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ABSTRACT

Emerging Operational Contracts in Competitive Markets

by

Liang Ding

Chair: Roman Kapuscinski

This dissertation consists of three essays, each dealing with an emerging type of

operational contracts. The first essay considers a resource exchange model where

the effects of collaboration and competition are intertwined. Exchanging resources

often improves utilization and is intended to increase profitability of involved firms.

However, it does not guarantee success in competitive settings. More efficient use

of resources might actually leads to increased competition. We explore how resource

exchange contracts impact the firms and consumers. The results indicate that the

resource exchange tends to benefit both firms and the consumers in most situations,

except for the extreme situations where simultaneously competition is strong and the

purchasing cost is either very low or very high.

The second essay focuses on vertical pricing control contracts that manufacturers

use to coordinate online and offline retailers. Resale Price Maintenance (RPM) policy

requires all retailers to sell at the price suggested by manufacturers. Minimum Ad-

vertised Price (MAP) policy is less strict, as it allows retailers to sell at lower prices

than the manufacturer suggested, as long as these lower prices are not advertised.
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This essay studies which of these two policies is more beneficial to each member of

the supply chain. We show that manufacturers prefer MAP policy when the cus-

tomers’ valuations vary significantly and the information search requires significant

effort. The MAP policy is also favorable to retailers and consumers under similar

market conditions.

The third essay concerns the contractual issues when energy service companies

(ESCOs) provide energy efficiency projects to residential clients. While performance

based contracts have been proven successful in public, commercial, and industrial

sectors, ESCOs face challenges in the residential sector. Residential clients often

change consumption behavior after the project, which makes the real energy savings

difficult to measure. Additionally, residential clients are much more risk averse and

vulnerable to uncertain outcomes of projects. We show that piecewise linear contracts

perform reasonably well. To further improve profitability, ESCOs can either reduce

uncertainty of technology involved or develop the ability to verify post-project energy

efficiency. We also make recommendations in monetary incentives and regulations

from policy makers’ perspective.
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CHAPTER I

Introduction

Many companies continuously strive to reexamine their relationships with their

customers, suppliers, and even competitors, in an effort to restructure their offerings

of products and services. As a result, innovative contracts among players in supply

chains are considered, introduced, and tested. Many of these initiatives are guided

by traditional wisdom and are based on intuitive understanding of relevant forces.

However, with increasing interactions among firms and more dynamic and competi-

tive markets, some seemingly intuitive solutions may not work. My research focuses

on a subset of contracts that either emerge or gain popularity in the industry and

helps to extend the traditional business models and push supply chains towards more

profitable or more sustainable approaches.

My dissertation consists of three essays, each dealing with an emerging type of op-

erational contracts. Chapter II considers a resource exchange model when the effects

of collaboration and competition are intertwined. Recently, an increasing number of

firms are engaged or are planning to get engaged in various types of partnerships with

other companies, some of the partners being their competitors. This essay studies

the combined effect of collaboration and competition, where collaboration is through

trade of firms’ resources (predominantly inventory). While trade leads to potentially

higher resource utilization and could increase firms’ profitability, a number of eco-
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nomical and legal concerns may arise. In short term, the potential for selling to

another firm creates an incentive to invest in more resources. However, higher initial

investments may lead to more intense price competition between firms. In the longer

term, the selling firm may also be concerned that the competitor after obtaining ad-

ditional resources will not only increase sales, but also may retain some of the new

customers. Independently, from legal perspective, collaboration between competitors

may violate the antitrust laws. In practice the legality of such contracts is seldom

challenged, but when such questions arise the effect of these agreements on consumer

surplus is examined. We explore whether/when a resource trade contract can help

one or both firms and how it affects consumer surplus. We show that when markets

are deterministic, the firms do not have incentive to trade inventories as they are

able to anticipate the demand. When firms face uncertain markets, the inventory

trade is very likely to help and the effect may be quite significant. In markets that

are independent, firms always benefit from inventory trade agreement. Even when

competition is present, such resource exchange is often a win-win solution. This is,

however, not the case when the firms face dramatically different market sizes or costs

are at the extremes (either very low or very high). In such cases, either one or both

firms, or the consumers may be worse off due to trading.

Chapter III focuses on pricing control contracts that manufacturers use to coor-

dinate online and offline retailers. During last twenty years, many brick-and-mortar

retailers have been facing competition from online retailers and local discounters.

This influences the behavior of customers who are able to experience products in a

brick-and-mortar store but purchase the products online at lower prices. With online

stores effectively free-riding on brick-and-mortar retailers’ demand generation effort,

the sales of demand generators decrease and they have lower incentive to promote

or even carry such products. For manufacturers, however, brick-and-mortar retailers

play a crucial role by showcasing and advertising products to customers, so that the

2



customers are aware of the products. Resale Price Maintenance (RPM) and Mini-

mum Advertised Price (MAP) are two commonly used policies intended to protect

retailers’ margin. Under RPM policy, the manufacturer sets a minimum price for

each product and requires all retailers not to price below it. Under MAP policy,

manufacturers sets a “suggested” retail price to all retailers. While retailers can sell

at lower prices, they are not allowed to advertise a price lower-than-suggested retail

price. In this essay, we build a stylized model to study and compare the performance

of RPM and MAP under various market situations. In particular, we explore which

policy is more beneficial for the manufacturer, retailers and consumers. We find that

MAP policy is favorable to the manufacturer when the search cost (for identifying the

price and availability of the product) is high and consumers are very heterogeneous

in their valuation of the product. Otherwise RPM policy would outperform MAP

policy. Brick-and-mortar retailers and consumers also benefit from MAP. But they

prefer MAP with even higher search cost and larger variance in consumer valuations,

compared to the manufacturer. Online retailers would always prefer MAP policy over

RPM policy.

Chapter IV focuses on energy service companies (ESCOs) and the contracts they

engage in to provide energy efficiency projects to residential clients. Energy efficiency

is one of the most efficient approaches to reduce energy cost and reduce environmen-

tal impact of energy production. Many energy efficiency projects are performed by

ESCOs. A core part of ESCO’s business are performance based contracts, in which

payment terms are determined as a function of energy savings achieved in the un-

derlying projects. Despite of success in public, commercial, and industrial sectors,

ESCOs are involved in fewer projects in the residential sector. There are a few widely

acknowledged challenges that contribute to under-developed business in the residen-

tial sector. The first challenge is that, the energy efficiency project often leads to a

changed consumption behavior after the project is implemented, which makes the real

3



energy savings difficult to measure. The second challenge is that, residential clients

are much more risk averse and less willing to accept uncertain outcomes of projects.

The third one is that, lack of monitoring protocols leads to ESCOs’ moral hazard

problem. This essay studies the contract design problem with particular attention

to the residential sector. Results suggest that in the residential sector, coordinating

contracts in general do not exist. That said, we show that piecewise linear con-

tracts perform reasonably well. To improve profitability, ESCOs can either reduce

uncertainty of technology involved or develop the ability to verify post-project energy

efficiency. Clearly, policy makers also have an interest in promoting energy efficiency

projects. We demonstrate how regulations and monetary incentives help to decrease

inefficiencies in the relationships involving ESCOs and to reduce environmental cost.
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CHAPTER II

Inventory Exchange: Collaboration and

Competition

2.1 Introduction

Collaboration and sharing of resources are widely practiced in single firms with

multiple locations or divisions. However, trading of inventory or of capacity is also

a surprisingly common practice across companies, including firms competing in the

same markets. Similar to a single-firm case, it has potential to improve resource

utilization and to increase profitability of involved parties. However, such practices

raise some hesitations due to either economic or legal reasons. From economical point

of view, despite the direct benefit of pooling resources and using them more efficiently,

trade of resources creates new incentives and externalities in competitive settings. For

example, the firms with the prospect of selling resources to other firms may invest up

front in more of these resources, which may lead to more intense price competition.

Also, providing other firms with additional resources may lead to higher service level

at the competing firms and result in some customers permanently switching to the

competitor in the long run.

In addition to economic dis-incentives, from legal point of view, when two firms

collaborate, there is a concern that their benefit may come at the expense of consumers

5



and may violate the antitrust laws. The common violations of the antitrust laws

(primarily captured in Sherman Act in the United States) are price fixing, bid rigging,

and territorial allocation. These are based on law-and-economics literature, uniformly

accepted as illegal and referred to as the per se rule. Since other situations are not

clearly classified, they all need to be judged on a case-by-case basis.1 The US Justice

Department states that: “If any anticompetitive harm would be outweighed by the

practice’s pro-competitive effects, the practice is not unlawful. Virtually all antitrust

offenses likely to be prosecuted by a United States Attorney’s office will be governed

by the per se rule.”2

In practice, a number of companies experiment with various forms of collaboration

with other firms, one of them being resource exchange.3 For example, in 2013, AT&T

(the second largest provider of wireless services in the US) bought $1.9 billion in

spectrum from Verizon (the largest provider of these services). Although it raised

concerns from both regulators and customers about the concentration of spectrum

among big operators, the trade was approved. Federal Communications Commission

stated “This is a big win for consumers, ..., who will see more competition and more

choices.” On a different scale and in a different timeframe, inventory exchange is

widely practiced among car dealers selling the same brand of cars. If one dealer

runs low or is out of a specific model, he/she routinely purchases cars from other

nearby dealers. We observe some form of inventory or capacity trading in many other

industries including cargo carriers (trade of freight capacity), providers of industrial

gases (trade of industrial gas between distributors), financial institutions (financial

loans), and manufacturers of the spare auto parts (trade of finished goods).

In this paper, we focus on a specific type of collaboration through trade of inven-

1The absence of clear rules outside the listed here per se rule was repeatedly stated by legal
experts whom we interviewed at the University of Michigan. This is also consistent with general
sources, such as https://en.wikipedia.org/wiki/United States antitrust law#Rule of reason.

2http://www.justice.gov/usao/eousa/foia reading room/usam/title7/ant00007.htm
3Resources may include inventory or capacity, or other means of value generation.
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tories, which often may also be re-labeled to trade of capacities. Our objective is to

compare potential benefits with potential costs and understand the trade-offs. For

that purpose, in our model, two firms operate in markets with partially substitutable

products. They independently order their inventories, before uncertain demand is

realized. When demand, or credible signal of demand, becomes known, the firms may

trade (buy or sell) their inventory to each other. Then, they independently price and

sell the products in their markets.

In order to capture the range of potential concerns, we model both short-term

and long-term effects of trade that the firms need to account for. Market dependence,

where price in one market may influence demand in another market due to partially

substitutability of products, plays a direct role in short term.

In longer term, the firms are concerned with another set of externalities of their

current decisions. Even when the firm selling the resources is generously compensated

for them, higher service level at the firm buying the resources may have long-term

externalities, such as inertia of consumers. That is, the customers may be viscous and

will stay with the same firm in the future with high probability, or more customers

using the product or purchasing from a firm helps to disseminate information about

the firm and may translate into future demand (“word of mouth” effect). In our

paper, such externalities are labeled as reputation effect. Reputation is one of the

main drivers of consumers’ inertia and defection to the competing firms, see Reichheld

and Sasser (1990).In this paper, we examine the impact of both market dependence

and reputation concerns on firm’s decision to enter into inventory trade contracts.

In this context, we are exploring the following questions: (1) When should firms

collaborate with other firms by trading inventories? (2) What is the effect of a

potential trade on the initial quantity investment? (3) What is the effect of trading

on consumer surplus? (4) When trading is beneficial for both the firms and consumers

versus when the regulators should be concerned about negative consequences of such

7



collaborations?

To answer the first question, our model considers several key factors, such as degree

of market dependence, significance of reputation effects, relative sizes of markets,

production costs as well as the uncertainties of demand in these markets. We find that

the firms may be strictly worse off by entering into trade agreements when markets

are deterministic, except when costs are very low. On the other hand, if the demand

is uncertain and markets are of similar sizes, the firms will benefit from trading, unless

the purchasing cost is either very low or high. If, however, the firms face significantly

asymmetric markets, the benefits are unlikely: One firm can intentionally increase its

initial investment in inventory, not primarily to sell in its own market, but hoping

to increase profits primarily through the trade with other firms. As a result of such

speculative purchase, either one or both firms may be worse off due to trading. High

market dependence or significant reputation tend to decrease the benefits of trading.

We answer the second question by comparing the order quantity in the presence

of potential trade with the order quantity without the possibility of trade. The

initial investment in inventory is driven by two forces: trade allows the firms to

count on availability of the resources from the other firm and, thus, get closer to

centralized firm’s inventory decisions. On the other hand, both market dependence

and reputation concerns drive these investments away from the centralized quantity

investments.

Interestingly, the consumers also prefer firms to trade, except in markets where

purchasing costs are extremely low. Consumers benefit from firms trading resources

in two ways: First, trade allows firms to reallocate units to meet demand and avoid

the situation where one firm has leftovers while the other market still has potential to

sell. Second, the trade option in most cases drives up firms’ initial ordering quantity,

which leads to lower prices and more consumers being served. This logic fails when

the purchasing cost is extremely low. Under such situations, competitive firms would

8



order enough inventory to completely, or nearly completely, cover their own market

even without trade contract and the firms choose to trade inventory in order to

restrain price competition.

Recall that firms benefit from trade contract when purchasing costs are neither

very low nor very high. Thus. from a regulator’s perspective, we find that the trade

contract ends up being a win-win solution when the purchasing cost is in the moderate

range. The cases where both the firms and consumers are better off span quite a wide

range of scenarios.

2.2 Literature Review

Three sub-streams of literature are relevant to our problem and approach: (a) lit-

erature that deals with joint pricing and purchase-quantity decisions, (b) risk pooling

through transshipment and resource-exchange literature, and (c) reputation models.

In our paper, the firms make both purchase quantity and price decisions. A

newsvendor model with price-dependent demand is first studied by Whitin (1955). A

thorough review of literature on inventory and pricing models can be found in Chen

and Simchi-Levi (2012). Most of the work on this topic focuses on making inventory

and price decisions simultaneously in centralized settings under demand uncertainty.

Bernstein and Federgruen (2005) and Zhao and Atkins (2008) are among those who

study inventory and pricing decisions in competitive markets. Van Mieghem and Dada

(1999) present a model analyzing price postponement and discuss how competition,

demand uncertainty, and the timing of decisions influence the results. They assume

that firms are competing in quantities they bring into market, which are then sold

at the market clearance price. Wang and Kapuscinski (2009) extend their model,

allowing firms to set prices directly (in addition to choosing quantities) where market

substitution is price-based. None of these papers, however, considers the option of

resource exchange (trading).
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Risk pooling among retailers/suppliers, especially in decentralized settings, is re-

lated to inventory trade in our study. The basics of risk pooling is due to decreas-

ing coefficient of variability whenever multiple, not perfectly correlated streams of

demand are combined. The recent pooling papers include Bish and Wang (2004),

Chod and Rudi (2005). In our study, two independent retailers exchange invento-

ries and thus it is most relevant to the substream of literature that focus on risk

pooling through transshipment between decentralized retailers. Transshipment liter-

ature often explicitly considers transportation, pricing and coordination issues, see

e.g., Rudi et al. (2001), Granot and SoŠić (2003), Hu et al. (2007), which partly

decreases attractiveness of pooling. Paterson et al. (2011) provide a comprehensive

review of inventory problems with lateral transshipments. Most of these papers con-

sider centralized retailers, or decentralized retailers in non-competitive markets. In

such settings collaboration (trade) is a natural choice, as it improves profitability of

all participants. In this stream of papers, Zhao and Atkins (2009) is closest to our

work. It considers transshipment between competing retailers. The authors find that,

when transshipment price is high and competition is weak, then transshipment ben-

efits all firms, which is consistent with our findings. This literature assumes that the

transshipment prices need to be set up front and typically investigates the existence

of coordinating transfer prices. Our paper does not focus on coordinating contracts.

We consider the effect of collaboration on the firms and on the customers, when the

trading price is determined endogenously (which leads to different behavior), and the

retail price is set in response to demand realization. In this sense, our work com-

plements Zhao and Atkins (2009). Unlike other papers in this stream, we include

both short-term and long-term competitive forces by investigating immediate profits,

and also the effect of current sales on future market shares through reputation effect.

None of the papers, including Zhao and Atkins (2009), finds that the firms may be

worse off due to trading, while we show that strategic interactions may lead to such
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an outcome. Most importantly, we study the effect of trade on consumer welfare,

which has important legal implications for firms and regulators. Chod and Rudi

(2006) consider some elements that are also relevant to our paper. They assume that

the trading price is a result of the negotiation between two decentralized firms. In

their paper, to determine the trading price, both price equilibrium and bargaining

equilibrium are considered. The paper concludes that both price and bargaining equi-

librium can lead to higher expected profits compared to no-trade case. Their results

are, however, limited to independent markets and, also, based on constant-elasticity

demand models. Effectively, there is no price competition and the interaction is only

through the transfer of resources. Chun et al. (2013) consider bargaining equilibrium

in a competitive setting. Their focus is on finding efficient algorithms for various net-

work structures and they assume that the initial capacity is exogenously set rather

than a decision variable. Also, these papers do not consider potential consequences

of trade on firms’ future sales and consumer welfare.

An important feature of our model is that firms’ current decisions influence the

firms’ future market sizes and future revenues, through externalities of current deci-

sions (reputation). This type of externality has been broadly studied in Economics

literature. Kováč and Schmidt (2014) provide a review of this area. Bensaid and

Lesne (1996) and Anari et al. (2010) point out that the current sales have positive

influence on the future demand, and they label this effect as network externality or

historical externality. With such externality, firms intend to price lower in early stages

to gain market share. Similar conclusion is reached in modeling papers. Kováč and

Schmidt (2014) study a market with two firms and constant number of customers.

In both Caminal and Vives (1996) and Kováč and Schmidt (2014), firms compete for

market share through pricing decisions and when considering future market share,

they show that the current pricing decisions tend to be more competitive (lower).

Reputation effects are also considered in operations settings through market-size ad-
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justments. Hall and Porteus (2000) consider a multi-period game, where two firms

make capacity decisions and compete for market share. In their model, market size is

adjusted in response to the current-period sales (stockouts). Liu et al. (2007) extend

their model to a general demand function and infinite horizon, while Olsen and Parker

(2008) allow firms to carry inventory and to backlog customers. Our reputation model

borrows the adjustment structure from this literature. While these papers model and

study future market dynamics, none of them considers collaboration among compet-

ing firms.

In addition to analyzing different research questions, from technical point of view,

this is the first paper, to the best of our knowledge, that incorporates both short-

term trade-offs with long-term externalities (reputation) for retailers who consider

inventory collaboration in competitive settings as well as study consumer welfare

implications of short-term and long-term effects.

2.3 Model

We consider two firms, indexed by i, j = 1, 2 (i ̸= j), operating in two possibly

dependent markets. The market size for firm i is wi = µi + εi, where µi is the mean

and εi is a random shock with zero mean. Both µi and distribution of εi are common

knowledge. Demand di in each market depends on the realized market size wi and

both firms’ prices pi and pj:

di = (wi − αpi + αβ(pj − pi))
+,

where α reflects the sensitivity to price and β represents competition or substitution

level, as defined in McGuire and Staelin (1983).

To simplify the notation, we let a = α + αβ and b = αβ and re-write firm i’s
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demand as:

di = (wi − api + bpj)
+.

We use a and b as the market parameters throughout the whole paper except when

we explicitly evaluate the effects of competition and substitution levels, β.

Firms make three decisions in the following sequence:

Ordering. First, both firms simultaneously make the ordering decisions: Firm i

orders qi units of inventory at unit cost c. The unit cost is identical for both firms.

Trading. After the market uncertainty εi is realized, two firms have an oppor-

tunity to trade their inventories. The trade process is modeled as a Nash-bargaining

equilibrium. Let q̄i be firm i’s inventory level after the trade.

Pricing. Both firms independently decide their selling prices pi’s and collect

revenues from customers. We denote si = min{q̄i, di} as the sales of firm i. The

revenue from the current-period sales is pisi.
4

We allow the current-period decisions to influence the future profits through rep-

utation effects. Specifically, we follow Hall and Porteus (2000) (as well as their exten-

sions) to model the future profit as a function of the current-period demand. Denoting

the future market size by µ̃i, the long-term effect of current demand is reflected as

follows:

µ̃i = µi + γ(di − dj),

where γ ∈ [0, 1) is the strength of the reputation effect (or other externalities). γ = 0

corresponds to the case where the current sales have no long-term effects, γ → 1

4To reflect the reality that firms have flexibility to change price after they have observed market
signal and exchanged inventory, we allow firms to set prices after the trading stage. In such situation,
firms can match demand and supply by either adjusting prices or exchanging inventories. Setting
prices after demand realization is an appropriate model, when for example the selling season is long
enough or when the retailers do not announce the prices in advance. This is preferred by retailers
although not necessarily feasible in some situations. In other situations, prices are announced up-
front and cannot be changed later. Without pricing to influence demand after random market shock,
such situations are very close to traditional transshipment literature and are studied in Zhao and
Atkins (2008, 2009).
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corresponds to a situation where current sales have strong influence in the long term.

The future revenue is approximated as a function of future market size µ̃i. To keep

the model tractable, we assume the future revenue is λµ̃i, where λ can be interpreted

as the customer lifetime value.5

The objective of the model is to evaluate the feasibility and benefits of collabora-

tion, through inventory trading, to the firms and also to study the effect of trading

on consumer surplus. To achieve this, we consider three scenarios. First, we establish

a benchmark for our analysis centralized scenario, where one central controller makes

all decisions. The second scenario is the fully decentralized case, no-trade scenario,

where the competitors do not coordinate their decisions nor collaborate. The third

scenario, trade scenario, is our focus: although the firms make ordering and pricing

decisions independently, they can trade their inventory after the demand is realized

but before the pricing decisions are made.

The three scenarios are formally introduced in the following subsections. We

then analyze these scenarios in Sections 2.4 and 2.5. The centralized, trade, no-

trade scenarios are denoted by C, T,N , respectively. Also let p, t, o represent pricing,

trading, and ordering stages. We define πXx
i as firm i’s revenue at the beginning of

stage x (∈ {p, t, o}) in scenario X (∈ {C, T,N}) and define ΠXx as the total revenue

of firms at the beginning of stage x in scenario X.

2.3.1 Centralized Scenario

We analyze each scenario starting with the last stage, i.e., pricing, and then follow

with trading (if applicable), and finally ordering. In the pricing stage, the inventory

levels are already chosen and random shocks are realized. The centralized revenue in

5This model is supported by empirical studies such as Chevalier and Mayzlin (2006) who empir-
ically study the word-of-mouth effect in online book industry. They conclude that more consumer
reviews, which can be viewed as a proxy for previous sales, lead to higher sales in the future.
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the pricing stage is given by

ΠCp(q̄1, q̄2) = max
p1,p2≥0

2∑
i=1

(pisi + λµ̃i) = max
p1,p2≥0

2∑
i=1

pisi + λ(µ1 + µ2). (2.1)

Consider the trading stage

ΠCt(K) = max
q̄1+q̄2=K

ΠCp(q̄1, q̄2). (2.2)

In the ordering stage, the controller chooses the total initial inventory K. The

revenue function in the ordering stage is, thus,

ΠCo(K) = Eε1,ε2Π
Ct(K) (2.3)

and the central controller solves

max
K

ΠCo(K)− cK.

2.3.2 No-Trade Scenario

In no-trade scenario, firms make decisions competitively. In the pricing stage, for

given inventory and random shocks, each firm chooses its price by solving

max
pi

{pisi + λµ̃i}. (2.4)

Let the equilibrium outcome of the pricing stage be p∗(q1, q2) and let the correspond-

ing equilibrium revenue for firm i be πNp
i (q1, q2). We will establish the existence of

the equilibrium later. Since trading is not allowed in this scenario, firm i’s revenue

in the ordering stage is

πNo
i (q1, q2) = Eε1,ε2π

Np
i (q1, q2) (2.5)
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and each firm solves

max
qi

πNo
i (q1, q2)− cqi.

2.3.3 Trade Scenario

When firms are allowed to trade, the pricing stage is exactly the same as in the

no-trade scenario.

Recall that qi stands for inventory before the trade and q̄i after the trade. Trade

quantity is endogenously determined through Nash bargaining equilibrium, where

the firms choose how to reallocate their inventory and how to allocate the benefits

resulting from reallocation.

Nash bargaining game is one of the most common approaches to study decision

making among independent parties that involve elements of negotiation and collabo-

ration. In Nash bargaining game, two competitors decide the outcome of the game,

given established up-front rules for dividing the benefits. Readers are referred to

Muthoo (1999) for more details and further references. A number of papers in Op-

erations Management literature use Nash bargaining solution to analyze the Nash

bargaining game (Nagarajan and Sošić 2008, Chod and Rudi 2006, Kuo et al. 2011).

In the Nash bargaining solution the benefits above disagreement point are divided

equally among the parties. We adapt this approach. In our context, the disagreement

point for each firm is the revenue the firm would collect if no trade would take place

(for given quantities q1 and q2 owned by the firms). Consequently, Nash bargaining

equilibrium in our setting will maximize the sum of the firms’ revenues, anticipating

the outcome of price competition in the next stage:

ΠTt(K) = max
q̄1+q̄2=K

2∑
i=1

πNp
i (q̄1, q̄2). (2.6)
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Each firm’s revenue function after random shock realization is

πTt
i (q1, q2) =

1

2
ΠTt(q1 + q2) +

1

2
πNp
i (q1, q2)−

1

2
πNp
j (q1, q2). (2.7)

In the ordering stage, firm i’s revenue is

πTo
i (q1, q2) = Eε1,ε2π

Tt
i (q1, q2). (2.8)

Thus, each firm solves

max
qi

πTo
i (q1, q2)− cqi.

A critical element of the analysis is evaluation of trade on consumer surplus, which

is the focus of the next section.

2.3.4 Consumer Surplus

Consumer welfare is one of the most important criteria for regulators to identify

collaboration agreements that violate anti-trust laws. Therefore, in addition to the

firms’ profits, we also evaluate the consumer welfare, in order to identify situations

that might be problematic from antitrust point of view. Singh and Vives (1984)

formulated the total consumer utility in a competitive market as

U(s1, s2) =
1

2(a2 − b2)
(2(aw1 + bw2)s1 + 2(aw2 + bw1)s2 − as21 − as22 − 2bs1s2),

where wi is the market size and si is the sales. While seemingly complicated, this

utility function is consistent with the linear demand function si = wi − api + bpj and

has been routinely used in the literature (Amir and Jin 2001, Lin and Saggi 2002,

Hsu and Wang 2005). That is, when consumers make decisions maximizing their

consumer surplus, U(s1, s2) − p1s1 − p2s2, the resulting demand function is linear.

17



Expressing explicitly sales si as a function of prices pi and pj,we have6

CS = U(s1, s2)−p1s1−p2s2 =
1

2
a(p21+p22)−bp1p2−w1p1−w2p2+

(w1 + w2)
2

4(a− b)
+
(w1 − w2)

2

4(a+ b)
.

(2.9)

2.4 Deterministic Market Sizes

We start our analysis with the deterministic setting, where market sizes are known

up front. The deterministic setting allows us to identify and describe the critical

trade-offs and establish some of the important results, which will be later used and

extended in the stochastic setting. We solve the problem using backward induction

and start with the pricing stage.

2.4.1 Pricing

We first present the pricing-stage outcomes for all three scenarios. The price

equilibrium is the same for the two decentralized scenarios (trade and no-trade) given

the same starting inventory levels at the beginning of the pricing stage, but different

than for the centralized one. The following lemma shows the existence and uniqueness

of the pricing equilibrium in each scenario.

Lemma II.1. With deterministic market sizes (w1, w2) and given after-trade inven-

tory levels (q̄1, q̄2), we have

(1) Centralized pricing: There exists a unique optimal price pair (pC∗
1 , pC∗

2 ).

(2) Decentralized pricing: Assume the firms consider prices such that demand does not

6The definition of Singh and Vives (1984) extends the traditional definition used in independent
markets. For independent markets, b = 0, and the total consumer surplus becomes:

CS =
1

2a
[(w1 − ap1)

2 + (w2 − ap2)
2]

which is the total consumer surplus for the linear demand function wi − api. Notice that this is the
demand when individual consumer willingness to pay is uniformly distributed over [0, wi/a] in each
market.
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exceed the available quantity. There exists a unique equilibrium price pair (pX∗
1 , pX∗

2 ),

where X = N, T .

All of the proofs are in the appendix. Note that the condition in part (2) of the

Lemma II.1 is not very restrictive, given deterministic demand. It assumes that firms

do not choose extremely low prices such that the demand is larger than the available

inventory.

q̄1

q̄2

R1

R2 R3

R4

(a) Centralized pricing

q̄1

q̄2

R1

R2 R3

R4

(b) Decentralized pricing

Figure 2.1: Pricing outcomes as a function of after-trade inventories. R1 is the region
with left-over inventories, R2 with all inventory sold at market clearance
prices, and R3 and R4 are regions where one of the products is sold at
the clearance price and the other firm has leftover products.

The closed-form solutions of equilibrium and optimal prices are provided in Ap-

pendix A. Based on these solutions, Figure 2.1 illustrates pricing policies for cen-

tralized and decentralized scenarios as a function of after-trade inventory levels. In

both cases, there are four regions of after-trade inventory levels (q̄1, q̄2) with different

equilibrium outcomes. In Region 1, both firms end up with leftovers. Consequently,

the prices do not depend on after-trade inventories. In Region 2 all inventory is sold

and the prices are market-clearing ones. In Regions 3 and 4, one of the firms has

leftovers, while the other sells all inventory. The market clearing constraint for one

market effectively determines both prices in this region.
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In the decentralized pricing game the firms price weakly lower (more aggressively)

than in the centralized case. Lower pricing results in higher sales and, consequently,

the area where market clearance takes place (Region 2) is larger in the decentralized

game. The shaded area in Figure 2.1(b) corresponds to region R2 for centralized case.

In the shaded area, the decentralized prices are identical to centralized prices, while

outside of this region, at least one of the decentralized prices is strictly lower.

2.4.2 Trading

Trading inventory takes place in the centralized scenario and in the trade scenario.

We first describe how a central controller reallocates the total inventory, K, to the

firms after random shocks are realized.

Centralized Scenario

Lemma II.2. In centralized scenario, firm 2’s after-trade (allocation) inventory, q̄2,

is as follows

q̄2 =



[w2/2, K − w1/2] if w1 + w2 ≤ 2K

0 if w1 − w2 ≥ 2K

K if w2 − w1 ≥ 2K

2K−w1+w2

4
otherwise

.

Firm 1 obtains the remaining (K − q̄2) units at the end of the trading (allocation)

stage.

The resource allocation is driven by the difference of the margins in two markets.

When market sizes are both large and not extremely different, the inventory is allo-

cated in such a way that the two markets have equal margins (this is the last row

defining q̄2 in Lemma II.2). If one of the firms has a noticeably larger market size,

allocating all inventory to the larger market is beneficial as even a single unit in the

smaller market would not be able to provide as high margin as customers in the larger
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market. But, when both market sizes are relatively small, even after the firms opti-

mally allocate their inventory, there will be leftovers (Region 1). Since the location

of leftover units does not matter, in this case there exist multiple optimal solutions,

resulting in the same profit. This is illustrated in Figure 2.2 (a) for two equal-sized

markets w1 = w2. In Region 2, where total inventory is small, the inventory will be

allocated equally between two firms (as shown by solid line) and all inventory will be

sold.

Since left-over inventory can be freely reallocated between firms, the revenue is

expressed as a function of total inventory and has the following property.

Lemma II.3. ΠCt(K) is nondecreasing and concave in K.

Concavity of profit function simplifies some of the proofs of the subsequent results.

While Lemma II.3 holds in centralized settings, we will see that, for decentralized

trade scenario, profit function is not concave in the total inventory. Moreover, the

indifference to allocation of left-over inventory does not hold anymore.

Trade Scenario

The trade option provides an opportunity for decentralized firms to adjust inven-

tory. The adjustment involves a payment defined by Nash Bargaining Solution, which

works as follows. Whenever there is an opportunity to increase the total profit, the

firms will reallocate the inventory and divide the surplus equally.

The following lemma describes the total revenue (for two firms) when trade is

allowed. The revenue is unimodal, but not concave in the total inventory K. First,

however, define K1 as the sum of quantities at the common point of all four regions

for the decentralized case (Figure 2.2(b)).

Lemma II.4.

(1) ΠTt(K) is continuous and unimodal in K. There exists w1+w2

2
≤ K0 ≤ K1, such

that ΠTt(K) is concave for K ≤ K0, and constant for K > K0.
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q̄1

q̄2

R1

R2 R3

R4

(a) Centralized trading
q̄1

q̄2

R1

R2
R3

R4

(b) Decentralized trading
K0

K0

K1

K1

Figure 2.2: Trading outcomes. Solid line and shaded region indicate: (a) allocation of
inventory in centralized scenario, (b) trading equilibrium for decentralized
trade scenario.

(2) For K ≤ w1+w2

2
, the resulting inventory allocation is the same as in centralized

solution.

The interesting behavior described in Lemma II.4 can be explained using Figure

2.2(b). For this illustration we assume equal market sizes w1 = w2. When the total

inventory is low (q1 + q2 ≤ K0), trade results in market clearance. In this case, the

firms sell equal quantities, which is exactly how a centralized firm would allocate

the inventory, shown as solid line in Region 2. (When market sizes are not equal,

the allocation also coincides with the centralized solution, even though the quantities

are not equal.) Thus, despite the anticipated price competition, trading does not

distort the allocation away from the centralized solution up to inventory level K0.

However, for q1 + q2 > K0, the behavior changes. The firms allocate the inventory in

an asymmetric manner, where one firm provides a moderate amount of inventory in

its market and sells its entire inventory, while the other firm has leftovers, shown as

vertical solid line in region R4. Interestingly, for all inventory levels above K0, the

sales do not change while inventory increases. For inventories q1+ q2 between K0 and

K1, the behavior is similar to the case with leftover inventories, even though without
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trading, there would be no leftovers in Region R2.

If decentralized firms mimicked centralized firms and allocated their units pro-

portionally to the market size, they would compete intensively in price and end up

with fairly small profits. Instead, decentralized firms agree to transfer a portion of

inventory to one market while leaving smaller inventory in the second market. As a

result, the rivalry is less intensive and both firms are better off. This suggests the

possibility the trade option might decrease consumer welfare, which we discuss below.

Consumer Surplus in Trade Scenario

To evaluate the effect of trading on consumer surplus, we need to understand the

effect of ordering quantities (initial inventory), and also the effect of trading given the

same ordering quantities. We start with the latter one and, for now, we fix the total

inventory at K = q1 + q2. The following lemma describes how the surplus changes as

a result of inventory reallocation.

Lemma II.5. Let the total inventory K = q1 + q2 be fixed in the trading stage. The

consumer surplus is (1) In R1, constant in q̄1; (2) In R2, convex in q̄1 and minimized

at q̄1 = K/2; (3) In R3, decreasing in q̄1; and (4) In R4, increasing in q̄1.

Given total inventory K, the consumer surplus as a function of firm 1’s after-

trade quantity is plotted in Figure 2.3(a) for low K and (b) for high K. In case

(a), the potential allocations fall into regions R2, R3, and R4 in Figure 2.2(b). As

long as firms do not have leftovers (region R2), the consumer surplus is convex in the

allocation and reaches its minimum level (within region R2) when two markets have

the same sales (Lemma II.5). This is because, any asymmetric allocation, implies

lower price in the market with higher allocation (for more customers) and this effect

dominates the increase of the price in the market with fewer customers, which results

in a higher consumer surplus. When allocations become very asymmetric, we enter

region R3 or R4. With most of inventory in one market, that firm does not use

market clearance price any further, which leads to a higher price in the small market
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and sometimes also higher price in the large market. Thus, the consumer surplus

decreases as allocations become extremely asymmetric.

For case (b) with high-total-inventory (Figure 2.3(b)), when the allocation is

asymmetric, the allocation falls into region R3 or R4 in Fig.2.2(b). Similar to the

low-inventory case, not attempting to sell out the inventory leads to a higher price,

resulting in a decrease in consumer surplus. However, when the allocation is close

to symmetric, high levels of inventory in both markets result in leftovers in both

markets (region R1), where the prices in both markets and the consumer surplus are

independent of the allocation.
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Figure 2.3: Consumer surplus as a function of allocation of total inventoryK between
two firms. (a) is for low K, while (b) is for high K.

The firms, rather than consumers, choose how to allocate the inventory. While

the firms become better off, the effect of trade on consumer surplus (given initial

inventory) is not obvious. A stylized numerical example in Table 2.1 illustrates various

possible outcomes. In symmetric setting, if firms’ initial inventory is (4, 0), consumer

surplus is maximized. However, firms will trade to equally divide their inventory.

This decreases the consumer surplus. In asymmetric setting, suppose that initial
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inventories are (2, 2). If the firms do not trade, both firms and consumers suffer. If

trade takes place, the allocation becomes (1,3) to match the market sizes. Consumer

surplus is increased, though not to the highest possible level.

Symmetric wi Asymmetric wi

No trade Trade No trade Trade
w1, w2 10,10 10,10 10,14 10,14
q1, q2 4,0 4,0 2,2 2,2
q̄1, q̄2 4,0 2,2 2,2 1,3
p1, p2 6,10 8,8 8,12 9,11
π1, π2 24,0 28,4 16,24 17,25

CS1, CS2 8,0 2,2 2,2 0.5,4.5

Table 2.1: Consumer surplus before and after trade.

2.4.3 Ordering Stage

Theorem II.1 below characterizes the optimal ordering policy for the centralized

scenario. Theorem II.2 characterizes ordering solutions for no-trade and trade sce-

narios, assuming that the firms are symmetric. We discuss the asymmetric case in

Section 2.5.2.

Theorem II.1. In the centralized scenario, there exists a unique optimal inventory

level KC∗. Assuming (without loss of generality) w1 ≥ w2, we have

KC∗ =


w1+w2−2(a−b)c

2
if c ≤ w2

a−b

max
{

aw1+bw2−(a2−b2)c
2a

, 0
}

if c > w2

a−b

.

Note that in symmetric centralized settings, the optimal solution reduces toKC∗ =

max{w − (a− b)c, 0}.

We next consider the decentralized firms, and assume that the firms are symmetric

(w1 = w2 ≡ w). We analyze symmetric equilibria.7

7In our extensive numerical study, we have not observed any asymmetric equilibria for symmetric
firms.
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Theorem II.2. Consider two symmetric firms (w1 = w2 ≡ w).

(1) No-trade scenario: there exists a unique equilibrium qN∗
i :

qN∗
i = min

{
max

{
(a+ b)w + (a2 − b2)(λγ − c)

2a+ b
, 0

}
, w

}
.

(2) Trade scenario: there exist cost thresholds c1 ≤ c2, such that there are two equi-

libria for c ∈ [c1, c2] and, otherwise, the equilibrium is unique. Specifically, we have

(2)(a) (Low equilibrium:) For c ≥ c1, q
T∗
i = max

{
(a+b)w+(a2−b2)(λγ−c)

2a+b
, 0
}

is an equi-

librium.

(2)(b) (High equilibrium:) For c ≤ c2, q
T∗
i = min

{
(a+b)w+2(a2−b2)(λγ−c)

2a
, aw+(a2−b2)λγ

2a−b
, w
}

is an equilibrium.

(2)(c) For c ∈ [c1, c2], both firms obtain (strictly) higher profits in low equilibrium.

Theorem II.2(1) provides the equilibrium order levels of decentralized firms with-

out trade. By comparison of equilibrium quantities with KC∗, it is easy to verify

that the firms in no-trade scenario order more than those in centralized scenario

(qN∗
i ≥ KC∗/2). Due to the competition in both current and future periods, the firms

behave more aggressively, first buying more inventory and, then, selling it at lower

prices. The centralized firms, being aware that low price in one market will hurt the

profit in the other one, price less aggressively (they set higher prices) and order more

conservatively.

In the trade scenario, uniqueness and nature of the equilibrium depend on the

procurement cost of the firms. There are two potential equilibria in this case: low

equilibrium and high equilibrium (the order quantity in low equilibrium is lower than

the one in high equilibrium, therefore the name). Except the interval where c ∈

[c1, c2], the equilibrium is unique. Theorem II.2 indicates that low equilibrium order

quantity is the same as no-trade equilibrium (which itself is larger than the centralized

solution). High equilibrium order quantity is even higher. We can show that the low
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equilibrium Pareto dominates the high equilibrium. Therefore, in the rest of the

paper, we assume the firms always choose low equilibrium for c ∈ [c1, c2].

In deterministic settings the firms can fully predict their future market condition

at the time they order. Thus, one might argue, that instead of relying on exchange

of goods in the trading stage, they should order whatever will be needed later. This

is indeed true when cost is sufficiently high, c > c1 when the firms order the same

quantities as in the no-trade case (and then trade does not take place). However, when

cost is small enough, c < c1, without trade option, firms order what they (correctly)

foresee to sell and there are no leftovers. With trade option, firms order more (high

equilibrium). This is illustrated in Figure 2.4(a) for c < c1.

Ordering more cannot be attributed to the desire to sell the additional units

to competitor. A rational firm knows that the competitor also increases her order

quantity and will not need any extra inventory. Interestingly, the main driver of

purchasing more inventory is increasing firm’s own disagreement revenue and, thus,

its bargaining power. This behavior takes place when inventory is inexpensive and

the cost of leftover is relatively small.

Recall that the disagreement points are based on the no-trade outcome. Clearly,

there are no leftovers in the no-trade equilibrium. Consider now the effect of a

deviation from this equilibrium (which becomes relevant when trade is allowed): If one

firm increases its inventory, this firm’s profit decreases. If the increase in inventory is

sufficiently small, the firm sells all inventory and, therefore, the price must decrease.

However, the other firm, whose inventory is unchanged, is hurt as well. It has to

respond by lowering price. Since the first firm is able to change both quantity and

price while the second firm changes only price, the first firm suffers less from this

deviation. When firms now have the potential to trade, they recognize that ordering

higher inventory, decreases the disagreement point of competitor more than their own

disagreement point. Thus, with low cost of inventory, “over-ordering” exists. This
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mechanism, based on the bargaining equlibrium, reinforces anecdotal stories, where

firms choose actions that are suboptimal and hurting themselves, as long as these

actions hurt even more their competitors.

Profit

When both firms adopt this strategy, their behavior resembles prisoner’s dilemma:

two symmetric firms would purchase extra inventory which is guaranteed to be left

over. Also, despite their intent to increase the bargaining power, the firms over order

by the same amount and end up having equal bargaining power. As the result of over-

ordering the price competition is intensified and the firms effectively waste money on

inventory, which ends up being unsold. Consequently, the existence of trade option

may lead to lower profits for both firms.

Theorem II.3. There exists a threshold c0 such that both firms are worse off in trade

scenario compared to no-trade scenario if and only if c0 < c < c1.

Theorem II.3 is illustrated in Figure 2.4(b). For c < c1 trade takes place. The

firms over-order inventory and later allocate it asymmetrically. The firm with smaller

inventory sells its entire inventory, while the other one has left-overs. When inventory

is left over, we label this allocation as “high-inventory trade.” This helps the firms to

reduce the competition and benefits both of them. In deterministic settings, two firms

trade inventory if and only if the high equilibrium is played. As a result, over-ordering

and high-inventory trade always take place together.8 When there are no left-overs

after trading, we define this situation as “low-inventory trade.” In deterministic case,

low-inventory trade does not take place.

Trading benefits the firms, while over-ordering hurts them. Though over-ordering

takes place for all c < c1, this is not sufficient to make firms worse off. When the cost

8Although over-ordering and high inventory trade take place together in the deterministic case, it
is useful to define over-ordering and high inventory trade separately, since in the stochastic case, they
may influence firms’ profits in the opposite direction And as high inventory trade can take place even
though the firms order the same amount they would order in no-trade scenario (no over-ordering).
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Figure 2.4: Solutions in the deterministic setting. (a) order quantity; (b) profit; (c)
consumer surplus. Parameters: w = 10; a = 1.4; b = 0.4;λ = 14; γ = 0.5.

is very low (c < c0), the extra inventory is inexpensive and the benefit from inventory

coordination through trade dominates the investment in inventory and the firms are

better off. However, when cost is somewhat higher (c0 < c < c1), the over-ordering

becomes slightly more expensive, and then the purchase cost dominates the benefit

from inventory coordination and both firms become worse off.

Consumer Surplus

Recall that if the purchasing cost c ≥ c1, the firms always choose low equilibrium,

where they do not trade, and consequently the consumer surplus is identical in trade

and no-trade scenarios. Therefore, we focus on c < c1 and analyze how over-ordering
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and high-inventory trade influence consumer surplus. With trade option, firms will

order more, which intuitively should increase consumer surplus (over-ordering effect).

On the other hand, when firms trade, they want to reduce the competition in the

pricing stage, which may decrease consumer surplus (high-inventory trade effect).

With both effects, trade may actually lead to either higher or lower consumer surplus

than no-trade scenario.

Theorem II.4. There exists c3 ∈ [0, c1] such that trade scenario has higher consumer

surplus than no-trade scenario if and only if c ∈ (c3, c1).

Though it is possible that trade option increases or decreases both profit and

consumer surplus, in our numerical study, we observe that the total surplus (sum of

the firm profits and consumer surplus) is always lower with trade option compared to

the no-trade case. In deterministic settings, trade option never benefits all parties.

Comparative Statics

As we have noted earlier, as long as there is some competition (either price com-

petition in the current period or competition for future market share), the firms are

more aggressive in the pricing stage and their profits are smaller than those for the

centralized firm. In this section, we study in greater detail how the equilibrium out-

come changes as a function of market substitution β (recall a = α+ αβ, b = αβ) and

reputation effect λ.

Theorem II.5. Assume a symmetric setting.

(1) In centralized scenario: order quantity, profit, and consumer surplus are not in-

fluenced by either β or λ.

(2) In no-trade scenario: order quantity and consumer surplus are non-decreasing

and profit is non-increasing in both β and λ.

(3) In trade scenario: As long as firms stay in high (low) equilibrium, order quantity

and consumer surplus are non-decreasing and profit is non-increasing in both β and
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λ.

As market substitution β, or reputation effect λ, or both increase, decentralized

firms are involved in a fiercer rivalry compared to centralized case. Thus, in both

trade and no-trade scenarios, the firms order more and offer lower prices, which leads

to lower profitability and higher consumer surplus. This, however, holds only if the

firms stay in the same type of equilibrium in trade scenario.

Summary of Deterministic Model

In deterministic markets, trade option may help or hurt firms or consumers and

the critical factor is the cost. If cost is not very low, trade option leaves the firms

with the same profit and consumers with the same surplus, because the firms order

exactly what they will sell and effectively no trading takes place. When cost is very

low, however, both the firms and consumers are influenced by the trade option, due

to a combination of over-ordering and high-inventory trade effects. For extremely

low cost, the firms over-order but due to the high-inventory trade, they can adjust

inventory and prices so that the firms are better off, while the consumers are worse

off. When inventory cost is somewhat higher, the same forces are in effect, but due to

somewhat-higher inventory cost, the firms over-ordering becomes more expensive and

the firms are worse off, while the consumers may be worse or better off. Effectively

trading has bigger (positive) impact when inventory cost is very low, while over

ordering has bigger (negative) effect when inventory cost is higher. Note that these

two effects (over-ordering and trading) exist if and only if the firms compete either

for current sales or future sales (either β or λ is positive).

2.5 Stochastic Market Sizes

Now we consider the case when the firms’ market sizes are uncertain. As the

trading and pricing decisions are made when market sizes are already known, these
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decisions are exactly the same as in the deterministic model. Since the ordering

decisions are made before observing the market sizes, they are our focus.

Before analyzing the general model, we consider the effect of uncertainty in a

special setting, where the two markets are independent, i.e., β = λ = 0. This allows

us to establish a benchmark and isolate the effect of uncertainty on inventory from

the effect of competition. Recall that in deterministic case without competition, the

over-ordering and high-inventory trade would not take place. Therefore, trade and

no-trade scenarios result in the same profits and consumer surplus.

2.5.1 Independent Markets

The existence and uniqueness of the equilibrium in the ordering stage in all three

scenarios are established in Theorem II.6. We continue to state the results for the

symmetric case even though the results in this section continue to hold for asymmetric

settings.

Theorem II.6. Assume β = λ = 0.

(1) Centralized scenario: There exists a unique optimal solution KC∗.

(2) No-trade scenario: There exists a unique optimal solution qN∗
i for firm i.

(3) Trade scenario: There exists a unique equilibrium (qT∗
1 , qT∗

2 ).

Let KX be the total ordering quantity in scenario X (X ∈ {C, T,N}). Below we

describe the relationship among these quantities.

Theorem II.7. Either KC∗ ≥ KT∗ ≥ KN∗ or KC∗ ≤ KT∗ ≤ KN∗ holds.

A typical relationship among order quantities is demonstrated in Figure 2.5(a),

with order quantity for trade option located between centralized and no-trade order

quantities. The underlying dynamics resembles risk pooling in the classical newsven-

dor model: When cost is low, we intuitively have high service level. With no trade,

safety stock of a centralized firm is lower than that of two decentralized firms. With
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Figure 2.5: Solutions in stochastic setting with independent markets. Presented as
percentage of that in centralized scenario. Parameters: w ∼ U [10, 40]; a =
1; b = 0;λ = 0; γ = 0.5.

trade option, independent firms do not reach the efficiency of a centralized firm, but

they have opportunity to “help” each other and, thus the order quantities (and the

corresponding safety stock) decrease. When cost is high, similar logic applies: two

decentralized firms with trade option can bring the safety stock closer to the one of

centralized firm. Though not as effective as centralization, trading leads to better

decisions (closer to the centralized total inventory) when markets are independent.

Profit

Theorem II.8. In independent markets, the firms’ profit with trade option is always

(weakly) higher than without trade option.

The traditional risk pooling includes two related benefits: (1) transferring inven-
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tory across locations, when needed, and (2) more appropriate investment in total

inventory. The same two benefits apply in our model. Even if the orders were forced

to be the same as for firms with no trade option, firms with trade option can trade

their inventory to better match the market size. Additionally, the firms will order

quantities closer to the quantities that a centralized firm would order. In our paper we

study these two effects (ordering a different quantity and trading) separately because,

when markets are competitive, they may have opposite effects on profitability. We

call the first one (ordering a different quantity) as “inventory pooling” and the sec-

ond one (trade of inventory without changing the original order sizes) as “inventory

trade.”

The following example illustrates each of these effects: Consider demand function

qi = wi − pi and market sizes (w1, w2) equal to (12,20) or (20,12), with equal proba-

bilities. The purchasing cost c is 14. In no-trade scenario, the equilibrium quantity

is qN∗
i = 1 with price pNi = 11 in the small market and pNj = 19 in the large market.

The revenue is 11 and 19, respectively. The expected profit for both firms is 1. To see

the effect of low-inventory trade, we keep the initial inventory unchanged at one, but

allow firms to trade. The trade equilibrium is to allocate two units to the large market

and zero units to small market, which results in the expected profit for both firms

equal to 4. In the trade scenario, firms will order slightly more, with qT∗
i = 1.33 due

to risk pooling effect. Their expected profit is even higher at 4.44. In the centralized

scenario, two firms will order three units in total and each firm obtains a profit of 4.5.

Numerically we observe that, when the two markets are independent, profit with

trade option is very close to that in the centralized scenario. In examples we exam-

ined, it is common for the trade option to capture 98% of the efficiency loss due to

decentralization. This is illustrated in Figure 2.5(b).

Summary of Four Mechanisms Effecting Profits and Consumer Surplus

We have idenfied four mechanisms that drive the changes to profits and to con-
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sumer surplus when trade option exists. The first two, strategic over-ordering (to in-

crease bargaining power) and risk pooling influence the size of the initial orders. The

other two take place in the trading phase, low-inventory trading and high-inventory

trading. Obviously, these mechanisms are not completely independent. For example,

due to strategic over-ordering, firms order more and as a result, high-inventory trade

is more likely.

Strategic over-ordering. Having an option to trade, the firms do have an

incentive to order more, solely to gain bargaining power in trading phase, rather than

to increase sales. As described in Section 2.4.3, over-ordering takes place when the

purchasing cost is very low and the markets are competitive (either b > 0 or λ > 0

or both are positive).

Inventory pooling. When cost is low (high), firms with trade option order

less (more) compared to no-trade firms. This behavior takes place when there exists

market uncertainty.

The two mechanisms above influence order quantity. The following two mecha-

nisms, high-inventory trading and low-inventory trading, were described in Section

2.4.3. They take place in the trading phase, after market uncertainties are resolved.

High-inventory trade. Firms trade inventory, but after the trade there is still

left-over inventory.

Low-inventory trade. Firms trade inventory, but after trade there are no left-

over units.

We will use all four mechanisms to explain the firm decisions and consumer surplus

in the rest of the paper.

Consumer Surplus

With no competition, for symmetric firms, consumer surplus increases due to trade

option, but in asymmetric settings it may decrease.

In symmetric settings, the intuitive behavior is as follows: the quantities that
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two decentralized firms order are equal to each other. With trade option, firms do

reallocate inventory in response to market size realizations and any deviation from

the equal distribution of available inventories, that does not lead to leftovers, benefits

consumers (Lemma II.5).

Interestingly, this dynamics (low-inventory trade) may decrease the expected con-

sumer surplus when firms are not symmetric, with one firm having higher expected

sales than the other one. In asymmetric settings, especially when the small firm or-

ders very few units, for many realizations of demand, some inventory is transferred

from the big firm to the small firm, which results in less asymmetric allocation and

leads to lower consumer surplus compared to no-trade option.9

Now, let us take in consideration that the initial order quantities are not the same

in trade scenario and in no-trade scenario. In trade scenario, risk pooling brings the

decentralized inventory closer to the centralized one, but this means that firms with

trade option may order either more or less, compared to no-trade scenario, depending

whether cost is high or low. In independent market case, ordering more always

increases the consumer surplus, while ordering less hurts the consumer surplus. Since

higher inventory benefits the consumers in independent markets, the combined effect

of low-inventory trade and risk pooling, increases the consumer surplus in most cases,

when firms trade inventory.

Interestingly, the consumer surplus in the trade scenario may even be higher than

that in the centralized scenario, see Figure 2.5 (c): when cost is small the firms order

more than in centralized case and are able to reallocate the inventory after market

sizes are observed selling to more consumers at lower prices. Since the firms’ profits

are almost as high as in the centralized case, trading units between decentralized firms

9To illustrate this phenomenon, consider the extreme case where small firm faces very low market
size (say zero) with high probability and non-trivial market size with small probability. Let the cost
be high enough so that the small firm would order zero units, while the large firm has large enough
market size and places a positive order. In this case, the inventory trade takes place only when
the small firm faces positive market realization. If the firms trade, the allocation becomes less
asymmetric and, as discussed above, consumer surplus is lower.
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may, in such cases, be more desirable from consumers’ viewpoint than centralization.

Summary of Stochastic Model - Independent Markets

To summarize, the best candidate for collaboration is when the markets are inde-

pendent and, thus, the competitive pressures due to pricing or future market share do

not exist. The trade allows the firms to adjust their inventories (low-inventory trade)

after uncertainty is realized according to their needs (market sizes), which benefits

the firms. The firms are able, to obtain further benefits by adjusting their initial

order levels through risk pooling. Both firms and consumers are better off with trade

in symmetric markets, but when markets are very asymmetric, consumers may be

worse off while firms are still better off.

2.5.2 Dependent Markets

Market dependence and reputation effects are reflected through b > 0 and λ > 0,

respectively. In the general model with both market dependencies and market uncer-

tainty, it is very challenging to characterize the equilibrium analytically. To make the

analysis more tractable, we assume that the market sizes are independent random

variables and follow the same uniform distribution (wi ∼ [l, u]). We characterize the

equilibria for each of the market dependencies (one at a time) in Theorems II.9 and

II.10.

Theorem II.9. Assume that there exists short-term market dependence but no rep-

utation effect (b > 0, λ = 0).

(1) Centralized scenario: There exists a unique optimal solution KC∗.

(2) No-trade scenario: If a ≥ 1.24b and u ≥ 4l/3, there exists at least one pure strat-

egy equilibrium (qN∗
1 , qN∗

2 ).

(3) Trade scenario: If c ≥ c(a, b, l, u), there exists at least one pure strategy equilib-
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rium (qT∗
1 , qT∗

2 ), where

c(a, b, l, u) =


au−al+bu
2(a2−b2)

, if u ≤ 3l

(7a+5b)u3−(27a+3b)lu2+(45a−21b)l2u−(33a−27b)l3

12(a2−b2)(u−l)2
, if u > 3l

.

The conditions in Theorems II.9 are not very demanding. For example, the con-

dition in Part (2) is easy to interpret. It requires the price sensitivity not to be very

large (b ≤ a/1.24) and existence of some uncertainty (upper bound and lower bound

of market realizations are at least 1
7
of the mean). Our numerical results suggest that

even when the necessary conditions are not satisfied, there always exists at least one

pure strategy equilibrium in both trade and no-trade scenarios.

Now we consider the case with the reputation effect.

Theorem II.10. Assume that there exists reputation effect, but no short-term market

dependence (b = 0, λ > 0).

(1) Centralized scenario: There exists unique optimal ordering quantity KC∗.

(2) No trade scenario: There exists a unique equilibrium (qN∗
1 , qN∗

2 ). Furthermore,

qN∗
i is the dominant strategy for firm i (that is the value of qN∗

i does not depend on

qj).

(3) Trade scenario: There exists at least one symmetric pure strategy equilibrium

(qT∗
1 , qT∗

2 ).

Theorem II.10 only requires symmetry of markets and it continues to hold when

market distributions have general distributions and are possibly correlated.

The general model (b > 0, λ > 0) is analytically intractable. Therefore, the

existence of equilibrium in a joint model (b > 0, λ > 0) and the properties of equilibria

have to be tested numerically. Based on extensive numerical study, in both trade and

no-trade scenarios, the equilibrium always exists (even when the conditions imposed

in Theorems II.9 and II.10 are not satisfied). In order to understand how robust the
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effects identified in the previous sections are, we conduct the comparative statics and

study profit and consumer surplus behavior through an extensive numerical study.

In our study all results assume that two firms are symmetric until we explicitly relax

this assumption at the end of the section.

2.5.3 Dependent Markets - Comparative Statics

We are primarily interested in understanding the effect of trading on firms’ profits

and consumer surplus. We use four mechanisms introduced earlier to explain both

profits and consumer surplus. We first describe the effect of cost and market variabil-

ity. Then, we focus on the role of competition, by looking at the effect of substitution

(market dependence) and of the strength of reputation.

Effect of Cost and Variance

In Observation II.1 and corresponding Figure 2.6(a) we illustrate the change of

profit of the firms as a function of purchasing cost and market uncertainty. The

darker gray area denotes the cases where the profit or the consumer surplus in trade

scenario is higher compared to no-trade scenario.

Observation II.1 (Effect of Cost on Profit). When markets are competitive (β > 0,

λ > 0), both firms benefit from trade option, except:

(a) when the cost is fairly low; or

(b) when the cost is very high (but not so high that the firms sell nothing) and there

is strong reputation effect.

Point (a) of Observation II.1 effectively mimics the logic of the deterministic case,

described in Theorem II.3: when cost is low, the firms are worse off. For the area when

the firms are worse off (light gray area in Figure 2.6), over-ordering is the dominating

effect and high-inventory trade only partially eliminates (decreases) the disadvantage

of over-ordering. However, for super low costs, we have a different outcome: While
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Figure 2.6: Profit(a) and consumer surplus(b) as a function of cost and demand vari-
ance.

over-ordering persists, the cost of over-ordering is not high, and the firms continue to

benefit from trade.

Observation II.2 (Effect of Cost on Consumer Surplus). When markets are com-

petitive (β > 0, λ > 0), consumer surplus increases due to firms having trade option,

except when the purchasing cost is very low.

Observation II.2 is illustrated in Figure 2.6(b). The behavior is driven by forces

described in Sections 2.5.1 and 2.5.2. When cost is very low, the high-inventory trade

effect is strong, which helps firms but drives consumer surplus down. Otherwise, the

low-inventory trade is the dominating effect, which increases consumer surplus, while

also helping firms.

Combining Observations II.1 and II.2, inventory trade contract is a win-win so-

lution for firms and consumers when cost is in the moderate range. Based on our
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extensive numerical analysis, the results described in Observations II.1 and II.2 and

shown in Figure 2.6 are consistent across all parameters we tested.

Observation II.3 (Effect of Variance). When cost is moderate (win-win for the firms

and consumers), the higher the variance, the more firms and consumers benefit from

trade.

This is an intuitive outcome. When cost is moderate, the main impact is from risk

pooling and low-inventory trade. While pooling (adjustment of ordering quantities)

may slightly help, the main driver is frequent low-inventory trade, which benefits both

firms and consumers. High variance makes the low-inventory trade occur more often.

Effect of Competition

Market dependence, β and reputation, λ directly influence ordering quantities

and, consequently, the trading phase. When either β or λ increases, the competition

intensifies and decentralized firms typically order more, as seen in Figure 2.7, and

then lower the prices, which results in lower profits. Consumers benefit from more

intensive competition and consumer surplus increases. These behaviors are consistent

with those in the deterministic scenario.

Only exceptions to the monotonicity of the initial order quantity in β and λ are

similar in nature to those in the deterministic setting, where firms switch from high

equilibrium to low equilibrium. However, instead of a jump, in stochastic case the

order quantity may smoothly decrease over a narrow range.

Below we characterize the effect of β and λ on firms’ profits and consumer surplus.

Observation II.4 (Effect of Competition - β and λ).

(1)(Size of Benefit for Firms and Consumers) When cost is in moderate range (win-

win takes place), the benefit of trade for the firms (firm profits) and consumers (con-

sumer surplus) shrink as β increases.10

10The firms may be worse off when cost is very high. This observation applies to the moderate
range of costs.
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Figure 2.7: Comparative statics in β and λ.

(2)(When Firms Prefer Trading) As β increases or λ increases, the better-off (for

firms) region becomes smaller.

The driving force for Observation II.4(1) is quantity ordered, as illustrated in

Figure 2.8. When β increases, decentralized firms (with or without trade) tend to

order more. Consequently, the benefit of trade is smaller, as firms can usually satisfy

their demands using their own inventory. The consumers benefit from more intense

competition, but as quantity ordered increases, the incremental benefit of trading

decreases.

Part (2) expands on part (1): if the benefit of trading decreases in β, then the

region when trade is beneficial also shrinks. The effect of reputation (λ) is similar.

With higher λ the firms also tend to order more – they compete to gain future profits.

When either of these forces (corresponding to β and λ) increases, the order quantities

increase and high-inventory trade takes place more often, which lowers the consumer

surplus, as firms choose to have leftovers. However, as we describe below, at the same

time the prices the firms charge keep declining.

We also explicitly compare prices for trade and no-trade scenarios below.
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Figure 2.8: Effect of β. Parameters: w ∼ U [10, 40];α = 1; c = 20;λ = 10; γ = 0.5.

Observation II.5 (Price).

(1) In independent markets, the average selling price in trade scenario is always less

than or equal to the average price in no-trade scenario;

(2) In dependent markets, the average selling price in trade scenario is usually higher

(lower) than the average price in no-trade scenario when the cost is low (high).

Recall that the trade option shifts quantity upwards (downwards) when purchasing

cost is high (low). When cost is high, the order level of no-trade firms is low, but

trade firms order slightly more than no-trade firms.

In independent market, since trade firms order more than no-trade firms, their

prices should be even lower than the no-trade firms, reinforcing the decrease in prices.

When cost is low, the inventory level is high but trade firms order slightly fewer units.
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Although lower inventory may push prices to levels that are higher than no-trade

firms’ prices, this effect is secondary and it is dominated by that the trade firms have

fewer leftovers (as explained above) and lower prices.

In dependent markets, trade firms provide lower prices for moderate to high cost

for the same reason as in independent markets. When cost is low, the high-inventory

trade effect matters and makes prices higher.

2.5.4 Asymmetric Markets

Now we relax the symmetry assumption. We focus on the case when two firms can

have different expected market sizes. In asymmetric settings equilibrium is not guar-

anteed. We, therefore, numerically test how prevalent such behavior is. Three key pa-

rameters are b ∈ {0.1, 0.2, 0.4, 0.6, 0.8}, λ ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, c ∈ {0.1, 1, 5}.

Other parameters are fixed at µ1 = 10, µ2 = 2, a = 1, γ = 1, resulting in total of

150 combinations. This case is intended to illustrate a huge asymmetry in market

sizes (five to one). Equilibrium exists in 117 of combinations (78%) in no-trade sce-

nario, and 126 combinations (84%) in trade scenario. However, if market size has

10% standard deviation, the statistics increase to 91% and 92% in no-trade and trade

scenarios. To see the effect of asymmetry, we consider more moderate µ2 = 4. In

such a case, equilibrium is even more likely to exist. With deterministic market sizes,

equilibrium is found in 91% and 93% in no-trade and trade scenarios. With 10%

standard deviation, in 100% and 97% of cases, respectively. Thus, the equilibrium

may not exist, but this tends to happen with all of the following factors taking place

at the same time: two markets are very asymmetric, market uncertainty is very low,

and also both b and λ are large. (If either b = 0 or λ = 0, the equilibrium always

exists.) Therefore, we are able to conduct a numerical study to compare who benefits

from trade in asymmetric settings for large set of relevant parameters.

Observation II.6 (Asymmetric Market Sizes - Effect of β). When β > 0, the large
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firm benefits less (gets hurt more) in absolute terms from the inventory trade than the

small firm does.

Observation II.6 is illustrated in Figure 2.9. The x and y axis are the expected

market sizes of firms 1 and 2. Firm 1 is better off with the trade option in the dark

gray area, while otherwise it is worse off.
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Figure 2.9: Effect of asymmetric market sizes. Parameters: wi ∼ U [3
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µi]; a =

1.2; b = 0.2; c = 30;λ = 10; γ = 1.

The following numerical example explains why this happens. Consider a deter-

ministic case with the following parameters α = 1;β = 1;λ = 0;w1 = 20;w2 =

30; c = 8. Equilibrium in the no-trade scenario is qN1 = 7.33, qN2 = 10.67, πN
1 =

35.85, πN
2 = 75.85, p1 = 14.89, p2 = 17.11. Equilibrium in the trade scenario is

qT1 = 7.75, qT2 = 10.25, πT
1 = 37.32, πT

2 = 74.84. The inventories and prices after

trade are q̄1 = 6.5, q̄2 = 11.5, p1 = 15.17, p2 = 16.83. Clearly, the large market has

higher margin, which implies higher selling price. The small firm, therefore, can sell

inventory to the large firm at a price higher than its purchasing cost and, anticipating

this outcome, the small firm intentionally orders more than it needs. The large firm

45



facing such a situation chooses trade with the smaller firm for the following reason:

The large firm is aware that typically it will buy inventory from the small firm, but if

it refused to trade, both firms would have to lower their prices. The large firm, with

higher volume of sales, would suffer more and actually, the cost of buying (unneces-

sary) inventory may often be lower than the loss of profit due to decreased price. We

observe this behavior for most parameters.11

Observation II.7 (Asymmetric Market Sizes - Effect of λ). When λ > 0 and the

small firm’s order quantity is small, the small firm benefits less (gets hurt more) in

absolute terms from the inventory trade contract than the large firm does.

The above dynamics is driven by small order quantity for the small firm in the

trade scenario. In such a case, the inventory of the small firm is not threatening to the

large firm. The large firm can order more and it benefits due to risk pooling (when

cost is high risk pooling means ordering more). Effectively, the large firm can play a

strong hand. It orders more and, thus, can satisfy more (in expectation) of its own

customers. Moreover, the increased quantity that the large firm orders can be sold

to the small firm (when the market realization of the small firm is high). The small

firm may benefit from trade, when its market realization is high (satisfying its own

demand and decreasing reputation losses), but the benefit is small since the small

firm is charged high unit price for the traded inventory.

When both β and λ are positive, combined effect of the two observations above is

illustrated in Figure 2.9. We see that in extremely asymmetric settings, trade rarely

benefits both large and small firms, and the more symmetric the firms are, the more

often both firms benefit from trade.

Throughout the analysis of asymmetric firms, we have kept here the assumption

that both firms share benefit of collaboration equally, as this is the dominant model

11In some extreme cases, the balance of benefits may change, but it requires cost of purchase c to
be very high, reputation effect λ to be strong, as well as market uncertainty to be very high.
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for Nash bargaining game. However, in addition to market sizes, one may consider

another source of asymmetry that comes from unbalanced bargaining powers, i.e.,

one firm gets a larger portion of the benefit than the other. In such cases, the less-

powered firm has little incentive to engage and, thus, firms are less likely to reach an

agreement to collaborate. In the extreme case, a firm who gets zero benefit will not

participate in any inventory exchange.

Summary of Stochastic Model - Dependent Markets

In the last two subsections, we considered the firms that effectively compete with

each other either to increase the current-period profits or future market share. We

have consistently seen that the cost plays a pivotal role for both the firms and con-

sumers. For intermediate range of costs, trading may benefit both the firms and the

consumers. This is when risk pooling and low-inventory are the two dominant effects.

Intuitively, one would expect that one of these parties (the firms or the consumers)

should be better off. Our results indicate that both are better off. When cost is very

low, the over-ordering may hurt the firms and high-inventory trade may also hurt the

consumers. This indicates low potential for trading in goods with very high margin.

For high costs, the consumers always benefit from trade, but when the reputation

effect is very high, the firms typically are worse off. When market sizes are asym-

metric the benefit for the firms decrease, compared to the symmetric case. We may

see either one or even both firms worse off, suggesting that the trade is more likely

between firms of similar sizes.

Regulators routinely take the consumers’ point of view when deciding about le-

gality of business practices. We see that in the overwhelming majority of situations,

consumer surplus increases. Only at very low costs, the consumer surplus decreases.

Thus, from point of view of competitive forces and reputation effects, this model

would indicate fairly broad endorsement for allowing firms to collaborate through

trade.
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2.6 Conclusion

This paper studies the question whether and when companies should collaborate

with other firms. We focus on a specific type of collaboration through inventory or

capacity trade contracts. The expected benefits of collaboration are intuitive: the

firms should be able to improve resource utilization and are expected to increase

their profits. However, it is also expected that there might be negative externalities,

or potential drawbacks. These may come in both short term and long term. In

short term, if two markets are “dependent,” where the products sold by two firms are

partially substitutable, the firms compete through pricing. The potential for selling

goods to competitor provides an incentive to increase initial orders and eventually

leads to more aggressive pricing. Also, selling inventory to competitor may translate

into a more-permanent shift of consumers from one firm to another, influencing future

market shares. Combination of short-term and long-term dynamics makes it difficult

to assess whether the benefit of inventory collaboration is net positive and if so, when

this is the case. It is also critical whether the net benefit for consumers is positive, as

consumer welfare is at the core of all anti-trust decisions. While the current antitrust

law uses clear principles, current practices indicate that most of the collaborative

practices fall in the area where the verdict is based on the examination of gains and

losses of firms and consumer welfare.

Our paper considers a simple model that includes both short and long term effects.

We show that when markets are deterministic (or very close to being deterministic),

the firms do not have an incentive to get involved in inventory trade (except in the case

of extremely low costs). The demand in such cases is predictable and the firms can

order the needed quantities. If firms open themselves to a partnership that involves

trading, they actually may get worse off, as they create new incentives to build excess

inventories. Agreements in such situations, while unlikely, would lead to increase of

consumer welfare.
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If companies face uncertain markets, the inventory trade contract is more promis-

ing and the effects may be quite significant. In markets which are fairly independent,

companies always benefit (obtain higher profits), when they trade inventory. More-

over, in such situations, the consumer surplus is also higher, except when one market

is larger than the other by a very significant margin. These benefits are driven by

standard inventory pooling and inventory adjustment practices.

When competition is present, firms of similar sizes often benefit from trading

inventory. They are worse off only when the purchasing cost is either very low or

very high. Both very low or very high costs lead to excessive inventories compared

to no-trade case. The trade contract increases consumer surplus in majority of cases,

as long as the purchasing cost is not very low. Therefore, the trade contract ends

up being a win-win solution when the purchasing cost is in the moderate range.

Market uncertainty increases the benefits of trade to both the firms and also to the

consumers. When firms face significantly asymmetric markets, either one or both of

the firms may be worse off due to trading. Consequently, the firms are unlikely to

collaborate in such markets. Our model confirms behavior observed in practice, where

we do not see many firms of dramatically different sizes being engaged in any type

of inventory exchange. It also provides a more precise tool from legal point of view

highlighting and, possibly eliminating the cases where consumer surplus is increased

versus threatened.
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CHAPTER III

Minimum Advertised Price Policy: Economic

Analysis and Implications

3.1 Introduction

As technology advances, it has become unprecedentedly easy for shoppers to col-

lect price information from different retailers. Due to the proliferation of online retail-

ers and discount stores, many brick-and-mortar retailers suffer from eroded margins.

Customers are able to experience the product in one store but make the purchase

from another retailer, which offers lower price but does not provide product demon-

stration or auxiliary services. Brick-and-mortar retailers typically cannot match the

price of low-cost competition, since they incur higher overhead costs due to higher

rent, number of employees who provide in-store assistance, and advertising. As a

result, brick-and-mortar retailers stop promoting or even carrying products which are

involved in such price competition that results in lower profits. For manufacturers,

however, brick-and-mortar retailers are an important channel through which prod-

ucts are showcased and promoted to customers. Low-cost retailers are not capable of

playing this role due to their lack of resources such as space and service personnel.

Therefore, manufacturers would have hard time reaching to a large market without

brick-and-mortar retailers which invest resources into demonstrating and advertising
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their products.

Resale Price Maintenance (RPM) policy is a widely used mechanism in many

industries including patent medicine, electronics and fashion. It can help manufac-

turers control retail prices and thus protect the margin from being eroded. Under

RPM policy, the manufacturer sets a minimum price for the product and requires all

retailers not to price below it. Since the Supreme Court ruled to judge RPM under a

rule-of-reason standard rather than being per se illegal in 2007 (see Gundlach 2010,

for the legal status of RPM), an increasing number of manufacturers have embraced

the RPM policy. Now RPM policy can be found in many product categories from

toys and electronics to fashion and home improvement. For example, Tarr (2014)

indicates Sharp uses RPM policy to price some of its high-end televisions. When the

authors of this article checked the price of the popular 80-inch TV (model number:

80UQ17U), it was retailing for the $3999 (as of Feb 26, 2015) in all reputable retail-

ers, including BestBuy, Sears, Amazon.com, etc. Sales agents at Sears (as well as

Sears.com) even indicated that additional discounts did not apply to that particular

television by the following statement: “Due to high levels of quality, style and per-

formance, the price is set by manufacturer and additional discounts do not apply.”

The standard justification given by the practitioners and the existing literature for

manufacturers’ use of the RPM policy is that by setting the minimum selling price,

brick-and-mortar retailers’ margins are protected and they are no longer threatened

by their low-cost competitors and, thus, can spend more effort on consumer acqui-

sition. Meanwhile, the price restraint also creates a barrier for low-cost retailers to

compete. As consumers expect price to be the same in all retailers (in a perfectly

competitive market), they tend to make purchase at brick-and-mortar retailers where

they can test the product before purchase and enjoy better customer service. There-

fore, RPM policy tends to benefit manufacturers and brick-and-mortar retailers at

the expense of low-cost retailers.
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Recently, another vertical price restraint mechanism, Minimum Advertised Price

(MAP) policy, has gained increased popularity. Under MAP policy, manufacturers

set a “suggested” retail price. Retailers can sell at any price, but they are not allowed

to advertise prices lower than the MAP price. To be precise, retailers cannot list

any price lower than MAP price next to the product on either their catalogue or

website. Instead, they may ask customers to “call for price” or “click for price.”

MAP was originally used as a mechanism to decrease the change of legal action

(MacKay and Smith 2014): Before Supreme Court’s decision in 2007, RPM was

ruled as per se illegal, while MAP was not. Use of MAP provided additional legal

flexibility while achieving similar outcome. The 2007 decision caused a significant

shift, as both RPM and MAP are considered “legal” and, thus, to the major obstacles

to their implementation disappeared.The volume of research papers and business

articles referring to MAP and RPM has increased and most noticeably, several legal

firms promote the use of MAP and RPM by offering advice how to use it. The

authors’ experience is also that we see an overwhelming increase in click/email-for-

price phenomenon, which might be influenced both by its legality and by the fast

growing Internet-based retail. MAP may be implemented in multiple ways. For

example, one Canon lens (EF-S 17-55mm f/2.8 IS USM) is listed at $879 (as of Feb

26, 2015) across all authorized distributors. One retailer states that lower price is

available but cannot be listed due to Canon’s pricing policy. One of the authors filled

out a price request form and emailed this authorized distributor and was quoted

a price of $819 for exactly the same lens. While obstacles to implementing MAP

and RPM effectively disappeared, it seems that the use of MAP has experienced

unparallel growth. E.g., iIt is difficult to find a website with no “click-for-price.” It

may still be argued that MAP is easier to defend or implement, we instead focus

on economic benefits of choosing one versus the other.Managers have argued whether

MAP policy benefits only brick-and-mortar stores at the expense of low-cost retailers,
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or it is beneficial to both. Under MAP those consumers who value their time more

than others would buy in brick-and-mortar retailers rather than putting forth effort

to search for a lower price. Other consumers, who have more time to search, can

experience the product in brick-and-mortar retailer but eventually buy from low-cost

retailers.

The debate between RPM and MAP policies exists not only among managers but

also among legislators, who mostly focus on the impact of price restraining policies

on consumer surplus. Some legislators point out that RPM policy makes brick-and-

mortar retailers more profitable, which then enables them to provide better service

to consumers. But others have argued that MAP policy makes available lower prices

and more options to consumers. So far there is no clear answer to which policy is

more of consumers’ interest.

In this paper, we build a stylized model to study the performance of RPM policy

and MAP policy under various market situations. In our model, we consider one

manufacturer supplying one product to two retailers. The manufacturer first chooses

between RPM policy and MAP policy, and then sets the wholesale price and the

retail price. One of the retailers models brick-and-mortar retailers that are able

to generate demand through advertising, in-store assistance and other supporting

customer services. The other retailer represents low-cost retailers who do not generate

demand but serve consumers who are willing to search for the low price offered by

these retailers. We call the first type the regular retailer or retailer 1. The second

type is referred as the free rider or retailer 2. We also use retailers to refer to both

of them. Under RPM policy, both retailers sell at the same public price suggested by

the manufacturer. Under MAP policy, the regular retailer sells at the price suggested

by the manufacturer, while the free rider offers a lower price which can be found at

a cost by consumers. Consumers are assumed to be heterogeneous in their incomes.

Their valuation of the product and their time value are both associated with their
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income level. They buy from whichever retailer offers a higher nonnegative net utility.

In this context, we ask the following research questions: (1) Which policy, RPM or

MAP, performs better for the manufacturer? (2) Under which policy the retailers

earn higher profit? (3) Under which policy consumers have higher surplus? (4) If any

party (typically the manufacturer) in the supply chain is able to contract the required

search cost leading to the free rider under MAP policy, what would be the optimal

search cost?

We find that there is no dominant policy for the manufacturer. MAP policy

outperforms when the customer’s valuations are very heterogeneous and the search

cost is high. In general, the regular retailer serves high-end customers, while the

free rider serves low-end ones. With high heterogeneity and high search cost, the

manufacturer effectively expands the market and segments it, without losing surplus

from high-end customers. In other situations, under MAP the regular retailer loses

significant number of customers to the free rider and, thus, has little incentive to create

demand. RPM policy is, in such situations, more profitable for the manufacturer. In

terms of the retailers’ preference, not surprisingly, RPM policy is never preferred by

the free rider as the free rider earns zero profit under RPM while MAP policy allows

the free rider to compete. Interestingly, the regular retailer also prefers MAP over

RPM when customers’ valuations span a large range and the search cost is high.

Under MAP policy, the presence of free rider encourages the manufacturer to lower

the wholesale price to increase the market share and the lower wholesale price benefits

the regular retailer. Consumers benefit from MAP policy when the valuations have

either very small or very large variance. When the variance is very large, MAP policy

allows the free rider to serve low end customers, who would not be served otherwise.

When the variance is very low, the manufacturer and regular retailer can take away

most surplus under RPM policy by setting retail price close to every customer’s

willingness to pay. Under MAP policy, however, the customers buying from the free

54



rider continue to enjoy a significant surplus. Finally, we find that the manufacturer,

retailers even consumers prefer strictly positive search cost which enables the market

segmentation.

3.2 Literature Review

This work is closely related to the research on vertical restraints. Among var-

ious types of vertical restraints, the most popular ones are franchise fees, quantity

forcing, closed territory distribution, and price restraints. Highly cited (Mathewson

and Winter 1984) describes the landscape of vertical restraints. More recent paper

(Rey and Verge 2008) approaches the same topic from practical (legal) point of view

and identifies the same types of restraints.Franchise fees are a payment of a fixed

fee on top of any variable purchase cost. Quantity forcing is a provision in which-

manufacturer mandates a minimum/maximum purchase quantity. Closed territory

distribution specifies a geographical area that each retailer is allowed to serve. Many

of the above mechanisms may achieve channel coordination in their settings, but they

attempt to overcome different frictions. Franchise fees are eliminating (or in practice

decreasing the effect of) double marginalization. Quantity forcing may be used for

multiple reasons, but often they also enforce minimum purchase thus, again, over-

coming the smaller purchase due to higher price (double marginalization). Closed

territory distribution is used mostly to protect franchisees or other retailers in order

to guarantee minimum profit for them. Price restraints may be the broadest among

these categories. We focus on price restraints in a market with heterogeneous cus-

tomers and evaluate how use of RPM or MAP may help the manufacturer. Most of the

other papers use Hotelling setting with otherwise homogeneous customers and could

not (at least easily) apply to settings with dramatically different delivery channels.

Therefore, instead of broadly considering all types of vertical restraints, this paper

focuses on and compares the two major mechanisms of price restraints - RPM and
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MAP. Commonly used by manufacturers, RPM has been studied for a few decades.

Telser (1960), Marvel and McCafferty (1985), Mathewson and Winter (1998) and

Klein (2009) are among the papers that qualitatively analyze pro-competitive and

anti-competitive effects of RPM in different historical periods. There is also a vol-

ume of theoretical literature on this topic – an insightful summary can be found in

MacKay and Smith (2014). In this literature, a number of authors emphasize that

RPM is intended to improve non-contractible service by restricting price competition.

Mathewson and Winter (1983, 1984) consider a non-contractible service in the form

of advertising effort, where only customers informed by the advertising effort make

purchases. However, as a result of information spillovers, informed customers may

purchase goods or services from firm other than the one investing in advertising and

educating consumers. Mathewson and Winter (1983) studies RPM and models con-

sumers’ heterogeneity in search cost, which allows discount retailers to free-ride the

service offered by advertising retailers with a lower but hidden price. They suggest

RPM be used to eliminate the service free-riding and, thus, to improve the manufac-

turer’s profit. In Mathewson and Winter (1984), consumers vary in their distance to

the retailers, but do not search. With both information spillover and imperfect price

competition, retailers tend to price lower than optimal and invest too little in the ser-

vice. The paper shows that RPM, along with a fixed fee (such as a franchising fee),

leads to supply chain coordination and achieves joint profit maximum. Winter (1993)

interprets the service as the in-store assistance that enhances shoppers’ experience.

Consumers are heterogeneous in their locations (in a Hotelling framework) and also

in their valuations of in-store assistance. Similar to Mathewson and Winter (1984),

without any price restraints, retailers price too low compared to the optimal price

for the whole channel and underinvest in service. The paper shows that RPM can

correct this distortion. Other papers such as (Marvel and McCafferty 1984, Bolton

and Bonanno 1988, Perry and Porter 1990) using different models also show that
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when retailers compete in both price and non-price attributes, RPM helps recover

the supply chain from setting sub-optimally low prices.Our RPM model follows the

spirit of economics literature by considering the same forces as most RPM papers. It

may be interpreted as special case of Mathewson and Winter (1984), with one dif-

ference in that the manufacturer does not charge fixed fee to retailers. The fixed fee

actually does not change the conclusions of Mathewson and Winter (1984) and could

be included in our model as well. However, our focus is on comparison with MAP,

which is not modeled in Mathewson and Winter (1984) or in the later papers that

build on Mathewson and Winter (1984). Including the fixed fee would obviously com-

plicate our analysis, without necessarily changing the insights. We confirm through

numerical study that the results, conclusions, and the insights in this study continue

to hold in the more general setting.

The literature on vertical price restraints primarily focuses on RPM rather than

MAP. To our knowledge, there are only two analytical studies, Kali (1998) and

Cetinkaya (2009), that differentiate MAP from RPM. Kali (1998) employs the same

spatial demand model as in Winter (1993) but extends it by including retailers’ adver-

tising decision and manufacturer’s subsidy decision. Cetinkaya (2009), on the other

hand, models multiple retailers whose advertising effort has positive externality for

other retailers. Regardless of the modeling choice, both papers define MAP as a ver-

sion of RPM where the manufacturer subsidizes retailers’ advertising expense. They

show that a combination of RPM and the subsidy can maximize the channel profit,

while RPM individually is insufficient. Both papers assume that any of the retailers

cannot sell at lower-than-MAP price even it is not advertised. In our paper, however,

we model MAP exactly as implemented in practice, i.e., retailers under MAP policy

can price lower than the manufacturer suggested price but cannot advertise the low

price. MacKay and Smith (2014) studies both RPM and MAP (as defined in practice)

across multiple products empirically. It shows that there are observable differences
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between products sold under RPM and MAP policies in terms of prices and quan-

tities sold. Our paper, to our knowledge, is the first attempt to formally model the

free-riding behavior and is the first theoretical work that predicts that existence of

free riders may be beneficial to manufacturers under certain circumstances.

RPM and MAP are used to increase retailers’ sales effort, and often also to re-

strain prices. Sales effort is also studied in contexts different than vertical restraints.

We describe these papers below, even though none of them deals with the central

questions of our paper of manufacturer choosing between RPM and MAP contracts.

Taylor (2002) and Krishnan et al. (2004) consider supply chain coordination with sales

effort. Iyer (1998) and Tsay and Agrawal (2000) focus on the supply chain dynamics

when a manufacturer sells through two competing retailers, both of which have to

decide their effort levels. Sales effort may be in form of dissemination of product

information to attract consumers. Butters (1977) models multiple sellers, who send

their price to random consumers at a cost. Grossman and Shapiro (1984) and Sober-

man (2004) extend this model by introducing spatial differentiation of consumers and

study the impact of market competition. Iyer et al. (2005) studies advertising strat-

egy that allows competing firms to target advertising to different groups of consumers

within a market. All the above papers assume that the consumers are passive (they

do not search for alternative sellers) and focus, instead, on characterizing the equilib-

rium strategy of retailers: advertise or not advertise. In our paper, consumers actively

search for price information incurring a search cost and we focus on manufacturer’s

choice of RPM and MAP.

The search behavior is studied by Burdett and Judd (1983), Stahl (1989), Salop

and Stiglitz (1977). In Burdett and Judd (1983), Stahl (1989) consumers incur a

positive cost for each additional price quote, while in (Salop and Stiglitz 1977) con-

sumers pay a one-time fee to collect price information from all retailers. A detailed

review of both approaches can be found in Baye et al. (2006). These papers focus
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on characterizing price competition without studying the supply chain dynamics and

sales effort.

A few papers study both the sales effort of retailers and consumer search. Janssen

and Non (2009) studies the role of informative advertising when consumers are able to

search. They show that equilibrium advertised price can be higher than unadvertised

price because it spares consumers of some search cost. In Desai et al. (2010) and

Iyer and Kuksov (2012), retailers have to decide not only the advertising strategy but

also service levels. While advertising is solely informational, consumers gain positive

utility from the service and this is unconditional on making any purchase. Their

models allow consumers to enjoy the service at one location but purchase at the

other, with additional search cost incurred. Though our model combines retailers’

sales effort and consumer search as well, the focus is on the manufacturer. The

advertised price and advertising strategy are both determined by the manufacturer

rather than retailers as assumed in papers listed above. While sales effort is well

studied, our paper is the first to characterize MAP with a consumer search model

and we focus on manufacturer’s perspective rather than retailers’.

3.3 Model and Preliminary Results

We study a supply chain composed of a manufacturer and two retailers: a brick-

and-mortar retailer and an online/low cost retailer. The brick-and-mortar retailer

(regular retailer) can generate demand through activities such as advertising, in-store

assistance and other supporting customer services. The free rider do not generate

demand but can serve the consumers informed by the regular retailer. The sequence

of events is as follows.

Stage 1: Manufacturer chooses price restraining policy: RPM policy or MAP

policy.1 Manufacturer also decides the wholesale price w and the suggested retail

1The manufacturer does not generate any demand. If the manufacturer does not impose price
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price p in either policy. It is assumed that the manufacturer is unable to discriminate

retailers through wholesale price due to either legal or economic reasons. This is

a common assumption in literature studying one manufacturer supplying multiple

retailers, as seen in Iyer (1998), Tsay and Agrawal (2000), Desai et al. (2010), Iravani

et al. (2013).

Stage 2: Given the offering from the manufacturer, the regular retailer decides the

size of the demand, denoted by θ, which is generated at a cost, 1
2
λθ2. The cost includes

expenses made to items such as support services, advertisement, and overhead. Other

papers that study sales effort (e.g., Soberman 2004, Cachon and Lariviere 2005, Desai

et al. 2010) also use similar quadratic cost functions to model the cost of sales effort.

We also test other forms of convex cost structure. While analytically intractable, we

confirm that all lessons in this paper continue to hold through numerical study in

Section 3.6.2. Without loss of generality, we normalize λ to one. The free rider and

the manufacturer are not capable of providing such services, and therefore, all the

demand is assumed to be generated by the regular retailer in our model.

Stage 3: The regular retailer sells at the suggested retail price p under either

policy. The free rider sells at the suggested price under RPM policy but sets its own

selling price, p2, under MAP policy.

A consumer’s valuation for the product is given by v + (1− v)x where 0 ≤ v ≤ 1

and x is uniformly distributed, x ∈ [0, 1]. x is the consumer’s value of time which

is positively correlated with the income level of a consumer. Similar to models of

Janssen and Non (2009) and Iravani et al. (2013), both consumer’s product valua-

tion and time value are proportional to her income level. The implicit assumption is

that the consumers’ valuation of product and their value of time are perfectly corre-

lated. The situation with imperfect correlation is considered and evaluated in Section

constraints, since the products are perfect substitutes, retailers undercut each other’s price and at
equilibrium the regular retailer has no incentive to generate demand. As a result, every party in
this game earns zero profit.
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3.6.1. Without loss of generality, we can normalize consumers’ valuation between v

and 1, using v to vary the heterogeneity in consumers’ valuations. As v increases

(decreases), the market becomes more homogenous (heterogeneous) in terms of con-

sumer valuations for the product. If a customer, with time value x, buys from the

regular retailer, she pays price p and earns a surplus of v + (1 − v)x − p. If this

customer decides to buy from the free rider under MAP policy, she has to spend α

units of time searching for the hidden price p2. The search cost is αx, resulting in net

consumer surplus v + (1− v)x− p2 − αx. The consumer buys from the retailer that

offers higher non-negative surplus. If both surpluses are negative, she does not buy.

With this consumer specification, the demand for each retailer can be derived.

Given the regular retailer’s price p and the free rider’s price p2, let di(p, p2) denote

the percentage market share. Since the total number of consumers in the market is

θ, the number of customers served by retailer i is θdi(p, p2). The explicit expressions

for di(p, p2) is presented in Table 3.1. In the rest of the paper, we simply use di and

drop the arguments (p, p2) unless there is any ambiguity.

Condition d1 d2

α+ v < 1, p ≥ v + α

p2 ≥ p− p−v
1−v

α 1−p
1−v

0

p− α ≤ p2 < p− p−v
1−v

α 1− p−p2
α

p−p2
α

− p2−v
1−α−v

v ≤ p2 < p− α 0 1− p2−v
1−α−v

p2 < v 0 1

α+ v < 1, v ≤ p < v + α

p2 ≥ p− p−v
1−v

α 1−p
1−v

0

v ≤ p2 < p− p−v
1−v

α 1− p−p2
α

p−p2
α

− p2−v
1−α−v

p− α ≤ p2 < v 1− p−p2
α

p−p2
α

p2 < p− α 0 1

α+ v ≥ 1, v ≤ p

p2 ≥ v 1−p
1−v

0

p− p−v
1−v

α ≤ p2 < v 1−p
1−v

v−p2
α+v−1

p− α ≤ p2 < p− p−v
1−v

α 1− p−p2
α

p−p2
α

p2 < p− α 0 1

p < v
p2 ≥ p 1 0
p− α ≤ p2 < p 1− p−p2

α
p−p2
α

p2 < p− α 0 1

Table 3.1: Market share function di(p, p2).
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3.3.1 Centralized Supply Chain

We first model a centralized supply chain as a benchmark. In a centralized supply

chain, the manufacturer chooses retailers’ prices and the demand generation effort.

There are three decision variables: demand generated θ, price at regular retailer p,

price at free rider p2. The manufacturer’s problem is to maximize the total profit πC ,

sum of revenues from both retailers minus the cost of demand generation:

max
p,p2,θ

πC = (pd1 + p2d2)θ −
1

2
θ2. (3.1)

3.3.2 RPM Policy

Under RPM policy, both retailers’ prices are set by the manufacturer at p. We

assume that all customers, if they make any purchase, buy from the regular retailer

when prices are the same. Given price p, the market share of the regular retailer

(p ≥ v is assumed because pricing lower than v leaves positive surplus to consumers

and the retailer can increase revenues by increasing the price at least to v) is equivalent

to d1 =
1−p
1−v

. The regular retailer’s profit, π1, is given by

π1 = θd1(p− w)− 1

2
θ2.

It is easy to show that the profit function is concave in θ. Solving the first order

condition in θ for the regular retailer, we obtain the optimal number of customers to

generate as

θ∗ = (p− w)d1.

Finally we consider the manufacturer’s problem. The manufacturer sets the whole-

sale price w and RPM price p such that its profit (wholesale price times the total sales
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to the retailers), πM , is maximized:

π∗
RPM = max

w≥0,p≥v
πRPM = wθ∗d1 =

w(p− w)(1− p)2

(1− v)2
. (3.2)

3.3.3 MAP Policy

Lastly we state the problem under MAP policy. We formulate the problem start-

ing with stage 3, the free rider’s pricing problem and proceed to stage 2 (demand

generation) and 1 (wholesale price and suggested retail price selection) respectively.

Free Rider: p2

At the final stage of the game, the free rider makes pricing decision given wholesale

price, regular retailer’s price and total consumer demand, (w, p, θ). The free rider’s

problem is to maximize its profit π2:

max
p2

π2 = θd2(p2 − w). (3.3)

Note that θ is determined by the regular retailer earlier so it is a constant here. For

different tuples of (w, p, α, v), the free rider responds in very different ways, depending

on whether it competes with the regular retailer for a portion of the consumers, or

whether it intends to cover the whole customer spectrum. We define ’competition’ in

this paper as follows: Two retailers are competing, if there exist a customer who gets

strictly positive surplus buying from either retailer. According to this definition, when

retailers are not competing, there may be customers who receive positive surplus when

they purchase from one of the retailers but not from both retailers. Apparently the

free rider’s response depends on the wholesale price w and the regular retailer’s price

p. We first define regions in w and p and then characterize the free rider’s decision, p∗2,

in each region. Regions are defined as follows (see Figure 3.1 for a graphic illustration

63



of regions):

S11 = {(w, p) : α+ v < 1, p > v + α,w < 2v + α− 1} ,

S12 = {(w, p) : α+ v < 1, p > v + α, 2v + α− 1 < w < 2p− α− 1} ,

S13 =

{
(w, p) : α+ v < 1, p > v + α, 2p− α− 1 < w < p− α− α

1− p

1− v

}
,

S14 = {(w, p) : p < v + α,w < p− 2α} ,

S2 =

{
(w, p) : α+ v < 1, p− α− α

1− p

1− v
< w < p− α+ α

1− p

1− v
,

w > 2v + α− p− α
1− p

1− v

}
,

S31 =

{
(w, p) : α+ v < 1, p− α+ α

1− p

1− v
< w < p

}
,

S32 = {(w, p) : α+ v ≥ 1, v < w < p} ,

S4 =

{
(w, p) : α+ v < 1, 2v − p < w < 2v + α− p− α

1− p

1− v
, p < v + α

}
,

S5 = {(w, p) : α+ v < 1, p− 2α < w < 2v − p, w < p}∪{
(w, p) : α+ v ≥ 1, p− 2α < w < p+ 2α

v − p

1− v
, w < p

}
,

S6 =

{
(w, p) : α+ v ≥ 1, p+ 2α

v − p

1− v
< w < 2p− v + 2α

v − p

1− v

}
,

S7 =

{
(w, p) : α+ v ≥ 1, 2− 2α− v < w < v, v +

(1− v)(v − w)

2(α+ v − 1)
< p < 1

}
.

In Figure 3.1, note that the regions are defined differently whether α + v > 1 or

not. A customer with time value x has product valuation v+(1−v)x. As x increases,

consumer’s valuation for the product increase as well as her search cost αx. If she

buys from the regular retailer, her surplus is v + (1 − v)x − p. If she buys from the

free rider, paying p2, her surplus is v + (1 − v)x − p2 − αx = v + (1− v − α)x − p2.

If α + v > 1, the search cost increases faster than the consumer’s valuation in x.

Therefore, the consumer surplus from the free rider is decreasing in x, i.e., the free

rider attracts customers who have time value lower than the threshold, (v− p2)/(v+
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Figure 3.1: Illustration for Si’s.

α− 1). As a result, the two retailers can be either local monopolists (customers who

have medium time value are not served by either retailer) or competitors (medium

time value consumers are served by one of the retailers and receive positive surplus),

depending on whether customers in the middle range are served by any of the retailers.

If α+v ≤ 1, the consumer’s valuation of product increases faster in x than her search

cost and the surplus is increasing in x. This means the free rider finds it profitable to

serve customers whose time value is greater than the threshold. Therefore, high-end

customers are appealing to both retailers, If the free rider stays in the market, it is in

competition with the regular retailer (high-end consumers gets positive surplus from

either one of the retailers).

For each region, the free rider’s best response, p∗2, is summarized in Table 3.2.2 We

define S1 as the union of S1k, k = 1, 2, 3, 4, because we will see later that the manu-

facturer’s profit is zero in all four regions. Similarly, we also define S3 = S31

∪
S32 as

they are the same from the manufacturer’s viewpoint. The dynamics can be very dif-

ferent from one region to another and have significant impact on the manufacturer’s

2p∗2 is derived by plugging d2(p, p2) from Table 3.1 into its profit function (3.3).
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decision. Therefore, these regions are frequently referred in both the main body of

the paper and the proof. It also worth noting that all regions are defined as open

sets. The p∗2 for a tuple (w, p, α, v) on the boundaries between regions are derived by

taking limit from left in w.

Region p∗2 d1 d2 Characteristics
S11 v 0 1

Regular retailer has no demand.
S12

1+w−α
2

0 1−α−w
2(1−α−v)

S13 p− α 0 1−p
(1−α−v)

S14 p− α 0 1

S2
w+p+αv−αp−pv−wv

2(1−v)
2−p−v
2(1−v)

− p−w
2α

p−w
2α

− w−v
2(1−α−v)

Low-end customers not served.
Two retailers compete for demand.

S31 p− α (p−v)
1−v

1−p
1−v

0
Free rider has no demand.

S32 v 1−p
1−v

0

S4 v 1− p−v
α

p−v
α

All customers served.
Two retailers compete for demand.S5

p+w
2

1− p−w
2α

p−w
2α

S6 p− α (p−v)
1−v

1−p
1−v

p−v
1−v

All customers served.
Two retailers do not compete.

S7
p+w
2

1−p
1−v

v−w
2(α+v−1)

Medium range customers not served.
Two retailers do not compete.

Table 3.2: Solution to the free rider’s problem and resulting market share.

The free rider’s price p∗2 has the following properties.

Lemma III.1.

(1) p∗2 is non-decreasing in w;

(2) p∗2 is non-decreasing in p, except when 1 − v ≤ α, p ≥ v, p − 2α(p−v)
1−v

< w ≤

2p− v − 2α(p−v)
1−v

;

(3) p∗2 is non-increasing in α.

As the wholesale price w increases, the free rider has to increase its price in order

to maintain a proper margin. When w is high enough ((w, p) ∈ S3), the free rider will

not participate the game and the manufacturer replicates the outcome under RPM

policy. As the regular retailer’s price p increases, the free rider faces less competition

and is able to charge a higher price. There is an exception though. When the retailers

serve all the customers but have no competition (d1 + d2 = 1), the free rider would
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not lower its price any more as it is very costly to compete with the regular retailer.

If, however, the regular retailer raises its price and gives up some customers in the

middle, the free rider would set a lower price capturing those customers until all

customers are served again. The last part of the lemma says that as it gets harder

to search for the free rider, free rider has to lower its price to give customers extra

incentive to search.

Regular Retailer: θ

The regular retailer chooses the optimal sales effort or advertisement level. In our

model, this is equivalent to choosing the level of total demand θ:

max
θ

π1 = θd1(p− w)− 1

2
θ2. (3.4)

Solving the first order condition, we obtain optimal number of customers θ∗ = (p −

w)d1.

Manufacturer: w and p

In the first stage of the game, the manufacturer chooses the wholesale price w and

the suggested retail price p:

π∗
MAP = max

w,p
πMAP = wθ∗(d1 + d2) = w(p− w)d1(d1 + d2). (3.5)

Recall that di is a function of p and p2. Substituting p∗2 from Table 3.2, we write πM

as a function of only (w, p, α, v). Depending on the region (w, p) falls in, we define

πM = πMi, if (w, p) ∈ Si, i = 1, ..., 7.

In each region, the manufacturer’s profit is given as follows:

πM1 = 0,
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πM2 =
w(p− w)[α(2− p− v)− (1− v)(p− w)][(1− v)(2− p− w)− α(2− p− v)]

4α(1− v)2(1− α− v)
,

πM3 =
w(p− w)(1− p)2

(1− v)2
,

πM4 =
w(p− w)(α+ v − p)

α
,

πM5 =
w(p− w)(2α+ w − p)

2α
,

πM6 =
w(p− w)(1− p)

1− v
,

πM7 =
w(p− w)(1− p)(2p+ 3v + 2α− w − 2αp− 2pv + wv − v2 − 2)

2(1− v)2(α+ v − 1)
.

3.4 Results

In the previous section, we formulated the problem under different policies and

studied the behavior of the retailers with the manufacturer’s decision given. The

manufacturer faces a market characterized by (α, v). In this section we first study the

manufacturer’s optimal decision given a certain market condition. Then we compare

RPM and MAP policies from the perspective of each party within the supply chain.

3.4.1 Centralized Supply Chain

First we analyze the manufacturer’s profit in a centralized supply chain. The op-

timal prices set by the manufacturer and the demand generated are given in Theorem

III.1 and graphically shown in Figure 3.2.

Theorem III.1. The optimal prices of the regular retailer and free rider and the total

demand generation are:

(a) If α+ 2v ≤ 1, p∗ = 1/2, p∗2 = (1− α)/2, θ∗ = 1−α−αv
4(1−α−v)

;

(b) If α+ 2v > 1 and α+ v ≤ 1, p∗ = v + α/2, p∗2 = v, θ∗ = α/4 + v ;

(c) If α+v > 1 and (1−2v)α−(1−v)2 <= 0, p∗ = 2αv−2v+v2+1
2α

, p∗2 =
3αv−2v−α+v2+1

2α
, θ∗ =

4αv−2v+v2+1
4α

;

(d) If (1− 2v)α− (1− v)2 > 0, p∗ = 1/2, p∗2 = v/2, θ∗ = v3−v2−v−α+1
4(1−v)(1−α−v)

.
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The optimal profit is π∗
C = 1

2
θ∗2.

0 1 2
0

1

α

v

A

B C

D

Figure 3.2: Optimal solution in centralized supply chain.

The centralized manufacturer does not exclude the free rider even though it can-

nibalizes the high-margin sales through the regular retailer when α + v > 1. This is

because the free rider serves additional low to middle range customers, the portion

that the regular retailer cannot serve due to higher price. The search cost here is used

as an instrument to segment customers. Thus the centralized manufacturer achieves

higher profit than a situation when it only sells through the regular retailer.

Figure 3.2 demonstrates behavior of the manufacturer in α and v. In region A,

though both retailers have positive sales, the low-end customers are not served. This

is because their valuations are too low, and even the free rider cannot profitably set

a price appealing to them. The other reason that prevents the free rider to price

low is that small search cost, which makes it harder to differentiate customers. If

the free rider lowers its price, demand of the regular retailer is cannibalized easily

due to low search cost which results in low demand generation. In region B, all the

customers are covered as the supply chain faces both higher customer valuation and
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higher search cost. In both region C and D, the manufacturer makes the two retailers

local monopolists. In region C, all the customers are served because the customer

valuation is relatively high. Otherwise, in region D, it is very costly to cover all the

customers. As α + v > 1, the free rider targets customers whose valuation is smaller

than a threshold. Therefore, the customers in the middle range are ignored in region

D.

The analysis of the centralized supply chain illustrates the key idea of how the

presence of free rider can help improve the profitability. As the prices and demand

generation are determined centrally, demand generation is not tied only to the regular

retailer’s profit and the cannibalization is not a big concern. In reality, more than

often the manufacturer is able to contract only the regular retailer’s price, but not the

effort level (demand generation) or the free rider’s price. We next study the dynamics

in a decentralized setting.

3.4.2 RPM Policy

The solution to the RPM policy is given by the following theorem.

Theorem III.2. Under RPM policy, the manufacturer’s optimal suggested retail

price, wholesale price and profit are

p∗ = max

{
1

2
, v

}
, w∗ =

p∗

2
, π∗

RPM =
(1− p∗)2p∗2

4(1− v)2
=


1

64(1−v)2
, if v ≤ 1

2

1
4
v2, if v > 1

2

.

One element in our model is that the regular retailer is the only party that gen-

erates demand. If the manufacturer increases w, each unit contributes more revenue

but the regular retailer’s margin decreases, discouraging the demand generation ef-

fort. If the manufacturer increases p, the regular retailer’s margin becomes higher,

but its market share becomes lower. The manufacturer chooses a price higher than
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the wholesale price that balance these two effects. Under MAP policy which we ana-

lyze next, multiple effects complicate the trade-offs, however the rationale on how w

and p influence the manufacturer’s profit remains the same.

3.4.3 MAP Policy

Under MAP policy, the manufacturer’s profit functions, πMi, are prohibitively

complicated so that closed form solutions are not available. In this section we focus

on the manufacturer’s behavior under MAP policy and its impact on each player.

Manufacturer’s Decision

To understand the manufacturer’s decision, first we study the special case when

v = 0 to identify the intuition of the manufacturer’s behavior and then we extend

the analysis to the general case. The following Lemma shows that when the markets

are very heterogeneous and the search cost is small, RPM policy strictly dominates

MAP policy. For higher search costs, optimal MAP policy is equivalent to the optimal

RPM policy. Indeed, Lemma III.3 shows that optimal wholesale price and suggested

retail price converges to those under the RPM policy as search cost increases.

Lemma III.2 (Assume v = 0).

If α < 1
2
, π∗

MAP < π∗
RPM ; Otherwise, π∗

MAP = π∗
RPM .

Lemma III.3 (Assume v = 0).

w∗
MAP is decreasing in α; p∗MAP is increasing in α.

Lemmas III.2 andIII.3 along with Theorem III.2 immediately lead to the following

result.

Theorem III.3 (Assume v = 0).

1/4 = w∗
RPM ≤ w∗

MAP ≤ p∗MAP ≤ p∗RPM = 1/2.

When v = 0, the MAP policy never outperforms the RPM policy. When α ≥ 1
2
,

the search is too costly, and free rider cannot profitably charge a lower price than the
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suggested retail price. In other words, the volume of sales with a higher suggested

retail price along with the lower wholesale price (to incentivize the free rider to enter

the market) bring lower profits to the manufacturer. Therefore, when α ≥ 1
2
the

manufacturer chooses exactly the same wholesale price and retail price as those under

RPM policy. When α < 1
2
, the manufacturer decreases the margin of the regular

retailer to deter the free rider from entering the market. This is because a small α

allows the free rider to easily cannibalize the market share of the regular retailer.

Hence the regular retailer has little incentive to generate demand. Although it also

has negative impact on demand generation, narrowing the margin protects the market

share of the regular retailer from erosion. Overall, it still results in lower profit than

that under the RPM policy.

When v is positive, the intuition remains the same and we can state the following

theorem.

Theorem III.4.

(1) limα→0 p
∗
MAP − w∗

MAP = 0;

(2) limα→∞ p∗MAP = p∗RPM ; limα→∞w∗
MAP = w∗

RPM .

A representative comparison between optimal w and p under the two policies is

plotted in Figure 3.3. When α is small (α < 0.4 in Figure 3.3), the manufacturer

offers narrower margins to the regular retailer. As α increases to infinity, both w

and p converge to those under RPM policy. Then we only need to fill the gap what

happens when α is in the middle range.

As shown in Theorem III.2, under RPM policy, the manufacturer chooses w∗ =

0.25 and p∗ = 0.5, independent of the value of α. When α is moderate to large (α > 0.4

in Figure 3.3), the entry of the free rider does not cannibalize much market share of the

regular retailer but the free rider serves additional low-to-middle valuation customers.

Instead of narrowing the margin to deter the free rider, the manufacturer widens the

margin to support the free rider. This helps the manufacturer to reach more customers
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Figure 3.3: w∗ and p∗ under RPM and MAP policies. Parameter: v = 0.35.

through free rider, as well as effectively eliminate competition between the retailers

if there is any. There are two ways to widen the margin: increasing retail price p and

decreasing wholesale price w. When α is medium (0.4 < α < 0.9 in Figure 3.3), there

is still competition and the manufacturer would increase the retail price p. Note that

in this case, the manufacturer does not decrease the wholesale price to widen the

margin. When there is competition between the retailers, decreasing wholesale price

allows the free rider to decrease its price and cannibalize regular retailer’s market

even further. On the other hand, increasing p induces the regular retailer to serve

higher valuation consumers, reducing the competition. When α is high (α > 0.9

in Figure 3.3), there is no competition between the retailers and some customers in

the middle range are not served. In such situations, it would be beneficial for the

manufacturer to increase the margin by decreasing the wholesale price w. Since there

is no competition in this case, increasing the retail price reduces the regular retailer’s

market share, but does not change free rider’s optimal behavior. However, decreasing

the wholesale price induces free rider to serve more customers by decreasing its price.
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This additional demand generates more profit compensating the loss due to lower per

unit revenue.

It is crucial to fully understand the manufacturer’s behavior, as many of the

analysis hinge on it. The manufacturer’s decision under MAP policy is summarized

as follows. When α is very small, the manufacturer narrows the margin to deter

the free rider from entry. As α becomes larger, the manufacturer starts to widen

the margin to encourage the free rider’s entry. It increases the retail price p when

α is moderate, and then gradually transits to decreasing the wholesale price w as α

increases. As α goes to infinity, both w and p converge to the optimal decision under

RPM policy.

Manufacturer’s Profit

The manufacturer’s profits under MAP and RPM policies have the following two

properties over the customer valuation v and the search cost α.

Lemma III.4. limα→∞ π∗
MAP = π∗

RPM .

Lemma III.4 says that when the search cost is large enough, optimal MAP policy

(optimal wholesale price and retail price) and the outcome are the same as RPM

policy. The intuition is that when the search cost is extremely high, customers will

not search for the free rider, regardless of their valuation. RPM policy behaves like a

special case of MAP policy where the search cost is infinite.

Lemma III.5. Both π∗
RPM and π∗

MAP are non-decreasing in v.

Lemma III.5 states that as consumer valuation heterogeneity decreases, the man-

ufacturer’s profit increases. Although very intuitive, this is not a trivial result. If

the manufacturer chooses a suboptimal strategy (w, p) under MAP policy, the profit

could be even lower with a higher v. Consider a scenario where the manufacturer sets

both w and p too high and two retailers are local monopolists (α + v > 1). When v

increases, the free rider chooses to raise the price so much that its demand is lower
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than before. Though the demand for the regular retailer is higher, the overall effect

on the manufacturer’s profit is negative. However, a profit maximizer manufacturer

never faces such situations.

The following theorem answers one of our main research questions: Which one of

the policies, RPM policy or MAP policy, is more profitable to the manufacturer?

Theorem III.5 (Condition: α+ v ≥ 1).

(1) If α ≥ 1, there exist α1 ≤ α2, such that:

(1a) π∗
MAP < π∗

RPM if and only if 1 ≤ α < α1;

(1b) π∗
MAP > π∗

RPM if and only if α1 < α < α2;

(1c) π∗
MAP = π∗

RPM for other α.

(2) If α ≥ 1, there exist v1 ≤ v2, such that:

(2a) π∗
MAP < π∗

RPM if and only if v2 < v ≤ 1;

(2b) π∗
MAP > π∗

RPM if and only if v1 < v < v2;

(2c) π∗
MAP = π∗

RPM for other v.

(3) If α+ v ≥ 1, all thresholds continue to exist, except v1.

Figure 3.4(a) provides graphic demonstration of the policy that the manufacturer

prefers. Clearly the threshold policy does not always hold when α+ v < 1.

The manufacturer’s preference depends on the heterogeneity of the market and

how difficult the search is for the consumers. When v is small and α is large, it is

very hard for the free rider to get any customers. As a consequence, even under MAP

policy, the manufacturer chooses the w and p such that the free rider is unable to

profitably enter the market. The outcome is exactly the same as that under RPM

policy. As v increases or α decreases, it becomes easier for the free rider to survive.

Under such situations, the manufacturer accommodates the free rider to segment

customers: the regular retailer serves high valuation consumers with high search cost

while the free rider serves consumers with lower valuation consumers who have also

low search cost. The manufacturer even widens the margin compared to the optimal
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under RPM policy so that free rider profits. Though competition may exist, the

free rider mainly targets the low to middle range customers while the regular retailer

serves the high valuation customers. If v increases (consumers are more homogenous)

or α decreases (search is less costly) even further, free rider cannibalizes more of the

regular retailer’s market share, which results in less incentive to generate demand.

Unlike the centralized supply chain, the manufacturer cannot control the free rider’s

price. Instead, under MAP policy the manufacturer has to narrow the margin in

an effort to mitigate the regular retailer’s demand cannibalization. Under such a

situation, often the manufacturer earns higher profits using RPM policy than selling

through the free rider under MAP policy.

Retailers

Though the price restraint policy is eventually determined by the manufacturer,

the retailers should also understand the consequences of either policy on their bottom

line. The retailers may be able to negotiate with the manufacturer about the contract,

and in some cases they can even influence the manufacturer’s decision by withdrawing

their business. For example, Babies“R”Us cancelled orders from some of its suppliers

as the suppliers refused imposing price restraining policies on Internet retailers which

have cost advantage over Babies“R”Us ((Pereira 2008)).

It is easy to see that the free rider prefers MAP policy over RPM policy under

which it always gets zero profit. Intuitively, one may believe that the regular retailer

should prefer the RPM policy as it effectively elimates the competition, leaving the

regular retailer as the monopolist in the market. The theorem below, however, only

partially confirms this intuition.

Theorem III.6 (Condition: α+ v ≥ 1).

The region where the regular retailer prefers MAP is a subset of the region where the

manufacturer prefers MAP.

The theorem shows the property given α + v ≥ 1, while it still holds in the rest
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Figure 3.4: Policy preference for each player.
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of the region as we observe in Figure 3.4(b). The insights come in two folds. First

of all, the regular retailer is less likely to prefer the MAP policy, compared to the

manufacturer. Moreover, surprisingly, the regular retailer prefers MAP policy when v

is low to medium and α is large. When α is small, though the manufacturer narrows

the margin to deter the free rider from entry if the supply chain switches from RPM

policy to MAP policy, the profits of the manufacturer and the regular retailer still

decline. As α gets larger, the manufacturer starts to prefer MAP policy and increases

the retail price p to support the free rider. The loss of sales through the regular

retailer is compensated by the sales through free rider. The regular retailer, however,

loses sales and end up with lower profit, though the margin is slightly higher. This

explains why as α increases, the manufacturer is more likely to benefit from MAP

policy than the regular retailer. As α increases even more, the manufacturer starts to

decrease the wholesale price w in an effort to incentivize the free rider to participate.

The regular retailer also benefits from lower wholesale price and thus prefers MAP

policy as well.

Consumers

The analysis of the consumer surplus provides insights for legislators to guide

the market. In this part we address which policy serves consumers better based on

numerical results from our model.

Figure 3.4(c) illustrates whether RPM or MAP policies result in higher consumer

surplus. There are two major areas where consumer surplus is higher under MAP

policy. The first area is when v is low to medium and α is large enough. Again

under MAP policy the manufacturer needs to either increase p or decrease w to

accommodate the free rider. It tends to increase p when α is low to medium, and to

decrease w as α gets larger. As the consumer surplus is very sensitive to the selling

price, a higher p typically results in smaller consumer surplus, even though more

consumers may be generated by the regular retailer. On the other hand, a lower w
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increases consumer surplus because it allows the free rider to charge lower price and

serve more low-end customers. Moreover, lower w also leads the regular retailer to

generate more customers.

We also observe another region at the top of Figure 3.4(c), where consumer surplus

is higher under MAP policy. Intuition of this can be illustrated by considering the

extreme case where v = 1. The manufacturer will set p = 1 under either policy.

Under RPM policy, all customers buy from the regular retailer and end up with zero

surplus. Under MAP policy, those customers who buy from the free rider realize

positive surplus while the others still get zero. Note that this is a situation where the

manufacturer strongly prefers RPM policy.

In Figure 3.4 there are significantly large regions where the manufacturer’s, the

regular retailer’s and consumers’ preferences are aligned. The crucial element is the

fact that all the demand in the supply chain is generated by the regular retailer. As

long as the incentive to generate demand is not hurt (when v is small and α is large),

entry of the free rider is beneficial for all the parties. Otherwise, the entry of the free

rider makes the total number of customers generated decrease, generally none of the

parties win by itself, except in the extreme case that we discussed above where the

consumer surplus increases.

3.5 Optimal Search Cost Level

In the previous section we studied the dynamics for given market condition (α, v).

Very recently, some manufacturers have come up with innovative approaches to influ-

ence the search cost α. For example, accessing the price on an online retailer requires

varying number of steps, ranging from simply a few clicks to multiple email exchanges.

Accordingly, it may take anywhere from a few seconds to many hours or even days.

The free rider may also impact the search cost but only in the direction that makes

it even higher. Otherwise, it may violate the MAP policy contract in which some
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manufacturers specify how difficult the search should be for the consumers. However,

as we will see soon, free rider will never make the search harder than the set level

by the manufacturer since the search cost desired by the free rider is always smaller

than the manufacturer.

In this section we focus on what the optimal search cost is for each player. Let

α∗
C , α

∗
M , α∗

R1, α
∗
R2, α

∗
CS be the preferred search cost of the centralized supply chain,

the manufacturer, the regular retailer, the free rider, and consumers, respectively.

All α∗’s are plotted as a function of v in Figure 3.5. Note that on the plot for

the manufacturer, the regular retailer or consumers, there is a missing piece when

v is moderate to large. This indicates that the preferred α is infinity when market

heterogeneity is small to moderate. As shown in Lemma III.4, MAP policy would be

equivalent to RPM policy as α approaches infinity. This implies that MAP policy

with any search cost is dominated by RPM policy when v is moderate to large.

Centralized Supply Chain

Theorem III.7. For the centralized supply chain: α∗
C = 1− v.

Though the presence of search seems to make the supply chain less efficient, inter-

estingly, the centralized supply chain prefers a positive search cost. Search cost allows

the central controller to segment customers and sell to low-end customers through the

free rider. Recall that the surplus of a consumer whose time value is x and buying

from the free rider is v + (1− v − α)x− p2. By setting α = 1− v, the free rider can

set p2 = v and thus (i) serves all the customers not served by the regular retailer and

perfectly extracts all the surplus from consumers that buy from the free rider; and

(ii) does not cannibalize the high margin sales through the regular retailer because

anyone buying from the free rider gets exactly zero surplus. This is an ideal situation

for the central controller as he segments the market, extracts all the surplus from the

lower end, and serves the remaining higher end of the market at a higher price.
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Figure 3.5: α∗ for each player.

Manufacturer

Theorem III.8 (Condition:α+ v ≥ 1).

For the manufacturer:

α∗
M =


+∞, if v ≥ 2

3

Any value in
[
max

{
1− v, 1−v

2(2−3v)

}
,max

{
1− v, 3(1−v)2

2(2−3v)

}]
, if v < 2

3

.

Though this theorem is limited to the case α + v ≥ 1, we observe in Figure 3.5

that the manufacturer would only deviate from this solution when v is very small

(smaller than 0.1).
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Intuitively the manufacturer should mimic the centralized supply chain because

their interests are somewhat consistent. However, this strategy works only when

v ∈ [0.1, 0.5]. When v is close to zero, given α = 1 − v the manufacturer has to

offer w ≤ v to encourage the free rider’s entry but such low wholesale price would

decrease the profit even with higher sales. Instead, the manufacturer chooses a much

smaller α, enabling the free rider to capture customers at the expense of regular

retailer’s market. When v is large (market is very homogenous), the free rider would

cannibalize a significant portion of the regular retailer’s market at α = 1− v. Unlike

the centralized supply chain, the manufacturer cannot control the free rider’s price to

prevent such competition. As a result, the manufacturer prefers a higher, sometimes

infinite, search cost to protect the regular retailer.

Retailers

The preference of α for the regular retailer, the free rider, and consumers are

summarized in the following theorem and observation.

Theorem III.9 (Condition: α+ v ≥ 1).

For the regular retailer, α∗
M ≤ α∗

R1.

Observation III.1.

(1) When v < 0.9, we have α∗
R2 ≤ α∗

M ≤ α∗
R1 ≤ α∗

CS;

(2) When v ≥ 0.9, we have α∗
R2 ≤ α∗

CS ≤ α∗
M = α∗

R1 = ∞.

We first study the retailers. Every player in the supply chain faces similar trade-

offs in the α choice, but puts different weights on the market segmentation and the

volume of consumers generated. A smaller α makes it easier for the free rider to

compete with the regular retailer, typically resulting in higher market share for the

free rider, lower market share for the regular retailer and less volume of customers

generated by the regular retailer. A larger α leads to the opposite. The retailers care

only about the volume of customers and their own market share. The manufacturer,
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instead, capitalizes on sales through both retailers. As a result, the free rider prefers

a small α while the regular retailer prefers a high α. The manufacturer’s choice falls

in the middle.

Consumers

Intuitively the consumer surplus should decrease in search cost α. However, by

Theorem III.10, we show a counterintuitive result that even consumer surplus may

increase in the search cost under certain conditions.

Theorem III.10 (Condition: α+ v ≥ 1).

When max
{
1− v, 1−v

2(2−3v)

}
≤ α ≤ max

{
1− v, 3(1−v)2

2(2−3v)

}
, consumer surplus is increas-

ing in α.

Interplay of two effects results in an increase in consumer surplus as consumer

search gets more costly. The first one is that, as α increases, the free rider has to

respond with a lower price in order to compensate decrease in demand because of

higher search cost. The second is that, with a higher search cost, the regular retailer

faces less competition and thus generates more demand. The surplus from a larger

volume of customers served can be larger than the surplus loss due to the additional

search cost each customer pays.

In Observation III.1(2), the consumer’s choice is driven by the fact that when v

is close to one (market is almost homogenous), only those who buy from the free

rider have positive surplus. This has been discussed in detail in Section 3.4.3. Now

we focus on the more general result stated in Observation III.1(1). The consumers

not only potentially benefit from higher search cost, but also prefer a higher search

cost than the manufacturer and the retailers. Using Figure 3.3, we can explain the

reason by understanding how the manufacturer changes w and p to encourage the free

rider to participate under MAP policy. When α is near the value preferred by either

the manufacturer (α∗
M = 0.65) or the regular retailer (α∗

R1 = 0.9), the manufacturer

would still increase the retail price p. At α∗
R1, the retail price under MAP policy is still
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higher than that under RPM policy. Actually the consumer surplus is very sensitive

to the price. Therefore, the consumer surplus is higher when α is even greater than

α∗
R1, where the manufacturer under MAP policy starts to decrease the retail price.

3.6 Extensions

3.6.1 Robustness of Demand Function

So far we assume a demand function where consumers’ valuation and search cost

are perfectly correlated. Indexed by x, consumer valuation is expressed by a line

v+x(1− v). In this section we study the robustness of our model with respect to the

demand function. Specifically, for consumer indexed by x, we assume the valuation is

uniformly distributed in [v+x(1−v), v+x(1−v)+d], where a higher d represents lower

correlation between search cost and product valuation. As d increases to infinity, the

two attributes become completely independent.

In Figure 3.6, we plotted the boundary, for various values of d, where the manu-

facturer is indifferent between RPM policy and MAP policy. For each d, the manu-

facturer prefers RPM above the boundary and MAP otherwise. It is clear that as the

correlation between search cost and product valuation decreases (i.e., d increases),

the region where MAP is preferred by the manufacturer gets smaller.

Based on our earlier discussion, the main advantage of MAP is that it allows

market segmentation: the free rider serves low-end consumers that the regular retailer

would not serve. If search cost and product valuation are uncorrelated, MAP becomes

less effective due to the existence of high-valuation but low-search-cost consumers.

This group, who purchase from the regular retailer under RPM, would defect to the

free rider under MAP. This leads to less incentive for the regular retailer to create

demand, and from the manufacturer’s perspective this loss is likely to outweigh the

additional coverage through the free rider.
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Figure 3.6: Manufacturer’s policy preference with different demand functions.

3.6.2 Robustness of Effort Cost Function

While quadratic function is commonly used to model effort cost, in this subsection

we numerically test the robustness of the effort function. We assume that the cost

to generate θ demand is 1
2
θa, smaller a represents close to linear cost function, while

large a describes more convex cost function.

In Figure 3.7, the boundaries (above which the manufacturer prefers RPM policy)

are plotted for different values of a. It shows that the area where MAP policy is

preferred becomes larger as the cost function becomes more convex. To describe the

intuition behind this result, first note that in any specific market situation (charac-

terized by a combination of v and α), the demand generator would spend more effort,

due to lack of competition from the free rider, under RPM policy than that under

MAP policy. The profit under RPM may be higher due to higher effort, versus MAP,

where the smaller effort is augmented by additional low-valuations customers and

higher wholesale price. Due to convexity of cost of effort, the extra effort in RPM

case will be limited. When the cost of effort is more convex, the increment of effort
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Figure 3.7: Manufacturer’s policy preference with different effort cost functions.

in RPM case (compared to MAP) is smaller. Consequently, the manufacturer that

chose RPM policy may switch to MAP policy with more convex effort. Despite the

shift of the threshold and the corresponding decrease in the size of area where RPM

dominates, the lessons and insights from the main model continue to hold for any

value of a.

3.6.3 Multiple Retailers

In many businesses there are often multiple regular retailers and free riders in

the market. For example, Canon cameras are carried by BestBuy and Sears stores.

Both of them are considered as regular retailers because customers can test products

and receive advise from store associates. On the other hand, the same cameras are

available at many online retailers, such as BuyDig.com and BeachCamera.com. They

do not provide much service but frequently offer hidden but lower prices under MAP

policy. While only one regular retailer and one free rider are modeled in the main

part, in this extension we show that all the results and intuitions continue to hold
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with multiple retailers.

Multiple Regular retailers

Since the regular retailer’s price is dictated by the manufacturer under both RPM

and MAP, there is no direct price competition. Assume that there are M symmetric

regular retailers. Their demand generation efforts, θi, are additive, i.e., θ =
∑M

i=1 θi.

Each of retailer gets 1
M

of consumers who are willing to buy at the regular price.

Then each regular retailer’s problem, under both RPM and MAP policies, is

max
θ

π1 =
1

M
(θi +

∑
j ̸=i

θj)d1(p− w)− 1

2
θ2i .

Solving this problem we get optimal demand generation for retailer i as θ∗i =
1
M
d1(p−

w). Since total number of customers θ∗ =
∑M

i=1 θ
∗
i = d1(p − w), M regular retailers

collectively create same volume of demand as in our original single regular retailer

model. Consequently, we find that the number of regular retailers has no impact on

the manufacturer or the free rider.

Let π
(M)
R1 be each regular retailer’s profit when there are M of them in the market,

and π
(1)
R1 = πR1 is regular retailer’s profit in our model with single regular retailer. We

have (under both policies)

π
(M)
R1 =

1

M

(
1− 1

2M

)
d21(p− w)2 =

1

M

(
1− 1

2M

)
πR1.

Because each regular retailer only creates a fraction of the demand and the effort cost

is convex, the total effort cost of M retailers is smaller than that in the main model

with single regular retailer, despite of the same number of customers created. As a

result, the total profit of M regular retailers is greater than that with single regular

retailer.

Multiple Free Riders
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In our original model, the free rider sets its hidden price p2. The implicit assump-

tion here is that the free rider is a monopolist as the low cost retailer (but competes

with regular retailer), or that there are multiple free riders but consumers only ran-

domly pick one free rider without searching the others. One can argue that multiple

free riders perfectly compete in price so that they all end up selling at the wholesale

price. That is, instead of solving the maximization problem in Equation (3.3), free

riders set p2 = w. We are interested in how this changes the manufacturer’s preference

over MAP and RPM.

In order to differentiate from the original MAP policy we analyzed above, we

denote the MAP policy with multiple competitive free riders as MAP2 policy.

Theorem III.11.

(1) If α + v ≥ 1, the region where MAP outperforms RPM is smaller under MAP2

policy.

(2) If α+ v ≥ 1 and the manufacturer can only choose α in [1− v,+∞), the optimal

search costs lead to identical profits under MAP and MAP2, i.e., π∗
MAP (α

∗
MAP ) =

π∗
MAP2(α

∗
MAP2).

(3) If the manufacturer can choose α in (0,+∞), the optimal profit under MAP2 is

weakly higher than that under MAP, i.e., π∗
MAP (α

∗
MAP ) ≤ π∗

MAP2(α
∗
MAP2).

Theorem III.11 is illustrated in Figure 3.8. With all free riders selling at w, the

manufacturer sells more to customers through retailers. On the other hand, this also

increases the competition between free riders and the regular retailer, and thus results

in less total demand. When α is large, there is very little competition between the

regular retailer and the free riders. Then under MAP2 the manufacturer benefits from

free riders selling at low prices without compromising the regular retailer’s incentive.

This fundamental trade-off faced by the manufacturer is the same as that under MAP

policy. However, under MAP2 policy the competition is more intense due to the

perfect price competition among free riders. Therefore, the manufacturer is less likely
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to choose MAP2 policy over RPM policy (as partially proved in Theorem III.11(1)

for α+ v ≥ 1).
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Figure 3.8: Manufacturer’s profit comparison under RPM, MAP, and MAP2 policies.

Under MAP2 policy free riders set price equal to the wholesale price which leads

to more intense competition with the regular retailer. This is similar to the outcome

under MAP policy but with a smaller search cost. In Figure 3.8, MAP2 profit curve

looks similar to a stretched version of the MAP profit curve. If the manufacturer is

able to set α, the resulting optimal profits under MAP and MAP2 would be identical

most of the time (as partially proved in Theorem III.11(2) for α + v ≥ 1). To

summarize, while having multiple free riders changes the prices, the intuition we

derived for MAP still holds.

3.6.4 New Retailer’s Choice on Roles

While what role (regular retailer or free rider) a retailer will play largely depends

on its infrastructure, capital investment and existing capabilities, some retailers may

be able to strategically choose whether they would compete as a regular retailer or
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free rider. For example, many retailers, such as Walmart and Bestbuy, have both

online and offline channels. They can serve as regular retailers if a certain product

is carried and demonstrated at brick-and-mortar stores. Under other cases, they can

sell a product only through their websites with a hidden price. In this subsection,

we analyze under MAP policy what role a retailer should choose when it enters the

market.

We assume there are already M regular retailers and N free riders in the market

(M,N > 0). Additionally free riders are assumed to be local monopolists, i.e., cus-

tomers only randomly pick a free rider without searching others. Let π
(N)
R2 be each

free rider’s profit and π
(1)
R2 = πR2 where πR2 is the free rider’s profit in the original

model. We obviously have π
(N)
R2 = 1

N
πR2.

Following the discussion of multiple regular retailers in Subsection 3.6.3, each

regular retailer’s profit is π
(M)
R1 = 1

M

(
1− 1

2M

)
πR1. Playing regular retailer or free

rider, the new retailer’s profit is π
(M+1)
R1 or π

(N+1)
R2 , respectively. Therefore, the new

retailer should play a regular retailer if and only if

π
(N+1)
R2

π
(M+1)
R1

=
1

N+1
1
M

(
1− 1

2M

) · πR2

πR1

≤ 1.

When M and N are given in a market, the new player’s decision will rely on the

ratio πR2

πR1
, which is plotted in Figure 3.9. When the search cost is high and customers

are heterogeneous, this ratio is large which means less free riders may be sustained in

the market. The intuition is that, when search cost increases or customer valuations

span a wider range, low-end customers are increasingly less likely to search for low

prices offered by free riders. Consequently, it is harder for them to compete in the

market. The ratio πR2

πR1
is highest when α is close to zero. However, this cannot be

interpreted as that free riders would prefer zero search cost. As we discussed earlier,

small search cost leads to small profits for both regular retailers and free riders. While
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the ratio is higher, the absolute value of πR2 is smaller than that with moderately

positive search cost α.

0 1 2
0

1

α

v

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.9: Ratio of πR2/πR1.

3.6.5 Manufacturer Subsidy on Sales Effort

In our model, we assume the regular retailer bears all the cost associated with

demand generation. If the retailer’s effort or demand outcome is observable, the

manufacturer can subsidize the demand generation in order to have a higher volume

of demand.

In this extension, we assume the regular retailer only needs to pay a portion,

denoted by δ, of the effort cost, with the manufacturer subsidizing the rest. Thus,

the regular retailer’s problem (3.4) becomes

max
θ

π1 = θd1(p− w)− 1

2
δθ2, (3.6)

which results in

θ∗ =
1

δ
(p− w)d1.
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The manufacturer’s problem (3.5) becomes

π∗
MAP/RPM = maxπMAP/RPM(w, p, δ) = wθ∗(d1 + d2)−

1

2
(1− δ)θ∗2. (3.7)

The general formulation for RPM or MAP policy is identical as above, while the

functions of market share di’s in (w, p) are dependent on specific policy.

Theorem III.12. With manufacturer subsidy, MAP policy always (weakly) outper-

forms RPM policy, from perspectives of the manufacturer, the regular retailer, and

the free rider.

With subsidy, the manufacturer is able to set the wholesale price arbitrarily close

to the retail price under RPM, and in the meantime encourages demand generation

by sharing the cost. As a result, the manufacturer extracts all the channel profit,

leaving the regular retailer zero profit.

Under MAP policy, for given α, the free rider cannot enter the market profitably

when the margin is small. Therefore, the manufacturer can always mimic the actions

under RPM policy without worrying about competition between retailers. However,

this is not necessarily the best strategy. This can be best illustrated by an exam-

ple. Let v = 0.4 and α = 0.6. Under RPM policy, the manufacturer’s decision

would be w∗
RPM = p∗RPM = 0.5 and δ∗RPM = 0. The total demand generation and

manufacturer’s profit are 0.417 and 0.087, respectively. Under MAP policy, the man-

ufacturer’s optimal decision is w∗
MAP = 0.4, p∗RPM = 0.7, and δ∗RPM = 0.316, resulting

in 0.475 units of total demand generation and 0.113 units of profit for the manu-

facturer. With the free rider serving low-end customers, the manufacturer may (i)

decrease the wholesale price to get extra market share through the free rider; and

(ii) increase the retail price to incentivize demand generation without heavy subsidy.

Consequently, the manufacturer is always better off with another lever under MAP

policy.
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3.7 Conclusion

The RPM and MAP policies are widely used by the manufacturer to protect

the margin of brick-and-mortar retailers so that they have incentive to spend effort

promoting the manufacturer’s products. We compares these two policies via a stylized

model and analyzes when and why one policy outperforms the other for each player

across the supply chain.

The manufacturer is most likely to be the player that chooses price restraining

policy. We find that there is no dominant strategy for the manufacturer. The manu-

facturer prefers MAP policy when there are large search cost and large consumer val-

uation heterogeneity. Under such conditions, the free rider serves low-end customers

but does not cannibalize the regular retailer’s market share. The manufacturer effec-

tively segments customers via different channels and gets higher sales. On the other

hand, when the search cost is low and customers are homogeneous, it is very hard to

segment customers. Contributing little extra customers, the free rider only competes

with the regular retailer and makes the latter spend less demand generation effort.

Therefore, the manufacturer would choose RPM policy to rule out free riders.

The retailers’ perspectives are also studied. The free rider’s decision is simple as it

always prefers MAP policy. Under RPM policy, the free rider is unable to price lower

than its brick-and-mortar competitors and, thus, gets zero market share and ends up

with zero profit. Interesting, the regular retailer may also benefit from MAP policy,

when the search cost is higher and customer valuations are more heterogeneous than

those conditions for the manufacturer. The reason is that the manufacturer intends to

embrace the free rider by either increasing the retail price or decreasing the wholesale

price. This wider margin also makes the regular retailer more profitable.

The total consumer surplus is also higher under similar conditions for the regular

retailer. There are two main drivers: (i) the regular retailer generates larger number

of customers; and (ii) low-end customers, who are unserved under RPM policy, are

93



now served by the free rider.

Despite of the free rider, our results indicate that preference of the manufacturer,

the regular retailer and consumers is somewhat aligned. However, preference might be

different in the middle range of search cost and valuation heterogeneity. This implies

that the manufacturer can enforce MAP policy at the cost of the regular retailer and

consumers. These results explain the different stance of brick-and-mortar retailers

(typically regular retailers) and online retailers (typically free riders) about RPM and

MAP on public media. They also provide a perspective to policy makers regarding

to the legality of each policy.
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CHAPTER IV

Performance Based Contracts for Energy

Efficiency Projects

4.1 Introduction

Energy efficiency (EE) projects are often described as very attractive in economic

terms and promising to provide significant environmental benefits. According to the

United Nations Foundations, “energy efficiency is the cheapest, fastest, and smartest

strategy available for saving money and resources and reducing greenhouse gas emis-

sions around the world.”1 Yang and Yu (2015) estimates that, in 2020, capturing

the energy efficiency opportunities will contribute 50% of the greenhouse gas abate-

ment goal required to cap the long-term concentration of greenhouse gas in the level

suggested by experts.

Notwithstanding these significant benefits, EE projects have not reached their full

potential in the last decade (Yang and Yu 2015). There are a few widely recognized

challenges in EE projects. The first is lack of information about expected benefits.

Clients usually under-estimate the benefit provided by EE projects and, thus, hesitate

to adopt them. The second challenge is that EE projects are complicated. They typ-

ically involve long span of time, major scale of construction, operations disruptions,

1www.unfoundation.org/what-we-do/campaigns-and-initiatives/

reduce-carbon-emissions, retrieved April 16, 2015.
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and requirement for a significant expertise. Third, EE projects tend to be expen-

sive, with large initial investment and also uncertain outcomes (Aflaki et al. 2013).

This set of difficulties has given a rise to a business model referred to as the energy

services companies (ESCOs): a business that has expertise in EE projects and takes

responsibilities for developing, installing and, often, also financing of the projects.

One of the challenges ESCOs face is the appropriate form of contracts with clients.

Due to uncertainties of outcome and fairly big up-front investments, many clients,

depending on their size and their level of risk aversion, may be hesitant to get in-

volved in such projects. To overcome these challenges, Performance Based Contracts

(PBCs) have become a core part of ESCO’s business, where ESCO’s compensation

is linked to outcomes of a project and paid during a specified length of time (Larsen

et al. 2012). This model has been used to increase energy efficiency in commercial,

municipal, and industrial sectors in both developed and emerging economies (Taylor

et al. 2008). Compared to fixed payment, advantages of PBCs are multi-fold. First,

PBCs transfer a portion of operational risk to ESCOs, leaving clients less vulnerable

to uncertain operational outcome of the project. Second, PBCs provide additional in-

centives for ESCOs to spend reasonable amount of effort, thereby alleviating ESCOs’

moral hazard problem. Third, PBCs lead to more flexible mechanisms for the projects

and remove the heavy burden of project financing from the customers’ shoulders.2

While many variations of PBCs exist, three most common contracts seen in prac-

tice are shared savings contract, guaranteed savings contract, and chauffage contract.3

In the shared savings contract, ESCO pays a portion of client’s energy costs over cer-

tain period of time after the project completion, i.e, ESCO participates in the savings

as well as participates in additional costs incurred by the client. NASA, for exam-

ple, hired Honeywell to improve energy efficiency at the Johnson Space Flight Center

2Alternatively this aspect can be supported by financial institutions.
3Readers are referred to Bullock and Caraghiaur (2001) for a comprehensive review of the ESCO

contracts.
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(JSC) in Houston. Improvements ranging from energy-efficient lighting, air condition-

ing to water management system were implemented in more than 140 buildings at

JSC. Using a shared savings contract, Honeywell will receive a portion of utility cost

savings as payment for the project.4 Guaranteed savings contract specifies a guaran-

teed reduction over mutually agreed period of time in client’s utility bill relative to

business as usual. That is, a target is established and ESCOs are responsible for the

cost of any energy usage above target, or get penalized in other ways. As an example,

Candelas Ltd., an Irish ESCO, provides lighting retrofit to poultry broiler sheds in

Ireland and UK. Candelas Ltd. guarantees savings, typically of 65%, in direct lighting

cost. If the energy savings fall short of those guaranteed, Candelas Ltd. refunds the

difference between actual and guaranteed savings. In chauffage contract, clients out-

source an energy related function (e.g. temperature, lighting level, air quality, etc.)

to an ESCO at a flat rate. The ESCO owns, operates, and maintains all necessary

equipments to provide the service. For example, Dalkia, a French ESCO, provides

hospitals with heating, lighting and electricity services. While owning and financing

projects, Dalkia charges hospitals monthly fee for services.5

Despite some success in non-residential markets, ESCOs have barely entered the

residential sector. Satchwell (2010) estimates that in 2008 the residential sector rep-

resents only 9% of ESCO revenue and, additionally, most of the residential sector

revenue are earned by ESCOs interacting with utility companies rather than directly

contracting with households. Many potential reasons have been cited to explain the

under-developed ESCO business in the residential sector (Steinberger et al. 2009, Sor-

rell 2009, Zimring et al. 2011, Hoyle 2013). Among them we focus on three major

ones. The first one is customers’ behavior and preference change after the comple-

tion of EE projects. As residential clients are only partially responsible for energy

cost under any types of PBCs, they tend to choose a higher comfort level than they

4More information at www.energy.gov/eere/femp/energy-savings-performance-contracts.
5More case examples can be found in EEB (2011) and SEAI (2012).
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had chosen prior to the project. Additionally, they also pay less attention to their

own energy-saving efforts, such as closing windows or turning off lights. This is often

labeled as the rebound effect (Greening et al. 2000) and effectively it is customers’

moral hazard. Due to rebound effect, the energy usage reduction does not fully reflect

the benefit of EE projects that clients receive, which undermines the effectiveness of

PBCs. Thus it is one of the key elements in this paper to design appropriate contracts

that overcome or at least partially manage rebound effect.6 The second one is that

individual clients are much more risk averse than businesses, which deters individual

clients from adopting EE projects. The third one is ESCOs’ moral hazard problem

due to lack of monitoring and verification protocols.

Our study focuses on contract design issues for energy efficiency projects, with

particular attention to the residential clients. The major goal is to analyze how each

type of the contracts observed in practice works, taking into account ESCOs’ moral

hazard, clients’ rebound effect, and risk aversion.

Using a game-theoretic framework, we model the interaction between an ESCO

and a client and characterize the optimal contracting mechanism. Energy efficiency

projects are based on the premise that the same amount of energy may result in

different comfort level (or utility) of customers depending on the type of windows or

level of insulation of walls. That is the client’s utility is based not only on energy

consumption but also on her energy efficiency level which reflects the condition of

client’s house. The client maximizes utility level by choosing the level of energy

consumption. The ESCO offers the client an EE project, where the expected efficiency

improvement depends on the ESCO’s effort. A caution on both ESCO’s side as

well as on customers’ side is not ungrounded. Both ESCO’s effort in providing the

EE project, and client’s effort in saving energy are difficult to verify due to highly

6Rebound does not happen in non-residential sectors, because either the comfort level is exoge-
nously given (e.g., plant temperature, street lighting hours) or end users of energy do not pay but
their employers do.
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specialized technical nature of the projects, limited observability of the inputs (e.g.,

type of gas used in the glass panels, or the material and its density used to create

foam injected into external walls), and the client’s strategic actions ex-post the project

(e.g., closing windows during winter or turning off lighting when leaving home).

Within this framework, we explore two broad issues. Firstly, we investigate what

contracts (shared savings contract, guaranteed savings contract, or chauffage con-

tract) should be used in what situations, and whether first-best outcomes can be

achieved. Given the existence of double moral hazard, one would expect that co-

ordinating contracts are unlikely to emerge. Thus, we evaluate the performance of

practical contracts and benchmark them against the first-best solution. Secondly,

we suggest how the gap between the outcome of currently-practiced contracts and

first-best solutions can be closed, both from the ESCO’s and from policy makers’

perspectives.

We find that, in the residential sector simple piecewise linear contracts (a general

form of shared savings contract and guaranteed savings contract) work well. While

it is widely believed that, in standard double moral hazard problem, the first-best

outcome is not attainable even when the client is risk neutral, we show that guaranteed

savings contract can achieve the first-best solution. Even when the client is risk

averse, 2-rate contracts (a combination of shared savings contract and guaranteed

savings contract, formally defined in Section 4.3) can still capture most benefit of

performance contracting. While more complicated contracts do outperform 2-rate

contracts, the improvement is very limited. This result indicates that popular shared

savings contract and guaranteed savings contract can perform reasonably well in the

residential sector, as long as their parameters are carefully chosen, for which our

model provides useful guidance. Chauffage contract, by its nature, often requires a

fixed comfort level, and does not allow clients to adjust that. Therefore, while it

allows for a coordinated outcome, it is seldom applicable to residential clients.
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On top of optimal contract choice and design, some further improvements in effi-

ciency of contracts are possible. ESCO can achieve the first-best outcomes by assess-

ing post-project energy efficiency. A certification of the ESCO’s quality can effectively

address the client’s concern about moral hazard problem. With the additional test-

ing/certification, a simple shared savings contract performs nearly as good as any

more-complicated contracts. Information disclosure programs, usually offered by pol-

icy makers, can reduce uncertainty of EE projects, and thus increase their social

benefit. Policy makers can also provide monetary incentives for EE projects, such

as subsidizing such projects or charging higher utility price. While subsidy does not

change the ESCO’s and client’s decisions, it encourages more households to adopt EE

projects. On the other hand, higher utility price, such as carbon tax, would also result

in greater ESCO’s effort and less energy usage in addition to higher adoption rate,

which leads to higher social surplus. Therefore, higher utility price is more desirable

than subsidy from economic perspective.

4.2 Literature Review

This paper draws from and contributes to the general literature of sustainable op-

erations management (Drake and Spinler 2013), in particular the sub-streams dealing

with energy efficiency, contracting, and incentive coordination, in the presence of

double moral hazard problem.

Energy Efficiency. During last few decades, energy efficiency projects have

received increasing attention in economics and operations management literatures.

Many papers qualitatively illustrate the framework of energy efficiency projects, from

opportunity assessment to project execution and valuation (Sorrell 2007, Steinberger

et al. 2009, Aflaki et al. 2013). Several papers also consider the theoretical and ana-

lytical aspects of energy efficiency. The focus of our paper is on interactions between

ESCO and customers in presence of double moral hazard and risk aversion. The
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role of customers and the corresponding rebound effect is not considered in most of

the papers. Eom and Sweeney (2009) and Chu and Sappington (2012) study the

interaction between policy makers and utility companies. Eom and Sweeney (2009)

examine the design of linear contracts that encourage utility companies to invest in

energy efficiency and achieve socially optimal investment levels. Chu and Sappington

(2012) extend the model and assume that ESCOs have private information in their

cost structure. Thus, policy makers offer a choice of linear contracts to ESCOs, whose

effort is non-contractible. They characterize the optimal menu of contracts in differ-

ent market conditions. Neither Eom and Sweeney (2009) nor Chu and Sappington

(2012) consider behavioral aspects of consumers. While Chun et al. (2013) generalize

this framework to model consumer behavior, the paper still focuses on contract de-

sign problems between the government and utilities, rather than contracts between

ESCOs and consumers. Although consumers have the energy consumption decision,

they only respond to the new technology after the project but there is no financial

incentive (subsidy) from either utilities or the government. Without involving con-

sumers in PBCs, the strategic behavior of consumers after implementation of EE

projects is neglected. Wirl (2000) and Wirl (2015) consider consumers implementing

themselves EE projects. Thus, the papers study contracts between the government

or utilities and consumers without considering ESCOs. Wirl (2000) proposes con-

tracts that encourage consumers’ effort in energy efficiency improvement. Assuming

the effort is observable, fixed amount of subsidy is provided to any consumers that

spend enough effort. The focus is to design such contracts for policy makers that ad-

dress the negative effect of asymmetric and private information of consumers (such as

discount rate). Wirl (2015) is based on the framework in Wirl (2000) but assume util-

ities, rather than the government, have to induce consumers to spend certain energy

efficiency investment required by the government. None of the above papers con-

siders the relationship (contracts) between ESCOs and individual consumers, which
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we concentrate on and which is important in practice, as these contracts change the

incentives for ESCOs and consumers, increasing the difficulty of incentive alignment.

Besides this, this paper also includes features that are prevalent in practice but not

studied in above papers, such as piecewise linear contracts, uncertain outcome and

risk aversion.

Contracting. By studying contracts between ESCOs and clients, our paper

contributes to the stream of literature in contract theory dealing with moral hazard

through PBCs. Readers are referred to Bolton and Dewatripont (2004) for a review of

general contract theory and moral hazard problem. Our work is particularly relevant

to a subgroup of literature that concentrates on double moral hazard problem, as this

paper is an application and extension of general double moral hazard theory in en-

ergy efficiency industry. Double moral hazard arises when costly and un-contractible

inputs (efforts) of both principal and agent have an impact on final outcomes. A

few papers in the field of economics lay the foundation for analysis of double moral

hazard problem within principle-agent context. In the standard setting, the mone-

tary output, which is a function of un-contractible efforts from both sides, has to be

divided by principal and agent. This literature shows that there exists no sharing

rule that induces globally optimal input (effort) levels for both players (the first-best

solution), even when they are risk neutral (Holmstrom 1982). Some economics pa-

pers evaluate the effect of linear contracts: Romano (1994) and Bhattacharyya and

Lafontaine (1995) show that linear contracts, in which two parties share the outcome

proportionally after a fixed money transfer, while non-coordinating, are as good as

it gets, they weakly dominate any other possible performance based contracts (the

second-best solution). Kim and Wang (1998) considers the same double-sided moral

hazard problem except with risk averse agent. They conclude that linear contracts

are no longer dominant. Our paper extends general theory into the energy efficiency

context. We consider the ESCO’s effort, as well as consumers’ energy consumption
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decision.7 Both of their decisions contribute to the outcome of the EE project. How-

ever, contracts are based on energy consumptions rather than any monetary outcome.

Energy consumptions have different impacts on the ESCO’s and client’s utility: The

impact on the ESCO is linear while that on the client is concave. Consequently, the

general framework of zero-sum game does not apply and lessons from classic double

moral hazard problem do not necessarily carry over. In fact, we show in Section 4.5.2

that when the client is risk neutral, the first-best outcome can be achieved, which

is different from standard results presented in Holmstrom (1982), Romano (1994),

Bhattacharyya and Lafontaine (1995).

Using PBCs to deal with moral hazard problem has many applications in OM

literature. Optimal contracting mechanisms have been studied in many industries

including health insurances (So and Tang 2000, Jiang et al. 2012), after-sales services

(Kim et al. 2007), and call centers (Ren and Zhou 2008, Hasija et al. 2008) (see

Gustafsson et al. 2010, for a comprehensive review of PBCs). A number of papers

involve double moral hazard problem as well, and study contracting mechanisms

within various operational and supply chain contexts. Baiman et al. (2000) models a

situation, where a manufacturer and a supplier jointly invest in reducing failure rate

of parts produced by the supplier. In Corbett and DeCroix (2001) and Corbett et al.

(2005), a manufacturer and a supplier collaborate in reducing usage of supplies in the

manufacturing process. Roels et al. (2010) focuses on contracts that maximize output

of collaborative services, and advises when players should establish contractibility on

additional fixed cost. In Kim and Netessine (2013), a manufacturer and a supplier

work together to reduce expected production cost and its variance. While sharing

similar spirit, each paper takes into consideration specifics of the applied case in

different industries. They vary in the structures and performance measures that enter

into payment calculus. The main difference between our paper and the double-moral-

7Another extension of our framework is to also include client’s effort as her decision variable in
Section 4.6.1.
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hazard papers in OM literature is that we include the strategic behavior of consumers,

rebound effect, influences both the observable benefits (energy consumption) and

non-observable one (comfort level). We are not aware of papers that deal with such

a situation. The rebound effect also influences the division of benefits and simple

lessons from general theory do not apply and translations from other papers are non-

obvious to us.8 Also, in most other industries, the realization of effort (true effort plus

random shock) is observable and thus provides a good contingency in contracts. In

energy efficiency setting, contracts are often built on energy consumption, a proxy to

but not exactly technology (effort) realization. To our best knowledge, this paper is

the first attempt to address double moral hazard with PBCs in the energy efficiency

industry.

4.3 Model and Preliminary Results

We consider a setting where an ESCO (referred to as “he”) offers an energy effi-

ciency project to a single client (referred to as “she”). The client’s “comfort” function

is denoted as u(x+ t), where x represents energy consumption and t, for technology,

represents energy efficiency level at the client’s house. We assume u′′ < 0 to reflect

the diminishing return in both energy consumption and technology level. In order to

have analytical tractability, u′′′ ≥ 0 is also assumed. Most popular utility functions

in fact have this property. It is worth noting that although u′ > 0 is a common

assumption, it is not necessary for most of results unless explicitly stated.

The energy cost is p per unit, which is assumed to be exogenously determined. Let

wc(x) represent the client’s energy payment as a function of her energy use. Therefore,

the client’s net payoff is

v(x, t) = u(x+ t)− wc(x). (4.1)

8The models are typically rooted in zero-sum game, and thus the first-best solution is not attain-
able. In our setting utility derived from energy consumption is concave and the first-best solution
is achieved when consumers are risk neutral.
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It should be noted that wc(x) = px before the EE project, but depending on the

contract structure may not necessarily be the same after the project. As a result,

v(x, t) also depends on the contract structure.

The client’s ex-ante technology and consumption levels are denoted by t0 and x0

respectively. t0 is normalized to 0 without loss of generality. So the client’s pre-project

utility is u(x0)− px0 with no uncertainty present.

The ESCO can provide an energy efficiency project to the client by choosing

the new technology level t with a convex cost of C(t). t can also be interpreted

as the ESCO’s effort spent in the project. Given that in most cases the clients do

not have the necessary expertise to enforce or inspect the technology, t is usually

not contractible and, therefore, moral hazard arises. In order to have analytical

tractability, we also assume C ′′′ ≥ 0.

The post-project technology suffers from uncertainty reflecting the unobservable

circumstances in the client’s building.9 This is modeled as a random shock to the

project outcome t + ϵ. The random variable ϵ’s support is [ϵ, ϵ̄] with mean 0 and

variance σ2. The distribution is assumed to be common knowledge between the

ESCO and the client.

The client is risk averse and is assumed to have mean-variance risk preferences:

Eϵ[v(x, t+ ϵ)]− λ

2
V arϵ[v(x, t+ ϵ)],

where v is the utility defined in (4.1) and the risk aversion parameter λ ≥ 0 re-

flects client’s attitude towards payoff uncertainty. The mean-variance utility function

originally stems from finance literature that studies market returns, and then widely

adopted to model risk aversion in operations management literature (e.g., Chen and

Federgruen 2000, Van Mieghem 2007, Kim et al. 2007).

9There are other sources of uncertainties, e.g., weather, and these can be easily incorporated into
the model and are evaluated in Section 4.6.2.
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The ESCO has to provide a take-it-or-leave-it contract before observing ϵ. To

reflect the industry practice, we consider contracts contingent on the client’s post-

project energy consumption. We call them n-rate contracts, including terms (F ,

{zi}i=1,...,n−1, {αi}i=1,...,n) with z0 = 0 and zn = ∞. An n-rate contract consists of

two part: The first part is the up-front payment, F , from the client to the ESCO. The

second part specifies the portion αi (0 ≤ αi ≤ 1 ) of unit cost p that the client pays

for energy usage in the range [zi−1, zi). The rest of energy cost is paid by the ESCO

and considered as subsidy. Our analysis focuses on 1-rate and 2-rate contracts, as

they are flexible enough to capture all of the popular practical contracts we discussed

earlier. For example, 1-rate contract (F,∅, {α1}) describes shared savings contract,

where the ESCO obtains (1 − α1) of total savings as well as additional costs. 2-

rate contract (F, {z1}, {1, 0}) describes guaranteed savings contract, where the ESCO

refunds any energy usage above threshold z1. (F,∅, {0}) is chauffage contract, where

fixed payment F should be allocated over the period of contract term. In order to

understand the effect of more flexible contracts, we also extend our results to 3-rate

contracts through numerical study.

Under an n-rate contract, the client’s energy payment (energy cost minus subsidy

from the ESCO, excluding up-front payment) is

wc(x) = p
n∑

i=1

αi ·min
{
(x− zi−1)

+, zi − zi−1

}
. (4.2)

The sequence of events is as follows: (1) The ESCO offers a contract (F, {zi}, {αi})

to the client. (2) The client decides whether to accept the contract. If the client

accepts the contract, then (3) the ESCO decides expected new technology level t. (4)

The new technology, t + ϵ, is observed by the client. (5) The client adjusts energy

consumption of x, based on the new technology level and contract structure. The

problem is formulated below starting with the client.
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Client

The client’s energy consumption is modeled as an optimization problem. Her

pre-project energy consumption, x0, maximizes u(x)− px. That is

x0 = argmax
x

{u(x)− px}. (4.3)

We denote v0 = u(x0) − px0 as the pre-project utility. After the completion of the

project, the client observes new energy efficiency level t + ϵ and chooses her new

energy consumption, x∗,

x∗ = argmax
x

v(x, t+ ϵ). (4.4)

The superscript ∗ is used to denote general optimal solutions, which will be replaced

by proper superscript in each scenario.

ESCO

The ESCO’s payoff consists of three parts: up-front payment, cost of technology

installation, and cost of energy subsidy. We denote we(x) as cost of energy subsidy

we(x) = px− wc(x). (4.5)

After the contract is accepted and up-front payment is transferred, the ESCO chooses

the technology (effort) level as

t∗ = argmax
t

{−Ewe(x
∗)− C(t)} , (4.6)

where x∗ = x∗(t+ ϵ) is determined in (4.4).

In the contract design stage, the ESCO’s goal is to maximize the expected payoff
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while making sure the contract is accepted. The main problem to solve is

max
F,{zi},{αi}

{F − Ewe(x
∗)− C(t∗)} ,

s.t. E [v(x∗, t∗ + ϵ)]− λ

2
V ar [v(x∗, t∗ + ϵ)]− F ≥ v0.

In the optimal solution the constraint must be binding, i.e. the client has strictly

zero surplus. The problem reduces, therefore, to

V = max
{zi},{αi}

{
E [v(x∗, t∗ + ϵ)]− λ

2
V ar [v(x∗, t∗ + ϵ)]− v0 − Ewe(x

∗)− C(t∗)

}
.

(4.7)

In the rest of this paper, all contracts are described as only ({zi}, {αi}), while the

corresponding F is implied by the above constraint.

4.3.1 Benchmark: Model with Central Planner

We first solve the model with central planner, which serves as a benchmark for

the following analysis. In this part we assume that the client’s payment is any con-

tinuous functions, rather than piecewise linear functions. As n becomes large, n-rate

contracts are able to approximate any continuous payment structures. Further, since

the technology realization t + ϵ is observable by the central planner and one-to-one

correspondence exists between t+ ϵ and x∗(t+ ϵ),10 the client’s and the ESCO’s pay-

ment functions, wc(x) and we(x), are replaced by wc(t+ ϵ) and we(t+ ϵ). Then, the

central planner’s problem is

max
t,x(t+ϵ),wc(t+ϵ)

{
E [v(x, t+ ϵ)]− λ

2
V ar [v(x, t+ ϵ)]− v0 − Ewe(t+ ϵ)− C(t)

}
. (4.8)

The solution to the problem above is outlined in the following theorem. The super-

script C, for coordination, is used to denote this optimal solution.

10x∗(t+ ϵ) is decreasing in t+ ϵ, as shown in the proof of Theorem IV.1.
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Theorem IV.1. The central planner’s optimal strategy is:

(1) There exists a unique xC(t+ ϵ), which satisfies u′(x+ t+ ϵ) = p;

(2) wC
c (t+ ϵ) = 0;

(3) There exists a unique tC, which satisfies C ′(t) = p.

The outcome V C is the optimal project value for the ESCO. Clearly all uncer-

tainty is internalized by the central planner (ESCO) and marginal utility of customers

matches energy price. For analysis to come in following sections, the strategy stated

in Theorem IV.1 and its outcome are used to benchmark against.

4.3.2 Rebound Effect

As discussed earlier, rebound effect is identified as one of the key barriers that

prevent ESCOs from thriving in the residential sector (Greening et al. 2000, Sorrell

2009). Before examining the main problem, we briefly discuss how the rebound effect

is reflected in our model, which is a fundamental driving force for the rest of analysis.

Given the same technology level, the individual client tends to consume more

energy, deviating from what central planer would choose. Denote xD (D for decen-

tralized) as the solution to the client’s problem (4.4).

Lemma IV.1. xD(t+ ϵ) ≥ xC(t+ ϵ).

When the ESCO provides any subsidy on the unit price, the client does not

internalize the true cost of energy and over-consumes compared to the coordinated

level – lower marginal cost leads to increased consumption. This rebound effect

makes the real benefit of energy efficiency project unverifiable, and thus undermines

the ESCO’s profitability from PBCs. Formally stated, the rebound effect is a major

difficulty in obtaining the first-best solution.

In the following sections, we first study two types of contracts that eliminate

rebound effect and lead to the first-best solution in Section 4.4, although their use

109



can be limited by practical considerations. In Section 4.5 we discuss how existence of

rebound effect, combined with customer’s risk aversion, leads to lack of coordination

and study n-rate contracts.

4.4 Direct Control of Rebound Effect

In this section, we consider two practical contracts that have the potential to

directly resolve the rebound effect. First is the case where the post-project technology

is verifiable – i.e., the technology realization after the EE project can be measured

with no errors – and as a consequence PBC is designed around post-project technology

rather than the client’s energy consumption, directly eliminating the rebound effect.

Second is the case of chauffage contracts where the client’s comfort level is controlled

by the ESCO. In other words, the energy consumption is implicitly determined such

that the specified comfort level in the contracts is delivered, therefore rebound effect

is removed.

4.4.1 Verifiable Post-Project Technology

When the post-project technology level can be verified, the subsidy of ESCO is

contingent on technology realization t+ϵ rather than the client’s energy consumption

xD(t + ϵ). That is, the ESCO’s subsidy becomes we(t + ϵ) instead of we(x) in (4.5).

Accordingly the client’s payment is now wc(t+ ϵ, x) = px−we(t+ ϵ) instead of wc(x)

in (4.2).

Theorem IV.2. When the ESCO’s payment is contingent on post-project technology,

the contract that specifies the ESCO’s payment we(t+ ϵ) = M − pt achieves the first-

best outcome. M is any constant.

In many PBCs, the client’s consumption is used as a proxy to the technology

realization. As a result, the cost sharing ratio, αi, has to play multiple and conflicting
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roles simultaneously. It requires the ESCO pay a large portion of variable cost to

commit his effort and to share risk from the client. On the other hand, it requires

exactly opposite to manage the client’s rebound effect. The ability to verify the post-

project technology makes it possible to totally decouple these two parts. The ESCO’s

subsidy driven by technology realization not only enables him to commit to certain

effort level, but also fully compensates the client for uncertain outcome. Meanwhile,

the client is responsible for all variable cost so that her rebound effect is completely

removed. As a result, both the ESCO and client have the right incentive to make

optimal decisions and the first-best solution is achieved.

While coordinating the incentives, post-project technology verification can be very

costly relative to small project values in the residential sector, or sometimes even

impossible. In the next subsection and Section 4.5, we assume post-project technology

verification is not viable, and consider contracts contingent on energy consumption.

4.4.2 Chauffage Contract

Chauffage contract is also known as comfort contracting. It requires clear spec-

ification of service requirements. For example, a data center may outsource its air

conditioning service to an ESCO, requiring a temperature below 80 Fahrenheit. A

public library may outsource its lighting service to an ESCO, with guaranteed bright-

ness of 500 lumens. In this subsection we investigate whether chauffage contracts

achieve the first-best outcome.

Under chauffage contracts, energy consumption is determined by technology level

and contracted comfort level. With the comfort level unchanged before and after

EE project, better technology leads to smaller energy usage. As the client does not

choose her consumption, rebound effect does not exist. To reflect this fact, we denote

u0 as the required comfort level. In order to keep the comfort level unchanged after
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the EE project, the energy consumption, x∗, has to satisfy

u(x∗ + t+ ϵ) = u0. (4.9)

The client’s utility (4.1) becomes

v(x∗, t+ ϵ) = u0 − wc(x
∗).

Theorem IV.3. (1) The 1-rate contract (∅, {0}) is optimal; (2) There exists a unique

optimal effort level t∗; (3) The first-best outcome is achieved.

The intuition is straightforward. Without rebound effect, the ESCO pays all the

variable cost and charges the client only the fixed fee. The fixed payment can be in

the form of either one time transfer or multiple installments. In such arrangement, all

the risk is transferred to the ESCO and the client’s utility is guaranteed. Therefore,

chauffage contract addresses concerns about both risk aversion and moral hazard,

and helps ESCO reach the first-best outcome.

Theorem IV.3 fully confirms practices where chauffage contract is frequently used

in non-residential sectors, where the comfort level is often exogenously given. How-

ever, its use in the residential sector is limited. Residential clients often have the desire

to change comfort level over time and each individual may differ in their preferred

comfort level. As a result, chauffage contract is unlikely to work.11

To summarize, rebound effect can be resolved if the post-project technology is

verifiable, or if chauffage contract is viable. In either case, a simple linear contract

is optimal and achieves the first-best outcome. However, they both have limitations

and often not feasible in the residential sector. Next, we study more general contracts

11While mostly used in non-residential sectors, chauffage contract is sometimes applied to res-
idential clients as well. For example, in some apartments in Europe, heating is under chauffage
contracts. Room temperature is fixed at 68 Fahrenheit during days and 64 Fahrenheit during nights
for the whole complex. It does not suit to each individual apartment.
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(shared savings contract and guaranteed savings contract) that deal with situations

where rebound effect is inevitable.

4.5 Indirect Control of Rebound Effect

Facing the rebound effect, the ESCO is challenged to design appropriate contracts.

We start with a case where the ESCO’s effort in improving client’s technology level

is contractible and study how well 1-rate and 2-rate contracts perform in overcoming

the rebound effect and achieving the first-best outcome (Subsection 4.5.1). Next we

relax this assumption by considering the case of moral hazard, where ESCO’s effort

is not observable (Subsection 4.5.2).

4.5.1 Model with Complete Observability of ESCO’s Effort

With contractibility of expected technology level, the ESCO’s offering should in-

clude expected technology level and payment structure. The main problem stated in

(4.7) becomes

max
t,{zi},{αi}

{
E
[
v(xD, t+ ϵ)

]
− λ

2
V ar

[
v(xD, t+ ϵ)

]
− v0 − Ewe(x

D)− C(t)

}
. (4.10)

In this subsection, the superscript O/n, for observability and n-rate, is used in optimal

solutions.

Theorem IV.4.

(1) Any contracts that are only contingent on consumptions (including n-rate con-

tracts) cannot reach the first-best outcome.

(2) Under 1-rate contracts,

(2a) There exists a unique optimal effort level tO/1, which satisfies C ′(t) = p.

(2b) There exists a unique optimal payment rate αO/1 and αO/1 ∈ (0, 1).
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(2c) The project value, V O/1, decreases in risk aversion coefficient λ and project un-

certainty σ2.

As Theorem IV.4(1) indicates, contracts that are contingent on energy consump-

tion are fundamentally limited. In order to completely remove rebound effect, the

ESCO has to ask the client to take full energy variable cost. This, however, exposes

the client to uncertain outcome of new technology, which decreases the overall sur-

plus due to the client’s risk aversion. Unable to overcome combined effect of rebound

and risk aversion, such contracts cannot achieve the first-best outcome. Despite of

non-existence of coordinating contracts, we evaluate how n-rate contracts perform,

with attention to 1-rate and 2-rate contracts.

Under 1-rate contracts, the ESCO needs to decide the effort level and the sin-

gle payment rate α applied to all energy usage. As Theorem IV.4(2a) shows, the

effort level tO/1 is equal to that with central planner, tC . When the effort level is

contractible, the ESCO is able to fully internalize the benefit of better technology.

While ESCO only pays a fraction of the energy bill, he can charge the client up-front

for her savings. Therefore, all benefit eventually goes into the ESCO’s pocket, which

drives him to make decision just like the central planner.

With respect to the payment rate as concerned in Theorem IV.4(2b), if the ESCO

pays all variable cost (i.e., α = 0), the client would use too much of energy without

considering its cost. If the client pays all the variable cost (i.e., α = 1), she faces too

much uncertainty that generates disutility. As a trade-off, the optimal sharing ratio,

αO/1, is strictly between 0 and 1. This means, both rebound effect and risk-aversion

are partially mitigated but they still exist. This reinforces the fact that ESCO cannot

get the first-best outcome by n-rate contract.

Theorem IV.4(2c) is intuitive. The project is more profitable when the client is less

risk averse (smaller λ) or when the technology outcome is less uncertain (smaller σ2).

The project value, ESCO’s technology (effort) choice, and average energy usage are
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plotted with respect to λ and σ2 in Figure 4.1. The project value, V O/1, is illustrated

in Figure 4.1(a) and (d) and is compared against the first-best outcome, V C . As the

client becomes more risk averse or the project uncertainty becomes larger, the gap

between V O/1 and V C also becomes larger. When the client is extremely risk averse,

the project value may become negative, making it impossible for the ESCO to profit

from such a project.

The energy usage increases in λ and σ2, as shown in Figure 4.1(c) and (f), respec-

tively. As the client is more risk reverse or the project outcome is more uncertain,

the ESCO offers to pay a larger portion of the variable cost, in order to decrease

the client’s disutility associated to uncertainty. This payment structure, however,

provides undesirable incentive for the client to over consume energy.

Although so far we have focused on 1-rate contracts, it is also interesting to explore

how 2-rate (or n-rate) contracts compare with 1-rate contracts. While it is challenging

to obtain analytical results under 2-rate contracts, we rely on numerical studies to

obtain insights on how additional flexibility of 2-rate contracts improves the ESCO’s

profit.

As expected, the optimal 2-rate contract strictly outperforms the optimal 1-rate

contract. The underlying idea is illustrated in Figure 4.2. Assuming the ESCO’s effort

is t, the client’s energy consumption, the client’s utility, and the ESCO’s payment are

plotted for each technology realization (t+ ϵ).

The ESCO’s intention is to design a contract to make the client’s consumption

closer to that with central planner, while at the same time reducing the uncertainty

faced by the client. This is equivalent to maximizing system surplus as the ESCO

can extract the whole surplus through up-front payment. Consider the ESCO starts

from the optimal 1-rate contract, (∅, {αO/1}). With the flexibility of a second rate,

the ESCO would raise α1 (while keeping α2 = αO/1 for this moment), and with

appropriate z, apply it to very desirable technology realizations. Hence, when t + ϵ
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Figure 4.1: Project value, technology, and average energy usage under optimal 1-rate
contract, benchmarked with those in centralized case. Parameters: u(x+
t) = 104 × (1− e−(x+t)), C(t) = 104

2
t2, p = 0.3× 104, σ2 = 0.004 (a-c), λ =

0.01 (d-f).
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Figure 4.2: Strategies under 1-rate and 2-rate contracts. Parameters: u(x + t) =
1− e−(x+t), C(t) = 1

2
t2, p = 0.3, λ = 300, ϵ ∼ U [−0.1, 0.1]. Optimal 1-rate

contract: α = 0.81, t = 0.3. Optimal 2-rate contract: α1 = 0.93, α2 =
0.79, z = 0.98, t = 0.3.

is close to the right end, the energy consumption is significantly reduced (as seen in

Figure 4.2(a)) and much closer to the centralized consumption, xC . As a result of

greater α1, in Figure 4.2(b), the right end of the client’s utility curve gets slightly

higher slope, leading to higher variance. However, if only a small piece at the right

end becomes steeper, the impact on overall variance is very small. In other words,

consumption cost reduction is linear in α1 while the variance increase is convex.

Therefore, for the whole system, the rise of variance-related disutility is outweighed

by the benefit of the smaller consumption.

As a secondary effect, the ESCO would slightly decreases α2, which applies to the
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rest of technology realizations. This is because the ESCO is concerned less about

client’s consumption rebound due to larger α1, while sharing more risk from the

client is beneficial. Smaller α2 makes consumption a bit higher but brings down the

variance. Adjusted α1 and α2 together will typically lead to both smaller consumption

and smaller variance, thus help mitigate the rebound effect and risk aversion further

than 1-rate contracts.
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Figure 4.3: Project value under 1-rate and 2-rate contracts, benchmarked with that
in centralized case. Parameters: u(x + t) = 104 × (1 − e−(x+t)), C(t) =
104

2
t2, p = 0.3× 104, ϵ ∼ U [−0.1, 0.1].

While 2-rate contracts do improve the surplus, the improvement is very limited.

As shown in Figure 4.3, the optimal 2-rate contract only increases the project value

by a small margin. We also numerically study 3-rate contracts ({z1, z2}, {α1, α2, α3}).

While the ESCO, with 2-rate contract, can only curb energy consumptions for either

very desirable technology realizations or very undesirable ones, now he works on both

sides by setting α1 and α3 both great than αO/1. For those moderate realizations, a

smaller α2 allows the ESCO to take more risk from the client. Despite that 3-rate

contracts perform strictly better, we observe diminishing return of the third rate.

The analysis of model with complete observability of ESCO’s effort does not only

sets an upper bound for the performance of similar contracts in the general problem

with moral hazard, but also sheds some light on effective mechanisms. Practically

speaking, government provides a wide range of certification programs for ESCOs.
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Certified by government, an ESCO earns trust from clients much easier, which es-

sentially makes their technology level observable. In such situations, optimal 1-rate

contract (shared savings contract) works well and captures most benefit of perfor-

mance contracting.

4.5.2 Model with ESCO’s Moral Hazard

Without contractibility of his effort, the ESCO has to consider in the contract how

to overcome moral hazard problem. That is, the payment scheme has to take care of

the ESCO’s incentive, additional on the client’s rebound effect and her risk aversion.

The superscript M/n, for moral hazard and n-rate, is used to denote optimal solution

in this subsection.

Theorem IV.5.

(1) Under 1-rate contracts,

(1a) There exists a unique optimal effort level tM/1(α), which satisfies C ′(t) = (1−α)p.

(1b) There exists a unique optimal payment rate αM/1 and αM/1 < αO/1.

(2) Under 2-rate contracts, if u′ > 0 and u(·) is bounded, we have V O/1 ≤ V M/2 ≤

V O/2.

Under 1-rate contracts, the ESCO’s optimal strategy is illustrated in Theorem

IV.5(1). The ESCO’s effort is non-contractible and determined after the contract is

signed, and thus it is contingent on payment rate α. As the effort decision takes place

after the contract is signed, the ESCO would only weigh his own portion of energy

savings into his decision but ignore the client’s. This is the failure in standard moral

hazard problem and not surprisingly the ESCO spends less effort than when his effort

is contractible, i.e., tM/1(α) < tO/1 = tC .

The client also anticipates this failure and is willing to pay less up-front for the

project. In order to convey his commitment of reasonable effort, the ESCO has to
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take a greater share of the variable energy cost. Therefore in the optimal strategy we

have αM/1 < αO/1.

Theorem IV.5(2) shows that V M/2, the project value under 2-rate contracts with

moral hazard, is at least as high as V O/1. In fact, the ESCO can get exactly the

same project value as V O/1 by the 2-rate contract (zM/2, {αO/1, 0}), where zM/2 is

given in the proof of Theorem IV.5(2). The intuition is illustrated in Figure 4.4.

With α2 = 0, the client would use infinite amount of energy if technology realization

is below certain level. By strategically choosing z1 in the contract, this technology

threshold can be made at tO/1 + ϵ, as shown in Figure 4.4(a). The ESCO needs to

subsidize any energy usage above z1, and the total subsidy also goes infinite when

the technology realization is below tO/1 + ϵ, as shown in Figure 4.4(c). To avoid

large payment under such situations, the ESCO should spend enough effort so that

this does not happen even when the realization ends up with its worst possible value.

That is, he commits to spend at least tO/1 effort. Therefore, the ESCO’s moral hazard

problem is fully eliminated even though his effort is not contractible.12
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Figure 4.4: Illustration of ESCO’s commitment strategy.

As discussed in the previous subsection when the ESCO’s effort is contractible,

12We numerically test situations when u(·) is an general increasing-decreasing concave function.
Theorem IV.5(2) and the intuition continues to hold as long as the maximizer of u(·) is large
enough such that the ESCO would be better off to avoid paying large subsidy for poor technology
realizations.
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the optimal 1-rate contract performs reasonably well and the optimal 2-rate contract

only marginally improves the project value. Because of Theorem IV.5(2), V O/1 can be

used as an approximate for V M/2. The improvement of 3-rate contracts are limited

by corresponding contracts with contractibility (i.e., V M/3 ≤ V O/3). Therefore, in

practice using 2-rate contracts should be good enough to capture most benefit of

performance contracting. The 2-rate contract can be interpreted as a combination

of guaranteed saving contract and shared savings contract. It specifies a guaranteed

usage threshold and ESCO is responsible for any cost above that. If there is additional

savings below the threshold, the savings is shared by the ESCO and client.

As we have seen so far, the unattainability of the first-best solution cannot be

resolved even with observability of the ESCO’s actions. The following result states

that customers’ risk aversion, another significant barrier to EE project adoption, is

mainly to blame. The superscript add-on RN is used to denote the optimal solution

when the client is risk neutral.

Corollary IV.1. If u′ > 0 and u(·) is bounded, when the client is risk neutral (λ = 0),

the 2-rate contract (zM−RN/2, {1, 0}) achieves the first-best outcome. zM−RN/2 is given

in the proof.

When the client is risk neutral, the ESCO does not have to share the risk from

the client. As the client now pays all the variable energy cost, she will voluntarily

choose globally optimal consumption amount, removing negative impact of rebound

effect. The 2-rate contract (zM−RN/2, {1, 0}) is a guaranteed savings contract. With

a similar intuition as Theorem IV.5(2), it allows the ESCO to achieve the first-best

outcome.

This result is not immediately obvious. In classic double moral hazard research,

the first-best solution is not possible even when the client is risk neutral (Holmstrom

1982, Bhattacharyya and Lafontaine 1995). In their studies, the two players have

to split monetary outcome of both their efforts. This zero-sum contract makes it
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impossible to give both players right incentives to exert efforts. In our paper, however,

contracts are not designed based on any monetary outcome but on amount of energy

the client uses. The critical element is that, the impact of energy consumption on the

client’s utility function is concave. However, the energy consumption has linear effect

on the ESCO’s surplus, because he pays a portion of energy cost. This difference

makes the commitment strategy in Corollary IV.1 possible, which allows the ESCO

to achieve the first-best outcome.

It is worth noting that a project with deterministic technology is a special case of

the risk neutral model, and thus the first-best outcome can be achieved. While the

client’s risk attitude is difficult to change, the ESCO and policy makers can work on

reducing the uncertainty of a project, in order to make EE projects more profitable.

The ESCO may conduct inspections or measurement prior to a project. Policy mak-

ers also have a few levers in this field. They can provide or mandate house energy

efficiency rating, or set standards for energy efficiency projects. For example, En-

ergy Performance Certificates (EPCs) are required in UK when a property is sold

or rented. EPCs include the property’s current energy efficiency, recommendations

about how to improve energy efficiency (e.g., plumbing or HVAC upgrade), and es-

timated improvement after recommended projects.13 With more information, both

the ESCO and client are more confident to predict the outcome, and consequently a

project is more likely to become a success.

4.6 Extensions

We extend the model to include a number of additional frictions so that it becomes

closer to reality. Throughout this section, analysis is conducted with parametric

forms of comfort function and effort cost function, which allows us to accommodate

additional complexities such as client’s effort or policy makers’ preference, but still

13More information at www.gov.uk/buy-sell-your-home/energy-performance-certificates.
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have enough insights. We assume the comfort function is

u(x+ t) = −e−(x+t) (4.11)

and effort cost function is

C(t) =
1

2γ
t2.

With specific comfort and cost functions, we rewrite strategies stated in Theorems

IV.1, IV.4, and IV.5 in their closed forms, so that it is easy to compare them with

other results.

Corollary IV.2.

(1) The central planner’s optimal strategy is: xC(t+ ϵ) = − ln p− t− ϵ; wC
c (t+ ϵ) = 0;

tC = γp.

(2) Assume ESCO’s effort level is contractible. Under 1-rate contracts,

(2a) The unique optimal effort level is tO/1 = γp.

(2b) The unique optimal payment rate is

αO/1 =
2

1 +
√
1 + 4λpσ2

.

(3) Assume ESCO’s effort level is non-contractible. Under 1-rate contracts,

(3a) The unique optimal effort level is: tM/1(α) = (1− α)γp.

(3b) The unique optimal payment rate is:

αM/1 =
2

1 +
√

1 + 4p(λσ2 + γ)
.

In addition to insights discussed in Section 4.5, it is also interesting to observe in

Corollary IV.2(2b) and (3b) that the optimal payment rate is decreasing in the unit

energy price p. The intuition is that, when the energy is more expensive, the same

level of uncertainty in energy usage translates to larger uncertainty in the client’s
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utility. As a result, the ESCO would have to pay more of energy variable cost in

order to manage the client’s disutility related to risk aversion.

In the rest of this section, we first look at additional factors involved in energy

efficiency projects. These include three topics: (1) the client’s effort to reduce energy

consumption, (2) the impact of external uncertainty (e.g., weather uncertainty), and

(3) the impact of initial technology. Then we turn to other stakeholders of energy

efficiency projects. Such players are (1) utility companies that own ESCOs, and (2)

policy makers.

4.6.1 Client’s Effort

Besides choosing energy usage, the client can also put effort into improving energy

efficiency in many situations. For example, it helps if one client always closes windows

when using heating or turns off lighting when leaving home. To reflect these observa-

tions, we slightly modify the model to include the client’s effort in a similar structure

as the ESCO’s effort. The client’s effort is denoted as q, with convex cost structure

1
2θ
q2. The parameter θ represents difficulty of the client’s effort. As it becomes more

difficult, i.e., θ → 0, the problem will converge to the original one studied in the main

part. The client’s comfort function and utility function become

u(x+ t+ ϵ+ q) = −e−(x+t+ϵ+q) and v(x, t+ ϵ, q) = u(x+ t+ ϵ+ q)− wc(x)−
1

2θ
q2.

After observing technology realization, the client’s problem, originally stated in Equa-

tion (4.4), becomes

[x∗, q∗] = argmax
x,q

v(x, t+ ϵ, q). (4.12)

The ESCO’s problem, in Equation (4.7), does not change except the client’s effort q∗

appearing as argument for relevant terms.

In this extension, we only consider 1-rate contracts when the ESCO’s effort is
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contractible and 2-rate contracts when moral hazard on the ESCO side exists. As

argued in Sections 4.5.1 and 4.5.2, they are good enough to capture the most of

benefit from performance contracting. The superscript add-on CE, for client’s effort,

is used to denote optimal solutions in this extension.

Theorem IV.6.

(1) The central planner’s optimal strategy is: xC−CE(t + ϵ) = − ln p − t − ϵ − θp,

qC−CE(t+ ϵ) = θp, wC−CE
c (t+ ϵ) = 0, and tC−CE = γp .

(2) Assume ESCO’s effort level is contractible. Under 1-rate contracts, the optimal

strategy is

αO−CE/1 =
2

1− θp+
√
(1 + θp)2 + 4λpσ2

and tO−CE/1 = γp.

(3) Assume ESCO’s effort level is non-contractible. Under 2-rate contracts, we have

V O−CE/1 ≤ V M−CE/2 ≤ V O−CE/2.

Theorem IV.6(1) is a direct generalization of Corollary IV.2(1). In central plan-

ner’s strategy, both the ESCO’s and client’s efforts are fully leveraged to improve

technology and to reduce energy consumption. That means, the marginal cost of the

effort equals to the full unit cost of energy.

Theorem IV.6(2) generalizes the results in Corollary IV.2(2) to incorporate the

client’s effort. Similar to Corollary IV.2(2a), the contractibility of the ESCO’s effort

allows him to internalize all the benefit, and thus his effort decision is aligned with

that of central planner. The client’s share of energy cost here, αO−CE/1, is greater

than αO/1 in Corollary IV.2(2b), and increases for a greater θ. Besides balancing risk

aversion and rebound effect, α here also has to play the role to incentivize the client

to put effort. The larger portion of unit price the client is charged for energy usage,

the more effort she puts into reducing energy usage. If the client’s effort is cheaper

(greater θ), the ESCO will weight this incentivizing role more while compromising
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the ability to share risk, leading to a higher α.

Theorem IV.6(3) replicates the result in Theorem IV.5(2). The intuition is the

same: Offering extremely cheap energy above an appropriate threshold, the ESCO

effectively commits himself into a higher effort level to avoid huge amount of subsidy.

4.6.2 External Uncertainty

In this extension we would like to consider external uncertainties. For example,

energy consumption is heavily correlated to temperature, which is uncertain ahead

of time to both the ESCO and client. Different from technology uncertainty (which

is labeled as internal), external uncertainty exists and makes the risk averse client

suffer despite of whether a project is adopted.

The external uncertainty is introduced to the client’s comfort function (4.11) and

it becomes

u(x+ t) = −e−(x+t+ϵw).

ϵw represents the external uncertainty and it has mean of zero and variance of σ2
w.

ϵw is assumed to be independent from the technology uncertainty ϵ. With two ran-

dom shocks, the problem structure remains and thus all results in the main part

continue to hold. Here we are interested in how the external uncertainty influences

the ESCO’s and client’s surpluses. We already know that if the ESCO’s effort is

contractible, 1-rate contracts are nearly as good as any complicated contracts but

more implementable. When ESCO’s effort is not contractible, 2-rate contracts are

good enough. The outcome of the optimal 2-rate contract can be approximated by

the optimal 1-rate contract with contractibility. Therefore, in this and all following

extensions, we use 1-rate contract with contractibility to illustrate results.

Theorem IV.7. The project value, V O/1, increases in external uncertainty σ2
w, while

the client’s utility decreases in σ2
w.
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It is intuitive that the risk averse client suffers from additional uncertainty. How-

ever, the ESCO’s surplus increases in external uncertainty while it decreases in tech-

nology uncertainty as indicated in Theorem IV.4(2c). The reason is that technology

uncertainty only exists after the project, which makes the project less attractive since

the client is risk averse. On the other hand, the client has to face external uncer-

tainty both before and after the project. Through PBCs, the ESCO is able to share

some external uncertainty and reduce the client’s disutility. Consequently, the client

is willing to pay a premium for the project.

4.6.3 Initial Technology

In the main part of this paper, the initial technology, t0, is normalized to 0. In this

extension, we study how the initial technology impacts project value. The client’s

pre-project comfort function is

u(x+ t0) = −e−(x+t0).

We consider two types of improvements. In the first type, the technology is incre-

mental. For example, the ESCO can inject additional insulation materials into walls.

In such cases, the client’s post-project comfort function is

u(x+ t0 + t+ ϵ) = −e−(x+t0+t+ϵ).

In the second type, the technology replaces the original one. For example, the ESCO

can install a new window which replaces the old one. The new window will work as

it is designed, despite of the quality of the old window. That is, the client’s comfort

function is

u(x+ t+ ϵ) = −e−(x+t+ϵ),
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which is independent of initial technology. Theorem IV.8 illustrates how the project

value may depend on the initial technology level.

Theorem IV.8.

(1) If the technology is incremental, the project value, V O/1, is constant in t0.

(2) If the technology is a replacement, the project value, V O/1, decreases in t0.

The technology and the energy consumption are perfectly substitutable in the

client’s comfort function. If the technology is increment, the initial technology does

not matter because any additional technology will reduce same amount of energy

usage, and thus deliver same amount of value to the client. If the technology is

a replacement, the post-project utility is not dependent on the initial technology.

Therefore, the lousier the initial technology is, the lower utility the client has before

the project, the more value the project can create.

4.6.4 Utility-owned ESCO

Energy efficiency projects are delivered not only by independent ESCOs but also

by utility-owned ESCOs (Goldman et al. 2005, Larsen et al. 2012). In this extension

our model is modified to accommodate utility-owned ESCOs.

The energy retail cost, p, is assumed exogenous in the main part. Now we allow

utility-owned ESCO to change retail price. However, the cost to produce energy,

denoted by p0, is exogenously given. The ESCO’s problem, presented in Equations

(4.6) and (4.7), becomes

t∗ =argmax
t

{
−Ewe(x

∗)− 1

2γ
t2 + (p− p0)Ex

∗
}
,

max
p,{zi},{αi}

{
E [v(x∗, t∗ + ϵ)]− λ

2
V ar [v(x∗, t∗ + ϵ)]− v0 − Ewe(x

∗)− 1

2γ
t∗2 + (p− p0)Ex

∗
}
.

(4.13)

Original solutions to Problem (4.7) are functions in exogenous retail price p. In
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Problem (4.13), with retail price p as a decision variable, solutions are functions in

production cost p0.

Theorem IV.9. Let the optimal contract in Problem (4.7) be ({zi(p)}, {αi(p)}).

Then in Problem (4.13), the optimal contract is (p, {zi(p0)}, {p0
p
αi(p0)}), where re-

tail price p can be any value.

While the ESCO has one more lever (energy price) to construct the contract, the

problem structure turns out to be equivalent to the original one. The utility-owned

ESCO now uses p0 instead of p as the energy cost to solve the original problem, and

get the optimal contract ({zi}, {α′
i}). The solution is independent of the retail price

p, which means any p > p0 can deliver the maximal project value to the ESCO. This

seems a distortion to the client’s marginal cost when the consumption decision is

made. But, it is easily recovered by adjusted αi’s (i.e., for any retail price p, setting

αi =
p0
p
α′
i to achieve the same outcome). Therefore, all results shown above continue

to hold.

The implication to utility-owned ESCOs is that contracts should be based on their

real energy cost rather than the retail price. Since any retail price would work, the

ESCO can safely keep the standard retail price unchanged and choose other contract

terms accordingly. This convenience makes such contracts easy to implement.

4.6.5 Policy Implication

Energy efficiency does not only save energy cost, but also has huge potential to

mitigate environmental impact of energy production, delivery and consumption. The

environmental impact is often not internalized by either the ESCO or the client.

Therefore, policy makers play a important role in this business. As Steinberger et al.

(2009) summarizes, there exist two categories of policies relevant to the ESCO indus-

try: regulations and monetary incentives. As each category is only briefly covered in

the following, readers are referred to Ryan et al. (2011) and Cunningham and Cook
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(2015) for an extensive list and discussion about energy efficiency policies. Regula-

tions include ESCO certification, house energy efficiency grading, energy efficiency

standard, etc. While in general such regulations help reduce uncertainty of energy

efficiency projects or link clients to trustworthy ESCOs, modeling impacts of regula-

tions is beyond the scope of this paper.

Monetary Incentives are the focus of this extension. Common incentives include

tax credit, carbon tax, etc. Tax credit is to give certain amount or certain percentage

of project cost as tax credit. For example, one gets 10% of the cost, up to $500 as

federal tax credits for insulation improvement.14 Carbon tax is charged to all clients

despite whether energy efficiency project is adopted. It is added to unit energy

price by local government. For example, Boulder, Colorado implemented the United

States’ first tax on carbon emissions from electricity, on April 1, 2007, at a level of

approximately $7 per ton of carbon.15

Most monetary incentives fall into two categories: either a lump sum subsidy or

carbon tax on each unit of energy consumption. With lump sum subsidy, we denote

the amount of subsidy to the ESCO as G. With carbon tax policy, we denote the tax

on each unit energy as r, lifting the total energy cost to p+ r. We assume each unit

energy usage incurs an environmental cost, denoted by c. It is common to quantify

environmental impact in energy and environment studies. For example, Lazer and

Farnsworth (2011) estimates that the emission cost of each KWH can be as high as 3

cents. Policy makers’ objective is to maximize social surplus, including environmental

cost. This is the most common way to model environmental externalities, as seen in

many energy efficiency-focused papers and beyond (Eom and Sweeney 2009, Chun

et al. 2013, Cachon 2014, Cohen et al. 2015). Same to other extensions, we use 1-rate

contract with contractibility to illustrate the two policies in Theorem IV.10.

Theorem IV.10.
14More information at www.energystar.gov/about/federal_tax_credits/insulation.
15More information at www.carbontax.org/where-carbon-is-taxed.
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(1) With lump sum subsidy, the optimal subsidy amount is G∗ = c(lnαO/1 + γp).

(2) With carbon tax policy, the optimal tax is r∗ = c.

(3) Compared to lump sum subsidy, carbon tax policy leads to greater technology in-

vestment, lower energy consumption, and higher social surplus.

The lump sum subsidy does not change the ESCO’s effort and the client’s con-

sumption decisions. However, it allows the ESCO to charge a lower up-front fee, which

in turn makes more projects happen. In fact, with the optimal subsidy amount, any

socially beneficial projects would also be profitable for the ESCO. With carbon tax

policy, policy makers would charge exactly the environmental cost to the client. A

higher energy cost does not only make more projects happen, but also induces the

ESCO and the client to make socially better decisions. That is, the client will use less

energy and the ESCO will spend more effort. Therefore, carbon tax is more desirable

to policy makers from economic perspective.

4.7 Conclusion

Energy efficiency is one of the smartest approaches to reduce energy cost and re-

duce environmental impact. Most energy efficiency projects are outsourced to ESCOs

and are based on PBCs. While having thrived for decades in public, commercial and

industrial sectors, the ESCO business struggles in the residential sector. This paper

studies the contract design problem for energy efficiency projects. It also focuses on

what are the enablers that make energy efficiency projects more successful from both

ESCOs’ and policy makers’ perspectives.

Three most popular PBCs – shared savings contract, guaranteed savings contract,

and chauffage contract – are examined. In the residential sector, if the ESCO’s effort

is contractible, a simple linear contract (shared savings contract) performs almost

as well as other complicated contracts. The savings have to be wisely shared be-
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tween the ESCO and the client, in an effort to balance the negative impact of risk

aversion and rebound effect. When the ESCO’s effort is not contractible, a 2-rate

contract (combination of guaranteed savings contract and shared savings contract)

provides reasonably good outcome and captures most benefit of performance contract-

ing. While chauffage contract is widely adopted in non-residential sectors, requiring

specific and fixed comfort level makes it less attractive in the residential sector.

When both rebound effect and risk aversion are present, any contracts contingent

only on post-project energy consumption cannot achieve the first-best outcome. That

said, both the ESCO and policy makers have potential approaches to increase project

value. The ESCO, for example, can develop the capability of post-project technology

measurement. If the ESCO is able to design contracts based on post-project technol-

ogy instead of energy consumption, it is optimal to ask the client to take all variable

cost and the first-best outcome can be achieved. The ESCO can also conduct pre-

project inspection, in order to reduce uncertainty of a project, which in turn increases

the profitability.

Government regulations can also help increase project value. For example, ESCO

certification identifies trustworthy ESCOs and thus remove moral hazard problem.

Informational programs, such as house energy efficiency rating and energy efficiency

standard, play a role in reducing project uncertainty. Concerned about environmental

cost associated to energy usage, policy makers may also want to provide monetary

incentives. Both lump sum subsidy and carbon tax make more energy efficiency

projects happen. Carbon tax also encourages greater ESCO’s effort and less energy

consumption, and leads to higher social surplus than lump sum subsidy. Therefore,

carbon tax is more desirable for policy makers from economic perspective.
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CHAPTER V

Conclusion

My dissertation includes three essays on operational contracts. In Chapter II,

we consider inventory exchange contracts in competitive markets. Results show that

while firms often benefit from exchanging their inventories, exceptions exist. They

may be worse off when the purchasing cost is either very high or very low, both of

which lead to excessive inventories compared to the no-trade case. Firms trading

inventories also increases consumer surplus in majority of cases as long as the pur-

chasing cost is not very low. Therefore, inventory exchange contracts are most often

a win-win solution.

In Chapter III, we study vertical price constraint contracts that are used to co-

ordinate the supply chain. The RPM and MAP policies are widely used by the

manufacturer to encourage brick-and-mortar retailers to spend sales effort. We find

MAP policy is preferred by the manufacturer when the customer’s valuations span in

a large range and the search cost is significant. Otherwise, the manufacturer would

be better off choosing RPM policy. Regular retailers and consumers would also pre-

fer MAP policy if the search cost is even higher or consumer valuations have even

larger variance, compared to the manufacturers. Under such situations, MAP policy

provides all parties in the supply chain a higher profit or surplus.

In Chapter IV, we focus on the design of performance based contracts between
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ESCOs and residential clients. Results indicate that piecewise linear contracts per-

form nearly as well as any other complicated contracts. That said, due to client’s risk

aversion and rebound effect, the first-best outcome is not attainable. It helps fix this

efficiency gap, at least partially, to reduce uncertainty of technology or to develop the

ability to verify post-project energy efficiency. Appropriate regulations and monetary

incentives from policy makers also make energy efficiency projects more appealing,

and thus help manage environmental impact associated to energy production, delivery

and consumption.

With increasingly competitive markets and constantly changing tastes of con-

sumers, doing business is not easy. All three of my essays are inspired by practical

contractual issues in different industries. My research does not only provides deep

understanding of challenges in each context, but also makes recommendations to play-

ers involved, and eventually contributes to more efficient, profitable and sustainable

supply chains.
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APPENDIX A

Proofs of Lemmas and Theorems in Chapter II

Proof of Lemma II.1.

Part (1): Centralized Pricing.

Centralized firm solves the following problem stated in (2.1).

ΠCp(q̄1, q̄2) = max
p1,p2≥0

2∑
i=1

pisi + λ(µ1 + µ2)

Since the term λ(µ1 + µ2) is a constant,we drop it out in this proof as well as all

following proofs. We assume the demand has to be non-negative, otherwise the cen-

tralized firm can raise p2 arbitrarily high while not hurting demand in market 2 by

setting p1 =
a
b
p2.Since it is never optimal to generate demand higher than inventory,

the problem reduces to

max
(p1,p2)∈S

p1(w1 − ap1 + bp2) + p2(w2 − ap2 + bp1)

= max
(p1,p2)∈S

p1w1 + p2w2 − (ap21 − 2bp1p2 + ap22).

where S = {(p1, p2) : 0 ≤ di ≤ q̄i, i = 1, 2}. In the objective function, the only

nonlinear term −(ap21 − 2bp1p2 + ap22) is strictly joint concave on (p1, p2) because

a > b and S is compact and convex, so there exists a unique optimal price pair. This
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completes the proof of part (1). The optimal prices are given in Table A.1 and regions

are illustrated in Figure 2.1(a).

Region Conditions Solutions

R1
q̄1 ≥ 1

2
w1

q̄2 ≥ 1
2
w2

pC∗
1 = aw1+bw2

2(a2−b2)

pC∗
2 = aw2+bw1

2(a2−b2)

R2
2aq̄1 + 2bq̄2 ≤ aw1 + bw2

2aq̄2 + 2bq̄1 ≤ aw2 + bw1

pC∗
1 = a(w1−q̄1)+b(w2−q̄2)

a2−b2

pC∗
2 = b(w1−q̄1)+a(w2−q̄2)

a2−b2

R3
2aq̄1 + 2bq̄2 ≥ aw1 + bw2

q̄2 ≤ 1
2
w2

pC∗
1 = aw1+bw2

2(a2−b2)

pC∗
2 = abw1+(2a2−b2)w2−2(a2−b2)q̄2

2a(a2−b2)

R4
q̄1 ≤ 1

2
w1

2aq̄2 + 2bq̄1 ≤ aw2 + bw1

pC∗
1 = abw2+(2a2−b2)w1−2(a2−b2)q̄1

2a(a2−b2)

pC∗
2 = aw2+bw1

2(a2−b2)

Table A.1: Solutions to prices in centralized scenario.

Part (2): Decentralized Pricing.

The pricing problems in trade and no-trade scenarios are identical and stated in

(2.4). Dropping all constant terms, the problem is equivalent to the following:1

max
p1

p1(w1 − ap1 + bp2 − aλγ − bλγ)

s.t. w1 − ap1 + bp2 ≤ q̄1, p1 ≥ 0

After droping constant terms, λ and γ show always together. Therefore, we normalize

γ = 1, except the final numerical studies.The best response function of firm i is

pi = max
{
0,

wi + bpj − q̄i
a︸ ︷︷ ︸
A

,
wi + bpj − aλ− bλ

2a︸ ︷︷ ︸
B

}
.

Term B is the unconstrained optimum with enough inventory. Term A reflects con-

strained inventory. Price 0 is optimal when the market size wi is very small. In this

case, firms are willing to give their products for free in order to earn future market

1Requiring demand not exceed the available quantity allows us to immediately claim existence
of equilibrium.
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share. Since the response function is continuous and the slope is between [0, 1), there

exists a unique intersection. This completes the proof of part (2). The optimal prices

are given in Table A.2. �

Region Conditions Solutions(X = N, T )
−(4a2 − b2)q̄1 + 2a2w1 + abw2 + (2a3 + a2b− 2ab2 − b3)λ ≤ 0
−(4a2 − b2)q̄2 + 2a2w2 + abw1 + (2a3 + a2b− 2ab2 − b3)λ ≤ 0
2aw1 + bw2 − (2a2 + 3ab+ b2)λ ≥ 0
2aw2 + bw1 − (2a2 + 3ab+ b2)λ ≥ 0

pX∗
1 = 2aw1+bw2−(2a2+3ab+b2)λ

4a2−b2

pX∗
2 = 2aw2+bw1−(2a2+3ab+b2)λ

4a2−b2

B

aw1 + bw2 − bq̄2 − (ab+ a2)λ ≥ 0
−a2w1 − abw2 + (2a2 − b2)q̄1 + abq̄2 − (a3 + ab − ab2 − b3)λ ≥ 0
bw1 + 2aw2 − 2aq̄2 − (ab+ b2)λ ≥ 0
abw1 + 2a2w2 − (4a2 − b2)q̄2 + (2a3 + a2b− 2ab2 − b3)λ ≥ 0

pX∗
1 = aw1+bw2−bq̄2−(ab+a2)λ

2a2−b2

pX∗
2 = bw1+2aw2−2aq̄2−(ab+b2)λ

2a2−b2

C

aw2 + bw1 − bq̄1 − (ab+ a2)λ ≥ 0
−a2w2 − abw1 + (2a2 − b2)q̄2 + abq̄1 − (a3 + ab − ab2 − b3)λ ≥ 0
bw2 + 2aw1 − 2aq̄1 − (ab+ b2)λ ≥ 0
abw2 + 2a2w1 − (4a2 − b2)q̄1 + (2a3 + a2b− 2ab2 − b3)λ ≥ 0

pX∗
1 = aw2+bw1−bq̄1−(ab+a2)λ

2a2−b2

pX∗
2 = bw2+2aw1−2aq̄1−(ab+b2)λ

2a2−b2

D

w1 − (a+ b)λ ≥ 0
−w1 + 2q̄1 − (a+ b)λ ≥ 0
−bw1 − 2aw2 + 2aq̄2 + (ab+ b2)λ ≥ 0
−bw1 − 2aw2 + (2a2 + 3ab+ b2)λ ≥ 0

pX∗
1 = w1−(a+b)λ

2a

pX∗
2 = 0

E

w2 − (a+ b)λ ≥ 0
−w2 + 2q̄2 − (a+ b)λ ≥ 0
−bw2 − 2aw1 + 2aq̄1 + (ab+ b2)λ ≥ 0
−bw2 − 2aw1 + (2a2 + 3ab+ b2)λ ≥ 0

pX∗
1 = 0

pX∗
2 = w2−(a+b)λ

2a

F

a2w1 + abw2 − (2a2 − b2)q̄1 − abq̄2 + (a3 + a2b− ab2 − b3)λ ≥ 0
a2w2 + abw1 − (2a2 − b2)q̄2 − abq̄1 + (a3 + a2b− ab2 − b3)λ ≥ 0
aw1 + bw2 − aq̄1 − bq̄2 ≥ 0
aw2 + bw1 − aq̄2 − bq̄1 ≥ 0

pX∗
1 = aw1+bw2−aq̄1−bq̄2

a2−b2

pX∗
2 = aw2+bw1−aq̄2−bq̄1

a2−b2

G

w1 − 2q̄1 + (a+ b)λ ≥ 0
w1 − q̄1 ≥ 0
−bw1 − aw2 + bq̄1 + aq̄2 ≥ 0
−bw1 − aw2 + bq̄1 + (a2 + ab)λ ≥ 0

pX∗
1 = w1−q̄1

a

pX∗
2 = 0

H

w2 − 2q̄2 + (a+ b)λ ≥ 0
w2 − q̄2 ≥ 0
−bw2 − aw1 + bq̄2 + aq̄1 ≥ 0
−bw2 − aw1 + bq̄2 + (a2 + ab)λ ≥ 0

pX∗
1 = 0
pX∗
2 = w2−q̄2

a

I

q̄1 − w1 ≥ 0
q̄2 − w2 ≥ 0
−w1 + (a+ b)λ ≥ 0
−w2 + (a+ b)λ ≥ 0

pX∗
1 = 0
pX∗
2 = 0

Table A.2: Solutions to prices in trade and no-trade scenarios.

Proof of Lemma II.2.

Using the pricing solution in Table A.1 in the proof of Lemma II.1(1), we can

explicitly express total profit ΠCp
i in (2.1) for each region i and eliminate q1 by using
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q̄1 = K − q̄2:

ΠCp
1 =

aw2
1 + aw2

2 + 2bw1w2

4(a2 − b2)
,

ΠCp
2 =

−2(a− b)q̄22 + (a− b)(2K − w1 + w2)q̄2 + aKw1 + bKw2 − aK2

a2 − b2
,

ΠCp
3 =

−4(a2 − b2)q̄22 + 4(a2 − b2)w2q̄2 + a2w2
1 + 2abw1w2 + b2w2

2

4a(a2 − b2)
,

ΠCp
4 =

−4(a2 − b2)q̄22 + 4(a2 − b2)(2Kq̄2 +Kw1 − w1q̄2 −K2) + a2w2
2 + 2abw1w2 + b2w2

1

4a(a2 − b2)
.

q̄1+ q̄2 = K corresponds to a line with slope −1 in Figure 2.2(a). As a function of q̄2,

ΠCp
1 is a constant; ΠCp

2 is concave; ΠCp
3 is increasing (because q̄2 ≤ w2

2
in R3); ΠCp

4 is

decreasing (because q̄2 ≥ K − w1

2
in R4). Therefore, maximum cannot be in Region

3 or 4.

By solving the maximization problem in Region 1 and 2, we get the optimal

inventory allocation and revenue as following. If w1 + w2 ≤ 2K, q̄∗2 is any value

in [1
2
w2, K − 1

2
w1] and ΠCt(K) =

aw2
1+2bw1w2+aw2

2

4(a2−b2)
. If w1 − w2 ≥ 2K, q̄∗2 = 0 and

ΠCt(K) = K(aw1+bw2−aK)
a2−b2

. If w2 − w1 ≥ 2K, q̄∗2 = K and ΠCt(K) = K(aw2+bw1−aK)
a2−b2

.

Otherwise, q̄∗2 = 2K−w1+w2

4
and ΠCt(K) = (w1−w2)2

8(a+b)
+ K(w1+w2−K)

2(a−b)
. �

Proof of Lemma II.3.

Without loss of generality, we assume w1 ≥ w2. From the proof of Lemma II.2,

we have:

ΠCt(K) =



K(aw1+bw2−aK)
a2−b2

, if K ≤ w1−w2

2

(w1−w2)2

8(a+b)
+ K(w1+w2−K)

2(a−b)
, if w1−w2

2
< K ≤ w1+w2

2

aw2
1+2bw1w2+aw2

2

4(a2−b2)
, if K > w1+w2

2

.

It is straightforward to verify that ΠCt(K) is strictly increasing and strictly concave

in the first two subcases and constant in the third one. �
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Proof of Lemma II.4.

All the regions mentioned in this proof refer to those in Figure 2.2(b). Let (q̂1, q̂2)

be the intersection of all four regions and, thus, K1 = q̂1+q̂2. The value ofK1 depends

on the realizations of (w1, w2) and is defined in Table A.3. The first row of the table

corresponds to the intuitive intersection of the regions, while rows 2 to 4 correspond

to the case where both prices, or one of the prices p1 and p2 is 0. The solution comes

from evaluating the conditions in Table A.2. For example case A is translated into

the first row below, or case I is translated into row 2. In each case, we solve for q1

and q2 satisfying all of the boundary conditions resulting in the outcome below.

Conditions on (w1, w2) value of K1

2aw1 + bw2 ≥ (2a2 + 3ab+ b2)λ,2aw2 + bw1 ≥ (2a2 + 3ab+ b2)λ a(w1+w2)+2(a2−b2)λ
2a−b

w1 ≤ (a+ b)λ,w2 ≤ (a+ b)λ w1 + w2

w1 > (a+ b)λ,2aw1 + bw2 < (2a2 + 3ab+ b2)λ aw1+2aw2+bw1+2(a2−b2)λ
2a

w2 > (a+ b)λ,2aw2 + bw1 < (2a2 + 3ab+ b2)λ aw2+2aw1+bw2+2(a2−b2)λ
2a

Table A.3: Value of K1.

If K ≤ K1, the line q̄1 + q̄2 = K, which is called allocation line, crosses region R2,

and usually also R3 and R4. Otherwise, the allocation line crossesregion R3, R1, and

R4. Define

ϕ1(K) = max
q̄1+q̄2=K;(q̄1,q̄2)∈R1 or R2

2∑
i=1

πNp
i (q̄1, q̄2),

ϕ3(K) = max
q̄1+q̄2=K;(q̄1,q̄2)∈R3

2∑
i=1

πNp
i (q̄1, q̄2),

ϕ4(K) = max
q̄1+q̄2=K;(q̄1,q̄2)∈R4

2∑
i=1

πNp
i (q̄1, q̄2).

Therefore, we have ΠTt(K) = max{ϕ1(K), ϕ3(K), ϕ4(K)}. We describe below the

shape of ϕ1(K), ϕ3(K), and ϕ4(K). Specifically, in step 1, we show that ϕ1(K) is

increasing-decreasing constant. In step 2, we show that ϕ3(K) (and similarly ϕ4(K))
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is increasing for K ≤ KR3 and then constant for K > KR3. To prove the lemma, it

is sufficient to show that ϕ3(K
R3) ≤ ϕ1(K

R3) (and similarly for Region 4).

Step 1. ϕ1(K) is increasing in [0, w1+w2

2
], decreasing in [w1+w2

2
, K1], constant after-

wards.

When K ≤ K1, from Lemma II.1(2) case F, we get (assume w1 ≥ w2)

ϕ1(K) = max
q̄1+q̄2=K

−aq̄21 − aq̄22 − 2bq̄1q̄2 + aw1q̄1 + aw2q̄2 + bw2q̄1 + bw1q̄2
a2 − b2

=


K(aw1+bw2−aK)

a2−b2
, if K ≤ w1−w2

2
; (q̄2 = 0)

(w1−w2)2

8(a+b)
+ K(w1+w2−K)

2(a−b)
, if w1−w2

2
< K ≤ K1; (q̄2 =

2K−w1+w2

4
)

.

These cases are identical as in the proof of Lemma II.3 except the upper bound for

the region. Therefore, ϕ1(K) is concave in [0, K1] and maximized at K = w1+w2

2
. This

immediately implies part (2) of this lemma: when K ≤ w1+w2

2
, ϕ1(K) reaches ΠCt(K)

in Lemma II.2 and has the same allocation as well.. It also shows concavity of ϕ1(K)

for K ≤ K1.

When K > K1, in region R1 both firms have leftovers. Thus ϕ1(K) is constant.

Formally, this involves cases (A,D,E,I) in Table A.2 and the solutions of these four

cases in Lemma II.1(2) do not involve (q̄1, q̄2).

Step 2. ϕ3(K) is non-decreasing in [0, KR3], and constant afterwards.

Since, in R3, firm 2 sells all inventory while firm 1 has leftovers, ϕ3(K) depends

only on q̄2. This can also be confirmed by looking at cases (B,F) in Lemma II.1(2).

Let q̄R3
2 denote the maximizer of ϕ3(K). Firm 1’s sales is q̄R3

1 when q̄2 = q̄R3
2 . Let

KR3 = q̄R3
1 + q̄R3

2 . Consequently, the point (q̄R3
1 , q̄R3

2 ) is on the boundary of regions R2

and R3. From Figure 2.2(b) and also Table A.2 we have thatKR3 = q̄R3
1 + q̄R3

2 < K1.

When K ≤ KR3, ϕ3(K) is non-decreasing in K because the feasible set of q̄2

becomes larger (while q̄1 does not matter). We also have ϕ3(K) ≤ ϕ1(K) in this range.

This is because (1) when K ≤ w1+w2

2
, ϕ1(K) is the same as centralized allocation and
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any other allocation results in lower profits; (2) when w1+w2

2
< K ≤ KR3, ϕ1(K) is

decreasing while ϕ3(K) is non-decreasing; and (3) ϕ3(K
R3) ≤ ϕ1(K

R3) since (q̄R3
1 , q̄R3

2 )

is in the boundary of R2 and R3 and thus also is taken in consideration in ϕ1.

When K > KR3, ϕ3(K) is constant, since (K − q̄R3
2 , q̄R3

2 ) is always feasible and

achieves maximum in R3. We also have ϕ3(K1) ≥ ϕ1(K1) since the only feasible point

for ϕ1(K1), (q̂1, q̂2), is also feasible for ϕ3(K1). Therefore, ϕ3(K) must intersect ϕ1(K)

at a point denoted as K03, where KR3 < K03 < K1.

ϕ4(K) is symmetric to ϕ3(K). Thus, there also exists K04 ∈ (KR4, K1), such that

(1) ϕ4(K) < ϕ1(K) when K < K04; (2) ϕ4(K) ≥ ϕ1(K) and ϕ4(K) is constant when

K ≥ K04.

Let K0 = min{K03, K04} and proof of part (1) is completed. �

Proof of Lemma II.5.

In Region 1, the prices and sales do not change across different allocation, as

there are leftovers in both markets. Obviously the consumer surplus is constant in

q̄1. Region 3 and 4 are symmetric and thus we only show in the following results for

Region 2 and 4.

Region 2. In Region 2 all units are sold. We can apply equilibrium prices (Region

F in Table A.2) to the consumer surplus(Equation (2.9)), and have

CSF =
aq̄21 + 2bq̄1q̄2 + aq̄22

2(a2 − b2)
.

Constrained by q̄1 + q̄2 = K, the consumer surplus reaches its minimum at q̄1 = q̄2 =

K
2
.

Region 4. Region 4 may consist of situations C, G, or both (from Table A.2). In
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situation C, applying the equilibrium prices from Table A.2, we get

CSC =
1

2(a2 − b2)(2a2 − b2)2

[
a(a2 − b2)(4a2 − 3b2)q̄21

+ 2b(a2 − b2)[(a− b)(a+ b)2λ+ abw1 + a2w2]q̄1

+ a[(a− b)(a+ b)2λ+ abw1 + a2w2]
2

]
.

CSC is convex and we have

d CSC

d q̄1

∣∣∣∣
q̄1=0

> 0.

Therefore, the consumer surplus is increasing in situation C in q̄1.

In situation G, we repeat the same calculation and get

CSG =
(a2 − b2)q̄21 + (aw2 + bw1)

2

2a(a2 − b2)
.

CSG is convex and we have

d CSG

d q̄1

∣∣∣∣
q̄1=0

> 0.

Therefore, the consumer surplus is increasing in q̄1 in situation G. Consequently, the

consumer surplus is increasing in q̄1 in Region 4. �

Proof of Theorem II.1.

As the market sizes are deterministic, we have ΠCo(K) = ΠCt(K), which is given

in proof of Lemma II.3. Taking derivative, we obtain

ΠCo′(K) =



aw1+bw2−2aK
a2−b2

if K ≤ w1−w2

2

w1+w2−2K
2(a−b)

if w1−w2

2
< K ≤ w1+w2

2

0 if K > w1+w2

2

.

Let ΠCo′(K) = c and KC∗ is solved. �
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Proof of Theorem II.2.

Part (1): No-trade Scenario.

As the market size is known up front, without trading no firm would order more

than they can sell (case F in Table A.2). Using equilibrium prices pN∗
i into firms’

revenue function 2.4, we obtain:

πNo
i (q1, q2) = πNp

i (q1, q2) =
−aq2i + (awi + bwi + a2λ− b2λ− bqj)qi − (a2 − b2)λqj

a2 − b2
.

Again, due to no trade and additionally due to deterministic market sizes, the revenue

functions in trading stage and ordering stage are identical. The response function,

thus, becomes:

qi = min

{
max

{
(a+ b)w + (a2 − b2)λ− (a2 − b2)c− bqj

2a
, 0

}
,

(a2 + ab)w + (a3 + a2b− ab2 − b3)λ− abqj
2a2 − b2

,
(a+ b)w − bqj

a

}
.

The first term above is from the first-order condition, while the last two terms are

the boundary of the region R2 in Figure 2.1(b).When neither firm has leftovers (i.e.,

in region R2), the response function is continuous and decreasing. The slope of the

response function is greater than −1. Consequently there exists a unique equilibrium

qN∗
i , which satisfies 0 ≤ qN∗

i ≤ K1

2
(see Table A.3 for K1).

Unique equilibrium implies that the equilibrium is symmetric. In the response

function above, the second term is always larger than the first, whenever qj ≤ K1

2

and, thus, can be dropped. Based on evaluation of the other two terms and extreme

points, the analytical form of qN∗
i is obtained.

Part (2): Trade Scenario.
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To simplify notation, we denote (only in this proof)

f(q1 + q2) =
1

2
ΠTt(q1 + q2),

g(q1, q2) =
1

2
(πNp

1 (q1, q2)− πNp
2 (q1, q2))− cq1.

Referring to Figure A.1(left), f(·) is concave when q1 + q2 ≤ K0, and constant after-

wards (Lemma II.4). g(q1, q2) is concave in q1 in areas (i) and (iii) (which are jointly

R2), and decreases at constant slope −c in area (ii) (Lemma II.1). Firm 1’s profit

function is πTt
1 (q1, q2)− cq1 = f(q1 + q2) + g(q1, q2).

q1

q2

(i)

(ii)

(iii)

A

B

D E

qA
2

qB
2

K0

K0

q1

q2

B

C

qC
1

qC
2

qB
1 K0

K0

F

Figure A.1: Proof of Theorem II.2.

Consider now firm 1’s response function for q2 ≤ qB2 (refer to the left part of Figure

A.1). Note that for q1+q2 > K0, the total revenues of both firms, ΠTt(q1+q2), do not

change if firm 1 increases q1. Also, in no-trade scenario the revenues do not change in

Regions R1, R3, and R4. Thus, outside of areas (i), (ii), and (iii), the marginal effect

of increasing q1 is simply −c. Consequently, firm 1’s best response must be areas (i),

(ii), or (iii), for q2 ≤ qB2 .

Step 1: Separability of g(q1, q2).

By explicitly writing g(q1, q2) for region R2, it is easy to see that it is separable

in q1 and q2. Specifically, this is because, the revenue function in the pricing stage is
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(from case F in Table A.2):

πNp
i (qi, qj) =

−aq2i − bqiqj + (aw1 + bw1 + a2λ− b2λ)qi − (a2 − b2)λqj
a2 − b2

(A.1)

and, thus, the terms q1q2 cancel out, implying that g(q1, q2) is separable. Conse-

quently, g(q1, q2) = g1(q1) + g2(q2). Additionally, g1(q1) is concave.

Step 2: At most one jump between areas (i) and (iii).

While the maximizer of πTt
1 (q1, q2) as function of q2 is continuous, within each of

the area (i), (ii), or (iii) individually, it may, however, jump between areas. In this

step we consider q2 ∈ [qA2 , q
B
2 ) and show that the response function q∗1(q2) (right part

of Figure A.1) has at most one jump (point of discontinuity as a function of q2) when

considering jointly areas (i) and (iii). It suffices to show that, if for a given q2, q
∗
1(q2) is

in area (iii), then for any larger argument q2+ δ(δ > 0), q∗1(q2+ δ) is also in area (iii).

Consider points D and E, as shown in Figure A.1, and assume that when q2 = qD2

(the dotted line),the best response q∗1(q
D
2 ) ∈ (qD1 , q

E
1 ) in area (iii). For points D’ and

E’ on the higher lines, with qD
′

2 = qD2 + δ(δ > 0), we have qD
′

1 = qD1 − δ, and (as long

as qD
′

2 ≤ qB2 , we also have qE
′

1 > qE1 − δ. For any q1 ∈ [0, qD
′

1 ], we have

πTt
1 (q1, q2 + δ)− cq1

= f(q1 + q2 + δ) + g1(q1) + g2(q2 + δ)

= f(q1 + δ + q2) + g1(q1 + δ) + g2(q2)− g1(q1 + δ)− g2(q2) + g1(q1) + g2(q2 + δ)

≤ f(q∗1(q2) + q2) + g1(q
∗
1(q2))− [g1(q1 + δ)− g1(q1)] + g2(q2 + δ)

the above inequality is becauseq∗1(q2) is best response for q2

≤ f(q∗1(q2) + q2) + g1(q
∗
1(q2))− [g1(q

∗
1(q2))− g1(q

∗
1(q2)− δ)] + g2(q2 + δ)

because g1 is concave and q1 + δ < q∗1(q2)

= f(q∗1(q2) + q2) + g1(q
∗
1(q2)− δ) + g2(q2 + δ)

= f(q∗1(q2)− δ + q2 + δ) + g1(q
∗
1(q2)− δ) + g2(q2 + δ)
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= πTt
1 (q∗1(q2)− δ, q2 + δ)− c(q∗1(q2)− δ).

Thus, (q∗1(q2) − δ, q2 + δ) results in higher profit, for firm 1, than any (q1, q2 + δ) in

area (i). Note that (q∗1(q2) − δ, q2 + δ) is in area (iii). Therefore, the best response

q∗1(q2 + δ) is in area (iii). Consequently, there is at most one jump from area (i) to

region (iii).

Step 3: Jumps between areas (i) and (ii) cannot result in symmetric equi-

libria.

Now consider any q2 ∈ [0, qA2 ]. If there is any jump between area (i) and (ii),

assuming the jump points are C(qC1 , q
C
2 ) and F(qF1 , q

F
2 ) with qC2 = qF2 , we must have

qC1 > qB1 (refer to Figure A.1).

As qC1 and qF1 are both the best responses for the same q2, we must have ∂
∂q1

πTt
1 (qC1 , q

C
2 ) =

∂
∂q1

πTt
1 (qF1 , q

F
2 ) = c.

If we take into account the shape of ΠTt and (πNp
1 − πNp

2 ) (both are concave at

first and then constant), we get ∂
∂q1

πNp
1 (qF1 , q

F
2 )− ∂

∂q1
πNp
2 (qF1 , q2) = 0. From Equation

(2.7), we can express 1
2
ΠTt(qF1 + qF2 ) = πTt

1 (qF1 , q
F
2 ) − 1

2
(πNp

1 (qF1 , q
F
2 ) − πNp

2 (qF1 , q
F
2 )).

Thus, 1
2

∂
∂q1

ΠTt(qF1 , q2) = c− 0 = c. As qC1 < qF1 and ΠTt is concave for q1 + q2 ≤ K0,

we have 1
2

∂
∂q1

ΠTt(qC1 , q
C
2 ) >

1
2

∂
∂q1

ΠTt(qF1 , q
F
2 ) = c. Using Equation (2.7) again,we get

∂
∂q1

πNp
1 (qC1 , q

C
2 )− ∂

∂q1
πNp
2 (qC1 , q

C
2 ) < 0. In order to compare qB1 and qC1 , we first identify

q̂1that maximizes πNp
1 (q1, q

C
2 ) − πNp

2 (q1, q
C
2 ) = 0. From Equation(A.1) above, we get

q̂1 = (a+b)w+2(a2−b2)λ
2a

. From concavity of g1(q1), we have qC1 > q̂1. Also, it is easy to

verify that q̂1 > qB1 (qB1 = K1/2 from Lemma II.4). Thus, the jump between areas(i)

and (ii), if any, may only take place for q1 > qB1 . Consequently, for the purpose of

identifying symmetric equilibria, it can be ignored.

Step 4: Characterization of equilibria.

The jump between areas (i) and (iii), described in Step 2, is positive. The existence

of positive jumps still leads to existence of equilibria (possibly multiple) and for
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symmetric response functions, a symmetric equilibrium must exist in either area (i)

or area (iii) or both.

From Lemma II.4 and its proof, we express ΠTt(K) in the symmetric setting as

ΠTt(K) =


K(2w−K)
2(a−b)

if K ≤ K0

constant if K > K0

. (A.2)

In areas (i) and (iii) the profit function in trading case is given by Equations (2.7),

(A.1), and (A.2). Taking derivatives and making them equal to 0 results in two

necessary conditions for (low and high) equlibria. If equilibrium is in area (i), it is

(low equilibrium)

qT∗
i =

(a+ b)w + (a2 − b2)(λ− c)

2a+ b
.

If equilibrium in in area (iii), it is (high equilibrium)

qT∗
i = min

{
(a+ b)w + 2(a2 − b2)(λ− c)

2a
,
aw + (a2 − b2)λ

2a− b
, w

}
.

Whether the high or low equilibria exist apparently depends on cost c. If for

a given ĉ, low equilibrium exists, then for ∀c ≥ ĉ, the response function will have

lower values and, thus, the response functions will continue to intersect in area (i),

resulting in existence of low equilibrium. Hence there exists a threshold c1 such that

for ∀c ≥ c1, low equilibrium exists. Using a similar argument, we show that there

exists a thresholdc2 such that for ∀c ≤ c2, high equilibrium exists. Note that we

must have c1 ≤ c2, because otherwise there is no equilibrium for c ∈ (c2, c1), which

contradicts the proved-above existence result.

Step 5: Comparison of low and high equilibria.

In the symmetric setting, the final profit is 1
2
ΠTt(2qT∗

i ) − cqT∗
i . In Lemma II.4,

we showed ΠTt(K) is increasing and equals ΠCt(K) when K < w1+w2

2
; decreasing

148



when w1+w2

2
< K < K0; constant afterwards. While maximizers of ΠCt(K) − cK,

ΠTt − cK are the same K = KC∗, the equilibrium point for trade solution may be

different. Assume that both equilibria exist and let qHi and qLi denote the high and

low equilibria, respectively. Since the jump is between regions (i) and (iii) separated

by line q1 + q2 = K0 (and explicitly comparing with KC∗), we have

KC∗ ≤ 2qLi < K0 < 2qHi .

Since ΠTt(K)−cK is decreasing for K ≥ KC∗, we have ΠTt(2qLi )−2cqLi > ΠTt(2qHi )−

2cqHi . �

Proof of Theorem II.3.

When c ≥ c1, two firms order the same quantities in trade and no-trade scenarios.

As the market is deterministic and two firms are symmetric, in trade scenario there

is actually no inventory exchange, even though it is allowed. Thus, we have exactly

the same outcomes in these two (trade and no-trade) scenarios.

When c < c1, let ∆(c) be the difference between each firm’s profit in two scenarios

(using firm 1’s profit for the purpose of illustration throughout this proof).

∆(c) = (πTo
1 (qT∗

1 , qT∗
2 )− cqT∗

1 )− (πNo
1 (qN∗

1 , qN∗
2 )− cqN∗

1 ).

When c = c1, in trade scenario the low equilibrium still exists but will disappear

for any smaller c. If low equilibrium is played, the profit is the same as firms in no

trade scenario. If the high equilibrium is played, the profit is lower than that from

low equilibrium, thus lower than that from no trade scenario. Therefore, we have

∆(c−1 ) < 0. Next we show, for case of small and big w, that ∆(c) can intersect 0 at

most once in 0 ≤ c < c1.

Case 1: w < (a+ b)λ.
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We re-write the result of Theorem II.2 to differentiate between the cases listed in

the theorem: We denote cT1 = 2(a+b)λ−w
2(a+b)

, such that

qT∗
i =


w if c ≤ cT1

(a+b)w+2(a2−b2)(λ−c)
2a

if c > cT1

.

And, similarly, to compare no-trade cases, we use the threshold cN = (a2−b2)λ−wa
a2−b2

. As

cN < cT1, we have.

qN∗
i =


w if c ≤ cN

(a+b)w+(a2−b2)(λ−c)
2a+b

if c > cN
.

Therefore, we have

∆(c) =


πTo
1 (qT∗

1 , qT∗
2 ) if c ≤ cN

πTo
1 (qT∗

1 , qT∗
2 )− [(a2−b2)(c−λ)+aw][(a2−ab)c+(a2−b2)λ+(a+b)w]

(a−b)(2a+b)2
if cN < c ≤ cT1

πTo
1 (qT∗

1 , qT∗
2 ) + (a+b)(A1c2+A2c+A3)

2a(a−b)(2a+b)2
if c > cT1

,

where

A1 = 2(3a+ b)(a+ b)(a− b)2 > 0,

A2 = −(a− b)(4a+ b)(2a2λ− 2b2λ+ bw),

A3 = 2a(w + aλ− bλ)(a2λ− b2λ− aw).

First note that, even though quantities qT∗
i depend on c, we have that πTo

1 (qT∗
i , qT∗

i )

is constant in c forK ≤ K0:First, recall that the high equilibrium satisfies: qT∗
1 +qT∗

2 >

K0. Second, π
To
1 (qT∗

1 , qT∗
2 ) = 1

2
ΠTt(qT∗

1 + qT∗
2 ) and ΠTt is constant for K > K0. Thus,

πTo
1 (qT∗

1 , qT∗
2 ) is also constant, i.e., independent of c. Therefore, we only need to
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consider the remaining terms in ∆(c).

From above, we have that for c ≤ cN , ∆(c) is a constant. For cN < c ≤ cT1, ∆(c)

is concave and decreasing. For c > cT1, ∆(c) is convex. Hence, with ∆(c−1 ) < 0 and

due to its continuity, ∆(c) can intersect 0 at most once in 0 ≤ c < c1.

Case 2: w ≥ (a+ b)λ.

Comparing again the terms in Theorem II.2, we differentiate between the relevant

cases. We denote cT2 = 2a2λ−2b2λ+wb
4a2+2ab−2b2

, such that

qT∗
i =


aw+(a2−b2)λ

2a−b
if c ≤ cT2

(a+b)w+2(a2−b2)(λ−c)
2a

if c > cT2

.

In this case, cN < 0. thus, we have

∆(c) =


πTo
1 (qT∗

1 , qT∗
2 )− B1c2+B2c+B3

(a−b)(2a−b)(2a+b)2
if c ≤ cT2

πTo
1 (qT∗

1 , qT∗
2 ) + (a+b)(A1c2+A2c+A3)

2a(a−b)(2a+b)2
if c > cT2

,

where

B1 = a(2a− b)(a+ b)(a− b)2 > 0,

B2 = a(a− b)(2a+ 3b)(2a2λ− 2b2λ+ bw) > 0,

B3 = −(2a− b)(a+ b)(w + aλ− bλ)(a2λ− b2λ− aw).

Similarly, for c ≤ cT2, ∆(c) is concave and decreasing. For c > cT2, ∆(c) is convex.

Hence, ∆(c) can intersect 0 at most once in 0 ≤ c < c1.

If ∆(0) < 0, we have ∆(c) < 0 if 0 ≤ c < c1.
2 Otherwise, we let c0 < c1 be the

unique cost such that ∆(c0) = 0, which satisfies the theorem’s statement. �

2Formally, we can denote c0 = −1.
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Proof of Theorem II.4.

Let CST/N(c) be the consumer surplus in trade/no-trade scenario as a function of

unit cost c. As long as the high equilibrium is played (c < c1), CST (c) is a constant

across all purchasing costs c (even though purchased quantities change, the prices

and the resulting sales are not influenced). Thus, it is sufficient to show that CSN(c)

is decreasing in c ∈ [0, c1]. In the no-trade equilibrium, both firms order qN∗
i . From

the inverse demand function we have pi =
awi+bwj−aqi−bqj

a2−b2
, and the consumer surplus

can be evaluated (using Equation (2.9)) as

CSN(c) =
(qN∗

i (c))2

a− b
.

Since qN∗
i (c), given in Theorem II.2, is non-increasing in cost c, we also have that

CSN(c) is non-increasing in c.3 �

Proof of Theorem II.5.

Part (1): Centralized Scenario.

Order quantity and profit are not influenced, which is intuitive and follows directly

from the proof of Theorem II.1. With the same order quantity, the price and sales do

not change either (follows right away from the pricing results in Table A.1). Therefore,

the consumer surplus is also constant as β or λ changes.

Part (2): No-trade Scenario.

The order quantity, qN∗
i is non-decreasing in both β and λ, as can be easily verified

based on Theorem II.2. The consumer surplus is also non-decreasing, as it increases

in qN∗
i , with other factors independent of β and λ, as shown in the proof of Theorem

II.4.

From the proof of Lemma II.1, using solution for region F in Table A.2, the profit

3Note that the theorem allows consumer surplus in trade case to be higher for all c ∈ (0, c1). If
CST (c−1 ) > CSN (c−1 ), then there exist c3 such that CST (c) > CSN (c) for c3 < c < c1. (c3 may be
0.) Otherwise if CST (c−1 ) ≤ CSN (c−1 ), CST (c) ≤ CSN (c) always holds.
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function for no-trade scenario simplifies to

πNo
i (qN∗

i , qN∗
i ) =

qN∗
i (w − qN∗

i )

a− b
− cqN∗

i .

From Theorem II.2, we have that qN∗
i > 1

2
(w − ac + bc), which immediately implies

that πNo
i (qN∗

i , qN∗
i ) is non-increasing when qN∗

i is non-decreasing.

Part (3): Trade Scenario.

In the low equilibrium, the ordering quantity, profit, and consumer surplus are

the same as in no-trade scenario, thus monotonicity holds as shown above.

In the high equilibrium, it is easy to verify, based on Theorem II.2, that the

ordering quantity is non-decreasing in both λ and β. Therefore, in the rest of the

proof we focus on monotonicity of the profit and of the consumer surplus for the high

equilibrium.

Recall that the profit is: πTt
i (qT∗

i , qT∗
i ) − cqT∗

i = 1
2
ΠTt(2qT∗

i ) − cqT∗
i . ΠTt(2qT∗

i )

is independent of qT∗
i (because in high equilibrium we have leftovers, 2qT∗

i > K0),

but it changes with λ and β. We will show that ΠTt is non-increasing in β and λ.

With qT∗
i non-decreasing, this will imply that πTt

i must be non-increasing. Below we

show that: Total revenue, ΠTt, is non-increasing in λ and β; and consumer surplus is

non-decreasing in λ and β.

In the high equilibrium, trade always results in an asymmetric allocation, as dis-

cussed below Lemma II.4. In the symmetric setting, the final resource allocation is

either in R3 or R4 (Figure 2.2(b)). Without loss of generality, we assume that it is in

R4. Recall that in R4 firm 2 has leftovers so each firm’s final revenue, πNp
i , depends

on firm 1’s final inventory q̄1.

Two subregions C and G. Optimal allocation (bargaining outcome) q̄1 for given

λ or β.

Even within R4, πNp
1 + πNp

2 is not always concave in q̄1. Referring to Figure A.2,
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R4 is divided into two subregions, labeled as C and G corresponding to cases C and

G in Table A.2. Denote the unconstrained maximizer in subregions C and G are q̄
[C]
1

and q̄
[G]
1 .4

q1

q2

( qT∗1 , qT∗2 )

q̄C1 q̄G1

C
︷ ︸︸ ︷

G
︷ ︸︸ ︷

Figure A.2: Proof of Theorem II.5.

Analysis of subregion C.

From Table A.2, we obtain the total revenue function and derive its maximizer,

q̄
[C]
1 :

q̄
[C]
1 =

(4a3 − 4ab2 − b3)w − 2b(a− b)(a+ b)2λ

2a(4a2 − 3b2)

If q̄
[C]
1 > 0, the optimized total revenue in subregion C, labeled as Π[C], is

Π[C] =
(8a2 + 8ab+ b2)w2 − 4b(a+ b)2λw − 4(a− b)(a+ b)3λ2

4a(4a2 − 3b2)

=
−4α(α+ 2β)3λ2 − 4βw(α+ 2β)2λ+ w2(8α2 + 24αβ + 17β2)

4(α+ β)(4α2 + 8αβ + β2)
.

4We use [C] to denote subregion C, to differentiate it from centralized solution C.
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Π[C] is clearly non-increasing in λ. We also show that it is non-increasing in β.

(Formal verification requires a few additional steps.)

Using the same approach, we derive the consumer surplus in subregion C, labeled

as CS[C],

CS[C] =
4(a− b)2(a+ b)3λ2 + 8aw(a− b)(a+ b)2λ+ w2(8a3 + 4a2b− 3ab2 − b3)

8a(a− b)(4a2 − 3b2)

=
4α2(α+ 2β)3λ2 + 8αw(α+ β)(α+ 2β)2λ+ w2(8α3 + 28α2β + 29αβ2 + 8β3)

8α(α+ β)(4α2 + 8αβ + β2)
.

CS[C] is again non-decreasing in λ and with a few additional steps can be shown to

be non-decreasing in β.

If q̄
[C]
1 ≤ 0, q̄1 = 0 is optimal in subregion C. Following the same approach, the

total revenue (Π[0]) and consumer surplus (CS[0]) are as follows.

Π[0] =
(w − aλ)(a+ b)2(a2λ+ aw − b2λ)

(2a2 − b2)2

=
(α+ 2β)2(w − αλ− βλ)(αw + βw + α2λ+ 2αβλ)

(2α2 + 4αβ + β2)2
,

CS[0] =
a(a+ b)(a2λ+ aw − b2λ)2

2(a− b)(2a2 − b2)2

=
(α+ β)(α+ 2β)(αw + βw + α2λ+ 2αβλ)2

2α(2α2 + 4αβ + β2)2
.

Again, it can be verified that Π[0] is non-increasing in both λ and β and that CS[0] is

non-decreasing in both λ and β.

Analysis of subregion G.

From table A.2, we use optimal price for subregion G and,solving the maximization

problem, we obtain the optimal quantity q̄
[G]
1 = w

2
.

With the optimal q̄
[G]
1 , the total revenue (Π[G]) and consumer surplus (CS[G])
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become

Π[G] =
w2

4a
=

w2

4(α+ β)
,

CS[G] =
(5a+ 3b)w2

8a(a− b)
=

(5α+ 8β)w2

8α(α+ β)
.

Π[G] and CS[G] are independent of λ and non-increasing in β.

Potential discontinuity results in at most one jump in q̄1. The allocation, q̄1,

changes smoothly in λ and β except at most one jump from subregion C to subregion

G.

While the jump will not effect the revenue (as revenues must be equal when

switching between two forms of allocations), it may influence the consumer surplus.

Therefore, we need to explicitly describe these two cases. The optimal q̄1 can be

either max{0, q̄[C]
1 } or q̄

[G]
1 . Since max{0, q̄[C]

1 } < q̄
[G]
1 (and the revenue is concave in

each subregion), the boundary between subregions C and G is never optimal. From

Table A.2, when w ≤ aλ, only subregion G exists (subregion C is empty); When

aλ < w < (a + b)λ, both subregions C and G exist; When w ≥ (a + b)λ, only

subregion C exists. Thus, we only need to show that, when aλ < w < (a+ b)λ, choice

of q̄1 only has one jump from max{0, q̄[C]
1 } to q̄

[G]
1 as λ or β increases. In order to

prove this, we show Π[G] − Π[C] and Π[G] − Π[0] are nondecreasing in λ and β. That

is, as λ or β increases, once q̄1 switches to q̄
[G]
1 , it never returns to subregion C.

For λ the result is straightforward: Since Π[G] is constant in λ while Π[0] and Π[C]

are non-increasing in λ, we must have Π[G] −Π[C] and Π[G] −Π[0] are non-decreasing

in λ.

For β, we have:

Π[G] − Π[C] =
(α+ 2β)2(α2λ2 + 2αβλ2 + βλw − w2)

(α+ β)(4α2 + 8αβ + β2)
,

Π[G] − Π[0] =
1

4(α+ β)(2α2 + 4αβ + β2)2
(4α(α+ β)2(α+ 2β)3λ2
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+ 4β2w(α+ β)(α+ 2β)2λ− βw2(2α+ 3β)(4α2 + 10αβ + 5β2)).

Both Π[G] − Π[C] and Π[G] − Π[0] can be shown to be non-decreasing in β.

The effect of discontinuity of q̄1 on consumer surplus.

At the jump point, the revenues are equal. The consumer surplus, however, may

potentially change. Let C̄S
[C]
(q1) and C̄S

[G]
(q1) be the consumer surplus in subregions

C and G, before q1 is optimally chosen. Using optimal prices from Table A.2, consumer

surplus (2.9) becomes

C̄S
[C]
(q1) =

1

2(a− b)(2a2 − b2)2
(a(a− b)(4a2 − 3b2)q21

+ 2b(a− b)(a+ b)(a2λ+ aw − b2λ)q1 + a(a+ b)(a2λ+ aw − b2λ)2),

C̄S
[G]
(q1) =

(a− b)q21 + (a+ b)w2

2a(a− b)
.

Both C̄S
[C]
(q1) and C̄S

[G]
(q1) are increasing for q1 ≥ 0. As a result, when firm 1’s

inventory increases from max{0, q̄[C]
1 } to q̄

[G]
1 , the consumer surplus also increases.

Summary for Profit and Consumer Surplus with High Equilibrium in (3)

Trade Scenarios.

Re-iterating, we have shown above: The profit changes in the same direction as

the total revenue. Both total revenue and consumer surplus depend on firm 1’s final

inventory q̄1. The optimal q̄1 can be either max{0, q̄[C]
1 } or q̄

[G]
1 . If q̄1 remains in the

same subregion (C or G), the total revenue is non-increasing the consumer surplus

non-decreasing in β and λ. For a certain β or λ, optimal q̄1 jumps from subregion C

to subregion G. The total revenue remains the same in the jump while the consumer

surplus goes up. �

Proof of Theorem II.6.

Part (1): Centralized Scenario.
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For any market realization, ΠCt(K) is concave, according to Lemma II.3. There-

fore, ΠCo(K) is concave as well. Thus, there exists a unique optimal ordering quantity

KC∗.

Part (2): No-trade Scenario.

As β = λ = 0 and there is no trade option, the two firms are essentially operating

completely independently. Their profit functions are concave and, thus, there exists

a unique optimal solution qN∗
i for each firm.

Part (3): Trade Scenario.

Denote firm 1’s best response function as BR(q2). Below we prove that BR(q2)

is continuous and its slope is between [−1, 0].

Since λ = β = 0, the pricing stage revenue πNp
i is a function of only qi (independent

of qj), and it is increasing and strictly concave when qi ≤ wi

2
, and constant when

qi >
wi

2
. In Lemma II.4, λ = β = 0 leads to K1 = w1+w2

2
. As a result, ΠTt(K) is

increasing and strictly concave when K ≤ w1+w2

2
, and constant when K > w1+w2

2
.

Recall that πTt
1 (q1, q2) =

1
2
(ΠTt(q1+q2)+πNp

1 (q1)−πNp
2 (q2)). Therefore, π

Tt
1 (q1, q2|w1, w2)

is increasing and strictly concave for q1 ≤ max{w1+w2

2
− q2,

w1

2
}, and constant other-

wise. The ordering stage revenue πTo
1 (q1, q2) =

∫
w1,w2

πTt
1 (q1, q2|w1, w2) is also increas-

ing and strictly concave up to a threshold, and constant for any greater q1. Solving

∂
∂q1

πTo
1 (q1, q2) = c, we get BR(q2) and at (BR(q2), q2), π1 must be strictly concave.

Therefore the response function must be continuous.

Assume firm 2’s order quantity increases from q2 to q2 + ε (ε > 0). Then we have

∂

∂q1
πTt
1 (BR(q2), q2 + ε|w1, w2)

=
1

2

∂

∂q1
ΠTt(BR(q2) + q2 + ε|w1, w2) +

1

2

∂

∂q1
πNp
1 (BR(q2)|w1)

≤ 1

2

∂

∂q1
ΠTt(BR(q2) + q2|w1, w2) +

1

2

∂

∂q1
πNp
1 (BR(q2)|w1)

=
∂

∂q1
πTt
1 (BR(q2), q2|w1, w2).
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Then we have

∂

∂q1
πTo
1 (BR(q2), q2 + ε) ≤ ∂

∂q1
πTo
1 (BR(q2), q2) = c.

On the other hand, we also have

∂

∂q1
πTt
1 (BR(q2)− ε, q2 + ε|w1, w2)

=
1

2

∂

∂q1
ΠTt(BR(q2) + q2|w1, w2) +

1

2

∂

∂q1
πNp
1 (BR(q2)− ε|w1)

≥ 1

2

∂

∂q1
ΠTt(BR(q2) + q2|w1, w2) +

1

2

∂

∂q1
πNp
1 (BR(q2)|w1)

=
∂

∂q1
πTt
1 (BR(q2), q2)

(A.3)

and

∂

∂q1
πTo
1 (BR(q2)− ε, q2 + ε) ≥ ∂

∂q1
πTo
1 (BR(q2), q2) = c. (A.4)

Since ∂
∂q1

πTo
1 (BR(q2 + ε), q2 + ε) = c and the partial derivative is non-decreasing, we

immediately have

BR(q2)− ε ≤ BR(q2 + ε) ≤ BR(q2).

Thus, the slope of the response function is between [−1, 0].

To guarantee the uniqueness, we next show that the two response functions cannot

have slope of −1 at the same point. Let ui be the upper bound of wi’s distribution.

Firm 1’s ordering quantity q1 should never exceed max{u1

2
, u1+u2

2
} because for any

market realization extra units have zero marginal benefit. That is represented by

regions B1, F, C1 and C2 in Figure A.3 (regions named after Table A.2).

In region B1, πNp
1 (q1|w1) is constant for any w1 realization, and thus equality holds

in (A.3) and (A.4). Consequently, the part of response function that falls into region

B1 has slope −1. In region F, C1 and C2, πNp
1 (q1|w1) is strictly concave if w1 realizes

to be greater than 2q1 and constant otherwise. That is, in (A.3), strictly inequality
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q1

q2

F B1 B2

C1

C2

u1

2

u2

2

Figure A.3: Proof of Theorem II.6.

holds at least for some realization of w1. Since πTo
1 is the average of πNp

1 (q1|w1) over

all possible w1, the inequality in (A.3) must hold. That is, when the response function

falls into region F, C1 and C2, the slope must be strictly greater than −1.

Similarly, the slope of firm 2’s response function is −1 in region C1, and strictly

greater than −1 in region F, B1 and B2. Therefore, slopes of their response functions

cannot simultaneously be −1. �

Proof of Theorem II.7.

For any given market size realization, the revenue function in independent markets

is

πTt
1 (q1, q2|w1, w2) =

1

2
ΠTt(q1 + q2|w1, w2) +

1

2
πNp
1 (q1|w1, w2)−

1

2
πNp
2 (q2|w1, w2).

Taking derivative with respect to q1, we have

∂

∂q1
πTt
1 (q1, q2|w1, w2) =

1

2

∂

∂q1
ΠTt(q1 + q2|w1, w2) +

1

2

∂

∂q1
πNp
1 (q1, q2|w1, w2).
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From Lemma II.4 we have that ΠTt(K) = ΠCt(K), when K ≤ w1+w2

2
and that

these two functions are constant for K ≥ K1. However, in the special case when λ =

β = 0, K1 =
w1+w2

2
, implying ΠTt(K) = ΠCt(K) for all K. Therefore, the derivative

function in trade scenario is an average of that in centralized scenario and no-trade

scenario, implying that the response function in trade scenario is always between that

in centralized scenario and no-trade scenario. In no-trade scenario, response function

is a horizontal line since the decision is not affected by the competitor. Let (qN∗
1 , qN∗

2 )

be optimal decisions in no-trade scenario, KC∗ be the optimal total inventory level

in centralized scenario. Then (qT∗
1 , qT∗

2 ) must fall into the triangle given by x = qN∗
1 ,

y = qN∗
2 , and x+ y = KC∗. Therefore, we have either

qN∗
1 ≤ qT∗

1 , qN∗
2 ≤ qT∗

2 , qT∗
1 + qT∗

w ≤ KC∗,

or

qN∗
1 ≥ qT∗

1 , qN∗
2 ≥ qT∗

2 , qT∗
1 + qT∗

w ≥ KC∗.

�

Proof of Theorem II.8.

Given initial inventory (q1, q2) and market size realization (w1, w2), we have

πTt
1 (q1, q2) =

1

2
(ΠTt(q1 + q2) + πNp

1 (q1)− πNp
2 (q2))

≥ 1

2
(πNp

1 (q1) + πNp
2 (q2) + πNp

1 (q1)− πNp
2 (q2)) = πNp

1 (q1).

We immediately extend this result to the order stage profit by integration

πTo
1 (q1, q2) ≥ πNo

1 (q1).

Now let qT∗
i and qN∗

i be the equilibrium ordering quantities in trade and no-trade
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scenarios, we have

πNo
1 (qN∗

1 )− cqN∗
1 ≤ πTo

1 (qN∗
1 , qT∗

2 )− cqN∗
1 ≤ πTo

1 (qT∗
1 , qT∗

2 )− cqT∗
1 .

�

Proof of Theorem II.9.

Part (1): Centralized Scenario.

For any market realization, ΠCt(K) is concave, according to Lemma II.3. There-

fore, ΠCo(K) is concave as well. Since the profit is ΠCo(K)− cK and ΠCo is strictly

concave until the maximum, the uniqueness follows.

Part (2): No-trade Scenario.

For given (w1, w2), firms sell all inventories only in region R2 (see Figure II.1(b)),

which we refer to as clearance region. The intersection of the four regions is (2a
2w1+abw2

4a2−b2
,

2a2w2+abw1

4a2−b2
) (from Lemma II.1 case A). Since wi ∼ U [l, u], the clearance region R2 is

largest when w1 = w2 = u. Therefore, the symmetric equilibrium in the ordering

stage, if it exists, has to have each of the order quantities in the interval [0, au
2a−b

].

In Figure A.4, the order quantities (q1, q2) are fixed, and the axis are the market

realization (w1, w2). This is another representation of the result in Figure 2.1(b) and

Regions 1 through 4 are labeled in the same way. The revenue function in the ordering

stage, πNo
1 (q1, q2), is calculated by integrating the pricing-stage revenue, πNp

1 (q1, q2),

over [l, u]2 (dashed square). As the regions change in (q1, q2), the overall revenue

function consists of many cases (the regions have different analytical form and the

revenue depends also on relationships between market realizations and quantities).

The closed-form expression for πNo
1 (q1, q2) are fairly complicated and they are omitted

here. However, the expressions are available from the authors upon request.

The general idea of the proof is as follows: When q2 ∈ [0, au
2a−b

], we want to show
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Figure A.4: Proof of Theorem II.9

πNo
1 (q1, q2) is unimodal in q1. It suffices to show that πNo′

1 (q1, q2) is quasi-convex in

q1 and limq1→∞ πNo′
1 (q1, q2) = 0. When 0 ≤ q2 ≤ 2a2u+abl

4a2−b2
, this can be proved without

any additional conditions. When 2a2u+abl
4a2−b2

< q2 ≤ au
2a−b

, we show the same property

with additional conditions:

4a3 − 4a2b− 2ab2 + b3 ≥ 0,

u ≥ 4

3
l.

With conditions above, the response function is continuous in [0, au
2a−b

] and q∗2(
au

2a−b
) <

au
2a−b

. Since two firms are symmetric, there must exist at least one symmetric equilib-

rium in area [0, au
2a−b

]2. The details of the proof are available on request.

Part (3): Trade Scenario.

The sufficient conditions require that the purchasing cost is sufficiently high and
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they effectively imply that both firms sell all inventory.5 We show below that c ≥

c(a, b, l, u) is a sufficient condition leading to no leftovers.

For given (w1, w2), firms sell all inventories only in region R2 (Figure II.1(b)) and

the intersection of the four regions is (2a
2w1+abw2

4a2−b2
,2a

2w2+abw1

4a2−b2
) (from Lemma II.1 case A).

Since l/2 < al
2a−b

, if the optimal order quantity (q∗1, q
∗
2) ∈ [0, l/2]2, firms can always sell

all the inventory, even for the least favorable market-size realizations. Recall that firm

1’s revenue function is πTt
1 (q1, q2) = 1

2

(
ΠTt(q1 + q2) + πNp

1 (q1, q2)− πNp
2 (q1, q2)

)
. In

order to show existence of equilibrium, we modify the profit function for q1 >
aw1+bw2

2a

and replace it by a higher profit. The modified function is well behaved and easier to

analyze. For the modified function, we show that the equilibrium would anyhow be

q1 ≤ l
2
(that is in the region, where the values are not modified).

Specifically, we construct π̂Tt
1 (q1, q2) by replacing ΠTt by ΠCt and replacing πNp

1 −

πNp
2 by π̂Np

1 , where ΠCt is the centralized revenue of both firms and

π̂Np
1 (q1, q2) =


πNp
1 (q1, q2)− πNp

2 (q1, q2) if q1 ≤ aw1+bw2

2a

πNp
1 (aw1+bw2

2a
, q2)− πNp

2 (aw1+bw2

2a
, q2) otherwise

.

We have ΠCt is non-decreasing and concave (from Lemma II.3). Additionally, ΠCt ≥

ΠTt and these two are equal when K ≤ w1+w2

2
(from Lemma II.4). Thus π̂Tt

1 (q1, q2) =

πTt
1 (q1, q2) for q1 ≤ aw1+bw2

2a
.

We also have πNp
1 (q1, q2) − πNp

2 (q1, q2) is concave and increasing in q1 when q1 ≤
aw1+bw2

2a
, and it is constant when q1 >

aw1+bw2

2a
. Therefore, π̂Np

1 (q1, q2) is non-decreasing

and concave in q1. Additionally, π̂
Np
1 (q1, q2) ≥ πNp

1 (q1, q2)− πNp
2 (q1, q2). Therefore,

π̂Tt
1 (q1, q2) =

1

2
(ΠCt(q1 + q2) + π̂Np

1 (q1, q2)) ≥ πTt
1 (q1, q2)

5If for some realization firms have leftovers after trading and pricing, the revenue function is not
necessarily unimodal.
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where equality holds when q1 ≤ min{w1+w2

2
− q2,

aw1+bw2

2a
}. Denote

π̂To(q1, q2) =

∫
w1,w2

π̂Tt(q1, q2).

We immediately have π̂To ≥ πTo, where equality holds when (q1, q2) ∈ [0, l/2]2. Ad-

ditionally, π̂To(q1, q2) is concave in q1 if q2 ≤ l
2
. Let q̂∗1(q2) be the q1 that solves

∂π̂To(q1,q2)
∂q1

= c. If

q̂∗1(q2 =
l

2
) ≤ l

2
, (A.5)

q̂∗1(q2) must intersect the diagonal line at (q̂, q̂) with q̂ ≤ l
2
. In fact, (q̂, q̂) is also an

equilibrium for the original problem.

The condition (A.5) is equivalent to:

c ≥ ∂π̂To
1

∂q1

∣∣∣∣
(l/2,l/2)

,

which can easily be translated into the condition stated in the theorem. �

Proof of Theorem II.10.

Part (1): Centralized Scenario.

As terms of λ cancel out in the total revenue function ΠCo(K), λ does not play any

role in the centralized decision. Therefore, the proof is same as the proof of Theorem

II.6(1).

Part (2): No-trade Scenario.

For any given (w1, w2) and qj, π
Np
i (qi, qj) is increasing and concave in qi. The

concavity is strict for the increasing part. Therefore, πNo
i (qi, qj) is also increasing and

concave in qi and similarly strictly concave while increasing. Therefore, there exists

unique solution q∗i satisfying

∂πNo
i (qi, qj)

∂qi
= c.
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Note that λ(µi − γs2) is a constant for any given qj, hence q∗i is independent of qj,

which means it is a dominant strategy.

Part (3): Trade Scenario.

In symmetric settings, if the response function of a firm only has positive jumps,

then it must intersect the diagonal line. The intersection is obviously a symmetric

equilibrium. In the following, we prove the theorem by showing that the response

function may only have positive jumps.

Recall (from the Model section) that the revenue of firm 1 in the trading stage is

πTt
1 (q1, q2) =

1

2

(
ΠTt(q1 + q2) + πNp

1 (q1, q2)− πNp
2 (q1, q2)

)
.

The terms πNp
i ’s, based on the proof of Lemma II.1, can be expressed as:

If wi − aλ ≥ 0,

πNp
i =


qi
a
(wi + aλ− qi) + λ(µi − sj) if qi ≤ wi+aλ

2

1
4a
(wi + aλ)2 + λ(µi − sj) if qi >

wi+aλ
2

;

If wi − aλ < 0,

πNp
i =


qi
a
(wi + aλ− qi) + λ(µi − sj) if qi ≤ wi

λwi + λ(µi − sj) if qi > wi

.

Taking derivative with respect to q1, we get:

∂πNp
1

∂q1
=


(w1+aλ−2q1)

a
if q1 ≤ min{w1+aλ

2
, w1}

0 if q1 > min{w1+aλ
2

, w1}
,

∂πNp
2

∂q1
=


−λ if q1 ≤ min{w1+aλ

2
, w1}

0 if q1 > min{w1+aλ
2

, w1}
.
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It is straightforward to see that πNp′

1 is non-increasing in q1 and πNp′

2 is non-decreasing

in q1. For any market realization (w1, w2), we can easily check that

πNp′

1 (q1 − ε, q2 + ε) ≥ πNp′

1 (q1, q2),

πNp′

2 (q1 − ε, q2 + ε) ≤ πNp′

2 (q1, q2),

for ∀ε > 0, where the derivatives are with respect to K. Therefore, we have

πTt′

1 (q1 − ε, q2 + ε) ≥ πTt′

1 (q1, q2).

By taking integration, we extends this result to the ordering stage revenue:

πTo′

1 (q1 − ε, q2 + ε) ≥ πTo′

1 (q1, q2).

For a given q2, let q
∗
1(q2) be the optimal response. We immediately have

q∗1(q2 + ε) ≥ q∗1(q2)− ε for ∀ε > 0.

Even though we have not excluded the possibility that q∗1(q2) may be decreasing, it

cannot decrease faster than with slope of −1 and, thus, it can only have positive

jumps, if any. �

167



APPENDIX B

Proofs of Lemmas and Theorems in Chapter III

Proof of Lemma III.1.

The results immediately follow by checking the close form solution of p∗2 in Table

3.2. �

Proof of Theorem III.1.

Taking first order condition on θ from Equation (3.1), we obtain

θ∗ = pd1 + p2d2 and π∗
M =

1

2
θ∗2.

Therefore, it suffices to choose (p, p2) such that pd1 + p2d2 is maximized. The proof

is approached by plugging di(p, p2) into pd1 + p2d2.

(1) When α+ v ≤ 1.

It is obvious that optimal p2 ∈ [v, 1−α], and for given p2, optimal p ∈ [v, p2 +α].

Within the reduced set, we have two cases:

If v ≤ p ≤ (1−v)p2−αv
1−v−α

, we have

d1 =
1− p

1− v
, d2 = 0.
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Therefore p∗ = max{1
2
, v}. p2 does not matter since d2 = 0.

If (1−v)p2−αv
1−v−α

< p ≤ p2 + α, we have

d1 = 1− p− p2
α

, d2 =
p− p2
α

− p2 − v

1− v − α
.

From the first order condition on p, we get p = p2 + α/2. Replacing p, p2 is solve as

p2 = (1− α)/2. Recall that p2 is bounded by v from lower end, we have

p∗2 = max

{
v,

1− α

2

}
, p∗ = p∗2 +

α

2
.

Comparing the optimal solutions from two cases, we find that the second pricing

policy is always better than the first one.

(2) When α+ v > 1.

It is obvious that optimal p ∈ [v, 1], and for given p, optimal p2 ∈
[
v, p− α(p−v)

1−v

]
.

From the first order condition on p2, we get

p∗2 =


v
2
, if p > v(2α+v−1)

2(α+v−1)

p− α(p−v)
1−v

, otherwise

.

Then we solve p∗:

p∗ =


1
2
, if (1− 2v)α− (1− v)2 > 0

2αv−2v+v2+1
2α

, otherwise

.

�

Proof of Theorem III.2.

Results immediately follow by taking the first order derivative of the profit func-

tion (3.2). �

169



Proof of Lemma III.2.

When v = 0, the feasible regions reduce to S1

∪
S2

∪
S3. As πM1 = 0, we focus

on S2

∪
S3, the reduced forms of which are

S2 ={(w, p) : max{(1 + α)p− 2α, (α− 1)p} < w < (1− α)p},

S3 ={(w, p) : (1− α)p < w < p}.

The proof consists of three parts: (1)α ≥ 1; (2)1
2
≤ α < 1; (3)α < 1/2.

(1) When α ≥ 1.

When α ≥ 1, S2 = ∅ and πMAP (w, p) = πRPM(w, p) for any (w, p) ∈ S3. Thus

π∗
MAP = π∗

RPM .

In part (2) and (3), S2 reduces to S2 = {(w, p) : (1 + α)p− 2α < w < (1− α)p}.

(2) When 1
2
≤ α < 1.

We show in the following that the optimal solution has to satisfy w > (1 − α)p,

i.e. the maximizer is not in S2.

(2a) If p ≤ 2/3.

Recall that in the range:

πM2 =
1

4α(1− α)
(2α− (1 + α)p+ w)(p− w)(2− 2α− (1− α)p− w)w.

If we let πM2 = 0 and solve w, we get the following four roots:

w1 = 0, w2 = (1 + α)p− 2α,w3 = 2− 2α− (1− α)p, w4 = p,

and the following inequality holds:

max{w1, w2} ≤ (1− α)p ≤ min{w3, w4}.
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This means, πM2 is unimodal in w. Then we look at the first order derivative:

∂πM2

∂w
|w=(1−α)p = p(2− 3p)(1− p)(2α− 1)/2 ≥ 0, if p ≤ 2/3.

As a result, when max{(1+α)p− 2α, 0} < w ≤ (1−α)p with p ≤ 2/3, πM2 is always

increasing in w. Therefore they are not optimal.

(2b) If p > 2/3.

We rearrange (1+α)p− 2α < w ≤ (1−α)p as w
1−α

≤ p ≤ w+2α
1+α

. Then in this part

we show that (w, p) is not optimal if max{ w
1−α

, 2
3
} ≤ p ≤ w+2α

1+α
. (we consider when

w+2α
1+α

> 2
3
, otherwise the proof is done.)

Let πM2 = 0 and solve p, we get the following three roots:

p1 = w, p2 =
w + 2α

1 + α
, p3 = 2− w

1− α
,

and we have p1 ≤ max{ w
1−α

, 2
3
} ≤ p2 ≤ p3.

If w
1−α

≥ 2/3, we evaluate

∂πM2

∂p

∣∣∣∣
p= w

1−α

=
w(1− α− w)(2− 2α− (3 + 2α)w)

2(1− α)2
≤ 0, if

w

1− α
≥ 2

3
.

If w
1−α

< 2
3
, we evaluate

∂πM2

∂p

∣∣∣∣
p=2/3

=
w[(−6α− 3)w2 + (−8α2 + 2α+ 8)w + 4α− 4]

12α(1− α)
≤ 0, if

w

1− α
< 2/3.

In either case, πM2 is decreasing in p when max{ w
1−α

, 2/3} ≤ p ≤ w+2α
1+α

. Therefore,

such (w, p) ∈ S2 is not optimal.

Combining (2a) and (2b), we conclude that optimal solution is always contained

in S3. Solve πM3 and get optimal solution: w∗ = 1/4, p∗ = 1/2, π∗
MAP = 1/64 = π∗

RPM

when α ≥ 1/2.
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(3) When α < 1/2.

When α < 1/2, we have (1 + α)p− 2α < w ≤ (1− α)p ≤ αp+ 1− 2α. Therefore,

[2α− (1 + α)p+ w][2− 2α− (1− α)p− w]

≤ [2α− (1 + α)p+ (1− α)p][2− 2α− (1− α)p− (1− α)p]

= 4α(1− α)(1− p)2.

For any (w, p) ∈ S2, we have

πM2 =
1

4α(1− α)
w(p− w)[2α− (1 + α)p+ w][2− 2α− (1− α)p− w]

<= (1− p)2(p− w)w = πRPM(w, p).

For any (w, p) ∈ S3, we have πM3 = πRPM . Therefore we have π∗
MAP ≤ π∗

RPM . �

Proof of Lemma III.3.

For notational simplicity, we drop the subscript MAP . As shown in Lemma III.2,

we have w∗(α) = 1/4 and p∗(α) = 1/2 if α ≥ 1/2. If 0 < α < 1/2, πM3(w, p, α)

is decreasing in w in S3. Therefore, (w∗, p∗) must fall in S̄2 (S2 is the interior). As

shown in Figure 3.1, this is a triangle in (w, p) coordinate. Next we prove a sequence

of properties, which lead to the result step by step.

Step 1: (w∗, p∗) ∈ S2 (not on the boundaries of S2).

This essentially says the optimal solution is not in the boundary of the triangle

when 0 < α < 1/2. When w = 0 or p = w+2α
1+α

, which define the left boundary of S2,

we have πM2(w, p, α) = 0 so they cannot be optimal. It suffices to show that optimal

solution does not exist on the right boundary, defined by w = (1−α)p. This is proved

in the following by contradiction.

If the optimal solution satisfies w = (1−α)p, we substitutes w with (1−α)p and
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get:

πM2(w, p, α) = α(1− α)p2(1− p)2.

So the optimal solution should be p∗ = 1/2, w∗ = (1− α)/2. However, if we evaluate

the first order condition with respect to w, we find

∂πM2

∂w

∣∣∣∣
p= 1

2
,w= 1−α

2

=
2α− 1

16
< 0.

The manufacturer can always decrease w a little (which remains in S2) to get a higher

profit. Therefore, the optimal solution does not exist on the right boundary either.

Step 2: πM2(w, p, α) is quasi-concave for (w, p) ∈ S2.

Let p = bw + c (b and c are arbitrary coefficients). After replacing p, the profit

function is dependent only in w. πM2(w, p, α) is quasi-concave for (w, p) ∈ S2, if and

only if, for any (b, c) such that p = bw + c intersects S2, πM2(w, p(w), α) is quasi-

concave in w. We can prove the latter statement by dividing (b, c) and conquering

case by case.

We use b < − 1
1−α

as an illustration of the proof. The proof for other cases is

similar and thus omitted here.

After replacing p, the profit function is 4th degree polynomial in w with quartic

coefficient (1 + b − αb)(1 − b)(1 − b − αb) (which is negative in this case). The four

roots are:

r1 = 0, r2 =
c

1− b
, r3 =

(1− α)(2− c)

1 + b− αb
, r4 =

c+ αc− 2α

1 + c− αc− 2b
.

There are two subcases.

(2a) If 2α
1+α

≤ c < 1− b+ αb.
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Under such conditions, p = bw + c intersects S2 when w ∈ (w1, w2), where

w1 =
c+ αc− 2α

1 + c− αc− 2b
= r4, w2 =

c− αc

1− b+ αb
.

Given all the conditions, we can prove the following inequality:

max(r1, r3) < r4 = w1 < w2.

Therefore, πM2(p(w), w, α) is quasi-concave in w ∈ (w1, w2).

(2b) If 0 < c < 2α
1+α

.

Now p = bw + c intersects S2 when w ∈ (w1, w2), where

w1 = 0 = r1, w2 =
c− αc

1− b+ αb
.

Given all the conditions, we can prove the following inequality:

max(r3, r4) < 0 = r1 = w1 < w2.

Therefore, πM2(p(w), w, α) is quasi-concave in w ∈ (w1, w2).

Step 3: Fix w, p∗(α) is increasing in α.

The first order condition with respect to p is:

∂πM2

∂p
=

w

4α(1− α)

[
(3− 3α2)p2 + (4αw − 2w − 4α+ 2α2w + 8α2 − 4)p

− 4α2w − 4α2 − 2αw2 − 2αw + 4α− w2 + 4w
]
= 0.

Define h1(w, p, α) as

h1(w, p, α) =(3− 3α2)p2 + (4αw − 2w − 4α+ 2α2w + 8α2 − 4)p

− 4α2w − 4α2 − 2αw2 − 2αw + 4α− w2 + 4w = 0.
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By implicit function theorem, we have

dp

dα
= −∂h1/∂α

∂h1/∂p
.

Note that ∂h1/∂p < 0 (second order condition). We only need to prove ∂h1/∂α > 0

for (w, p) ∈ S2. We have

∂h1

∂α
= −6αp2 + (16α+ 4w + 4αw − 4)p+ 4− 2w − 8αw − 2w2 − 8α.

By checking the boundary of S2, we showed that this is negative for any (w, p) ∈ S2.

Step 4: Fix p, w∗(α) is decreasing in α.

First we want to refine the candidate set for the optimal solution. Define

T = {(w, p) : p
2
< w < 1− α,

w

1− α
< p <

w + 2α

1 + α
}.

Apparently we have T ⊂ S2. Given (w∗, p∗) ∈ S2, if w
∗ > p/2, we can conclude that

(w∗, p∗) ∈ T .

∂πM2

∂w
=

1

4α(1− α)

[
(1− α2)p3 + (4αw − 2w − 2α+ 2α2w + 4α2 − 2)p2

+ (−8α2w − 4α2 − 6αw2 − 4αw + 4α− 3w2 + 8w)p

+ 8α2w + 12αw2 − 8αw + 4w3 − 6w2
]
= 0.

We define the terms in square bracket as h2(w, p, α).

Substituting w with p/2, we obtain

h2(p/2, p, α) =
1

4
p2(2− p)(1− 2α) > 0,

if α ∈ (0, 1/2). Therefore, w∗ > p∗/2 and thus (w∗, p∗) ∈ T .

The rest of the proof is similar as that in step 3. Again we only need to show
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∂h2/∂α < 0 for (w, p) ∈ T . We have

∂h2

∂α
= 2(2− p)[αp2 + (1− 2w − 2αw − 2α)p+ 4αw − 2w + 3w2].

By checking the boundary of T , we showed that ∂h2

∂α
is negative for any (w, p) ∈ T .

Step 5: p∗(α) is increasing in α.

Let w(p) be the optimal w for a given p and α. The profit function is πM2(w(p), p, α).

The first order condition with respect p is:

dπM2

dp
=

∂πM2

∂w

∂w

∂p
+

∂πM2

∂p
= 0.

By envelope theorem, we have ∂πM2

∂w
= 0 when w is the optimal value given p. So first

order condition reduces to h1(w(p), p, α) = 0 which is exactly same as in step (3). We

already showed in step (3) that

∂h1

∂α
> 0.

Note ∂h1

∂p
< 0 (second order condition). We then have

dp∗

dα
= − ∂h1/∂p

∂h1/∂α
> 0.

Step 6: w∗(α) is decreasing in α.

The proof is same as step 5. Just need to switch the roles of w and p.

�

Proof of Theorem III.3.

It holds directly from Lemma III.2 and Lemma III.3. �

Proof of Theorem III.4.
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When v + α < 1, the optimizer has to be in S2

∪
S3

∪
S4. We have

lim
α→0

S2 = lim
α→0

S3 = {(w, p) : w = p, v < w < 1}; lim
α→0

S4 = {(w, p) : w = p = v}.

Therefore, we also have limα→0 p
∗
MAP − w∗

MAP = 0

The second part of the theorem will be proved in Lemma III.4. �

Proof of Lemma III.4.

Any (w, p) eventually falls into S3, S5, or S7 as α → ∞. For any (w, p), we also

have

lim
α→∞

πMAP (w, p) = πRPM(w, p).

Therefore, we get: (1) limα→∞w∗
MAP = w∗

RPM ; (2) limα→∞ p∗MAP = p∗RPM ; (3)

limα→∞ π∗
MAP = π∗

RPM . �

Proof of Lemma III.5.

From Theorem III.2 we immediately get π∗
RPM is increasing in v. We focus on the

MAP policy in the following.

The idea of the proof for π∗
MAP is to show for any (w, p), πMAP (w, p) is non-

decreasing in v. Note that S1 thought S7 are defined all as open sets. Given the

continuity of profit function, the boundary will not influence our analysis.

It is easy to see that πMi(i = 1, 3, 4, 5, 6) are non-decreasing in v. In the rest of

the proof we deal with πMi(i = 2, 7). We divide πM7 into two sets:

S71 =

{
(w, p) : α+ v > 1, 1− α < w < v, v +

(1− v)(v − w)

2(α+ v − 1)
< p < 1

}
,

S72 =

{
(w, p) : α+ v > 1, 2− 2α− v < w < 1− α, v +

(1− v)(v − w)

2(α+ v − 1)
< p < 1

}
.

(1) πM2 is non-decreasing in v.
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πM2 can be written as

πM2 = w(p− w)d1(d1 + d2),

where

d1 =
1

2

(
1 +

1− p

1− v

)
− p− w

2α
,

d2 =
p− w

2α
+

1

2

(
1− α− w

1− α− v
− 1

)
.

Clearly both d1 and d2 are increasing in v (with p < 1 and w < 1− α in S2). Hence

πM2 is non-decreasing in v.

(2) πM7 is non-decreasing in v in S71.

Taking derivative with respect to v, we have (positive denominator being dropped)

dπM7

dv
= −4(α+v−1)2p+2w−7v−7α+7αv−αw−4vw+2v2w+4α2+5v2−v3+αvw+3.

For all (w, p) ∈ S71, we have dπM7

dv
> 0.

(3) The optimal solution cannot exist in S72.

First we show that πM7 is unimodal in p. πM7 is positive 3-order polynomial in

p. Additionally, we have πM7(p = w) = πM7(p = 1) = 0. For w < p < 1, πM7 is

unimodal, given πM7 ≥ 0.

Then we show that for given w and v, πM7 is decreasing in p within S72. It suffices

to prove dπM7

dp

∣∣∣
p=v+

(1−v)(v−w)
2(α+v−1)

< 0. We have (positive denominator being dropped)

dπM7

dp

∣∣∣∣
p=v+

(1−v)(v−w)
2(α+v−1)

=(2α+ v − 1)w2 + (6αv − 2v − 10α+ 8α2 + 2)w

− 12α2v + 4α2 − 16αv2 + 26αv − 8α− 5v3 + 15v2 − 14v + 4.
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Checking the range of w,

dπM7

dp

∣∣∣∣
p=v+

(1−v)(v−w)
2(α+v−1)

,w=2−2α−v

= −4(α+ v − 1)2(2α+ v − 1) < 0,

dπM7

dp

∣∣∣∣
p=v+

(1−v)(v−w)
2(α+v−1)

,w=1−v

= −(α+ vl − 1)2(6α+ 5v − 5) < 0.

Therefore, we conclude that for 2− 2α− v < w < 1− α, the optimal p is not in S72.

�

Proof of Theorem III.5.

Part (1).

The proof for Part (1) only requires α+ v ≥ 1, instead of α ≥ 1.

Recall that under MAP policy the optimal solution can only exist in regions

S6

∪
S7

∪
S3 (refer to Figure 3.1). πM6 and πM3 are clearly independent of α, while

πM7 is decreasing in α, with other parameter unchanged. Reorganize πM7 to see this:

πM7 =
w(p− w)(1− p)

(1− v)2

(
1− p+

(1− v)(v − w)

2(α+ v − 1)

)
.

Step 1: Only one boundary, the left one of S6, may contain the maximizer.

The right boundary (w = p) and the top boundary (p = 1) may never contain the

optimizer because those decisions result in zero profit. Only the left boundary of S6

(w = p+ 2α v−p
1−v

) is concerned.

Maximizing πM6 without constraint, we get

w∗
6 = 1/3, p∗6 = 2/3.

(w∗
6, p

∗
6) ∈ S6 is equivalent to the following conditions:

v <
2

3
and

1

6

(
1 +

1

2− 3v

)
≤ α ≤ 3(1− v)2

2(2− 3v)
.
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α

v

v = 2
3

v = 1
4

α = 1
6

(

1 + 1
2−3v

)

α = 3(1−v)2

2(2−3v)

Figure B.1: Proof of Theorem III.5 part (1).

Step 2: π∗
MAP is increasing in α when v ≥ 2

3
or v < 2

3
with α < 1

6

(
1 + 1

2−3v

)
.

Under above conditions, the maximizer in S6, denoted as (wo
6, p

o
6), is on the

right boundary of S6. We first show that (wo
6, p

o
6) is also the overall maximizer in

S6

∪
S7

∪
S3.

Maximizing πM3 without constraint, we get

w∗
3 = 1/4, p∗3 = 1/2.

As πM3 is unimodal, the maximizer cannot exist in S3 when v > 1/4.

When α = 1− v, S7 = ∅. As α increases, the boundary between S6 and S7 shift

towards left and (w, p) pairs enter S7 from S6. Now we consider any (w0, p0) ∈ S7.

It must starts in S6 and turn into S7 as α increases. So we must have πM6(w0, p0) ≥

πM7(w0, p0) because both πM6 and πM7 are non-increasing in α. We also have

πM6(w
o
6, p

o
6) ≥ πM6(w0, p0) because the unconstrained maximizer (1/3, 2/3) is on the

left side of S6 and πM6 is unimodal in S6

∪
S7. Therefore, we showed that (wo

6, p
o
6) is

the maximizer over S6

∪
S7

∪
S3.
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Then we show that π∗
MAP increases in α within this region. As α increases, the

left boundary of S6 shifts leftwards, getting closer to the unconstrained maximizer

(w∗
6, p

∗
6). Combining the facts that πM6 is unimodal and the constrained maximizer

is on the left boundary of S6, we establish that π∗
MAP is strictly increasing in α.

Step 3: π∗
MAP is constant in α when (w∗

6, p
∗
6) ∈ S6.

As both (w∗
6, p

∗
6) and πM6 are independent of α, it suffices to show that (w∗

6, p
∗
6) is

the maximizer not only in S6 but also globally.

In this region we also have v > 1
4
, thus the maximizer cannot exist in S3. Us-

ing similar logic as the last step, we also see that: πM6(w
∗
6, p

∗
6) ≥ πM6(w0, p0) ≥

πM7(w0, p0) for any (w0, p0) ∈ S7. Therefore, (w
∗
6, p

∗
6) is the global maximizer.

Step 4: π∗
MAP is non-increasing in α when v < 2

3
and α > 3(1−v)2

2(2−3v)
.

Within this region, (w∗
6, p

∗
6) is to the right of S6. The global maximizer is not in

S6 because πM6 is unimodal. Recall that for any (w0, p0) ∈ S3

∪
S7, πM3 or πM7 is

non-increaseing in α. Hence, pi∗MAP is non-increasing in α.

When v ≥ 1
4
, S3 does not include the maximizer and thus pi∗MAP is always decreas-

ing in α. When v < 1
4
, the maximizer would eventually be (1

4
, 1
2
) in S3 and pi∗MAP is

a constant in α once the maximizer becomes (1
4
, 1
2
).

Step 5: Claim the threshold property in v.

For any given v, π∗
MAP is either always strictly increasing (when v ≥ 2/3) or

strictly increasing until α = 1
6

(
1 + 1

2−3v

)
and then remain weakly decreasing. As

α → ∞, π∗
MAP converges to π∗

RPM (from Lemma III.4). Therefore, the threshold

property stated in Part (1) must be true.

We can actually solve (wo
6, p

o
6) and get

π∗
MAP =

2α

27(2α+ v − 1)2(
(8α2 + 4αv − 8α+ 2v2 − 2v + 2)

√
4α2 + 2αv − 4α+ v2 − v + 1

− 16α3 − 12α2v + 24α2 + 6αv2 + 12αv − 12α+ 2v3 − 3v2 − 3v + 2
)
.
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Then when α+ v > 1, we have π∗
MAP ≥ π∗

RPM if and only if

(128−192v)α3−(12v2−192v+128)α2−(76v3−60v2+48v−32)α−27v2(1−v)2 ≥ 0.

Denote the left hand side of the above inequality as ∆(α, v) For v ∈ [0, 2/3), ∆(α, v) =

0 defines α1. For v ∈ [2/3, 1], α1 = +∞.

Part (2).

(2a) Existence of v2.

The proof for existence of v2 only requires α+ v ≥ 1, instead of α ≥ 1.

The existence of threshold α1 also implies that ∂∆
∂α

≥ 0 when ∆(α, v) = 0. We

only need to show ∂∆
∂v

< 0 when ∆(α, v) = 0.

Note that ∆(1/2, 1/2) = 0. It suffices to show that ∂∆
∂v

< 0 when α × v ∈

[1
2
,+∞]× [1

2
, 2
3
]. In this region, we have:

(
∂∆

∂v

)′′

= 324− 648v − 456α < 0,(
∂∆

∂v

)′

= −324v2 + (324− 456α)v − 24α2 + 120α− 54 < 0,

∂∆

∂v
= −108v3 + (162− 228α)v2 + (−24α2 + 120α− 54)v − 192α3 + 192α2 − 48α < 0.

Thus we have

dv

dα
=

∂∆/∂α

∂∆/∂v
≤ 0,

meaning ∆(α, v) = 0 is an increasing curve in α-v coordinate. This is equivalent to

the existence of threshold v2. For any α, v2 is defined by ∆(α, v2) = 0.

(2b) Existence of v1.

As only piM3(w, p) = piRPM(w, p), if π∗
MAP = π∗

RPM holds in a non-degenerate

interval of either α or v, the maximizer under MAP policy has to be in S3. Recall

that the unconstrained maximizer of piM3 is (w∗
3, p

∗
3) = (1

4
, 1
2
). As a result, v ≤ 1/4

is a sufficient condition for global maximizer being in S3. In the rest of the proof we
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limit v ∈ [0, 1
4
], as the other region is irrelevant here.

Also recall that the unconstrained maximizer in S6 is (w∗
6, p

∗
6) = (1

3
, 2
3
). Hence for

v ≤ 1/4, (w∗
6, p

∗
6) is on the right side of S6, and thus π∗

M6 ≤ π∗
M7, where π∗

Mi is the

constrained optimal value in Si. The existence of v1 is equivalent of the following

statement: There exists v1 ∈ [0, 1
4
], such that π∗

M7 < π∗
M3 if and only if v ∈ [0, v1).

We already know that

π∗
M3 =

1

64(1− v)2
= π∗

RPM .

The main task here is to study the behavior of π∗
M7. Denote (w

∗
7, p

∗
7) as the maximizer

in S̄7.

Step 1: Show w∗
7 ≥

(1−v)2

α
+ 2v − 1.

For any policy A(w0, p0) ∈ S7 with w0 <
(1−v)2

α
+ 2v − 1, we can define two other

policies (A,B,C refer to Figure B.2): B(w0,
1+w0

2
) and C(1+w0−v−2α+α 1−w0

1−v
, 1+w0

2
).

B is the optimal policy within S6 for given w0. C is on the boundary between S6 and

S7. Recall that for any (w, p) ∈ S7, we have πM7(w, p) < πM6(w, p). We also have

πM6(B) < πM6(C) because (i) πM6 is unimodal in w; and (ii) w = p/2 would be

optimal for given p and both B and C are on the left side of w = p/2. Thus,

πM7(A) < πM6(A) < πM6(B) < πM6(C) = πM7(C) ≤ π∗
M7.

Therefore A(w, p) is not the maximizer. Note that if w > (1−v)2

α
+ 2v − 1, B is no

longer in S6 and thus the above inequality does not hold.

Then the candidate region reduces to S ′
7 from S7, where

S ′
7 = {(w, p) : (1− v)2

α
+ 2v − 1 ≤ w ≤ v, v +

(1− v)(v − w)

2(α+ v − 1)
≤ p ≤ 1}.

It is obvious that the top boundary of S ′
7, p = 1, cannot be the maximizer. The left
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(w∗

3, p
∗

3)

A

B
C

w

p

S
3

S
6

S
7

w = (1−v)2

α
+ 2v − 1

w = 2p − v − 2α p−v

1−v

Figure B.2: Proof of Theorem III.5 part (2).

boundary, w7 =
(1−v)2

α
+2v−1, is considered as interior points since they are included

in S7. Three subcases are discussed regarding whether (w∗
7, p

∗
7) is on the other two

boundaries or in the interior.

Step 2: If (w∗
7, p

∗
7) is an interior maximizer.

For any (w, p) in the interior of S ′
7:

πM7(w, p)− π∗
M3 =

1

(1− v)2

[
w(p− w)(1− p)

(
1− p+

(1− v)(v − w)

2(α+ v − 1)

)
− 1

64

]
.

Since (All derivatives in this proof are with respect to v)

[
(1− v)(v − w)

(α+ v − 1)

]′
=

αw − (1− v)2 − 2αv + α

(α+ v − 1)2
≥ 0.

Therefore, if πM7(w, p)− π∗
M3 > 0 for a given v, it is also true for any greater v. This

property extends to π∗
M7 − π∗

M3 as well.

Step 3: If (w∗
7, p

∗
7) satisfies w = 2p− v − 2αp−v

1−v
(boundary maximizer).
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Let the margin d = p−w be the new variable in πM7. Plug in w = 2p−v−2αp−v
1−v

and d = p− w, we get:

πM7(d) =
d(2α+ v − 1− d)(2d− 2αd− 2vd+ v2 + 2αv − v)

(2α+ v − 1)2
.

Then for any d:

πM7(d)− π∗
M3

=
1

(1− v)2

[
(1− v)2d(2α+ v − 1− d)(2d− 2αd− 2vd+ v2 + 2αv − v)

(2α+ v − 1)2
− 1

64

]
.

And for α ∈ [1,+∞) (Note: This is the only step in the proof that requires α ≥ 1):

[
(1− v)2(2α+ v − 1− d)(2d− 2αd− 2vd+ v2 + 2αv − v)

(2α+ v − 1)2

]′
≥ 0

for any d ∈ (0, (1−v)(2α+v−1)
2α

], which is equivalent to w ∈ [ (1−v)2

α
+ 2v − 1, v).

Therefore, if πM7(d)−π∗
M3 > 0 for a given v, it is also true for any greater v. This

property extends to π∗
M7 − π∗

M3 as well.

Step 4: If (w∗
7, p

∗
7) satisfies w = v (boundary maximizer).

For any (w, p) on the right boundary, w = v, we have (for v ≤ 1
4
)

πM7(w, p) = πM3(w, p) ≤ πM3(w
∗
3, p

∗
3).

Therefore, π∗
M7 ≤ π∗

M3 in this case.

Summary of part (2b).

With step 2, 3 and 4, it can be concluded that once π∗
M7 − π∗

M3 > 0 for a given v,

it holds for any greater v. This completes the proof of existence of threshold v1

Part (3).

The proof for the existence of α1,α2 and v2 is same as part (1) and (2). In Table

B.1 is an example that threshold v1 does not exist when α+ v ≥ 1 and α < 1.
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α v w∗
MAP p∗MAP π∗

MAP π∗
RPM

0.919 0.085 0.0811 0.5312 0.01870 0.01866
0.919 0.100 0.0831 0.4992 0.01925 0.01929
0.919 0.115 0.0874 0.4744 0.02009 0.01995

Table B.1: Example where v1 does not exist.

�

Proof of Theorem III.6.

Recall from Equation (3.4) that the regular retailer’s profit (under either policy)

is

π1 = θd1(p− w)− 1

2
θ2.

Note the optimal decision is θ∗ = d1(p− w). Therefore, we have

π∗
1 =

1

2
θ∗2.

This means, we only need to compare θ∗, which is a perfect indicator of the regular

retailer’s profit.

We examine the three regions in Figure 3.4(a).

(1) The region where the manufacturer prefers RPM.

In this region, we have π∗
RPM ≥ π∗

MAP . That is:

wRPMθRPMd1RPM ≥ wMAP θMAP (d1MAP + d2MAP ).

In the proof of Theorem III.5 Part (1), we showed that π∗
MAP is increasing in

α when v ≥ 2
3
or when v < 2

3
and α ≤ 1

6

(
1 + 1

2−3v

)
. Under such conditions, the

maximizer is on the left boundary of S6 (refer to Figure 3.1). As α increases and

crosses this threshold, π∗
MAP becomes non-increasing. Hence the boundary between

RPM region and MAP region must fall into (i) v ≥ 2
3
; or (ii) α ≤ 1

6

(
1 + 1

2−3v

)
and
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v < 2
3
. So we have v > 1

2
in this region.

Under RPM policy, since v > 1/2, we have wRPM = v/2 and d1RPM = 1 (from

Theorem III.2). Under MAP policy, in this region the maximizer (w, p) is on the left

boundary of S6. Therefore, we have d1MAP +d2MAP = 1 (from Table 3.2) and the left

boundary of S6:

p =
2αv − w + vw

2α+ v − 1
.

Replacing p in πM6:

πM6 =
2αw(v − w)(2α+ w − 1)

(2α+ v − 1)2
.

We have πM6 is unimodal in w ∈ [1− 2α, v]. Taking derivative with respect to w and

plugging in w = wRPM :

π′
M6|w=wRPM

=
αv2

2(2α+ v − 1)2
> 0.

Therefore we have wRPM < wMAP . Combining with d1RPM = d1MAP + d2MAP = 1,

we get

θRPM > θMAP .

That is, the regular retailer prefers RPM policy in this region.

(2) The region where the manufacturer is indifferent between RPM and

MAP.

Since in this region, the free rider is not involved in the business and both w and

p are identical under the two policies, the regular retailer is also indifferent.

(3) The region where the manufacturer prefers MAP.

The regular retailer may prefer either MAP or RPM, depending on market con-

ditions. �

Proof of Theorem III.7.
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It is straight-forward to check that, πM(α) in Theorem III.1 is increasing when

α < 1− v and decreasing afterwards. �

Proof of Theorem III.8.

In Theorem III.5 Part (1), we have proved that π∗
MAP is increasing in α when

α < 1−v
2(2−3v)

, constant when 1−v
2(2−3v)

≤ α ≤ 3(1−v)2

2(2−3v)
, and decreasing when α > 3(1−v)2

2(2−3v)
.

�

Proof of Theorem III.9.

(1) When 2
3
≤ v ≤ 1.

In this part we show that π1(α) is always increasing in α so α∗
R1 = +∞.

When 2
3
≤ v ≤ 1, the manufacturer’s decision is on the left boundary of region

6 (as shown in Theorem III.5). Its profit function is (with w = p − 2αp−v
1−v

already

plugged in)

πM(p) =
2α(1− p)(p− v)(2αp− p− 2αv + pv)

(1− v)3
.

The first order condition in p is (defined as f):

f(p, α) = (6α+ 3v − 3)p2 + (−2v2 − 8αv − 4α+ 2)p+ 4αv − v + 2αv2 + v2 = 0.

By implicit function theorem, we get:

dp

dα
= −∂f/∂α

∂f/∂p
=

(p− v)(3p− v − 2)

3(1− 2α− v)p+ 4αv + 2α+ v2 − 1
.

The denominator is positive because the second order condition ∂f/∂p < 0 when p

is at its optimum.
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On the other hand, the retailer’s profit function is (w is also substituted):

π1(p, α) =
2α(p− v)(1− p)

(1− v)2
.

When p is at its optimum, we have

dπ1

dα
=

2

(1− v)2

(
(p− v)(1− p) + α(1 + v − 2p)

dp

dα

)
=
4(1− v)(p− v)[−3p2 + (v − α+ 4)p− v + αv − 1]

3(1− v)2((1− 2α− v)p+ 4αv + 2α+ v2 − 1)
.

We only need to verify that the terms within square brackets is positive when

2
3
≤ v ≤ 1 and α ≥ 1− v and p satisfies f(p, α) = 0. This can be easily checked true.

The arithmetic is omitted.

(b) When 1
3
≤ v < 2

3
.

Recall that α∗
M is any value in [max{1 − v, 1−v

2(2−3v)
}, 3(1−v)2

2(2−3v)
]. When 1 − v ≤ α ≤

1−v
2(2−3v)

, π1 is increasing in α, the proof of which is same as above because the maxi-

mizer is still on the left boundary of S6. When 1−v
2(2−3v)

≤ α ≤ 3(1−v)2

2(2−3v)
, the manufac-

turer’s decision remains at (w∗, p∗) = (1
3
, 2
3
). From Table 3.2 we see that d1 is constant

in α in S6. As a result, π1 is also a constant in α.

Therefore, πR is non-decreasing when 1− v ≤ α ≤ 3(1−v)2

2(2−3v)
while α∗

M ≤ 3(1−v)2

2(2−3v)
. So

we have α∗
M ≤ α∗

R1.

(c) When 0 ≤ v < 1
3
.

In this region α∗
M = 1− v so we must have α∗

M ≤ α∗
R as this theorem is considered

when α ≥ 1− v.

�

Proof of Theorem III.10.

Within this region, manufacturer’s decision is (w∗, p∗) = (1
3
, 2
3
), independent of

α (as shown in Theorem III.5). In the row of S6 in Table 3.2, we see that (1) the
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free rider’s price drops in α; and (2) d1 and d2 are independent of α. The number

of consumers is θ = d1(p − w), which remains unchanged in α as well. The total

consumer surplus must be higher. �

Proof of Theorem III.11.

Part (1) and (2): When α+ v ≥ 1.

Consider MAP policy. For a given α ≥ 1 − v, let (w∗, p∗) be the optimizer.

That is: π∗
MAP (α) = πMAP (w

∗, p∗, α). We can always find α′ ≥ α, such that:

πMAP (w
∗, p∗, α) = πMAP2(w

∗, p∗, α′). This is because: when α ≥ 1 − v, there is

no competition between the regular retailer and the free rider. Under MAP2, free

rider’s market share, d2, would be higher than that under MAP. When increasing α,

d2 decreases continuously. Thus there exists α′ such that d2 is same as that under

MAP (with original α) and d1 is also the same.

Consider MAP2 policy. For a given α ≥ 1− v, let (w∗
2, p

∗
2) be the optimizer. That

is: π∗
MAP2(α) = πMAP2(w

∗
2, p

∗
2, α). We can always find 1 − v ≤ α′ ≤ α, such that:

πMAP2(w
∗
2, p

∗
2, α) = πMAP (w

∗
2, p

∗
2, α

′). The argument for this is similar to that above.

The continuity of d2 in α results from Table 3.2. The threshold α′ is greater than

1 − v because if α′ = 1 − v under MAP, the free rider must have a higher market

share than original d2 under MAP2.

In Theorem III.5 we showed that for α + v ≥ 1, under MAP there exists α1 such

that π∗
MAP (α) < π∗

RPM if and only if α < α1. Then for any α < α1 we have

π∗
MAP2(α) = πMAP2(w

∗, p∗, α) ≤ πMAP (w
∗, p∗, α′) ≤ π∗

MAP (α
′) < π∗

RPM ,

where 1− v ≤ α′ ≤ α. This completes proof of part (1).

Let α∗
MAP and α∗

MAP2 be the optimal α for the manufacturer under MAP and
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MAP2. From the inequality above, we know that:

π∗
MAP2(α

∗
MAP2) ≤ π∗

MAP (α
′) ≤ π∗

MAP (α
∗
MAP ),

where 1− v ≤ α′ ≤ α∗
MAP2. Similarly, we also have

π∗
MAP (α

∗
MAP ) ≤ π∗

MAP2(α
′) ≤ π∗

MAP2(α
∗
MAP2),

where α′ ≥ α∗
MAP . This completes the proof of part (2).

Part (3): When α+ v < 1.

Consider MAP policy. For α < 1 − v, there is competition between the regular

retailer and the free rider. So changing d2 also influences d1. As a result, for the same

pair of (w, p), in general we cannot find a α′ under MAP2 such that d1 and d2 are

identical as those under MAP with original α. For a given α < 1− v, let (w∗, p∗) be

the optimizer. That is: π∗
MAP (α) = πMAP (w

∗, p∗, α).

Under MAP2, we can always find α′ ≥ α (may be greater than 1− v), such that

d1 is the same but d2 is weakly higher compared to those under MAP with α. This is

because d1 is continuous in α under MAP2. Therefore, we obtain: πMAP (w
∗, p∗, α) ≤

πMAP2(w
∗, p∗, α′). This, along with analysis for α + v ≥ 1, completes the proof of

part (3).

Consider MAP2 policy. There is no analogous property. Actually, π∗
MAP (α

∗
MAP ) <

π∗
MAP2(α

∗
MAP2) may happen when both α∗

MAP and α∗
MAP2 smaller than 1− v.

�

Proof of Theorem III.12.

First we prove the result from the manufacturer’s perspective. The manufacturer’s
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profit is (plugging θ∗ into Equation (3.7))

πMAP/RPM(w, p, δ) =
1

δ
w(p− w)d1(d1 + d2)−

1

2
(
1

δ2
− 1

δ
)d21(p− w)2.

We first optimize this profit over δ taking the others as given and get

δ∗ =
2d1(p− w)

wd1 + pd1 + 2wd2
.

Using δ∗, we get

πMAP/RPM(w, p) =
1

8
(pd1 + wd1 + 2wd2)

2. (B.1)

Now consider the RPM policy. Recall that d1 = 1−p
1−v

(with p ≥ v) and d2 = 0.

Equation (B.1) reduces to

πRPM(w, p) =
1

8

[
(w + p)

1− p

1− v

]2
.

Optimizing πRPM(w, p) with constraints w ≤ p and p ≥ v (as p < v is never the

optimal), we get the solution

p∗RPM = max

{
1

2
, v

}
, w∗

RPM = p∗RPM .

Then consider the MAP policy. Under MAP policy, if w = p, we notice that

d1(w, p) =
1− p

1− v
and d2(w, p) = 0.

Therefore,

πMAP (w
∗
RPM , p∗RPM) = p∗RPM .

That mean, the manufacturer under MAP policy can always mimic the best action
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under RPM policy and get the same level of profit. Consequently, we have

p∗MAP ≥ p∗RPM .

Next we consider the profitability of the retailers under different policies. Under

RPM policy, the free rider is ruled out and thus has zero profit. Since the manufac-

turer will set wholesale price equal to retail price, the regular retailer also end up zero

profit. Therefore, both retailers weakly prefer MAP policy over RPM policy.

�
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APPENDIX C

Proofs of Lemmas and Theorems in Chapter IV

Proof of Theorem IV.1.

First we show Part (1). The central planner always choose x that maximizes

surplus after technology realization. For any realization of ϵ, the central planner

maximizes u(x+t+ϵ)−px. xC(t+ϵ) must satisfy the first order condition u′(x+t+ϵ) =

p. Additionally, we have

dxC(t+ ϵ)

dt
= −1 < 0.

That is, xC(t) is decreasing in t.

Then we show Part (2). As v(x, t+ϵ)−we(t+ϵ) = u(x+ t+ϵ)−px is independent

of functional form of wc(t+ϵ), the client’s payment only matters in the variance term.

By setting wc(t + ϵ) = u(xC + t + ϵ) + C, the variance term is reduced to zero, and

thus the objective function is maximized. In fact, since xC satisfies u′(x+ t+ ϵ) = p,

u(xC + t + ϵ) is also a constant in t and ϵ. Therefore, it is equivalent to choose

wc(t+ ϵ) = 0.

Now we show Part (3). In fact, for any realization of ϵ we have

d

dt

{
u(xC + t+ ϵ)− pxC

}
= u′(xC + t+ ϵ) = p.
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�

Proof of Lemma IV.1.

For any x̂ ≤ xC(t + ϵ), we have u′(x̂ + t + ϵ) ≥ p from Theorem IV.1(1). In

decentralized setting,

dv(x, t+ ϵ)

dx

∣∣∣∣
x=x̂

≥ u′(x̂+ t+ ϵ)− p ·max{αi} ≥ u′(x̂+ t+ ϵ)− p ≥ 0.

Hence, xD(t+ ϵ) ≥ xC(t+ ϵ). �

Proof of Theorem IV.2.

We verify both the ESCO’s and client’s decisions are the same as those with

central planner shown in Theorem IV.1.

First we consider the client. Now the ESCO’s subsidy is independent of consump-

tion. The client internalizes the full energy price p. Her consumption has to satisfy

u′(x+t+ϵ) = p, which is the same as that in Theorem IV.1(1). Let y0 be the constant

that satisfies u′(y0) = p. We have

xD(t+ ϵ) + t+ ϵ = y0. (C.1)

For any realization ϵ, the client’s utility is

vD(xD, t+ ϵ) = u(xD + t+ ϵ)− pxD + we(t+ ϵ) = u(y0)− py0 +M.

vD(xD, t+ ϵ) is a constant independent of ϵ. Therefore the uncertainty related disu-

tility, λ
2
V AR[vD(xD, t+ ϵ)], is zero.
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Then we examine the ESCO. The effort decision problem (4.6) becomes

max
t

{−(M − pt)− C(t)} .

The solution t∗ satisfies C ′(t) = p, which is the same to tC in Theorem IV.1(3).

As both the ESCO’s and client’s decisions are the same as those with central

planner, the outcome is also the same. �

Proof of Theorem IV.3.

Under chauffage contracts, consumption x is implied by Equation (4.9). Only

technology level (effort) t is chosen. Let y0 be the constant such that u(y0) = u0. For

any technology realization t+ ϵ, the implied energy consumption is x∗ = y0 − t− ϵ.

We consider contract (∅, {0}) in the decentralized setting. The payments are

wc(x) = 0 and we(x) = px. The ESCO’s effort decision becomes

max
t

{−p(y0 − t)− C(t)} .

The solution t∗ satisfies C ′(t) = p, which is the same to tC in Theorem IV.1(3).

Therefore, the outcome is also the same. �

Proof of Theorem IV.4.

Part (1): N-rate Contract.

Similar to Theorem IV.1, we consider the client’s payment, wc(x), is a continuous

function in consumption, x. This is general enough to represent any contract that is

only contingent on consumptions, including all the n-rate contracts.

In order to reach the first-best outcome, for a given technology realization t + ϵ,
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x∗(t+ ϵ) has to satisfy (from Theorem IV.1(1))

u′(x+ t+ ϵ) = p.

On the other hand, with payment structure wc(x), the client’s decision will be derived

from the first order condition

u′(x+ t+ ϵ)− w′
c(x) = 0.

Combining the two equations above, we get w′
c(x) = p or wc(x) = px. This means,

in order to get the client’s consumption depiction right, she has to internalize all the

variable cost.

If the ESCO lets wc(x) = px, however, the client’s utility v(x∗, t + ϵ) = u(x∗ +

t + ϵ) − px∗ is not a constant. That means, the disutility due to risk aversion can

only be reduced but not fully eliminated. Therefore, the first-best outcome cannot

be reached by this type of contracts.

Part (2): 1-rate Contract.

We first prove Part (2a) and (2b). In 1-rate contracts, the ESCO needs to decide

t and α simultaneously. For given technology realization t + ϵ, xD has to satisfy

u′(xD + t + ϵ) = αp. Define y(α) be the value that satisfies u′(y(α)) = αp. Then we

have

xD(t+ ϵ) = y(α)− t− ϵ and vD(xD, t+ ϵ) = u(y(α))− αp(y(α)− t− ϵ). (C.2)

And we also have

y′(α) =
p

u′′(y(α))
< 0,

y′′(α) = − p

(u′′(y(α)))2
· u′′′(y(α)) · y′(α) ≥ 0.
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The last inequality holds because we assume u′′′ ≥ 0 in our model.

The objective function (4.10) becomes

max
t,α

{
u(y(α))− py(α) + pt− λ

2
α2p2σ2 − v0 − C(t)

}
. (C.3)

Note t and α are separable. Obviously tO/1 satisfies C ′(t) = p.

Then it suffices to show the objective function, denoted as VOBS(α), is concave in

α. To see this, we have

V ′
OBS(α) = −(1− α)py′(α)− λp2σ2α,

V ′′
OBS(α) = y′(α)− (1− α)y′′(α)− λp2σ2 < 0.

(C.4)

Therefore, there exists a unique optimal payment rate αO/1. To see αO/1 ∈ (0, 1), we

have

V ′
OBS(0) = −py′(0) > 0,

V ′
OBS(1) = −λp2σ2 < 0.

Next we prove Part (2c). We have

dVOBS(α
O/1)

dλ
= −1

2
p2σ2(αO/1)2 < 0,

dVOBS(α
O/1)

dσ2
= −λ

2
p2(αO/1)2 < 0.

Therefore, V O/1 = VOBS(α
O/1) decreases in λ and σ2. �

Proof of Theorem IV.5.

Part (1): 1-rate Contract.

Substituting xD in Equation (C.2) into ESCO’s effort decision problem (4.6), we
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have

max
t

{−(1− α)p(y(α)− t)− C(t)} .

Thus tM/1(α) must satisfy C ′(t) = (1− α)p. Additionally, we also have

tM/1′(α) = − p

C ′′(tM/1(α))
< 0,

tM/1′′(α) =
p

(C ′′(tM/1(α)))2
· C ′′′(tM/1(α)) · tM/1′(α) ≤ 0.

The last inequality holds because we assume C ′′′ ≥ 0 in our model.

Under 1-rate contracts, the objective function (4.7) becomes

max
α

{
u(y(α))− py(α) + ptM/1(α)− λ

2
α2p2σ2 − v0 − C(tM/1(α))

}
. (C.5)

We need to show the objective function, denoted as VMH(α), is concave in α. In fact,

we have

V ′
MH(α) = V ′

OBS(α) + αptM/1′(α),

V ′′
MH(α) = V ′′

OBS(α) + ptM/1′(α) + αptM/1′′(α) < 0.

Therefore, there exists a unique optimal payment rate αM/1. We also have

VMH′(αO/1) = VOBS′(αO/1) + αptM/1′(α) = αptM/1′(αO/1) < 0.

Therefore, αM/1 < αO/1.

Part (2): 2-rate Contract.

The right inequality is obvious. To prove the left inequality, we show that, the

optimal contract (αO/1, tO/1) in Theorem IV.4(2) and its outcome can be replicated

with 2-rate contracts with moral hazard.

Since comfort function u(·) is increasing and bounded, we denoteM = limx→∞ u(x+
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t). Consider the 2-rate contract (z, {α1, 0}). Under this contract, the client’s utility

is

vD(x, t+ ϵ) =


u(x+ t+ ϵ)− α1px if x ≤ z

u(x+ t+ ϵ)− α1pz if x > z.

The solution to the client’s problem (4.4) is

xD(t+ ϵ) =


y(α1)− t− ϵ if t+ ϵ ≥ 1

α1p
[M − u(y(α1))] + y(α1)− z

+∞ otherwise ,

where y(α) is the value that satisfies u′(y(α)) = αp.

If the technology realization t + ϵ is smaller than the threshold above, the client

would consume infinite amount of energy, which leads to negative infinite payoff for

the ESCO. In order to avoid such situations, the ESCO would exert enough effort

such that even the worst technology realization is above the threshold. Recall ϵ is

bounded below by ϵ. By choosing

z =
1

α1p
[M − u(y(α1))] + y(α1)− (tO/1 + ϵ), (C.6)

we make sure that t ≥ tO/1. Then the ESCO’s effort problem (4.6) becomes

max
t≥tO/1

{−(1− α1)p(y(α1)− t)− C(t)} ,

which is concave in t and maximizes at t = tM/1(α1) < tO/1. Therefore, the ESCO

would choose t = tO/1.

If the ESCO also chooses α1 = αO/1, the resulting outcome is the same as V O/1. �

Proof of Corollary IV.1.

First of all we prove with observability of the ESCO’s effort, the 1-rate contract
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(∅, {1}), with tO/1 defined in Theorem IV.4(2a), achieves the first-best outcome.

Using λ = 0 in the objective function (C.3) and its first order derivative (C.4),

we get α∗ = 1. As a result, the induced client’s consumption decision, xD, must

satisfy u′(x+ t+ ϵ) = p. Both the ESCO’s and client’s decisions are identical to those

with central planner, stated in Theorem IV.1. Therefore, the first-best outcome is

achieved, i.e., V O−RN/1 = V C .

Then we consider the case with moral hazard. From Theorem IV.5(2) we have

V M−RN/2 ≥ V O−RN/1. Therefore, 2-rate contracts with ESCO’s moral hazard also

achieve the first-best solution. The optimal contract is (zM−RN/2, {1, 0}), where

zM−RN/2 is given in (C.6) with α1 = 1. �

Proof of Corollary IV.2.

Part (1): Central Planner.

The results are immediately obtained by using u(x + t + ϵ) = −e−(x+t+ϵ) and

C(t) = 1
2γ
t2 in Theorem IV.1.

Part (2): Observability of ESCO’s Effort.

Under 1-rate contracts and comfort function u(x+ t+ ϵ) = −e−(x+t+ϵ), the energy

consumption and client’s utility are

xD(t+ ϵ) = − lnαp− t− ϵ,

vD(xD, t+ ϵ) = αp(lnαp+ t+ ϵ− 1).

(C.7)

The objective function (C.3) reduces to

max
t,α

{
p(lnαp− α) + pt− λ

2
α2p2σ2 − v0 −

1

2γ
t2
}
.
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The first order conditions are

p− t

γ
= 0,

1

α
− 1− λpσ2α = 0.

(C.8)

The closed form solutions to t and α are immediately obtained from the equations

above.

Plugging in u(x) = −e−x into Equation (4.3), we get the pre-project energy con-

sumption and client’s utility

x0 = − ln p,

v0 = p(ln p− 1).

(C.9)

Substituting αO/1 and tO/1 into the objective function above, we get

V O/1 = p(lnαO/1p− αO/1) +
1

2
γp2 − λ

2
(αO/1p)2σ2 − v0

=
1

2
p[(lnαO/1 + γp) + (lnαO/1 + 1− αO/1)].

(C.10)

The second line holds because αO/1 satisfies the first order condition (C.8).

Part (3): Moral Hazard.

From Theorem IV.5, we get tM/1(α) = (1 − α)γp. The objective function (C.5)

reduces to

max
α

{
p(lnαp− α) + (1− α)γp2 − λ

2
α2p2σ2 − v0 −

1

2
(1− α)2γp2

}
.

The first order condition in α is

p(
1

α
− 1)− p2(λσ2 + γ)α = 0.
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αM/1 can be obtained from the first order condition above. �

Proof of Theorem IV.6.

Part (1): Generalization of Corollary IV.2(1). The results are direct general-

ization of Corollary IV.2. Proof details are omitted here.

Part (2): Generalization of Corollary IV.2(2).

The client’s consumption must satisfy u′(x+ t+ ϵ+ q) = αp. Therefore, we have

xD−CE(t+ ϵ+ q) = − lnαp− (t+ ϵ+ q).

The client’s utility is

vD−CE(xD−CE, t+ ϵ, q) = −α1p[1− lnα1p− t− ϵ− q]− 1

2θ
q2.

Hence, the client’s optimal effort is qD−CE = αθp and the resulting utility is

v(xD−CE, t+ ϵ, qD−CE) = −αp[1− lnαp− t− ϵ] +
1

2
α2θp2.

Plugging this into the ESCO’s problem (4.10), we get first order conditions

p− t

γ
= 0,

1

α
− 1− λpσ2α− αθp+ θp = 0.

The closed form solutions to t and α are immediately obtained from the equations

above.

Part (3): Generalization of Theorem IV.5(2).

The right inequality is obvious. We focus on the left inequality. By choosing

α1 = αO−CE/1, α2 = 0, z = 1− lnα1p−
1

2
α1θp− (tO−CE/1 + ϵ),
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the ESCO effectively commits himself to spend effort tO−CE/1. So the ESCO is able

to replicate the outcome in Part (2), which gives V O−CE/1 ≤ V M−CE/2. The details

of this proof are similar to Theorem IV.5(2), and thus omitted. �

Proof of Theorem IV.7.

Using u(x) = −e−(x+ϵw) in Equation (4.3), we get the client’s consumption and

resulting utility before the project:

x0 = − ln p− ϵw,

v0 = p(ln p− 1)− λ

2
p2σ2

w.
(C.11)

Obviously, v0 decreases in σ2
w. The client always have the same utility before and

after the project as the ESCO is able to take all surplus. Therefore, the client’s

post-project utility decreases in σ2
w.

Then we consider the ESCO’s surplus. To keep notations short, we drop any

superscript for optimal values, or replace it with * if necessary. Based on Equation

(C.10), we have

V (σ2
w) =

1

2
p[(lnα∗ + γp) + (lnα∗ + 1− α∗)] +

λ

2
p2σ2

w.

where α∗ is generalized from Corollary IV.2(2b) as

α∗ =
2

1 +
√
1 + 4λp(σ2 + σ2

w)
.

Then, we have

d V (σ2
w)

dσ2
w

=
1

2
λp2 (1− α∗) > 0.

Therefore, the ESCO’s surplus increases in σ2
w. �
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Proof of Theorem IV.8.

Part (1): Incremental Technology.

The project value is function of p, λ, γ, and t0. According to the objective function

(4.7), we have

V (p, λ, γ, t0) = e−t0V (et0p, e−t0λ, e−t0γ, 0)

and the problem is equivalent to the one in the main part. From Corollary IV.2(2),

we have

α∗ =
2

1 +
√
1 + 4λpσ2

and t∗ = γp,

which is actually independent of t0. From Equation (C.10), we have

V (p, λ, γ, t0) =
1

2
p(2 lnα∗ + 1− lnα∗ + γp).

which is also independent of t0.

Part (2): Replacement Technology.

In this case, t0 only matters for pre-project utility. Generalizing Equation (C.9),

we get

v0 = p(ln p+ t0 − 1).

v0 increases in t0 and post-project surplus is constant in t0. Therefore, project value

V O/1 decreases in t0. �

Proof of Theorem IV.9.

For the clarity of this proof, we put retail price p and decision variable αi’s as

arguments, e.g., we(x, p, {αi}) and wc(x, p, {αi}). For any retail price p, we define
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α′
i =

p
p0
αi. From Equation (4.2) we have

wc(x, p, {αi}) =
n∑

i=1

αipmin{max{0, x− zi−1}, zi − zi−1}

=
n∑

i=1

p

p0
αip0min{max{0, x− zi−1}, zi − zi−1}

= wc(x, p0, {α′
i}).

From Equation (4.5) we have

−we(x, p, {αi}) + (p− p0)x = −px+ wc(x, p, {αi}) + (p− p0)x

= −p0x+ wc(x, p0, {α′
i})

= −we(x, p0, {α′
i}).

If we use α′
i’s to replace αi’s as decision variables, Problem (4.13) becomes

t∗ =argmax
t

{
−Ewe(x

∗, p0, {α′
i})−

1

2γ
t2
}
,

max
{zi},{α′

i}

{
E [v(x∗, t∗ + ϵ)]− λ

2
V ar [v(x∗, t∗ + ϵ)]− v0 − Ewe(x

∗, p0, {α′
i})−

1

2γ
t∗2
}
.

This is exactly same to Problem (4.7), except retail price p in (4.7) replaced by energy

cost p0. Assume the optimal contract for above problem is ({zi(p0)}, {α′
i(p0)}). Then

the optimal contract for Problem (4.13) is (p, {zi(p0)}, {p0
p
α′
i(p0)}), where retail price

p can be any value. �

Proof of Theorem IV.10.

We start with defining each player’s utility or surplus in Table C.1. π is used

to denote utilities with appropriate superscript (E/C/PM for ESCO/client/policy

makers respectively). The subscript 0 or 1 indicates utility before and after the

project. v0(p) and x0(p) are given in Equation (C.9). V0(p) is given in Equation
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(C.10). x∗(p) is given in Equation (C.7). To keep notations short, we drop any

superscript for optimal values, or replace it with * if necessary.

πE
0 πC

0 πPM
0 πE

1 πC
1 πPM

1

No policy 0 v0(p) −cx0(p) V (p) v0(p) −cEx∗(p)
Lump sum subsidy 0 v0(p) −cx0(p) V (p) +G v0(p) −cEx∗(p)−G
Carbon tax 0 v0(p+ r) (r − c)x0(p+ r) V (p+ r) v0(p+ r) (r − c)Ex∗(p+ r)

Table C.1: Utilities for each player before and after the project.

πPM
i includes any subsidy, carbon tax income, and environmental cost. The total

social surplus, denoted by Πi, is

Πi = πE
i + πC

i + πPM
i .

Part (1): Lump Sum Subsidy.

With lump sum subsidy, policy makers cannot change the ESCO’s effort and the

client’s consumption decisions. However, it encourages the ESCO to offer a lower

price to residents and thus more projects will be adopted.

Without subsidy, a project is done if and only if

πE
1 = V (p) +G ≥ 0.

Policy makers would execute a project if and only if Π1 ≥ Π0. That is

V (p) + v0(p)− cEx∗(p) ≥ v0(p)− cx0(p).

Policy makers want the ESCO decision to be equivalent to their own. Therefore, we

have

G∗ = c(x0(p)− Ex∗(p)) = c(lnα∗ + γp).

Part (2): Carbon Tax.

In cases the project is not adopted, policy makers maximize social surplus Π1.
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That is,

max
r

Π0 = v0(p+ r) + (r − c)x0(p+ r).

Taking derivative with respect to r, we get

dΠ0

dr
= v′0(p+ r) + x0(p+ r) + (r − c)x′

0(p+ r) = −r − c

p
.

The optimal solution is apparently r∗ = c.

In cases the project is adopted, policy makers solve

max
r

Π1 = V (p+ r) + v0(p+ r) + (r − c)Ex∗(p+ r),

where α∗ is given in Corollary IV.2(2). We then have

dEx∗(p+ r)

dr
=

d

dr
[− lnα∗(p+ r)− γ(p+ r)]

= − 1

2(p+ r)

(
1 +

1√
1 + 4λ(p+ r)σ2

)
− γ < 0

(C.12)

and

dΠ1

dr
=

dV (p+ r)

dr
+

dv0(p+ r)

dr
+ Ex∗(p+ r) + (r − c)

dEx∗(p+ r)

dr

= (r − c)
dEx∗(p+ r)

dr
.

Let dΠ1/dr = 0 and we get r∗ = c.

Despite of whether the project is adopted, it is always optimal to have r∗ = c. It

is also worth noting that with r∗ = c, πE
1 ≥ 0 and Π1 ≥ Π0 are equivalent, which

means the ESCO’s decision is perfectly aligned with policy makers.

Part (3): Comparison.

We first show that if πE
1 ≥ 0 with lump sum subsidy, it is also true with carbon
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tax policy. Denote ∆πE
1 as

∆πE
1 = V (p+ r∗)− V (p)−G∗ = V (p+ c)− V (p)− c(lnα∗(p) + γp).

Note α∗ is a function of p and we make it clear because it is different under two

policies. When c = 0, ∆πE
1 = 0. We also have

d∆πE
1

dc
= [lnα∗(p+ c) + γ(p+ c)]− [lnα∗(p) + γp] > 0.

The inequality holds because of Equation (C.12). Therefore, the ESCO’s surplus is

higher with carbon tax policy. If a project is adopted with lump sum subsidy, it

should also be adopted with carbon tax policy.

Next we compare two policies under three scenarios: (a) A project is adopted

with both policies; (b) A project is adopted with neither policies; and (c) A project is

adopted with carbon tax policy, but not with lump sum subsidy. Denote ∆t, ∆x, and

∆Π as difference in technology investment, consumption, and social surplus (value in

carbon tax policy minus that in lump sum subsidy).

(3a) A project is adopted with both policies:

We have ∆t = γ(p + c) − γp = γc > 0 and ∆x = Ex∗(p + c) − Ex∗(p) < 0. The

latter inequality holds because of Equation (C.12).

Note if r = 0 with carbon tax policy, social surplus Π1 under two policies are

identical. In Part (2) we showed that Π1 is increasing in r when r ≤ c. Since policy

makers choose r∗ = c > 0, we must have ∆Π > 0.

(3b) A project is adopted with neither policies:

Since no project would be adopted with both policies, we have ∆t = 0. Similar

to Part (3a), we have Π1 is increasing in r when r ≤ c (shown in Part (2)), and thus
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∆Π > 0 also holds. To see the difference in energy consumptions, we have

∆x = x0(p+ c)− x0(p) = − ln (p+ c) + ln p < 0.

(3c) A project is adopted with carbon tax policy, but not with lump sum subsidy:

In this scenario, ∆t > 0 is obvious. Next we prove ∆x < 0. According to Equation

(C.10), we have

V (p+ c) =
1

2
(p+ c)[(lnα∗ + γ(p+ c)) + (lnα∗ + 1− α∗)].

Since V (p+ c) ≥ 0 (because a project is adopted with carbon tax policy) and lnα∗ +

1− α∗ < 0 (for α∗ ∈ (0, 1)), we must have

lnα∗ + γ(p+ c) > 0.

On the other hand, we have

Ex∗(p+ c)− x0(p+ c) = −[lnα∗ + γ(p+ c)] < 0.

Therefore,

∆x = Ex∗(p+ c)− x0(p) < x0(p+ c)− x0(p) = − ln (p+ c) + ln p < 0.

To see the difference in social surplus, we have

Π1 with carbon tax policy ≥ Π0 with carbon tax policy > Π0 with lump sum subsidy.

The first inequality holds because a project is adopted and the ESCO’s decision is

aligned with policy makers, as shown at the end of the proof of Part (2). The second
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inequality holds because of the result in (3b). �
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