodic regions of higher and lower density that act as a grating for 

Bragg diffraction. Bragg diffraction normally occurs for x-rays incident on a crystal lattice, but 

the larger length scale of the acoustic wave is appropriate to Bragg diffraction of light in the IR 

range.  

 The maximum modulation frequency that the AOM can support is determined by the 

10%-to-90% rise time, which is given by the formula: 
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 , (5.1) 

where d0 is the diameter of the laser beam within the crystal and V is the acoustic velocity of the 

crystal. For the TeO2 material of the NEOS model 23080-1 at PEPL, V = 4260 m/s. The rise time 

for the 1-mm laser beam is insufficient, so a lens focuses the beam to a smaller waist within the 

AOM and a second lens collimates the modulated beam following the AOM. For a Gaussian 

beam, the waist upon focusing by a lens is diffraction limited by:  

0

1

4 f
d

d




 , (5.2) 

where f is the focal length of the lens, λ is the laser wavelength, and d1 is the beam diameter prior 

to focusing. The maximum frequency supported can be estimated by a period of four times the 

rise time, which allows for a rudimentary "square wave" with rise, fall, maximum, and minimum 

phases each taking one rise time. 
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 Another consideration is intensity of the beam within the crystal. A high power laser 

focused to a small spot can damage the TeO2 crystal, which has a maximum permissible intensity 

of 1000 W/mm. The average intensity of the beam is estimated by dividing a nominal 100 mW 

power by the area of a circle with diameter d0, where d1 = 1 mm is an estimate of the beam waist 

before focusing into the AOM. The actual laser power can be more than 100 mW, but not more 

than about a factor of 4 greater. The maximum intensity for a Gaussian beam is a factor of two 

higher than the average. 

 Table 5.1 provides a summary of the operating characteristics of two sets of 

focusing/collimating lenses used at PEPL. Both sets of lenses produce a maximum intensity far 

below the maximum permissible intensity. In general, the intensity will not become a problem 

unless working with a higher power laser, another AOM designed for a smaller focus spot, or 

another AOM designed for coupling with a single-mode fiber. The rise time for this model of 

AOM is limited to that achieved with the 120-mm lenses due to the acceptance angle of the 

AOM. The diffraction efficiency as a function of beam diameter and rise time is given by Figure 

1 in the NEOS 23080-1 manual, and the values were verified in the installation at PEPL. 

Table 5.1. A summary of the operating characteristics of two sets of focusing/collimating lenses. 

There is a trade-off between the maximum frequency fmax and the diffraction efficiency ηdiff. 

 d0 (mm) tr (ns) fmax (MHz) Imax (W/mm2) ηdiff 

f  = 200 mm 0.21 32 7.7 5.6 ~70% 

f  = 120 mm 0.12 19 12.8 15.6 ~60% 

 

 The first set had a focal length of 200 mm, with a high diffraction efficiency of ηdiff  = 

70% but marginal estimated maximum frequency of fmax = 7.7 MHz. This setup was chosen to 

maximize SNR while working out the bugs in the system at somewhat lower modulation 

frequencies. The borderline estimated maximum frequency implied that the setup may need to be 

changed to reach frequencies as high as several megahertz.  

 Eventually, evidence was detected by the photodiode that the laser power modulation 

waveform from the AOM becomes increasingly distorted at frequencies of only a couple of 

megahertz, despite the nominal rise time implying that frequencies above five megahertz may be 

possible. It was suspected that the distortion may contribute to the maximum in SNR versus 

modulation frequency that was shown in Figure 5.12.  
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 The effect of the lenses on waveform distortion and the SNR in LIF measurement was 

tested by comparing with the results of a 120-mm set of lenses. The distortion was reduced, and 

the maximum does indeed occur at a significantly higher frequency with the 120-mm lenses, as 

shown by comparing Figure 5.12 with Figure 5.13. Though the maximum SNR occurs at a 

higher frequency, the SNR values are generally somewhat lower with the 120-mm lenses, as 

expected with a reduced diffraction efficiency of 60% instead of 70%. 

 Unfortunately, the rise time of the model 23080-1 is limited to at best about 20 ns due to 

the acceptance angle and electrical bandwidth. If the laser modulation waveform is still a 

limiting factor for the SNR vs modulation frequency, then another AOM model may be 

necessary.  

 The model 15210 was recommended as an option because it is designed for a shorter rise 

time less than 10 ns. The model 23080-1 was conservatively chosen to maximize SNR because it 

was not known for certain what the SNR of time-resolved data would be following analysis and 

how much data acquisition and averaging would be necessary. The 23080-1 features both higher 

maximum diffraction efficiency (85% vs. 70%) and static transmission (97% vs 95%). As the 

TFLIF system matures and SNR becomes less of a concern, a modest loss in SNR may be a 

reasonable trade-off for improved modulation frequency. 

5.2 Phase Locking 

5.2.1 Defining the Problem of Phase Locking for the TFLIF System 

 As explained in Subsection 4.3.2, the origin of the name of phase-sensitive detection is 

that the amplitude of the output signal is proportional to the cosine of the difference between the 

phase offsets of the input and reference signals: 

cos( )out signal refV    . (5.3)  

This fact complicates implementing phase-sensitive detection because the not only must the 

frequency of the signal be known, but the phase offset must also be known and matched by the 

reference signal used to recover the signal from the noise. If the reference signal is not held at the 

same phase as the signal, then the signal amplitude will be incorrect. It will either introduce 

erroneous time-resolved features if the reference drifts into and out of phase at a rate resolvable 

by the system, or will lead to a complete breakdown of the analysis with only a noise output 
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signal if the drift occurs at a fast rate (such as if the reference frequency does not quite match the 

signal frequency). 

 Phase-locking is not usually a problem for a typical lock-in amplifier because the 

reference signal is measured directly from the source of the signal modulation (e.g. an optical 

chopper) and it is used in real time with analog or specialized digital circuitry to recover the 

signal. Even if the physical system of the experiment changes the phase offset of the signal from 

the reference phase offset, dual-phase lock-in amplifiers use two phase-sensitive detectors with a 

90° phase shift, where the output of each detector is commonly called X and Y. Since X and Y 

are 90° apart in the Argand plane, the X and Y signal amplitudes are added in quadrature to find 

the magnitude of the input signal regardless of phase: 

2 2Z X Y  . (5.4) 

This scheme in lock-in amplifiers is known as a vector computer, and is very common to most 

commercially available, modern lock-in amplifiers, including the SR-810 lock-in amplifiers at 

PEPL. 

 Phase locking is a unique challenge to the TFLIF system because the reference is not 

measured directly but must be inferred from the signal itself. Instead of measuring the reference 

and using specialized instrumentation to recover the signal in real time, only the linearly related 

input and noisy output signals are sampled and saved for later analysis. The TFLIF system is 

akin to a lock-in amplifier without a direct reference measurement. It is, of course, technically 

possible to measure the reference signal, in this case it would be the AOM driving signal, but we 

decided to avoid it because it would require an extra digitizer channel, raising the already steep 

storage requirements considerably. Instead, the reference signal is simply a numerically 

generated waveform (usually sine) at the same sample frequency fsa and chunk size as the dataset 

so that they can be multiplied together. In general, the reference signal Vref [n] is defined as: 

[ ] sin( [ ] [ ] [ ])ref ref refV n n t n n  
, (5.5) 

where (with malice aforethought) we may allow the reference frequency and phase offset to 

change depending on the sample n within the dataset. The goal, then, is to find the frequency and 

phase offset to use to generate the reference signal. Note that the global dataset time is defined 

with t[n = 1] = 0 at the first sample in the dataset, and the phase offset in the reference is defined 

based on that time.  
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5.2.2 Difficulties in Finding the Optimal Reference Frequency and Phase Offset 

 The simplest and naivest method to handle the unknown phase is would be to mimic the 

action of a lock-in amplifier vector computer: simply have two reference signals 90° out of phase 

from each other, and define the demodulated output signal to be the sum of their outputs added in 

quadrature as in Equation (5.4). The problem with this scheme is that the signals are still very 

noisy following phase-sensitive detection with a short time constant (SNR ≪ 1), and combining 

two such signals together by Equation (5.4) would reduce the SNR by propagation of error. It 

would require an impractical amount of averaging in the next step (transfer function or triggered 

averaging).  

 Instead, a workable solution is to approach the problem in two steps. First, determine the 

phase offset separately throughout the whole 60-s dataset. Second, apply phase-sensitive 

detection with the previously defined optimal reference signal while proceeding with transfer 

function averaging. 

 Unfortunately, there are a few details that complicate the task of finding the optimal 

reference signal. In principle, we know that the signal frequency equals the modulation 

frequency, which we set using the function generator driving the AOM, and therefore we only 

need to find the phase offset of the signal in the dataset. In practice, neither the modulation 

frequency fmod (from the function generator driving the AOM) nor the sampling frequency fsa 

(from the digitizer clock) are known to perfect precision or are even constant. The fairly standard 

Agilent model 33220A has a nominal frequency stability of 10-20 ppm. The Tektronix 

AFG3101, the best function generator in the laboratory when this project started, has a nominal 

frequency reference stability of 1 ppm. A higher precision model was later purchased in part due 

to the frequency stability issues identified in the TFLIF project. The Agilent 33522A has a 

nominal 0.1 ppm frequency stability with the high stability frequency reference option. 

Meanwhile, the stability of the internal sampling clock of the Alazartech 9462 is 25 ppm for 

sampling frequencies at or below 125 MS/s, which is the limiting factor in this case. The 

manufacturers recommend warming up the instruments for 30 minutes to reach the nominal 

stability, and the stability tends to worsen within about a year after the calibration. Not only are 

fmod and fsa unknown, but it is important that they are not necessarily constant either. The 

measured signal frequency tends to drift over a time scale on the order of seconds or minutes by 
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a few ppm, even after the 30-minute warm-up time. This drift is on a significant time scale for 

the time-resolved LIF measurement with datasets about 60 s long and needs to be corrected. 

 Both uncertainties in the sampling speed and in the modulation speed will affect the 

actual signal frequency observed in the sampled data. A stability as low as 1 or even 0.1 ppm 

may not sound like much, but even they can be a problem for phase-sensitive detection, let alone 

the 25 ppm stability of the digitizer clock. For example, a 1 MHz modulation signal measured 

with 0.1 ppm accuracy may actually be 1,000,000.1 Hz in the sampled dataset while the 

reference signal is defined to be 1 MHz. These are close enough that phase-sensitive detection 

may still detect the signal if it is in the transmission window defined by the output low-pass 

filter. Even so, the two signals would drift out of phase at a rate of 2π(fsignal - fref), or a full period 

every 10 s. On the time scale of 5τ over which PSD operates, the signal and reference will appear 

to be separated by a constant phase difference, hence Equation (5.3) applies. With a 60-s long 

dataset, the reference signal would drift out of and back into phase with the signal six times over 

the course of the dataset, and the amplitude of the output signal would vary wildly according to 

Equation (5.3). Note that in this thought experiment, we have neglected the effect of a drifting 

effective signal frequency; in reality the phase drift will be random and nonlinear. 

5.2.3 A Solution to the Phase Locking Problem 

 It is therefore an oversimplification to say that the phase offset of the reference signal 

must be matched with the phase offset of the signal (i.e. the phase at t = 0). If the signal 

frequency were constant but unknown, we could simply measure the frequency and phase offset 

of the signal once at t = 0, and then define the reference signal in Equation (5.5) with the 

constants ref signal   and ref signal  . If the signal frequency actually continuously changes due 

to drift in fmod or fsa,, then the cosine dependence of the output signal in Equation (5.3) applies to 

the total phase of the input and reference signals, not only the phase offset. Since the angular 

frequency is the rate of change of the phase, the signal will have a phase at time t of: 

0
( ) ( )

t

signal signal signalt t dt    . (5.6) 

The most intuitive solution would be to find the initial phase offset and the signal 

frequency at some sample times and estimate the total phase by numerically integrating over the 

frequency. This approach would probably be prone to error from the numerical integration and 

involve extra computation. In addition, because we have one condition (to match the reference 
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phase with signal phase) but two parameters (signal frequency and phase offset), it is convenient 

to cast the condition in terms of only one parameter, though this new parameter is less physically 

meaningful that the signal frequency and phase offset. We can satisfy the condition and avoid 

numerical integration by defining a constant reference frequency at the nominal setting and 

measuring an effective phase offset at all points 1 ≤ n ≤ N. Satisfying this condition is 

represented by: 

[ ]

mod
0

( [ ]) ( ') ' [ ] [ ]
t n

signal signal signal efft n t dt t n n        , (5.7) 

where for all n ωref[n] = ωmod and the reference phase offset is: 

[ ]

mod
0

[ ] [ ] ( ') ' [ ]
t n

ref eff signal signaln n t dt t n        . (5.8) 

This definition for the reference phase offset is an effective phase offset that can be interpreted as 

the phase difference of the measured signal from a sine wave with frequency ωmod and zero 

phase offset. The definition is not useful as a formula to calculate it, since that would require 

measuring both signal parameters and performing the numerical integration. It is a statement of 

the existence of the effective phase offset and how it is related to the other more physical 

parameters. The remainder of this subsection is concerned with the algorithm to find the 

effective phase offset at all points as implemented at PEPL. 

 Finding the effective phase offset using phase-sensitive detection is computationally 

expensive, so the strategy is to find the effective phase offset at a sufficient number of points 

within the 60-s dataset so that the effective phase offset at all points 1 ≤ n ≤ N can be accurately 

interpolated between the set of points where it has been explicitly found. The number of points 

necessary can vary, but approximately ten to thirty points are often sufficient.  

 To find the effective phase offset at a point in the PMT signal, we apply phase-sensitive 

detection with ωref[n] = ωmod over a long integration time of about 100 ms to have a high signal-

to-noise ratio in the PSD output signal (SNR ≫ 1). Assume that the effective phase offset of the 

signal is approximately constant over the range of data where PSD is applied, approximately t[n] 

- 2.5τ to t[n] + 2.5τ. This amounts to assuming that the signal and reference frequencies are 

sufficiently close that the phase drift over the integration time is small: |fsignal - fref |5τ ≪ 1. This 

implies that |fsignal - fref | ≪ 2 Hz for the typical τ = 100 ms. This assumption is highly suspect with 

a modulation frequency on the order of megahertz and a frequency stability of many parts per 

million for the digitizer. The poorly satisfied assumption may explain the unreliable performance 
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and unexplained artifacts that appeared before the introduction of the external digitizer clock to 

improve frequency stability (described in the following subsection). Fortunately, the external 

digitizer clock improves the stability sufficiently to easily satisfy the condition, and the 

assumption of approximately constant effective phase offset is good. Now, if the effective phase 

offset is approximately constant during the integration time, then the PSD output signal will vary 

according to Equation (5.3) if the reference phase offset ref  is varied.  

 Phase-sensitive detection is applied several times with different reference phase offsets 

uniformly spread in the range 0 < ref < 2π (between about four and ten). The resulting signal 

varies as a cos(ref reff) function where the maximum occurs when ref  = eff, The points can 

then be fit to a cosine function of the form cos(ref   fit )using a nonlinear least squares fitting 

routine, where ref  is the independent variable and fit is a fitting parameter. The effective phase 

offset is the reference phase offset at which the maximum occurs in the fit, or eff   ref. An 

example of this procedure is shown in Figure 5.2. Equivalently but less intuitively, the points can 

be fit to a sine function of the form sin(ref +fit), where in this case the effective phase offset is 

eff = π ∕ 2 - fit. The actual code uses the latter because a general sine function with fitting 

parameters appropriate for use with the MATLAB built-in nonlinear fitting function lsqcurvefit() 

was already available. 
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Figure 5.2. An Illustration showing the method of finding eff  at a single point in time. PSD 

output at ten different reference phase offsets (blue circles) are used in the least squares fit to the 

function sin(reffit) (red line). The maximum occurs at refeffπ ∕ 2  fit (open blue circle). 

 Having found the effective phase offset at a uniformly spaced selection of points in the 

60-s dataset, a function can be interpolated between them to find a reasonable estimate for the 

effective phase offset at all point within the dataset. In the best case, drift and noise are minimal, 

and a global linear fit with a relatively small number of measured points may be used. In the 

worst case, phase drift may be highly nonlinear and random and noise may be high, necessitating 

a larger number of measured points and a piecewise linear interpolation between small groups of 

neighboring points. Examples of these two extreme cases are shown in Figure 5.3. Each of the 

measured points in Figure 5.3 comes from a fit to a sinusoid such as in Figure 5.2. For example, 

the fit in Figure 5.2 produces the first point at t = 1.5 s in the top panel of Figure 5.3. The top 

panel comes from the H6 dataset in Chapter 7 with IIM = 1.8 A at a laser wavelength of 

834.94707 nm. The bottom panel comes from an early test of the TFLIF system with a cathode 

experiment similar to Chapter 6 from 15 September 2012. 
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Figure 5.3. The effective phase offset at all points (green line) is interpolated from a series of 

effective phase offset points measured throughout the 60-s dataset (open blue circles). Top: 

example of the "best case" scenario with negligible drift and low noise. Bottom: A difficult 

example with fast, nonlinear drift in the effective phase offset. 
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5.2.4 External Versus Internal Digitizer Clock  

 In the discussion of frequency stability in the previous subsection, we found that the 

limiting factor was the internal sampling clock of the digitizer, having much worse nominal 

stability than any of the function generators considered. The Alazartech 9462 has options to use 

an external clock signal to time sampling. The "Fast External Clock" option is most appropriate 

for our purposes, accepting a sine wave with an amplitude between 200 mV and 1 V at an 

arbitrary frequency between 10 MHz and 180 MHz. Sampling can be selected on the rising or 

falling edge of the sine wave so that the sampling frequency is set by the sine frequency. Thus, 

the digitizer clock stability can be the frequency stability of the function generator providing the 

clock signal, down to 0.1 ppm for the Agilent 33522A instead of 25 ppm for the internal clock of 

the digitizer.  

 As shown in the top panel of Figure 5.3, an effective frequency stability much better than 

even 0.1 ppm can be achieved if the frequency stability of the digitizer clock is correlated with 

the AOM driving signal. Consider a digitizer clock signal that has the same relative frequency 

fluctuations as the AOM driving signal. A change in the AOM driving signal frequency by a 

factor of C will change the actual signal frequency by the same factor.  But the sampling 

frequency will also change by the same factor, thus reducing the apparent frequency of signals 

by a factor of 1/C, canceling the frequency fluctuation in the digitally sampled data. To see this 

effect more intuitively, consider the AOM driving signal itself used as the digitizer clock. Then 

one sample per modulation period will always be recorded regardless of fluctuations in the time 

base used to generate the signal. The AOM driving frequency (fmod  ~ 1 MHz) is necessarily 

slower than the sampling frequency (fsa ~ 30 MHz), so the AOM driving signal cannot actually 

be used. The ideal solution is to use a two-channel function generator where the channels are 

synchronized by the same clock signal. Then the channels can generate distinct AOM driving 

and digitizer clock signals, but any frequency instability in fmod is also in fsa, in which case their 

effects cancel.  

 The Agilent 33522A is such a function generator. The "best case" with a nearly constant 

effective phase offset in Figure 5.3 above was from a dataset captured with this configuration. 

The "worst case" with badly nonlinear phase drift was from a dataset captured using the digitizer 

internal clock. Phase locking is still necessary but that small configuration change makes a 

dramatic difference in the phase drift observed. In hindsight, this configuration may seem 
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obvious given that the external clock option is available specifically for synchronizing the 

digitizer clock to some other signal for sensitive applications. As a new graduate student with no 

experience in signal processing and high-speed measurements, it took considerable time to 

identify the problems with phase locking and their solutions. Aside from the "worst case" 

example in Figure 5.3, all data presented in this dissertation were captured with the external 

clock using the Agilent 33522A to generate both the AOM driving signal and the digitizer clock. 

Results before this improvement were significantly noisier due to the difficulties in phase 

locking.  

 Prior to the use of an external digitizer clock synchronized with the AOM driver, the 

sampled frequency was often far enough from the nominal fmod that the drift in the effective 

phase offset would be extremely fast. For example, the setting of the AOM is fmod = 500 kHz for 

the bottom panel of Figure 5.3, but the sampled signal frequency is fsignal = 500,005.4 Hz. This 

leads to a fast phase drift of 33.9 rad/s between the reference and signal, or about 5 full periods 

per second. The fast drift is not visible in Figure 5.3 because the frequency has been corrected 

but this drift is shown in Figure 5.4 (note the time scale of 1 s). Phase drift that fast violates the 

assumption that the effective phase offset is approximately constant during the integration time 

on the order of 100 ms, and therefore the approach of Subsection 5.2.3 actually fails if applied 

directly in this case. The internal digitizer clock therefore requires an intermediate frequency 

fitting step to find the average signal frequency. A sample of the clean AOM driving signal from 

the function generator can be fit to a sine wave to determine the frequency with high precision. 

The reference frequency fref in the TFLIF software would then be set to this frequency (500,005.4 

Hz) instead of the actual function generator setting (fmod = 500 kHz). The intermediate frequency 

fitting step is unnecessary for the external clock configuration and in that case fref fmod. 
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Figure 5.4. The internal digitizer clock can result in fast drift in the difference between the 

reference and signal phases (green line) that would break the algorithm in Subsection 5.2.3. An 

intermediate step fitting the modulation frequency is necessary in this case. 

5.2.5 Phase Unwrapping 

 One further complication in phase locking made obvious by the bottom panel of Figure 

5.3 is that the effective phase offset returned by the cosine fit is always between 0 and 2π. This 

can be a problem if phase drift or noise cause some points to cross over the boundary at 0 and 2π 

radians since those points will "wrap around" to the other side and a global linear fit will then be 

invalid. It is critical to detect the points that have crossed over the boundary from the others and 

unwrap them. Despite multiple 0/2π crossings in that example, unwrapping is relatively simple in 

such a low-noise situation. Crossings can easily be detected and accounted for by looking for a 

relatively large difference above some threshold between neighboring points.  

 Unwrapping becomes a more significant problem when noise makes the difference 

between neighboring points similar to the difference between points after a crossing, in which 

case a simple threshold may not correctly detect the crossings. As the SNR decreases, eventually 

the TFLIF signal is lost entirely because the effective phase offset fit fails, leading to erroneous 
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PSD output signals used in the transfer function average. Fine tuning the threshold can help but 

requires manually setting for each case and still may not correctly detect crossings in poor SNR.  

5.3 Data Recycling 

In calculating transfer function estimators, windowing the chunks of data before 

calculating the discrete Fourier transform can improve the final result (see Appendix A). 

Consider the windowed discrete Fourier Transform: 

1

0
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n

A k w n A n ikn N




  ,     (5.9) 

where w[n] is a discrete window function, which tend to be bell-shaped. Recall from Subsection 

4.3.3 that the average transfer function is calculated by splitting the 60-s dataset into many 

chunks about 1 ms long and then averaging the transfer function estimators that are calculated 

for each chunk.  

The most intuitive way to split the 60-s dataset into chunks is to split it into non-

overlapping chunks like slicing a loaf of bread. One effect of the weighting of the window is that 

by definition points near the edge of each chunk do not contribute as much as points near the 

center to the resulting spectrum. When averaging many windowed spectra from the same 

continuous dataset together, as is done during the transfer function average, the result is that 

there are alternating sections of data where about 50% of the points have a relatively large 

contribution to the transfer function and the other 50% contribute almost nothing. The top panel 

of Figure 5.5 illustrates this idea by showing the window functions of three chunks plotted 

against the time axis. In addition to the non-uninform weighting of points, the discrete Fourier 

transforms of two adjacent chunks do not capture information about how points within one 

chunk are related to points within the other. Some information is clearly lost in this process.  

This section describes a method of recovering more information from the same dataset by 

taking overlapping chunks instead of the basic non-overlapping chunks like slices of bread. 

Chunks are still taken sequentially, but the analysis code loops through multiple cycles of the 

dataset with a different offset for each cycle. The bottom panel of Figure 5.5 illustrates this 

concept for two cycles with the red chunks in the second cycle that overlap the blue ones from 

the first cycle. 
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Figure 5.5. Top: A conceptual illustration showing how windowing consecutive chunks leads to 

large sections of data that do not contribute significantly to the DFT. Bottom: An example 

illustrating data recycling with C = 2, with the first cycle chunks shown in blue and the second 

cycle chunks shown in red. Nchunks is the total number of chunks taken from the dataset. 

5.3.1 What is Data Recycling and Why is it Important? 

 One solution to recover more information from the same dataset is to calculate the 

average transfer function using chunks of data with overlapping windows instead of the simple 

picture of slicing the dataset like a loaf of bread into many independent chunks with no overlap. 

This idea was implemented independently at PEPL for transfer function averaging, but an 

analogous method for power spectrum estimation was later found in the literature. The 

overlapping averaging method is known as the Welch method [95] to distinguish it from the non-

overlapping Bartlett method [96]. Note, the Welch method for periodogram averaging is a 

distinct idea from the Welch weighted transfer function average in Subsubsection 4.3.3.3.  
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 The idea was called data recycling at PEPL since the same data points are "recycled" into 

different chunks in the average a number of times. The name data recycling is also apt since the 

implementation of it at PEPL has sequential chunks taken end-to-end from the temporary vector 

in memory (see Subsection 5.4.1) and then, after completing a full cycle through the data in 

memory, the analysis routine then takes another set of sequential chunks with some offset from 

the previous chunks. The bottom panel of Figure 5.5 illustrates this concept for two cycles; the 

chunks of the first cycle are in blue and the chunks of the second cycle are in red and offset from 

the first cycle by 1/2 of a window length.  

 A caveat of this overlapping averaging scheme is that the neighboring traces being 

averaged together become increasingly correlated as overlap increases, and therefore the average 

removes noise less efficiently. In the extreme case of only one point offset between chunks, the 

signal, noise, and therefore spectrum of one chunk will be virtually the same as its neighbors, 

and therefore the extra chunks will not reduce noise. An analogy is measuring a constant voltage 

in the presence of noise, where averaging N independent measurements would improve the SNR 

by a factor of √𝑁, but averaging two copies of the N independent measurements together would 

make no further improvement, of course. 

 Considering that calculating the empirical transfer function has the same computational 

expense for all chunks whether independent or not, the most computationally efficient average 

(i.e. the best ratio of SNR improvement to computational expense) would be to take completely 

independent chunks. To average a similar number of chunks to gain the same SNR improvement 

implies a longer acquisition time and more difficult storage requirements. Thus, ultimately data 

recycling represents a tradeoff where some computational efficiency is sacrificed to reduce both 

data acquisition time and storage requirements. The tradeoff can be tuned somewhat to the needs 

of the experiment by adjusting the overlap, or the number of cycles. 

5.3.2 A Test of Data Recycling 

 The key question to help determine the optimal tradeoff is: how much overlap can be 

used, or equivalently how many cycles can be used, in the average while still acceptably 

improving SNR? This is a complicated question to answer analytically, but we can attempt to 

answer this question empirically by testing the effect of varying the number of cycles used in the 

average.  
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 We are actually interested in the error of the TFLIF signal, or the difference between the 

TFLIF signal and the exact TRLIF signal without noise, but the exact signal is unknown. Instead, 

the easiest metric in this case is to compare the TFLIF signal from C cycles of analysis with the 

triggered average signal. The periodic cathode oscillation dataset from the validation test of 

Section 6.3 is used for this test. In the case of periodic oscillations, both the TFLIF signal and 

TALIF signal converge to the exact TRLIF signal (see Subsubsection 4.3.3.4 and Subsection 

4.3.4). The residual between the TFLIF signal and TALIF signal is the difference between the 

errors of both measurements. In the formalism introduced in Chapter 4, the residual is: 
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Thus, this metric can be used to track changes in Ncharacteristic[n] since the error in the TALIF 

signal is constant. Since the triggered average is generally more efficient than the transfer 

function average, for a small number of cycles the error in the transfer function average will 

dominate the residual and [ ]characteristicR N n . The potential downside of this metric is that the 

RMS residual will approach a constant as Ncharacteristic[n] approaches zero since the constant 

NTA[n] will dominate. Thus, the RMS residual is an upper bound on the RMS of Ncharacteristic[n] 

that converges to the RMS of Ncharateristic[n] if RMS(Ncharateristic[n]) ≫ RMS(NTA[n]).  

 Unlike all other data in this dissertation, the dataset in this section was analyzed with the 

empirical transfer function estimator (ETFE), not the Welch weighted estimator (see 

Subsubsections 4.3.3.2 and 4.3.3.3), in order to maximize noise in the transfer function average 

to ensure that it dominates, which is confirmed by inspection of Figure 5.7, except that noise 

appears to be comparable with the noise in the TALIF signal by about C = 10. There is a clear 

progression of noise reduction as the number of cycles C increases. Note that analysis was done 

with a Tukey window, and results may vary somewhat depending on the window used. The 

Tukey window is the standard used in most TFLIF analysis in this dissertation. 

 Figure 5.6 presents the results of this test in terms of the RMS residual for a number of 

cycles between one and ten. The measured RMS residual (blue diamonds) falls increasingly short 

of the 𝐴/√𝐶 trend that would be expected for averaging over independent chunks (red squares) 

as C increases. The measured RMS residual for C = 2 is within 10% of the expected value for 
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independent chunks because the chunks are indeed largely independent of each other due to 

window weighting. For all other C > 2, the measured RMS residual is significantly larger than 

that expected for averaging independent chunks, though there is still significant improvement all 

the way up to C = 10.  

 
Figure 5.6 The measured RMS residual between TFLIF and TALIF signals as a function of the 

number of cycles in the transfer function average (blue diamond). Also shown is the expected 

RMS residual following the 𝐴/√𝐶 function expected for averaging over the same number of 

chunks if they were independent. The measured noise reduction closely follows the independent 

averaging trend only for C = 2, and lags increasingly further behind thereafter. 

 Most experiments would certainly benefit from at least using C = 2, since it can provide 

almost the same SNR improvement as averaging over independent chunks without actually 

measuring and storing twice as much data, and do so with the same computational expense. 

Evidently from Figure 5.6, C = 5 provides at least the same noise reduction as averaging over 

independent chunks in a dataset 3 times the size. Put another way, data recycling allows the 

acquisition time and data storage to be reduced by a factor of 3 while increasing computation 

time by about 5/3. Similarly, C = 10 provides at least the same noise reduction as using only 

independent chunks in a dataset 4 times as long. Therefore, to achieve the same SNR, data 

recycling allows the acquisition time and data storage to be reduced by a factor of four while 

increasing the computation time by about a factor of 2.5. 
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Figure 5.7. TFLIF signal for C = 1 (top), C = 5 (upper middle), and C = 10 (lower middle) 

converge toward the TALIF signal (bottom) as the number of cycles C increases. 
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5.3.3 Guideline for Setting the Value of C 

 Consider a standard dataset for a single wavelength that is composed of three channels 

(one output and two inputs) of 16-bit samples with a sample speed of 30 MHz for a duration of 

60 s. These are the parameters of the most recent experiment, the demonstration of TFLIF on a 

Hall thruster in Chapter 7. All other datasets in the dissertation are similar, though previous ones 

only captured two channels (one input only). These three-channel datasets are approximately 10 

GB, leading to 200 GB of raw data for a complete VDF with 20 wavelengths. The sheer size of 

these datasets is cause for concern, even for the 14.5 TB RAID, so it is clear that recovering as 

much information as possible would be important. 

 Determining the optimal number of cycles may be subjective, but we can recommend a 

reasonable guideline based on an interpretation of the results from the previous subsection and 

the storage concerns above. In addition to reducing the data storage requirements, the reduced 

acquisition time from data recycling allows many more points, reduces the risk of laser and 

thruster issues occurring during the experiment, and reduces the expense of xenon and other 

facility costs incurred while operating for a longer time. The relatively modest increase in 

computation time is a very attractive tradeoff to gain all of that. In fact, since the test shows 

significant improvement even up to C = 10, a general guideline may be to simply use the largest 

C possible given the time allowed for computation.  

 Each of the 20 wavelengths for a complete VDF took a duration of about 1 hour and 45 

minutes to analyze. Even with parallelization according to Subsection 5.4.2, a single spatial point 

takes the majority of a day in computation time. Therefore, a large number of points and possibly 

a variety of analysis parameters could easily take weeks of analysis. A significantly longer 

computation time would not be tenable and will have diminishing returns in any case. In light of 

these considerations, C = 10 is the standard by which all datasets outside of this section are 

analyzed, and it is probably a reasonable choice for the needs of most experiments. 

5.4 Other Software Considerations 

The data directly measured by the TFLIF system, the band-pass filtered voltage drop 

across the terminating resistor and the discharge current, are very raw compared with the directly 

measured and saved data of other TRLIF techniques, which typically only save the resulting 

time-resolved waveforms after processing by the instruments. In the case of TFLIF, all analysis 

on the raw data is done in post processing after the experiment. This leads not only to the 
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hardware considerations in Section 5.1 on data transfer and storage, but it also leads to 

challenges in the software implementing the analysis described in Chapter 4. This method does 

have the advantage, however, of the ability to perform analysis many times to fine tune 

parameters and even apply completely different analysis techniques to the same dataset for 

comparison, which is used to our advantage as a key part of validation.  

The goal of this section is to introduce a few of the considerations encountered in 

implementing TFLIF in software. The first two subsections describe at a high level the memory 

management (Subsection 5.4.1) and parallelization (Subsection 5.4.2) of the analysis code 

without encumbering the reader in the minutia of the actual code or even pseudocode. Subsection 

5.4.3 shows why it is best to limit the chunk length to certain numbers of points. Finally, 

Subsection 5.4.4 gives an example of one advantage of having most of the data analysis in post-

processing: optimal analysis parameters, such as the PSD time constant, can be found by testing 

a selection of different values. 

5.4.1 Memory Management and Temporary Vectors 

 If datasets are large enough that simply transferring and storing the raw data are a 

significant issue (see Subsection 5.1.2), then surely having enough relevant data in system 

memory for the analysis is also a consideration. The TFLIF PC currently has 72 GiB of RAM, 

incrementally upgraded as needed from the 12 GiB originally installed in the PC. A 60-s, 3-

channel dataset captured at a sample frequency of 30 MHz is approximately 10 GiB, but that is 

stored in 16-bit integer format. It is most practical and accurate to do calculations on double-

precision floating point numbers, which occupy 8 bytes of memory, or four times as much 

memory as 16-bit integers. Hence, simply reading a complete dataset for a single laser 

wavelength into memory would require more than half of the spacious system memory. In 

addition, the memory occupied by other variables used in the computations typically require 

several gigabytes or tens of gigabytes more memory than the raw dataset.  

 The system memory could handle these requirements for a single dataset, but all of the 

data for analyzing several datasets must be kept in memory simultaneously due to the 

parallelization discussed in Subsection 5.4.2. The only solution in this case, barring somehow 

upgrading the already spacious system memory by about an order of magnitude (not possible for 

this main board), is to keep not all of each dataset in system memory simultaneously. Since 

calculations are done on one chunk of about 1 ms at a time to calculate a single transfer function 
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estimator, it is not necessary to read all of the raw dataset at once. On the other hand, it would be 

highly inefficient to read only one chunk of raw data at a time. The primary reason is simply that 

reading from permanent storage is the largest bottleneck for a PC, even for the RAID. The 

maximum data rate of the (DDR3 1333) RAM is 10666.67 MB/s, about an order of magnitude 

faster than the RAID. Due to data recycling, if data were only read into RAM one chunk at a 

time, then the same raw data would be read from permanent storage as many as C times in one 

analysis, where C, the number of cycles, is about ten. 

 The balance between those two considerations used in the TFLIF code is to transfer from 

storage to RAM a fraction of the complete dataset that is much more than a single chunk, but 

much less than the complete dataset. This fraction of the dataset that is read into memory at one 

time is called a "temporary vector." It is temporary in that it is only in memory for part of the 

analysis time and is replaced by the next temporary vector when the code is finished calculating 

transfer function estimators from all of the possible chunks in the temporary vector. It is a 

"vector" in the sense of the term in MATLAB: it is a 1D array of data. In this sense, there is a 

temporary vector containing the time series of each of the digitizer channels used in analysis.  

 The temporary vectors of 16-bit integers are read from permanent storage to RAM. The 

length of the temporary vector in memory is a number of points that is a power of two and as 

close as possible but without being larger than some limit, usually set at 3 GiB. In this case, there 

are a few temporary vectors per dataset. The chunks are read from the temporary vector in 

sequence and converted to double precision and scaled according to the digitizer settings before 

calculating transfer function estimators. The data recycling of Section 5.3 actually occurs over 

each temporary vector, not over the complete dataset since the ends of both temporary vectors 

would be needed to read chunks that overlap the ends between two temporary vectors. A 

workaround is of course possible, but would add extra complexity for a negligible number of 

chunks, so for simplicity those possible chunks overlapping the ends of the temporary vectors are 

lost. 

5.4.2 Parallelization 

 Knowing in advance that the analysis would be extremely computationally expensive, the 

TFLIF PC was built with two physical Xeon X5650 processors, each with six physical cores, for 

a total of 24 threads with Hyper-Threading. In general, a single MATLAB instance will only 

load one or a few threads when using some of the in-built functions that are already parallelized. 
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Computing the average transfer function for each single-wavelength dataset takes between one 

and two hours for a single, serial process. Considering that there may be about 20 wavelengths 

per VDF, it would take well over a full day to generate the time-resolved VDF profile at a single 

point in space for a single set of analysis parameters. The total processing time could quickly 

become impractical for many VDF points at multiple positions or thruster operating conditions 

with analysis done several times with different parameters. Hence, it is critical to parallelize the 

analysis to utilize all of the available computational power. 

 The most obvious parallelization option in MATLAB is the Parallel Computing Toolbox 

containing many built-in functions designed to make use of multiple cores. For example, the 

parfor function acts as a for loop that processes the iterations of the loop in parallel, if the 

iterations are independent of each other, of course. This could be useful, for example, to compute 

transfer function estimators for many different chunks simultaneously.  

 Unfortunately, this approach has a number of limitations and complications. There is an 

artificial limit imposed by MATLAB on the number of "workers" available, i.e. the number of 

threads that MATLAB is capable of utilizing, or the number of transfer function estimators it 

may simultaneously calculate. This was limited to 8 workers when first writing TFLIF code, but 

later expanded to 12 in MATLAB R2011b. The limit can be raised by purchasing a MATLAB 

Distributed Computing Server (MDCS) license. In addition, it is difficult to work with and 

debug, with cryptic errors and arcane syntax and requirements for variables within the parfor 

loop. There is considerable overhead in the client managing the workers. There are five different 

classifications of variables within a parfor loop, and one must be careful to use them properly. 

For example, there is an option to use "sliced variables," where each worker works on 

independent segments of a variable (the temporary vector, for instance), but that introduces 

complications with data recycling. There is also considerable overhead and wasted memory in 

creating copies of variables that cannot be simply sliced for use in each worker or broadcast from 

the client without the workers changing them. The overhead was so expensive that, with all 8 

workers active, the parallelization was found to reduce the computation time by only about a 

factor of two. 

 There are also third party packages available with varying degrees of flexibility and 

usability. MATLAB built-in parfor code was abandoned and the TFLIF code was parallelized 

using Multicore package by Markus Buehren. It uses multiple instances of MATLAB as workers 
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that communicate with each other through access to a directory. The main advantage over the 

built-in parallelization is that any number of workers can be used by opening instances of 

MATLAB, and it can be parallelized across many machines that have access to a common 

directory. Unfortunately, this package also has some syntactic limitations and overhead issues, 

which are impossible to avoid for any code that implements true parallelization of a single task. 

It was also abandoned due to disappointing improvement in the total computation time. 

 The above attempts focused on parallelizing the analysis of a single-wavelength dataset 

in the loop of computing transfer function estimators. There is, in fact, no need for that because 

the total analysis involves completely independent calculations of the average transfer function 

estimators for each wavelength. The Multicore package demonstrated that many instances of 

MATLAB can run simultaneously without errors or conflicts, though sometimes an instance may 

inexplicably crash when a large number of instances (> 10) are running.  

Then much of the overhead can be eliminated by making the analysis embarrassingly 

parallel. This is the scheme currently in use. Many independent instances of MATLAB are set to 

operate on different single-wavelength datasets and therefore have no overhead in 

communication between workers, creating extra copies of variables, etc. Each worker simply 

executes the un-parallelized code for a single dataset at a time. The computation time for a single 

dataset is about the same or a little worse due to the increased resource utilization, but the total 

computation time for a complete VDF is nearly inversely proportional to the number of workers. 

Quickly finishing the analysis on a single dataset is seldom desired, so there is little motivation 

to truly parallelize the analysis on the level of a single dataset. 

 This scheme works but becomes tedious to open and manually set a separate instance of 

MATLAB for each single-wavelength dataset. It is usually only practical to run about 10 

instances of MATLAB on the TFLIF PC, so the workers would also have to be restarted on a 

second dataset to complete the 20-wavelength VDF profile. A simple but powerful semaphore 

scheme was developed that allows the individual MATLAB instances to determine which dataset 

to analyze based on which ones are already done or in progress. When a worker finishes with a 

dataset, it selects another appropriate one to analyze until there are no unanalyzed datasets left. 

5.4.3 Chunk Length and the Power of a Power of Two 

 We conclude the section of software considerations with an example of a detail that is not 

at all obvious to someone unfamiliar with the details of the FFT algorithm but that makes a 



 

136 

 

dramatic difference nonetheless. The Fast Fourier Transform (FFT) is the class of algorithms 

most commonly used to calculate the discrete Fourier transform (DFT). Applying the definition 

of the DFT in Equation (4.43) directly to a time series of length N results in O(N2) operations. 

Fast Fourier Transform algorithms reduce the number of operations to O(N log2 N), resulting in 

orders of magnitude in computational savings for large N. The actual number of operations, and 

therefore the computation time, is highly sensitive to the length N and can vary widely even for 

very small variation in N down to just one point. 

 This is relevant for TFLIF because the FFT is used to calculate the discrete Fourier 

transforms as described in Subsection 4.3.3. A transfer function estimator for each chunk 

requires an FFT performed on both the output and input time series. For example, for the H6 data 

set using a chunk length of 214 = 16384 points (about 5.5×10-4 s at a 30 MHz sampling 

frequency), the analysis averaged a total of slightly over one million chunks (using data 

recycling with C = 10). This means that the FFT was done over two million times per average 

transfer function estimator, taking a significant fraction of the analysis time. For that length, the 

FFT uses only about one ten-thousandth of the number of operations required to apply the DFT 

definition directly. 

 The details of the FFT algorithms are beyond the scope of this dissertation. It suffices to 

say that they save computation by splitting the time series of length N into smaller subseries for 

which the DFT is easier to calculate. The full DFT of length N is calculated from the shorter ones 

by exploiting certain mathematical properties. The first FFT algorithms assumed that the length 

N of the large time series was a power of two so that it could be evenly split into log2 N 

subseries. The Cooley-Tukey algorithm that popularized the FFT is more general in that it 

applies to calculating the DFT of a time series with a composite (non-prime) length [97]. 

 The actual effect of time series length on the calculation time of the MATLAB FFT 

function was investigated systematically for every length between 214 and 215 (corresponding to 

actual chunk lengths between 5.5×10-4 s and 1.1×10-3 s for the 30-MHz sampling frequency). For 

each time-series length, 600 samples of random time-series were generated and the time to 

calculate the FFT was measured with little other background activity on the PC. The standard 

deviation estimator of the 600 samples was typically large, often on the order of the average time 

itself. This suggests that the actual calculation time is highly influenced by whatever bottlenecks 
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are randomly encountered by the PC at the time rather than being strictly proportional to the 

number of floating point operations.  

 

Figure 5.8. Plot of the average computational time of the FFT for all time series lengths between 

214 and 215. Even lengths (blue dot) are generally faster than odd lengths (red dot). Moreover, 

prime lengths (red circle) perform worst and powers of two (blue circle) perform best. 

 Even so, clear trends emerge in the plot of average FFT calculation time in Figure 5.8. 

The results vary apparently randomly and with some regular structure beyond the simple O(N log 

N) scaling. This test shows that the powers of two (the endpoints of 214 and 215) significantly 

outperform all comparable lengths. Lengths that are even (blue) generally fare better than odd 

lengths (red). Generally, we see that it is possible for non-power-of-two and odd lengths to 

perform nearly as well as powers of two, but it is much more likely that the average calculation 

time will be at least about a factor of two higher; even up to an order of magnitude more for 

some odd lengths. 

 The consequence for TFLIF is that chunks are always chosen to be a power of two; 

otherwise the analysis could take significantly longer to complete. The total analysis time would 

not change as dramatically as Figure 5.8 suggests because the total analysis includes significant 

parts outside of the FFT that are invariant to chunk length, e.g. reading temporary vectors and 
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phase locking. Restricting the chunk length to a power of two means that round numbers for the 

total time of a chunk are generally not available. While the chunk length may be identified as 

"about 1 ms," the actual time spanned by a chunk is closer to (215-1) / 30 MHz ≈ 1.09 ms. 

5.4.4 Setting the Time Constant of Phase-Sensitive Detection 

 Equation (4.34) provides a double inequality condition on the time constant that ideally 

should be satisfied, but in practice may be only a crude approximation. Equation (4.39) provides 

more precise bounds on the time constant, but the maximum relevant frequency component fmax 

may not be easily defined. As discussed in Section 4.3.2, increasing the time constant of phase-

sensitive improves noise rejection by reducing the bandwidth that the low-pass filter passes. 

Since PSD applies a moving, weighted average over a length of time about 5τ, increasing the 

time constant also destroys time resolution. In practice, the optimal time constant should be as 

large as possible to maximize noise rejection while ensuring that the filter bandwidth is sufficient 

to produce at most negligible distortion in the waveform. 

 One of the advantages of acquiring data in a raw state for post-processing is that it 

enables analysis of the same dataset many times with different parameters or analysis techniques. 

The optimal values for the analysis parameters set in software need not be known in advance 

because this feature allows them to be determined after the experiment. 

 Then a straightforward, if computationally intensive, way to determine the optimal 

setting for τ is to test a selection of values. An example of this test for the H6 at the 150-V, 10-

mg/s operating condition with nominal magnetic field at the upstream axial position of z = -4 

mm is shown in Figure 5.9. There is a distinct visual change in the noise level but little 

noticeable waveform distortion in the heat maps.  

 It is important to note that the time constant of the low-pass filter in phase-sensitive 

detection is adjusted. This is at the step of demodulating the signal prior to transfer function 

averaging, not simply applying a low-pass filter to the final resulting TFLIF signal. The net 

effect is similar because PSD passes a low-pass filtered version of the signal envelope [90], 

which is then used in the transfer function average. The low-pass filtering effect is then built into 

the average transfer function. 
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Figure 5.9. Raising the time constant from 1 μs to 8 μs markedly improves SNR while producing 

barely noticeable distortion of the waveform. 

 It is difficult to see distortion in Figure 5.9 by eye. Minor distortion becomes visible for 

the higher time constants when the waveform with τ = 1 μs is subtracted from the waveform with 

a higher time constant to reveal systematic differences. In Figure 5.10, faint blue streaks begin to 

appear for τ = 4 μs, and distinct (but still small) patches of systematic error from the τ = 1 μs 
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waveform are present in the τ = 8 μs waveform. For any given time series corresponding to a 

single velocity group, the peak is reduced in intensity and the wings are broadened in time. For 

the time-resolved VDF as a whole, the minimum instantaneous mean velocity is higher and the 

maximum instantaneous mean velocity is lower by about 100 m/s for the 8 μs case. 

 Though some minor distortion was detected, none of the time constants tested produced 

an unacceptable distortion. The time constant τ = 2 μs was conservatively chosen as the standard 

time constant for the results shown in the remainder of this dissertation because it is the largest 

time constant that produces no distortion above the noise floor. It is important to emphasize that 

this time constant setting is not a general result and could change if the signal bandwidth 

changes, for example. 

 

 

 

Figure 5.10. Plots of the difference in TFLIF signal waveform analyzed with τ =  2, 4, and 8 μs 

from the waveform with τ = 1 μs. The systematic differences for τ = 4 μs and τ = 8 μs imply 

waveform distortion, while distortion present for τ = 2 μs is below the noise. 
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5.5 Optimizing the Signal-to-Noise Ratio 

 Using the highest laser modulation frequency possible is generally best due to the 

reduced noise spectral density at higher frequencies (Subsection 5.5.1) and improved time 

resolution (Subsection 4.3.2). Unfortunately, it was discovered early on that the signal-to-noise 

ratio of the TFLIF or time-averaged LIF measurement reaches a maximum at some modulation 

frequency and falls monotonically thereafter. One important part of the development of the 

TFLIF system has been to identify and resolve various limiting factors that cause the loss of 

signal at high modulation frequencies. Another important part of the development is to determine 

the optimal settings for parameters that maximize the SNR. This section is focused on finding 

and resolving those limits to the modulation frequency as well as finding those optimal 

parameters that maximize the SNR. 

 In the beginning, the maximum in SNR occurred near 100 kHz, a modulation frequency 

that would make Equation (4.39) difficult to satisfy. The first limits identified and solved were 

relatively simple issues related to the implementation of the technique. Following a suggestion 

from Professor Azer Yalin at Colorado State University, it was found that the combination of the 

internal capacitance of the photomultiplier and cabling and the resistance of the terminating 

resistor produced a significant RC constant that low-pass filtered the signal. The original 90 kΩ 

resistor was replaced with a 1 kΩ resistor to ensure the low-pass cutoff frequency is well above 

the working modulation frequency. A large resistor was chosen in the first place to amplify the 

voltage drop across the terminating resistor to a level measureable by the digitizer. Larger input 

and output gain settings of the Krohn-Hite 3945 are now used to compensate for the reduced 

voltage. Another early limit was the phase-locking discussed in Section 5.2. Higher modulation 

frequencies were more difficult to phase lock before the use of the external digitizer clock due to 

severe effective phase drift. The remainder of this section is covers the limits to maximum of the 

SNR as a function of modulation frequency that have been encountered after early issues such as 

these. 

Measurements of the noise spectral density at a few spatial locations and operating 

conditions of the H6 are given in Subsection 5.5.1. Subsection 5.5.2 quantitatively estimates the 

raw SNR of LIF data to show why averaging over a large quantity of data is necessary. 

Subsection 5.5.3 explains how the SNR is quantified to determine the highest usable modulation 

frequency. Subsection 5.5.4 provides an early test of SNR vs. modulation frequency with the 
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maximum at 500 kHz. Subsection 5.5.5 shows that the AOM can be a limiting factor and that the 

sampling frequency is not a limiting factor at the current operating parameters. Subsection 5.5.6 

shows that the maximum occurs at about 2 MHz for the H6, further evidence that the modulation 

speed limit depends on the properties of the plasma source. Finally, Subsection 5.5.7 shows that 

the final SNR is nearly invariant to the band-pass filter setting, confirming the prediction of 

Subsections 4.3.1 and 4.3.2. 

5.5.1 Noise Spectral Density 

 Consider the noise in the digitized photomultiplier signal. We consider “noise” to be any 

measured signal that obscures the desired LIF signal, including background signal (non-LIF 

collected light), fundamental noise sources (e.g. shot noise and Johnson noise), and other various 

sources of noise such amplifier input noise and interference pick-up from external sources. This 

definition of noise is convenient since all of these sources can influence the SNR of the 

measurement in a complicated way depending on many different variables. The total noise 

spectral density can be measured by analyzing the photomultiplier signal with the laser off. 

Though this approach excludes any noise sources fundamentally linked to the signal itself such 

as shot noise and quantization noise from the digitizer, we will see that the overwhelmingly 

dominant portion of noise is the background light collected by the optics that was emitted by the 

plasma. The noise in the PMT signal is measured under the same conditions as the LIF signal, 

with same setting for PMT bias and monochromator pass band. The monochromator is set to a 

pass band of about 1 nm, so background emission is collected only near the transition 

wavelength. 

 The linear noise spectral density was calculated from the potential drop across the PMT 

terminating resistor captured by the digitizer. The calculation used the Welch technique 

averaging over 128 modified periodograms with zero overlap using a Hann window [95]. The 

effect of the equivalent noise bandwidth of the window was taken into account [98] and a 

consistency check verified that the square root of the integral of the power spectral density (not 

shown) is equal to the RMS observed in the time domain signal.  
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Figure 5.11. Measured noise spectral density of the PMT signal for the H6 operating at 150-V 

discharge voltage, 10-mg/s anode flow rate. The nonwhite spectra suggest background collected 

light is the dominant noise source. The measured noise spectra are all orders of magnitude above 

the nominal amplifier input noise or calculated resistor Johnson noise (shown in blue).  

 Figure 5.11 shows the linear noise spectral density measured from the H6 operating with 

a discharge voltage of 150 V and an anode flow rate of 10 mg/s. Separate spectra are plotted in 

shades of green for three different axial positions at the nominal magnetic field: 4 mm upstream 

of the exit plane, at the exit plane, and 15 mm downstream. Another line in red shows the 

spectrum at the exit plane for the high-field condition with an inner magnet current of  IIM = 5.5 

A. The four measured noise spectral densities are plotted together with the calculated Johnson 

noise for a 1 kΩ resistor at room temperature (300 K) and the nominal input noise of the Krohn-

Hite 3945 filter/amplifier, both in blue.  

 There are three sets of prominent peaks in the noise spectral densities. The most 

prominent features of the spectra are the low frequency peaks near 10 kHz and harmonics that 

correspond to breathing oscillations. The peaks at 60 and 120 Hz are likely not physical and 

come from interference pick-up in the electrical lines downstream of the PMT. There is also a 

series of peaks beginning near the 100 kHz frequency range and extending up to nearly 1 MHz. 
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The latter series of peaks notably occurs only at the point 15 mm downstream at nominal field 

and at the exit plane at high field; they do not occur at the exit plane and 4 mm upstream for the 

nominal field setting, indicating that they may be related to some process occurring primarily in 

the plume and not in the discharge channel. 

With a generally non-white spectrum and such strong peaks clearly from low frequency 

plasma oscillations (see the similarity with the discharge current noise spectral density in Figure 

7.11), it is clear that noise is dominated by background emission from the plasma, especially at 

low frequencies. 

 The noise floor begins rolling-off at about 500 kHz for all of the nominal-field spectra 

but not for the high-field spectrum. There is a corner frequency near 2 MHz, where the noise 

density reaches a noisy minimum. The roll-off could be a pink noise region, but it is possible that 

it is artificial from some unknown low-pass filtering effect. The high-field spectrum was 

measured the same way and does not feature the roll-off, so a low-pass filtering effect seems 

unlikely. The only known low-pass filtering effect that might have affected the nominal field 

settings but not the high-field setting would be human error in setting the Krohn-Hite filter to a 

cutoff frequency lower than the Nyquist frequency used for the noise spectrum measurements. 

Further tests are necessary to rule out or verify that possibility.  

 In any case, the overall trend is of reduced noise spectral density at higher frequencies. 

That fact, along with the better time resolution available at higher frequencies, makes it 

advantageous to work at the highest modulation frequency possible, where the noise spectral 

density is as low as possible. Setting the modulation frequency as high as possible would 

minimize the power passed by the band-pass filtering and phase-sensitive detection, allowing 

them to reject much of the noise spectrum and significantly raise SNR before averaging over 

many cycles of the oscillation. 

5.5.1.1 Setting Modulation Frequency to Avoid Local Maxima 

 The peaks found in the hundreds of kilohertz to megahertz range are significant to be 

aware of because they are in the range of the modulation frequency. In fact, there happens to be a 

peak at 499,997.8 Hz, only 2.2 Hz away from 500 kHz, one of the standard modulation 

frequencies tested in the following sections. Under "normal" circumstances, when the noise 

spectral density around the modulation frequency is approximately constant, the general shape of 

the SNR versus fmod plot does not strongly depend on τ. The SNR of each point tends to be 
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inversely proportional to the transmission widow width due to passing more noise with a larger 

window. Though Figure 5.14 only shows the result for a single time constant, it was actually 

discovered during the analysis that as the time constant in PSD is reduced (widening the 

transmission window), the SNR at 500 kHz suddenly drops relative to the other points. The 

reason for the sudden drop in SNR is apparently that a relatively large increment in noise is 

passed when the transmission window widens just enough to include the peak.  

 This scenario illustrates that the best practice for an experiment would be to measure the 

noise spectral density before the experiment and to specifically choose the modulation 

frequencies to avoid peaks in the noise spectrum rather than to simply choose "round" numbers 

such as exactly 500 kHz. Tailoring the modulation frequency to the actual observed noise 

spectral density may help to improve the SNR, or at least make the shape of the SNR versus fmod 

profile less dependent on τ. This particular example would not matter for the TFLIF 

measurement since the series of peaks are densely spaced only 20 kHz apart, and the 

transmission window for the 2-μs time constant is about 80 kHz, thus it would be impossible for 

the TFLIF measurement to avoid peaks. In that case, a time-resolved measurement at the 500-

kHz frequency would likely have a lower SNR than a time-averaged SNR test would lead us to 

believe. There are, however, some small features slightly about the noise in the 1 to 10 MHz 

range. It would be best practice to find these in the noise spectral density and set the actual 

modulation frequency to avoid them. 

5.5.2 The Raw Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is commonly defined by other authors as the ratio of the 

time-averaged signal at the peak of the distribution to the RMS noise (e.g. [45], [62]). This 

convention is used throughout much of this dissertation except in Subsections 5.5.3-5.5.7, where 

the average of noise is used instead of RMS to facilitate estimating the uncertainty of SNR 

measurements. The more common definition with RMS noise has a number of advantages: (1) it 

is easy to use when the uncertainty of the SNR is not critical, (2) it is more useful to compare 

with others, and (3) it is more powerful since it can be meaningfully applied to noise with a zero 

mean.  

The raw SNR of the LIF signal can be estimated as follows for the example of the low-

field setting of the H6 at the exit plane (see Chapter 7). The time-averaged signal at the peak of 

the VDF before normalization is 0.0030 V, while the RMS of the digitized signal just following 
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the band-pass filter is 0.0832 V. Hence for this example, the SNR after filtering and digitization 

is SNRBP = 0.0360, or in other words the noise is about 27.8 times the magnitude of the signal. 

This requires averaging over tens of thousands of chunks to raise the SNR significantly above 

unity and, with a chunk size of about 1 ms, this is ultimately what requires the data acquisition to 

be about 60 s. Note that SNRBP is not actually the raw SNR since it benefits from the significant 

SNR improvement of the band-pass filter. The SNR improvement of the band-pass filter is about 

IBP = 50, and therefore the raw SNR is approximately SNRraw = 7.2×10-4, meaning the noise 

amplitude is about 1400 times the signal amplitude in the raw photomultiplier signal. The 

estimate for this example is typical for the raw SNR of LIF data. 

5.5.3 Measuring the Signal-to-Noise Ratio 

 Throughout this dissertation, but especially in this chapter, it is often of interest to 

measure the signal-to-noise ratio as a function of various parameters to determine optimal 

parameter settings. Time-resolved measurements are highly expensive in terms of experimental 

and computational time, so these SNR tests are carried out on time-averaged LIF signal using the 

TFLIF hardware under the same conditions for a time-resolved measurement, but with a much 

shorter investment of time (both acquisition and computation time) and storage space. 

 The SNR is measured by phase-sensitive detection performed in software set to a long 

time constant of about 100 ms with the laser wavelength set to the peak of the LIF profile. The 

SNR is estimated by n measurements with the laser on followed by n measurements with the 

laser off and is defined in this case by: 

1
laseron laseroff laseron

laseroff laseroff

A A A
SNR

A A


   , (5.11) 

where Alaser on is the PSD signal amplitude when the laser is on, Alaser off is the PSD signal 

amplitude when the laser is off, and brackets denote an average over the n measurements (n = 80 

was used in most cases). The reference signal is locked to the effective signal phase offset using 

that the same phase locking code developed for TFLIF so that the PSD signals are the magnitude 

of the signal or noise. This is equivalent to the magnitude from the vector computer technique 

using two arbitrary, orthogonal reference signals.  

 Similar to the treatment of noise by most authors, this definition implicitly assumes that 

the noise does not depend on the laser frequency so that it can be interpreted as the signal-to-
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noise ratio at the peak of the distribution profile. Of course, the SNR is obviously lower at points 

far from the peak where the signal is much lower but the noise is approximately the same. Smith 

provided evidence that noise does actually change significantly depending on the laser frequency 

[62], especially for frequencies where the laser interacts with the plasma to generate an LIF 

signal (see Figures 5.1 and 5.2 in the reference). Even so, the ratio of the LIF signal at the peak 

of the distribution to the noise at the edges of the distribution (or when the laser is off entirely) is 

a simple and useful way to quantify the SNR with a single number, even if that number does not 

strictly correspond the actual SNR at the peak or any other point in the distribution.  

 Equation (5.11) is a somewhat uncommon definition; many authors define SNR in terms 

of a signal divided by an RMS noise. The reason to use the uncommon definition here is that we 

measure how the SNR changes as a function of varying parameters to help optimize the 

parameters, and the uncertainty in the SNR calculation should be known to help evaluate 

whether a given change in SNR is significant or possibly merely result of random variation. Most 

authors using the common definition neglect the uncertainty of the SNR measurement. With 

SNR defined in terms of the average signal divided by average noise, it is simple to calculate the 

standard error in the two factors and therefore the standard error in the SNR by propagation of 

uncertainty. If SNR were defined using the RMS noise, then the n noise measurements could be 

used to calculate an estimator of the RMS noise, but we would need a number of sets of n 

measurements to estimate the standard error of the RMS estimator. This definition then 

simplifies both the experiment and the calculation of the uncertainty in SNR.  

 The subtraction of 1 is also uncommon but is only a matter of taste. It ensures that the 

SNR = 0 when the output PSD signal is the same with the laser on as it is with the laser off, as it 

should be. If there is no detected signal but only noise, then surely the signal-to-noise ratio 

should be 0 and not 1. Of course, this shift does not affect the uncertainty statistics or the 

interpretation of the results. 

 A critical question to answer is whether this is an appropriate definition to quantify SNR. 

RMS is often used in a variety of applications related and unrelated to LIF perhaps because 

random noise tends to have zero mean, and in that case a definition of SNR using mean noise 

would clearly not be appropriate. In the case of the magnitude of signal from PSD, however, the 

noise and signal are always positive and the average tends to scale with the RMS, and therefore 

the average noise can be, in a sense, a proxy for the RMS. The SNR values calculated with this 
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method are not in general equal to the more common definition since RMS is more sensitive to 

outliers. In practice, there are rarely outliers far from the mean noise in LIF datasets, so they 

scale similarly. 

5.5.4 SNR vs. Laser Modulation Frequency with the Hollow Cathode 

For plasma conditions typically associated with a Hall thruster or hollow cathode, the 

signal photon rate (i.e. the rate at which LIF photons are captured) can be a limiting factor in 

time-resolved measurements. In fact, Mazouffre et al. have even opted to use a photon counting 

technique and they argued that the low signal photon rate requires it [75]. The signal and noise 

photon rates can vary widely depending on the plasma source and location interrogated, the laser 

power, size of the interrogation volume, and the solid angle subtended by the collection optics. 

Therefore, different systems may collect very different photon rates despite the nominally similar 

application of "LIF in a Hall thruster."  

  The collected signal photon rate can limit the maximum usable modulation frequency for 

an analog signal measurement technique. As modulation frequency increases, there are fewer 

signal photons per modulation period. The signal photon rate eventually falls too low for the 

digitizer to resolve a smooth analog signal in the PMT signal, even with the band-pass filter 

smoothing photoelectron pulses into an analog signal. The SNR of an analog analysis technique 

will suffer and possibly fail to detect signal at all. This is a fundamental limit and is the 

mechanism suspected to cause the modulation frequency limit that is currently observed. 

 We tested the SNR versus modulation frequency in the experimental setup with the 

hollow cathode in Chapter 6 in two cases: (1) with unfiltered collected light; and (2) with a 0.3 

OD neutral density filter to block about 50% of collected light. Removing the filter and doubling 

the collected light has different effects on the signal and noise. The signal amplitude doubles 

since the signal light adds coherently, but the random, incoherent noise amplitude will only 

increase by √2. Assuming background light dominates all sources of noise, we expect the ratio 

of unfiltered SNR to filtered SNR to be 𝑆𝑁𝑅𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑/𝑆𝑁𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = √2 unless this process also 

changes the signal or makes other noise sources significant. 
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Figure 5.12. Signal-to-noise ratio of time-averaged LIF signal reaches a maximum near a laser 

modulation frequency of 500 kHz and falls toward zero thereafter. Filtering about 50% of 

collected light dramatically reduces SNR by more than 50% at high modulation frequencies, but 

only by 20% at most at the low modulation frequencies.  

 The results of this test for the hollow cathode test bed are shown in Figure 5.12. At 

modulation frequencies up to 100 and 500 kHz, the filter only moderately affects SNR, with an 

SNR improvement ratio of about 𝑆𝑁𝑅𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑/𝑆𝑁𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 1.1 − 1.28. The filter actually 

affects the SNR less than expected at these frequencies, but the relatively high uncertainty may 

explain it. The SNR reaches a maximum near fmod = 500 kHz before rolling off relatively sharply 

at modulation frequencies on the order of megahertz. For those megahertz-range frequencies, the 

filter affects SNR more strongly with a ratio of about 𝑆𝑁𝑅𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑/𝑆𝑁𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 1.8 − 2.9.  

5.5.4.1 Interpretation of Results 

 The increased ratio at the higher frequencies indicates that another effect influences the 

SNR beyond the coherent addition of signal and incoherent addition of noise. There are at least 

two possible culprits; unfortunately, this experiment does not fully isolate possible causes. One 

possibility, as mentioned in the first two paragraphs of this subsection, is that signal photon rate 
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per modulation period may be falling too low to produce a clean analog signal at higher 

modulation frequencies.  

Another possible explanation comes from the fact that the band-pass filter bandwidth was 

not held constant. During this test, the cutoff frequencies of the pass band were set to fmod ± 

0.1fmod for the frequencies up to 2 MHz. The pass band was 2 – 3.3 MHz for fmod = 3 MHz due to 

a limitation of the Krohn-Hite filter. In any case, the pass band increases monotonically with the 

modulation frequency. Then the band-pass filter passes more noise, and hence the SNR of the 

raw voltage signal at the digitizer is dramatically worse at higher modulation frequencies. From 

the discussions of Subsections 4.3.1 and 4.3.2 and the empirical result of Subsection 5.5.7, 

ideally, a lower IBP should be compensated by an increased IPSD since the phase-sensitive 

detector acts as a narrower band-pass filter that removes noise components left over by the band-

pass filter. That analysis, however, does not take into account the quantization noise that could 

result if the signal level is much lower than the noise amplitude and not well resolved by the 

digitizer (see Subsubsection 5.1.1.2). It is possible that the increased noise at higher modulation 

frequencies put the system into a regime where quantization noise degrades the SNR. This issue 

could be largely removed by keeping the filter pass band constant, though the noise amplitude 

would still change somewhat with the noise spectral density in the region near the modulation 

frequency. 

 Unfortunately, the small number of points available hampers the interpretation. Testing 

even lower modulation frequencies and using a denser selection of points would help to make 

trends clearer and also enable detecting a change in the location of the maximum. It is not clear, 

but a change in the frequency of the maximum is already hinted by the points available. 

5.5.4.2 Implication for TFLIF experiments 

  Figure 5.12 demonstrates that we were unable to acquire data with the cathode source 

above a modulation frequency of about 2 MHz, and even modulation at 1 MHz comes at the cost 

of reduced SNR. A 1-MHz modulation frequency was the standard for the campaigns in the later 

chapters of this dissertation because it is a good tradeoff between SNR and time resolution.  

The hope at this stage was that if the signal photon rate per modulation period were the 

cause of the reduced SNR at higher modulation frequencies, then the higher ion density and 

electron energy in a Hall thruster may lead to a higher collected signal photon rate and therefore 

a higher modulation speed limit. If the collected photon rate is indeed the problem, then it is a 
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limit fundamentally linked to the properties of the plasma source, though it could be improved 

with a higher laser power and collection optics subtending a larger solid angle. 

 Note that the data presented in Figure 5.12 come from a more recent analysis of the same 

raw data used for FIG. 7 in a journal paper [89]. The two figures show the same qualitative 

behavior, but are slightly different due to minor changes in the PSD algorithm used and different 

parameters for time constant and the number of samples used in the average. Increasing the 

number of samples tends to reduce the standard error, but it also reduces the SNR by reducing 

the time constant of each sample when the samples are taken from a dataset of fixed acquisition 

time. The actual value of SNR is not critical and will change with the time constant and other 

parameters, but the trend of SNR as a function of modulation frequency is important. 

5.5.5 The Effect of AOM lenses and Sampling Frequency 

 Following the above test, it was suspected that the output laser modulation waveform 

from the AOM might not be following the input waveform as well as could be expected given 

the nominal rise time for the 200-mm-focal-length lenses. A new photodiode with a bandwidth 

of 180 MHz (Thorlabs PDA10A) was purchased to ensure a more accurate measurement of the 

modulation waveform compared with the old photodiode with a bandwidth of 10 MHz (Thorlabs 

PDA36A). Also, the 200-mm focusing and collimating lenses of the AOM were replaced with 

120-mm lenses, giving a nominal rise time of 19 ns, down from 32 ns for the 200-mm lenses. 

The SNR versus modulation frequency was then tested again.  

 In addition, since the number of samples per modulation period falls as modulation 

frequency increases at a fixed sampling frequency, it is also expected that SNR as a function of 

modulation frequency will eventually be limited by the sampling frequency when the digitizer no 

longer sufficiently resolves the laser modulation waveform for phase-sensitive detection. The test 

with 120-mm lenses was performed at sampling frequencies of both 20 MHz and 30 MHz to 

detect any significant changes in the SNR that depend on sampling. 

 The result is shown in Figure 5.13. The maximum now occurs at 1MHz instead of 500 

kHz in the coarsely sampled frequency space. This result indicates that the laser modulation 

waveform from the AOM with the 200-mm lenses may indeed have been a limiting factor for the 

modulation frequency but not necessarily the only one. It was unclear at this point if the AOM 

response with 120-mm lenses could still be a limiting factor.  
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Figure 5.13. AOM lenses with a 120-mm focal length allow the SNR to reach a maximum near a 

modulation frequency of 1 MHz, significantly higher than with the 200-mm lenses of Figure 

5.12. The SNR is insensitive to the sampling frequency at these conditions. 

 In addition, the results show that the SNR appears to be insensitive to the sample 

frequency, at least within the uncertainty of the measurements. The 30-MHz sample frequency 

had a higher SNR at some points but not at others with no discernible pattern. This suggests that 

the 20 and 30 MHz sample frequencies both sufficiently resolve the modulation waveform for 

phase-sensitive detection at all of the frequencies tested. It may be possible to achieve similar 

results with an even lower sample frequency, saving on data storage and computation time. 

5.5.6 SNR vs. Laser Modulation Frequency with the H6 

 Finally, a test of SNR versus modulation frequency was performed with the H6 as part of 

the initial campaign described in Chapter 7. The collection optics and interrogation volume were 

the same as well as other parameters such as sampling frequency (30 MHz) and filtering. The 

results in Figure 5.14 show that the SNR has a maximum near a modulation frequency of 2 MHz. 

Barring some unknown parameter that could explain the change, the change of the location of the 
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maximum suggests that the steep drop in SNR is determined by the plasma properties as opposed 

to the hardware or software of the measurement.  

 Unfortunately, the result is potentially consistent with either hypothesis for the origin of 

the decline in SNR as a function of modulation frequency. The location of the maximum would 

be expected to move if the collected signal photon rate changed and the origin of the decline is a 

low signal photon rate per modulation period. If quantization noise is the issue, the location of 

the maximum could also change since the background emission is strongly dependent on 

electron temperature. The source could be isolated by performing the SNR versus modulation 

frequency test with a constant filter bandwidth. 

 If the main limiting factor is the collected signal photon rate, then the implication is that 

the modulation frequency cannot be greatly improved by upgrading hardware, and it is 

fundamentally limited by the plasma source. If so, then the H6 is limited to a modulation 

frequency of a few megahertz at the operating condition of 150-V discharge voltage and 10-mg/s 

flow rate, and therefore the time resolution is limited to the order of hundreds of kilohertz. This 

is a sufficient bandwidth to interrogate breathing, spoke, and possibly even high frequency 

cathode oscillations near 100 kHz, but higher frequency oscillations will likely remain out of 

reach of the TFLIF system. There may be some flexibility to collect light from a larger solid 

angle, reduce losses, raise laser power etc., but such efforts are not likely to raise the collected 

signal photon rate by orders of magnitude.  

 If the LIF signal photon rate is the limit, then the maximum in the SNR as a function of 

modulation frequency will vary in space with the ion density and electron temperature (since 

they largely determine the density of the metastable state probed). For that reason, the SNR test 

was performed with the H6 at two spatial points: at 4 mm upstream of the exit plane (z = -4 mm) 

and at 15 mm downstream of the exit plane (z = 15 mm). The SNR is generally lower at z = 15 

mm as expected. No major shift in the location of the maximum was detected, but that may be 

due to the coarse resolution of frequency space. The plasma conditions are very different at the 

two locations [69], so it is unexpected that the maximum apparently occurs near same frequency. 

If anything, the relatively high point at 3 MHz suggests the maximum and roll off occur at a 

higher frequency at the downstream point. This counterintuitive result undercuts the evidence in 

favor of the photon rate limit and is potentially consistent with a limit by either quantization 
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noise or the AOM itself. Clearly, more work is necessary to uncover the causes of the 

modulation frequency limit. 

 

Figure 5.14. The SNR with the H6 reaches a maximum at the laser modulation frequency of 

2MHz. The SNR is much lower at the point 15 mm downstream of the exit plane than at 4 mm 

upstream, but the maximum occurs at the same frequency for both. 

5.5.7 Electronic Band-Pass Filter 

The effect of filter bandwidth was tested empirically early in the development of the 

TFLIF system. Figure 5.15 shows the results of a test with the hollow cathode setup of Chapter 6 

and a modulation frequency of fmod = 100 kHz. As predicted by the discussion of Subsections 

4.3.1 and 4.3.2, the SNR does not depend strongly on the filter bandwidth, if at all within the 

noise of the SNR measurements. The filter bandwidth given on the x-axis is the conventional 

definition of bandwidth for a band-pass filter: the difference between the upper and lower cutoff 

frequencies. All of the pass bands tested were centered on the modulation frequency. For the 

bandwidth of 100 kHz, for example, the cutoff frequencies are 50 kHz and 150 kHz. 
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Figure 5.15. SNR as a function of electronic filter bandwidth with fmod = 100 kHz. SNR does not 

depend strongly on the electronic filter bandwidth. 
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Chapter 6 

 

Validation Experiments for TFLIF with a Hollow Cathode 

 

And we daily in our experiments electrise bodies plus or minus, as we think proper. [These 

terms we may use till your Philosophers give us better.] To electrise plus or minus, no 

more needs to be known than this, that the parts of the Tube or Sphere, that are rubb'd, do, 

in the Instant of Friction, attract the Electrical Fire… 

– Benjamin Franklin (Letter to Peter Collinson, 25 May 1747) 

 

 Following the theoretical development of the TFLIF technique in Chapter 4 and the 

progression toward a practical implementation of the technique in Chapter 5, the goal of this 

chapter is to validate that the system is capable of accurate measurements. This chapter describes 

the validation campaign using a hollow cathode with controlled discharge current oscillations. 

We have designed a series of tests that, when taken together, provide strong evidence for the 

general validity of the technique and for the accuracy of the measurements from the system 

implemented at PEPL. 

 Section 6.1 introduces the vacuum facility and the plasma source, and describes the 

details of the experimental setup with which validation tests were performed. We briefly note the 

qualitative significance that the TFLIF system captures a signal if and only if using the correct 

parameters in Section 6.2 before moving on to the individual validation experiments. Results 

from an experiment using a periodic signal are presented in Section 6.3 as a consistency check 

that TFLIF returns the same results as TALIF. The triggered average fails for non-periodic 

signals, in which case the TFLIF and TALIF signals cannot be expected to converge. Section 6.4 

presents an experiment with random oscillations to check that the transfer function reproduces 

the failed TALIF signal when using the triggered average of discharge current as the input signal. 

The transfer function's ability to reproduce the triggered average signal was shown in Subsection 

4.3.5, where comparing the actual triggered average to the transfer function's reproduction was 

proposed as a general purpose benchmark to validate the transfer function for all signals. Finally, 

Section 6.5 summarizes the results and validation arguments. 
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6.1  Facility and Plasma Source 

 The experiments presented in this chapter were performed in the "Junior" or "Foster" 

chamber at PEPL (see Figure 6.1), which is a 1-m-diameter by 3-m-long chamber connected to 

the much larger (6-m by 9-m) Large Vacuum Test Facility via a gate valve. Junior has a Leybold 

MAG W 2010 C turbopump as its primary pump, providing a base pressure of 2×10-6 Torr and a 

background pressure during cathode operation of 4×10-5 Torr. 

 

Figure 6.1. Photographs of the "Junior" Chamber at PEPL (left) and the cathode used in the 

validation campaign (right). 

 The plasma source is an orificed hollow cathode [21], [22] that was originally designed 

as the ionization stage cathode of the NASA-173GT [99], a two-stage hybrid Hall/ion thruster. It 

was custom made by the Busek Corporation and has a nominal discharge current up to 60 A. 

Though the cathode has a nominal 10-sccm flow rate, the LIF signal was not usually measurable 

at 10 sccm. The following experiments operated between 3.5 and 7 sccm to maximize the LIF 
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signal. Collisional quenching of the metastable state in higher background pressure may have 

caused the loss of LIF signal at higher flow rates, but that has not been substantiated. 

 To establish a highly controllable discharge current oscillation, the experiment used a 

pair of anodes powered by bipolar power amplifiers (a Kepco 100-2M and a Kepco 100-4M) in 

current control mode. The anodes are 7.6-cm-diameter rings made of 0.635-mm-thick stainless 

steel. Anode 1 is 5 cm long, positioned 10 cm from the cathode keeper plate, and supported by 

the 2-A supply. Anode 2 is 10 cm long, positioned 18 cm from the cathode, and supported by the 

4-A supply. The "discharge current" reported here is the total discharge current, or the sum of 

currents in both anodes. Two anodes were used with separate power amplifiers (but a common 

driving signal) because a single high-speed amplifier could not supply sufficient current for a 

stable discharge and strong LIF signal. The discharge current was found to be extremely stable in 

the range of approximately 4-6 A. With the cathode operating well below its nominal power, the 

heater and keeper were left on during operation to help stabilize the discharge. 

 A diagram of the experimental setup is shown in Figure 6.2. The configuration of the 

optics is the same for all experiments in this dissertation and was detailed in Section 4.2. The 

interrogation volume is a fixed location at the edge of the keeper plate concentric with the hollow 

cathode orifice, chosen to maximize SNR. 

 

Figure 6.2. Diagram of the optics and plasma source used in the validation campaign. Laser light 

follows the red path, collected fluorescence light follows the green path, and the connections of 

the power amplifiers to the anodes and function generator are shown in yellow. 
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 One reason to use a hollow cathode instead of a Hall thruster for validation is to control 

the discharge current more easily than is possible with a Hall thruster. This control allows two 

validation experiments that would be impossible with a Hall thruster. The first experiment uses a 

periodic oscillation. If the discharge current oscillates periodically, then the oscillation of plasma 

parameters, such as the ion velocity distribution and therefore LIF signal, should be periodic as 

well, turbulent and stochastic effects notwithstanding. That allows the easy use of triggered 

averaging with the discharge current as a trigger. Comparison of the TFLIF result to the triggered 

average for a periodic signal is the subject of the first experiment in Section 6.3. The second 

experiment, the subject of Section 6.4, uses a random oscillation in the sense that each new cycle 

of the sinusoidal oscillation has a random period. Demonstrating that the TFLIF technique 

faithfully recovers the signal even for a nonperiodic and random signal is key to credibly 

applying the technique to Hall thruster oscillations. Since the triggered average no longer 

applies, this experiment gives an opportunity to test the benchmark proposed in Subsection 4.3.5. 

6.2 Preliminary Validation Considerations 

 Before delving into the details of the individual tests, we note one important feature of 

the measurements of the TFLIF system. Analysis yields a significant TFLIF signal only if it is 

applied at the correct reference frequency to a data set captured when the laser interacts with the 

plasma. Also, if analysis is applied at an incorrect reference frequency or if the laser intensity is 

zero, then the "signal" returned by this analysis technique is at least an order of magnitude lower 

than a significant TFLIF signal and its waveform resembles white noise. In other words, the 

technique measures a signal if and only if the conditions are correct for a signal to be measured.  

 This is clearly a necessary feature of any accurate measurement, but it is important to 

note this criterion here because we apply a complicated and unusual analysis technique that 

could potentially be susceptible to some form of artifact. For example, the discharge current 

signal is used in the transfer function averaging and characteristic output synthesizing processes, 

and TFLIF signals tend to have a similar Fourier spectrum as the discharge current, hence it is 

plausible that there might be some artifact that could cause the output LIF signal to have similar 

frequency components as the discharge current even if there is no actual LIF signal. The fact that 

the system measures a signal only under the proper conditions implies that there is no such 

artifact in analysis that causes a false LIF signal in the output, a necessary step before any 

validation experiment. 
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6.3 Validating the TFLIF system with Sinusoidal Discharge Current Oscillations 

 This section presents an experiment with 10-kHz sinusoidal discharge current oscillations 

that was performed on 11 March, 2013. LIF data are captured at 16 wavelengths so that the VDF 

profiles can be compared to diagnose possible distortion of the VDF profile by the transfer 

function averaging technique. A frequency of 10 kHz was used to approximate the frequency of 

Hall thruster breathing mode oscillations. Subsection 6.3.1 discusses the motivation and goals for 

the experiment and Subsection 6.3.2 presents the pertinent results, primarily a comparison 

between the TFLIF signal and the triggered average LIF signal. 

The operating conditions were selected as follows to maximize the SNR of the LIF 

signal. The gas flow rate was 3.5 sccm. The discharge current oscillated between about 4.25 A 

and 6.1 A (see Figure 6.3), while the discharge voltage was about 33 V on anode 1 and 43 V on 

anode 2. The same 10-kHz sinusoidal control signal was used for both current amplifiers, 

provided by an Agilent 33220A function generator.  

 
Figure 6.3. The discharge current oscillated between about 4.25 A and 6.1 A with a sinusoidal 

oscillation fixed at 10 kHz. 

6.3.1 Motivation for an Experiment with Sinusoidal Discharge Oscillations  

 The basic strategy in validation is to compare TFLIF signal with other measurements that 

it should theoretically agree with under certain conditions. The most obvious possibility is to 

compare the time-averaged TFLIF signal with the traditional time-averaged LIF signal measured 

with a lock-in amplifier. This comparison is not sufficient because the time-resolved features of 

the VDF profile could, in principle, be distorted even if the average values are accurate. The 

transfer function averaging technique in particular is uncommon and probably is the part of 
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analysis that is most open to doubt. Therefore, we validate time-resolved features in addition to 

the average signal comparison 

 A sinusoidal signal is convenient because it is periodic and therefore the triggered 

averaging technique will converge to the actual signal (see Subsection 4.3.4). Meanwhile, the 

transfer function average will converge to the actual signal if the output is related to the input by 

a time-invariant, linear system (Subsection 4.3.3). We can verify that the transfer function 

averaging technique is not introducing systematic error to time-resolved features by showing that 

the two signals agree for a periodic oscillation. 

 Both the TFLIF and triggered averaging are performed on the same data set by software 

in post-processing. Therefore, the laser modulation and analog PMT signal filtering are the same. 

In order to demodulate the signal, both analyses use phase-sensitive detection with the same time 

constant of 2 µs. The comparison isolates the effect of the averaging technique because the two 

analyses differ only in that one used the transfer function averaging technique following PSD, 

and the other applied triggered averaging (see Figure 4.2). For triggered averaging, each time-

series is triggered at the phase corresponding to the maximum in the discharge current after 

smoothing to reduce effects of noise. The smoothing used in this case is a zero-phase digital 

first-order Butterworth low-pass filter with a cutoff frequency of 10 kHz. 

6.3.2 Results 

 We begin by comparing a time average of the ion VDF profiles from both time-resolved 

techniques with the time-averaged LIF profile measured with a commercial lock-in amplifier; i.e. 

conventional time-averaged LIF data. An example of this comparison for the cathode experiment 

is shown in Figure 6.4. The profiles have been normalized to unity peak magnitude, with the 

(noisier) lock-in amplifier signal normalized by the maximum of its profile smoothed by a 31-

point moving average. All three profiles match within the error of the lock-in amplifier 

measurement, which is roughly apparent because there are many closely spaced points. This 

confirms that the average LIF profiles measured with the time-resolved techniques agree with the 

conventional measurement of a lock-in amplifier. 
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Figure 6.4. A comparison of the average of time-resolved VDF profiles from transfer function 

averaging (red "+") and triggered averaging (green "x") shown against the average VDF profile 

measured by the lock-in amplifier LIF system (blue line). 

 The average normalized TRLIF signals are so close at all wavelengths that all of the 

markers shown in Figure 6.4 overlap. Different marker shapes were chosen to make the bottom 

markers visible. The mean absolute residual (the average of the absolute value of the difference 

between the two TRLIF measurements) is 0.0012. A very small value can be expected due to 

averaging over 60 s of data, far more than a typical lock-in amplifier measurement with a time 

constant of about 100 ms. It also implies that the transfer function average does not introduce 

systematic error in the average LIF profile, otherwise the profiles would not converge so well. 

 Heat maps of the two LIF signals and their residual (the difference between the two) as 

functions of time and velocity are shown in Figure 6.5. The two signals are close at all times. 

There is no obvious systematic difference, and the residual appears to be due to only the random 

noise in each of the measurements. The mean absolute residual is 0.07, or 7% of the peak value 

in LIF signal. 
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Figure 6.5. Heat maps of the TFLIF (top) and TALIF (middle) signals and their residual (bottom) 

as functions of velocity and time show no systematic differences between the two signals. 

 Figure 6.6 is a plot of two "snapshots" of the same ion VDF from Figure 6.5 to more 

clearly show the shape and behavior of the VDF profile. The VDF profile is somewhat coarse 

since there are only 16 points in velocity, but it is clear nonetheless that both techniques capture 

the same general features such as the mean and spread of the profile. There is a slight 

acceleration of the mean velocity with increasing discharge current. 
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Figure 6.6. "Snapshots" of the VDF profile in time for the transfer function average (red "+") and 

triggered average (green "x"). The solid lines are spline interpolations meant to be a guide to the 

eye without a precise physical meaning. 

 Since the two averaging schemes result in nearly identical TRLIF signals, we conclude 

that the TFLIF scheme is likely not producing systematic error and is working correctly under 

these conditions. If there is some systematic error, then either it is in the raw data and does not 

originate from the averaging scheme, or both averaging schemes somehow introduce the same 

systematic error, which is unlikely due to their completely independent algorithms. 

6.4 Validating the TFLIF system with Random Discharge Current Oscillations 

 This section focuses on a validation experiment of the TFLIF system with random 

oscillations on a hollow cathode discharge that was carried out on 21 February 2014. The need 

for such an experiment to go beyond validation for periodic oscillations is discussed in 

Subsection 6.4.1. Subsection 6.4.2 discusses how the random oscillations are generated using the 

"List Mode" feature of a National Instruments function generator with a list of random 

frequencies. Subsection 6.4.3 specifies the distribution of the random variable used to generate 
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the frequency list and the simulations performed to determine appropriate parameters for the 

distribution. Subsection 6.4.4 calculates properties of the expected triggered average waveform 

as a consistency check for the simulation results. The advantages and limitations of using List 

Mode compared to other options such as defining an arbitrary waveform are discussed in 

Subsection 6.4.5. Finally, the results of this experiment in the cathode discharge are presented in 

Subsection 6.4.6, where measurements of the nonperiodic oscillation are validated in part by 

applying the benchmark proposed in Section 4.3.5. 

The operating conditions were selected to maximize the SNR of the LIF signal. The gas 

flow rate was 7 sccm. The discharge current oscillated between about 5.5 A and 8.5 A (see 

Figure 6.7), while the discharge voltage was about 20 V on anode 1 and 26 V on anode 2. The 

same sinusoidal control signal with a randomly varying period in the range of 7.5 - 12.5 kHz was 

used for both current amplifiers, provided by an NI PCI-5406 function generator (see 

Subsections 6.4.2 and 6.4.3 for details).  

  
Figure 6.7. The discharge current oscillated between about 5.5 A and 8.5 A with a sinusoidal 

oscillation with a randomly varying period in the range of 7.5 - 12.5 kHz. 

6.4.1 Motivation for an Experiment with Random Discharge Oscillations  

 The experiment with a sinusoidal oscillation in a hollow cathode discharge provides 

evidence validating the TFLIF system, but the experiment lacks a key result. We require a 

demonstration that the system accurately recovers the TRLIF signal even with a non-periodic, 

non-repeatable oscillation. In other words, we need a demonstration under conditions more 

similar to the Hall thruster oscillations that are ultimately of interest. After this deficiency was 
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mentioned by Stéphane Mazouffre at the 2013 IEPC in Washington, DC, an experiment was 

devised to test the TRLIF system using a controlled but non-periodic oscillation in the discharge 

current. The goal of this final validation experiment is to demonstrate accurate signal recovery 

with the transfer function averaging technique while at the same time demonstrating the failure 

of the triggered average for this random, non-periodic oscillation. 

6.4.2 Generating Random Oscillations 

 The main challenge to the experimental setup was arranging for the non-periodic yet 

controlled oscillation. The experimental apparatus is exactly the same as the previous hollow 

cathode experiment except that an NI PCI-5406 function generator drives the anode amplifiers 

instead of the Agilent 33220A.  

 One of the advanced functions of this function generator is the so-called "List Mode," 

which enables the seamless generation of a sequence of waveforms with lists of both frequency 

and duration. The waveform's frequency begins with the first element in the frequency list for a 

duration given by the first element in the duration list. It then moves on to generate another 

frequency for a certain duration given by the second elements in the lists, and so on until the lists 

are exhausted. The output waveform is always a continuous function because the next step 

begins at the same phase where the last step ended and because the function generator cycles to 

the beginning of the list when it reaches the end. 

 The strategy is to use this feature to produce the desired non-periodic oscillations with a 

programmatically generated list of random frequencies. The elements of the duration list are set 

to be the multiplicative inverses of the elements of frequency list so that each frequency step 

lasts for one period. This oscillation is not only non-periodic but also random in that each cycle 

of the oscillation has a different period that is randomly chosen and therefore unrelated to other 

cycles before or after. 

6.4.3 The Distribution of the Random Variable that Generates the Frequency List 

 For simplicity, the program written to generate the input list file uses a uniformly 

distributed pseudorandom variable to generate frequencies. Two parameters must be set. One is 

Δf, the width of the range of frequencies from which each random frequency is selected. The 

other is f0, the center of the range. The center was chosen to be f0=10 kHz to be similar to the 

previous cathode experiment and actual Hall thruster oscillations. Reasonable values for Δf were 
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more challenging to set, but the values of Δf = 3 kHz and Δf = 5 kHz were ultimately selected for 

the experiment after performing simple simulations of a triggered average. The simulations of a 

triggered average that were used to make this selection are the subject of the remainder of this 

subsection. 

 Simulations of a triggered average of many instances of the type of random waveform 

discussed in Subsection 6.4.2 were done for several values of Δf. Q = 10000 instances of the 

random waveform were generated and averaged according to the process described in Subsection 

4.3.4 to generate the simulated triggered average waveform. The combination of large Q and 

absence of noise ensures very little variation between different runs of the simulation, hence the 

triggered average waveform for any run of the simulation is essentially the expected value of the 

average waveform.  

 The range Δf was selected so that the decay of the simulated triggered average was 

qualitatively similar to the decay of the actual triggered average of TRLIF signal measured 

during a preliminary test of the TFLIF system with the X2 Hall thruster. Figure 6.8 shows the 

simulated triggered averages plotted together with the actual triggered average of TRLIF signal 

from a test with the X2 in August 2011. 

 To characterize the decay and frequency of the simulated triggered averages, a least 

squares fit was found to a decaying sinusoidal function of the form:   

 0( ) ( ) cos(2 )kt

u uF t F F e ft F     , (6.1) 

where the fit parameters are F0 (initial value at t = 0), Fu (limiting value as t→∞), k (exponential 

decay rate), f (frequency), φ (phase offset). Figure 6.8 demonstrates that this functional form 

provides a good fit to the data, especially for the simulations. The mean absolute relative error of 

the least squares fit is 1.0%, 1.3%, and 2.6% for the Δf = 3 kHz simulation, Δf = 5 kHz 

simulation, and the X2 test, respectively. The fit is not as good for the X2 test, especially at later 

times, possibly due to the random noise inherently included in the LIF signal or possibly because 

the thruster's oscillations are not sinusoidal with uniformly distributed periods. The decay rates 

and frequencies of the fits are k = 1.558 kHz and f = 9.933 kHz for Δf = 3 kHz, k = 4.602 Hz and 

f = 9.772 kHz for Δf = 5 kHz, and k = 6.477 kHz and f = 8.232 kHz for the X2 measurement. 

Thus the simulated triggered averages with the selected values of Δf do indeed provide 

qualitatively similar behavior.  
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Figure 6.8. Plot of simulated triggered averages for Δf = 3 kHz (blue) and Δf = 5 kHz (green) 

together with the measured triggered average of TRLIF signal from a preliminary test with the 

X2. Least squares fits to the functional form in Equation (6.1) are also plotted in dotted lines. 

6.4.4 Consistency Checks on the Properties of the Simulated Triggered Average 

 Analytical calculation of the expected triggered average waveform is difficult due to the 

iterated dependence on many random variables and is beyond the scope of this dissertation. 

Nonetheless, the strong least squares fits give reasonable confidence that the intuitive guess in 

Equation (6.1)  is either close to or exactly the correct functional form. We can also make some 

simple calculations to check the consistency of the simulations with expected results.  

 It is interesting to note that the period of the average waveforms in Figure 6.8 is slightly 

longer than 1/f0, a result that is barely visible in Figure 6.8 but is evidenced by the frequencies 

slightly shorter than f0 found by the least squares fits in Subsection 6.4.3. The expected period of 

the distribution can be calculated as: 
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   (6.2) 

where 𝑇(𝑓) is the period, 𝑃(𝑓) is the probability density function of the uniform random 

variable, which has a value of 𝑃(𝑓) = 1/∆𝑓 for 𝑓0 − ∆𝑓/2 < 𝑓 < 𝑓0 + ∆𝑓/2 and zero 

otherwise. This result gives an expected period of 1.0076×10-4 s for Δf = 3 kHz and 1.0217×10-4 

s for Δf = 5 kHz, which compare well with the periods from the least squares fits of 1.0067×10-4 

s for Δf = 3 kHz and 1.0233×10-4 s for Δf = 5 kHz. 

 A plot of the phase difference of a set of simulated random waveforms relative to a 

sinusoid at the central frequency f0 = 10 kHz is shown in Figure 6.9. For a given frequency f, 

phase relative to f0 drifts linearly in time at a rate of 2π(f - f0). A new random frequency is 

selected at the end of a period, and therefore the drift rate changes to some other constant for the 

duration of the next period, leading to the random piecewise linear functions found in the plot. 

There is a clear trend toward negative phase drift that might be naively interpreted to indicate a 

bias in the code to select frequencies lower than f0 or perhaps some other issue.  
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Figure 6.9. Plot of the phase difference of 1000 instances of the random waveform relative to the 

phase of at sinusoid at a frequency f0 (blue lines) for the Δf = 5 kHz case. The linear fit 

representing the average phase drift of the random waveforms from the sinusoid at f0 is also 

plotted in red. 

 On the contrary, negative average phase drift is expected even for random frequencies 

selected from a uniformly distributed range centered on f0. Intuitively, the reason for this is that 

slow frequencies (f < f0) will have longer periods and therefore spend more time drifting 

negatively than fast periods (f > f0) will spend drifting positively during a single period. The 

phase drift per period as a function of random frequency is simply the drift rate multiplied by the 

period T = 1/f:  

0 02 ( ) 2 ( ) /f f T f f f       .    (6.3) 

Then the expected value of Δφ can be calculated similarly to the expected period since it is also 

function of the random variable f: 
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The result is always negative for values of the ratio in the range 1/2 ≤ 𝑓0/∆𝑓 ≤ ∞ (all of the 

physically possible values) and it monotonically increases in this range approaching zero as 

𝑓0/∆𝑓 approaches infinity.  

 This expression gives an expected phase drift per period of 𝐸[∆𝜑] = -0.048 rad for Δf = 

3 kHz and 𝐸[∆𝜑] = -0.136 rad for Δf = 5 kHz. Now, the slope of the linear fit of the simulated 

phase drift is -454 rad/s for Δf = 3 kHz and -1293 rad/s for Δf = 5 kHz, leading to a drift per 

expected period of 0.046 rad for Δf = 3 kHz and 0.130 for Δf = 5 kHz, in reasonable agreement 

with the analytical result. 

6.4.5 Advantages and Limitations of List Mode 

 Many function generators have an arbitrary waveform feature that is typically meant to 

specify an arbitrary cycle of a periodic waveform. It could be used to generate many random 

cycles with arbitrary waveforms, but would be limited by the memory available since all points 

in the waveform are explicitly stored in memory. For example, the Agilent 33220A supports 

arbitrary waveforms up to a maximum of 65536 samples. With a bare minimum of 10 samples 

per oscillation period, it could support at most 6553 independent cycles, corresponding to about 

0.65 s at an approximate cycle period of 10-4 s. Then this waveform would have to be repeated 

about 100 times during an acquisition of 60 s, and the output would not be smooth given so few 

samples per period. 

 On the other hand, List Mode's advantage is that many more random cycles can be 

smoothly generated since only the frequency and duration lists are stored in memory, not all 

points. The maximum list length that would be accepted in List Mode was found to be 99,999. 

Since the average duration is about 10-4 s, this leads to a random waveform for a total time of 
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about 10 s before the list recycles. The need for averaging requires the experiment to take 60 s of 

data per wavelength, hence the random waveform is actually repeated about 6 times during each 

60-s data set.  This repetition somewhat reduces the randomness of the waveform, but it repeats 

over a time scale much longer than the chunk length used in averaging. The fact remains that any 

particular cycle is unrelated to tens of thousands of cycles before and after. 

 One limitation is that the function generator accepts values for frequency and duration 

only within a certain discrete set. The random values of frequency and duration in the list are not 

necessarily members of the discrete set of possible values for the function generator, in which 

case the function generator automatically rounds the frequency and duration values to the closest 

values possible for the function generator. When this happens, the duration no longer 

corresponds to exactly one period of the frequency.  

 The results is that each frequency step lasts for approximately but not exactly one period, 

and therefore the phase at which the frequency changes tends to drift over time. This effect is not 

a problem for the experiment, and in fact it tends to further randomize the signal despite the 

repeating sequence of frequencies. It is of note because the statement above that the oscillation is 

sinusoidal with period changing at each cycle is approximately but not exactly true. In a case 

where that exact waveform is necessary, it may be possible to circumvent the issue by randomly 

selecting only pairs of frequency and duration that are both allowed by the function generator. 

That complication in the code was not necessary for our purposes. 

6.4.6 Results 

 A comparison between the TFLIF and TALIF signals for Δf = 5 kHz is shown in Figure 

6.10. Average signal normalization is used. 18 wavelengths were probed. The input discharge 

current trace was chosen to begin at a trigger so that the results would be in phase at least 

initially. 

 As predicted for this random oscillation, there is a distinct nonphysical decay in the 

signal for the triggered average but not for the transfer function average. The transfer function 

average follows the frequency of the discharge current and the amplitude tends to be lower for 

higher frequency periods, which is also expected since the frequency range used is close to the 

amplifier's 20 kHz bandwidth.  

 These expected features lend credence to the result of transfer function average and the 

comparison clearly shows that the transfer function average does not fail as the triggered average 
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does.  Unfortunately, this comparison alone cannot confirm the accuracy of the transfer function 

result as it did for the periodic oscillation since the triggered average fails in this case. Hence 

there is a need for a benchmark that can validate the transfer function average with nonperiodic 

oscillations.  

 

Figure 6.10. A Comparison between TRLIF signal from the transfer function average (top) and 

triggered average (middle) with the residual on the bottom. The input to the transfer function is 

an actual segment of discharge current beginning at a trigger so that they are initially in phase. 

 We use the benchmark proposed in Section 4.3.5. In short, Section 4.3.5 derived, 

assuming a linear relationship between discharge current and LIF signal, that the transfer 

function reproduces the triggered average LIF signal if the triggered average discharge current is 

used as input to the transfer function. Therefore, we validate the transfer function by comparing 

the actual triggered average LIF signal to the reproduction of that signal calculated via the 

transfer function.  

 Figure 6.11 is an example of this comparison. The same dataset is used as in Figure 6.10. 

The transfer function itself is also the same; the only difference is that the triggered average of 

discharge current traces is used as the input to the transfer function. The RMS residual is 0.0788, 

about 8% of the average signal level at the peak. The residual is largely random noise and there 
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is good agreement between the two signals, which is evidence that the transfer function analysis 

works and the assumptions made are reasonable for this physical system.  

 

Figure 6.11. A Comparison between LIF signal from the transfer function average (top) and 

triggered average (middle) with the residual on the bottom. The input to the transfer function is 

the triggered average of discharge current traces. In this case, the TFLIF signal does reproduce 

the TALIF signal as expected. 

 Unfortunately, there are two types of minor systematic error to note: (1) incorrect 

amplitude at the center of the distribution near the edges of the window, and (2) high frequency 

noise at a single laser wavelength corresponding to a velocity group near the center of the VDF. 

Fortunately, Appendix A shows that both of these errors are due to the choice of window type 

and chunk size used in the analysis. 

 A rectangular window was used for this comparison since it allows the whole chunk to be 

viewed unobscured by the window function. A Tukey window is used for most other analyses in 

this dissertation, which reduces both random and systematic error, but for this comparison it is 

important to plot the whole time available in the chunk since we want to capture the decay of the 

triggered average and demonstrate that the transfer function reproduces it. The same comparison 

with the Tukey window gives very good agreement, but the plot is less intuitively convincing 
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because much of the decay has already occurred before the central region of the chunk that the 

Tukey window allows to be plotted (see Appendix A). 

6.5 Summary of Arguments Validating TFLIF 

 In summary, the results of the campaign suggest that the TFLIF system accurately 

recovers the sinusoidal and even the randomly varying oscillation. There is no decay or other 

obvious artifact in the TFLIF signal for the random oscillation synthesized with the actual 

discharge current input (top frame of Figure 6.10). The TFLIF signal shows two properties that 

are expected under the circumstances of the hollow cathode test. Firstly, it follows the frequency 

of the discharge current oscillation. Secondly, the amplitude varies as a function of frequency 

due to operating near the -3 dB frequency of the power amplifiers driving the discharge current.  

In addition to the evidence above, several quantitative benchmarks were verified. These 

are specific cases where the TFLIF signal theoretically converges to another signal. For the first 

benchmark, Figure 6.4 verifies that the TFLIF, TALIF, and lock-in amplifier measurements of 

the time-averaged LIF profile all agree. The test with sinusoidal oscillations shows that the 

TFLIF signal (synthesized with an actual discharge current trace) converges to the same result as 

the TALIF signal (Figure 6.5). This property is expected when the assumptions of both averaging 

techniques are satisfied since in that case they both converge to the actual TRLIF signal (see 

Subsection 4.3.4). Recall that for TFLIF the assumption is a linear system relating input to 

output, while for TALIF the assumption is that oscillations are periodically repeated after each 

trigger.  

For the randomly varying oscillation of Section 6.4, Figure 6.10 shows that the TFLIF 

and TALIF signals no longer converge together because the triggered average fails due to the 

nonperiodic oscillations. In this case, the general-purpose benchmark of Subsection 4.3.5 can be 

used. Figure 6.11 verifies that the average transfer function reproduces the TALIF signal as 

theoretically expected when the characteristic output is calculated for the input signal of the 

triggered average discharge current (see Subsection 4.3.5). N.B. the signal of Figure 6.11 is 

nonphysical since the triggered average fails. Nonetheless, it shows that the average transfer 

function can reproduce the signal as expected, and therefore the average transfer function has 

converged close enough to the actual transfer function to give an accurate characteristic output 

signal. Though the comparison of Figure 6.11 is not physically meaningful, the verification of 

the expected property gives some evidence that the same transfer function will also give accurate 
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results when calculating the characteristic output signal for a physically measured discharge 

current trace, whose output will be physically meaningful. 

 These results are ultimately a validation only for the hollow cathode plasma source, 

though the demonstration that the TFLIF technique works in one case suggests it may work with 

other plasma sources. Results for other sources and conditions not explicitly tested here (such as 

the more complicated plasma dynamics of the Hall thruster) will need to be validated separately 

since the assumption of a linear system relating input and output signals may not always hold. A 

comprehensive validation will include three components. First, a similar series of quantitative 

benchmarks as above. These benchmarks provide limited evidence. They do not provide a 

deductive logical argument, but merely check the consistency of the signal with expected 

properties. It may be possible for a signal to have significant error while still satisfying the 

benchmarks. A second part of validation should be a careful consideration of the implications of 

the results and whether they are physically reasonable. Thirdly, validation should also include a 

consideration of how the TFLIF measurements compare with other high-speed measurements 

(e.g. high-speed Langmuir probe, high-speed camera, and other TRLIF techniques) and with 

theory and simulation. 
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Chapter 7 

 

Initial Hall Thruster Campaign 

 

If there is no other Use discover'd of Electricity, this, however, is something 

considerable, that it may help to make a vain Man humble.  

– Benjamin Franklin (Letter to Peter Collinson, 14 Aug 1747) 

 

 Having covered the basic theory and implementation of the new technique as well as 

preliminary validation experiments with a hollow cathode, the capstone of this dissertation on the 

development of the TFLIF technique is an initial campaign with a Hall thruster. This chapter has 

two goals. The first is to show that the technique is capable of accurately recovering TRLIF 

signal from a Hall thruster. In contrast to the previous chapter, where experiments were designed 

solely for validation, the second goal of this chapter is to gather new Hall thruster measurements 

that are important in their own right. The first practical application of TFLIF on a Hall thruster 

confirms major changes in ion dynamics depending on the magnetic field setting of the thruster. 

This chapter demonstrates signal recovery in both approximately periodic and nonperiodic 

thruster operating modes; a first for time-resolved LIF measurements in Hall thrusters. 

 The key assumption of the TFLIF technique is that the thruster acts as a time invariant 

linear system with some transfer function mapping the input signal (such as discharge current or 

floating probe voltage) to the LIF signal as the system output. Due to the time invariance, the 

transfer function itself is assumed constant while the thruster operates at single operating 

condition in equilibrium, but the individual oscillations that go into calculating the ensemble of 

empirical transfer function estimators need not be periodic or repeatable. Not only may 

amplitude and period vary randomly, as shown in the cathode validation results of the previous 

chapter, but a slow drift in the Hall thruster oscillating frequency will not affect the measurement 

as long as the transfer function itself is constant.  



 

178 

 

7.1 Experimental Configuration 

7.1.1 Experimental Setup in the Vacuum Chamber 

 A diagram of the experimental setup inside the Large Vacuum Test Facility (LVTF) is 

shown in Figure 7.1. The laser, propagating along the thruster axis to measure axial velocity, is 

focused to a 1 mm spot near the thruster exit plane. A 75-mm-diameter lens with 85-mm focal 

length images light collected from the interrogation volume onto a 1-mm optical fiber with unity 

magnification. The collection optics are contained in a lens tube (visible in Figure 7.2 to the right 

of the thruster) with a sacrificial glass window with an antireflective coating. Light was collected 

30 degrees from the exit plane, defining a small interrogation volume about 1 mm in all 

dimensions. All points interrogated are along the discharge channel centerline at the thruster's 3 

O'clock position. The laser is radially polarized to excite primarily π transitions in the thruster's 

radial magnetic field, reducing Zeeman splitting [100]. The thruster itself is mounted on x-y 

motion stages to move the stationary interrogation volume relative to the thruster so that the 

sensitive optics need not be moved. LIF is generally considered a non-intrusive diagnostic, or at 

least less intrusive than probes, and as such there are no pieces of the experimental setup capable 

of disturbing the discharge more than normal facility effects.  

The H6 processes much more power than the cathode used in the previous campaign, 

causing laser alignment issues apparently from thermal drift as structures heated. Both optics and 

their structures are protected from ion bombardment behind graphite shields and glass windows. 

The shielding and window are supported by independent structures and entirely block the line-

of-sight from the thruster and ion beam to the injection optics and support structure. In addition, 

the polar and azimuthal angles of the injection optics were controlled remotely by motors to 

correct drift on the fly and maximize LIF signal. Correction was routinely performed 

approximately hourly by maximizing the laser reflection off of a 1-mm diameter pin fixed a few 

centimeters aside the thruster (visible just to the right of the thruster in Figure 7.2). The drift was 

slow enough that alignment drift is an insignificant source of uncertainty for the LIF signal 

amplitude at different wavelengths in the same VDF. The measured velocity distributions at each 

spatial point or thruster operating condition are normalized independently and laser alignment 

may slightly change, therefore signal level is not comparable between VDFs. 
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Figure 7.1. Diagram of the experimental setup inside the Large Vacuum Test Facility. 

Reproduced from Ref. [101]. 

 The outer magnetic pole piece of the H6 was found to be visibly warped during the setup 

for this campaign (see Figure 7.3). The originally flat pole piece bows with a maximum 

deflection of about 1 mm near the 11 O'clock position. The warping may be due to an excessive 

heat load on the pole piece during a previous campaign, but the exact origin is unknown. The 

warping is small enough that the magnetic field and therefore operation of the thruster is 

probably not significantly altered. 
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Figure 7.2. The H6, alignment pin, floating probe, and collection optics photographed in position 

for the campaign.  

 

Figure 7.3. Photograph of the warped outer pole piece near the 11 O'clock position of the H6. 
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7.1.2 Auxiliary Measurements 

 A floating probe placed five thruster diameters downstream along the 6 O'clock channel 

centerline (supported by a white, vertical alumina tube visible in Figure 7.2) is an input to the 

transfer function that can be used alternatively to the discharge current. Two Alazartech 

ATS9462 cards digitize all three signals simultaneously to enable comparison between results 

with the two simultaneous input signals.  

 High-speed video of the thruster with the Photron FASTCAM  SA5 nearly head-on was 

captured in this campaign to compare with TFLIF data. The high-speed image analysis technique 

was discussed in Subsubsection 2.5.2 and described in detail by McDonald [8] and Sekerak [10]. 

For this campaign, the camera captured a resolution of 256×256 at a frame rate of 87.5 kHz for a 

total of 214 frames, or about 0.19 s. To observe the optical emission at the same time as the other 

signals, the camera was triggered simultaneously with the digitizers measuring PMT voltage, 

discharge current, and floating probe potential. 

 Alicat flow controllers with a maximum of 50 sccm (serial number 85697) and 400 sccm 

(serial number 57639) controlled cathode and anode flow, respectively. Both were calibrated 

using a Bios Definer 220 in July 2014, a few months before this campaign. The actual flow rate 

at five different settings were measured and a linear fit gives a function that maps the actual flow 

rate to the setting of the flow controller. Figure 7.4 gives the resulting calibration curves. R2 

values near unity show that they are both very linear over the whole range tested. Note that the 

gain changed by less than 1% for the anode and about 3% for the cathode from the previous 

calibration in February 2013, while the offset changed from the previous calibration values by 

about 25% (for anode) and 64% (for cathode). The large relative change of the offset is 

insignificant given that it is a fraction of 1 sccm. 

 The Definer was operated in continuous mode averaging over 10 samples per 

measurement. Measurements were discarded until the back pressure and flow measurements 

equilibrated so that each measurement varied only by a small fraction of 1 sccm. A slow drift 

was observed in the calibration measurement even after reaching equilibrium in backpressure 

and flow rate measurements. An example of the drift observed is given in Figure 7.5 for the 50 

sccm setting of the anode controller. The drift made defining a value for a given flow rate 

difficult and time consuming. The drift curves at all settings are similar in that there is a 

relatively long and linear drift at first, followed by a slower drift. The flow rate value at each 
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flow rate setting was defined by excluding the faster part of the drift, which apparently occurs 

before the system is truly in equilibrium, and then averaging all measurements thereafter. In the 

example case of the 50 sccm setting of the anode controller, the measurement value was defined 

as the average of measurements 13 and after. The origin of the drift is unclear, but it does 

represent a small uncertainty in the measurement of less than 1 sccm. 

 

Figure 7.4. Calibration curves for the cathode (left) and anode (right) flow controllers. 

 

Figure 7.5. Example of flow rate measurement drift observed after equilibrium in back pressure 

at a constant flow rate setting of 50 sccm on the anode controller. 

7.1.3 Test Matrix 

 A discharge voltage of 150 V and an anode flow rate of 10 mg/s were used to maximize 

the LIF signal-to-noise ratio (SNR). The SNR was much lower at discharge voltages of 150 V 

and 300 V than previously reported with the H6 at this facility [45]. The cause is currently 

y = 1.0327x + 0.1712
R² = 0.9997

0

5

10

15

20

25

30

0 10 20 30

Fl
o

w
 R

at
e

 S
e

t 
P

o
in

t 
(s

cc
m

)

Measured Xenon Flow Rate (sccm)

Cathode Calibration

y = 1.0817x - 0.6925
R² = 1

0

50

100

150

200

250

300

0 50 100 150 200 250

Fl
o

w
 R

at
e

 S
e

t 
P

o
in

t 
(s

cc
m

)

Measured Xenon Flow Rate (sccm)

Anode Calibration

46.7

46.8

46.9

47

47.1

47.2

0 5 10 15 20 25 30 35

Fl
o

w
 R

at
e

 (
sc

cm
)

Measurement Number



 

183 

 

unknown but will be investigated to allow measurement at the nominal 300 V condition. The 

cathode flow fraction was 7%.  

 The loss of laser alignment due to the unstable table supporting the H6, motion stages, 

and collection optics consumed much of the time allotted for this campaign. The problem was 

temporarily solved by locking the table's 11 independent sections together with 80/20, tying each 

section to various mounting points in the chamber with wire rope, and moving the collection 

optics to an 80/20 structure off of the table. The table was removed from service after this 

campaign and a new support structure was designed and built for use with the motion stages. 

 Three axial locations along the channel centerline were interrogated to investigate how 

the ion VDF evolves as the ions are accelerated. The VDF is also measured at the exit plane 

under three magnetic field settings from near the lowest field that gives stable operation up to 

nearly saturating the magnetic circuit. Table 7.1 summarizes the different conditions 

interrogated. Many spatial locations and a more complete magnetic field sweep were originally 

planned. The campaign was restricted to one month of chamber time, and the issues with the 

table took enough time to necessitate paring down the plan for this campaign to the smallest set 

of points that could still yield interesting results. The data presented here were all taken in two 

days near the end of March 2015.  

Table 7.1. Test matrix of conditions where TFLIF signal was captured. The campaign was 

entirely at the H6 150-V, 10-mg/s operating condition with all LIF data taken along the channel 

centerline at 3 O'clock. Green cells denote data was taken and presented. Analysis failed to yield 

reasonable results for data taken at the exit plane with nominal field (red cell) for unknown 

reasons. 

   

Z (mm) 

 

  

- 4 0 15 

 

0.5238 

   𝐵𝑟/𝐵𝑟
∗ 1 

   

 

1.48 
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7.2 Results and Discussion 

7.2.1 Evolution of the Velocity Distribution Between Two Axial Positions 

 Time-resolved ion VDFs were measured at two locations at nominal magnetic field (inner 

magnet current 3.5 A). These points demonstrate data collection in both the relatively hot and 

dense plasma in the discharge channel and the cooler and rarer plasma in the plume. The point in 

the discharge is 4 mm upstream of the exit plane (z = -4 mm), and the point in the plume is 15 

mm downstream (z = 15 mm). The points were chosen based on electron density and temperature 

maps at 300 V from Reid [69]. Density and temperature maps were not reported at 150 V, but 

maps of electric field at 150 V in Appendix C of the reference show that the plasma properties 

likely have a similar spatial trend. 

 The measured ion velocity distribution at z = -4 mm is shown in Figure 7.6. There is an 

approximately periodic oscillation with a high density population of ions forming at a minimum 

in mean velocity near 3.5 km/s. The mean velocity then increases to a maximum of about 5 km/s. 

After reaching the maximum velocity, the population density and distribution spread suddenly 

fall and the mean velocity declines back to the minimum at approximately the same rate as the 

rise in velocity. The oscillation then begins again, leading to a shape similar to a triangle wave. 

There is a long low energy tail extending almost to 0 m/s that only appears when the bulk 

velocity is near its minimum. 

 

Figure 7.6. The Ion velocity distribution at z = -4 mm for the 150-V, 10-mg/s operating condition 

of the H6 with nominal magnetic field shows an oscillation in central velocity, distribution 

spread, and relative metastable density. 

 The measured ion velocity distribution at z = 15 mm is shown in Figure 7.7. The LIF 

signal was much weaker at this point, which is apparent in the lower signal-to-noise ratio, though 
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the maximum in the time-averaged signal is normalized to 1. The basic features are similar to the 

z = - 4 mm point except the distribution is accelerated, as expected. A similar oscillation in mean 

velocity occurs between about 10 and 12 km/s at z = 15 mm. Density similarly falls as the mean 

velocity begins to decline, but the rate of decline increases slightly toward the minimum in mean 

velocity, leaving a small kink in the downward part of the plot. The maximum in bulk 

distribution spread occurs at the minimum of mean velocity. The low velocity tail is less 

pronounced at this location and is largely obscured by the noise. 

 

Figure 7.7. Ion velocity distribution as a function of time at z = 15 mm for the 150-V, 10-mg/s 

operating condition of the H6. 

 The distribution is significantly narrower downstream. The change in the distribution 

spread can be partially explained by kinematic compression or velocity bunching, an effect 

whereby a velocity spread narrows due to an acceleration [102],[103]. Intuitively, it occurs 

because fast ions spend less time in the accelerating potential than slow ions, and therefore 

receive a smaller increment in velocity, hence the velocity spread between them is reduced.  

 Bunching can make a prediction of the distribution FWHM at z = 15 mm based on the 

FWHM at z = -4 mm and the potential drop observed between z = - 4 mm and z = 15 mm. For 

simplicity, we assume that the distribution at z = 15 mm will only depend on the accelerated ions 

from the z = - 4 mm distribution at the same time. In reality, the ions at z = 15 mm at a certain 

time will have come from z = - 4 mm at slightly different times (and some even may have been 

born downstream of z = - 4 mm), but the simplifying assumption is reasonable since even slow 

ions with an average speed of 3 km/s will travel the 19 mm distance in about 6 μs, a time in 

which the VDF changes little and that is near the time resolution of this dataset. 

 The ratio of the measured width (FWHMmeas) to the predicted width (FWHMtheory), plotted 

in Figure 7.8, oscillates between about 1 (about the same as predicted) and 3 (3 times as wide as 
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predicted). The plot is very noisy due to the uncertainty in measuring FWHM in both 

distributions and the potential drop between the two points. The oscillation in the ratio of 

FWHMmeas to FWHMtheory is strongly correlated with but slightly out of phase with the discharge 

current oscillation. This behavior may be evidence of an ionization zone oscillating in axial 

position. When the ratio is greater than 1, there may be significant ionization downstream of z = 

- 4 mm, leading to a wider distribution than predicted by bunching alone calculated from the 

distribution at z = - 4 mm. When the ratio is near 1, there may be little ionization downstream of 

z = - 4 mm, and therefore distribution spread at z = 15 mm downstream is well explained by 

bunching. The possibility of an oscillation in the position of the ionization zone is a hypothesis 

for which evidence has been observed in Hall thrusters (e.g. Mazouffre[79],[81]), but a more 

complete data set is needed to confirm it in the H6 at this operating condition. 

 

Figure 7.8. Ratio of measured ion velocity distribution FWHM at z = 15 mm to that predicted by 

bunching given the ion velocity distribution at z = -4 mm. It oscillates between approximately 1 

and 3, highly correlated with discharge current oscillations, and possibly indicates axial motion 

of the ionization zone. 
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7.2.2 The Effect of Varying Magnetic Field 

 The thruster's magnetic field was varied to observe changes such as the thruster operating 

mode transitions observed with the H6 by Sekerak [10]. This reference also briefly presents a 

least squares fit to predict magnetic field magnitude from Infolytica MagNet simulations. The 

magnetic field magnitude, normalized by the nominal magnetic field magnitude 𝐵𝑟
∗, is given as a 

function of inner magnet current in amperes IIM by:    

* 2/ 0.0105 0.3343 0.0444r r IM IMB B I I    .    (7.1) 

This formula assumes a constant ratio of inner magnet current to outer magnet current of 1.12. 

This ratio was maintained throughout this campaign to investigate the effects of changing the 

magnetic field magnitude while keeping a constant field topology. A sweep of magnetic field to 

map out thruster operating modes at many field magnitudes was planned, but time allowed for 

only three magnetic field points to be measured. Though the three magnetic field settings are 

widely spread, care was taken to ensure the ratio of inner magnet current to outer magnet current 

was approximately kept constant while changing settings to avoid changing the magnetic field 

shape and operation of the thruster unnecessarily. 

7.2.2.1 Auxiliary Measurements on the Thruster Operating Mode 

 Measurements of discharge current captured by a high-speed current probe (the same 

probe used for the transfer function input) and light emission captured by the Photron 

FASTCAM SA5 high-speed camera help assess the thruster operating mode and mode 

transitions. Global oscillations are contained in the discharge current and the average over all 

pixels in each frame of the FASTCAM video, while the azimuthally local oscillations are 

captured by the power spectral density analysis of the FASTCAM video (see Subsections 2.6.1 

and 2.5). The mode transition criteria determined for the H6 for operating conditions near a 

discharge voltage of 300 V and a flow rate of 20 mg/s are discussed in Subsubsection 2.6.1.2. 

 Figure 7.9 presents the power spectral density of the FASTCAM intensity at the three 

magnetic field settings tested. The low-field condition has by far the strongest global mode 

oscillation with sharp peaks and four harmonics visible up to the Nyquist frequency. The spoke 

modes have peaks at the same frequencies as the global mode, an effect also observed at low-

field magnitude with a discharge voltage of 300 V and anode flow rate of 19.5 mg/s [10]. For the 

measurement at the low-field setting with an anode potential of 150 V and an anode flow rate of 
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10 mg/s, the global mode dominated and there were no visible azimuthal perturbations in the 

high-speed video. Thus, the relatively strong m > 1 peaks are likely smearing from the m = 0 

peaks, as described by McDonald [8]. Turbulent azimuthal perturbations were visually present at 

the nominal field but the (weaker) global oscillation continued to dominate. Oscillations were 

weaker and less coherent since the maxima at all peaks dropped, peaks were broader, and many 

of the higher harmonics were no longer resolved above the noise floor. The high-field condition 

had the weakest and broadest global mode peak with no harmonics, indicating the least 

coherence of the three settings. The spoke mode peaks had mostly vanished, but the power 

spectral density of the noise floor is higher than at the other field magnitudes. The strongest 

azimuthal perturbations were observed at this condition, but they were highly random and not 

coherent spokes due to the spectra similar to white noise.  

 In general, the peaks observed here tend to decrease in frequency with increasing 

magnetic field, in agreement with Sekerak's results. The transition from relatively coherent 

global oscillations to relatively incoherent azimuthal oscillations with increasing field is 

reminiscent of Sekerek's magnetic field sweeps (cf. Figures 17 and 18 in reference [10]). Those 

figures, however, show that spoke mode peaks intensified with increasing field, not the effect 

observed here.  

                                𝑩𝒓/𝑩𝒓
∗ = 𝟎. 𝟓𝟐                                           𝑩𝒓/𝑩𝒓

∗ = 𝟏                                                   𝑩𝒓/𝑩𝒓
∗ = 𝟏. 𝟒𝟖 

 

Figure 7.9. Power spectral density of FASTCAM intensity for the m = 0 breathing mode and 

spoke modes m = 1 through m = 3 for the 150-V, 10-mg/s operating condition of the H6 at three 

magnetic field settings. The thruster exhibits an extremely strong m = 0 mode at 𝐵𝑟/𝐵𝑟
∗ = 0.52 

(left). Some azimuthal perturbations visually appear at the nominal condition 𝐵𝑟/𝐵𝑟
∗ = 1  

(middle). Azimuthal perturbations are stronger but still dominated by the global oscillation at 

𝐵𝑟/𝐵𝑟
∗ = 1.48 (right). 
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 A little more information can be gleaned from the "spoke surface" in the time domain at 

all three field settings in Figure 7.10. It is a density plot where the x axis is time and the y axis is 

the azimuthal position on the thruster (clock position). A vertical strip represents the light 

intensity across all azimuthal positions at a fixed time, and a horizontal strip represents the light 

intensity at a fixed location as a function of time. The thruster is clearly in a very coherent and 

high amplitude global oscillation at the low field setting. Global mode still dominates at the 

nominal setting, but it is noticeably weaker and less coherent. By the high-field setting, the 

thruster has apparently transitioned to another regime with relatively strong but incoherent 

azimuthal perturbations. It is distinct from the local mode described by Sekerak since there are 

no coherent, traveling spoke structures, which would be visible at diagonal areas of color in the 

plot. This provides a little more evidence than the power spectra alone that the transition 

observed at this operating condition may be in some sense a different type of transition than what 

was observed at the higher voltage and flow rate conditions.  

                                  𝑩𝒓/𝑩𝒓
∗ = 𝟎. 𝟓𝟐                                                 𝑩𝒓/𝑩𝒓

∗ = 𝟏                                              𝑩𝒓/𝑩𝒓
∗ = 𝟏. 𝟒𝟖 

 

Figure 7.10. The spoke surface at low-field condition (left) exhibits a strong global mode 

oscillation. Azimuthal perturbations begin to appear by the nominal setting (center) and intensify 

at the high-field setting (right). 

 The power spectrum of the discharge current under 50 KHz in is similar to the m = 0 

mode of the FASTCAM spectra. This is expected in light of previous work showing that the two 

signals are strongly correlated and one can even be used as a proxy for the other (see the 

background Subsections 2.6.1 and 2.5). There are, however, subtle differences such as the 

different noise floor and larger number of harmonics in the FASTCAM spectrum for the low-

field condition (five compared with four in the discharge current spectrum in Figure 7.11). The 

cause of the differences is not clear, but the simplest explanation may simply be that the data do 



 

190 

 

not correspond to exactly the same time, and the thruster's operation may have drifted slightly 

between the two. Furthermore, they were analyzed with separate routines using different 

parameters for time-series length, windowing, and averaging over many spectra. The FASTCAM 

recorded about 0.19 s of data (filling the memory of the camera), while about for 1 s of the 60-s 

discharge current dataset was analyzed. 

 With a sample speed of 30 MHz instead of 87.5 kHz, the discharge current spectrum of 

Figure 7.11 also contains information about higher frequency oscillations not contained in the 

FASTCAM spectra. There are small peaks near 100 kHz that intensify slightly as the magnetic 

field rises. The source of these peaks is unknown. There are also some features above the noise 

near 1 MHz that are roughly invariant to the magnetic field setting. These oscillations in 

discharge current could be related to the high frequency oscillations summarized by Choueiri in a 

review paper on Hall thruster oscillations [4], though the oscillations described are predicted and 

observed to depend on magnetic field magnitude. 

 

Figure 7.11. Discharge current power spectra for the low-field setting with 𝐵𝑟/𝐵𝑟
∗ = 0.52 (left), 

the nominal 𝐵𝑟/𝐵𝑟
∗ = 1 setting (center), and the high-field setting with 𝐵𝑟/𝐵𝑟

∗ = 1.48 (right). 

The current spectra are similar to the m = 0 mode but also captures higher-frequency features. 

 Figure 7.12 shows that the discharge current oscillation amplitude changed substantially 

during the magnetic field sweep. Similar to the magnetic field sweep curves reported by Sekerak, 

oscillation amplitude changed by a factor of 10 between the high and low-field conditions, with 

the highest oscillation amplitude at the low-field setting. Unlike Sekerak's and Brown's results, 

the mean discharge current changed little for the magnetic field sweep at the 150-V, 10-mg/s 

operating condition.  Mean discharge current actually increases with magnetic field magnitude 

from about 9 A at the low-field setting to about 9.5 A at the high-field setting.  
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 These results for oscillation amplitude and mean current significantly differ from both 

Sekerak's and Brown's findings. They found two distinct modes where high mean discharge 

current was coupled with high oscillation amplitude and low mean current was coupled with low 

oscillation amplitude. The magnetic field sweep of this campaign showed a change in oscillation 

amplitude and coherency similar to the previous results, but the behavior of the mean discharge 

current is completely different. The mean discharge current stays approximately constant and 

high oscillation amplitude is actually coupled with slightly lower mean current. It is interesting 

to note that describing the oscillation amplitude in terms of +/- RMS is somewhat misleading 

since the maximum of the oscillation tends to be further from the mean than the minimum.  

 

Figure 7.12. The mean discharge current (squares connected with solid line) is approximately 

constant while the oscillation amplitude, measured by RMS (dashed lines) or extrema (dotted 

lines), changes drastically during the magnetic field sweep. 

 Comparing this magnetic field sweep with Sekerak's criteria for H6 mode transitions 

introduced in Subsubsection 2.6.1.2, the oscillation amplitude has undergone a transition 

between the thresholds for the two modes. The mean discharge current satisfies the criterion for 

local mode at the same magnetic field setting where the oscillation amplitude satisfies the 

criterion for global mode and vice versa. The criterion for the FASTCAM peaks is tricky to 
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assess because the m > 0 peaks at low and nominal field appear to only come from smearing 

from the m = 0 peaks, while the m > 0 "peaks" at the high-field condition are more like white 

noise. With that in mind, the spectra roughly imply that the global mode condition is satisfied at 

low and nominal settings, and the behavior satisfies neither condition at the high-field setting 

(i.e. it would be considered in the transition region). In addition, the oscillations change from 

relatively coherent to chaotic.  

 The evidence seems to imply that the thruster has undergone a transition, but possibly a 

different kind of transition than described by Sekerak and Brown with local/global mode and low 

current/high current mode terminology. Considering the parallels in changes to the oscillation 

spectra, amplitude, and mean discharge current, the transition here could be related to the 

transition observed by Gascon et al. between the regimes 4 and 5 described in reference [53]. 

That transition occurred during a sweep of discharge voltage at higher than nominal voltage, not 

during a sweep of magnetic field at lower than nominal voltage (the conditions of the current 

experiment). It is unknown how the two observations are could be related.  More investigation 

into the thruster operating modes at different operating condition settings is necessary to fully 

characterize thruster operation, let alone understanding the physics involved with the transitions. 

7.2.2.2 Laser-Induced Fluorescence 

 The measured ion velocity distribution at the exit plane (z = 0 mm) for the low-field 

magnitude condition of 𝐵𝑟/𝐵𝑟
∗ = 0.52 (IIM = 1.8 A) is plotted in Figure 7.13. A Tukey window 

with r = 0.5 and a chunk size about 1 ms were used in the analysis. The oscillation is somewhat 

similar to that observed at the nominal field, but there are a few notable differences in the VDF. 

Due to the high amplitude oscillation of the mean velocity, the time-averaged distribution in this 

condition is by far the broadest found in this campaign, approximately spanning from 0 km/s to 

12 km/s. The instantaneous velocity distribution spread averages about 4 km/s, much narrower 

than the time-averaged spread. An ion population first forms near 3 km/s and then steadily 

increases in mean velocity with a slightly decreasing spread. The highest ion density occurs near 

the minimum of mean velocity and gently decreases until the maximum mean velocity. After the 

VDF reaches a maximum in mean velocity, the population at all velocities vanishes almost 

within the noise floor (note the blue vertical cross sections of near-zero signal between the red 

pulses of high signal intensity). After a short time, the population appears again at low mean 

velocity and repeats the previously mentioned trends. A similar result was reported by Diallo et 
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al. [11] using a heterodyne TRLIF technique, lending credence to the results of both new 

techniques (cf. FIG. 4 in the reference). This effect may reflect a depletion of the metastable 

population probed by LIF, not necessarily a depletion of the ion density in this very strong 

breathing oscillation. More data are necessary to make a conclusion.  

 The ion VDF at the high-field condition 𝐵𝑟/𝐵𝑟
∗ = 1.48 (IIM = 5.5 A) has completely 

different behavior. A rectangular window and a chunk size about 1 ms were used in the analysis 

presented in Figure 7.14. The population density remains steady at all times and the mean 

velocity oscillates chaotically within only a small range of about 1 km/s between 7 km/s and 8 

km/s. The VDF FWHM is nearly constant at about 2 km/s. 

 

Figure 7.13. Ion velocity distribution as a function of time at z = 0 mm for the 150-V, 10-mg/s 

operating condition of the H6 with 𝐵𝑟/𝐵𝑟
∗ = 0.52. Note that the metastable ion population 

probed appears to collapse almost entirely to the noise floor after the distribution reaches a 

maximum in mean velocity (visible as vertical stripes of mostly dark blue color). 

 

Figure 7.14. Ion velocity distribution as a function of time at z = 0 mm for the 150-V, 10-mg/s 

operating condition of the H6 with 𝐵𝑟/𝐵𝑟
∗ = 1.48. The mean velocity oscillates nonperiodically 

and within a smaller range than it does at the lower field conditions. 

 The stark change in ion dynamics clearly indicates that different processes are occurring 

at the different magnetic field settings. More complete spatial maps of time-resolved LIF 
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captured on other Hall thrusters with stabilized oscillations have shown an oscillating electric 

field and ionization front apparently caused by breathing mode oscillations [80], [81]. The H6 

campaign did not include sufficient spatial points to make the same conclusion, but it reasonable 

to speculate that the low-field oscillations of the H6 are similar, given the similarity between the 

single spatial point VDFs reported in the references and the low-field and nominal-field VDFs 

presented here. 

Apparently, breathing oscillations are stabilized with higher field conditions and different 

processes begin to dominate. Sekerak hypothesizes that the stabilization of the breathing mode 

gives rise to the conditions necessary for spoke propagation since spokes appear as the breathing 

mode amplitude decays [9]. The results of this campaign imply that stabilization of the breathing 

mode alone is not a sufficient condition for spoke propagation since coherent spokes were not 

observed in this campaign even with stabilized breathing oscillations. 

7.2.3 Validation of TFLIF 

 Validating the H6 results is important because TFLIF is a new technique never before 

applied to Hall thrusters. The TFLIF system was first validated with a hollow cathode test bed 

using two types of controlled discharge current oscillations: periodic oscillations and a sinusoidal 

oscillation with randomly varying period (the subject of Chapter 6). The validation arguments 

presented here involve a similar series of benchmark tests to confirm that TFLIF results agree 

with other measurements in cases where the agreement is theoretically expected. No benchmark 

or series of benchmarks provides a logically deductive argument that results are always flawless, 

but together they provide strong evidence that the results are credible. 

7.2.3.1 Average LIF profile comparison 

 The first test is to compare the time-averaged ion VDF from TFLIF with the traditional 

time-averaged ion VDF measured with a lock-in amplifier. An example of this comparison is 

shown for the high-field case (𝐵𝑟/𝐵𝑟
∗ = 1.48) in Figure 7.15. The average profile from TFLIF 

agrees with the lock-in amplifier profile within the noise of the lock-in amplifier measurement, 

which is roughly apparent because there are many closely spaced points with almost zero signal 

near the edge of the profile. In addition, the TFLIF profile is virtually identical to the triggered 

average LIF profile, with a mean absolute residual (the average of the absolute value of the 
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difference between the two TRLIF measurements) of 0.16% of the peak value. These results are 

good evidence that TFLIF is not introducing systematic error, at least in the average LIF profile. 

 This example is only for the high-field condition, but all other points presented have 

similar results. The worst agreement was found at the low-field condition, shown in  

Figure 7.16. The profiles do qualitatively agree, but it is not clear that the difference is within the 

noise of the lock-in amplifier. The issue stems primarily from laser tuning issues while acquiring 

that point and, to a lesser degree, the poor velocity resolution in the lock-in amplifier profile in 

this case. The laser had problems operating in a single mode at that time, and therefore the LIF 

profiles may not be entirely accurate due to mode completion and power fluctuations. The 

qualitative shape shared by all profiles is likely approximately accurate nonetheless. 

 

Figure 7.15. A comparison showing the time-averaged ion VDF from TFLIF agrees with a 

traditional lock-in amplifier measurement of the time-averaged VDF. This example is for the z = 

0 mm, 𝐵𝑟/𝐵𝑟
∗ = 1.48 data set. 
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Figure 7.16. A comparison of time-averaged LIF profiles for the z = 0 mm, 𝐵𝑟/𝐵𝑟
∗ = 0.52 

dataset. This dataset gave the worst agreement of the points in this paper, but the time-averaged 

ion VDF from TFLIF still generally agrees with a traditional lock-in amplifier measurement of 

the time-averaged VDF. The relatively poorer agreement is likely due to trouble with laser 

tuning while acquiring this point. 

7.2.3.2 Direct Comparison of TFLIF with the Triggered Average Signal 

 Even if the time-averaged profile from TFLIF is accurate, the time-resolved features 

could be distorted, so further benchmarks are necessary. A second test that is useful for periodic 

oscillations is to compare the time-resolved TFLIF signal with the triggered average LIF signal. 

As discussed in Subsection 4.3.4, the two analysis techniques will theoretically converge to the 

same result if the system is linear and the oscillation is periodic. They converge because in that 

case the assumptions of both techniques are satisfied and they converge to the exact TRLIF 

signal. This is a useful consistency check because if the two signals do not converge for periodic 

oscillations (conditions where the triggered average is guaranteed to work by Subsection 4.3.4), 

then the transfer function average has failed. This benchmark was demonstrated with a sinusoidal 

hollow cathode oscillation in Section 6.3, but in general is not possible with all unperturbed Hall 

thruster operating conditions since oscillations are not always periodic. 
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 The direct comparison benchmark is possible for the low-field setting at the 150-V, 10-

mg/s operating condition since the oscillations are nearly periodic. The comparison, 

demonstrating that the two signals are nearly identical, is shown in Figure 7.17. This 

demonstrates that the two signals from the Hall thruster do approximately converge as expected, 

and therefore the results are consistent with the hypothesis that the transfer function average 

works in this case.  

 The results do not converge for one particular feature. Low amplitude, high frequency 

oscillations appear in the transfer function density plot as thin, teal stripes that are approximately 

parallel with the higher amplitude bursts of LIF signal. These stripes are absent in the triggered 

average. Both signals have approximately the same average signal level at times between the 

main pulses, but the triggered average has a more uniform signal level, while the transfer 

function average oscillates above and below the average level. More testing with a larger dataset 

(to better remove noise) and more analysis parameters is required to determine whether the 

detected oscillation is an artifact of the signal processing or a physical oscillation that is 

incoherent with the trigger and therefore not captured by the triggered average. 

 
Figure 7.17. The TFLIF and triggered average signals are nearly identical at the low-field setting, 

as expected if the assumptions of both averaging techniques are satisfied.  
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 The triggered average does not converge to the exact TRLIF signal in the case of 

nonperiodic oscillations. It typically exhibits an unphysical decay in the oscillation amplitude as 

the many time-series in the average are in phase at t = 0 but drift further out of phase from each 

other as time goes on. The oscillation is so nonperiodic for the high-field setting 𝐵𝑟/𝐵𝑟
∗ = 1.48 

data set that the triggered average barely detects any oscillation, as shown in Figure 7.18, and 

there are clear systematic differences with the TFLIF signal, as shown by the patches of blue and 

teal in the residual. Comparing the TFLIF signal with the triggered average signal does not 

provide a useful benchmark since there is no expectation of a relationship between the two 

signals. Hence there is a need for other benchmarks, especially ones that work with nonperiodic 

signals. The following two subsubsections deal with benchmarks that have a more general 

applicability. 

 
Figure 7.18. A direct comparison between the TFLIF signal and the triggered average LIF signal 

for the z =  0 mm, 𝐵𝑟/𝐵𝑟
∗ = 1.48 dataset shows significant systematic differences. The triggered 

average shows a chaotic oscillation in the mean velocity but the triggered average fails to detect 

nonperiodic oscillations, hence another benchmark is required for nonperiodic oscillations. 
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7.2.3.3 General-Purpose Benchmark 

 An idealized analysis in Subsection 4.3.5 shows that the transfer function's characteristic 

LIF output signal theoretically converges to the triggered average LIF signal if the triggered 

average discharge current is used as the input signal to the transfer function. This fact provides a 

general-purpose benchmark that can be used for all signals, periodic or not. An example of this 

comparison is shown in Figure 7.19, which shows that the average transfer function makes an 

excellent reproduction of the triggered average signal with only random noise and no systematic 

differences in the residual. This helps confirm that the assumptions that the transfer function 

analysis is based on are valid (e.g. that the system is linear, that reasonable analysis parameters 

were used, and that the average transfer function has sufficiently converged to the exact transfer 

function to give accurate results). If those assumptions were invalid, then we would expect some 

artifacts to be present in the transfer function's reproduction of the triggered average signal, 

leading to systematic differences in between it and the triggered average result. 

 

Figure 7.19. An example of the general-purpose benchmark with the z = 0 mm, 𝐵𝑟/𝐵𝑟
∗ = 1.48 

data set. The transfer function faithfully reproduces the triggered average LIF signal when the 

triggered average discharge current is used as input to the transfer function. 
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7.2.3.4 Different Input Signals 

 A final benchmark is to compare the resulting characteristic TFLIF signals generated 

from two different input signals. For each wavelength, an average empirical transfer function has 

been generated using the same 60-s dataset containing the TRLIF signal in the PMT signal and a 

system input of either the discharge current or the simultaneously measured floating probe 

potential. There is not necessarily any one "special" input signal for which the transfer function 

exists; any signal measured from the thruster could potentially have a linear relationship with the 

TRLIF signal, and therefore contain the information necessary to map the input signal to the 

output signal via a transfer function. The transfer function for one input signal will in general be 

different than the transfer function for another input signal, but two simultaneously measured 

input signals will both map to the same output signal if both input signals have a linear 

relationship with the output signal. 

 That is the basis for this benchmark. If the characteristic TFLIF signal from the two input 

signals are indistinguishable, then it is consistent with the idea that both input signals likely have 

a linear relationship with the output fluorescence signal and therefore the signals are an accurate 

measurement. If they fail to recover the same output signal, however, at least one or both of the 

input signals may not actually have a linear relationship with the output signal, but there is not 

necessarily evidence to conclude which one is accurate (if either one). 

 Figure 7.20 compares the TFLIF signal for the low-field setting (𝐵𝑟/𝐵𝑟
∗ = 0.52 ) and 

analysis with a chunk size of about 1 ms with a Tukey window. Both analyses capture the main 

features discussed in Subsubsection 7.2.2.2 and the residual is mostly near zero, verifying that 

both input signals do converge to essentially the same result.  

The TFLIF signal from the discharge current input more distinctly captures the relatively 

high-frequency oscillation shown as a series of light blue stripes that are parallel with the more 

intense bursts of signal. Though they both capture it to some degree, the stripes are more diffuse 

with the floating probe input, which gives rise to the stripes in the residual instead of the usual 

random noise pattern. 

  We can only speculate on possible causes for the discrepancy based on this evidence. The 

linear relationship between input/output may not be perfect for (at least) one of the inputs, 

leading to a distorted signal. The floating probe input seems liklier to be the problem since the 

signal is muddier, but we cannot make conclusions with the available data. Another possibility is 
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simply that the TFLIF signal from the floating probe input may be distorted because the input 

signal is comparatively noisier than the discharge current. The noisier input could lead to a noiser 

average transfer function or directly contribute to distortion of the TFLIF signal from the noise in 

the input signal used to generate the characteristic TFLIF signal. 

 

Figure 7.20. A direct comparison of TFLIF signals from discharge current (top) and floating 

probe voltage (center) input signals for the low-field setting 𝐵𝑟/𝐵𝑟
∗ = 0.52 shows small 

systematic differences in the residual (bottom). 

 Figure 7.21 compares the TFLIF signals of both inputs for the high-field setting with 

(𝐵𝑟/𝐵𝑟
∗ = 1.48 ). Analysis used a chunk size of about 1 ms with a Tukey window. The figure 

shows that both analyses capture the general character of the chaotic oscillation. They also 

capture the same oscillations in mean velocity and relative metastable ion density, especially 

after the first 0.1 ms of the window. This is somewhat apparent in the VDF heat maps, but is 

particularly visible in the plots of mean velocity and relative metastable ion density in Figure 

7.22, calculated from the data of Figure 7.21. The mean velocity is calculated via the first 

moment of the distribution at all time steps. The relative metastable ion density is calculated by 

numerically integrating over the distribution profile using the trapezoid rule. The two output 

signals agree even with two completely different input signals (see Figure 7.23).  
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Figure 7.21. The TFLIF signals from the discharge current (top) and the floating probe voltage 

(center) input signals capture the same general features for the high-field setting 𝐵𝑟/𝐵𝑟
∗ = 1.48. 

The residual (bottom) is almost entirely random noise in the second half of the window, while 

the first half of the window shows differences in the amplitude of the mean velocity oscillation. 

 The oscillations of mean velocity and metastable ion density in Figure 7.22 do not agree 

in about the first 0.1 ms of the plotted window, but they do agree reasonably well otherwise.  

Further investigation is needed to fully characterize how these minor errors arise, but, as with the 

minor differences at the low-field case, we speculate on some possible culprits. The differences 

may indicate small nonlinearities in the system relating one or both of the inputs to the output. In 

particular, the floating probe voltage is a local measurement while the discharge current is the net 

current passing through the thruster globally. It is possible that the probe could retain a linear 

relationship with the output signal necessary to capture azimuthal waves even if the linear 

relationship breaks down for the discharge current input. In fact, one of the reasons that the 

floating probe was captured in this campaign was to have an alternate input signal sensitive to 

azimuthal oscillations in case the linear relationship breaks down for the discharge current input 

with azimuthal spokes. Another possible cause of the discrepancy may be artifacts resulting from 

a suboptimal choice of chunk length, windowing, or other analysis parameters. Another 
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possibility is that the signals are noisy enough that the average transfer functions have not 

sufficiently converged to the exact transfer function in order to give fully accurate output signals.  

The comparison of TFLIF signals with different input signals does generally confirm the 

expected relationship between the two output TFLIF signals. Though there may be questions 

about the accuracy of some particular features, the fact that both input signals generate 

equivalent output signals provides evidence validating the results. 

 

Figure 7.22. The mean velocity (top) and the relative metastable ion density (bottom) of the 

TFLIF signal from the discharge current (blue) and floating probe (green) inputs agree for most 

of the window except the first 0.1 ms. These VDF properties were calculated from the dataset of 

Figure 7.21. 
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Figure 7.23. The input signals used to generate the TFLIF signals in Figure 7.21 are completely 

different, but the TFLIF signals output from their respective transfer functions are very similar. 
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Chapter 8 

 

Discussion and Conclusion 

 

“Every new beginning comes from some other beginning's end.” 

– Lucius Annaeus Seneca3 

 

 Having described the theory of the TFLIF technique (Chapter 4) and its implementation 

(Chapter 5), provided arguments validating results (Chapter 6), and an initial campaign 

demonstrating the technique with a Hall thruster (Chapter 7), we enter the final chapter of this 

dissertation. First, Section 8.1 evaluates the TFLIF technique against the many other techniques 

that have been applied to TRLIF experiments on Hall thrusters in the past few years. Each 

technique has a unique set of advantages and disadvantages that may make it attractive for a 

certain niche of applications. The benchmarks used to help validate TFLIF signal are listed and 

the conclusions of validation tests are discussed in Section 8.2. The key conclusions regarding 

Hall thruster physics that can be made from the results of this dissertation are discussed in 

Section 8.3. Section 8.4 lists several possible branches of future research that are almost 

immediately actionable and likely to give fruitful results. Finally, Section 8.5 briefly summarizes 

how this dissertation addressed the problem and aim that were stated in the introduction. 

8.1 Comparison of Features and Specifications of Time-Resolved LIF Techniques 

The TRLIF techniques discussed in Section 3.3 all share a common limitation to periodic 

or at least quasiperiodic oscillations, at most allowing for some variation in the period of 

oscillations but implicitly assuming a constant amplitude and waveform shape. This common 

limitation was used to argue in that background section for the need for a TRLIF technique 

capable of measuring the TRLIF signal for a more general class of oscillations. Developing and 

demonstrating such a new technique was the aim of this dissertation. 

                                                 
3 Commonly attributed to Seneca. Also a prominent line in the song “Closing Time” by Semisonic, which is 

suggested as an appropriate accompaniment to this chapter. I found it cathartic while finishing writing, at least. 



 

206 

 

The capability to recover the signal for a more general class of oscillations is only one of 

many important features to consider when evaluating techniques. This dissertation would be 

incomplete without discussing the trade-offs involved in achieving that feature. Many highly 

talented scientists and engineers have worked on developing each one of the techniques, and 

therefore it is no surprise that each technique has a distinct set of advantages and disadvantages 

and no one technique dominates in all of the important features. A summary of the key features 

and specifications of the four main techniques used for TRLIF in Hall thrusters and related EP 

devices is given in Table 8.1. The rationale used to generate the table is discussed in further 

detail in the following subsections, but the basic conclusion about how the techniques generally 

compare is discussed here. 

Table 8.1. Summary of the five most relevant features of four TRLIF techniques used with Hall 

thrusters or similar EP devices. The most attractive features of each category are highlighted in 

green. Tilde denotes an estimate that is likely accurate within a factor of about 3 or better. 

 
Synchronized 

Photon Counting 
Sample-and-Hold Heterodyne TFLIF 

Acquisition Time 

Per Wavelength 
~5 m ~10 s ~1 s 1 m 

Signal Bandwidth 

(kHz) 
~1000 ~100 ~24+  65+ 

Post-Processing minimal minimal minimal extensive 

Monetary Cost ~$10,000 ~$10,000 ~$1,000 ~$10,000 

Assumption of 

the Averaging 

Scheme 

Periodic 

Oscillations 

Quasiperiodic 

Oscillations 

Periodic 

Oscillations 

Linear map from 

input signal to 

output signal 

 

It could be argued that each technique is best suited for a particular niche of applications. 

The high bandwidth makes synchronized photon counting the best choice for high frequency, 

periodic oscillations. With a high resolution in velocity space implied by the short acquisition 

time, the sample-and-hold technique may be best to observe finer details of the LIF profile 

undergoing quasiperiodic oscillations with minor drift or variation. The heterodyne technique 

offers a similarly high resolution in velocity space and can be performed at low cost, but is likely 

less tolerant of variation in the oscillations. The TFLIF technique has relatively mid-range 



 

207 

 

specifications in every category and could be reasonable choice for general-purpose use, but it is 

only extremely attractive for use with nonperiodic oscillations. 

8.1.1 Acquisition Time per Laser Wavelength 

The acquisition time per laser wavelength that is required for a measurement varies by 

about a factor of 100 depending on the TRLIF technique. Note that acquisition times are not 

quite directly comparable since differences in the plasma source and optics may influence the 

necessary acquisition time. Nonetheless, the wide range in the differences in acquisition time is 

likely due largely to the measurement techniques themselves.  

Synchronized photon counting is by far the slowest due to the small time bins over which 

averaging is performed, the lack of analog signal processing to reject part of the noise spectral 

density before a main averaging technique, and the requirement of two triggers per complete 

averaging cycle (see Appendix B). The sample-and-hold and heterodyne techniques are capable 

of fast signal recovery in nearly the same time as a time averaged experiment. Both schemes use 

commercial lock-in amplifiers to recover the signal similarly to a traditional time-averaged 

experiment. Unlike a traditional LIF experiment, they use multiple lock-in amplifiers 

simultaneously to recover the signal from different time gates (for the sample-and-hold 

technique) or to recover the heterodyne signal corresponding to Fourier series components (for 

the heterodyne technique). The sample-and-hold technique is somewhat slower than the 

heterodyne technique because multiple laser scans are necessary to capture all of the time gates, 

though adding many more lock-in amplifiers to the system could eliminate that need in principle.  

The TFLIF system has midrange performance between the two extremes. Achieving a 

reasonable SNR requires an acquisition time of about 1 minute despite the benefits from signal 

conditioning of filtering and phase-sensitive detection, possibly due to a propagation of 

uncertainty in calculating transfer function estimators. 

The acquisition time per laser wavelength directly influences the number of laser 

wavelengths that are practical to acquire, and therefore the resolution in velocity space of the 

resulting LIF profile. Hence, synchronized photon counting is typically done with about ten 

wavelengths and TFLIF with twenty. The sample-and-hold and heterodyne profiles typically 

have 100 or more points in velocity. 
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8.1.2 Signal Bandwidth 

The bandwidths also can only be compared approximately due to the major differences in 

how the data are collected and analyzed. The raw data of TFLIF are digitized at a sampling 

frequency of 30 MHz but TFLIF has a much lower effective signal bandwidth due to the low-

pass filtering from phase-sensitive detection. The highest signal bandwidth possible for the 

experiments in this dissertation was estimated to be about 65 kHz in Subsubsection 4.3.2.4 using 

the requirement that all frequencies within the signal bandwidth be subject to a gain distortion of 

5% or less. Bear in mind that this was estimated for a 2-MHz modulation frequency, which was 

the optimal modulation frequency with the H6 campaign. That campaign had a degraded SNR at 

least partially attributable to an inadvertent mismatch of the numerical aperture of the collection 

optical fiber and feedthrough. An experiment correcting this and (possibly) other problems with 

SNR may improve SNR significantly, allow a higher modulation frequency, and therefore 

ultimately a higher bandwidth. 

Synchronized photon counting averages photon counts over bins of size 100 ns (as 

implemented). The distortion of a waveform is not well defined under these circumstances and 

will vary depending on the particular features of the recovered waveform, but it is reasonable to 

require at least 10 points per period with each point averaging over at most 1/10 of the period; 

hence we estimate a bandwidth of 1 MHz. Similarly, the sample-and-hold technique averages 

over a gate width of 1 μs, leading to a 100 kHz bandwidth. The heterodyne technique is peculiar 

in that it does not directly sample in the time domain at all but recovers Fourier series 

components with the lock-in amplifiers. The most recent publication [11] was done with a 12-

kHz oscillation with Fourier series components recoverable up to second order, or 24 kHz. The 

bandwidth of that particular measurement was then 24 kHz, but that is not necessarily the limit 

of the system, which could presumably also recover the second order components of much faster 

oscillations. 

 With three different methods used to estimate the bandwidths of the four techniques, 

there is considerable room for debate for the values of bandwidth and how they compare. In any 

case, the synchronized photon counting technique is the clear leader in terms of signal bandwidth 

or time resolution.  
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8.1.3 Post-Processing 

 One major difference between TFLIF and the other techniques that should be reiterated 

here is the need for extensive post-processing since raw data from the photomultiplier are 

digitized and saved. This implies the need for a large capacity RAID and powerful computer to 

perform hours of calculations for a signal time-resolved VDF profile measurement (see the 

considerations of Chapter 5). The other techniques record only the resulting TRLIF signal after 

the instruments perform the signal recovery. On the other hand, the burden of signal recovery 

done in post-processing enables the raw data to be analyzed with different parameters (e.g. 

Subsection 5.4.4) or different averaging techniques (e.g. the transfer function average versus the 

triggered average). The extra flexibility can be useful to set optimal analysis parameters and can 

help validate the resulting TFLIF signal. The need for post-processing, then, should be 

considered to be a trade-off rather than strictly an advantage or disadvantage. 

8.1.4 Monetary Cost 

 The exact monetary cost of implementing the various systems will vary widely depending 

on what equipment is already available in the laboratory and the price of the particular 

instruments purchased. A general and detailed estimate of the costs to implement each technique 

is therefore not possible. All of the techniques except the heterodyne technique, however, require 

specialized equipment not normally available in a laboratory equipped for time-averaged LIF 

that could easily total to tens of thousands of dollars. The heterodyne technique is the most 

inexpensive and possibly the easiest to implement because it requires no special equipment 

outside of the circuit to drive periodic oscillations in the thruster. 

8.2 The Development of TFLIF 

The Transfer Function Laser-Induced Fluorescence (TFLIF) system was developed and 

tested under a variety of conditions: a hollow cathode with periodic and random discharge 

current oscillations as well as an initial campaign with the H6 Hall thruster. A series of 

benchmarks was proposed and demonstrated to help validate the signal. The benchmarks involve 

comparing the TFLIF signal with another signal under circumstances where the two signals are 

theoretically expected to converge to the same result. These cases include: 

(1) Comparing the time-averaged TFLIF profile with the traditional time-averaged LIF 

profile from a lock-in amplifier 
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(2) For periodic signals, comparing the time-resolved TFLIF and TALIF profiles directly 

(3) For non-periodic signals, the “general-purpose” benchmark: comparing the TALIF 

profile with the TFLIF profile associated with the triggered average input signal 

(4) Comparing the two TFLIF profiles associated with two different input signals 

We can confidently conclude that the system worked very well under the conditions of 

the periodic cathode oscillation and the quasiperiodic Hall thruster operating modes with low and 

nominal B-field settings. The benchmarks (1) and (2) demonstrated little to no systematic error 

(see Section 6.3 and Subsection 7.2.3). In addition to the benchmarks, the results follow several 

trends that can be explained physically. One trend is that the LIF signal tends to follow discharge 

current and frequency. Secondly, the phase of the TFLIF signal at different laser wavelengths are 

related in a way that makes sense physically when viewed together in a density plot or 

animation. For example, the Hall thruster at low B-field shows an ion VDF that oscillates 

between high and low mean velocities. Another example is the relationship between the two 

points upstream and downstream of the exit plane where the VDF spread is always about the 

same or greater than predicted by kinematic compression. 

 The results regarding the nonperiodic conditions were generally positive as well, but, 

until more data is collected, the conclusion must be more cautiously optimistic than for the 

periodic oscillations. The hollow cathode test with random oscillations showed excellent 

agreement with the applicable benchmarks. It also showed physically expected trends such as 

following the changing period of the discharge current and the amplitude varying with the period 

due to operating near the -3 dB point of the discharge current amplifier. For the nonperiodic Hall 

thruster condition, the benchmarks were generally satisfied except for some minor problems with 

benchmark (4) listed above. There were some small but noticeable patches of systematic 

differences between the TFLIF characteristic signals from discharge current and floating probe 

inputs. There were also small differences between their calculated mean velocities, particularly at 

the edge of the window. The discrepancies could be caused by a breakdown of the linear map 

from one (or both) of the input signals to the TRLIF signal. It seems more likely, however, that 

the discrepancies were caused by some artifact of the analysis that could be ameliorated with a 

higher SNR in the raw data, more averaging, or optimizing analysis parameters. More work is 

necessary to make a further conclusion. 
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8.3 Hall Thruster Physics 

The most important result regarding Hall thruster physics is the confirmation that broad 

and bimodal VDFs, such as observed by Huang [45], can be caused by a relatively narrow 

instantaneous ion VDF that oscillates between high and low mean velocities. This implies that 

the thruster operating mode with high-amplitude discharge current oscillations at low magnetic 

field settings is likely associated with an axial oscillation of the location of the acceleration zone. 

In contrast, the mode with low-amplitude discharge current oscillations at high magnetic field is 

associated with a stabilization of the oscillation of the acceleration zone.  

For now, these conclusions are well founded only for the single operating condition tested 

with a discharge potential of 150 V and an anode flow rate of 10 mg/s. Sekerak and Brown 

described two main thruster modes at a wide variety of operating conditions of the H6 (see 

Subsubsection 2.6.1.2). Given their results, it is reasonable to expect a similar ion VDF at the 

other operating conditions where these modes are observed, but a more comprehensive 

conclusion must wait for more results at other operating conditions. The ion VDF and its 

transition as a function of magnetic field may be qualitatively different at the nominal operating 

conditions, especially considering that the mode transition observed in this study was different 

from those described by Brown and Sekerak. In this study, the mean discharge current was 

relatively independent of magnetic field and spokes were absent. At other operating conditions, 

Brown and Sekerak found that high-amplitude oscillations were associated with a significantly 

higher mean discharge current and spokes were always present in the mode with low-amplitude 

oscillations of the discharge current. 

The finding that the VDF spread at the point 15 mm downstream of the exit plane is about 

the same as predicted by kinematic compression at some times and a larger by as much as factor 

of about 3 at other times is a relatively minor but interesting result. It is impossible to make 

conclusions with the sparse data available, but we can speculate on the origin of this effect. It 

could be related to an oscillation in the ionization zone. The width at the downstream point was 

predicted based on the width at a point upstream and assuming kinematic compression is the 

only effect influencing the VDF between those points. If the location of ionization zone were 

oscillating such that ionization sometimes occurs between the two points and at other times 

ionization takes place completely upstream of z = - 4 mm, that effect could explain the result. 



 

212 

 

The fact that the instantaneous VDF width stays approximately constant while the mean 

velocity oscillates violently supports this hypothesis. The spread of the VDF is largely set by the 

overlap of the ionization and acceleration zones; hence if the acceleration zone oscillates and 

spread remains constant, then the ionization zone should oscillate to keep about constant overlap 

with the acceleration zone. The results and speculation are also supported by more complete 

time-resolved LIF measurements on other Hall thrusters [79], [81]. 

8.4 Future Research 

The discussions above and the dissertation at large suggest a number of possible avenues 

for research in the immediate future: 

(1) Completely explain and ameliorate the severely degraded signal compared with previous 

LIF measurements with the H6. Since the initial TFLIF campaign with the H6, it was 

discovered that the collection fiber feedthrough had a numerical aperture incorrectly 

matched with the fibers, effectively cutting off a significant portion of collected light. It is 

not yet clear whether that error alone fully accounts for the low SNR observed. 

(2) Repeat the H6 campaign with a magnetic field sweep at the nominal thruster operating 

conditions. These data will be more relevant and comparable to the results of Sekerak and 

others. The existence of more coherent spokes near the nominal operating conditions will 

allow the investigation of ion dynamics as spokes pass over the LIF interrogation volume. 

(3) Repeat the H6 campaign at the 150-V, 10 mg/s operating conditions with a more dense 

collection of points in axial position. This could enable the calculation of the electric field 

and ionization rate using a method such as developed by Pérez-Luna [104] or Spektor 

[105]. The time-resolved measurements of the acceleration and ionization zones may help 

answer the questions raised in Section 8.3 regarding possible motion of the acceleration 

and ionization zones. Furthermore, measurements of the VDF at many spatial locations at 

the high-field operating condition with a higher SNR may help to determine more clearly 

whether the random, small-amplitude oscillations in the mean velocity are physical or 

possibly the result of some artifact or noise. 

(4) Even more information can be gained with the combination of the TFLIF and the high-

speed dual Langmuir probe (HDLP) systems. Previous measurements of the HDLP system 

with other Hall thrusters have indicated oscillations in both electron density and 

temperature [7], [36], with electron density in particular varying with a large enough 
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amplitude that Lobbia wrote of “discrete toroidal plasma emission” [36]. HDLP 

measurements together with TFLIF may be able to determine whether a severe drop in 

electron density and/or temperature explains the periodic loss of TFLIF signal observed at 

the low magnetic field operating condition of the H6. Conversely, TFLIF may be able to 

diagnose possible distortion of the time-resolved ion VDF from the presence of the HDLP. 

In general, TFLIF and HDLP signals together for exactly the same conditions will also 

provide further validating evidence for both techniques if they tell a coherent story. 

(5) Time-resolved measurements with more than one axis of velocity information could 

uncover more information about ion dynamics during the two main thruster operating 

modes. Due to the time required for time-resolved measurements, it may be ideal to 

improve the setup so that multiple velocity axes can be recorded simultaneously. Similar to 

a traditional experiment with choppers and lock-in amplifiers, it would require multiple 

AOMs with modulation frequencies distant enough to avoid interference, which could be 

difficult with the short time constants necessary for TFLIF and fairly tight bounds on 

acceptable time constants. 

(6) Improve the efficiency of the analysis code. For example, the code finding the modulation 

phase of the LIF signal currently runs with the analysis each time a data set is analyzed, 

taking about 10 minutes per wavelength per analysis while the total analysis can take about 

1-2 hours. Analysis of the same data set is often performed many times with runs of 

triggered and transfer function averages often performed with different variations of 

analysis parameters. The modulation phase of the LIF signal in each data set of course 

remains the same, so it would be more efficient to find the phase once and save it for each 

subsequent analysis. This is just one improvement that could reduce the total calculation 

time by about 5-15%, or possibly more. This improvement may even enable more 

simultaneously active workers since the phase finding routine generally has a higher CPU 

utilization than the transfer function averaging. There are undoubtedly other ways to 

improve the efficiency of the code that could be uncovered. Code efficiency may not 

appear to be a critical branch of the research, but computational time is a main limitation of 

the TFLIF system since the analysis of a complete VDF of about 20 wavelengths can take 

more than 12 hours. Perhaps developing a more efficient version of the code could be a 
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good project for a master’s degree student in computer science who is interested in 

scientific computing. 

8.5 Conclusion 

The problem that this dissertation addresses is the need to measure the TRLIF signal in 

nonperiodic modes of Hall thrusters without perturbing the operating conditions. The aim of this 

dissertation stated in the introduction is to investigate how the problem may be solved with a 

new measurement technique. To that end, a new technique has been developed and analyzed 

theoretically and experimentally tested in a number of different conditions. It has proven to be 

accurate in periodic and quasiperiodic cases, and there is also strong evidence that it is capable of 

recovering random and chaotic oscillations. Though some questions remain about the results 

obtained with the H6, many of them will be addressed in future work. The technique has proven 

to be a reliable and powerful method capable of competing with the other TRLIF techniques. In 

particular, TFLIF is the most promising technique that may allow measurements in borderline 

quasi-periodic and completely nonperiodic Hall thruster operating modes. 
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Appendix A 

 

Window Effects 

 

 This appendix summarizes the effects of different windows on the output TFLIF signal 

and remarks on the trends observed. The window commonly used in this dissertation is the 

Tukey window, which is piecewise defined in three regions by: 
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 (A.1) 

where r is a selectable parameter and x is a fraction of the total time series (chunk) used in 

analysis. The Tukey window weighting is flat like the rectangular window in the center region, 

which is a fraction of 1 − 𝑟 of the window. The wings, each taking a fraction of r/2 of the 

window, are cosine functions scaled to connect zero at the boundary with one at the center 

region. Note that r = 0 is equivalent to the rectangular window. Some examples of the Tukey 

window are shown in Figure A.1. 

 

Figure A.1. An illustration of the shape of the Tukey window for a selection of r values and a 

time series length of 1000. 
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 The central purpose of using a window with the discrete Fourier transform is to reduce 

artifacts that arise from a discontinuity at the edges, since the DFT implicitly assumes the input 

time series is one period of a periodically repeating signal. Hence, the weighting of all windows 

approaches zero at the edges and tends toward one near the center in an approximately bell-

shaped curve. More subtly, the window also provides a tradeoff between a number of figures of 

merit such as the -3 dB bandwidth of the main lobe, the equivalent noise bandwidth, scallop loss, 

maximum side lobe level, and side lobe roll off. In practice, the noise floor, dynamic range, and 

ability to resolve closely spaced frequencies at similar or dissimilar amplitudes depends strongly 

on the window used. 

 Note that with windowing the characteristic output of Equation (4.49) becomes:  

  *[ ] [ ] ( [ ] [ ]) [ ]characteristic DF k w k I n w n H k -1F F , (A.2) 

so that the result of the calculation is a windowed characteristic LIF signal output. It is possible 

to divide the window out of the characteristic signal to recover the un-windowed TFLIF output 

signal, but the division also scales noise. This leads to an undesirable situation where SNR 

depends strongly on time and becomes unacceptable near the window edges. The Tukey Window 

is chosen for the purposes of TFLIF because it leaves a large region in the center of the window 

that corresponds to the characteristic output signal alone without weighting by the window 

function. When the Tukey window is used in this dissertation, only data within the w(x) = 1 

region is plotted or used to calculate statistical properties. Notice that the length of time plotted 

in Figure A.2 decreases as r increases and the triggered average decay becomes less pronounced. 

The reason is that each successive plot includes a smaller central region with a later initial time 

where the triggered average decay has further reduced the oscillation amplitude.  Also note that 

the plotted region begins not at the first point where w(x) = 1 but at the first trigger within the 

w(x) = 1 region; hence each plot starts at a maximum in the oscillation. 

 The effect of window settings was tested for four different Tukey windows: r = 0 

(rectangular), 0.1, 0.25, 0.5. The example data presented here come from the cathode experiment 

with random oscillations of Section 6.4. Table A.1 shows that larger r values result in a smaller 

RMS residual between TFLIF and TALIF signals, or equivalently a higher SNR, possibly as a 

result of the lower side lobe levels.  

Figure A.2 shows heat maps of the TFLIF signal together with the TALIF signal and the 

residual between them for all four example r values. In addition to the increase in random noise 
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for the wider windows, the heat maps show that artifacts can also appear with the wider 

windows. High-frequency ringing is clearly visible in a single velocity group for the rectangular 

window at a higher speed than most of the distribution. The ringing is completely non-physical 

and can appear apparently randomly in any velocity group depending on settings such chunk 

length. A different artifact is visible in the r = 0.1 heat maps, with a systematic discrepancy in 

the oscillation amplitude near the edges of the central window region. Both types of systematic 

error are apparently eliminated or at least reduced below the random noise level for the narrower 

windows. 

Table A.1. The RMS residual between TFLIF and TALIF signals decreases as the r parameter of 

the Tukey window increases. 

r RMS residual 

0.5 0.0568 

0.25 0.0575 

0.1 0.0653 

0 (rectangular) 0.0978 

 

 The Tukey window with r = 0.5 was chosen as the standard window used for most of the 

analysis presented in this dissertation due to the superior characteristics for both random and 

systematic error. A rectangular window is sometimes used when viewing the whole chunk or 

time series is important, such as to detect the decay of a triggered average, but doing so increases 

random and systematic error. Using r = 0.25 could also be a reasonable choice when viewing a 

long time series is a priority. It would increase the presentable time series length (the central 

region where w(x) = 1) by 50% while increasing noise only slightly. 
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A. Rectangular window (Tukey window with r = 0.0): 

 

B. Tukey window with r = 0.1: 
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C. Tukey window with r = 0.25: 

  

D. Tukey window with r = 0.5: 

 

Figure A.2. Heat maps of the TFLIF signal (top), TALIF signal (middle), and their residual 

(bottom) for four parameter values of (A) r = 0, (B) r = 0.1, (C) r = 0.25, and (D) r = 0.5. Both 

random and systematic error are smaller for large r values. 
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Appendix B 

 

An Analytical Model of Synchronized Photon Counting 

 

 As the most mature and widely used technique to measure TRLIF signal in Hall thrusters, 

we will compare the signal recovery performance of the TFLIF technique to the synchronized 

photon counting technique. It was developed by Mazouffre et al. and used with a number of 

thrusters such as the PPSX000 [79], PPS100 [80], and PPS100-ML [81], and a 200-W Hall 

thruster with permanent magnets [84]. 

 We can model photon counts in time bins as Poisson random variables. A Poisson 

random variable is a very close approximation because the main requirement for the Poisson 

approximation is that there are a large number of trials that each have a small probability of 

success (cf. any text on probability, e.g. [106]). In this case, for either signal or noise we have a 

large number of ions in the interrogation zone that each have a small chance of emitting a photon 

that is later collected in the given time bin. Using Poisson random variables to model the number 

of photons collected within a time bin is a classic method to derive shot noise [107], and 

detecting particles/photons at low count rate can demonstrate a Poisson distribution 

experimentally [108]. A model based on Poisson random variables will not capture any subtleties 

in the noise caused by variations in the photoelectron amplitude, the action of the discriminator, 

Johnson noise, etc., but it will capture the effect of shot noise and background light, the dominant 

source of noise for LIF experiments in plasmas. 

 We consider both the LIF signal photons and background noise photons counted in each 

bin to be described by a series of Poisson random variables with each element n corresponding to 

the photon count of the nth time bin. The number of counts collected in the nth time bin after the 

qth trigger is a function of Poisson random variables: 

[ ] [ ]   if the laser is on
[ ]

[ ]            if the laser is off,

q q

q
q

F n N n
C n

N n


 


    (B.1) 

where Fq[n] ~ Pois(λf [n]) and Nq[n] ~ Pois(λN [n]) are Poisson random variables describing the 

number of LIF and noise photons collected. λf [n] is the average number of LIF photoelectron 
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pulses and λN[n] is the average number of background noise pulses counted in the nth time bin. 

The only parameter needed to fully specify a Poisson variable distribution is the average. 

 Similar to the triggered averaging technique in Subsection 4.3.4, the main implicit 

assumption is that essentially the same repeatable process occurs after each trigger and that fact 

is used to recover the average TRLIF signal waveform. A simple averaging process would not 

remove the background signal since the noise from background signal does not have zero mean 

(because photon counts are never negative). The strategy to reject noise and recover the time-

correlated waveform is to add (subtract) counts taken while the laser is on (off) in sequential time 

bins after each trigger. The actual experiment used laser modulation at a low frequency (20 Hz) 

so that there are many oscillation cycles when the laser is on and then many other complete 

oscillation cycles when the laser is off. Since Hall thruster oscillations tend to be non-periodic, 

the oscillations were forced to be quasi-periodic by periodically cutting the discharge current at 

2500 Hz for a short time. The time of current cutoff is used as the trigger to synchronize the 

addition/subtraction of photon counts with a repeatable physical process. 

 We model this process with a random variable FQ[n], which is the total number of counts 

in the nth time bin after a total of Q triggers: 

2 2

/2 /2

1 11 1

[ ] [ ] [ ] [ ] [ ] [ ]
Q Q

Q Q Q Q

Q q q q q q
q qq q

F n C n C n F n N n N n
    

        .  (B.2) 

For convenience, we have numbered all of the triggers taken with the laser on as 1 through Q/2 

and those taken with the laser off as Q/2+1 through Q. In terms of the actual experiment, this is 

not chronological ordering since in general the acquisition will be over many modulation cycles. 

There must be at least an approximately equal number of triggers for the laser on and off cases; 

otherwise the background photons would not cancel appropriately. 

 Using the properties of sums of random variables, we see that this scheme results in a 

signal in the nth time bin that is another random variable (whose distribution we need not 

calculate) with mean μ and variance σ2 given below: 

2

2 2
[ ] ( [ ], [ ] [ ])Q Q

Q f f NF n R n n Q n        .   (B.3) 

This leads directly to an RMS SNR estimate of: 

[ ] / 2 [ ]
[ ]

2[ ] / 2 [ ] [ ] 2 [ ]
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 It is interesting to note that this model includes contributions to noise not only from 

background signal but also from shot noise, so the two dominant contributions to noise in the 

photon counting scheme are taken into account. Consider the limiting case of no background 

signal with λN[n] = 0. Then Q is no longer meaningful, but Q/2 is the number of measurements 

capturing signal photons. The signal-to-noise ratio rises as the square root of the number of 

summed measurements, and the SNR for one measurement is the square root of the average 

photon count rate in the bin λf [n], the classic prediction for shot noise. 

 Now, the lambdas represent the average number of photons in the nth time bin, but we 

wish to examine the effect of varying time bin size. Assuming there is little change in the 

average photon collection rate as a function of time on the time scale of a bin, each lambda will 

simply be some average rate per second multiplied by the width of the time bin in seconds: 

[ ] [ ]

[ ] [ ] ,

f f B

N N B

n R n T

n R n T








     (B.5) 

where Rf and RN are the signal and noise photon rates (s-1) and TB is the width of the time bin (s). 

A changing collection rate inside the time bin would imply that some time-resolved behavior is 

being averaged out, which is undesirable, and hence the assumption of constant rates is 

reasonable as long as bins have been set small enough to not average out time dependent 

behavior. Substituting this form into the SNR equation gives: 

[ ]
[ ]

2 [ ] 2 [ ]

f

B

f N

R nQ
SNR n T

R n R n



.    (B.6) 

As a simple consistency check, we compare the prediction of this equation with results reported 

from a test using this technique [81]. Our convention is to define SNR by the time-averaged 

signal at the peak of the velocity distribution divided by RMS noise. Now, the average photon 

rates were reported to be Rf = 104 s-1 and RN = 106 s-1, but the signal photon rate at the peak (3490 

m/s) is significantly higher than the average, which leads to a poor estimate if we use the 

reported value of Rf. A better estimate for the average photon rate at the peak of the distribution 

is Rf  = 2.8×104 s-1, considering that the average number of signal photons collected is about 

1400 over about 5×105 bins of size 100 ns. We then estimate that for the particular experiment 

reported the SNR was about: 

Q
[ ] 20

2
BSNR n T .     (B.7) 
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 SNR was not reported numerically, but Figure 6 in that paper shows several traces of 

photon counts as a function of time for many velocity groups. We estimate the average signal 

and peak-to-peak noise by eye (ignoring the reignition transient). The RMS noise is estimated as 

a factor of 1/6 lower than peak-to-peak since, for a short length of data, we can expect the peak-

to-peak to be about ±3 standard deviations, which yields an estimate of SNR = 7 for the velocity 

group with 3490 m/s. Using the above equation with the estimated SNR and the time bin setting 

of TB = 100 ns from that particular experiment gives Q = 2.5×106, which is apparently an 

overestimate for the number of triggers used in the average, reported to be about one million, but 

is a reasonable estimate given the simple model and the crude estimates of the final SNR and 

average photon rates. The prediction of the model agrees within an order of magnitude of the 

experiment, providing some support that it captures the most salient features. 
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