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ABSTRACT

Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human
Behavior

by

Yelin Kim

Chair: Emily Mower Provost

Emotion is a central part of human interaction, one that has a huge influence on its

overall tone and outcome. Today’s human-centered interactive technology can greatly

benefit from automatic emotion recognition, as the extracted affective information

can be used to measure, transmit, and respond to user needs. However, developing

such systems is challenging due to the complexity of emotional expressions and their

dynamics in terms of the inherent multimodality between audio and visual expres-

sions, as well as the mixed factors of modulation that arise when a person speaks.

Given these complex variations in affective behaviors, how can we capture emotion

expressed over time? How can we effectively fuse the pieces of information from audio

and visual expressions? How can we tease apart non-emotional behaviors that are

mixed throughout the course of emotion expressions, such as mouth movement due

to speech articulation or an eyebrow raise for emphasis?

To overcome these challenges, this thesis presents data-driven approaches that can

quantify the underlying dynamics in audio-visual affective behavior as follows:

• Motivational Studies: The first set of studies lay the foundation and cen-

xiii



tral motivation of this thesis. We discover that it is crucial to model complex

non-linear interactions between audio and visual emotion expressions, and that

dynamic emotion patterns can be used in emotion recognition.

• Mixed Factors of Behavior: The understanding of the complex characteris-

tics of emotion from the first set of studies leads us to examine multiple sources

of modulation in audio-visual affective behavior. Specifically, we focus on how

speech modulates facial displays of emotion. We develop a framework that uses

speech signals which alter the temporal dynamics of individual facial regions to

temporally segment and classify facial displays of emotion.

• Localization of Salient Events: We present methods to discover regions of

emotionally salient events in a given audio-visual data. We demonstrate that

different modalities, such as the upper face, lower face, and speech, express

emotion with different timings and time scales, varying for each emotion type.

We further extend this idea into another aspect of human behavior: human

action events in videos. We show how transition patterns between events can

be used for automatically segmenting and classifying action events.

Our experimental results on audio-visual datasets show that the proposed systems

not only improve performance, but also provide descriptions of how affective behaviors

change over time. We conclude this dissertation with the future directions that will

innovate three main research topics: machine adaptation for personalized technology,

human-human interaction assistant systems, and human-centered multimedia content

analysis.
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CHAPTER 1

Introduction

Human-human and human-machine interactions often evoke and involve affective and

social cues, such as emotion, social attitude, engagement, conflict, and persuasion.

These signals, such as words, head and body movements, and facial and vocal expres-

sions, can be inferred from both verbal and nonverbal human behaviors [107]. The

signals profoundly influence the overall outcome of interactions [107, 175], and hence

the understanding of these signals will enable us to build human-centered interactive

technology tailored to an individual user’s needs, preferences, and capabilities.

Emotion is an essential component of human interaction. It affects and regulates

how we communicate with each other, and how we perceive, judge, and react to the

outside world [71, 114, 172]. Therefore, if a machine can automatically recognize a

user’s emotion, it can enable natural and human-centered user experience and help

automatic behavior assessment systems, namely, social and affective human-machine

interaction systems, wellness and health-related systems that help individuals better

monitor their emotional landscape, as well as intelligent surveillance systems that can

automatically detect anomalous behaviors based on machine recognition of nervous-

ness or anxiety.

Emotion expressions are complex and dynamic, and are often difficult to de-

code computationally. The expressions are inherently multimodal [172]– they in-

volve behavior [9, 51, 91, 144, 195], physiology [23, 78, 83, 111, 183, 238], and lan-

guage [174, 186, 207, 243]. These expressions also continue to change over time

[21, 32, 165, 220], moreover, they are often mixed with other factors of modulation

[113, 114, 172]. For instance, when a person is speaking, facial movements change

1



Vocal 
Expression  

Facial 
Expression 

Emphasis

Time
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Figure 1.1:
Example of two people interacting with each other. This example addresses
three main challenges in automatic emotion recognition that we tackle in
this thesis: (i) complex multimodal interactions between facial and vocal
expressions, (ii) continuous changes in emotion and behavior, and (iii)
multiple factors of behavior modulation, including emotion (e.g., smiling),
emphasis (e.g., eyebrow raise), and speech articulation (e.g., mouth move-
ment changes). The figure is generated from one of the datasets used in
this dissertation, called IEMOCAP [27].

to communicate not only emotion, but also other types of signals, such as empha-

sis or lexical content (Figure 1.1). Facial changes may be related to emotion, such

as when a person raises his/her eyebrows in surprise, however, they may result from

other sources of modulation, e.g., an eyebrow raise due to speech emphasis. Similarly,

changes in the mouth region due to smiling are similar to the changes when a person

is saying ‘cheese’ [113, 114, 142, 148].

The goal of this dissertation is to develop emotion recognition systems that capture

complex interactions between audio and visual expressions during speech. To this

aim, we design frameworks that can control for variations in emotion expression by

capturing cross-modal interactions, modeling temporal emotion and behavior, and

controlling for non-emotional behavior.

This thesis is organized into three main parts: (i) motivational studies, (ii) mixed

factors of behavior, and (iii) localization of salient events (Table 1.1). We first present

two studies that motivate the importance of capturing complex non-linear interac-

tions between audio and visual emotion expressions (Chapter 3), and describe how

2



Part Research Problem Chapter Reference

I
Motivational
Studies

Cross-modal interaction 3 [117]
Emotion dynamics 4 [112]

II
Mixed Factors in
Behavior

Temporal segmentation 5 [113, 114]
Informed segmentation and labeling 6 [116]

III
Localization of
Salient Events

Emotion spotting 7 [115]
Event detection 8 [118]

Table 1.1: Outline of this Dissertation.

emotion flows over time for automatically recognizing emotion (Chapter 4). The find-

ings led us to explore how these audio and visual modalities interact over time, which

constitutes the central topic of this dissertation. We study emotion changes in the

upper face, lower face, and speech modalities over time, and discover that temporal

methods capable of controlling for non-emotional behavior improve the system per-

formance (Chapters 5 and 6). We then study methods to detect regions of salient

affective behavior, varying for different modalities and emotion types (Chapter 7).

We further test the importance and application of modeling temporal dynamics to

recognize another aspect of human behavior: human action events from videos. We

find that the modeling of transition patterns between behaviors of interest improves

the performance of the systems (Chapter 8).

1.1 Emotion Background

1.1.1 Emotion: Definitions, Assumptions, and Quantifications

What is an emotion? William James posed this question in his revolutionary

book “What is an Emotion?” in 1884 [99], defining emotion as “a distinct bodily

expression” in which “a wave of bodily disturbance of some kind accompanies the

perception of the interesting sights or sounds, or the passage of the exciting train of

ideas. Surprise, curiosity, rapture, fear, anger, lust, greed, and the like, become then
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the names of the mental states with which the person is possessed” [172]. Since then,

the definition of an emotion is still an ongoing discussion and many researchers have

attempted to answer this question [2, 29, 58, 63, 67, 127, 170, 172, 193, 201–203].

A recent study by Scherer presents the component process model, which considers

emotions as “the synchronization of many different cognitive and physiological com-

ponents [201]”. In his model, he distinguishes emotion from other low-level cognitive

appraisals (e.g., processing of relevance) in that emotions require the overall process

rather than just a trigger of bodily expressions and feelings. In [29], Cabanac de-

fines emotion as any human experience with “high intensity and high hedonic content

(pleasure/displeasure)”.

A book by Ortony et al. [172] offers a comprehensive summary of the cognitive

structures of emotion and studies related to emotion in the cognitive process. The

authors present two main views on emotion: one is the appraisal theory that describes

emotions as appraisals and arousals of events [63, 67, 172, 193, 202]. The fundamental

assumption behind the appraisal theory is that emotion happens based on individuals’

interpretations or appraisals on events rather than physiological arousals. The other

view on emotion claims that any emotion can be described using continuous values

of different dimensions. The most two widely used dimensions are activation (excited

vs. calm) and valence (positive vs. negative) [2, 127, 203]. Scholsberg found that

three dimensions of emotion, valence (pleasantness), activation, and attention, can be

described based on facial and bodily expressions [203]. More recent studies in 1995

by Lang et al. explored the effect of valence and arousal of television messages on

viewers’ memory of the messages [127]. Oatley et al. distinguishes emotion from mood

or preference by the duration of each kind of state [170]. They present different time

courses for affective phenomena, such as expressions, emotions, moods, emotional

disorders, and personal traits (Figure 1.2). In this description of emotion, expressions

and autonomic changes span from seconds to minutes, whereas self-reported emotions
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Figure 1.2:
A spectrum of affective phenomena in terms of the time course of each.
Figure from [170, 222].

last from minutes to hours. Moods last from a few hours to months, whereas emotional

disorders can span up to years and personality traits range between years to lifetime.

In this dissertation, we focus on engineering approaches to understand and rec-

ognize expressive behaviors of emotion. We assume that the emotion labels in a

given dataset are related to the emotional phenomena in the dataset. Based on this

assumption, we can quantitatively measure and represent emotion, i.e. affective la-

beling. Affective labeling provides our ground truth data. There are two widely used

approaches to affective labeling: categorical and dimensional approaches [74, 79].

Categorial Modeling of Emotion Categorical modeling of emotion represents

emotion in terms of a finite number of discrete emotion labels such as Angry, Happy,

Sad, etc. The fundamental assumption behind categorical modeling is that a small,

finite number of ‘basic’ emotions is hard-wired in the human brain and is recognized

universally [62]. Paul Ekman, who studied relationships between facial expressions

and emotions, defined a basic emotion that is differentiated from other emotions by

the following properties [57]:

• Distinctive universal signals

• Distinctive physiology
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• Automatic appraisal

• Distinctive universals in antecedent events

• Distinctive appearance developmentally

• Presence in other primates

• Quick onset

• Brief duration

• Unbidden occurrence

• Distinctive thoughts, memories, images

• Distinctive subjective experience

Many researchers support the ‘palette theory’, which assumes that any emotion can

be represented as a mixture of primary emotions, Anger, Disgust, Fear, Joy, Sadness,

and Surprise [47].

Dimensional Modeling of Emotion In contrast to categorical modeling, dimen-

sional modeling of emotion, introduced in 1954, defines emotion in terms of continuous

values corresponding to different dimensions. The two most common dimensions are:

Valence (positive vs. negative) and Activation (calm vs. excited) [203]. Previous

studies suggested that these two dimensions can capture most emotion expressions

[2]. The valence-activation dimensional space or a variation of this have been used in

previous studies, such as [36, 39, 77, 192, 245].

In this thesis, we adopt a categorical approach to describe emotion since it is more

straightforward to compare with previous systems with more identifiable descriptions.
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Perceived Emotion In this dissertation, we use perceived emotion from multiple

human annotators (greater than or equal to three annotators) to label the emotion of

a given stimulus. This enables us to develop systems that can capture the expressive

behavior of human emotion. Such emotional capability is critical for the real-world

applications of systems, since expressive behaviors largely influence the overall tone

and quality of human interactions [100, 106, 232]. For instance, a personal assis-

tant system can analyze emotion expressions of a user, infer the underlying emotion

based on how humans would perceive these expressions, and respond correspondingly,

resulting in more natural interactions with the user.

1.1.2 Emotion Expressions

Emotion is expressed in multiple modalities. The primary modalities studied in

this dissertation are speech and the facial expressions of emotion. Mehrabian has

found the relative importance of verbal and nonverbal messages, called the “the 7%-

38%-55%” rule [145]. He found three basic elements in any face-to-face communica-

tion: tone of voice, nonverbal behavior, and words. His findings suggest that these

three elements account differently for our perception of the other person’s emotions:

words account for 7%, tone of voice accounts for 38%, and visual cues like facial and

body language accounts for 55%. For the perception of emotion, these non-verbal

elements, the audio and video cues, are particularly important. Specifically, when

the messages are inconsistent, i.e., if words disagree with nonverbal behavior (e.g., “I

do not have a problem with you!” uttered with an angry face and voice), people tend

to believe the tonality and nonverbal behavior.

Physiological signals are often used to recognize self-reported emotion [184, 189]

or to analyze mental disorders [183]. Studies on emotion expressed through natural

language are often called ‘sentiment analysis’, where the attitude or emotion behind

the text is inferred [174, 186, 207].
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Humans integrate emotional information from different modalities to infer emo-

tion [9, 51, 91, 144]. De Gelder and Vroomen demonstrated that humans cannot

completely ignore emotion expressions from specific modalities, for instance, their

perception is affected by vocal expressions even when they are asked to ignore speech

and focus only on facial displays [51]. The finding demonstrates that bidirectional

links exist between emotion perception systems in vision and audition. A recent sur-

vey discusses how and why the timings of emotion expressions in different modalities

are not synchronized in empirical studies [91]. The survey concludes that the com-

plex nature of behavioral, phychophysiological, and cognitive components of emotion,

including the “intensity of emotions elicited in the laboratory, nonlinearity, between-

versus within-subject associations, the relative timing of components,” would result

in a theory-data mismatch.

1.1.3 Emotion Perception

The recognition of emotion from behavioral expressions vary in time for different

emotion types [179, 231]. Pell and Kotz studied how quickly listeners can identify a

speaker’s emotion from the speech patterns, and whether different types of emotion re-

quire different durations for the recognition [179]. They divided utterances conveying

each emotion into different segments based on the number of syllables starting from

the beginning of the utterance. They analyzed how much information an observer re-

quires to recognize each emotion as a speech utterance unfolds. This study found that

humans recognize anger, sadness, fear, and neutral expressions more accurately in a

shorter time frame than they do happiness and disgust; however, the findings demon-

strate that the recognition of happiness improves significantly as speech progresses

[179].

Tracy and Robins explored a Darwinian aspect of emotion, which generally as-

sumes that humans evolved to “communicate needs that facilitate survival and repro-
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duction” [231]. They designed experiments to study the different speed that perceivers

require to recognize different types of emotion, such as anger and happiness, and the

effect of cognitive load on emotion recognition. They found that even under cognitive

load, perceivers can recognize most emotion expressions quickly and efficiently. Also,

consistent with previous work [54, 95, 120], this study found that humans are quicker

to recognize positive emotion than negative emotion.

Individuals perceive emotion expressions differently, which results in inter-rater

disagreement in emotion perception [221]. Gabrielsson et al. studied confusion in

music emotion perception for ‘perceived’ and ‘induced’ emotion, and found that the

relationship between these emotions varies depending on multiple factors, such as

music and human evaluators [68]. Perception can also change due to disorders [3],

e.g., in patients with a mental disorder such as schizophrenia [109, 123], or brain

disorders [8, 85, 93], or autism spectrum disorder [173]. Different lighting conditions

during emotion displays can also affect humans’ perception of emotion [6].

1.2 Problem Statement and Methods

1.2.1 Multimodal Interactions in Emotion Expressions

Human emotion expressions are inherently multimodal. A key challenge is to

understand how computational systems can combine multiple modalities. We ex-

plore complex non-linear interactions between speech and facial emotion expressions

(Chapter 3). Previous emotion recognition systems have seen great improvements in

classification accuracy, due in part to advances in feature selection methods. How-

ever, many of these methods capture only linear relationships between features, or,

alternatively, require the use of labeled data. Our hypothesis is that deep learning

techniques, which can explicitly capture complex non-linear feature interactions in

multimodal data, can improve the system performance compared to traditional fea-
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ture selection methods. We test this hypothesis by evaluating a suite of Deep Belief

Network models, and demonstrate that these models show improvement in emotion

classification performance over traditional methods that do not employ deep learning.

This result suggests that the learned high-order non-linear relationships are effective

for emotion recognition.

1.2.2 Dynamic Patterns of Emotion

Human emotion changes continuously and sequentially, resulting in dynamics in-

trinsic to affective communication. One of the challenges in developing automatic

emotion recognition is to computationally represent and analyze these dynamic pat-

terns. We explore how global, utterance-level dynamic patterns can be automatically

captured by emotion classification systems (Chapter 4). Our hypothesis is that these

dynamic patterns are specific to different emotion classes, and the systems that use

these patterns can outperform baseline methods that use static patterns or low-level

feature dynamics. We quantitatively represent emotion flow within an utterance by es-

timating short-time affective characteristics, using techniques introduced in [155, 158].

We compare the time-series estimates of these characteristics using Dynamic Time

Warping, a time-series similarity measure. We demonstrate that this measure can be

used to classify the affective label of the utterance. We test our hypothesis and show

that similarity-based pattern modeling outperforms both a feature-based method and

static modeling, particularly for ambiguous emotion content (defined as no rater con-

sensus). Our results also provide insight into the typical high-level patterns of emo-

tion. We visualize these dynamic patterns and the similarities between the patterns

to gain insight into the nature of emotion expression.
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1.2.3 Reducing Speech-Related Variability for Facial Emotion Recogni-

tion

We consider the problem of speech-related modulation for facial emotion recog-

nition (Chapter 5). Real-world emotion recognition faces a central challenge when

a user is speaking. In particular, facial movements arising from speech are often

confused with facial movements related to emotion. In this chapter, we first focus

on facial movements modulated by emotion and speech articulation. Facial emotion

recognition systems aim to discriminate between emotions, while reducing the speech-

related variability in facial cues. This aim is often achieved using two key features:

(1) phoneme segmentation: facial cues are temporally divided into units with a single

phoneme, and (2) phoneme-specific classification: systems learn patterns associated

with groups of visually similar phonemes, e.g. /P/, /B/, and /M/. In this work, we

hypothesize that proper segmentation that can effectively capture emotion-specific

variation is critical, and empirically compare the effects of different temporal seg-

mentation and classification schemes for facial emotion recognition. We propose an

unsupervised segmentation method that does not necessitate costly phonetic tran-

scripts. We show that the proposed method bridges the accuracy gap between a tra-

ditional sliding window method and phoneme segmentation, achieving a statistically

significant performance gain. We also demonstrate that the segments derived from

the proposed unsupervised and phoneme segmentation strategies are similar to each

other. This paper provides new insight into unsupervised facial motion segmentation

and the impact of speech variability on emotion classification.

1.2.4 Temporal Framework for Controlling Sources of Modulation in Audio-

Visual Affective Behavior

This chapter extends Chapter 5 and considers the problem of multiple sources of

modulation in audio-visual affective behavior (Chapter 6). As shown in Chapter 5,

11



recent studies have found that the use of phonetic information can reduce speech-

related variability in the lower face region. However, it has been less explored how to

distinguish between the upper face movements due to emotion and speech. This gap

leads us to the proposal of the Informed Segmentation and Labeling Approach (ISLA).

ISLA uses speech signals that alter the dynamics of the lower and upper face regions.

We demonstrate how pitch can be used for estimating emotion from the upper face,

and how this estimate can be combined with emotion estimates from the lower face

and speech. Our emotion classification results on the IEMOCAP and SAVEE datasets

show that ISLA improves overall classification performance. We also demonstrate

how emotion estimates from different modalities correlate with each other, providing

insights on the difference between posed and spontaneous expressions.

1.2.5 Emotion Spotting: Discovering Regions of Salient Audio-Visual Af-

fective Behavior

This chapter aims to discover consistent patterns of emotion in time across the

lower face, upper face, and speech modalities (Chapter 7). Previous studies have

found that humans require different amounts of temporal information to accurately

perceive emotion expressions. This varies as a function of emotion classes. For ex-

ample, Pell and Kotz found that the recognition of happiness requires longer speech

data than the recognition of anger [180]. In this chapter, we hypothesize that a

data-driven system can leverage these patterns of emotion and achieve similar per-

formance to traditional systems with less data. To test this hypothesis, we develop

a system that automatically detects emotion evidence for different emotion classes

and different modalities. We use a combination of four binary emotion classifiers to

estimate short-time emotion, and explore patterns (timings and durations) of emo-

tion evidence. Our results demonstrate similar patterns for each emotion class across

different training folds of emotion corpora. In addition, we show that our proposed
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method that only uses a portion of the data (e.g., 59%) can achieve comparable ac-

curacy to a system that uses all of the data within each utterance. Our data-driven

method has a higher accuracy compared to a baseline method that randomly chooses

a portion of the data. We show that the performance gain of the method is mostly

from prototypical emotion expressions (defined as expressions with rater consensus).

The key novelty of the proposed method is that it provides understanding of how

multimodal cues reveal emotion over time.

1.2.6 Transition Patterns in Temporal Behavior

Previous chapters demonstrated the importance of modeling temporal dynamics

of emotion expressions. The question arises, are these temporal dynamics impor-

tant to other aspects of human behavior? Chapter 8 explores temporal approaches

for recognizing human action events in videos. Our hypothesis is that there exist

transition patterns between these behaviors and a system that models this transi-

tion patterns will improve the system performance on behavior recognition. To this

end, we propose a temporal segmentation and classification framework that accounts

for transition patterns between events of interest. We apply this method to auto-

matically detect salient human action events from videos. A discriminative classifier

(e.g., Support Vector Machine) is used to recognize human action events, and an

efficient dynamic programming algorithm is used to jointly determine the starting

and ending temporal segments of recognized human actions. The key difference from

previous work is that we introduce the modeling of two kinds of event transition in-

formation, namely event transition segments, which capture the occurrence patterns

between two consecutive events of interest, and event transition probabilities, which

model the transition probability between the two events. Experimental results show

that the proposed approach significantly improves the segmentation and recognition

performance for the two datasets we tested, in which distinctive transition patterns
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between events exist.

1.2.7 Emotion Evaluation Strategies

To train and test our systems, we employ leave-one-speaker-out cross-validation.

In each dataset, we hold out each speaker as a “test speaker” and deploy the remain-

ing speakers to train the system. We evaluate the performance of the system on each

held-out test speaker. To be consistent with previous multi-class emotion recogni-

tion research [130, 158], we use unweighted average recall (UAR) over all speakers

in a given dataset to measure performance. We employ paired t-tests to test the

significance of the difference between systems, to be consistent with previous work

in emotion recognition [142]. We particularly use a paired t-test method for k-fold

cross validation in [52] to compare the accuracy of each test fold (subject). We claim

significance when the p-value is less than 0.05.

1.3 Related Work and Contributions to this Topic

In this section, we provide a summary of related work to this dissertation. Com-

prehensive surveys of methods in automatic emotion recognition can be found in [30,

31, 62, 79, 96, 121, 163, 210].

1.3.1 Related Work in Multimodal Emotion Recognition

Emotion recognition systems use either unimodal (i.e., only using speech or facial

features) and multimodal (i.e., using both speech and facial features) data. In this

section, we review the unimodal and multimodal systems and present common feature

selection techniques.

Unimodal Emotion Recognition. Speech is one of the most important methods

of human communication [62]. The progress made in speech recognition has sparked
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new research directions into methods to extract and analyze the emotional content

from speech [132, 152, 156, 209, 210]. The studies include investigations into speech

features and feature selection methods [72, 249, 249], proper units of analysis [73, 124],

and classification methods [70, 131].

Emotion has also been modeled using visual cues. The goal is to automatically

extract and analyze salient visual information. A majority of visual emotion recog-

nition systems is based on facial expressions, since facial displays arguably contain

more discriminative features for emotion recognition than body gestures [175, 240].

Recent studies have focused on inferring emotion based on salient visual cues, includ-

ing not only facial expression features, but also other types of visual features, such as

aesthetic features (introduced by [16]), to understand perceived emotions [40, 102].

Multimodal Emotion Recognition. Researchers found that the joint use of

speech and facial cues can improve the overall accuracy in emotion recognition. Many

studies have investigated how to combine these two modalities and how to build a

classification system that could effectively fuse this information [103, 146, 197, 200].

Decision-level fusion methods, which combine emotion estimates from different modal-

ities at the decision level, have been widely used. Kächele et al. presented a hier-

archical emotion and depression recognition system that trained ensembles of weak

learning algorithms and fuses the audio and facial data using a Kalman filter at the

decision level [103]. Savran et al. showed that particle filtering methods can also ef-

fectively combine emotion estimates from audio, facial, and lexical modalities, where

the estimates are treated as measurement variables in the filtering methods [200]. A

Bayesian network topology to combine facial and vocal expressions in a probabilistic

manner was also proposed by Sebe et al. [214]. They found that the performance

of the proposed multimodal system is higher than both facial and vocal emotion

recognition systems.
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Feature Selection in Emotion Recognition. Feature selection techniques used

extensively in emotion research include: Forward Selection, Information Gain (IG),

and Principal Component Analysis (PCA). These techniques are either supervised

(forward selection and IG) or use representations based on the linear dependencies

between the original features (PCA).

Forward feature selection is a greedy algorithm that sequentially selects features

that increase the overall classification accuracy. This method has been widely used

in many machine learning applications, including emotion recognition tasks [132].

Although this method can identify a subset of good features for classification, it

may not be suitable if there are groups of features with complex relationships due

to the greedy nature of the approach. IG-based feature selection methods are also

commonly used in emotion recognition [158, 186]. This method ranks features by

calculating the reduction in the entropy of class labels given knowledge of each feature.

In general, however, it does not search for feature interactions. Furthermore, both

forward selection and IG methods require labeled data during the feature selection

process.

PCA and its variants (e.g., Principal Feature Analysis, or PFA [137]) are broadly

used in the emotion recognition literature [149, 221, 246]. PCA finds a linear pro-

jection of the base feature set to a new feature space where the new features are

uncorrelated. The feature set can be reduced to retain a majority of the variance in

the original feature space. Although this unsupervised method has been widely used

in many emotion applications, the limitation is in its linear projection of the base fea-

tures, which tends to obscure the emotion content [24]. PFA is an extension of PCA.

It clusters the data in the PCA space and returns the final features closest to the

center of each cluster. This results in a feature set that maintains an approximation

of the variance of the original set, while minimizing correlations between features.

However, an open question remains whether complex non-linear interactions between
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audio and video modalities would benefit emotion recognition systems, as shown to

be useful in audio-visual speech classification [166]. We explore this research question

in Chapter 3.

1.3.2 Related Work in Emotion Dynamics

This section discusses related work that developed quantitative models of human

emotion dynamics. A proper understanding of the dynamic nature of emotion has

led to modeling advancements and a greater understanding of the temporal patterns

that underlie our affective communication. There is a large body of work in tracking

feature-level emotion structure, including Hidden Markov Models (HMMs) and Bidi-

rectional Long Short-Term Memory (BLSTM) systems. For instance, coupled HMMs

were used to take dynamics from vocal and facial expressions into account in emotion

recognition [151]. Mower and Narayanan also have demonstrated that short-term

estimates of affective flow could also be modeled dynamically using HMMs, which

suggested that emotion has definable structure [155]. BLSTM models are neural net-

works with memory blocks that can capture variable amounts of context [206, 246].

These models are effective in capturing long-range context [76]. In these methods,

and commonly within the community, the common practice for modeling emotion

dynamics considers the feature-level fluctuations of the signal [182, 247]. Our work

differs from previous studies in that we directly compute the time-series similarity

between trajectories of emotion using Dynamic Time Warping (Chapter 4). This

provides flexibility in the analysis of emotion stimuli and permits an analysis of the

temporal patterns that are similar.

1.3.3 Related Work in Reducing Sources of Modulation

Previous studies in emotion recognition have attempted to reduce the effect of

variability in audio-visual behavior. These studies mostly focused on facial emotion
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recognition systems to reduce the effect of speech-related variability. The studies have

shown that methods using speech production knowledge can improve emotion recog-

nition performance on specific regions of the face tied to speech production, such as

the mouth [113, 114, 142, 148]. These methods segmented facial data at the phoneme

level, and separately trained emotion classifiers for each visually similar phoneme

group (e.g., /P/, /B/, /M/). However, questions still remain on how the upper face

region changes over time and how these changes are associated with emotion. Pre-

vious work has shown that the upper face region changes in a longer-range duration

than the lower face region, however it is under-explored whether these changes can

be accurately captured from speech signals [24, 25].

Temporal Segmentation of Audio-Visual Data. Audio-visual data are often

temporally segmented into smaller units to obtain more meaningful features [124, 205],

to build dynamic classifiers [155, 198], and to find semantically meaningful regions [5,

17, 124, 194].

Temporal segmentation is commonly employed in speech emotion recognition. One

approach is to use phonemes for segmentation (a comprehensive survey on phoneme

segmentation can be found in [230]). In speech recognition, sub-word units such

as phonemes are often used, since word-level or whole-word models are challenging

to build due to the large vocabulary sizes in natural language [73]. Several recent

works have approached phoneme segmentation problems as well [105, 110, 188]. In

the pioneering study of Lee et al., the authors designed and compared the standard

emotion-specific HMMs and HMMs trained on individual phoneme groups for each

emotion and found that vowel sounds were the most effective for emotion classification

compared with the other four phoneme groups [133]. Ringeval et al. also proposed

a speech feature extraction method based on a pseudo-phonetic speech segmentation

technique combined with a vowel detector [191]. They compared MFCC acoustic
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features from these pseudo-phonetic segments (vowels, consonants) with segments

created by identifying the regions of voiced and unvoiced speech. They showed that

the voiced segments could be modeled more accurately than the vowel or consonant

segments for emotion recognition.

Signals other than phonemes have also been explored for segmenting emotional

speech. Koolagudi et al. studied methods to segment speech for emotion recognition

based on the prosody of speech segments. They used words and syllables as units

of the segments [124]. They found that the system-level performance using prosody-

based speech segments was not high, but that the performance significantly improved

when combined with spectral features. Batliner et al. treated words as the basic unit

of emotion expression. They combined words either into syntactically and semanti-

cally meaningful chunks or into sequences of words that belonged to the same emo-

tion class [12]. Jeon et al. investigated different sub-sentence segment units (words,

phrases, time-based segments) using a two-level system that focused both on segment-

level and utterance-level emotion prediction. They found that time-based segments

achieved the best performance [101]. Schuller et al. also investigated different timing

patterns for segmentation using absolute and relative time intervals. Utterances were

either segmented at fixed time intervals (absolute) or at fixed relative positions such

as halves or thirds (relative) [205]. They demonstrated that absolute time intervals of

one second achieved the highest accuracy (also demonstrated in [155]). Additionally,

they found that systems based on relative time intervals were more accurate than

those that used absolute time intervals.

There have also been research efforts in temporal segmentation for facial emotion

expression recognition. As seen in audio modeling, these methods include phoneme-

based segmentation [43, 90] and the standard fixed-length and multiple fixed-length

segmentation [155, 168, 198]. Cohen et al. proposed a multi-level HMM for the auto-

matic segmentation and classification of facial expressions [43]. The proposed method
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automatically segments and classifies a video recording of six sequences that display

each of the six basic emotions (anger, disgust, fear, happiness, sadness, and surprise).

The multi-level HMM makes an assumption that the transitions between emotions

pass through the neutral state. They compare this with the standard emotion-specific

HMM, where the input video is pre-segmented for each emotion. They found that the

accuracy of their proposed system was similar to that of the standard emotion-specific

HMM. Hoey used a manual segmentation of facial cues presenting a subject’s under-

lying emotion [90]. He proposed a multi-level weakly supervised dynamic Bayesian

network that learns the high-level dynamics of facial expressions.

There has also been work focused on unsupervised segmentation of facial expres-

sion data. Zhou et al. presented an unsupervised segmentation and clustering method

of facial events [250]. They used k-means clustering with a Dynamic Time Alignment

Kernel [216] to segment and cluster posed and unposed facial events. They found mod-

erate intersystem agreement with the Facial Action Coding System (FACS). However,

most of the previous work used facial data not modulated by spoken content, render-

ing it challenging to understand the impact of speech-related variability (a notable

exception includes [250]). Our work is differentiated from the previous studies focus-

ing on how we can better estimate emotion class by reducing the variability of facial

movements caused by speech, while using unsupervised techniques.

Phoneme or Viseme-Dependent Modeling. Previous studies found that facial

cues are difficult to model when facial movement is modulated by both emotion and

speech production [113, 142, 148]. These studies have approached these challenges

by building emotion classification systems that train classifiers on specific groups of

phonemes with similar facial movement. This construction allows for a focus on mod-

ulations due to emotion rather than due to articulation and emotion. Metallinou et

al. first conducted phoneme-dependent modeling on the IEMOCAP database for fa-
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cial emotion recognition [148]. They presented an emotion classification system based

on HMM that separated the classifiers into 14 similar viseme groups, the groups also

used in our study. The highest unweighted accuracy they achieved was 55.74%, when

using viseme-specific HMMs. Mariooryad and Busso studied two types of methods to

reduce or compensate for speech variability in facial emotion recognition: feature-level

and model-level compensation [142]. The feature-level method normalizes phoneme-

dependent patterns in facial movement using the whitening transformation to com-

pensate for the difference in phoneme-dependent patterns in the features. The model-

level method separates emotion classifiers into viseme-dependent groups. The study

found that both the feature and model-level compensation methods improve over-

all performance. In particular, their results showed a larger performance gain for

the model-level method compared to the feature-level method. The previous studies

demonstrated the benefits of phoneme segmentation and viseme-group classification,

however, an open question remains as to how similar levels of accuracy can be achieved

without segmenting based on phoneme transcript and whether phonemes are the cor-

rect unit for segmentation. We address this question in Chapter 5.

Interrelation Between the Lower Face, Upper Face, and Speech. Previous

studies have found that there exist different characteristics in emotion expressions

from the lower face, upper face, and speech modalities. Bassili studied the role of

facial movement in human emotion recognition [10]. He found that humans rely

relatively different on the upper and lower facial expressions to recognize emotion.

For instance, human recognition of happiness is related to changes in the mouth and

cheek regions, and humans confused happiness with sadness when only the upper

face region was presented. Busso and Narayanan conducted a single-subject study

that investigated the correlation between the recorded and estimated facial features,

derived from speech features [24]. The speech features, which include pitch, energy,
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and MFCCs, are used to estimate facial features using an affine minimum mean square

error (AMMSE) estimator. The results reveal that the lower face region provide the

highest activeness and correlation levels. The highest correlation was r = 0.8. The

findings demonstrated that facial gestures are linked at different resolutions, however,

they modeled the upper face region simply at the sentence level.

Based on these findings, recent emotion recognition studies modeled different

modalities separately [82, 140, 150]. Metallinou et al. studied the decision-level fu-

sion of speech, facial and head movements [150]. They extracted features separately

for the upper and lower face regions, with an intuition that the two regions have low

correlation due to different underlying muscles and communicative roles. The authors

found that this separate modeling of the two face regions improves the emotion clas-

sification of emotional states, i.e., anger, happiness, and sadness, compared to joint

modeling. However, the proposed separate modeling decreased the accuracy for neu-

trality. Mansoorizadeh and Charkari studied feature-level fusion methods between

the upper and lower face, and speech signals [140]. They proposed a buffer method to

deal with asynchrony between the signals, where they either repeated the last frame

value or took the median before fusion, similar to filling in missing values in the data.

Hakim et al. also modeled the upper and lower face regions separately for facial

emotion recognition, and demonstrated that such separate modeling achieves higher

recognition rate than joint modeling of the whole face [82]. Questions still remain

on how to (1) choose the right temporal scale (segmentation) for emotion expressions

and (2) control for sources of modulation.

1.3.4 Modeling Transition Patterns in Temporal Behavior

Human action recognition is an active research area in computer vision [187, 233,

242].

Video segmentation. Segmentation of videos into salient events is an important

22



task in video analysis that facilitates the retrieval, indexing, annotation, and repre-

sentation of video data [125]. Traditionally, it entails shot boundary detection, i.e.,

the complete segmentation of a video into continuously imaged temporal segments

[46].

Video event recognition. A recent research trend in temporal segmentation is

based on salient events of interest rather than continuously recorded images, e.g., [89,

167, 225, 251]. Tang et al. studied HMM-based models to learn the temporal structure

of complex events in Internet videos [225]. They utilized a variable-duration HMM

to model the durations and transitions of an event segment of interest, where the

model is trained in a discriminative, max-margin fashion. They achieved competitive

accuracies on activity recognition and event detection tasks. However, their work

differs from ours in that a video clip with a single event label is analyzed instead of

a video sequence with multiple events. Hoai et al. [89], Cheng et al. [41], and Zhou

et al. [251] studied the temporal segmentation of human action videos that contain

multiple action events. Hoai et al. jointly localized and classified action events using

a max-margin classifier and DP, which is most relevant to our work [89]. The main

difference is that our approach benefits from the inclusion of transition events (i.e.

events between two salient events of interest). The introduction of event transitions,

the probabilistic modeling, and an efficient implementation are the key novelties of our

work. Cheng et al. demonstrated the importance of temporal dependencies between

events in joint segmentation and classification tasks [41] by applying the Sequence

Memorizer [248]. The main difference of our work is that our system identifies events

at the individual frame level, whereas the work of Cheng et al. represents a video

using visual words of fixed-length sub-sequences. Zhou et al. studied unsupervised

temporal clustering of human motion using the kernel k-means algorithm with the

generalized dynamic time alignment kernel [251]. Our work differs from [251] in that

we utilize the event-level transition information to capture longer-range temporal
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information of human motions.

Generative and discriminative event modeling. Transition events have been

handled using generative models (e.g., transition matrix in HMM) [69] and modeled as

individual transition events in specific domains, for example the onset and offset states

in facial Action Unit recognition. Galata et al. used variable-length Markov models

that temporally segmented human activities into atomic behavior components [69].

Valstar et al. presented a hybrid SVM/HMM system to segment a facial action

into temporal phases (e.g. onset, offset, peak, and neutral states), with a noticeable

performance gain [234, 235]. They used a sigmoid function operating on the SVM

outputs as an emission probability for HMMs (instead of traditional Gaussian mixture

models, since SVMs discriminate extremely well). Several studies have demonstrated

the efficacy of using transition information for temporal segmentation of videos [225].

Event transition in facial movements. Studies in facial Action Units (AU) detec-

tion have demonstrated the utility of event transition information [53, 122, 234, 234].

AUs are anatomical facial muscle actions based on the Facial Action Coding System

(FACS), where 9 upper face AUs and 18 lower face AUs are defined [235]. The set

of AUs can be categorized by their transition states into onset (muscles contracting

and expression becoming stronger), peak (with consistently strong expression), and

offset (muscles relaxing back to neutral appearance) phases. The order of the phases

is often “neutral-onset-peak-offset-neutral”, whereas spontaneous facial expressions

with multiple peaks and other orderings are also possible [44, 234]. Koelstra et al. in-

troduced a combination of discriminative frame-based GentleBoost ensemble learners

and used a dynamic generative HMM to detect AU and its temporal segments [122].

The ‘cascade of tasks’ of Ding et al. combines outputs of different tasks (frame, seg-

ment, and transition detection) linearly for the final AU event detection [53]. The

combination parameters are learned by cross-validation, and independent onset and

offset detectors were trained using a linear SVM for transition detection.
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To our best knowledge, the use of transitions in discriminative learning has not

been extensively exploited for event recognition, in particular for the purpose of joint

localization and classification of complex video events.

1.4 Main Contributions

The main contributions of this dissertation are:

• We explain the importance of modeling complex non-linear interactions between

audio and visual emotion expressions (Chapter 3). We show improvement in

recognition rate when using deep learning approaches that capture these inter-

actions compared to traditional feature selection methods.

• We provide interpretable descriptions of how emotion flows over time in Chapter

4.

• In Chapters 5 and 6, we explore how speech alters the dynamics of different

regions of the face, and how the speech signals can be used to inform the design

of audio-visual emotion recognition systems when a person is speaking.

• We discover subject-independent consistent patterns in time regions of emotion

evidence in audio-visual affective behavior in Chapter 7.

• We demonstrate the importance and applicability of modeling temporal dynam-

ics in human action events, and show that modeling transition patterns between

behaviors can benefit behavior recognition systems in Chapter 8.

1.5 Organization of the Dissertation

This dissertation is composed of three main parts: (i) motivational studies (Chap-

ters 3 and 4), (ii) mixed factors of behavior (Chapters 5 and 6), and (iii) localization of
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salient events (Chapters 7 and 8). We review datasets and features that we use in this

dissertation in Chapter 2 and summarize the main contributions of this dissertation

and discuss the potential directions for future work in Chapter 10.
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CHAPTER 2

Data and Features

2.1 IEMOCAP Database

The majority of this dissertation uses the Interactive Emotional Dyadic Motion

Capture (IEMOCAP) Database (Figure 2.1 and 2.2 [27]). This database has been

widely used in the field of automatic audio-visual emotion recognition [119, 130, 151,

158].

Figure 2.1: IEMOCAP motion capture data [27]

The database approximately contains 12 hours of dyadic conversations between

five pairs of actors (each pair contains one male and one female). Each session contains

both acted and improvised scenarios. For acted scenarios, actors were given three

scripts which contain clear emotional content. For improvised scenarios, actors were

asked to elicit specific emotions using high-level scene descriptions (e.g., you are at

an airport and the airline has lost your baggage).

The data are captured using audio-visual cameras and a nine-camera Vicon re-

coding system, providing 3-D marker coordinates at 120 frames per second (fps). The
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Figure 2.2:
Human annotation for emotion labels. The high-level affective content
of each utterance (manually segmented) are evaluated based on categori-
cal (e.g., happiness, sadness) and dimensional (e.g., activation, valence)
labeling. [27]

data include 53 motion capture markers on the actor’s face as shown in Figure 2.1.

The five nose markers are excluded due to their limited movement, and the two eyelid

markers are also excluded due to their frequent occlusions, as in [113, 148]. The data

are manually segmented into utterances (defined as speaker turns), resulting in over

10,000 utterances. The turn level is defined as the time a speaker is actively speaking.

The data were evaluated by human evaluators using both categorical and dimen-

sional labeling schemes. The categorical labels are used in my approaches. The

labels include: Anger, Happiness, Neutrality, Sadness, Excitement, Surprise, Frus-

tration, Fear, Disgust, Other. They were evaluated by at least three evaluators. We

use utterances with majority voted categorical labels from the set: Anger, Happi-

ness+Excitement, Neutrality, Sadness, in line with previous studies [142, 148]. There

are 43.0 ± 26.2 angry, 91.5 ± 37.5 happy, 44.6 ± 27.4 neutral, and 51.8 ± 28.1 sad

utterances per speaker, totaling 3,060 utterances over all speakers. The mean length

of an utterance is 4.73± 3.34 seconds. Utterances have an average of 0.75 seconds of

silence at the beginning of an utterance and 0.86 seconds at the end of an utterance.
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Figure 2.3:
Positions of face markers and six face regions: chin (CHI), forehead (FH),
cheek (CHK), upper eyebrow (UEB), eyebrow (EB), and mouth. The
images are from the IEMOCAP (left, [27]) and SAVEE datasets (right,
[84]).

Evaluators agreed with the assigned ground truth labels approximately 72% of the

time. The dimensional attributes include valence (positive vs. negative), activation

(calm vs. excited), and dominance (passive vs. dominant). They were evaluated by

at least two evaluators.

2.2 SAVEE Database

The SAVEE dataset contains read speech of four male British-English speakers,

eliciting six emotions: Anger, Disgust, Fear, Happiness, Sadness, and surprise. Each

emotion was expressed in 15 phonetically-balanced sentences, and Neutrality in 30

sentences. This results in 480 utterances in total. In our work, we use four classes

for consistency with the IEMOCAP database: Anger, Happiness, Neutrality, and

Sadness, resulting in 300 utterances in total. The average length of an utterance

within the subset is 3.85 ± 0.33 seconds. The utterances have an average of 0.51

seconds of silence at the beginning of an utterance and 0.55 seconds at the end of

an utterance. The facial data include 2D coordinates of 60 markers on the forehead,
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eyebrows, cheeks, lips and jaw (Figure 2.3). The sampling rate was 44.1 kHz for

audio, and 60 fps for video.

The provided emotion labels of the SAVEE dataset are the labels given to the

actors, rather than the intended target emotion (annotated labels were not avail-

able). This is different from IEMOCAP, in which we use emotion labels derived from

perceptual evaluations. However, the authors presented a high level of agreement

between the intended target emotion and perceived emotion: 441 out of 480 total

sentences in the data were perceived as the intended target emotion by at least 8 out

of 10 annotators, indicating good agreement between the actor’s intended emotion

and the annotator’s perception [84]. Additional differences between the SAVEE and

IEMOCAP databases include: (i) 2-dimensional vs. 3-dimensional motion capture

data, (ii) motion-capture frame rate of 60 fps vs. 120 fps, (iii) four speakers, each with

scripted utterances, vs. ten speakers, each embedded within a dyadic interaction.

I use a subset of the 60 motion capture markers to have a configuration similar

to the IEMOCAP database. The subset totals 46 markers (Figure 2.3). Further, we

address the difference in fps between the two databases by interpolating the SAVEE

motion capture data using cubic spline interpolation (described in Section 5.2.1) to

increase the frame rate to 120 fps. We discuss the impact of this interpolation in

Section 5.2.1. Finally, we scale the SAVEE motion capture data to have the same

minimum and maximum values as in the IEMOCAP database.

2.3 Smartroom Database

We created a new Smartroom Dataset with volunteers performing a series of upper

body actions, where the challenge is that both the temporal durations of events

and the number of events are unknowns [118]. The dataset contains six subjects

performing a mix of the following actions in 8 videos: Crossing arms on chest (CC),

Touching face (TF), Arms on hip (AH), and Normal (N). Each action is repeated two
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to three times in each video. Normal action represents the case of hands down in a

resting position. The average length of the videos is 47.8 seconds. Each of the {CC,

TF, AH} actions was enacted sequentially following the “neutral-onset-peak-offset-

neutral” pattern for the right arm, left arm, and both arms. The enacted events share

a large extent of variations in terms of temporal durations and spatial locations.

For ground truth segment configurations, two human annotators labeled both (1)

the start and end timing of peak segment, and (2) the action label of the three pre-

defined actions. We add three frames prior-to and post-to each peak boundary, and

define non-overlapping onset, peak, offset, and neutral segments. The onset and offset

segments are always chosen to be 7 frames in length.

2.4 CMU-MAD Database

CMU-MAD dataset [94] contains 35 human actions of 20 subjects recorded using

a Microsoft Kinect sensor. Similar to the Smartroom Dataset, we use the joint angles

of elbows and shoulders as frame-level features, and utilize the same segment-level

features ϕ mapping as in the Smartroom Dataset, i.e. mean, standard deviation,

and linear regression slope. The start and end time of each action are provided in

this dataset. However, the timings can not be directly used in our neutral-onset-peak-

offset-neutral model, since the action between the start and end time contain all of the

neutral, onset, peak, offset, and neutral events. Due to the specific labeling scheme of

this dataset, it is reasonable to separate each labeled action segment into three sub-

sequences: [0-33.3%] for onset, [33.3-66.6%] for peak, and [66.6-100%] for offset. we

focus on the evaluation of 9 actions that contain meaningful transitions and exclude

actions such as running (where the action peak as well as onset/offset transitions are

not clearly defined). These selected 9 actions are: left/right arm waving, left/right

arm pointing to the ceiling, crossing arms on the chest, basketball shooting, both

arms pointing to both sides and left/right side.
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Part I: Motivational Studies

CHAPTER 3

Multimodal Feature Learning for Emotion

3.1 Introduction

Emotion recognition is complicated by the inherent multimodality of human emo-

tion expression (e.g., facial and vocal expression). This multimodality is characterized

by complex high-dimensional and non-linear cross-modal interactions [228]. Previous

research has demonstrated the benefit of using multimodal data in emotion recog-

nition tasks and has identified various techniques for generating robust multimodal

features [25, 177, 236, 237, 244]. However, although effective, these techniques do not

take advantage of the complex non-linear relationship that exists between the modal-

ities of interest, or alternatively require the use of labeled data. In this chapter, we

apply deep learning techniques, which can overcome these limitations, in order to

provide robust features for audio-visual emotion recognition.

Emotion recognition accuracy relies heavily on the ability to generate represen-

The work presented in this chapter has been published in the following article:
Yelin Kim, Honglak Lee, and Emily Mower Provost. ”Deep Learning for Robust Feature Generation
in Audio-Visual Emotion Recognition.” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2013.
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tative features. However, this is a very challenging problem. Emotion states do not

have explicit temporal boundaries and emotion expression patterns often vary across

individuals [4]. This problem is further complicated by the high dimensionality of the

audio-visual feature space. Consequently, accurate modeling generally requires a re-

duction of the original input feature space. This reduction is commonly accomplished

using feature selection, a method that identifies a subset of the initial features that

provide enhanced classification accuracy [62]. However, it is not yet clear whether it is

more advantageous to select a subset of emotionally relevant features or to capture the

complex interactions across all features considered. In this chapter, we demonstrate

the effectiveness of Deep Belief Networks (DBN) for multimodal emotion feature gen-

eration. We learn multi-layered DBNs that capture the non-linear dependencies of

audio-visual features while reducing the dimensionality of the feature space.

There has been a substantial body of work on feature representation, extraction,

and selection methods in the emotion recognition field in the last decade. Our work

is motivated by the discovery of methods for learning multiple layers of adaptive

features using DBNs [13]. Research has demonstrated that deep networks can ef-

fectively generate discriminative features that approximate the complex non-linear

dependencies between features in the original set. These deep generative models have

been applied to speech and language processing, as well as emotion recognition tasks

[153, 154, 217]. In speech processing, Ngiam et al. [166] proposed and evaluated deep

networks to learn audio-visual features from spoken letters. In emotion recognition,

Brueckner et al. [22] found that the use of a Restricted Boltzmann Machine (RBM)

prior to a two-layer neural network with fine-tuning could significantly improve classi-

fication accuracy in the Interspeech automatic likability classification challenge [212].

The work by Stuhlsatz et al. [223] took a different approach for learning acoustic fea-

tures in speech emotion recognition using Generalized Discriminant Analysis (GerDA)

based on Deep Neural Networks (DNNs). While the present study is related to re-
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cent approaches in multi-modal deep learning and the application of deep learning

techniques to emotion data, it focuses on non-linear audio-visual feature learning for

emotion, which has not been extensively explored in the emotion recognition domain.

In the current work we present a suite of DBN models to investigate audio-visual

feature learning in the emotion domain. We compare two methodologies: (1) un-

supervised feature learning (DBN) and (2) secondary supervised feature selection.

We first build an unsupervised two-layer DBN, enforcing multi-modal learning as in-

troduced by [166]. We augment this DBN with two types of feature selection (FS):

1) before DBN training to assess the benefit of feature learning exclusively from an

emotionally-salient subset of the original features and 2) after DBN training to assess

the advantage of reducing the learned feature space in a supervised context. We com-

pare this to the performance of a three-layer DBN model. Our baseline is a Support

Vector Machine that uses subsets of the original feature space selected using super-

vised and unsupervised feature selection. The results provide important insight into

feature learning methods for multimodal emotion data.

The results show that the DBN models outperform the baseline models. Fur-

ther, our results demonstrate that the three-layer DBN outperforms the two-layer

DBN models for emotionally subtle data. This suggests that unsupervised feature

learning can be used in lieu of supervised feature selection for this data type. In

addition, the relative performance improvement of the three-layer model for subtle

emotions suggests that these complex feature relationships are particularly impor-

tant for identifying subtle emotional cues. This is an important finding given the

challenges inherent in and need for recognizing emotions elicited in realistic scenarios

[208].
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3.2 Related Work

3.2.1 Unsupervised Feature Learning and Deep Learning

Deep learning techniques (See [13] for a survey) have become increasingly popu-

lar in various communities including speech and language processing [153, 154, 217]

and vision processing [126, 134, 135, 219, 226]. This progress has been facilitated by

the recent discovery of more effective learning algorithms for constructing DBNs in

an unsupervised context, for example exploiting single-layer building blocks such as

Restricted Boltzmann Machines (RBMs) [218]. DBNs [88] learn hierarchical represen-

tation from data and can be effectively constructed by greedily training and stacking

multiple RBMs.

RBMs are undirected graphical models that represent the density of input data

v ∈ RD (referred to as “visible units”) using binary latent variables h ∈ {0, 1}K

(referred to as “hidden units”). In the RBM, there are no connections between units

in the same layer, which makes it easy to compute the conditional probabilities.

In this chapter, we use Gaussian RBMs that employ real-valued visible units for

training the first layer of the DBNs. We use Bernoulli-Bernoulli RBMs that employ

binary visible and hidden units for training the deeper layers. In a Gaussian RBM,

the joint probability distribution and energy function of v and h is as follows:

P (v,h) =
1

Z
exp(−E(v,h)) (3.1)

E(v,h) =
1

2σ2

∑
i

v2i −
1

σ2

(∑
i

civi +
∑
j

bjhj +
∑
i,j

viWijhj

)
(3.2)

where c ∈ RD and b ∈ RK are the biases for visible and hidden units, respec-

tively, W ∈ RD×K are weights between visible units and hidden units, σ is a hyper-

parameter, and Z is a normalization constant. The conditional probability distribu-
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tions of the Gaussian RBM are as follows:

P (hj = 1|v) = sigmoid

(
1

σ2
(
∑
i

Wijvi + bj)

)
(3.3)

P (vi|h) = N

(
vi;
∑
j

Wijhj + ci, σ
2

)
(3.4)

The posteriors of the hidden units given visible units (Equation 3.3) form the gener-

ated features used in the classification framework. The parameters of the RBM (W,

b, c) are learned using contrastive divergence as in [87]. We use sparsity regular-

ization [134] to penalize a deviation of expected activation of the hidden units from

a low fixed level p. Given a training set {v(1), ...,v(m)}, we include a regularization

penalty of the form:

λ
K∑
j=1

∣∣∣∣∣p− 1

m

m∑
l=1

E
[
h
(l)
j |v(l)

]∣∣∣∣∣
2

(3.5)

where E[·] is the conditional expectation given the data, λ is a regularization pa-

rameter, and p is a constant that specifies the target activation of the hidden unit

hj [134].

3.3 Utterance-Level Features

We use audio and motion capture data of the IEMOCAP database. The audio

features include both prosodic and spectral features: pitch, energy and mel-frequency

filter banks (MFBs). Prosodic features such as pitch and energy features have been

demonstrated to be highly effective in speech emotion recognition [62]. Previous

research also found that spectral features capture a significant amount of emotional

contents from speech; in addition, MFBs have been shown to be better discriminative

features than mel-frequency cepstral coefficients (MFCCs) in emotion recognition

[26]. The video features are based on Facial Animation Parameters (FAP), part of
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the MPEG-4 standard. FAPs describe the movement of the face using distances

between particular points on the face. They have been widely used to capture facial

expressions in the emotion recognition literature. The subset is chosen to include

emotionally meaningful movements (e.g., eye squint, smile, etc.).

Our input features are statistics of the raw features calculated at the utterance

level. They include: mean, variance, lower quantile, upper quantile, and quantile

range. The initial feature set contained 685 features, where 145 are audio and 540

are video features. The features are normalized on a per-speaker basis to mitigate

speaker variation [158].

3.4 Proposed Method

3.4.1 Cross-Validation and Performance Evaluation

We use leave-one-speaker-out cross validation to ensure that the models are not

overtraining to the affective styles of a particular speaker. We pre-train the DBN

models (unsupervised) and search for the best hyper-parameters including: sparsity

parameters and the number of final output nodes. We select our hyper-parameters

using cross validation over the training data. We fix the number of hidden nodes of

the two-layer DBNs, the sigma parameter for the first-layer Gaussian RBMs, and the

L2 regularization parameter (Section 3.4.3). We select the best hyper-parameters for

each data type: prototypical, non-prototypical, and combined.

We evaluate the performance of the baseline and DBN systems using Unweighted

Accuracy (UA). UA is an average of the recall for each emotion class [208]. The

unweighted accuracy better reflects overall accuracy in the presence of class imbalance.

3.4.2 Baseline Models

Our baseline models are two SVMs with radial basis function (RBF) kernels. The

SVMs do not use features generated via deep learning techniques. The SVMs have

radial basis function (RBF) kernels and are implemented using the Matlab Bioin-
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formatics Toolkit. We train four emotion-specific binary SVMs in a self-vs.-other

approach. The final emotion class label is assigned by identifying the model in which

the test point is maximally far from the hyperplane as in as in [158].

Both models employ feature selection. The first uses IG [55] and the second

uses PFA [137] feature selection (a supervised and unsupervised feature selection

technique, respectively). IG is applied to each emotion class, resulting in four sets of

emotion-specific features. Each emotion-specific SVM uses the associated emotion-

specific feature subset. The number of features is chosen over {60, 120, 180} for each

data type.

We optimize the baselines using leave-one-subject-out cross-validation for each

data type (prototypical, non-prototypical, and combined data). The parameters in-

clude the number of selected features using IG and PFA, the value of the box con-

straint (C=1) for the soft margin in the SVM, and the scaling factor (sigma=8) in

the RBF kernel.

We also compare our results with the maximal accuracy achieved from a previous

work of Metallinou et al. [150], which utilizes the same IEMOCAP database as our

work and introduces a decision-level Bayesian fusion over models using face, voice,

and head movement cues. Although Metallinou’s work used a different subset of

the IEMOCAP database, this comparison supports the strong performance of our

proposed method.

3.4.3 Deep Belief Network Models

We experiment with four different DBN models in order to explore different non-

linear dependencies between audio and motion-capture features. We also assess the

utility of feature selection methods in these deep architectures (Figure 3.1).

Our basic DBN is a two-layer model and is a building block for the other variants.

It learns the audio and video features separately in the first hidden layer. The learned

features from the first layer are concatenated and used as the input to the second
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Figure 3.1:
Illustration of proposed models: (a) DBN2, (b) FS-DBN2, (c) DBN2-FS,
and (d) DBN3.
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hidden layer as introduced in [166]. We call this the DBN2 model (Figure 3.1(a)).

The other three DBN models are based on DBN2. Two involve feature selection

and one is a three-layer DBN model. The two-layer models use supervised feature

selection (IG) either prior to or post the unsupervised pre-training. The three-layer

model reduces the feature dimensionality using a third RBM layer, invoking unsu-

pervised feature learning. Thus, the three-layer model captures additional high-order

non-linear dependencies of all features, whereas the models employing supervised

feature selection use only emotionally salient features. The variants are defined as

follows:

• FS-DBN2 is a two-layer DBN with feature selection prior to the training of the

DBN2 model (Figure 3.1(b)).

• DBN2-FS is a two-layer DBN with feature selection on the final RBM output

nodes (Figure 3.1(c)).

• DBN3 is a three-layer DBN that stacks an additional RBM on the second-layer

RBM output nodes of the DBN2 model (Figure 3.1(d)).

The number of hidden units in the first layer is approximately 1.5x overcomplete

for each audio feature (300 units from 145 audio features) and video feature (700 units

from 540 video features), resulting in 1000 concatenated first layer hidden units. The

number of second hidden units is fixed at 200 for DBN2, DBN2-FS, and DBN3. For

FS-DBN2, the number of second hidden units is fixed to 150 because the number of

visible units is smaller compared to the other three DBN models.

The sparseness parameters are selected using leave-one-speaker-out cross-validation,

while all other parameters (including hidden layer size and weight regularization) are

kept fixed (See Section 3.4.1 for details). Since the number of video features is larger

than the number of audio features, we select the sparsity parameters of bias for audio

data and video data over {0.1, 0.2} and {0.02, 0.1}, respectively. Also, the sparsity
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parameters of λ are selected over {2, 6, 10} for audio features, while λ sparsity pa-

rameters are fixed at 5 for video features. Our preliminary results demonstrated that

the λ value for the video features did not noticeably affect the results. The number

of features selected at the final level (DBN2-FS) and the number of hidden units at

the final level (DBN3) are selected over {50, 100, 150}.

For FS-DBN2, a total of 100 audio features and 200 video features are chosen

using IG. We first pre-train a sparse RBM with 100-200 nodes for the audio features

and 200-600 nodes for the video features. We select the sparsity parameters of bias

over {0.1, 0.5} for each RBM. λ is fixed as 5. Next, we concatenate the learned

features and pre-train a first layer of DBN with 800 output nodes and the second

layer with 150 nodes (Bernoulli-Bernoulli).

The output of each DBN is classified using the same SVM structure used in the

baseline (Section 3.4.2).

3.5 Results and Discussion

A summary of the emotion classification results can be seen in Table 3.1. The DBN

models for the combined data achieve UAs ranging from 65.25% (DBN2) to 66.12%

(DBN2-FS). All DBN models outperform the baseline models (the two baseline models

perform comparably). The performance gap between the maximal UAs of proposed

models and the PFA baseline is 1.67%.

The DBN models for the non-prototypical data achieve accuracies ranging from

56.70% (FS-DBN2) to 57.70% (DBN3). All DBNs outperform the baseline models

(which again perform comparably). The performance gaps between the UAs of pro-

posed models and baseline models range from 1.71% to 1.89%. We obtain a slight

performance gain when using DBN3 compared to both DBN2-FS and FS-DBN2 for

subtle or non-prototypical utterances (0.73% and 1.63% increase, respectively). This

result is important given that the DBN3 model does not use any labeled data (unsu-
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Baseline Proposed DBNs
IG PFA DBN2 DBN2-

FS
DBN3 FS-

DBN2

Combined 64.42 64.45 65.25 66.12 65.71 65.89
Non-Prot 55.81 55.99 56.89 56.97 57.70 56.07
Prot 73.38 70.02 70.46 72.96 73.78 72.77

Table 3.1:
Unweighted classification accuracy (%) for combined, non-prototypical, and
prototypical data

pervised feature learning), whereas the FS-DBN2 model learns a new set of features

from a previously identified subset of emotionally salient features and the DBN2-FS

invokes feature selection at the output. This demonstrates that we can effectively use

unsupervised feature learning, rather than supervised feature selection, for emotion

recognition, even for emotionally subtle utterances (non-prototypical).

The DBN models for the prototypical data achieve accuracies ranging from 70.46%

(DBN2) to the maximum of 73.78% (DBN3). The performance gap between the max-

imal UAs of the proposed models and maximal UAs of the baseline models (73.38%

with IG) is 0.40%. The baseline models themselves achieve differing levels of accu-

racy; the IG baseline outperforms the PFA baseline by 3.36%. This may suggest that

in emotionally clear utterances, supervised feature selection (emotion-specific IG) is

preferable to unsupervised feature selection (PFA). The accuracy of the DBN3 model

indicates that unsupervised feature learning can achieve comparable performance to

supervised feature selection for emotionally clear utterances. Further, the DBN3 out-

performs unsupervised feature selection (PFA baseline) by 3.76%, highlighting the

potential importance of feature learning rather than unsupervised feature reduction

for emotionally clear data.

The deep learning method performs comparably to the previous work of Metalli-

nou et al. [150], 62.42%. Direct comparisons are not possible due to differences in

the data subsets considered.
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We present the utility of deep learning techniques for unsupervised feature learning

in audio-visual emotion recognition. Our results demonstrate that DBNs can be used

to generate audio-visual features for emotion classification, even in an unsupervised

context. The comparison of the classification performances between the baseline and

the proposed DBN models demonstrate that it is important to retain complex non-

linear feature relationships (using deep learning techniques) in emotion classification

tasks. The strongest performance gain is observed in the non-prototypical data.

This is important in applications of automatic emotion recognition systems where

emotional subtlety is common.

CHAPTER 4

Analysis of Emotion Dynamics

4.1 Introduction

A proper understanding of the dynamic nature of emotion will lead to modeling

advancements and a greater understanding of the structure that underlies our affec-

tive communication. There is a large body of research on modeling and assessing

such dynamic structure. One of the most common methods is using HMMs. This

technique gained popularity in the speech recognition community and has been effec-

tively used in the emotion recognition community as well. However, in this chapter,

we take a different approach and focus on methods that will provide interpretable

descriptions of emotion dynamics. We quantify how emotion flows over an utterance

The work presented in this chapter has been published in the following article:
Yelin Kim and Emily Mower Provost. “Emotion Classification via Utterance-Level Dynamics: A
Pattern-Based Approach to Characterizing Affective Expressions.” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2013.
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and demonstrate how patterns of this flow can effectively be used to predict an emo-

tional state. Our goal is to identify these patterns, which we call “flow patterns,” and

use them in an emotion classification framework. We further hypothesize that the

salient characteristics of these patterns are the long-term utterance-level dynamics in

addition to the short-term fluctuations. We expect to see common patterns repeating

over utterances of the same emotion class. We propose a simple quantitative method

to model the flow patterns and demonstrate how these patterns of estimated emo-

tion dynamics furthers our understanding of human emotion expression. We estimate

emotion flow by extracting features related to emotion dynamics. The features are

sequential short-term estimates of emotion states extracted using methods introduced

in [155, 158]. Each estimate describes the utterance in terms of blends of emotional

cues. Previous work demonstrated that these sequential emotion estimates can be

used to classify and identify affective states in a dynamic classification setting [155].

In this chapter, we present an emotion modeling technique that leverages the intra-

utterance flow patterns to capture the emotional similarity between utterances. This

method natively provides insights into the flow patterns and their relationship to

emotion state.

There is a large body of work in tracking feature-level emotion structure, including

HMMs and BLSTM systems. The BLSTM models are neural networks with memory

blocks that can capture variable amount of context [206, 246]. These models are

effective in capturing long-range context. However, this context is firmly tied to the

multiplicative gate units and may be difficult to interpret [76]. In these methods,

and commonly within the community, the common practice for modeling emotion

dynamics considers the feature-level fluctuations of the signal [182, 247]. Previous

research demonstrated that short-term estimates of affective flow could also be mod-

eled dynamically using HMMs. This suggested that emotion has definable structure

[155]. However, our understanding of these underlying dynamics was restricted by
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the limitations of a finite state space [155]. In this chapter we provide a framework

for dynamic modeling of emotion that provides interpretable descriptions of emotion

expressions by explicitly focusing on utterance-level dynamics.

Our proposed method captures emotional similarity by estimating time-series sim-

ilarity between flow patterns of different utterances. This allows us to explicitly take

longer-range temporal dependencies into account because our method is focused on

variation over the entire utterance (rather than frame level change). We first estimate

short-term emotion content over small time windows for each utterance, which ap-

proximates emotion dynamics. We calculate the similarity between these estimated

dynamics using Dynamic Time Warping (DTW). Unlike HMM, DTW does not make

any statistical assumptions about the intrinsic model. Instead, it directly computes

the flow pattern similarity between the unknown utterance and known time-series

data [178]. We use this DTW similarity measure in an automatic emotion classifica-

tion system (Figure 4.1).

The novelty of the proposed study is in its focus on interpretable utterance-level

dynamic modeling, which furthers our understanding of the structure underlying emo-

tional utterances. The results demonstrate that this modeling is effective for iden-

tifying emotion state. The maximal accuracy of flow pattern modeling of estimated

emotion in DTW similarity-based classification system is 64.40% (unweighted accu-

racy). This accuracy is comparable or greater than that of a baseline model that

captures the flow patterns at the feature level as well as a static model, 64.02% and

61.20%, respectively. Further it performs comparably to the state-of-the-art results

on a different subset of the same database [160]. This suggests that flow pattern of

temporal emotion dynamics offers interpretable descriptions on emotion fluctuation,

while provides comparable results to the state-of-the-art model.
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Figure 4.1: Illustration of the proposed method

4.2 Audio-Visual Features

As in Chapter 3, we use both audio and motion-capture features of the IEMOCAP

dataset. The audio features include pitch, intensity and MFBs. The motion-capture

features are based on Facial Animation Parameters. In this chapter, we obtain final

features by calculating statistics of the raw audio-visual features over small time

windows. These include mean, variance, lower and upper quantiles, and quantile

range, giving a total of 685 features. Of these 685 features, 145 are auditory features

and 540 are video features, such as mean of pitch, lower quantile of a marker point of

a mouth, etc. The features are normalized on a per-speaker basis to mitigate speaker

variation [158].

4.3 Audio-Visual Feature Selection

This initial feature was reduced to 180 features as in [155] using Principal Feature

Analysis (PFA) [137]. PFA is a variant of Principal Component Analysis (PCA). It

projects the input data into the PCA space and clusters the data in this space using

k-means. It returns the features closest to the center of each cluster. This ensures

that the final features are features in the original space and that a target level of

variance in the dataset is retained.
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4.4 Emotion Estimation

4.4.1 Emotion Profile (EP)

The short-term affective estimates are made using the Emotion Profiles (EPs)

framework. EPs were introduced and demonstrated to be effective for emotion recog-

nition tasks in [155, 158, 160]. EPs describe the emotion content of an utterance by

capturing the subtle blends of emotional cues present in that utterance. EPs estimate

the degree of confidence in the presence or absence of each of these cues, forming an

n-dimensional estimate of affective content. This study uses utterances in the label

set: Angry, Happy, Neutral, Sad. Thus, the EP for an utterance is a four-dimensional

vector describing the confidence, c, in the presence of each emotion from the set:
−→
EP

= [cangry, chappy, cneutral, csad]. We measure confidence using Support Vector Ma-

chines (SVMs). SVMs are binary maximum margin classifiers that find a separating

hyperplane that maximizes the distance from the hyperplane to the points closest to

the hyperplane. The outputs of SVM are class membership (±1) and distance from

hyperplane. We multiply these quantities to arrive at an approximate measure of con-

fidence. The SVMs are trained using leave-one-speaker-out cross-validation (Figure

4.2).

4.4.2 Emotogram

The emotogram of an utterance is the set of EPs extracted over windowed re-

gions of an utterance (See Figure 4.2). They provide a dynamic description of the

estimated presence or absence of each emotional cue [155, 160]. This can be seen as

estimating the manner in which emotion cues flow in an utterance. Emotograms are

four-dimensional time-series of estimated emotion dynamics:
−−−−−−−−→
Emotogram = [

−−→
EP1,

−−→
EP2, ...,

−−→
EPT ], where T represents the number of sliding windows in an utterance.

We use window lengths of 0.25, 0.5, 1.0, 1.5, and 2.0 seconds to evaluate the ef-
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Figure 4.2:
Emotion Profiles (EPs) and Emotograms generation proposed and de-
scribed in the previous work [160]

fect of window size on classification performance [155]. We investigated denoising

techniques to mitigate subtle estimation noise. However, both Median Filtering and

Kalman Smoothing techniques did not result in performance increases as compared

to the raw emotograms. Therefore, the emotograms were not smoothed. We hypoth-

esize that this may be because our DTW based method captures high-level emotion

flow patterns, rather than the small estimation fluctuations, which would be sensitive

to noise.

4.5 Proposed Method

4.5.1 Similarity Measurement Between Emotograms Using DTW

Our hypothesis is that the utterance-level patterns of emotion flow are informative

with respect to emotion class. To test this hypothesis we measure the time-series sim-

ilarity between each emotogram, our estimates of emotion flow, using DTW. DTW

is a widely used technique that finds the best alignment between two time series by
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identifying the warping path between the two sequences that minimize the differ-

ence between the sequences. DTW has been widely used in many domains including

speech recognition [162] and handwriting recognition [227]. DTW captures utterance-

level dynamics, rather than probabilistic transitions in frame-by-frame characteristics,

which are seen in HMM modeling. DTW provides flexibility in the analysis of utter-

ances of different lengths since it aligns time series data. In emotion data, contrasted

with speech phoneme modeling, the affective data are often of highly varied length.

HMMs do not offer this same flexibility because of their innate restriction to an n-

state model independent of utterance length. Further, it is difficult to interpret the

resulting models generated by HMMs. We present an alternative dynamic model-

ing technique that facilitates visualizations of affective flow, providing clear measures

of emotional similarity. We propose that DTW can be an alternative strategy for

emotion recognition.

We align two utterances in the emotion space defined by the emotograms us-

ing Multi-Dimensional Dynamic Time Warping (MD-DTW), presented in [92]. MD-

DTW uses all emotogram dimensions to identify the best alignment between two ut-

terances in the emotion space. We define the emotion space as ΦI×J for a descriptor of

length I and dimension J , where J is the number of emotogram dimensions (J = 4).

Let T ∈ ΦM×Jand L ∈ ΦN×J be two emotograms in this space. MD-DTW computes

the optimal alignment between T and L using dynamic programming (O(MN)) [196].

We find the optimal alignment by computing distance between the utterances. The

distance measure between any two points in the series is defined as d : Φ×Φ→ R ≥ 0,

which can be any p-norm. We use 2-norm, the summation of the squared differences

across all dimensions.

The MD-DTW algorithm populates the M by N distance matrix D according to

the following equation:
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D(i, j) =
K∑
k=1

(T (i, k)− L(j, k))2, (4.1)

where i and j represent the specific short-time estimate of the emotograms, T and

L. The distance matrices can be visualized to understand the structural similari-

ties across emotion class (Figure 4.4). We implemented four-dimensional DTW by

modifying the one-dimensional code of [65].

4.5.2 k-Nearest Neighbor Classification Using MD-DTW

We use the k-Nearest Neighbor (k-NN) classifier to assign a final emotion class

label based on the MD-DTW measure. k-NN assigns a label to a given test utterance

based on the labels of its k nearest neighbors. The assigned label is a majority

vote over the neighbors’ labels. We select k using a 10-fold cross-validation hyper-

parameter search over values 1, 3, 5, 7, 10, 30, and 50. We did this search over the

combined data, which provided access to both the prototypical and non-prototypical

examples and found k = 50.

We refer to the total framework as DTW-kNN. The algorithm is as follows. During

training we calculate the DTW similarity between every pair of testing and training

utterances. During testing we find the k closest neighbors to each test utterance using

this DTW distance. We label the test utterance with the majority voted label of its k

nearest training utterances. In both the DTW-kNN and baseline models we calculate

accuracy using leave-one-speaker-out cross-validation. The final reported accuracy

measures are the average of the accuracies over all 10 folds.

4.5.3 Baseline Models

We evaluate DTW-kNN by comparing it to three baseline models. The first base-

line model tracks emotion similarity using trajectories composed of the compressed

feature space (‘feature trajectories’), rather than the estimates of affective flow. We
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reduce our original 180 features using Principal Component Analysis (PCA). The

feature dimensionality is selected using leave-one-subject-out cross-validation over

compressions that reduce the features space to 4, 10, 20, 30, and 40 dimensions. The

best performing model uses ten PCA features. We compare the performances of this

compressed feature space to that of the affective estimates to identify the method

that best allows us to capture the structure underlying emotional speech. As in the

emotion flow model, we calculate the DTW similarity over each utterance, as repre-

sented by the feature trajectories, and then identify the emotion state using k-NN

with k=50 (selected using hyperparameter search).

The second baseline uses static EP modeling. Static EPs are calculated in the same

manner as short-time EPs. However, here the emotion is detected using utterance-

level statistics (as compared to windowed statistics, e.g., over 0.25 seconds). This

baseline assesses whether the dynamics contribute to our understanding of emotion

class. We classify the final label of the static EP estimate using k-NN over the four

dimensions (k = 50). In the static baseline, the k-NN classifier uses the Euclidean

distance between the four-dimensional EP values of the training and test utterances.

The final baseline is a published result that modeled the dynamics of the emo-

tograms using HMMs. HMMs fit these dynamics to an n-state model, where here

n = 3 (with left-to-right topology) [160]. This baseline is a comparison to a result on

a subset of the utterances considered (2,903 utterances vs. 3,018 utterances).

4.6 Results

All results are reported using unweighted accuracy, the average of per class re-

call. This measure mitigates class imbalance in accuracy reporting. Overall, the

DTW-kNN method achieves the highest performance gain for the non-prototypical

utterances, the subtle utterances with only majority ground truths. The performance

between our proposed method and the baseline methods for the prototypical and com-
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bined sets are comparable, however we discuss how our proposed method can provide

insight into how emotion changes over time in Section 4.7. The maximal accuracy

of our proposed method for the non-prototypical data is 55.79% with a window size

of 2 seconds. This is 3.88% higher than the feature trajectory model with the same

window size, and 3.15% for the maximally accurate feature trajectory (window size

1.5 seconds). It is 1.68% higher than the accuracy of the static EP. In the prototypi-

cal data experiment, the DTW-kNN method achieves the highest accuracy of 68.50%

with a window size of 1.5 seconds. This outperforms the feature trajectory model by

1.13% on the same window size. The maximal accuracy for the feature trajectory

model is 0.09% higher than our proposed model (window size 0.25 seconds). The

combined data has a maximal accuracy of 64.40% with the DTW-kNN method (win-

dow size of 1 second). This is 0.48% higher than the feature trajectory with the same

window size and 0.38% higher than the feature trajectory with its maximal accuracy

with window size of 1.5 seconds. It is 3.20% higher than the static EP estimate. The

results are summarized in Table 4.1. The HMM baseline was calculated only over

a window size of 0.25 seconds with an accuracy of 64.67%. This is a similar result

to our proposed DTW-kNN method, 63.95%, for a window size of 0.25 seconds and

suggests this restricted n-state structure may not be necessary for dynamic modeling

of emotion.

4.7 Discussion

Our results include two important findings. 1) The new dynamic modeling tech-

nique using flow pattern modeling can effectively capture the emotion dynamics.

These dynamics can be used to effectively classify utterances. 2) In this framework,

the secondary emotogram features outperform the compressed raw feature fluctua-

tions, only for the case of non-prototypical data. This suggests that the secondary fea-

tures capturing emotion flow offer a targeted compression of the emotion space. More-
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Model
Window size (seconds)

0.25 0.5 1 1.5 2

A
Emotogram 66.90 66.82 67.15 68.50 67.76
Feature 68.59 66.46 66.51 67.38 67.49
Static EP 67.34

B
Emotogram 53.96 55.12 55.31 55.49 55.79
Feature 49.30 50.12 51.64 52.64 51.91
Static EP 54.11

C
Emotogram 63.95 64.01 64.40 64.38 64.27
Feature 62.72 63.91 63.91 64.02 63.44
Static EP 61.20

Table 4.1:
Unweighted classification accuracy (%) across different window lengths for
each expression type: (A) Prototypical, (B) Non-prototypical, and (C)
Combined.

over, our DTW-kNN frameworks demonstrate the greatest performance gain for the

data most challenging for automatic emotion recognition systems, non-prototypical

data.

One benefit of our method is that it provides insight into the nature of inter-

class similarity. We visualize the time-series similarity distance matrix in Figure 4.4.

The DTW distances correspond to the five window sizes of: 0.25, 0.5, 1, 1.5, and

2 seconds (left to right). The diagonal blocks of each distance matrix represent the

distance between the utterances with the same emotion class. Darker regions indicate

stronger similarity between the dynamics of the utterances. The dark regions on

the off-diagonals of the distance matrices demonstrate that there exists confusion

between Neutral and Sad, and between Neutral and Angry. This confusion mirrors

the common classification error between the classes of neutrality and sadness.

The distance matrix also permits an analysis of the structural patterns that are

similar. We present utterances that are similar using the MD-DTW formulation. This

provides an interpretable description of typical flow patterns for each emotion class

(Figure 4.3). In the figures, all utterances shown are correctly classified using the pro-

posed DTW-kNN framework. The angry utterances demonstrate an interesting trend
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from high confidence in the presence of anger to a more mixed appraisal of emotional

message. The happy trends show a peaked happiness behavior. The sad utterances

display slight fluctuations in expression. The neutral utterances depicted have irreg-

ular flow patterns even though they are correctly classified (See Figure 4.3(c)). This

can explain the relatively low classification accuracy of neutral utterances compared

to that of the other emotion classes.

In this study we propose a new framework to characterize utterances based on

interpretable measures of affective dynamics. We use DTW to align our affective

estimates of emotion flow and then classify using kNN with DTW similarity measure.

This allows us to evaluate the discriminative power of the framework. The speaker

independent experimental results are presented across five different window sizes, 0.25,

0.5, 1, 1.5, and 2 seconds for prototypical, non-prototypical, and combined data. Our

results show that the proposed method outperforms the feature trajectory, the static

EP, and the HMM baseline models. The highest improvement in our model comes

from the classification of non-prototypical, or emotionally subtle, utterances. The

novelty of our work is in its explicit modeling of the temporal flow patterns of emotion

estimates. By taking into account the long-range dynamics of human emotion, we

can have more natural and interpretable modeling techniques for emotion dynamics.
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Figure 4.3:
A subset of utterances described by emotograms and chosen for visualiza-
tion purposes, which are correctly classified by our framework: (a) Angry,
(b) Happy, (c) Neutral, and (d) Sad utterances

Figure 4.4:
MD-DTW distance matrices between Angry, Happy, Neutral, Sad utter-
ances (combined data). Dark represents similar patterns.
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Part II: Multiple Factors in Behavior

CHAPTER 5

Speech-Related Variability in Facial Expressions

5.1 Introduction

The expression of emotion is complex. It modulates facial behavior, vocal behav-

ior, and body gestures. Emotion recognition systems must decode these modulations

in order to gain insight into the underlying emotional message. However, this decod-

ing process is challenging; behavior is often modulated by more than just emotion.

Facial expressions are strongly affected by the articulation associated with speech pro-

duction and speech emphasis. Robust emotion recognition systems must differentiate

speech-related articulation from emotion variation (e.g., differentiate someone saying

“cheese” from smiling; discriminating between eyebrow raise for emphasis and due to

excitement). In this chapter we explore methods to model the temporal behavior of

The work presented in this chapter has been published in the following articles:
Yelin Kim and Emily Mower Provost. “Say Cheese vs. Smile: Reducing Speech-Related Variability
for Facial Emotion Recognition.” Proceedings of the ACM International Conference on Multimedia
(ACM MM), 2014 (Winner, Best Student Paper Award; Accepted as an Oral Presentation.
Acceptance rate: 19%).
Yelin Kim and Emily Mower Provost. “Emotion Recognition During Speech Using Dynamics of
Multiple Regions of the Face.” ACM Transactions on Multimedia Computing, Communications
and Applications (ACM TOMM), Special Issue on ACM Multimedia Best Papers, 2015. Invited
paper.
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facial motion with the goal of mitigating speech variability, focusing on temporal seg-

mentation and classification methods. The results suggest that proper segmentation

and classification are critical for emotion recognition.

One common method for constraining speech variation is by first segmenting the

facial movement into temporal units with consistent patterns. Commonly, this seg-

mentation is accomplished using known phoneme or viseme boundaries. We refer to

this process as phoneme segmentation . The resulting segments are then grouped into

categories with similar lip movements (e.g., /P/, /B/, /M/, see Table 5.1). Emotion

models are trained for each visually similar phoneme group, a process we refer to

as phoneme-specific classification. These two schemes have been used effectively in

prior work [15, 104, 142, 148]. However, it is not yet clear how facial emotion recog-

nition systems benefit from each of these components. Moreover, these phoneme-

based paradigms are costly due to their reliance on detailed phonetic transcripts. In

this chapter we explore two unsupervised segmentation methods that do not require

phonetic transcripts. We demonstrate that phoneme segmentation is more effective

than fixed-length sliding window segmentation. We describe a new unsupervised seg-

mentation strategy that bridges the gap in accuracy between phoneme segmentation

and fixed-length sliding window segmentation. We also demonstrate that phoneme-

specific classification can still be used given unsupervised segmentation by coarsely

approximating the phoneme content present in each of the resulting segments.

Studies on variable-length segmentation and the utility of phoneme-specific clas-

sification have recently received attention in the emotion recognition field. Mari-

ooryad and Busso studied lexically constrained facial emotion recognition systems

using phoneme segmentation and phoneme-specific classification. They introduced

feature-level constraints, which normalized the facial cues based on the underlying

We refer to the process as phoneme segmentation when the vocal signal, rather than the facial
movement, is used to segment the data. These audio-derived segmentation boundaries are applied
to the facial movement.
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Group Phonemes Group Phonemes

1 P, B, M 8 AE, AW, EH,
EY

2 F,V 9 AH,AX,AY
3 T,D,S,Z,TH,DH 10 AA
4 W,R 11 AXR,ER
5 CH,SH,ZH 12 AO,OY,OW
6 K,G,N,L,HH,NG,Y13 UH,UW
7 IY,IH, IX 14 SIL

Table 5.1: Phoneme to viseme mapping.

phoneme, and model-level constraints, phoneme-specific classification [142]. Metalli-

nou et al. [148] also proposed a method to integrate phoneme segmentation and

phoneme-specific classification into facial emotion recognition systems. They first

segmented the data into groups of visually similar phonemes (visemes) and found

that the dynamics of these segments could be accurately captured using Hidden

Markov Models. These methods demonstrate the benefits of phoneme segmentation

and phoneme-specific classification. However, the challenge is the need for a phonetic

transcript to both identify phoneme boundaries and to assign phoneme content. In

this chapter, we explore the first challenge: the identification of phoneme boundaries

and ask whether we can find other segmentation strategies for facial movement.

In this chapter, we propose an unsupervised segmentation strategy to circumvent

this requirement. We investigate both the application of sliding windows in addi-

tion to segmentation using the natural temporal dynamics of the underlying signal.

Sliding-window segmentation is a strategy commonly employed in emotion recogni-

tion studies [155, 159, 168, 198]. In this strategy, the facial data are segmented into

smaller units, all with the same duration. However, this method is not based on the

underlying dynamics of the signal and may miss important patterns in the signal.

Further, previous work has demonstrated that the use of segmentation based on fixed

length windows performs more poorly than phoneme segmentation [142]. To overcome

this limitation, we propose an automatic, unsupervised segmentation method based
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on mouth movement, which utilizes a trajectory segmentation algorithm proposed by

Lee et al. for trajectory segmentation and clustering [136]. The algorithm was moti-

vated by Minimum Description Length (MDL) principle, widely used in information

theory. Our proposed method does not require a phonetic transcript and achieved

comparable performance to phoneme segmentation when used as a component of a

facial emotion recognition system.

We also assess the utility of unsupervised segmentation approaches by testing our

method using two emotion datasets to understand the impact of variable-length seg-

mentation (i.e., unsupervised MDL-based segmentation and phoneme segmentation)

and viseme-group classification on facial emotion recognition systems. We discuss the

specific effects of the proposed segmentation and classification strategies across two

different motion-capture datasets recorded in different settings: read speech (SAVEE)

and two-person conversation (IEMOCAP). We found that when using viseme-group

classification it is advantageous to use variable-length segmentation compared to

fixed-length segmentation. Further, we analyze the impact of individual facial re-

gions. The results demonstrate that we can increase system-level performance by

changing how we integrate information from the facial regions. The results strengthen

our argument that both variable-length segmentation and viseme-group classification

are critical for facial emotion recognition systems.

5.2 Proposed Method

The overview of our proposed method is shown in Figure 5.1. We first sepa-

rate the tracked marker positions into six facial regions to capture the facial region-

specific characteristics in emotion expression (Section 5.2.1). We then temporally

segment the data using three segmentation methods (fixed-length, phoneme, and

MDL-based; Section 5.2.2) and measure the time-series similarity between the identi-

fied segments using Dynamic Time Warping (DTW). We calculate the distribution of
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Figure 5.1:
Our system uses facial motion-capture data. It investigates three segmen-
tation methods and explores the benefit of using knowledge of the spoken
content of each segment. The system estimates the emotion label by es-
timating the similarity of the movement in each segment to movement
observed in specific emotion classes. Finally, it combines the emotion es-
timates provided by the individual facial regions to infer a final estimated
emotion label.

emotion classes over each segment and use this information to estimate the emotion

class of the segment. We aggregate the segment-level emotion estimates over the ut-

terance to estimate the utterance-level emotion, described in detail in Section 5.2.4.

During classification, we explore the benefit of using viseme-group classification given

each of the three segmentation strategies. This allows us to understand the impact

of using knowledge of the viseme group in classification. We refer to classification as

general (contrasted with viseme-group) when we do not take the knowledge of viseme

information into account, described in detail in Section 5.2.3. Finally, we investigate

different methods to combine the emotion evidence derived from the individual facial

regions, described in Section 5.2.5.

In our experiments, we test six approaches that use combinations of different

temporal segmentation and classification methods, originally proposed in [113]. The

two rows in Table 5.2 describe the classification scheme: general and viseme-group

classification, and the three columns describe the segmentation scheme: phoneme,

MDL, and fixed-length sliding window.
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Segmentation
Phon MDL Win

Classification
General Gen/Phon Gen/MDL Gen/Win

Viseme-group VG/Phon VG/MDL VG/Win

Table 5.2:
Summary of the abbreviations associated with the six approaches tested in
this chapter.

5.2.1 Motion Capture Preprocessing

Both the IEMOCAP and SAVEE datasets provide facial markers that are (1)

translated so that a nose tip becomes the origin of each frame, and (2) rotated to

compensate for head movement. In addition, we perform mean-normalization on the

facial data of individual speakers to mitigate their different facial configurations. The

mean-normalization method was suggested in [148]. We compute the global mean

value over all speakers for each marker coordinate and scale each individual speaker’s

data to make the mean of of each speaker to be the same as the global mean.

We divide the facial motion capture data into six facial regions to study region-

specific facial movements, including: chin, forehead, cheek, upper eyebrow, eyebrows,

and mouth, as in [113]. As shown in Figure 2.3, there are three markers are in the

Chin and Forehead regions, 16 markers in the Cheek region, and eight markers in the

Upper Eyebrow, Eyebrow, and Mouth regions. We track the region-specific marker

positions and represent each as a multi-dimensional trajectory. For instance, given

a data segment with N motion-capture frames and M marker coordinates (3-D for

IEMOCAP and 2-D for SAVEE), the final data are an N ×M trajectory.

We exclude data with less than seven frames (threshold number of frames were

chosen empirically) or 0.058 seconds. Our preliminary work demonstrated that the ex-

clusion of segments with short durations does not make significant changes in emotion

classification accuracy, which may due to insufficient temporal information within the

segments. The computation time during DTW calculation can be considerably im-

proved by excluding such segments, since 43.5% , 0.67%, and 0.86% of all phoneme,
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MDL, and fixed-length segments in the IEMOCAP dataset has duration less than

seven frames, respectively. The high percentage of excluded phoneme segments oc-

curs because many of the phonemes in the data have very short durations. Further,

we drop segments with any missing values in the 46 markers we use. This results in

different sets of utterances for each segmentation scheme. We use the set of 3,060 in-

tersecting utterances. This number is slightly higher than in [148] and similar to [142].

In the SAVEE dataset, 34.86% of the phonemes are rejected, 2.23% of the MDL seg-

ments are rejected, and 1.44% of the window segments are rejected. The number of

utterances remains the same after the exclusion process.

Our preliminary experiments showed that the difference between the SAVEE and

IEMOCAP datasets in terms of frame rate (60 fps and 120 fps, respectively) impacted

the overall accuracy. We mitigate this effect by increasing the SAVEE frame rate to

120 fps using cubic spline interpolation. This interpolation allows us to apply the

same pre-processing steps to SAVEE as applied to the IEMOCAP (e.g. excluding of

segments less than seven frames). In addition, our preliminary investigations showed

that the SAVEE dataset had marker coordinates had a smaller range than IEMOCAP.

This difference in range affected the MDL segmentation process. To mitigate this

effect, for each marker coordinate, we scaled the SAVEE data to have the same

minimum and maximum value as the IEMOCAP data. After MDL segmentation, we

used the original marker values without scaling for the remainder of the classification

framework to retain the original characteristics of the SAVEE dataset.

5.2.2 Segmentation

5.2.2.1 Sliding Window Segmentation (“Win”)

The Win segmentation method segments each utterance into fixed-length win-

dows. We use window segments without overlapping to enable comparisons with the

phoneme and MDL segmentation methods, which do not have overlapping windows.
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Figure 5.2:
Comparison between the three segmentation methods. Phoneme segmenta-
tion has been shown to outperform window segmentation [142]. However,
it is a supervised method that requires a phonetic transcript to segment
the data. We propose an unsupervised method, MDL segmentation, to
segment the data using the natural dynamics of the mouth. MDL, like
fixed-window segmentation, does not require a phonetic transcript and,
like phoneme-segmentation, captures the intrinsic dynamics of mouth.

We retain all windows, including segments at the end of an utterance that are shorter

than the standard window size. For instance, consider an N ×M trajectory of the

eyebrow region over an utterance, where N is the number of frames and M is the

number of marker coordinates (N = 128 and M = 24 for the IEMOCAP data). If we

segment this trajectory using 0.1-second window there will be 12 frames per window.

The resulting segments of this utterance are ten trajectories, each of size 12× 24 and

one trajectory of size 8× 24.

5.2.2.2 Phoneme Segmentation (“Phon”)

The Phon segmentation method segments the facial data within an utterance

based on the temporal phoneme boundaries. For instance, if a speaker is saying

“hello”, we segment the facial trajectories using the phoneme boundaries between

/SIL/, /HH/, /AH/, /L/, /OW/, and /SIL/ phonemes. The set of phonemes that we

use in this study is in Table 5.1. The boundaries for these phonemes were obtained

by force aligning the audio to the known transcript. The average length of phoneme

segments is 0.17 ± 0.01 seconds for the IEMOCAP data, and 0.14 ± 0.01 seconds for

the SAVEE data.
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Figure 5.3:
An example of the MDL segmentation method for the visualization pur-
pose. The x-axis describes time, and y-axis describes example marker
positions of a coordinate of one of the mouth markers over an utterance
(e.g., a marker on the top of the lip). The blue dashed lines represent
the actual marker position changes, whereas the red lines represent the
segmented results using the MDL principle. The proposed MDL segmen-
tation method finds temporal points at which the dynamics of the mouth
movement change. In this example, the mouth opens widely and then
starts to close at frame p5. Therefore, MDL uses {c1 = 1, c2 = 5, c3 = 8}
(including the starting and end point of each utterance) as characteristic
points. The hypothesis H1 and H2 correspond to the segmentation based
on the characteristic points, lines between p1 and p5 and p5 and p8. The
data D1 and D2 are the original mouth movement {p1p2, p2p3, p3p4, p4p5},
and {p5p6, p6p7, p7p8}.

5.2.2.3 MDL Segmentation (“MDL”)

We describe an unsupervised variable-length segmentation that does not require a

phonetic transcript. We segment the data using the movement of the mouth (Figure

5.2). This allows us to capture the facial cues that are most highly related to speech

production, important due to the focus on viseme-group classification. The segmen-

tation algorithm was originally proposed in the context of a trajectory segmentation

and clustering algorithm, called TRACLUS [136]. It uses MDL to automatically find

points that should be used to segment regions of the data with different temporal

characteristics. The application of this algorithm in the context of facial movement
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allows us to segment the facial data based on the natural dynamics of the mouth. A

mouth-based example is presented in Figure 5.3.

The segmentation is based on the MDL principle, widely used in information

theoretic studies. The goal of MDL is to find a hypothesis, H, that describes the

original data D trading off between conciseness and preciseness of the description. It

aims to minimize the sum of L(H) +L(D|H), where L(H) computes the conciseness

of the hypothesis, and L(D|H) the preciseness of the hypothesis. It finds points

after which the trajectory changes from the current dynamic pattern. For instance,

Figure 5.3 shows the mouth trajectory example where, after frame p5, the trajectory

changes. In this case, MDL would identify {c1 = 1, c2 = 5, c3 = 8} (including the

starting and end point of the trajectory) as characteristic points. Characteristic

points mark the beginning and end of regions with consistent dynamics. In [136],

the authors proposed to measure L(H) as the length of the proposed segmentation

(e.g., in Figure 5.3, L(H1) is measured as the log of the length of a line connecting

p1 to p5). The quantity L(D|H) captures the difference between the original line

segments, D and the proposed segmentation, H. For example, in Figure 5.3, L(D1|H1)

is the log of the summation of differences between each of the blue dashed lines

p1p2, p2p3, p3p4, p4p5, and the red line p1p5. The segmentation can be formulated as

an optimization problem, Equation 5.1.

arg min
H

L(H) + L(D|H)

where L(H) =
n−1∑
j=1

log2

(
len(pcjpcj+1

)
)
,

L(D|H) =
n−1∑
j=1

cj+1−1∑
k=cj

log2

(
d⊥(pcjpcj+1

, pkpk+1)
)

+ log2

(
dθ(pcjpcj+1

, pkpk+1)
)

(5.1)

In Equation 5.1, d⊥ is the perpendicular distance between the line segments and
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dθ is the angular distance [37].

As an approximate solution, the TRACLUS algorithm [136] compares the cost of

partitioning, costpar, and non-partitioning, costnopar, at each data point, p, Equation

5.2.
costpar = L(H) + L(D|H)

costnopar = L(D) =

p−1∑
j=1

log2 (len(pjpj+1) (5.2)

The algorithm advances through the trajectory and estimates whether the data should

be segmented at each point. The algorithm makes a segmentation decision based on

the equation: costpar ≥ costnopar + MDLAdvantage. When this equation is true the

algorithm identifies the characteristic point as the previous point, marking the end

of a segment. The characteristic point is the point prior to the one where the cost of

partitioning is suddenly higher than the cost of not partitioning. The point at which

the inequality is true then forms the beginning of the next segment. It is important to

note that the parameter MDLAdvantage controls the granularity of the segmentation

and hence the average of segment length. We describe the method that we use to

choose MDLAdvantage in Section 5.2.4.1. Additional details can be found in [136].

In our work, the input to MDL segmentation is the mouth trajectory (24-dimensional

for IEMOCAP and 18-dimensional for SAVEE) smoothed using a median filter with

a window size of three (window size chosen empirically), to smooth the 3D-captured

mouth movement trajectory.

5.2.3 Knowledge of Viseme Information

Studies of visual speech production have indicated that there are groups of visemes

with similar facial movements (Table 5.1) [138]. Recent research has found that it is

beneficial to separate emotion classifiers into 14 similar viseme groups, so that each

classifier has less speech-related variation [142, 148]. We add to this knowledge by
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Figure 5.4:
Comparison between general and viseme-group classification methods, for
an example in which a speaker is saying “hello.” In viseme-group clas-
sification, we assign a viseme group that present in the longest duration
within each of the segmented data, and separate the segments into different
emotion classifiers based on its assigned viseme group.

understanding how segmentation affects the utility of viseme-group classification.

We use two classification schemes: viseme-group and general classification. In

viseme-group classification (VG), it is assumed that the classifier knows which viseme

group the segment belongs to. We implement this by assigning a viseme group label

to each segment based on the phoneme content. For example, if the speaker says

“hello”, we have /SIL/ (silence), /HH/, /AH/, /L/, /OW/, and /SIL/ phonemes.

The two /SIL/ phonemes will be compared in emotion classifier 14, and /HH/ and

/L/ in classifier 6, etc (Figure 5.6 and Table 5.1). In general classification (Gen), it

is assumed that this knowledge is absent. This results in a single emotion classifier

that has data from all viseme groups (Figure 5.4).

For MDL and Win segmentation, the segment boundaries may not line up with the

phoneme boundaries. To estimate the corresponding viseme group of MDL and Win

segments, we assign a viseme group label to a segment based on the phoneme that

occupies the longest duration within each segment, for VG/MDL and VG/Win. For

instance, in Figure 5.5 we consider a VG/MDL example. Note the mismatch between

the phonetic transcript (dashed line in the figure) and the MDL segmentation result

(hash marks). If the first MDL segment is 85% /SIL/ and 15% /HH/, we assign the

phoneme content of the segment to the /SIL/ group, and apply emotion classifier 14.
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/SIL/ /HH/ /AH/ /L//OW/ /SIL/

Figure 5.5:
VG/MDL example for describing how to assign phoneme content to MDL
segments. The dashed lines show the phoneme boundaries and the hash
marks represent different segment boundaries. Notice the potential mis-
match between the hash marks and dashed lines in MDL segmentation.

5.2.4 Emotion classification

5.2.4.1 Cross validation

Our proposed methods have two hyper-parameters: MDLAdvantage (MDL segmen-

tation) and window length (Win segmentation). We choose MDLAdvantage from the

set {0, 6, 10, 20}. We choose the window length from the set of {0.1, 0.25, 0.5, 1, 1.5, 2} sec-

onds.

We build speaker-independent emotion recognition systems using leave-one-speaker-

out cross validation, and tune the parameters (MDLadvantage and window length) us-

ing leave-one-training-speaker-out cross validation. For each speaker in the training

set, we hold out a speaker as a validation speaker and train the model using the rest of

the training speakers. We repeat this process over each training speaker and calculate

the average of the validation accuracy. We choose the value of the parameter that

maximizes performance over the set of validation speakers. For the SAVEE dataset,

we also do lexical-independent classification to ensure that the same sentence does

not appear in both the training and testing sets. This is because SAVEE is a read

emotional speech database that has emotion-specific sentences (12 of 15 sentences

were emotion-specific for each emotion class: Angry, Happy, and Sad).
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Figure 5.6:
MSP calculation and facial-region combination example for viseme-group
classification.

5.2.4.2 DTW-Motion Similarity Profile Emotion Classification

We use the DTW-Motion Similarity Profile (MSP) method proposed in [113] to

infer utterance-level labels based on the temporal similarity between segments, as

shown in Figure 5.6. The DTW method is computationally costly in the inference

stages since it compares a test data to all training data. However, the method can

provide interpretable descriptions about how two facial movements are similar. This

method has two steps for emotion classification: (1) segment-level DTW calculation

and (2) utterance-level emotion inference.

First, we calculate the segment-level similarity in facial movement between the

training and test segments. For instance, if we have two K-dimensional facial move-

ment trajectories of length M1 and M2, i.e., T1 ∈ RM1×K and T2 ∈ RM2×K , we

compute the similarity between the two trajectories using the multi-dimensional the

algorithm. It computes the M1-by-M2 local cost matrix Q as follows, where i and

j denote the frame-level temporal point of T1 (1 ≤ i ≤ M1) and T2 (1 ≤ j ≤ M2),
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respectively:

Q(i, j) =
K∑
k=1

(T1(i, k)− T2(j, k))2, (5.3)

Then, for each facial region, we calculate the emotional distribution of the c closest

training segments, called the segment-level MSP, where c is set as 20 based on pre-

liminary analyses. For instance, the first segment-level MSP in Figure 5.6 represents

a four-dimensional vector {0.3, 0.6, 0.1, 0}, calculated based on the emotion labels of

the 20 closest training segments: 6 angry, 12 happy, 2 neutral, and 0 sad.

Once we have segment-level MSPs for each segment, we average these to create an

utterance-level MSP, a single four-dimensional emotion estimate for each facial region.

We combine individual face regions with different methods (described in Section 5.2.5)

to obtain the final utterance-level MSP. We normalize each of the four dimensions

using speaker-specific z-normalization, to mitigate the imbalance in the emotion class

distribution, e.g., there are approximately twice as many happy utterances compared

to the other emotions. We assign the final utterance-level label based on the maximum

component of the aggregated MSP, e.g., happiness in Figure 5.6.

5.2.5 Combination methods of Facial Regions

We investigate three types of decision-level combination methods of individual face

regions: (i) simple averaging, (ii) weighted averaging, and (iii) SVM-based aggregation

methods. The last stage of Figure 5.6 demonstrates that we combine utterance-level

MSPs of individual face regions and explore the three combination methods.

5.2.5.1 Averaging

For the simple averaging method, we use ten different types of experiments to ag-

gregate the MSPs from the individual facial regions.We report the ten AV(‘AVeraged

faces’) experimental results of (i) AV6 (averaged over all 6 face regions), (ii) AV4 (av-

eraged over Chin, Cheek, Upper eyebrow, Mouth), (iii) AV Up (averaged over Fore-
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head, Upper eyebrow, and Eyebrow) and (iv) AV Low (averaged over Chin, Cheek,

and Mouth), and six individual facial regions of (v) Chin, (vi) Forehead, (vii) Cheek,

(viii) Upper eyebrow, (ix) Eyebrow, and (x) Mouth. Unlike the previous work where

we used segments with the same parameters (e.g., windows of the same fixed length,

segments found using the same MDLAdvantage parameter) over all AV experiments, we

use the parameters chosen for individual AV experiments based on the cross valida-

tion accuracy (as described in 5.2.4.1). Different {speaker, classification (Gen or VG)

methods, segmentation (Win, MDL, or Phon) methods} sets have different parame-

ters chosen for each of the AV experiments. For each AV experiment, the individual

face regions use the same parameter and are combined to calculate the final MSP.

5.2.5.2 Weighting based on validation accuracy

In the second experiment, we aggregate the emotional evidence using a weighted

average. This allows us to more strongly weight information from emotionally expres-

sive areas of the face, compared to less emotionally expressive areas. We first identify

the parameters that are associated with the highest performance for each facial region

using cross validation (described in Section 5.2.4.1). We calculate the accuracy over

the validation speakers and use these accuracies as the initial weights: V ali. We sum

the weights over the six facial regions and normalize each of the weights to ensure

that they sum to 1. Then, rather than aggregating MSPs by averaging, we compute

a weighted average using the learned weights.

5.2.5.3 Linear-Support Vector Machine

We investigate a third aggregation method, which allows for adaptation based on

estimated emotional expressivity of the individual facial regions. We use linear-kernel

Support Vector Machine (SVM), in order to find the weighted linear combination of

the MSPs that are associated with the individual facial regions. The input to the
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SVM is the six four-dimensional MSP estimates (associated with each of the six

regions of the face). The goal of the SVM is to estimate the emotion class label.

We select the parameter C (10k) through cross validation, selecting over the set:

k = {−6,−5,−4,−3,−2,−1, 0, 1}.

5.3 Experimental Results

We present results for each database (IEMOCAP and SAVEE). We describe the

results in terms of the three combination methods: (i) detailed experiments for each

of the 10 averaging methods, where each of the ten methods use the best parame-

ters chosen by cross validation, (ii) weighting of individual facial regions based on

cross validation accuracy, and (iii) linear-SVM based weighting. In addition to the

three segmentation methods of Win, MDL, and Phon segmentation, we present the

utterance-level (‘Utt’) performance for general classification, where utterances are

used without any segmentation. To be consistent with previous multi-class emotion

recognition research [130, 158], we use unweighted accuracy, or averaged recall, to

calculate the average accuracy.

5.3.1 SAVEE Experiments

Significance Tests To the best of our knowledge, previous work on the SAVEE

dataset did not employ significance tests [84]. Since the SAVEE dataset has four

speakers, each speaking the same set of utterances, we develop Generalized Linear

Mixed Models (GLMM) with binomial link function that predicts the correctness of

each utterance and speaker, similar to [19]. The GLMM use mixed-effects models

that incorporate both random and fixed-effects parameters. We develop the models

that treat both test speakers and utterance IDs as the random effects. We then

compare MDL and window segmentation, as well as Phon and window segmentation,

each separately within VG and Gen classification. Hence, fixed effects of the GLM
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models are classification (Gen or VG), segmentation (Win, MDL, or Phon), and the

interaction between classification and segmentation. For the random effects, we use

both test speakers and utterance IDs. The response of our models is correctness of

the emotion inference given each segmentation and classification methods, where the

conditional distribution of the response given the random effects is assumed as the

binomial distribution. We fit the models using glmer function, implemented in R

[11]. In each experimental result, we claim significance in the accuracy between the

MDL and window, as well as Phon and window segments when p < 0.05.

5.3.1.1 Averaging

Table 5.3 shows the results of the SAVEE dataset when the MSPs of individual

face regions are averaged. We tested the system using the parameter sets chosen over

the set of {0.1, 0.25, 0.5, 1, 1.5, 2} seconds for window lengths and over the set of

{0, 6, 10, 20} for MDLadvantage of MDL segments. We present the parameter sets

averaged over the all four test speakers in Table 5.9 and will discuss the interpretation

of these results in Section 5.4. We also tested the system using phoneme segments

(average segment length of 0.14 seconds), and utterance-length segments (average

utterance length of 3.84 seconds).

In the SAVEE dataset, AV 6 outperforms the other methods of averaging differ-

ent facial regions. For the AV 6 experiment results, we found that VG classification

is more accurate than Gen classification for variable-length segmentation. The per-

formance increases, comparing Gen and VG classification, for both MDL segmenta-

tion (75.62% to 80.00%, p < 0.05)and Phoneme segmentation (75.42% to 79.59%,

p < 0.05). The window segmentation does not demonstrate any improvement (both

methods demonstrate an accuracy of 77.29%).

The results demonstrate that the accuracy increases when variable-length segmen-

tation is used in place of fixed-length segmentation in viseme-group classification.In
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Cla Seg AV4 AV6 AV up AV low Chin FH CHK U.EYE EB MOU

VG
Win 71.67 77.29 72.92 63.96 39.79 59.79 64.38 55.21 72.92 65.42

MDL 69.79 80.00* 75.00* 63.13 37.50 58.13 63.33 56.46 77.08 65.63

Phon 69.59 79.59 74.79 64.59 32.08 62.08 61.67 57.50 73.13 62.71

Gen

Win 71.04 77.29 68.54 66.25 38.33 55.00 65.83 54.79 64.79 63.96

MDL 71.46 75.62 62.29 65.21 43.75* 54.58 61.67 56.04 63.96 62.08

Phon 72.71 75.42 61.88 68.34 44.80 56.67 63.55 55.42 63.54 66.88

Utt 69.17 79.38 76.46 61.04 35.21 56.04 65.63 56.46 79.58* 58.33

Table 5.3:
SAVEE dataset average accuracy result (%) for AV4, AV6, AV Up, AV
Low, Chin (CHI), Forehead (FH), Cheek (CHK), Upper eyebrow (U. EB),
Eyebrow (EB), and Mouth (MOU) using the averaging method. Results
in bold are the highest accuracy among the ten experiments. ‘*’ indicates
significant differences in the accuracy between the MDL and window, as
well as Phon and window segments.

particular, for the AV 6 experiment, the MDL (80.00%) and phoneme (79.59%) seg-

ments outperform the window segments (77.29%). The performance improvement of

MDL over window segments is statistically significant (p < 0.02), whereas phoneme

over window segments is not (p = 0.29). Moreover, we achieve comparable accu-

racy (p = 0.190) between our proposed MDL segmentation and phoneme segmen-

tation. MDL significantly outperforms window segments in the AV up experiment,

achieving 75.00% compared to 72.92% for window segmentation (p < 0.05). The

VG/MDL method also achieves improvement compared to VG/Win for the eyebrow

(EB), achieving 4.16% improvement (p = 0.07). The results provides evidence that

MDL segmentation can be effectively used in emotion classification.

In Gen classification, the best results of MDL segments (75.62%, p = 0.071) and

phoneme segments (75.42%, p = 0.071) are lower than that of window segments

(77.29%), although the results are not significantly different. The highest accuracy

is achieved with utterance-length segments (79.38%) for the AV 6 experiment. How-

ever, this phenomenon is not consistent over the different facial regions. For instance,

in the mouth region, phoneme segments (66.88%) outperform window (63.96%) and
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Cla Seg Average Ang Hap Neu Sad

VG
Win 77.29 81.67 76.67 76.67 88.33

MDL 76.46 83.33 71.67 71.67 85.00

Phon 77.71 83.33 76.67 62.50 88.33

Gen
Win 75.00 86.67 73.33 73.33 88.34

MDL 75.00 93.34 66.67 66.67 90.00

Phon 77.08 91.67 70.00 55.00 91.67

Table 5.4:
SAVEE dataset results of by weighting individual facial region based on its
validation accuracy. We report (i) average accuracy, or averaged recall,
(ii) angry, (iii) happy, (iv) neutral, and (v) sad class accuracy.

utterance-length segments (58.33%), whereas MDL segments (62.08%) work slightly

worse than window segments. For the chin, both variable-length segmentation strate-

gies, MDL (43.75%) and phoneme (44.80%), outperform fixed-length segments, both

window (38.33%) and utterance-length (35.21%) segments. The difference between

the MDL and window segments were significant (p < 0.05). For the eyebrow, the

utterance-length segments achieve significant increase compared to the other seg-

mentation methods, achieving 79.58% accuracy. Overall, phoneme segments perform

well for the lower facial regions, mouth and chin, whereas utterance-length segments

perform well for regions less modulated by speech, such as the eyebrow.

5.3.1.2 Weighting based on cross validation accuracy

Table 5.4 demonstrates the SAVEE results when we weight the face region-specific

MSPs based on validation accuracy. We found that weighting face region-specific

MSPs lowered the accuracy of SAVEE (the opposite trend can be observed for IEMO-

CAP), although the decrease is not significant. VG/Win remains the same 77.29%

accuracy, whereas VG/MDL accuracy decreases from 80.00% to 76.46%. For Gen clas-

sification, Gen/Win decreases from 77.29% to 75.00% and Gen/MDL decreases from

75.62% to 75.00%. We hypothesize that this is due to the high variability between
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Cla Seg Average Ang Hap Neu Sad

VG
Win 88.75 80.00 95.00 88.34 91.67

MDL 92.08* 93.33 90.00 90.00 95.00

Phon 93.12* 95.00 93.33 89.17 95.00

Gen
Win 88.75 88.34 90.00 80.00 96.67

MDL 88.13 95.00 81.67 79.17 96.67

Phon 88.96 91.67 88.33 79.17 96.67

Table 5.5:
SAVEE dataset results of SVM based combination where individual facial
region uses the best parameter chosen by cross validation. We report (i)
average accuracy, or averaged recall, (ii) angry, (iii) happy, (iv) neutral,
and (v) sad class accuracy. ‘*’ indicates a significant increase compared to
the baseline window segmentation methods

speakers (e.g., one speaker has a significantly lower recognition rate, with a relative

difference of about 20% from the other three speakers), and the lack of training speak-

ers when calculating validation accuracy (i.e., only two speakers for training in cross

validation). The per-emotion class accuracies demonstrate that Anger (p < 0.05,

significant) and Sadness (not significant, p = 0.052) are well recognized compared to

Happiness and Neutrality. The phoneme segments perform well in both VG (77.71%)

and Gen (77.08%) classification, showing the highest performance among the three

segmentation methods.

5.3.1.3 SVM-based weighting method

Table 5.5 demonstrates the results of linear-SVM based MSP combination. The

hyper-parameter C of the SVM is chosen as 10−4 using cross validation. It is shown

that the results are improved using linear-SVM, achieving up to 92.08% accuracy

for VG/MDL, improving from 80.00% of the simple averaging method. This is a

significant improvement in accuracy over VG/Win (p < 0.03). VG/Win, Gen/Win,

and Gen/MDL also improve from 77.29% to 88.75%, 77.29% to 88.75%, and 75.62% to

88.13%, respectively. The phoneme segments perform the best for both VG (93.12%)
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and Gen (88.96%) classification. VG/Phon outperforms VG/Win significantly (p <

0.007). The per-emotion class accuracies show improved performance for Happiness

and Neutrality. We present the learned SVM weights in Figure 5.7 and will discuss

the corresponding findings in the previous psychology studies on emotion perception

in Section 5.4.

We hypothesize that the SVM-based weighting method more reliably captures the

region-specific temporal characteristics compared to the weighting based on validation

accuracy, since the SVM learns more general patterns across training speakers that

are associated with emotion prediction compared to the direct validation accuracy.

We discuss the learned SVM weights for each emotion prediction task in more detail

in Section 5.4.

5.3.2 IEMOCAP

Significance Tests For the IEMOCAP dataset, we use paired t-tests to be con-

sistent with previous work on this dataset [113, 142]. The paired t-test for leave-

one-speaker-out cross validation has shown to be useful to test the significance of the

difference [52, 113]. We claim significance when the p-value is less than 0.05.

5.3.2.1 Averaging method

Table 5.6 summarizes the average accuracy for each of the 10 different experiments.

As in the SAVEE dataset, the two parameters, window length and MDLAdvantage,

are chosen over the set of {0.1, 0.25, 0.5, 1, 1.5, 2} seconds and {0, 6, 10, 20}. In VG

classification, variable-length segments outperform window segments in the AV 4 ex-

periment and AV low experiments. MDL segments outperform window segments in

most of the experiments except for the upper face regions (the exceptions in upper

face regions are not significant). In particular, variable-length segments outperform

window segments significantly particularly in the lower face regions. In the AV low
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Cla Seg AV4 AV6 AV up AV low Chin FH CHK U.EYE EB MOU

VG
Win 54.30 54.93 47.14 52.44 50.36 42.92 43.24 45.21 42.93 53.86

MDL 55.31 55.07 45.65 55.08* 53.28* 42.43 44.53* 46.04 42.16 55.46

Phon 56.14 55.60 45.85 54.05 49.96 40.43 44.92* 45.07 40.14 56.07

Gen
Win 54.20 54.24 47.01 52.54 49.70 39.43 42.49 44.15 41.95 53.04

MDL 53.51 51.92 42.39 51.56 46.94 38.97 42.56 42.33 38.33 52.04

Phon 54.04 52.05 42.30 51.77 46.94 39.00 42.71 43.28 38.58 51.13

Utt 40.02 40.83 39.70 40.02 35.51 39.70 25.00 25.00 25.00 37.10

Table 5.6:
IEMOCAP average classification accuracy (%) using six schemes of: (1)
VG/Win, (2) VG/MDL, (3) VG/Phon, (4) Gen/Win, (5) Gen/MDL, (6)
Gen/Phon, and (7) Gen/Utt (utterance-length) segments. The results are
presented as mean over the 10 speakers. ‘*’ indicates a significant increase
compared to the baseline window segmentation method.

experiment, the performance gain when using VG/MDL compared to VG/Win is

significant, achieving 2.64% (p < 0.05). The chin and cheek regions also showed

significant increase compared to the window segments. For the chin, VG/MDL sig-

nificantly outperforms VG/Win by 2.92% (p < 0.05). For the cheek, both VG/MDL

and VG/Phon significantly outperform VG/Win by 1.29% and 1.68%, respectively

(both p < 0.05). The significant improvement in the lower regions of the face when us-

ing the MDL segmentation may indicate that the mouth-based segmentation strategy

of MDL performs well for the regions that are modulated by speech [34]. VG/Phon

outperforms VG/Win by 1.84% in the AV4 experiment. VG/MDL also outperforms

VG/Win by 0.74%. However, these differences are not statistically significant. More-

over, the mouth region achieves higher accuracy (55.46%) than the AV6 method for

window segments (54.93%), although not significant.

In Gen classification, the accuracy between different segmentation methods was

similar. Also, the utterance-length segmentation performed poorly (40.83%), unlike

in the SAVEE dataset.
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Cla Seg Average Ang Hap Neu Sad

VG
Win 56.66 57.59 69.83 33.19 66.04

MDL 57.57 63.03 69.71 34.41 63.13

Phon 57.18 61.76 68.69 40.39 57.90

Gen
Win 56.02 55.70 70.23 33.51 64.62

MDL 55.00 59.93 69.48 34.08 56.48

Phon 53.76 58.14 69.96 37.71 49.25

Table 5.7:
IEMOCAP dataset results of weighting individual facial region based on its
validation accuracy. We report (i) average accuracy, or averaged recall, (ii)
angry, (iii) happy, (iv) neutral, and (v) sad class accuracy.

5.3.2.2 Weighting using validation accuracy

The weighting method that combines the individual facial regions based on cross

validation accuracy improves the performance, up to 57.57% when using the VG/MDL

method. This is the highest accuracy in the IEMOCAP dataset and it outperforms the

simple averaging method in the AV6 experiment by 1.74% (not significant). This is

higher than VG/Win method (56.66%), however the difference is not significant. The

VG/MDL result is higher than both of the previous work [142, 148]. VG/MDL and

VG/Win perform significantly better using the validation accuracy-based weighting

method compared to the simple averaging method (55.07% to 57.57%, p < 0.05; and

54.93% to 56.66%, p < 0.05). The Gen classification is also improved compared to

the simple averaging method, particularly for Gen/MDL. Gen/MDL improves from

51.92% to 55.00% in the AV6 experiment. The average accuracies (Gen/Win 56.02%

and Gen/MDL 55.00%) are smaller than seen in the VG classification results. The

phoneme segments perform better for VG classification (57.18%) compared to Gen

classification (53.76%), as in the other experiments. Gen/Win performs significantly

better than Gen/Phon (p < 0.05).
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Cla Seg Average Ang Hap Neu Sad

VG
Win 56.06 66.16 77.28 16.58 64.23

MDL 56.63 68.30 76.18 15.35 66.68

Phon 55.06 67.66 74.94 17.48 60.16

Gen
Win 53.98 63.47 77.74 13.75 60.97

MDL 53.96 62.12 76.52 15.85 61.35

Phon 52.22 62.49 76.97 16.12 53.28

Table 5.8:
IEMOCAP dataset results of SVM based combination where individual fa-
cial region uses the best parameter chosen by cross validation. We report
(i) average accuracy, or averaged recall, (ii) angry, (iii) happy, (iv) neu-
tral, and (v) sad class accuracy.

5.3.2.3 SVM-based Weighting Method

The hyper-parameter of SVM chosen based on cross validation was 10−5. Linear-

SVM slightly improves the accuracy for VG/MDL compared to AV6 in the simple

averaging method (55.07%). It also slightly improves the VG/Win accuracy in the

AV6 experiment (54.93%). For Gen classification, the accuracy was slightly lower

than the averaging method. The differences are not significant.

For the VG classification, MDL segmentation achieves significantly higher ac-

curacy compared to the simple averaging method (55.07% to 56.63%, p < 0.05).

VG/Win also performs significantly better using the SVM weighting method com-

pared to the simple averaging method (54.93% to 56.05%, p < 0.05).

5.4 Discussion

Table 5.9 shows the parameters selected for the SAVEE dataset, averaged over all

four test speakers {1, 2, 3, 4}. Note that larger values of the MDLadvantage parameter

corresponds to longer average segment lengths. The parameters chosen for each facial

region demonstrate that in general classification, the upper facial regions such as the

eyebrow and forehead perform well with longer segments. This trend may indicate
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Cla Seg AV4 AV6 AV up AV low Chin FH CHK U.EYE EB MOU

VG Win 0.18 0.21 0.14 0.34 0.18 0.33 0.14 0.10 0.53 0.18

MDL 6 5 6.5 6.5 11.5 2.5 10 6 5 10

Gen Win 0.28 0.81 1.28 0.61 0.43 0.59 0.10 0.68 1.15 0.14

MDL 4.5 14 15 11.5 5 6.5 11.5 9 10.5 12.5

Table 5.9:
SAVEE dataset: selected parameters averaged over all four test speakers
based on leave-one-training-speaker-out cross validation. For Win segmen-
tation method, the parameter is segment length of each window; and for
MDL segmentation method, the parameter is MDLadvantage, described in
Section 5.2.2. Larger MDLadvantage corresponds to longer average segment
length. (Note that phoneme segmentation methods do not have any param-
eters that control granularity.)

Gen/Win PS/Win

Window size (sec) AV Mou AV4 AV6 AV Mou AV4 AV6

0.1 52.41 55.51 52.93 54.24 55.06 55.03
0.25 52.04 55.04 52.49 52.63 54.83 54.92
0.5 52.09 55.24 53.78 52.41 55.04 55.19
1 50.79 53.54 54.29 52.12 53.41 53.98
1.5 50.96 54.36 54.13 51.45 53.95 53.8
2 50.12 53.11 52.11 50.49 51.72 51.75

Table 5.10:
Accuracy result comparisons of Gen/Win (top) and VG/Win (bottom)
with different window sizes of the set {0.1, 0.25, 0.5, 1, 1.5, 2} seconds
(IEMOCAP).
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Figure 5.7:
SAVEE dataset: trained SVM weights to combine MSPs from the indi-
vidual facial regions. Averaged weights for Gen/Win (top) and VG/Win
(bottom) methods. Darker weights corresponds to smaller values, and
brighter corresponds to larger values. Highlighted red boxes (best shown
in color) represent the top four highest weights.

that the upper facial regions may be characterized by longer-term dynamic patterns.

Figure 5.7 shows the trained SVM weights based on the 24-dimensional features for

each face/emotion set for the SAVEE dataset. In the figure, there are six different fa-

cial regions and four different emotion classes. We investigate the contribution of each

facial region to the final emotion inference. We estimate the contribution based on

the SVM weights, e.g., w1face1 +w2face2 +w3face3 +w4face4 +w5face5 +w6face6.

The weights wi of each face region i = {1, 2, ..., 6} are averaged over the four test

speakers. We find that in both Gen and VG classification, the mouth regions have

higher weights on the happiness component of the four-dimensional MSPs, whereas

eyebrow regions have higher weights on the anger and sadness components. This find-

ing corresponds to the previous emotion perception studies that certain facial regions

contribute more to specific emotion perception [215]. The studies on facial action

units [59] have shown that certain anatomical regions of the face, or action units,

are strongly related to specific emotions. These studies have shown that happiness is

strongly related to action units on the mouth (including action unit 6: cheek raiser

and action unit 12: lip corner puller), and anger is strongly related to action units on

the eyebrow (including action unit 4: brow lowered and action unit 7: lid tightener).

For the IEMOCAP dataset, we observe similar performance between Gen/Win,

Gen/MDL, and Gen/Phon. This may imply that without any additional phoneme
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information it is important to capture longer-term dynamics to understand emotion

expression. In addition, we compare the Gen and VG classification accuracies of the

fixed-length segments with different window sizes, {0.1, 0.25, 0.5, 1, 1.5, 2} seconds.

Table 5.10 summarizes Gen/Win (top) and VG/Win (bottom) accuracy for different

window sizes. The Gen/Win accuracy shows statistically insignificant changes across

different window sizes. However, the VG/Win accuracy shows significant increase

in AV 6 accuracy between 1 and 2 seconds (2.18%, p < 0.02) and between 1.5 and

2 seconds (2.02%, p < 0.03). Both VG/Win and Gen/Win perform poorly with 2-

second windows. This decrease in performance of the 2-second windows compared

to smaller window sizes is higher for VG/Win compared to Gen/Win, which may

suggest that in VG classification it is critical to use segments that have similar lengths

to phoneme segments.

We also compare how many phonemes in each window segment with different

sizes. For each window size of {0.1, 0.25, 0.5, 1, 1.5, 2} seconds, the average number

of phonemes are 1.71 ± 0.80, 2.67 ± 1.49, 3.87 ± 2.23, 5.47 ± 2.93, 6.54 ± 3.24, and

7.19± 3.47.

The consistent increase in accuracy of VG/Win associated with an increase in

window length may imply that the window segments that contain phoneme at the

closest (i.e. most overlap with phoneme segment) will perform better than the others.

5.5 Conclusions

In this study, we investigate an unsupervised, variable-length segmentation method

for compensating for facial movement due to speech, to improve the performance of fa-

cial emotion recognition systems. We present detailed results on two different datasets

and propose a combination strategy that can account for different temporal charac-

teristics of different facial regions. Our segmentation method is based on the MDL

principle. We demonstrated that a hyper-parameter MDLAdvantage can change the
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average segment lengths and how this impacts the system-level performance. Based

on this finding, we show how we can combine different hyper-parameters chosen per

face regions using cross validation for final emotion inference. We use linear-kernel

SVMs to combine facial region-specific emotion evidence and investigate the weights

between facial regions and emotions to explore the different contributions of individual

facial regions for inference of specific emotion.

Our experimental results on the two IEMOCAP and SAVEE datasets demonstrate

that the two variable-length segmentation methods, MDL and phoneme, achieve

higher emotion classification rates compared to fixed-length window segmentation

in VG classification. We also find that methods to combine estimated emotion from

individual face regions, can increase the accuracy significantly.

In our future work, we will investigate the efficacy of MDL segmentation based

on different facial regions. In our preliminary study in [113], we found that it is more

beneficial to use the mouth region for MDL segmentation, compared to other facial

regions. However, it is not yet clear whether this is true for other datasets such as

SAVEE. For instance, we found that the SAVEE dataset shows high accuracy using

utterance-level eyebrow segments, unlike the chance-level accuracy for the IEMOCAP

dataset. This may indicate that the difference between the read speech (SAVEE) and

more natural dynamic conversation (IEMOCAP) may have different facial movement

characteristics. We will investigate the use of other facial regions for the other datasets

in MDL segmentation.

Further, our results indicate that different segmentation strategies per different

face regions, e.g., MDL segmentation for mouth region and emphasis-based segmenta-

tion for eyebrow region, may benefit the overall facial emotion recognition systems. In

addition, we plan to combine the facial emotion recognition system that we developed

with audio emotion recognition systems, that can use the multimodal information.
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CHAPTER 6

Informed Segmentation and Labeling Approach

6.1 Introduction

Facial movements are highly dependent on multiple factors when a person is speak-

ing, such as lexical content, speech emphasis, and emotion (Figure 6.1). A main chal-

lenge in automatic emotion recognition is that facial movements may be modulated

by multiple factors. For instance, a person smiling and saying ‘cheese’ both result

in similar mouth movements [113]. Likewise, eyebrows raised due to surprise have

similar movements to eyebrows to convey emphasis [38].

Traditional systems often neglected the lower face region (particularly the orofacial

region) for emotion recognition when a person is speaking, due to its high dependence

on speech production [50]. However, recent studies have found that the use of phonetic

information can improve the recognition rate on this region [113, 114, 141–143, 148].

Most notably, a set of studies by Mariooryad and Busso has found consistent im-

provement for facial emotion recognition in the lower face region, when the phonetic

information is used both in supervised (phonetic transcript is available) [141, 142]

and unsupervised manners [143]. The finding underlying these studies is that the

restriction of an emotion recognition task by training separate classifiers for a given

unit of speech production, e.g., phoneme, can help reduce speech-related variation

in emotion recognition. However, it has been under-explored how the dynamics in

The work presented in this chapter has been submitted in the following article:
Yelin Kim and Emily Mower Provost. “ISLA: A Framework for Controlling Sources of Modulation
in Audio-Visual Affective Behavior.” IEEE Transactions on Affective Computing, 2016.
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Time “The oasis was a mirage.” 
: eyebrow rise with emphasized speech 

Figure 6.1:
An example facial display in the SAVEE dataset [84] that shows a per-
son saying “the oasis was a mirage” with happy emotion. The eyebrow
changes when a person is emphasizing (highlighted in dashed circles) and
the orofacial region changes to articulate speech.

the upper face region are altered due to speech [38]. This raises the central research

question (Q1), can we find a signal that modulates the dynamics of the upper face

movements and use patterns of this signal for estimating emotion in this region?

In this chapter, we address this question by proposing the Informed Segmentation

and Labeling Approach (ISLA). ISLA captures speech-related variability in both the

upper and lower face regions, with an aim of improving the overall emotion recognition

rate when a person speaks. A central feature of the proposed ISLA is what we call

ISLA signals. ISLA uses these speech signals that alter the temporal dynamics of each

of the upper and lower face regions, to temporally segment and classify facial displays

of emotion. Our ISLA signals are motivated by recent findings in speech prosody that

the upper face movements are modulated by speech emphasis [38, 75, 80, 108, 161].

Also, as previously shown to be useful in our prior work [113, 114], we use the phonetic

information to segment and classify the lower face region.

The second research question (Q2) focuses on the integrated design of audio-visual

emotion recognition system. As shown in Figure 6.2, we compute Emotion Profiles

(EPs), which are vector representations of confidence about presence and absence of

anger, happiness, neutrality, and sadness [158], for the upper face, lower face, and

speech modalities. For the upper and lower face regions, we compute EPs based on
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Figure 6.2:
An overview of our proposed audio-visual emotion recognition system. We
calculate emotion estimates from the upper and lower face regions by us-
ing speech pitch and phoneme patterns for each of the two regions, respec-
tively. The utterance-level emotion estimates from speech are calculated
using Support Vector Machines. We combine utterance-level emotion es-
timates from the upper face, lower face, and speech modalities for two
types of experiments: (i) audio-visual classification and (ii) correlation
analysis between the modalities.

time-series similarity between segments as in our prior work [113, 114]. Specifically,

we calculate the similarity between training and test segments, and compute test

EPs based on the emotion class distribution of the k closest training segments. For

speech, we use outputs of binary Support Vector Machines (SVMs) to compute EPs,

where each SVM separates ‘emo’ vs. everything else (‘emo’ includes anger, happiness,

neutrality, or sadness) as in [158]. The EPs calculated from the three modalities are

averaged together to infer the final emotion label.

The third research question (Q3) asks how the emotion expressions in the lower

face, upper face and speech modalities coordinate with each other. Previous stud-

ies have identified interrelationships between these modalities, but only for a single

subject [24] or with absence of understanding the unique dynamics underlying each

region of the face [140, 150]. To this aim, we examine the correlation between EPs

from the lower face, upper face, and speech modalities, and provide insight into how

the emotion inferences from these modalities correlate with each other.
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Figure 6.3:
Overview of the ISLA framework with (i) segmentation and (ii) labeling
steps (best shown in color). In this framework, speech emphasis becomes
the ISLA signal for the upper face region, and speech phoneme becomes
the ISLA signal for the lower face region. In Step 1, the framework first
segments the facial data based on the dynamic changes of ISLA signal
(top). In Step 2, ISLA trains separate classifiers with the segmented facial
data based on the characteristics of the signal related to the face region,
or ISLA signal, associated with each segment. These classifiers are shown
on the right side of the figure.

Our experimental results on two emotion datasets, IEMOCAP [27] and SAVEE

[84], demonstrate that the proposed methods show promising results on emotion

recognition tasks.

6.2 Proposed ISLA Approach

In this section, we describe the main idea behind the proposed ISLA framework.

The ISLA framework can be used as a pre-processing step for facial emotion classifi-

cation, and can be integrated with any classifier.
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Figure 6.3 shows an ISLA example of how the movements in the upper face (fore-

head, upper eyebrow, eyebrow) and the lower face (cheek, mouth, chin) regions are

segmented and labeled using the ISLA signals. We define ISLA signals as speech

signals that are closely related to the dynamics of the target face region: speech em-

phasis for the upper face and phoneme for the lower face, as identified in previous

speech prosody and emotion studies [38, 75, 80, 108, 113, 114, 142, 148, 161].

ISLA first segments the facial movements based on the dynamic changes in the

ISLA signal (‘informed segmentation’–Step 1 in Figure 6.3). The upper face segments

are either emphasized or non-emphasized, and each of the lower face segments is a

single phoneme. It then labels each segment where within each group the segments

share the same factor of modulation (e.g., both co-occur with the phoneme /IY/;

‘informed labeling’–Step 2 in Figure 6.3). These labeled groups of segments can

be used to train separate classifiers for each group. This separation enables each

classifier to restrict non-emotional factors of modulation and distills out emotion-

specific variations between the segments (e.g., differentiating /IY/ movement from

happy emotion and from angry emotion).

6.2.1 Informed Segmentation

The informed segmentation is designed to capture the natural dynamics of each

facial region using the ISLA signals. As shown in the Figure 6.3 (Step 1), we use two

types of ISLA signals, speech emphasis and speech phonemes, to segment the upper

face and lower face regions, respectively. If the ISLA framework recognizes changes

in emphasis (e.g., changing from non-emphasized speech to emphasized speech), then

it segments each of the three upper face regions at the change point. If the ISLA

framework recognizes changes in phonemes (e.g., changing from /H/ phoneme to

/EH/ phoneme), then it segments each of the three lower face regions.

To estimate emotion from the mouth region, it is important to differentiate emotion-
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ISLA Labels 
[1] Speech Production  [2] Speech Emphasis 

ISLA 
Label 

Basis (Lexicon) ISLA 
Label 

Basis (Lexicon) 

1 /P/, /B/, /M/ 8 /AE/, /AW/, /EH/, /EY/ 

2 /F/, /V/ 9 /AH/, /AX/, /AY/ 

3 /T/, /D/, /S/, /Z/,  
/TH/, /DH/ 

10 /AA/ 

4 /W/, /R/ 11 /AXR/, /ER/ 

5 /CH/, /SH/, /ZH/ 12 /AO/, /OY/, /OW/ 

6 /K/, /G/, /N/, /L/, 
/HH/, /NG/, /Y/ 

13 /UH/, /UW/ 

7 /IY/, /IH/, /IX 14 /SIL/ 

ISLA 
Label 

Basis (Pitch) 

1 Emphasized 

2 Non-emphasized 

Figure 6.4:
ISLA labels based on (1) speech production (left) and (2) speech emphasis
(right). The ISLA labels based on speech production are chosen based on
visually similar phoneme groups, as in previous work [113, 114, 142, 148].
We proposed to use pitch signals to assign the ISLA labels based on speech
emphasis.

specific movement from movement due to lexical production. We use phoneme

changes as the ISLA signal for the mouth region. Similarly, the other two lower

face regions, cheek and chin, are also tied to the lexical production. Thereby, we use

the phoneme signals as the ISLA signal for the lower face region.

On the other hand, to estimate emotion from the eyebrow region, it is important to

tease apart emotion-related movement from emphasis-related movement. We estimate

the speech emphasis patterns and use this as the ISLA signal for the eyebrow region.

Similarly, the other two upper face regions, forehead and upper eyebrow, also use the

speech emphasis patterns as the ISLA signal.

6.2.2 Informed Labeling

In the informed labeling step, we use the characteristics of the ISLA signals to

label each segment (ISLA labels) and train separate classifiers based on these la-

bels (Figure 6.4). For speech emphasis, we use two ISLA labels: emphasized and
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non-emphasized. We describe how we obtain these labels from pitch information in

details in Section 6.3.2. We force-align speech and transcript to obtain phonetic in-

formation. Previous visual prosody studies have found that there exist 14 visually

similar phoneme groups, and facial emotion recognition systems have followed these

14 groups [113, 114, 142, 148]. Therefore, we use 14 ISLA labels, where each label is

for visually similar phoneme groups. For instance, /P/, /B/, /M/ are visually similar

and hence have the same ISLA label.

6.3 Methodology

In this section, we present details of our methods and experiments to test three

research questions that we introduced. First of all, we describe the data and features

that we use in Section 6.3.1. In Section 6.3.2, we present how we use the ISLA

framework to tease apart effects of modulation from emphasis and emotion in the

upper face region. Section 6.3.3 describes an ISLA framework for the lower face

region that uses phoneme signals, obtained from forced alignment between speech

and transcript, as the ISLA signals. The facial data was segmented using phoneme

boundaries. Lastly, in Section 6.3.4, we discuss how we estimate emotion from speech

and how we fuse the outputs of the ISLA framework and speech emotion estimates.

6.3.1 Data Pre-Processing

We use the IEMOCAP and SAVEE datasets described in Chapter 2. We pre-

process the markers by first translating to make the nose tip as the origin and then

rotating to take into account the head movement, as in Chapter 5. We also mean-

normalize each marker position by making the mean of each dimension of marker

positions per each subject to be the global mean over all subjects, in order to reduce

subject variations in facial configurations [113, 114, 148]. We exclude segments less

than seven frames (0.058 seconds) as in Chapter 5.
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Figure 6.5:
An example pitch contour and estimated emphasized (top) and un-
emphasized (bottom) regions within an utterance, separated based on the
mean pitch (red line), for the IEMOCAP data. Since we exclude seg-
ments shorter than 85 frames for the IEMOCAP dataset (indicated as
black segments), the remaining segments are segments (1), (2), and (3).
Segments (1) and (3) are labeled as non-emphasized segments, and seg-
ment (2) is labeled as emphasized segment, and hence these two sets of
segments are separated into different classifiers for non-emphasized and
emphasized segments, respectively.

For the SAVEE dataset, as in Chapter 5, we interpolate the facial marker record-

ings by cubic spline interpolation to 120 frames per second, in order to be consistent

with the IEMOCAP data.

6.3.2 Emphasis as the ISLA signal for the Upper Face

We hypothesize that emotion prediction from facial cues will improve when we

tease apart the facial movement due to emotion and to emphasis, particularly for

eyebrow regions. To estimate emphasis regions during speech, we use pitch signals

from the audio modality as in previous work in visual prosody [108]. We first take a

mean of pitch of all the spoken utterances for each speaker and then use this mean

as a threshold to divide utterances into emphasized (region with pitch higher than

92



Non-emphasized 
Segments (N)

Emphasized 
Segments (E)

DTWN DTWE DTWN

EP EPEP

{0.05, 0.60, 0.20, 0.15}
Ang  Hap  Neu  Sad 

{0.30, 0.55, 0.15, 0}
Ang  Hap  Neu  Sad 

{0.15, 0.70, 0.05, 0.10}
Ang  Hap  Neu  Sad 

Segment-Level EPs

Segmented Facial Data
(Upper Face)

DTW Calculation

Utterance-Level EP {0.17, 0.62, 0.13, 0.08}

Example: Emphasis-speci�c
                     Classi�cation
    (Upper Face)

* * *

Figure 6.6:
An example of how utterance-level Emotion Profile (EP) can be obtained
from the segment-level emotion estimates from the upper face region using
speech emphasis, similar to Chapter 5. We segments the upper face move-
ments based on the pitch threshold, and segments longer than 1 second are
remained (noted with ‘*’ and red highlights), as in Figure 6.5.

mean) and un-emphasized (region with pitch lower than mean) segments.

In [108], the authors excluded segments less than 1.2 seconds in duration. In our

experiments, the average segment length of the IEMOCAP dataset is 0.71 seconds

and that of the SAVEE dataset is 0.50 seconds. The exclusion of segments shorter

than 1.2 seconds results in significant data loss. Therefore, we removed segments

shorter than the average length for each data, i.e., we removed segments shorter than

85 frames, or 0.71 seconds in duration, for the IEMOCAP dataset, and segments

shorter than 60 frames, or 0.50 seconds in duration, for the SAVEE data.

Once we segment each utterance into emphasized and non-emphasized regions, we

employ an emphasis-specific (‘ES’) classification strategy. This strategy compares the

movement of emphasized test segments to emphasized training segments, and non-

emphasized segments for non-emphasized regions. This classification strategy reduces

emphasis-related variability in facial movements during emotion classification. Figure

6.5 shows an example pitch contour and estimated emphasis regions for the IEMO-

CAP data. The gray line shows the threshold of the mean of pitch during speech that
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separates the utterance into emphasized (black box) and non-emphasized (white box)

regions. The boxes show the segmentation results based on this threshold. After the

exclusion of segments shorter than 85 frames (0.71 seconds), the remaining segments

are indicated as segments 1, 2, and 3 in the figure. The segments 1 and 3 are labeled

as non-emphasized segments, and the segment 2 is labeled as emphasized segment.

These ISLA labels will be used in classification.

6.3.3 Phoneme as the ISLA signal for the Lower Face

Lexical segmentation and labeling have been used in previous studies to improve

facial emotion recognition during speech [113, 114, 142, 148]. This technique segments

the facial data using phoneme boundaries. For instance, as shown in Figure 6.7, if a

speaker is saying ‘cheese’, we segment facial motion capture data based on the start

and end timing of each phoneme ‘/SIL/’, ‘/CH/’, ‘/IY/’, ‘/Z/’, and ‘/SIL/’. Phoneme

labeling assigns each phoneme segment into visually similar groups of phoneme (Table

6.1). This phoneme assignment is used to group the data, which are used to train

separate classifiers. This separation allows each emotion classifier to focus on emotion-

specific patterns in the input data, by reducing phoneme-related variations in the

data. The lexical segmentation and labeling achieves higher performance compared

to fixed-length window segmentation, and this performance gain is mostly from the

lower face regions.

Group Phonemes Group Phonemes

V1 P, B, M V8 AE, AW, EH,
EY

V2 F,V V9 AH,AX,AY
V3 T,D,S,Z,TH,DH V10 AA
V4 W,R V11 AXR,ER
V5 CH,SH,ZH V12 AO,OY,OW
V6 K,G,N,L,HH,NG,YV13 UH,UW
V7 IY,IH, IX V14 SIL

Table 6.1: Visually similar phoneme groups.
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6.3.4 Audio-Visual Emotion Classification

We develop a speech-based emotion recognition system and propose an audio-

visual classification framework that combines the ISLA face-based with speech-based

emotion estimates (Figure 6.2). Section 6.3.4.1 describes how we estimate emotion

from the upper face, lower face, and speech signals. Section 6.3.4.2 explains the overall

audio-visual emotion classification.

6.3.4.1 Emotion Estimation Using Emotion Profiles

Emotion Profiles (EPs) are multi-dimensional vector representations that describe

the level of confidence on the presence and absence of each type of emotion [158]. This

EP description has been shown to be effective in both representation and classification

of emotion [7, 42, 112, 155]. In the presented study, we use the EPs to describe emotion

estimates from the upper face, lower face, and speech modalities.

We use ISLA to estimate emotion from both the upper and lower face regions.

For each test segment, we calculate four-dimensional emotion estimates, EPs, using

a method proposed in Chapter 5.

Dynamic Time Warping (DTW) distances are calculated between test and train

segments, for both lower and upper face regions (Figure 6.6), as in [113, 114]. DTW is

a time-series similarity measure that aligns two time series to minimize their distance.

Unlike Euclidean distance measure, DTW can measure similarity of two time series

data with different lengths. For instance, if we have two facial movement trajectories

of length M1 and M2 with the same feature dimension K, i.e., T1 ∈ RM1×K and

T2 ∈ RM2×K , we compute a M1-by-M2 local cost matrix Q as follows:

Q(i, j) =
K∑
k=1

(T1(i, k)− T2(j, k))2, (6.1)

where i and j denote the time points of T1 and T2, respectively. We compare DTW
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“Cheese” 

Figure 6.7:
Example of lexical segmentation and labeling for a word ‘cheese’. Lexical
segmentation segments the facial data using phoneme boundaries, obtained
by forced alignment between audio and transcript.

distances between testing segment and training segments, and calculate the emotion-

class distribution over the k-closest neighbors (in chapter, k = 20 as in [113, 114]). For

instance, if DTW distances of a test segment with k = 20 closest training segments

have emotion labels with 1 angry, 12 happy, 4 neutral, and 3 sad classes, then we assign

a profile of this distribution to the test segment as follows: {0.05, 0.60, 0.20, 0.15}.

We finally aggregate the segment-level profiles by taking an average of the seg-

ments to obtain the utterance-level profiles (Figure 6.6) as in Chapter 5. These

profiles will be used as the input to our proposed classification systems.

We estimate the emotion content of the speech using the EP technique. We first

extract Interspeech 2013 Paralinguistic features [213], 6,373 features in total. The

features are based on 4 energy related low-level descriptors (LLDs), such as loudness,

RMS energy, and zero-crossing rate; 55 spectral LLDs, such as MFCC, spectral energy,

and spectral variance; and 6 voicing related LLDs, such as F0, probability of voice,

log harmonic-to-noise ratio (HNR), jitter, and shimmer. The features are extracted

using the openSMILE toolkit [64]. There exists more utterances that contain audio-

only data than motion-captured data for the IEMOCAP. We we use all the 6,332

audio-only utterances in this dataset to train the speech emotion estimation system.

We train four binary SVMs: angry vs. not angry, happy vs. not happy, neutral vs.

not neutral, and sad vs. not sad. We use the distance from hyperplane to estimate

confidence, as in [158]. We convert these distances to probabilistic estimates, by first
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z-normalizing the outputs over a given speaker and using a sigmoid function to map

the distances into values between 0 and 1.

6.3.4.2 Combining Audio and Visual Emotion Estimation

We combine speech-based emotion estimates with emotion estimates from the

lower and upper face regions, by first taking the average of utterance-level emotion

estimates over each modality. We then take the maximum component of the 4-

dimensional averaged emotion estimates. For instance, if we obtain emotion estimates

of a test utterance as {0.10, 0.60, 0.20, 0.00} from speech, {0.15, 0.55, 0.23, 0.07}

from the lower face region, and {0.03, 0.81, 0.15, 0.01} from the upper face region, we

first take the average of these modalities and obtain {0.09, 0.65, 0.19, 0.06}. Since the

happy emotion component shows the highest emotion component (0.65), we finally

infer the emotion label of this test utterance as happy emotion class.

6.3.5 Classification Setup and Baseline

Our subject-independent emotion classification systems hold all the data from a

speaker for testing, and train the systems based on held-out training speakers. For

the IEMOCAP dataset, it results in 10 different test sets, and we measure the per-

formance of classification system by taking an unweighted average recall over the ten

test performance. For the SAVEE dataset, we have 4 different test sets, and as in

the IEMOCAP dataset, we measure the performance using unweighted recall over

the four test performance. Also, since the SAVEE dataset is read speech, we conduct

sentence-independent classification as well to remove the effect of same lexical infor-

mation in our emotion recognition. As in Chapter 5, we use a paired t-test proposed

in [52] to test the significance of result comparisons, and claim the significance when

p-value is less than 0.05. Due to the limited number of speakers, we do not conduct

the significance test for the SAVEE dataset. However, the SAVEE dataset provides

97



useful insights into how posed emotion expressions differ from the expressions during

conversations.

Our baseline methods assume that fixed-length windows can capture emotionally

salient dynamics and that training a single classifier over all data can be effective in

emotion classification. The fixed-length segment length is chosen as the average of

emphasis and phoneme segments over all ten speakers. For the IEMOCAP dataset,

the average segment length is 0.47 seconds, and for the SAVEE dataset, it is 0.34

seconds. We call the traditional classification method that uses a single classifier

regardless of segment characteristics as ‘general classification’ method. These baseline

models were also used for comparison in our prior work [113, 114].

6.4 Results and Discussion

6.4.1 Modeling Individual Modalities

In this section, we discuss the classification results of individual modalities. In

particular, we compare different segmentation and classification methods for upper

and lower face regions, based on our proposed ISLA framework. We also discuss the

classification results of the speech signal as well.

6.4.1.1 Face

Tables 6.2 and 6.3 demonstrate the results of each facial region when modeled

using three different methods, for IEMOCAP and SAVEE datasets, respectively. We

compare our proposed emphasis based segmentation with emphasis-specific classifi-

cation (‘Em/ES’) with three traditional methods: emphasis-based segmentation with

general classification (‘Em/Gen’), fixed-length segmentation with general classifica-

tion (‘Fixed/Gen’), and phoneme-based segmentation with phoneme-specific classifi-

cation (‘Phon/PS’). Fixed/Gen is a traditional method to simply develop a dynamic
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Face Region Face Method UW (%)

Upper Face

Forehead Em/ES 41.84 [*]
Em/Gen 36.76

Fixed/Gen 41.42
Phon/PS 40.63

Upper Eyebrow Em/ES 47.30 [*, ♦]
Em/Gen 41.71

Fixed/Gen 43.94
Phon/PS 45.89

Eyebrow Em/ES 45.31 [*, ♦, 4]
Em/Gen 38.65

Fixed/Gen 40.15
Phon/PS 40.30

Lower Face

Chin Em/ES 46.51 [*]
Em/Gen 40.92

Fixed/Gen 50.20
Phon/PS 50.10

Cheek Em/ES 42.15 [*]
Em/Gen 35.72

Fixed/Gen 44.17
Phon/PS 45.67

Mouth Em/ES 46.90 [*]
Em/Gen 41.26

Fixed/Gen 51.14
Phon/PS 57.03

Table 6.2:
IEMOCAP dataset Result Comparisons between our proposed emphasis
based segmentation with emphasis-specific classification (‘Em/ES’) and
traditional methods, including emphasis-based segmentation with general
classification (‘Em/Gen’), fixed-length segmentation with general classi-
fication (‘Fixed/Gen’), and phoneme-based segmentation with phoneme-
specific classification (‘Phon/PS’). ‘[*]’ indicates statistical significance
(p < 0.05) between our proposed Em/ES method and Em/Gen. ‘[♦]’ in-
dicates statistical significance (p < 0.05) between our proposed Em/ES
method and Fixed/Gen. ‘[4]’ indicates statistical significance (p < 0.05)
between our proposed Em/ES method and Phon/PS. The bolded numbers
represent highest accuracy in the upper face region.
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Face Region Face Method UW (%)

Upper Face

Forehead Em/ES 63.49
Em/Gen 57.03

Fixed/Gen 59.79
Phon/PS 62.08

Upper Eyebrow Em/ES 59.88
Em/Gen 54.91

Fixed/Gen 55.57
Phon/PS 57.50

Eyebrow Em/ES 83.96
Em/Gen 64.17

Fixed/Gen 65.21
Phon/PS 73.13

Lower Face

Chin Em/ES 36.96
Em/Gen 38.07

Fixed/Gen 41.19
Phon/PS 32.08

Cheek Em/ES 64.40
Em/Gen 61.46

Fixed/Gen 65.69
Phon/PS 61.67

Mouth Em/ES 63.48
Em/Gen 59.29

Fixed/Gen 64.94
Phon/PS 62.71

Table 6.3:
SAVEE dataset Result Comparisons between our proposed emphasis based
segmentation with emphasis-specific classification (‘Em/ES’) and tradi-
tional methods, including emphasis-based segmentation with general clas-
sification (‘Em/Gen’), fixed-length segmentation with general classification
(‘Fixed/Gen’), and phoneme-based segmentation with phoneme-specific
classification (‘Phon/PS’). The bolded numbers represent highest accu-
racy in the upper face region.
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classifier, and Phon/PS has been shown to be effective particularly for the lower face

region in previous work [113, 114, 142, 148].

For the IEMOCAP dataset, our proposed Em/ES method outperforms all the

three traditional methods for the upper face region: forehead, upper eyebrow, and

eyebrow. The Em/ES method does not benefit the lower face region, which is not as

strongly attached to emphasis as in the upper face region. For the emphasized seg-

ments (EM), ES classification significantly outperforms Gen classification for all face

regions, regardless of upper or lower face regions for the IEMOCAP data. The fore-

head region achieved 41.84% when using the Em/ES, 5.08% higher than the Em/Gen.

The upper eyebrow and eyebrow regions also achieve significantly higher accuracy us-

ing the Em/ES, achieving 47.30% and 45.31%, respectively. The lower face regions,

chin, cheek, and mouth, also achieve significantly higher accuracy using the Em/ES

than Em/Gen, achieving 46.51%, 42.15%, and 46.90%, respectively.

Our proposed Em/ES method also outperforms both Fixed/Gen and Phon/PS for

the upper face region. The performance gain from the Fixed/Gen to Em/ES is 0.41%

(not significant) for the forehead, 3.36% (significant) for the upper eyebrow, and

5.16% (significant) for the eyebrow regions. The results indicate that we can achieve

a greater performance gain for the regions closer to the eyebrow region. However, for

the lower face region, Em/ES achieves lower accuracy than Fixed/Gen, indicating that

the use of emphasis signal does not contribute to emotion estimation due to its weak

relationship with the lower face region. The performance gain from the Phon/PS to

Em/ES is 1.19% for the forehead (not significant), 1.42% for the upper eyebrow (not

significant), and 5.02% for the eyebrow (significant) regions. As in the performance

gain from the Fixed/Gen to Em/ES, the improvement is the most significant in the

eyebrow region. Also, Em/ES shows lower accuracy than Phon/PS for the lower face

regions.

For the SAVEE dataset, Em/ES outperforms Em/Gen in forehead, upper eye-
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brow, eyebrow, cheek, and mouth regions– all the regions except for the chin, which

is the farthest region from eyebrow. All the upper face regions demonstrate the in-

creased performance of 63.49%, 59.88%, and 83.96%, for forehead, upper eyebrow,

and eyebrow regions, respectively, when the Em/ES is used instead of the Em/Gen.

The cheek and mouth regions also show the increase in performance of 64.40% and

63.48%, respectively. However, the Em/Gen outperforms the Em/ES for the chin

region (38.67% and 36.96%, respectively), and this may indicate that the Em/ES

benefits for the region that is highly associated with emphasis and eyebrow muscles

(the chin is the farthest region from the eyebrow).

In addition, the SAVEE dataset consistently shows higher accuracy using the

Em/ES method compared to any of the three traditional methods in the upper face

regions. The Em/ES achieves 63.49%, 59.88%, and 83.96% for the forehead, upper

eyebrow, and eyebrow regions, while the best results among the three traditional

methods achieves 62.08% (Phon/PS), 57.50% (Phon/PS), and 73.13% (Phon/PS),

respectively. For the lower face region, Em/Gen achieves the highest (41.19%), higher

than the Em/ES method in the chin region, Fixed/Gen achieves the highest (65.69%)

in the cheek region, and Fixed/Gen achieves the highest (64.94%) in the mouth region.

Note that the SAVEE dataset has a large standard deviation (> 5%) and previous

work [114] found that the outperformance of Fixed/Gen is not significant. The lower

performance of Em/ES in the lower face region is consistent as in the IEMOCAP

data.

6.4.1.2 Speech

Table 6.4 shows the results when only audio modality is used. We use the speech

profile described in Section 6.3.4.1, and make a final emotion inference based on the

maximum component of the four emotion profile outputs.

The results demonstrate that audio-only emotion classification achieves higher

102



Data UW A H N S

IEMOCAP 63.51 78.19 50.88 50.29 74.67
SAVEE 80.75 72.98 83.33 75.00 91.67

Table 6.4:
Audio-only classification results (max EP method) for the IEMOCAP and
SAVEE datasets. Unweighted (UW) and per-class (‘A’ for angry, ‘H’ for
happy, ‘N’ for neutral, and ‘S’ for sad emotion classes) accuracy.

Method All Lower Face Upper Face Audio Audio+L.F. Audio+U.F. L.F.+U.F.

IEMOCAP ISLA 61.54 54.64 48.55* 63.51 67.22* 58.62 54.07
Baseline 62.56 53.93 45.58 (same) 63.51 57.85 55.44

SAVEE ISLA 84.38 63.45 78.28 80.75 74.32 86.01 81.61
Baseline 83.09 64.43 64.59 (same) 76.37 74.17 74.76

Table 6.5:
ISLA and baseline (fixed-length segmentation and general classification)
results for the IEMOCAP and SAVEE datasets: using all modalities
(audio+lower face region+upper face region), audio and lower face region,
and audio and upper face region (averaged over all speakers: 10 for the
IEMOCAP and 4 for the SAVEE datas). For the IEMOCAP dataset,
‘*’ indicates statistical significance (p > 0.05) between our proposed ISLA
and the baseline methods. The bolded numbers represent highest accuracy
achieved in each of the IEMOCAP and SAVEE datasets.

accuracy than face-only emotion classification for both the IEMOCAP and SAVEE

datasets. In particular, the results on the IEMOCAP dataset achieves 63.51% un-

weighted accuracy and results on the SAVEE dataset achieves 80.75% unweighted

accuracy. The highest per-class accuracy of the IEMOCAP dataset is with the an-

gry emotion class, achieving 78.19%, whereas the SAVEE dataset achieves the lowest

per-class accuracy with the angry emotion class, achieving 72.98%. The SAVEE

dataset achieves its highest per-class accuracy with the sad emotion class, achieving

91.67%. The facial emotion recognition achieves the highest per-class accuracy on

the happiness classification for the IEMOCAP data.
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6.4.2 Audio-Visual Classification

Table 6.5 shows the result comparisons between our proposed ISLA framework

and the baseline for the IEMOCAP and SAVEE datasets. The table summarizes the

results when different combinations of lower face, upper face, and audio signals are

used in classification. For both of the datasets, our proposed framework outperforms

the baseline, validating the efficacy of the ISLA framework for audio-visual emotion

classification.

First of all, for the ISLA framework, the results demonstrate that the IEMOCAP

and SAVEE datasets show different performance trends for different modalities. For

the IEMOCAP dataset, the combination of speech and lower face modalities achieves

the highest unweighted accuracy of 67.22%, whereas for the SAVEE dataset, the

combination of speech and upper face modalities achieves the highest up to 86.01%.

For the IEMOCAP dataset, the lower face region achieves higher emotion recognition

accuracy than the upper face region, achieving 54.64% and 48.55%, respectively. On

the other hand, for the SAVEE dataset, the upper face region achieves higher emo-

tion recognition accuracy than the lower face region, achieving 78.28% and 63.45%,

respectively. Also, the combination of the lower and upper face regions using the

ISLA method achieves lower accuracy than the baseline for the IEMOCAP dataset,

however, the same combination achieves higher accuracy using the ISLA method for

the SAVEE data. Both of the IEMOCAP and SAVEE datasets show higher accuracy

when speech is used, compared to cases when an individual modality of lower face or

upper face is used.

Next, for the baseline framework, the highest accuracy is achieved in the com-

bination of speech and the lower face region for the IEMOCAP dataset (63.51%),

whereas the highest accuracy of 83.09% is achieved in the combination of all modali-

ties, speech, the lower face region, and the upper face region, for the SAVEE data.

Comparing the best results of the ISLA and baseline frameworks across different
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combination of modalities, our proposed framework outperforms the baseline for both

the IEMOCAP and SAVEE datasets, 3.71% (significant) and 2.92%, respectively.

IEMOCAP achieves the highest accuracy when combining speech with the lower face

region for both the ISLA and baseline frameworks. The proposed ISLA framework

outperforms the baseline by 9.13%. The SAVEE dataset achieves highest accuracy

when combining the speech with the upper face region for the ISLA framework, and

when combining all the modalities for the baseline framework. As in the IEMOCAP

dataset, the highest accuracy achieved in the ISLA framework (86.01%) is higher than

that achieved in the baseline (83.09%), achieving a 2.92% performance gain.

6.4.3 Correlation Analysis Between Modalities

In this section, we explore how emotion estimates from the lower face, upper

face, and speech modalities correlate with each other. To this aim, we use emotion

components of EPs to examine the patterns of emotion estimates from the three

modalities. When components are correlated across different modalities, for instance,

happiness is expressed both in the upper and lower face regions, this suggests that the

modalities express similar emotion expressions. If the components are not correlated,

this indicates that the emotions expressed across different modalities are different.

The findings can provide valuable insights based on the difference between the

IEMOCAP and SAVEE datasets. Posed smiles, such as smiles in the SAVEE dataset,

have long been studied with their distinct characteristics of expressions from genuine

smiles. In his earlier work, Duchenne found that posed smiles involve only a con-

traction of the mouth region, whereas genuine smiles, or Duchenne smiles, involve

movements of both the eye and mouth regions [56, 61]. Recent studies in psychology

also support this finding that this combination of muscle contractions in the eye and

mouth regions uniquely associates with the positive emotion [147].

Tables 6.6 and 6.7 show the correlation for each emotion component of emotion
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profiles (‘ang’, ‘hap’, ‘neu’, and ‘sad’ component in each column), between pairs of

modalities. This correlation is an average correlation over ten speakers. Each row of

the tables show the pairs between (i) lower face and speech (‘LowFace-Audio’), (ii)

upper face and speech (‘UpFace-Audio’), (iii) upper face and lower face (‘UpFace-

LowFace’), and (iv) upper face, lower face, and speech (‘Up-Low-Audio’). For in-

stance, consider the emotion profiles over 250 utterances from the lower face and

speech. We calculate the correlation between the same emotion component, for in-

stance, between {a1,low, a2,low, . . . , a250,low} and {a1,aud, a2,aud, . . . , a250,aud} for anger

component. We do the same thing for happiness, neutrality, and sadness compo-

nents.

In addition, we also investigate correlation between emotion profiles, when only

emphasized or non-emphasized segments are aggregated to compute the profiles. The

‘Type’ column of Tables 6.6 and 6.7 show the correlation results when we aggre-

gate over (i) all segments (‘All’), (ii) emphasized segments (‘Emph’), and (iii) non-

emphasized segments (‘Non-Em’), to attain utterance-level profiles.

We use the Concordance Correlation Coefficient (CCC) introduced in [129] to an-

alyze correlation between each component. The CCC measures the level of agreement

on the profiles, or emotion estimates, obtained by two modalities. Given the Pearson

correlation coefficient (σ) and the mean square error, the CCC combines these two

measures as follows:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (6.2)

where σ2
x and σ2

y are the variance of profiles from each modality, and µx and µy are

the mean profiles of each modality. The CCC has been used in continuous emotion

recognition [192].
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Type Pair ang hap neu sad

All

LowFace-Audio 0.50 0.49 0.21 0.42
UpFace-Audio 0.37 0.43 0.25 0.27

UpFace-LowFace 0.32 0.76 0.34 0.43
Up-Low-Audio 0.39 0.56 0.27 0.37

Emph

LowFace-Audio 0.57 0.53 0.22 0.44
UpFace-Audio 0.31 0.50 0.17 0.23

UpFace-LowFace 0.35 0.75 0.23 0.39
Up-Low-Audio 0.41 0.59 0.21 0.35

Non-Em

LowFace-Audio 0.46 0.47 0.17 0.41
UpFace-Audio 0.14 0.40 0.08 0.24

UpFace-LowFace 0.12 0.74 0.24 0.36
Up-Low-Audio 0.24 0.54 0.17 0.33

Table 6.6:
Correlation analysis between utterance-level profiles, aggregated over dif-
ferent types of segments: (i) all segments (‘All’), (ii) emphasized segments
(‘Emph’), and (iii) non-emphasized segments (‘Non-Em’), in the IEMO-
CAP dataset (averaged correlation over all ten speakers)

6.4.3.1 Duchenne Smiles and Naturalness of Data

The IEMOCAP dataset shows higher correlation between the upper and lower

face regions for the happy emotion estimates (0.76), compared to the correlation of

the SAVEE dataset (0.40). Our findings from the IEMOCAP and SAVEE datasets

support the findings on Duchenne smile, by showing higher correlation in the lower

and upper face regions for the IEMOCAP than the posed SAVEE data.

When we only consider emphasized segments, both the IEMOCAP and SAVEE

datasets show high correlation between the lower and upper face regions, 0.75 and

0.77, respectively. However, when we consider non-emphasized segments, IEMOCAP

still shows high correlation (0.74) but SAVEE does not show correlation (0.17). Con-

sidering that emphasis is another modulation source of facial movements, this may

indicate that without other sources of modulation, the difference between natural and

posed expressions become stronger.
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Type Pair ang hap neu sad

All

LowFace-Audio 0.63 0.70 0.57 0.35
UpFace-Audio 0.67 0.27 0.52 0.59

UpFace-LowFace 0.66 0.40 0.30 0.35
Up-Low-Audio 0.65 0.46 0.46 0.43

Emph

LowFace-Audio 0.62 0.79 0.63 0.59
UpFace-Audio 0.53 0.68 0.32 0.52

UpFace-LowFace 0.52 0.77 0.08 0.57
Up-Low-Audio 0.56 0.75 0.34 0.56

Non-Em

LowFace-Audio 0.63 0.71 0.57 0.35
UpFace-Audio 0.63 0.06 0.30 0.60

UpFace-LowFace 0.60 0.17 0.13 0.35
Up-Low-Audio 0.62 0.31 0.33 0.43

Table 6.7:
Correlation analysis between utterance-level profiles, aggregated over dif-
ferent types of segments: (i) all segments (‘All’), (ii) emphasized segments
(‘Emph’), and (iii) non-emphasized segments (‘Non-Em’), in the SAVEE
dataset (averaged correlation over all four speakers)

6.4.3.2 Correlation for Emphasized vs. Non-Emphasized Segments

The second and third rows (‘Emph’ and ‘Non-Em’) of Tables 6.6 and 6.7 compare

how emphasized and non-emphasized segments correlate with each other. We also

show that in general, the emphasized segments show similar or higher correlation than

the non-emphasized segments for both the IEMOCAP and SAVEE datasets, except

for few cases when both of the emphasized and non-emphasized segments reveal no

correlation. Emphasis is another source of facial modulation and can be confused with

facial movements for conveying emotion. Therefore, the higher correlation of emotion

estimates for the emphasized segments may imply that humans try to strengthen

emotional messages with the co-production of emphasis.

6.4.3.3 Emotional Expressions During Conversation

Previous psychological studies found that humans recognize happiness the easiest

[60]. We show that happy emotion estimate achieve the highest correlation for each
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pair of modalities, which may indicate that the more correlated modalities are, the

easier for humans to recognize the underlying emotion.

Angry emotion class shows consistent correlation within each of the IEMOCAP

and SAVEE datasets across different pairs of signals. For the IEMOCAP dataset, the

correlation was consistently 0.33-0.34. For the SAVEE dataset, it was consistently

0.65-0.68. This consistency is not observed in other emotion classes of happiness,

neutrality, and sadness. The higher correlation of the SAVEE datasets between dif-

ferent signals may indicate that the expression of anger in read speech of an individual

coordinates more between the lower face, upper face, and speech signals, compared

to more spontaneous emotion expression during two-person conversations.

For the IEMOCAP dataset, the results demonstrate that the happy emotion class

has the highest correlation between the upper and lower face profiles, achieving 0.76.

We also found that the correlation between speech and lower face region is higher

than the correlation between speech and upper face region, for anger, happiness,

and sadness. The neutral emotion class shows relatively lower correlation than other

emotion classes, partly due to the ambiguous nature of the neutral expressions.

For the SAVEE dataset, the results also show that the happy emotion class has

the highest correlation, however the difference from IEMOCAP is that the correla-

tion between lower face and audio profiles achieves the highest at 0.71. The happy

and neutral emotion classes shows higher correlation between lower face and speech

signals, compared to the correlation between the upper face and speech signals. The

second highest correlation was in the sad emotion class, where the correlation between

the upper face and speech signals achieves 0.60.

In addition to correlation of happiness, the correlation of anger is higher for the

SAVEE dataset than that of the IEMOCAP dataset, consistently across pairs of

lower face-audio (IEMOCAP: 0.34, SAVEE: 0.65), upper face-audio (IEMOCAP:

0.34, SAVEE: 0.68), upper face-lower face (IEMOCAP: 0.33, SAVEE: 0.66), and
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upper face-lower face-audio (IEMOCAP: 0.33, SAVEE: 0.66) signals. This correlation

difference may be due to the nature of the two datasets: interaction setting of the

IEMOCAP and individual read speech setting of the SAVEE dataset, where human

subjects may regulate the expression of anger and tend to not show anger explicitly

during social interactions more than individual posed expression [78].

The posed expressions of the SAVEE may also result in higher correlation in

modalities. The highest correlations of angry, neutral, and sad emotion classes are

higher for the SAVEE dataset than the IEMOCAP data. The correlation analysis of

lower face, upper face, and speech signals for different emotion classes demonstrate

how emotion estimates from different modalities associate with each other.

6.4.3.4 Correlation for Each Emotion Label

We explore whether the emotion class of utterances, when using all segments, em-

phasized segments, and non-emphasized segments, reveal different correlation trends

(Table 6.8). For the IEMOCAP dataset, happy utterances have high correlation for

the happy component in the upper and lower face regions, achieving 0.65 and 0.64,

respectively. On the other hand, there is less correlation between these pairs for

the angry and sad utterances. This correlation difference between happy utterances

and angry/sad utterances indicates that the estimated presence of happiness is not

correlated when the underlying emotion is negative or has low valence, i.e., anger

and sadness. All of the angry, happy, neutral, and sad utterances did not show high

correlation (< 0.5) for the SAVEE data, and hence not reported in this section.

Also, no matter what the ground truth emotion labels are, the lower and speech

modalities show moderate to high correlation for the happy component (0.41-0.67).

This means that when the presence of happiness is weak in the lower face, it is the

same for the speech, no matter what emotion is underlying. This also means that

when the presence of happiness is strong in the lower face, it is same for the speech.
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Type Pair ang hap neu sad

Ang

LowFace-Audio 0.30 0.10 0.18 -0.09
UpFace-Audio 0.26 0.12 0.24 -0.02

UpFace-LowFace 0.35 0.42 0.27 0.22
Up-Low-Audio 0.30 0.21 0.23 0.04

Hap

LowFace-Audio 0.19 0.32 0.20 0.24
UpFace-Audio 0.23 0.29 0.24 0.14

UpFace-LowFace 0.21 0.67 0.32 0.40
Up-Low-Audio 0.21 0.43 0.25 0.26

Neu

LowFace-Audio 0.24 0.18 0.06 0.19
UpFace-Audio 0.14 0.13 0.07 0.04

UpFace-LowFace 0.04 0.67 0.16 0.30
Up-Low-Audio 0.14 0.33 0.09 0.18

Sad

LowFace-Audio 0.09 0.20 0.05 0.16
UpFace-Audio 0.08 0.10 0.10 0.00

UpFace-LowFace 0.09 0.41 0.19 0.09
Up-Low-Audio 0.08 0.24 0.12 0.09

Em-Ang

LowFace-Audio 0.17 0.08 0.02 -0.10
UpFace-Audio 0.14 0.19 0.07 0.06

UpFace-LowFace 0.13 0.20 0.10 0.08
Up-Low-Audio 0.15 0.16 0.06 0.01

Em-Hap

LowFace-Audio 0.21 0.34 0.26 0.27
UpFace-Audio 0.05 0.33 0.21 0.14

UpFace-LowFace 0.29 0.65 0.17 0.38
Up-Low-Audio 0.18 0.44 0.21 0.26

Em-Neu

LowFace-Audio 0.42 0.21 -0.01 0.29
UpFace-Audio 0.18 0.04 -0.01 -0.07

UpFace-LowFace 0.15 0.57 0.10 0.24
Up-Low-Audio 0.25 0.27 0.03 0.15

Em-Sad

LowFace-Audio 0.03 0.17 0.04 0.12
UpFace-Audio -0.02 0.03 -0.05 -0.04

UpFace-LowFace 0.00 0.25 0.11 0.14
Up-Low-Audio 0.00 0.15 0.03 0.07

NEm-Ang

LowFace-Audio 0.28 0.10 0.18 -0.03
UpFace-Audio 0.04 0.11 0.06 -0.01

UpFace-LowFace 0.06 0.43 0.15 0.11
Up-Low-Audio 0.12 0.22 0.13 0.02

NEm-Hap

LowFace-Audio 0.20 0.31 0.16 0.22
UpFace-Audio 0.07 0.25 0.06 0.13

UpFace-LowFace 0.16 0.64 0.27 0.37
Up-Low-Audio 0.14 0.40 0.17 0.24

NEm-Neu

LowFace-Audio 0.23 0.20 0.06 0.20
UpFace-Audio 0.10 0.13 0.02 0.07

UpFace-LowFace 0.03 0.64 0.13 0.27
Up-Low-Audio 0.12 0.32 0.07 0.18

NEm-Sad

LowFace-Audio 0.08 0.19 0.04 0.14
UpFace-Audio 0.03 0.04 0.07 -0.02

UpFace-LowFace 0.03 0.39 0.16 0.06
Up-Low-Audio 0.05 0.21 0.09 0.06

Table 6.8:
Correlation analysis between utterance-level profiles, for utterances with
each emotion label: anger (‘Ang’), happiness (‘Hap’), neutrality (‘Neu’),
and sadness (‘Sad’). Also, profiles aggregated over different types of seg-
ments: (i) emphasized (‘Em’) and (ii) non-emphasized (‘NEm’) segments,
in the IEMOCAP data.
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6.5 Conclusions

We present ISLA, a framework for automatic emotion recognition when a per-

son is speaking. This framework considers two sources of facial modulations due to

speech: speech emphasis and production. The segmentation and labeling steps of

ISLA are informed by speech signals, hypothesized to alter the temporal character-

istics of individual face regions. We also explore how to combine the outputs of the

ISLA framework with emotion estimates from speech, for the design of audio-visual

emotion recognition systems. We identify the relative contributions of the lower face,

upper face, and speech modalities in emotion recognition, and design an audio-visual

classification system that utilizes these relative contributions in emotion recognition.

We show that the upper face region, particularly the eyebrow region, is highly

associated with emphasis signal, which is estimated by increased pitch from speech.

We show that the proposed ISLA framework that utilizes the pitch signal as the

ISLA signal, and segments and labels the upper face movements using this signal

significantly outperforms the previous state-of-the-art [114]. This generalizes Chapter

5 where we demonstrate that the lower face region, particularly the mouth region,

highly coordinates with the phoneme signal.

We further investigate how emotion estimates from the upper face, lower face,

and speech modalities correlate with each other. The correlation analysis demon-

strates that the expression of happiness is highly correlated between lower and upper

face regions, regardless of the underlying emotion label. We also demonstrate that

the correlation in anger shows consistency within both the IEMOCAP and SAVEE

datasets, however the correlation was higher for the SAVEE data. We hypothesize

that this may be due to the nature of IEMOCAP dataset, which is dyadic conversa-

tion between two people– people tend to not show anger overtly during interactions

[224]. The experimental results using two emotion datasets, IEMOCAP and SAVEE,

show the highest accuracy of 67.22% for the IEMOCAP and 86.01% for the SAVEE
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datasets, both outperform the baseline models (significantly for the IEMOCAP).

The findings of this chapter provide insight into how to effectively capture tem-

poral characteristics of the upper and lower face movements during speech. The

novelty of ISLA is that it offers a framework that includes informed segmentation

and labeling to control for sources of modulation inherent in facial movements. In

addition, the interactions and relative contributions of the lower face, upper face, and

speech modalities in emotion classification inform the design of audio-visual emotion

recognition systems.
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Part III: Localization of Salient Events

CHAPTER 7

Emotion Spotting

7.1 Introduction

This chapter aims to discover consistent patterns in time regions of emotion evidence

in the lower face, upper face, and speech modalities. Previous studies have found that

humans require different amounts of information over time to accurately perceive emotion

expressions. This varies as a function of emotion classes. For example, recognition of

happiness requires longer stimuli than recognition of anger. We develop a data-driven

system that captures emotion evidence at different timings and durations, for different

emotion classes and different modalities. We use a combination of four binary emotion

classifiers to estimate short-time emotion, and explore patterns (timings and durations) of

emotion evidence. Our results demonstrate similar patterns for each emotion class across

different subject-independent training folds of the IEMOCAP corpus. In addition, we show

that the our proposed method that only uses a portion of the data (59%) can achieve

comparable accuracy to a system that uses all of the data within each utterance. Our

The work presented in this chapter has been submitted in the following article:
Yelin Kim and Emily Mower Provost. “Emotion Spotting: Discovering Regions of Evidence in
Audio-Visual Emotion Expressions.” ACM International Conference on Multimodal Interaction
(ICMI). Tokyo, Japan. November, 2016. Submitted.
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Figure 7.1:
Overview of the proposed classification method. We first segment lower
face, upper face, and speech modalities using fixed-length windows and
calculate segment-level emotion estimates using SVMs. We then aggre-
gate the segment-level emotion estimates with different temporal window
configurations (Index 1–10).

data-driven method has a higher accuracy compared to a baseline method that randomly

chooses a portion of the data. We show that the performance gain of the method is mostly

from prototypical emotion expressions (defined as expressions with rater consensus). The

novelty of our study is in its understanding of how multimodal cues reveal emotion over

time.

7.2 Motivation

Audio-visual emotion recognition systems play a pivotal role in natural and human-

centered interactive technology [47, 86, 98, 176, 184]. These systems use audio-visual inputs

of users, such as their facial movements and vocal changes, to infer their emotions. For

instance, Pepper, a personal robot with emotional capabilities, uses its camera sensors and

microphones to gauge changes in facial and vocal expressions during interactions with users

[1]. Studies on audio-visual emotion recognition have been growing rapidly within the field

of multimodal interaction, often with a focus on how to combine the emotion information

from audio and visual modalities. However, there has been less investigation of how these

multiple modalities unfold emotion over time. Partial information may be sufficient for

inferring human emotion [66, 81, 185]. For example, a smile may make interaction partners
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perceive happiness even though the person shows neutral expressions most of the time [97].

Likewise, sudden bursts of anger can be significant indicators of a person’s angry emotion

[66].

A basic assumption behind previous emotion recognition systems is that human emo-

tions are expressed simultaneously with the same duration in multiple modalities [49, 112,

151, 164]. Previous systems have often overlooked the modality-specific temporal charac-

teristics. A proper understanding of these characteristics may allow us to process only the

relevant subsets of each modality, rather than all presented information. In this chapter,

we explore regions within an utterance that contain emotion evidence, varying for the lower

face, upper face, and speech modalities. We focus on timings and durations of these re-

gions, which we call ‘temporal patterns’ throughout this chapter. We aim to investigate

three important research questions.

The first research question pertains to generalizability and subject-independency in the

temporal patterns of emotion. Previous studies have explored relationship between multiple

modalities, however they either neglected temporal patterns [239] or generalizability across

multiple human subjects [24]. Human perception studies found that there exist different

durations required to correctly recognize emotion for individual emotion classes [180]. This

indicates the need to answer the important research question, (Q1) Are there consistent

temporal patterns of emotion expressions across subjects in the lower face, upper face, and

speech modalities?

We evaluate the efficacy of these temporal patterns in audio-visual emotion recognition

systems. We are interested in the following two research questions: (Q2) Can we achieve

similar accuracy to the all-mean method, but using less data, and higher accuracy than

the baseline method with randomly selected windows? and (Q3) What types of emotion

expressions are associated with consistent emotion patterns?

In this chapter, we address the three research questions by proposing a data-driven

approach to find consistent temporal patterns of emotion in the lower face, upper face,

and speech modalities, varying for four emotion classes (anger, happiness, neutrality, sad-

ness). Our approach identifies temporal regions within an utterance that lead to the highest
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emotion recognition rate, varying for different modalities and for different emotion classes.

Figure 7.1 shows the overview of our system. Our method first segments the lower face,

upper face, and speech modalities using fixed-length windows. We estimate the emotion

content in each of the segments. We create sets of emotion evidence, defined as contiguous

segments in time. Each set has a different position or timing within the utterance (e.g.,

the beginning vs. the middle) and duration (e.g., 40% vs. 60%). We classify the utterance

based on the emotional evidence within each set. Our goal is to identify the optimal param-

eters (timing and duration). We compare our proposed methods to two baseline methods:

the first baseline uses all the data within an utterance as in traditional systems (‘all-mean

method’) and the second one uses partial data within an utterance, but these regions are

randomly selected rather than data-driven.

The key novelty of this follow-up study is our investigation on the three research ques-

tions. The experimental results demonstrate that there exists consistent temporal patterns

of the timing and duration. These temporal patterns show similarity over speakers within

the same emotion class and modality. Our proposed system achieves similar accuracy to a

traditional system that uses all the data, while using only 40–80% of the data for emotion

inference. It also significantly outperforms the baseline method that uses random temporal

regions within an utterance. The findings of our work provide insight into how lower face,

upper face, and speech modalities reveal emotional evidence at different timings and time

scales.

7.3 Proposed System

Our system is composed of four main modules: feature extraction, segment-level emotion

estimation, window-based averaging, and final emotion classification at the utterance level.

We first extract audio-visual features from the lower face, upper face, and speech modalities,

using the features that have shown to be effective in previous emotion recognition studies

[26, 158, 211, 221]. Next, we segment the audio-visual features into fixed-length windows

and estimate segment-level emotions using Support Vector Machines (SVMs). We then
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apply various window configurations with different window timing and duration on the

segment-level emotion estimates, to find the best window configuration for each modality

and each emotion class. Finally, we use the emotion estimates that are aggregated by the

identified windows to infer the utterance-level emotion class.

To train and test our proposed system, we employ leave-one-speaker-out cross-validation.

Since the IEMOCAP data include ten speakers in total, we conduct ten-fold experiments.

In each of the ten experiments, we use nine training speakers to train the system and a held-

out speaker to test the emotion classification performance of the trained system. To choose

the best-performing window configuration, we do leave-one-speaker-out cross-validation on

each of the nine training speakers. This means that for each of the ten speakers, we compute

the validation accuracy of nine training speakers, when eight speakers are used to train the

system and a held-out training speaker is used for validation.

7.4 Feature Extraction

The feature utilized in this chapter are divided in to three modalities: (1) lower face,

(2) upper face, and (3) speech.

The lower face includes three face regions (chin, mouth, and cheek) and the upper face

includes forehead, eyebrow, and upper eyebrow. We extract the (x, y, z)-coordinates of the

motion capture features to track the movements of the lower face and upper face. The

origin is chosen as the nose tip, and the facial features are rotated to compensate for head

rotation. We pre-process the markers by first translating to make the nose tip the origin

and then rotating to compensate for the head movement. To reduce subject variations in

facial configurations, we also mean-normalize each marker position by making the mean of

each dimension of marker positions per each subject to be the global mean over all subjects,

as in previous work [113, 114, 148]. We also exclude segments less than seven frames (0.058

seconds) due to insufficient temporal information, as in [113, 114].

The speech features contain spectral and prosodic features, that have been shown to

be useful in emotion recognition [158]. This includes pitch and energy for prosodic fea-
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tures and mel-filterbank coefficients (MFBs) for spectral features, extracted using the Praat

program[18]. This results in 29-dimensional speech features in total.

7.5 Segment-Level Emotion Estimation

7.5.1 Temporal Segmentation

Based on findings from previous work [114], we choose to use 0.5-second windows, mov-

ing with 0.1-second time steps. We use all the fixed-length windows and include segments

at the end of an utterance that are shorter than 0.5 seconds. The segment-level features

are computed using the mean, standard deviation, upper quantile, lower quantile, quantile

range, and 3-degree polynomial regression coefficients within each segment. This results in

648 features for the lower face, 456 features for the upper face, and 232 features for the

speech.

7.5.2 Emotion Estimation

We estimate segment-level emotion evidence using the Emotion Profile (EP) technique

proposed by Mower et al. [155, 158]. We first train four binary emotion classifiers using the

utterance-level data of the lower face, upper face, and speech. Each set of emotion classifiers

consists of four binary classifiers for anger, happiness, neutrality, and sadness recognition.

Each classifier is a radial basis function kernel Support Vector Machine (SVM), where the

soft margin parameter c is chosen as 1 as in [28, 142]. We set the gamma in kernel function

as a reverse of the number of input features, to be consistent with a default value suggested

in [35].

For each test utterance, we use the segmented data of the utterance as an input to the

trained emotion classifiers. The segment-level SVM outputs are used to compute EPs. As

in previous work [155, 158], we use a distance from the SVM hyperplane as the confidence

level of presence of each emotion component of EPs. Each component is a signed value,

where a negative value means the absence of emotion (e.g., not angry), and a positive value

means the presence of emotion (e.g., angry). Finally, we convert these SVM outputs into
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Figure 7.2:
Temporal window configurations for each speaker, for individual modali-
ties (LowOpt: lower face, UpOpt: upper face, AudOpt: speech) and for
each emotion component (Angry, Happy, Neutral, Sad). The last row is
an averaged window configurations over ten speakers. For each speaker,
black regions are the chosen regions used for emotion classification. The
darker regions in the last row show overlapping windows from the ten
speakers. We also show the average percentage of an utterance used over
the ten speakers.

probabilistic values, by first applying z-normalization and taking a sigmoid function. We

then normalize the values of each emotion component so that the sum of the four emotion

components becomes 1.

7.6 Window-Based Averaging

A traditional method to aggregate segment-level emotion estimates is to take the mean

over all the segment outputs within an utterance [114]. Our proposed system instead

take the mean of segment-level emotion estimates from a region within an utterance. We

investigate which regions and durations of the EP from the upper face, lower face, and

speech, are useful for final emotion inference. This allows us to explore timings and durations

of emotion evidence within an utterance and to use smaller number of segments in emotion

classification.

We explore two types of window configurations: timing and duration of windows. The

last module of Figure 7.1 shows ten different configurations with different window durations

and positions, each denoted as indices 1 to 10. We use cross-validation over each training
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fold to choose one of these ten window configurations. The indices are as follows:

• Index 1–4: we divide an utterance into four regions, each with 40% duration of an

utterance

• Index 5–7: we divide an utterance into three regions, each with 60% duration of an

utterance

• Index 8, 9 : we divide an utterance into two regions, each with 80% duration of an

utterance

• Index 10 : 100% duration of an utterance (all data in an utterance)

We compute validation accuracy of per-angry, per-happy, per-neutral, and per-sad emo-

tion classes, when one of the three modalities (lower face, upper face, and speech) is used

in classification. For each emotion-modality pair (12 pairs in total for four emotion classes

and three modalities), we choose the best window configuration over the training cross-

validation.

7.7 Emotion Classification

We use the chosen window timing and duration to calculate utterance-level emotion

estimates from segment-level emotion estimates. For each of the three modalities, lower

face, upper face, and speech, we have four-dimensional emotion estimates of angry, happy,

neutral, and sad classes. For each modality and emotion pair, we individually take the

average of segment-level estimates within a region of an utterance based on the chosen

window configuration. For instance, if for a test speaker the cross-validated parameters

(Figure 7.1) are 5, 1, and 8 for angry classification using lower face, upper face, and speech,

then we take a mean of the angry component using 60% of the beginning of an utterance,

40% of the beginning of an utterance, and 80% of the beginning of an utterance for the test

speaker for the segment-level emotion estimates from the lower face, upper face, and speech

modalities, respectively.

Once we apply different window configurations for each modality and each emotion

component, we take an average over different modalities to get the four-dimensional EP
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at the utterance level. Each dimension of the EPs is the averaged emotion component of

angry, happy, neutral, and sad emotion classes. As in [158], we choose the final emotion

label that is a maximum component among the four emotion components. For instance, if

the outputs of angry, happy, neutral, and sad binary classifiers are [0.17,−0.63,−0.23, 0.80],

then we choose sadness as the emotion label of the test data.

7.8 Results and Discussions

We design and perform experiments to address our three research questions (Q1-Q3).

To address Q1, we first investigate the chosen window timings and durations across

ten training folds (Section 7.8.1). We show that there exist consistent patterns, varying

for different emotion classes and individual modalities. We provide insight into how these

temporal patterns match findings from human perceptual studies.

To address Q2, We evaluate performance of our proposed audio-visual emotion recogni-

tion systems by comparing with a baseline method. The baseline method selects temporal

regions using a uniformly distributed randomization of the ten different window config-

urations. We randomly select the parameters for each emotion component and for each

modality of the lower face, upper face, and speech. We run 50 runs and obtain the classifi-

cation results of the 50 runs. We then take an average of these 50 runs for each speaker to

compare our proposed method with the baseline.

We compare the performance of our system to a traditional system that utilizes all the

information within an utterance, the all-mean method. This method takes a mean of the

emotion evidence within an utterance to infer the final emotion.

For Q3, we compare the performance gain of our system based on the inter-rater agree-

ment of each utterance. We divide the utterances into prototypical (defined as rater con-

sensus) and non-prototypical (defined as no rater consensus, but the presence of majority

vote) utterances.

The performance measure of our system is unweighted (UW) recall, to be consistent with

previous work [142, 159]. We perform the paired t-test to test the significance of accuracy
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L.F+U.F+Aud L.F U.F Aud L.F+Aud U.F+Aud L.F+U.F

Proposed 65.60[*] 59.76[*] 52.85[*] 54.56 64.50 61.24 60.19[*]
all-mean 65.59 60.65 52.62 55.47 65.83 62.08 60.57
Baseline 63.70 57.92 51.21 53.41 62.79 60.02 58.78

Table 7.1:
Unweighted recall of unimodal and multimodal experiments for our pro-
posed window method, the all-mean method, and the baseline method using
randomized window configurations. The symbols “[*]” next to the accura-
cies indicate statistical significance levels (p < 0.05) between our proposed
method and baseline. All the results between the proposed method and the
all-mean method are statistically comparable to each other (p > 0.05).

comparisons between our proposed method and the baseline and between our proposed

method and the all-mean method, as described in Section 1.2.7.

7.8.1 Temporal Evidence Analysis

The chosen window configurations indicate that there is consistency across speakers with

respect to the timing and duration of emotion. Figure 7.2 demonstrates our key findings

on the timings and durations of windows. The first ten rows show the chosen window

configurations from cross-validation over training speakers, for individual modalities, and

for each emotion class, while the last row shows an average over the ten speakers. For each

speaker, the chosen regions are represented as black, and for the averaged region, the darker

regions represent overlapping regions from the ten speakers. The areas are consistent across

multiple speakers for different modalities and emotion classes.

As shown in the table and figure, the lower face region is chosen consistently across

the speakers at the beginning of an utterance for anger and at the end for happiness,

and generally, at the end for sadness. The neutral class is a mixture of different window

configurations. This finding is in line with historical difficulty in defining and classifying

neutrality [139, 157, 190]. The upper face is generally chosen at the beginning of an utterance

for anger, happiness, and sadness. Neutrality uses information at the end of an utterance.

As shown in the table, speech requires longer durations to identify emotion classes of angry,

happy, and sad. The three emotion classes are chosen at the beginning of an utterance
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Method UW A H N S W

Proposed 65.60 72.88 72.02 40.96 76.53 66.38
All-mean 65.59 71.05 73.99 38.15 79.16 66.92
Baseline 63.70 68.49 73.10 36.91 76.29 64.87

Table 7.2:
IEMOCAP experimental results on the proposed, all-mean, and baseline
methods. The accuracies are unweighted recall (‘UW’), per-class accuracy
for angry (‘A’), happy (‘H’), neutral (‘N’), and sad (‘S’) emotion classes,
and weighted accuracy (‘W’).

in cross-validation. The neutrality requires 40–60% of information within an utterance for

speech data, and the region is chosen at the end of an utterance.

The window configurations also reveal similar findings from previous studies. In a recent

speech emotion recognition study [180], the authors found that angry, sad, fearful, and

neutral emotion expressions are more accurately recognized given shorter data, compared

to happy emotion expressions. As shown in Figure 7.2, the percentage of an utterance used

for recognizing happiness is 80% for speech, which is higher than other emotion classes:

64% for anger, 40% for neutral, and 64% for sad emotion classes. This finding may indicate

that our proposed data-driven window configurations can provide insight into how humans

perceive emotion expressed over time.

7.8.2 Evaluation of Emotion Recognition

We compare the performance to our baseline, where windows are chosen at random.

We also compare our results to a method that uses all the segment-level evidence within an

utterance, instead of partial information, as in our proposed method. The results in this

section will help us to answer Q2. Overall, our proposed method significantly outperforms

the baseline method, and it achieves comparable accuracy to the all-mean method.

Table 7.1 shows the UW recall of unimodal and multimodal experiments for our proposed

window method, all-mean method, and the baseline method using randomized window

configurations. We test different combinations of modalities, and each column represents

all modalities that combine the lower face (LF), the upper face (UF) and speech (Aud),

the lower face, the upper face, the audio, the lower face with audio, the upper face with
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audio, and the lower and upper face. Our proposed window-mean method achieves 65.60%

UW and the all-mean method achieves 65.59% UW. The difference is not significant. Our

proposed method is significantly higher than the average UW accuracy of the randomized

window method, achieving 65.60% vs. 63.70%, respectively (1.90% higher, p < 0.05), when

all modalities are used.

Our proposed method also outperforms the baseline for all types of modality combi-

nations. For the lower face, our proposed method achieves 1.84% higher UW accuracy,

significantly improving the baseline (p < 0.05). The upper face region also significantly

outperforms the baseline, achieving 1.63% higher UW accuracy (p < 0.05). Speech is

also higher when we use our proposed method, but not significantly (1.14% improvement,

p = 0.06). Speech with the lower face and speech with the upper face both achieve higher

UW recall than the baseline, but this difference is not significant (1.71% improvement with

p = 0.06 and 1.23% improvement with p = 0.08, respectively). The lower and upper face

combination achieves significantly higher performance, showing 1.42% improvement with

p < 0.05.

The bottom row of Figure 7.2 shows how much of an utterance is used for each emotion

class, averaged over ten speakers. The results indicate that the used data of each utterance

is only 40% to 80% of an utterance. This highlights the benefit of our system as it is

capable of spotting a region within an utterance, and reasoning only over that region, while

achieving comparable accuracy with an experiment that uses the full information of an

utterance. The results also demonstrate that, on average, speech requires more regions of

an utterance than lower and upper face regions for emotion classes, i.e., angry, happy, and

sad, while the lower face is used more for neutral recognition.

Table 7.2 shows the comparison of emotion classification results between our proposed

window method, the all-mean method, and the baseline using randomized window config-

urations, when all modalities are used. As shown in Table 7.1, using all modalities shows

the highest accuracy compared to pairs of modalities. Each column of the tables shows the

UW recall, per-emotion class accuracy for angry, happy, neutral, and sad emotion classes

and weighted accuracy.
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Type Method UW A H N S

Prot Proposed 77.49 83.50 81.65 62.73 80.66
All-mean 75.85 80.77 83.47 53.26 83.26

Non-prot Proposed 57.29 64.15 56.54 36.15 72.33
All-mean 57.33 62.23 58.60 33.56 74.95

Table 7.3:
IEMOCAP dataset: Emotion classification unweighted recall (%) for pro-
totypical and non-prototypical utterances. The accuracies are unweighted
recall (‘UW’); and per-class accuracy for angry (‘A’), happy (‘H’), neutral
(‘N’), and sad (‘S’) emotion classes.

Finally, to address Q3, we investigate the performance gain of our proposed system.

The gain from the all-mean method is mostly from the prototypical expressions (defined

as rater consensus). The results are presented in Table 7.3. For prototypical utterances,

our method gets 77.49% and all-mean gets 75.84% (1.65% difference. p-value=0.53). For

non-prototypical utterances (defined as no rater consensus), our method gets 57.29% and

all-mean method gets 57.33% (0.05% difference, p-value = 0.93). This may indicate that

the temporal patterns of emotion and emotion spotting is more useful when the expression

is more explicit and prototypical to human evaluators.

7.9 Conclusions

In this chapter, we explore whether a subset of an utterance can be used for emotion

inference and how the subset varies by emotion classes and modalities. We propose a

windowing method that identifies window configurations, window duration and timing,

for aggregating segment-level information to an utterance-level emotion inference. The

experimental results demonstrate that the identified temporal window configurations show

consistent patterns across speakers, specific to different emotion classes and modalities.

We compare our proposed windowing method to a baseline method that randomly se-

lects window configurations and a traditional all-mean method that uses the full information

within an utterance. Our proposed method shows significantly higher performance in emo-

tion recognition than the baseline method, achieving 65.60% UW accuracy, 1.90% higher
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than the baseline). Our method also achieves similar performance to the traditional all-

mean method (65.59%, statistically insignificant difference), while our method only uses

40–80% of information within each utterance.

The identified windows also show consistency across speakers, varying by different emo-

tion classes and modalities. For the angry emotion class, lower face, upper face, and speech

uses 54%, 50%, and 64% information in the beginning of an utterance. For the happy

emotion class, lower face uses 64% at the end of an utterance, and upper face and speech

use 68% and 80% in the beginning of an utterance. For the neutral emotion class, the

lower face, upper face, and speech use 70%, 42%, and 40% of an utterance, however the

temporal window patterns are less consistent across speakers. For the sad emotion class,

the lower face uses 52% in the end of an utterance, while the upper face and speech use 54%

and 64% in the beginning of an utterance. This finding also matches with findings from

the psychology literature, particularly for speech data, where happy emotion class requires

more information than other emotion classes to be accurately recognized.
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CHAPTER 8

Transition Patterns in Behavior

8.1 Introduction

The pervasive installations of large camera networks and widely availability of digital

video cameras have created a gigantic volume of video data that need to be processed

and analyzed to retrieve useful information. As many videos involve human activities and

behaviors, a central task and main challenge in video analytics is to effectively and effi-

ciently extract complex and highly varying human-centric events. A general purpose event

recognition system entails two essential steps: the localization of temporal segments in a

video containing salient events (when something happened) and the classification of localized

events into relevant categories (what happened). The extracted events can be piped for fur-

ther analysis, such as indexing and retrieval of video collections in multimedia applications

and suspicious behavior recognition in video surveillance.

Most update-to-date video event analysis methods treat event localization and classifi-

cation as separate problems (e.g. [128, 169]). It has been noticed that these two problems

are interrelated and can mutually bootstrap each other [41, 89]. Better event localization

improves subsequent classification performance, while reliable event classification can be

used as a guide for more precise localization. Based on this intuition, recent efforts have

emerged in unifying both the localization and classification problems. These methods fall

into two main categories: (i) generative approaches based on dynamic Bayesian models,

such as the hidden Markov model (HMM) [20] and switching linear dynamical systems

(SLDS) [171]; and (ii) discriminative approaches, which use maximum margin classifiers as

in [33, 41, 89].

Conventional event models used in most existing methods only consider monolithic or

persistent events. For example, action recognition focuses on the identification of action
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Figure 8.1:
Overview of the proposed video event localization and classification frame-
work, where the event types are, e.g., Crossing arms on Chest (CC),
Touching Face (TF), Arms on Hip (AH), and Neutral (N) (Section 8.3.1).
The temporal onset and offset transitions between these events are opti-
mally solved by efficient dynamic programming.

states such as walking or standing with arms folded. These methods ignore the regular

transition patterns often exist between events of interest. To illustrate, consider a person

with his/her arms down in a resting position who starts to raise his/her arm to touch

his/her nose. A transition segment or event in which the arm moves upward governs the

change between gesture states. Although a naive detection of such transition might be

difficult (following the generative or discriminative approaches), the consecutive motion

flow in between the transitions is indeed unique and recognizable. Explicitly incorporating

transition patterns into the recognition framework will provide more reliable cues to localize

and recognize persistent events.

In this chapter, we propose a new method that jointly analyzes video events with pre-

cise temporal localization and classification, by modeling arbitrary transition patterns be-

tween events. It improves event recognition rates by leveraging the clearly identified event

boundaries. Our method combines two approaches together by explicit modeling of event

transition segments: (i) large margin discriminative learning of distinct event patterns (also

introduced in [41, 89]) and (ii) generative event-level transition probability models. The
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event location and classification can be found by an efficient dynamic programming (DP)

inference. Our framework is general to any time series data that have transition patterns

between events and is applicable to problems outside video analytics. For human action

recognition in particular, the use of transition patterns can greatly improve performance.

Since even the same action (e.g. touching face) can be highly varying in both spatial

and temporal domains, their transition patterns are more important for robust systems.

Explicit consideration of transition patterns increases robustness and can provide critical

information for decision making [181, 204, 241].

We focus on the application of video-based human action recognition. Specifically, we

extract per-frame human pose estimation cues (i.e. body joint coordinates) [199] as a time

series signal. We compute variable-length segment-level features using statistical functionals

and linear regression coefficients (slope) of the frame-level features for each segment. In the

supervised training phase, we use labeled intervals of video events and their corresponding

event types to train a discriminative model. This model is used in the testing phase, in which

for a given test video, we infer the best segmentation start and end points with corresponding

event labels, by searching for the highest pattern matching score and transition probability

using efficient dynamic programming. Figure 8.1 provides an overview of our framework.

Our method has demonstrated significantly improved classification and localization per-

formance on a newly collected video dataset and a public CMU-MAD [94] benchmark

dataset, in comparison to a state-of-art work [89].

8.2 Proposed Method

Our method can be applied to general tasks of segmenting human actions with transition

patterns. Our proposed algorithm (Equation 8.2) is generic to model arbitrary transitions

between actions, and transitions between actions and neutral states (e.g., standing person

with hands down). Any transition event model can be applied based on the transition

characteristics that reflect the nature of the problem or the dataset. However, neutral

states between events are prevalent in the datasets we performed experiments on, and thus
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it is important to model them effectively in our chosen transition event model. We describe

our event transition model with segment transition probabilities in Section 8.2.1. We then

describe our generic method for event finding, localization and classification: the training

of a multi-class SVM using the peak and transition segments (Section 8.2.2.1) and the

inference and labeling of each putative temporal segments using the SVM and dynamic

programming (Section 8.2.2.2).

8.2.1 Transition Event Model

Event Peak and Transition Segments. Any transition event model can be used to

describe the temporal characteristics present between events of interest. Since the two

datasets we tested have prevalent neutral states between events, we explicitly models

four types of segments: neutral, peak, onset, and offset. Neutral segments describe

no significant visual cues of any event of interest. Peak segments describe salient and

consistent visual cues of an event of interest. Both the definitions of neutral and peak

can be application dependent (see Section 8.3). For each event type, we define two

types of event transition segments based on the neutral and peak segments: Onset

transition segments describe the transition from neutral to peak events, and Offset

transition segments describe the transition from peak back to neutral.

In many video event analytic applications, segments of no particular utility or

interest can be modeled as neutral events. Visual cues of onset transitions of the

same peak event share commonalities (and the same for offset transitions). Thus a

repeating sequence of “neutral-onset-peak-offset-neutral” can be found in many event

types of interest. For instance, Figure 8.2 shows an example of neutral, onset, offset,

and peak segments for the action event corresponding to “crossing arms on chest.”

We assume a simpler event model that does not consider direct transitions between

events without going through the neutral event. This assumption effectively reduces

the modeling of rarely occurred transitions, as supported by our experimental results.

Segment-level Transition Probability. We model the temporal patterns between
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Figure 8.2:
transition event model example: the neutral-onset-peak-offset-neutral
model of cross arms on chest. For visualization purpose, the joint an-
gle θ between the upper and lower arms is shown as a cue to segment out
the “cross arms” and “arm-down” events.

neutral, peak, onset, and offset segments using a transition probability matrix. Fol-

lowing the neutral-onset-peak-offset-neutral observation from the training dataset, the

transition probability from peak to offset, offset to normal, and onset to peak can be

equally assigned to a default value based on the frequencies of event transitions. For

the transition from neutral states, we model two cases: (i) the changing to one of

the m types of possible events is modeled with a transition probability P , or (ii) the

event remains unchanged, which is modeled with a self-transition probability γ. In

this chapter, γ was chosen as 0.5 to maximize the randomness of repeating the same

events.

8.2.2 SVM-based Event Localization and Classification

The input and output notations of our proposed system are described in Figure

8.1. We first train a multi (M)-class SVM using event peak and transition segments

(vs. neutral segments). In testing, for a given video X without any segmentation

information, we automatically find the optimal number of segments k, the temporal

start and end points of each segment st, t ∈ 1, ..., k + 1, where s1 = 0 and sk+1 =
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len(X) the length of X, and segment labels yt, t ∈ 1, ..., k. Our method keeps track

of the highest sum of SVM scores and the log transition probability of all segments.

8.2.2.1 Training Segment-SVM with Max Margin Optimization

We learn discriminative patterns of each peak and transition segments using a

multi-class SVM [48] similar to [89]. For each video sequence in the training data X i,

where i ∈ {1, 2, ..., n}, with known segments t ∈ {1, 2, ..., ki}, where ki is the number

of segments of the i-th video sequence, we solve the following SVM and learn weights

wj for inference:

min
wj ,ξit≥0

1

2M

M∑
j=1

||wj ||2 + C

n∑
i=1

ki∑
t=1

ξit, (8.1)

s.t.(wyit − wy)
Tϕ(Xi

(sit,s
i
(t+1)

]) ≥ 1− ξit,∀i, t, y 6= yit,

where ϕ(X i
(sit,s

i
(t+1)

]
) is the segment-level feature of the segment X i

(sit,s
i
(t+1)

]
, consisting

of frames from sit to si(t+1). We describe the segment-level feature mapping in detail

in Section 8.3.

8.2.2.2 Efficient Inference with Dynamic Programming

Transition-based Segmentation. For each test video sequence X with unknown

segment points and labels, we segment and classify the sequence using the following

optimization function that maximizes the sum of the total SVM scores and the log

transition probability between consecutive segment pairs:
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max
k,st,yt

k∑
t=1

wTytϕ(xt) + (1 + γ) logP (yt|yt−1), s.t. (8.2)

lmin ≤ st+1 − st ≤ lmax,∀t,

s1 = 0, sk+1 = len(X),

The intuition is to maximize the sum of segment-specific scores for each segmentation

configuration, i.e. determine the number of total segments k, segment points st, and

segment labels yt, where t ∈ {1, 2, ..., k + 1}, as well as the probability of transition

from one segment to another. lmin and lmax are the minimum and maximum length

of segments in the training data.

The relationship between temporally adjacent segments (1 + γ) logP (yt|yt−1) is

calculated based on our prior transition probabilities described in Section 8.2.1. Our

novelty compared to Hoai et al. [89] is the logP (yt|yt−1) term that explicitly con-

siders event transitions in the optimization framework. Our work also differs from

[89] in that non-maxima suppression based segmentation is performed (instead of a

maximum SVM score based segmentation). Hoai et al. chooses the optimal segmen-

tation that maximizes the difference of SVM scores between the best and the second

best class, by filtering using the Hinge loss. We take a different approach by seeking

the optimal segmentation that maximizes the sum of both (i) the SVM score of the

segment class and (ii) the transition probability between consecutive segments.

Inference using DP. To solve Eq.(8.2) efficiently, we formulate the following func-

tion f to determine the best segmentation for the truncated time series X(0,u],

f(u, yk) = max
k,st,yt

k∑
t=1

wTytϕ(xt) + (1 + γ) logP (yt|yt−1), (8.3)

where k is the number of segments for the truncated X(0,u]. u can be considered

as the increasing “front” of the dynamic programming (DP) formulation. Since
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the transition probability depends on the last segment’s label yk of the truncated

time series X(0,u], each f value depends on u as well as yk. Therefore, for ev-

ery tuple u ∈ (0, len(X)), l ∈ [lmin, lmax] and class y ∈ {1, 2, ...,M}, we calculate

η(u, l, y) = wTy ϕ(X(u−l,u]) for inference, where η is the SVM score of the segment

X(u−l,u]. Dynamic programming computes maxyk f(len(X), yk) efficiently using Equa-

tion 8.4. Algorithm 1 lists the pseudo code, where w is a learned weight vector, testX

and len(X) are test video sequence and the number of frames of it, mtr and stdtr

are mean and standard deviation of each feature dimension in the training data for

z-standardization, nCl is the number of classes, and transMat is a transition matrix

to calculate f .

f(u, yk) = max
l,yk−1

f(u− l, yk−1) + η(u, l, yk)

+ (1 + γ) logP (yk|yk−1) (8.4)

Algorithm 1: DP with transition Event Model
Data: learned weight vector w, test video X, mtr, stdtr, lmin, lmax, number of

classes nCl
Result: f , bestL, bestYk−1
for each frame u = lmin : len(X) do

for each last segment label yk = 1:nCl do
for l = lmin:min(lmax, u− 1) do

Calculate η(u, l, y) = wTy ϕ(X(u−l,u]), where ϕ(X(u−l,u]) is z-standardized
using mtr and stdtr.

end
for each second last segment label yk−1 = 1:nCl do

ftemp(l, yk−1) = f(u− l, yk−1) + η(u, l, yk) + logP (yk|yk−1)
end
find y∗k−1, l

∗ that maximizes ftemp(u, yk). f(u, yk) = ftemp(l
∗, y∗k−1)

bestL(u, yk) = l∗ bestYk−1(u, yk) = y∗k−1
end

end
Use f, bestL, bestYk−1 for back-tracking

The complexity of our algorithm is O(M2(lmax − lmin + 1)(len(X)− lmin + 1)).
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Figure 8.3:
Evaluation results from our Smartroom (Clean) Dataset (video 1). The
four rows of illustrations depict ground truth (first row), result of our
method with transition segments (second row), result of our method with
combined transition (onset and offset) segments into a single action seg-
ment to match the comparison of Hoai et al. (third row), and SVM+DP
method output presented by Hoai et al.[89] (bottom row), respectively.

8.3 Experiments

We evaluate our method for joint segmentation and classification of video events on

two datasets: (i) the Smartroom Dataset we collected for real-life suspicious behavior

recognition and (ii) the public CMU-MAD human action dataset [94]. Both of the

datasets contain large variability in human poses and actions.

We compare the performance of our algorithm to the SVM-DP algorithm of Hoai

et al. [89]. For a fair comparison to the SVM-DP algorithm of Hoai et al., which

does not consider the transition segments, we calculate the recognition rate after

transferring the estimated M action classes with transition segments, where M =

{m peak events} + {1 neutral event} + {m offset events} + {m onset events}, to m

peak action classes, as shown in Figure 8.3. We combine the detected onset, offset, and

peak segments of each action into one action. For instance in our Smartroom Dataset,

after we finish back-tracking and get 10-class labels for each detected segment, we

combine onset, offset, and peak segments into one action segment to match the 4-class

ground-truth labels.
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We report the performance of both algorithms in terms of frame-level and event-

level recognition rates. (i) Frame-level recognition rate measures the ratio of frames

that are correctly classified. We compute frame-level precision (‘Prec’), recall (‘Rec’),

and F-measure (‘F-mea’). The accuracy is calculated as (TP+TN)/(TP+TN+FP+

FN), where TP , TN , FP , and FN are true positive, true negative, false positive,

and false negative, respectively. (ii) The measure of event-level recognition rate is

suggested in [94] to reflect the ratio of event segments that are correctly identified,

by counting the number of correct frames that overlaps with 50% of a segment. We

evaluate event-level precision, recall, and F-measure. Event-level precision (prec)

computes the ratio between the number of correctly detected events and the number

of detected events and event-level recall (rec) computes the ratio between the number

of correctly detected events and the number of ground truth events. Event-level F-

measure computes the balanced F-score using 2∗ prec∗rec
prec+rec

. In our datasets where there

is at most 9 ground truth events, our event-level recognition rate is highly sensitive

compared to frame-level recognition rates.

8.3.1 Smartroom Dataset

We collect and create a new Smartroom Dataset, described in Section 2.3.

We use the MODEC algorithm [199] to estimate per-frame body pose cues to

serve as action features, and we employ a Kalman filter to produce a smooth pose

time series. The pose estimation from the image is converted into body joint angles as

shown in Figure 8.5. The performance of MODEC pose estimation varies for different

clothing and illumination conditions. We evaluate the robustness of event recognition

upon such variability in the input data. We divide the Smartroom dataset into two

subsets and evaluate our system for each subset: (i) the ones with more accurate

pose estimation (“Clean”), (ii) the remaining with large pose estimation noise due

to appearance and clothing variations (“Noisy”). Comparisons of the MODEC pose
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(a) (b)

Figure 8.4:
Pose estimation comparison between the Smartroom (a) Clean and (b)
Noisy datasets for Crossing arms on chest (top), Touching face (cen-
ter), and Putting arms on hip (bottom) actions. The performance of
the MODEC algorithm [199] varies for different clothing and illumination
conditions. The Smartroom (Clean) dataset shows more accurate pose
estimation than the Smartroom (Noisy) dataset.
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Figure 8.5:
Estimated body pose cues of our Smartroom Dataset utilized for frame-
level features. We estimate the four joint angles at the shoulders (between
torso and upper arms: φL, φR) and the elbows (θL, θR).

estimations on the two subsets are shown in Figure 8.4. The Smartroom (Clean)

dataset contains three videos, and the Smartroom (Noisy) dataset contains five videos.

Two types of segment-level features ϕ are extracted for each video segment: (1)

the first and second-order statistics (mean and standard deviation) of the frame-

level features, and (2) the linear regression coefficient (slope) across frames within

each segment, which captures the dynamics of the changes of the frames within the

segment. We perform z-standardization to normalize the segment-level features as

follows: we first find the mean mi and standard deviation sti of each feature dimension

i in the training data and normalize the training data (z-standardization) using the

two statistics. Then, during the inference, we use the same mean mi and standard

deviation sti of each feature dimension to normalize the test segments in the Dynamic

Programming steps.

We perform leave-one-video-out cross validation, and take a subset (left-hand

movements) of a video as a test sequence. We train our model using the remaining

videos. Figure 8.3 shows the segmentation result comparison between the ground

truth (top), our algorithm (center), and the algorithm presented by Hoai et al. ( [89],

“Hoai SVM+DP”) (bottom). Both methods determine the start and end points, as
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Frame-level Event-level

Prec Rec F-mea Prec Rec F-mea

Method Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ours 83.84 7.45 80.41 12.18 81.95 9.52 86.67 11.55 89.63 10.02 88.07 10.54
Hoai 56.19 5.32 60.50 7.98 58.15 5.74 71.11 7.70 67.41 12.24 68.32 3.86
Diff 27.65 19.91 23.79 15.55 22.22 19.75

Table 8.1:
Recognition rate (%) of Smartroom (Clean) Dataset using our proposed al-
gorithm and the Hoai et al. [89] at the frame and event level (see text). The
last row (“Diff”) shows the relative improvement of using our algorithm
over the algorithm of Hoai et al.

Frame-level Event-level

Prec Rec F-mea Prec Rec F-mea

Method Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ours 44.41 18.85 40.38 18.20 41.33 17.09 25.36 16.36 54.45 15.91 33.51 17.93
Hoai 24.39 11.54 13.60 6.88 17.26 8.33 14.33 14.93 11.20 6.81 11.75 10.56
Diff 20.02 26.78 24.07 11.03 43.24 21.76

Table 8.2:
Recognition rate (%) of Smartroom (Noisy) Dataset using our proposed al-
gorithm and the Hoai et al. [89] at the frame and event level (see text). The
last row (“Diff”) shows the relative improvement of using our algorithm
over the algorithm of Hoai et al.
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well as the label of each action event. Our method significantly outperforms the

method of Hoai et al. in terms of both frame and event-level recognition rates.

Tables 8.1 and 8.2 show the comparisons between our algorithm and the algorithm

of Hoai et al. for the Smartroom (clean) and Smartroom (noisy) datasets, respec-

tively. For the Smartroom (clean) dataset, our algorithm has a frame-level precision

of 83.84%, recall of 80.41%, and an F-measure of 81.95%. All of the frame-level recog-

nition rates are higher than the SVM-DP method of Hoai et al. by 27.65%, 19.91%,

23.79% (relative improvements) in terms of precision, recall, and F-measure, respec-

tively. Also, event-level precision, recall, and F-measure of our algorithm are 86.67%

89.63% 88.07%, respectively, 15.55%, 22.22%, and 19.75% higher than the method

of Hoai et al. Our algorithm also demonstrates improvements in performance even

when the pose estimation was noisy. For the Smartroom (noisy) dataset, our al-

gorithm shows a frame-level precision of 44.41% , recall of 40.38%, and F-measure

of 41.33%; relative improvement of 20.02%, 26.78%, and 24.07%, compared to the

method of Hoai et al. The event-level recognition rates are also significantly im-

proved when using our algorithm. The event-level precision of our system is 25.36

%, recall was 54.45%, and F-measure was 33.51%. These are 11.03%, 43.24%, and

21.76% relative improvement over the method of Hoai et al [89]. This demonstrates

that with a presence of clear transitions between actions, our algorithm can robustly

segment and classify each salient action.

8.3.2 CMU-MAD Dataset

We test our method on the CMU-MAD dataset [94], described in Section 2.4.

We perform 5-fold cross validation over the 20 subjects and measure the event-level

performance as suggested in [94]. Each fold contains videos of 4 subjects, each with

2 video sequences, in total 8 video sequences. We train our model using segments of

the four folds and test our model for the held out. Due to the computational cost, we

141



Frame-level Event-level

Prec Rec F-mea Prec Rec F-mea

Method Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ours 85.00 8.82 71.41 7.25 77.41 7.01 74.40 15.02 85.02 12.17 78.83 12.95
Hoai 73.79 9.62 70.57 9.96 71.87 8.70 73.45 15.84 83.88 13.06 77.85 14.23
Diff 11.21 0.84 5.54 0.95 1.14 0.98

Table 8.3:
Recognition rate (%) comparison on the CMU-MAD dataset using our pro-
posed algorithm (“Ours”) and the Hoai et al. (“Hoai”, [89]) at the frame
and event level (see text). The last row (“Diff”) shows the relative im-
provement.
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Figure 8.6:
An example result (subject 20, sequence 20) from the CMU-MAD evalua-
tion. Ground truth (top), our method (center), and SVM+DP presented
by Hoai et al. [89] (bottom). Best viewed in color. The image is from the
CMU-MAD dataset [94].

use DP over sliding windows of 500 frames (about 25% length of a video sequence)

along the test time series as in [94], to solve for the optimal segment configuration

that maximizes the sum of the SVM scores and the event transition probability.

Figure 8.6 shows the results of our algorithm (center) and Hoai’s SVM+DP

method (bottom), along with the ground truth segmentation (top). Table 8.3 sum-

marizes the results. All of our frame-level recognition measures are higher than the

SVM-DP method of Hoai et al. [89]. For event-level accuracy, our event-level preci-

sion (74.40%), recall (85.02%), and F-measure (78.3%) are higher than the SVM-DP

method, by 0.95%, 1.14%, and 0.98%, respectively.

142



Our method improves the frame-level recognition rates compared to the previous

work of Hoai et al. [89], achieving 85.00% (precision), 71.41% (recall), and 77.41%

(F-measure), corresponding to relative improvement of 11.21%, 0.84%, and 5.54%,

respectively. We achieve an event-level precision of 74.40%, recall of 85.02%, and

F-measure of 78.83%, and all of these are slightly higher than that of Hoai et al. by

0.95%, 1.14%, and 0.98%, respectively. The improvement in both frame and event-

level recognition rates using our algorithm over the previous method of Hoai et al.

[89] demonstrates that for actions of interest with distinguishable transition patterns,

our algorithm can localize and classify the action segments more effectively.

Regarding the difference between the Smartroom and CMU-MAD dataset results

in performance gain, we raise two major points: (i) the transition segments were not

explicitly labeled for the CMU-MAD dataset, therefore the segments were estimated

during training. Since the major advantage of our method is a better modeling of

the transition states, the improvement on CMU-MAD dataset is marginal. This also

explains a greater performance gain in the frame-level compared to the event-level

accuracy. In comparison, our Smartroom dataset includes clearer labeling in event

transitions; hence the performance improves significantly due to better transition

modeling. (ii) The visual features for the Smartroom dataset (i.e., pose estimation

features from RGB cameras without depth information) are more difficult to estimate

and thus are noisier than those of the CMU-MAD dataset (i.e., 3D pose estimation

features using Kinect sensor). Therefore, a better transition model as a prior results

in a greater performance gain on the Smartroom dataset, where the input features

are noisier in nature.

8.4 Conclusions

In this chapter, we describe a new method combining discriminative large margin

classification with generative modeling, where the explicit modeling of event tran-
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sition segments improves the state-of-art performance on the joint localization and

classification of video events. Our experimental results on two benchmark datasets

shows promising recognition rates. An important future work we plan to pursue is the

consideration of event transition probability with discriminative learning in finding

an effective solution to model the full relationships between events.

Nevertheless, there is still room for improvement in the current work. In particu-

lar, though this chapter demonstrates that the modeling of onset and offset of event

transitions can boost the localization and classification of video events, while effective

solution to properly model the full relationships between pairwise events are yet to

be explored. In future work, we will study automatic methods that can learn the

transition probabilities of the full set of pairwise event transitions.
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Conclusions and Future Directions

CHAPTER 9

Main Contributions

In this dissertation, we have studied how to computationally represent, model, and

analyze complex and time-changing facial and vocal behaviors that co-occur with

multiple sources of variation, with the aim of identifying emotion-specific patterns.

Three important research questions have been answered to achieve this goal:

1. Motivational Studies : How can we fuse information from audio and visual ex-

pressions? How can we capture emotion expressed over time?

2. Multiple factors in behavior : How can we capture emotion expressed over time,

and how can we handle multiple factors that modulate audio-visual behavior?

3. Localization of salient events : How can we detect salient events in audio-visual

behavior?

The first part of dissertation (Chapter 3) explored facial and vocal behaviors dur-

ing expressions of emotion. We first proposed methodologies using deep learning that

capture complex non-linear interactions between audio and visual emotion expres-

sions. This approach overcame the limitations of traditional methods that are only

capable of capturing linear relationships between modalities, or, alternatively, require

labeled data when extracting multimodal features. The proposed method showed im-
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provement in emotion classification rates, particularly for ambiguous emotion content

(defined as no rater consensus). We also investigated continuous changes of emotion

in Chapter 4. We found that there exist structural patterns of emotion changes within

an utterance, typical of each emotion class of anger, happiness, neutrality, and sad-

ness. These structural patterns were shown to be effective in discriminating between

different emotion classes.

The second part of this dissertation (Chapters 5 and 6) explored how emotion

variations modulate facial movement when a person is speaking, a challenging situ-

ation in emotion recognition (e.g., recognition systems need to differentiate between

a person smiling vs. saying ‘cheese’). We found that variable-length time units that

capture the natural dynamics of facial movements are critical for emotion classifica-

tion. We developed and proposed a new variable-length segmentation method that

utilized the dynamics of individual face regions, showing significant improvement in

the system accuracy.

The third part of this dissertation considers the problem of identifying salient

regions in audio-visual affective behavior. We discovered that consistent patterns

exist in the timings and durations of emotion evidence from the upper face, lower

face, and speech modalities (Chapter 7). In Chapter 8, we further introduced an

efficient inference method that can jointly segment and classify temporal data, with

a focus on human action behavior. The novelty of this method is that it models

transition patterns between event segments of interest, such as a person’s gesture

changes when moving an arm upwards from a resting position to touch the nose. The

method showed significant performance gain compared to traditional segmentation

methods.
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CHAPTER 10

Future Work

The overarching theme of this thesis is developing machine learning and signal pro-

cessing frameworks to automatically identify emotion from audio-visual expressions.

In future work, we will initially focus on the following research directions to explore

the broader affective and social signals during human interactions.

Machine Adaptation for Personalized Technology

The first line of research aims to continuously adapt machine responses based on ex-

tracted information on the changing needs and affective states of individuals. Humans

constantly sense and adapt their reactions based on the emotions and needs of their

interlocutors. This research will seek to provide this adaptation capability to ma-

chines in the context of different domains, ranging from personal assistant systems in

mobile phones to smart vehicles. For instance, speech recognition systems equipped

in personal devices, such as Apple’s Siri, can be trained based on a user’s affective

state. The systems that neglect affective states often have poorer speech recogni-

tion accuracy when a user’s tone of voice changes due to emotion, but not speech

itself [14]. The systems can also enhance user experience by naturally adapting to

affective states, e.g., adapting the speed of games based on user’s level of boredom

[229] or engagement, adapting virtual reality systems for stress-coping training [45],

or outputting apologies, such as ‘we apologize for this inconvenience’ when a user is

frustrated [47]. This research will first explore methods to represent and track con-

tinuous changes in individuals’ needs and emotive states. The automatic detection

and representation of individuals’ states will inform the design and development of

personalized technology.
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Human-Human Interaction Assistant System

The second line of research focuses on developing virtual assistant systems for human-

human communication. It aims to design systems that sense, quantify, and track com-

munication participants’ emotion, engagement, and satisfaction level throughout the

course of an interaction. The system outputs will provide users with objective feed-

back on their behavioral patterns during interactions, and will also suggest strategies

to enhance the behaviors of the users, e.g., tone of voice or postures, so that they can

achieve the desired outcomes from interactions. Example interactions include negoti-

ation and collaboration between parent-child, teacher-student, and patient-caregiver.

To this aim, this research will first explore hierarchical prediction models that infer

overall interaction outcomes. The models will estimate temporal changes in affective

and social cues using audio-visual features, and deploy these estimates as mid-level

representation for the final inference of interaction outcomes, e.g., success or failure

in negotiation. Our research will further design feedback mechanisms to the users

based on the inference results.

Human-Centered Multimedia Content Analysis

The third line of research seeks to analyze and retrieve human-centered informa-

tion from long, time-changing multimedia content, such as documentary interviews,

surveillance videos, and presidential debates. This research can create a breakthrough

in affective and social computing, since it can help acquire natural and authentic

emotion expressions, which is rare in current research. Also, this research can greatly

advance the retrieval of multimedia information relevant to its viewers. Such advance-

ment in human-centered multimedia retrieval is critical in today’s explosion of the

number of multimedia data. For instance, security officers monitoring vast amounts of

surveillance video footage are interested in detecting video segments of fights or con-

flicts for preventing potential crimes. Another example is presidential debates, where
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voters may be interested in retrieving moments of the candidates showing nonverbal

messages. In these two examples, it will be beneficial for viewers if an automated

system can retrieve a subset of the videos that are relevant to them. The purpose of

this research is to identify salient time segments that contain application-specific af-

fective and social events for multimedia retrieval and indexing. This research problem

is complicated by highly-varying, unstructured human behaviors, and to tackle this

problem, we will initially investigate time-series segmentation and analysis methods

for uncovering structural patterns of events of interest.

Last, the research directions we pursue need innovation and active collaboration

with researchers across multiple fields. We envision to apply the technique developed

in this thesis to diverse areas, including psychology, sociology, behavioral sciences,

psychiatry, engineering, computer science, and information science. The interdisci-

plinary collaboration with these fields will be critical to enable a true human-centered

understanding. The interdisciplinary efforts will integrate knowledge and method-

ologies of these disciplines towards the unifying goal of automatic human behavior

analysis.
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[120] Kirouac, G., and F. Y. Doré (1983), Accuracy and latency of judgment of facial
expressions of emotions, Perceptual and motor skills, 57 (3), 683–686.

[121] Kleinsmith, A., and N. Bianchi-Berthouze (2013), Affective body expression
perception and recognition: A survey, Affective Computing, IEEE Transactions
on, 4 (1), 15–33.

[122] Koelstra, S., M. Pantic, and I. Patras (2010), A dynamic texture-based ap-
proach to recognition of facial actions and their temporal models, IEEE PAMI,
32 (11), 1940–1954.

[123] Kohler, C. G., J. B. Walker, E. A. Martin, K. M. Healey, and P. J. Moberg
(2009), Facial emotion perception in schizophrenia: a meta-analytic review,
Schizophrenia bulletin, p. sbn192.

[124] Koolagudi, S. G., N. Kumar, and K. S. Rao (2011), Speech emotion recogni-
tion using segmental level prosodic analysis, in Devices and Communications
(ICDeCom), 2011 International Conference on, pp. 1–5, IEEE.

[125] Koprinska, I., and S. Carrato (2001), Temporal video segmentation: A survey,
Signal processing: Image communication, 16 (5), 477–500.

[126] Krizhevsky, A., I. Sutskever, and G. Hinton (2012), Imagenet classification
with deep convolutional neural networks, in Advances in Neural Information
Processing Systems 25, pp. 1106–1114.

[127] Lang, A., K. Dhillon, and Q. Dong (1995), The effects of emotional arousal
and valence on television viewers’ cognitive capacity and memory, Journal of
Broadcasting & Electronic Media, 39 (3), 313–327.

[128] Laptev, I., M. Marszalek, C. Schmid, and B. Rozenfeld (2008), Learning realistic
human actions from movies, in IEEE CVPR, pp. 1–8, IEEE.

[129] Lawrence, I., and K. Lin (1989), A concordance correlation coefficient to eval-
uate reproducibility, Biometrics, pp. 255–268.

[130] Lee, C.-C., E. Mower, C. Busso, S. Lee, and S. Narayanan (2009), Emotion
recognition using a hierarchical binary decision tree approach, in Interspeech,
pp. 320–323, Jeju Island, South Korea.

160



[131] Lee, C.-C., E. Mower, C. Busso, S. Lee, and S. Narayanan (2011), Emotion
recognition using a hierarchical binary decision tree approach, Speech Commu-
nication, 53 (9), 1162–1171.

[132] Lee, C. M., and S. S. Narayanan (2005), Toward detecting emotions in spoken
dialogs, Speech and Audio Processing, IEEE Transactions on, 13 (2), 293–303.

[133] Lee, C. M., S. Yildirim, M. Bulut, A. Kazemzadeh, C. Busso, Z. Deng, S. Lee,
and S. Narayanan (2004), Emotion recognition based on phoneme classes., in
INTERSPEECH, pp. 205–211.

[134] Lee, H., C. Ekanadham, and A. Ng (2008), Sparse deep belief net model for
visual area v2, Advances in Neural Information Processing Systems(NIPS), 20,
873–880.

[135] Lee, H., R. Grosse, R. Ranganath, and A. Y. Ng (2011), Unsupervised learning
of hierarchical representations with convolutional deep belief networks, Com-
munications of the ACM, 54 (10), 95–103.

[136] Lee, J.-G., J. Han, and K.-Y. Whang (2007), Trajectory clustering: a partition-
and-group framework, in ACM SIGMOD International Conference on Manage-
ment of Data, pp. 593–604, Beijing, China.

[137] Lu, Y., I. Cohen, X. Zhou, and Q. Tian (2007), Feature selection using principal
feature analysis, in ACM International Conference on Multimedia, pp. 301–304,
Augsburg, Germany.

[138] Lucey, P., T. Martin, and S. Sridharan (2004), Confusability of phonemes
grouped according to their viseme classes in noisy environments, in Australian
International Conference on Speech Science & Tech, pp. 265–270.

[139] Lugger, M., M.-E. Janoir, and B. Yang (2009), Combining classifiers with di-
verse feature sets for robust speaker independent emotion recognition, in Signal
Processing Conference, 2009 17th European, pp. 1225–1229, IEEE.

[140] Mansoorizadeh, M., and N. M. Charkari (2010), Multimodal information fusion
application to human emotion recognition from face and speech, Multimedia
Tools and Applications, 49 (2), 277–297.

[141] Mariooryad, S., and C. Busso (2012), Factorizing speaker, lexical and emotional
variabilities observed in facial expressions, in IEEE International Conference on
Image Processing (ICIP 2012), pp. 2605–2608, Orlando, FL, USA.

[142] Mariooryad, S., and C. Busso (2013), Feature and model level compensation of
lexical content for facial emotion recognition, in IEEE International Conference
on Automatic Face and Gesture Recognition (FG 2013), Shanghai, China, doi:
10.1109/FG.2013.6553752.

161



[143] Mariooryad, S., and C. Busso (2015), Facial expression recognition in the pres-
ence of speech using blind lexical compensation, IEEE Transactions on Affective
Computing, PP(99), 1–1, doi:10.1109/TAFFC.2015.2490070.

[144] Meeren, H. K., C. C. van Heijnsbergen, and B. de Gelder (2005), Rapid percep-
tual integration of facial expression and emotional body language, Proceedings
of the National Academy of Sciences of the United States of America, 102 (45),
16,518–16,523.

[145] Mehrabian, A. (1981), Silent messages: Implicit communication of emotion and
attitude, Belmont, CA: Wadsworth.

[146] Meng, H., and N. Bianchi-Berthouze (2011), Naturalistic affective expression
classification by a multi-stage approach based on hidden markov models, in
Affective Computing and Intelligent Interaction, pp. 378–387, Springer.

[147] Messinger, D. S., A. Fogel, and K. L. Dickson (2001), All smiles are positive, but
some smiles are more positive than others., Developmental Psychology, 37 (5),
642.

[148] Metallinou, A., C. Busso, S. Lee, and S. Narayanan (2010), Visual emotion
recognition using compact facial representations and viseme information, in
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on, pp. 2474–2477, IEEE.

[149] Metallinou, A., C. Busso, S. Lee, and S. Narayanan (2010), Visual emotion
recognition using compact facial representations and viseme information, in
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on, pp. 2474–2477, IEEE.

[150] Metallinou, A., S. Lee, and S. Narayanan (2010), Decision level combination
of multiple modalities for recognition and analysis of emotional expression,
in IEEE International Conference on Acoustics Speech and Signal Processing
(ICASSP), pp. 2462–2465, Dallas, TX.

[151] Metallinou, A., M. Wollmer, A. Katsamanis, F. Eyben, B. Schuller, and
S. Narayanan (2012), Context-sensitive learning for enhanced audiovisual emo-
tion classification, Affective Computing, IEEE Transactions on, 3 (2), 184–198.

[152] Metallinou, A., A. Katsamanis, and S. Narayanan (2013), Tracking continuous
emotional trends of participants during affective dyadic interactions using body
language and speech information, Image and Vision Computing, 31 (2), 137–
152.

[153] Mohamed, A., G. Dahl, and G. Hinton (2012), Acoustic modeling using deep
belief networks, IEEE Transactions on Audio, Speech, and Language Processing,
20 (1), 14–22.

162



[154] Morgan, N. (2012), Deep and wide: Multiple layers in automatic speech recog-
nition, IEEE Transactions on Audio, Speech, and Language Processing, 20 (1),
7–13.

[155] Mower, E., and S. Narayanan (2011), A hierarchical static-dynamic frame-
work for emotion classification, in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2372–2375, Prague, Czech
Republic.

[156] Mower, E., M. J. Mataric, and S. Narayanan (2009), Human perception of
audio-visual synthetic character emotion expression in the presence of ambigu-
ous and conflicting information, Multimedia, IEEE Transactions on, 11 (5),
843–855.

[157] Mower, E., A. Metallinou, C.-C. Lee, A. Kazemzadeh, C. Busso, S. Lee, and
S. Narayanan (2009), Interpreting ambiguous emotional expressions, in Affective
Computing and Intelligent Interaction and Workshops, 2009. ACII 2009. 3rd
International Conference on, pp. 1–8, IEEE.

[158] Mower, E., M. J. Mataric, and S. Narayanan (2011), A framework for auto-
matic human emotion classification using emotion profiles, Audio, Speech, and
Language Processing, IEEE Transactions on, 19 (5), 1057–1070.

[159] Mower Provost, E. (2013), Identifying salient sub-utterance emotion dynamics
using flexible units and estimates of affective flow, in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3682–3686,
Vancouver, BC.

[160] Mower Provost, E., and S. Narayanan (2012), Simplifying emotion classification
through emotion distillation, in Proceedings of APSIPA Annual Summit and
Conference.

[161] Munhall, K. G., J. A. Jones, D. E. Callan, T. Kuratate, and E. Vatikiotis-
Bateson (2004), Visual prosody and speech intelligibility head movement im-
proves auditory speech perception, Psychological science, 15 (2), 133–137.

[162] Myers, C., L. Rabiner, and A. Rosenberg (1980), Performance tradeoffs in dy-
namic time warping algorithms for isolated word recognition, IEEE Trans-
actions on Acoustics, Speech and Signal Processing, 28 (6), 623 – 635, doi:
10.1109/TASSP.1980.1163491.

[163] Narayanan, S., and P. G. Georgiou (2013), Behavioral signal processing: De-
riving human behavioral informatics from speech and language, Proceedings of
the IEEE. Institute of Electrical and Electronics Engineers, 101 (5), 1203.

[164] Nefian, A. V., L. Liang, X. Pi, L. Xiaoxiang, C. Mao, and K. Murphy (2002),
A coupled hmm for audio-visual speech recognition, in Acoustics, Speech, and
Signal Processing (ICASSP), 2002 IEEE International Conference on, vol. 2,
pp. II–2013, IEEE.

163



[165] Nesselroade, J., and P. Molenaar (2003), Quantitative models for developmental
processes, Handbook of developmental psychology, pp. 622–639.

[166] Ngiam, J., A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng (2011), Multimodal
deep learning, in International Conference on Machine Learning (ICML), pp.
689–696.

[167] Nguyen, M. H., L. Torresani, F. De la Torre, and C. Rother (2009), Weakly su-
pervised discriminative localization and classification: a joint learning process,
in IEEE ICCV, pp. 1925–1932, IEEE.

[168] Nicolle, J., V. Rapp, K. Bailly, L. Prevost, and M. Chetouani (2012), Robust
continuous prediction of human emotions using multiscale dynamic cues, in
ACM international conference on Multimodal interaction, pp. 501–508, ACM.

[169] Niebles, J. C., C.-W. Chen, and L. Fei-Fei (2010), Modeling temporal structure
of decomposable motion segments for activity classification, in ECCV, pp. 392–
405, Springer.

[170] Oatley, K., D. Keltner, and J. M. Jenkins (2006), Understanding emotions .,
Blackwell publishing.

[171] Oh, S. M., J. M. Rehg, T. Balch, and F. Dellaert (2008), Learning and inferring
motion patterns using parametric segmental switching linear dynamic systems,
IJCV, 77 (1-3), 103–124.

[172] Ortony, A., G. L. Clore, and A. Collins (1990), The cognitive structure of emo-
tions, Cambridge university press.

[173] Ozonoff, S., B. F. Pennington, and S. J. Rogers (1990), Are there emotion
perception deficits in young autistic children?, Journal of Child Psychology and
Psychiatry, 31 (3), 343–361.

[174] Pang, B., and L. Lee (2008), Opinion mining and sentiment analysis, Founda-
tions and trends in information retrieval, 2 (1-2), 1–135.

[175] Pantic, M., and M. S. Bartlett (2007), Machine analysis of facial expressions.

[176] Pantic, M., and L. J. Rothkrantz (2003), Toward an affect-sensitive multimodal
human-computer interaction, Proceedings of the IEEE, 91 (9), 1370–1390.

[177] Pantic, M., G. Caridakis, E. André, J. Kim, K. Karpouzis, and S. Kollias
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[237] Vogt, T., and E. André (2005), Comparing feature sets for acted and sponta-
neous speech in view of automatic emotion recognition, in IEEE International
Conference on Multimedia and Expo (ICME), pp. 474–477.
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[245] Wöllmer, M., F. Eyben, S. Reiter, B. Schuller, C. Cox, E. Douglas-Cowie,
and R. Cowie (2008), Abandoning emotion classes-towards continuous emotion
recognition with modelling of long-range dependencies., in INTERSPEECH,
vol. 2008, pp. 597–600.
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