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6.13 Flamelet budgets of ỸH2O along the evaluated centerline flamelet. The J̃ Z
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ABSTRACT

A Higher-Order Flamelet Model for Turbulent Combustion Simulations

by

Wai Lee Chan

Co-Chairs: Matthias Ihme, James F. Driscoll

Current projection of energy consumption trends has shown that combustion of fossil fuel

will continue to play an important role in industrial thermal processes, power generation,

and transportation for a substantial period. In order for these sectors to sustain under the

finite fossil fuel reserves, improvements in existing devices and development of novel con-

cepts that emphasize on energy efficiency are necessary. Numerical simulations can be used

to address this need, in particular by complementing experiments with extensive and quick

parametric studies. However, this is only viable if numerical predictions of the combustion

processes are accurate, which requires adequate modeling of the multi-physics phenomena

in turbulent reacting flows.

In this work, the flamelet-type combustion model, one of the most widely used ap-

proaches for turbulent reacting flow simulations, is thoroughly analyzed in terms of the

validity of its underlying assumptions and limitations in its description of different combus-

tion regimes. Diagnostic tools that account for the flamelet formulation are developed and

applied to two different direct numerical simulation (DNS) results. These analyses show

that the omission of the higher-order and unsteady flamelet effects by most conventional

xxi



flamelet models is not valid in realistic configurations that are characterized by complex

vortical structures, flame extinction and reignition, and turbulence-chemistry interactions.

Following these findings, a higher-order flamelet model that describes the convention-

ally omitted flamelet effects is developed for large-eddy simulations (LES) applications.

This model is based on the physical interpretation of flamelets as quasi one-dimensional

structures in the turbulent flow, and the consideration of the effects that the spatial-filtering

in LES methodology has on these structures. The model is applied in LES of a turbulent

counterflow diffusion flame configuration, demonstrating improved agreement with the ref-

erence DNS solutions of the same case than the steady flamelet/progress variable (FPV) and

laminar approximation models.
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CHAPTER 1

Introduction

1.1 Motivation

Examining the forecast of the energy outlooks by the U.S. Energy Information Adminstra-
tion, one observation that can consistently be made is that the primary energy consumption
level has mostly been climbing since the year 1980. The latest projection [1], as shown in
Fig. 1.1, indicates that the total consumption level is expected to grow from 97 quadrillion
British thermal units (BTU) in 2013 to 105 quadrillion BTU in 2040, almost an increase
of 9% over that timeframe. Among this increase, the main contributors appear to be the
consumption of natural gas and renewable energy (including biomass, geothermal, solar,
and wind energy sources), while coal and petroleum plateau at a collective amount of ap-
proximately 50% of the total consumption. Therefore, the importance of combustion in
power generation is apparent, and will possibly be unchallenged for a substantial period.

The combustion of fuel sources is, however, not without adverse effects. Specifically,
pollutants, such as unburned hydrocarbons, carbon mono- and dioxides, nitrogen oxides,
and soot, will be released into the atmosphere during the combustion processes and have
detrimental effects on the environment. For instance, the emission of nitrogen oxides has
led to the issue of acid rain, whereas the formation of carbon dioxide increases the presence
of greenhouse gases, which are widely considered as the causes of global warming. The
latter problem is prominently addressed during the recent 21st Conference of the Parties
to the United Nations Framework Convention on Climate Change [2] , which attributed
approximately 70% of global greenhouse gas emissions to the sector of transportation,
power generation, and industrial thermal processes.

Considering the limited fossil fuel reserves, as well as the need to preserve the envi-
ronment, the critical step so that our ever-growing need of energy can be fulfilled is then
to develop combustion devices that are characterized by high combustion efficiency, low
pollutant emissions, and flexibility to fuel sources. This dire need to enhance the perfor-
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Figure 1.1: U.S. energy consumption in Quadrillion BTU by primary fuel from year 1980
to 2040. The vertical line denotes the current year and separates historical records from
projections [1].

mance of combustion devices has particularly been recognized by the transportation sector,
wherein many successful cases can be found. For example, the fuel economy of light-duty
vehicles, which contributes to approximately 60% of energy consumption for transporta-
tion in 2013, is currently at a level higher than 30 miles per gallon (MPG) and improving so
favorably that the energy consumption is projected to deviate from the historical trend and
falls through 2030 [1]. In the aviation sector, there have been innovative designs, such as
the low-emission combustor and geared turbofan engine, which reduce fuel consumption,
noise, and pollutant emission up to 10%.

To keep up with this improvement trend, the design phase of combustion devices, es-
pecially for novel concepts, requires short turnaround time and reasonable development
cost. In this regard, the incorporation of numerical methods will be particularly suitable,
allowing for quick and extensive parametric studies that provide valuable insights to com-
plement physical experiments, as in the case of Reynolds-averaged Navier-Stokes (RANS)
methodology. Furthermore, the vast interest and rapid growth in high-performance com-
puters guarantee that the rate of numerical calculations be constantly increasing. If the
time factor can be relaxed, high-fidelity simulations using the direct numerical simulation
(DNS) technique can offer information at such fine spatial-scales that they are inaccessible
to any state-of-the-art emperical measurements [3].
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However, the utilization of numerical techniques can be challenging due to computa-
tional and physical complications. For the initial, the key challenge comes from the need
for effective data-management schemes during the calculation and post-processing stages.
This difficulty is especially relevant for high-fidelity simulations, wherein all spatial and
temporal scales that are relevant to the flow are to be resolved. As a result, the data can
have overwhelmingly large sizes (currently at the order of tens of O(1012) bytes, or ter-
abytes (Tb), and moving towards the order of O(1015) bytes for DNS) and be processed
only by O(104) of processors that work in parallel for weeks [3].

Clearly, these outstanding figures are not compatible with the practical combustion de-
vice design procedure, which places a large emphasis on the turnaround time. Therefore,
DNS to date are generally performed for the sake of academic interests and used to garner
insights into the interactions of chemistry and turbulence that occur at the smallest con-
tinuum scales of flame and turbulence. In turn, these important findings will be used to
develop and validate predictive closure models required by more time-effective methods to
accurately represent the reacting flows without having to resolve all relevant scales. Two
established techniques for this purpose are RANS, where the solutions are averaged over
time and usually applicable to statistically-steady configurations, and large-eddy simula-
tions (LES), where the solutions are filtered over space.

The reason for RANS and LES to require closure models is due to the physical com-
plications that affect the numerical simulations of combustion devices. In essence, the dy-
namic conditions within a combustor, including flame quenching and reignition, and flow
separation and swirl, have to be accurately captured in the simulations for the numerical
results to be representative, of the actual device. However, combustion-related phenomena,
such as chemical reactions, species diffusion, and turbulence-chemistry interactions, per-
tain to the smallest continuum scale, hence constituting a closure problem in methods like
RANS and LES where the resolution is inadequate for the finest scales of combustion.

The closure problem can be illustrated by considering the scalar-dissipation rate:

χZ = 2DZ
∂Z

∂xi

∂Z

∂xi
, (1.1)

where DZ is the molecular diffusivity of the mixture-fraction, Z, a quantity that indicates
the composition mixedness within a flow. Bilger [4] has pointed out that the heat-release
in non-premixed combustion is almost entirely determined by the mixing rate, which is
intrinsically related to the scalar-dissipation rate. A flame can be locally quenched and
extinguished when the scalar-dissipation rate fluctuates beyond a critical value that is de-
termined by the instantaneous composition and environment, even if the scalar-dissipation
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rate is on average lower than the mean critical value [5]. Consequently, the RANS approach
is, by design, unsuitable to capture such transient behaviors. On the other hand, an LES that
is performed without an adequate model of the scalar-dissipation rate will not fare well ei-
ther, because the mixing dynamics of the flow will then not be accurately represented since
the scalar-dissipation rate has dissipative effect over the mixture-fraction that is analogous
to the turbulence dissipation term on the turbulence kinetic energy [6].

In the present work, a flamelet-based combustion model is developed for the predic-
tion of turbulent combustion within non-premixed configurations. This model is derived
from the fundamental concept of the flamelet formulation, in which a turbulent diffusion
flame is treated as an ensemble of laminar structures, or so-called flamelets, that are em-
bedded within the turbulent flow [7]. On these flamelets, all thermochemical species can
be described by a reduced set of scalars, such as mixture-fraction, scalar-dissipation rate,
or reaction progress variable. Therefore, a flamelet model is, in practice, similar to a lower-
dimensional manifold representation of the chemistry [8]. In order to provide closure to
the source terms of filtered thermochemical quantities in LES, the model considers similar
approaches of conventional flamelet-type models [9,10], including the tabulation technique
and presumed scalar-distribution profile, but implemented in a dynamic manner. In doing
so, the transient and higher-order flamelet effects can be retained, extending the model’s
applicable range to beyond classic flamelet regimes [11].

The objective of this work is to develop a flamelet model that relaxes the asymptotic thin
reaction-zone assumption of the current flamelet-type models, so that the commonly ne-
glected secondary flamelet effects, such as unsteadiness and flamelet-orthogonal diffusion,
can be accommodated. As a result, the model will account for the interactions between
flamelets, which have been found to be significant in the presence of flame extinguishing
and reignition [5, 12]. The model does so by extracting the thermochemical information
along multiple coordinate-invariant flamelets [13], which are given by the gradient tra-
jectories of the mixture-fraction field. Therefore, these flamelet-conditional information
will retain their multi-dimensional advective and diffusive fluxes, which are equivalent to
the terms in a flamelet equation upon a coordinate-transformation of the corresponding
transport equation onto the flamelet space. This approach thus constitutes a higher-order
flamelet model, which does not rely on any explicit modeling of the higher-order effects,
for the prediction of turbulent combustion.

An important part of the model development pertains to the validation of the individ-
ual model components, which ideally should be performed against highly accurate exper-
imental measurements of well-characterized configurations. However, even with today’s
state-of-the-art diagnostics, accurate measurements within a combustion device can still be
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difficult to perform due to hostile environment, multi-dimensionality and unsteadiness of
flow, and limited access for non-intrusive measurement techniques. For these reasons, the
various model components are mostly assessed using results of high-fidelity DNS, which
have been carefully performed and extensively studied over recent years.

1.2 Large-Eddy Simulation

The LES methodology is a simulation approach that numerically resolves only the energy-
containing and geometry-dependent scales of turbulent motions, but models the effects of
the unresolved scales on the large scales. Such an approach is based on the separation of
scales due to turbulent energy cascade theory, and can be interpreted as the application of a
low-pass spatial filter (i.e. small wavelength cutoff) over the numerical simulation [14]. In
general, the residual scales will extract energy from the large scale turbulence and dissipate
the turbulent energy into heat via viscous effects.

Leveraging the rapid improvement in high-performance computing, the LES has been
gaining traction as the complementary numerical technique to physical testings. The main
reason for this growth in the popularity of LES is its unique offering of a balance between
fidelity and practicality, which are the lacking aspects of RANS and DNS, respectively.
By design, RANS omits all transient phenomena, thus limiting its relevance to combus-
tion devices, in which a steady-state may not be present at off-design conditions. On the
other hand, DNS resolves all combustion scales (spatial and temporal), but at the expense
of prohibitive costs that restrict the application of DNS to date to mostly laboratory-scale
flames [3, 15]. Therefore, the accuracy and efficiency that LES offers with its consid-
eration of temporal variations and modeling, instead of resolving, of fine spatial scales,
respectively, are especially attractive. Of course, it is worthnoting that the time-dependent
solutions of LES can come with computational costs that are comparable to DNS. Hence,
RANS calculations are still frequently used in studies that emphasize on the turnaround
time instead of result accuracy, such as the case of parametric studies where only qualita-
tive, steady trends are required.

In turbulent non-premixed combustion, the flame dynamics is largely controlled by the
molecular mixing of fuel and oxidizer, which is only facilitated by molecular diffusion.
Therefore, the chemical reactions will occur at the small turbulent scales, so the concept
of LES is fundamentally unsuitable for combustion applications, posing a closure problem
that is analogous to that of RANS due to its time-averaging procedure. However, with
adequate modeling, the interactions between the small and large turbulent scales can be
reasonably captured in an LES, resulting in the general observation of an improved accu-
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racy over RANS in terms of the prediction of turbulent reactive flows. This improvement
is attributed to the ability of LES to predict the unsteady scalar mixing and dissipation
processes, particularly in complex flow geometries [16].

Based on the likelihood that LES will become a routine high-fidelity numerical tool,
the current work focuses on the applications of the combustion model in the context of
LES. The essential objective is to develop a flamelet-type closure model for the source
term of the filtered thermochemical quantities that considers all flamelet effects, including
unsteadiness and flamelet-to-flamelet interactions. The development is theorized, assessed,
and applied over both a-priori and a-posteriori cases that are carefully selected based on
their physical complexities and the corresponding compatibility with the task objectives.

1.3 Turbulent Combustion Models

Different classes of combustion models have been proposed for the prediction of non-
premixed turbulent combustion processes. The general categories of these models are con-
ditional moment closure (CMC) [17] method, flamelet models [7], one-dimensional turbu-
lence (ODT) [18] model, and transported probability-density function (PDF) [19] method.
Comprehensive reviews of turbulent combustion models can be found in Refs. [9,20], while
an overview on the model applications in LES is given by Pitsch [16].

The CMC method is originally proposed for application in RANS, where all reac-
tive scalars are solved by their corresponding mixture-fraction conditioned transport equa-
tions [17, 21, 22]. Extension of the CMC model for LES was formulated and applied by
Kim & Pitsch [23, 24]. In this model, the mixture-fraction, which is solved by a conserved
scalar transport equation, is considered as an independent variable in addition to the spatial
and temporal coordinates. The CMC approach is suitable for conditions of slow to moder-
ate reaction rates and moderate turbulent intensities, which can be quantified by Damköhler
number of Da < O(104) and Reynolds number of Re < O(105), respectively.

Using the CMC hypothesis, Bushe & Steiner [25] developed the conditional-source
term estimation technique, in which the mixture-fraction conditioned composition vector
and temperature are obtained by deconvolving the LES filtered scalar with a presumed
shape of the mixture-fraction distribution within a LES filter-cell. The model capability
has been demonstrated in LES of two Delft-jet-in-hot-coflow configurations [26] using a
detailed methane/air chemistry mechanism [27].

Variants of the flamelet model for LES applications have been developed over re-
cent years, with the steady laminar flamelet model being investigated in a-priori stud-
ies [28, 29] and simulations of jet flames and bluff-body stabilized flames [30–32]. Pierce
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& Moin [10, 33] introduced a flamelet/progress-variable (FPV) that is based on the steady
laminar flamelet concept, but uses the mixture-fraction and a reaction progress variable,
instead of the scalar-dissipation rate, to parameterize all thermochemical quantities. In or-
der to capture transient combustion effects, an unsteady version of the laminar flamelet
model was investigated and successfully applied in LES of a piloted methane/air diffu-
sion flame [34]. An unsteady FPV model was developed and applied [35, 36] in LES of
the Cabra flame [37] for prediction of the autoignition phenomenon. In his overview of
nonpremixed turbulent combustion [11], Williams mentioned that the flamelet model is
applicable in a flamelet regime, covering a comparable range of low to high Damköhler
and Reynolds numbers (O(100)–O(108)), and even in a so-called broken flamelet regime,
wherein the assumption of fast chemistry is invalid, with the recent developments.

ODT, similar to the linear eddy model (LEM) [38,39], is a combustion model that does
not rely on the turbulence scale-separation. Instead, the turbulence evolves on individual
ODT elements that constitute multiple one-dimensional domains with sufficient resolution
to describe all relevant scales of the reacting flow. The ODT is coupled with LES by treat-
ing reaction-diffusion, resolved advection, and SGS transport in sub-LES time steps and re-
turning these information to the LES, which in turn will advance the solutions of the mass
and momentum transport equations that will be interpolated on the ODT elements [40].
Cao & Echekki [41] have applied the ODT model in LES of non-homogeneous ignition
phenomenon in isotropic turbulence with a pseudo single-step, irreversible reaction.

Due to its high computational costs and numerical instabilities from the implementa-
tion of the Monte-Carlo method [42], the transported PDF method was initially applied in
reacting RANS [19,43] and LES with simple geometries [44]. More practical LES applica-
tions were demonstrated only recently in the context of jet flame configurations by Raman
et al. [45] and Raman & Pitsch [46]. The model is distinctive in its formulation, in which
the chemical source term appears in closed form. However, the model is not free from the
closure problem because the molecular mixing requires multi-point information and thus
needs to be modeled. Williams pointed out that the transported PDF model is ideal for the
combination of low Damköhler number (O(100)) and high Reynolds number [11] flows.
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1.4 Accomplishments

The important contributions of this work is summarized in the following list:

• Development of diagnostic tools that allow for formal assessment of the flamelet
formulation, in which the consideration of unsteady and higher-order flamelet effects
have been identified as potential areas for the improvement of current flamelet-type
combustion models. These tools were applied in the a-priori analyses of DNS of a
reacting jet-in-crossflow and turbulent lifted jet flame configurations.

• Development of a flamelet regime diagram that accounts for the numerical fidelity,
allowing for direct assessment of the applicability of the flamelet formulation in dif-
ferent reacting flow simulations.

• Development of a constrained LES method that utilizes solutions from a simultane-
ous DNS for the turbulence closure, thus isolating the combustion model as the only
source of simulation errors. This method was demonstrated to be robust and useful
in validation studies that compare the performance of different combustion models,
and can be extended for comparison of turbulence SGS models.

• Development of a higher-order flamelet model that accounts for the unsteady and
higher-order flamelet effects by the dynamic extraction of flamelet information from
the transported LES fields and reaction prediction with the combined theories of
flamelet, PDF, and CMC; demonstration of the model applicability in both con-
strained LES and a-posteriori LES of a turbulent counterflow diffusion flame.
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CHAPTER 2

Mathematical Model

In this chapter, the detailed set of governing equations that are relevant to the spatial and
temporal evolution of reacting flows are presented. Under specific conditions, these equa-
tions can be simplified to a working set of equations, which will be employed in subsequent
chapters of this work.

Since the purpose of a combustion model is largely derived from the application of the
LES methodology, Sec. 2.3 will be dedicated to the LES filtering concept and the resulting
filtered flow equations. Thereafter, the modeling approach that provides closure for the
LES residual stress contributions will be provided.

2.1 Governing Equations

In conservative form, the equations that govern the transport of mass, momentum, total
specific energy, and species mass-fraction can be written as:

∂ρ

∂t
+
∂ρui
∂xi

= 0 , (2.1a)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂σij
∂xj

+ ρ
∑
α

Yαfα,i , (2.1b)

∂ρe

∂t
+
∂ρeui
∂xi

= −∂pui
∂xi

+
∂σijui
∂xj

+ ρ
∑
α

Yαfα,i (ui + vα,i)−
∂qi
∂xi
− ˙qR , (2.1c)

∂ρYα
∂t

+
∂ρYαui
∂xi

= −∂ρYαvα,i
∂xi

+ ρω̇α . (2.1d)

The viscous stress tensor, σij , in Eq. (2.1b) can be expanded to:

σij = 2µsij + µB
∂uk
∂xk

Iij , sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.2)

where sij is the strain-rate tensor and µB is the bulk viscosity.
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The heat flux vector, qi, in Eq. (2.1c) can be written as:

qi = −κ ∂T
∂xi

+ ρ
∑
α

Yαhαvα,i + R̂T
∑
α

∑
α′

Xα′DT,α

WαDαα′
(vα,i − vα′,i) , (2.3)

where the terms on the RHS describe, respectively, the heat conduction by Fourier’s law,
heat flux due to diffusion of species with different enthalpies, and Dufour effect (i.e. heat
flux due to density gradient).

The diffusion velocities, vα,i, in Eq. (2.1d) may be obtained from an implicit expression
that is derived from kinetic theory [6]:

∂Xα

∂xi
=−

∑
α′

XαXα′

Dαα′
(vα,i − vα′,i) + (Yα −Xα)

1

p

∂p

∂xi

+
ρ

p

∑
α′

YαYα′ (fα,i − fα′,i)−
∑
α′

XαXα′

ρDαα′

(
DT,α

Yα
− DT,α′

Yα′

)
1

T

∂T

∂xi
, (2.4)

whereDαα′ denotes the binary mass diffusion coefficient matrix of species-α relative to the
other relevant species-α′. Respectively, the terms on the right-hand-side (RHS) of Eq. (2.4)
correspond to the Stefan-Maxwell diffusion, diffusion due to pressure gradient, body-force
driven diffusion, and Soret effect (i.e. diffusion due to temperature gradient). Due to its
high computational cost, in particular for a large species system, Eq. (2.4) is typically
replaced by simplified expressions such as Fick’s law:

vα,i = −Dα

Xα

∂Xα

∂xi
= −Dα

(
∂Yα
∂xi

+
Yα
W

∂W

∂xi

)
, Yα =

XαWα

W
,

W =
∑
α

XαWα =

(∑
α

Yα
Wα

)−1

, (2.5)

or Hirschfelder and Curtiss approximation [47]:

vα,i = −Dα

Xα

∂Xα

∂xi
+ vC,i , vC,i =

∑
α

YαDα

Xα

∂Xα

∂xi
, (2.6)

where the correction velocity, vC,i enforces the necessary conditions:∑
α

Yα = 1 ,
∑
α

ω̇α = 0 ,
∑
α

Yαvα,i = 0 , (2.7)

so that the total mass is conserved. As a result, the transport equation of mass, Eq. (2.1a),
will be recovered by summing the species equation (2.1d) over all species-α.
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2.2 Simplifying Assumptions

The computational cost associated with the equation set (2.1), as described in Sec. 2.1,
is usually prohibitive, hence impractical for simulation purposes. In order for tractable
numerical simulations, simplifying assumptions have to be applied on the equations. Such
implementations are reasonable because the assumptions generally neglect only physical
phenomena that are irrelevant to the combustion problems of this work. The individual
assumptions that constitute the working equation set (2.14) are listed below.

1. Body forces: Body forces, also referred to as volume forces, usually comprise of
only gravitational force (buoyancy effect), unless the reacting flow is subjected to
acceleration or electromagnetic fields. Even though buoyancy may increase the
jet entrainment rate, it has insignificant effect on the axial decay of velocity and
scalars [48]. Since mixing of reactants is more dominant to combustion within the
current configurations of interest, body forces are deemed secondary and neglected.

2. Diffusive fluxes: As a compromise between the intractable Eq. (2.4) and simplified
Eq. (2.5), the Hirschfelder and Curtiss approximation [47], given by Eq. (2.6), is
applied in most of the simulations of this study.

3. Equal species diffusivity: For turbulent flows, particularly in high Reynolds number
(Re), non-premixed cases, the Lewis number:

Leα =
κ

ρcpDα

=
Dth

Dα

, (2.8)

is typically assumed to be unity. This so-called “unity Lewis number” approxima-
tion is reasonable because turbulent advection, which affects species and tempera-
ture indiscriminately, is usually the dominant transport mechanism of the flow. This
dominance of turbulent transport is attributed to the observation that the molecular
diffusion and reaction layers of a diffusion flame, where differential diffusion effects
are prominent, are typically thin compared to the turbulent length-scale.
However, non-unity Lewis number phenomena in turbulent diffusion hydrocarbon
flames have been observed experimentally [49, 50] and numerically [51, 52], and are
expected to be more pronounced in hydrogen/air systems due to larger variability
in species diffusivities. In addition, the temperature dependence of diffusivity and
heat-release will tend to laminarize the nozzle-near region of diffusion flame config-
urations, in which case the differential diffusion effect may no longer be negligible.
In this regard, Pierce [33] has suggested to include the non-unity Lewis number effect
with turbulence closure models, by virtue of scale-separation in turbulent flows.
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In the present work, the consideration of differential diffusion effects is not pursued,
in light of the general decrease in the importance of such effects with axial distance
from the nozzle [50]. Furthermore, numerical simulations performed by Pitsch [53]
indicate that the incorporation of non-unity Lewis number effect in the nozzle-near
region only marginally improves the agreement between experimental and simulation
results of hydrocarbon flames.

4. Ideal gas law: Using kinetic theory in conjunction with Dalton’s law of partial pres-
sures, the ideal gas law for multi-component gases is given by:

p = ρR̂
∑
α

Yα
Wα

T = ρRT . (2.9)

Under the condition where pressure and temperature are sufficiently far from their
corresponding critical values, which is generally true for practical combustion de-
vices, Eq. (2.9) is an accurate representation for real gases [54] and therefore invoked
as the equation of state throughout the current work.

5. Pressure effects: Dimensional analysis shows that the pressure term in the total
specific energy equation (2.1c) scales with the square of the Mach number and can
therefore be separated from the other terms. This separation applies also to the total
specific enthalpy equation, which can be derived from Eq. (2.1c) with:

e = h+
p

ρ
,

∂ρe

∂t
+
∂ρeui
∂xi

=

(
∂ρh

∂t
+
∂ρhui
∂xi

)
+

(
∂p

∂t
+
∂pui
∂xi

)
. (2.10)

In essence, the decoupling with the pressure term indicates that the variations in the
thermochemical composition due to small pressure changes are negligible:

φ (Yα, e, p+ ∆p) = φ (Yα, e, p) +
���

���
��:0

∆p
∂φ

∂p
+ HOT ,

∆p

p
� 1 . (2.11)

For low Mach number, open systems, which this study generally considers, this
approximation is reasonable since the deviations from the thermodynamic (back-
ground) pressure are typically small.
On the contrary, in high Mach number scenarios, pressure effect may become rel-
evant, affecting the reaction-rate by a factor that is approximately proportional to
the turbulence intensity [55]. Consequently, supersonic combustion models should
include compressibility effects, as has been attempted by Saghafian et al. [56].

6. Soret and Dufour effects: Empirical findings suggest that the ratio of thermal dif-
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fusion to species diffusion in the last RHS term of Eq. (2.4) is usually small for all
pairs of species-α and α′ [6], hence the Soret effect is effectively negligible. As
a result, the suitability of the Hirschfelder and Curtiss approximation for diffusive
fluxes is further substantiated. Being the reciprocal process of the Soret effect due
to irreversible thermodynamics [57], the Dufour effect (last term of Eq. (2.3)) will
therefore be unimportant as well. Accordingly, these effects are omitted.

7. Stokes’ hypothesis: General deformation of a Newtonian viscous fluid requires that
the trace of the viscous stress tensor sums up to zero (i.e. Tr[σ] = 0), so that the
mechanical pressure, defined as the negative one-third of the first viscous tensor in-
variant, is equal to the thermodynamic pressure [58]. Per Stokes’ hypothesis [59],
the bulk viscosity is assumed to be related to the flow viscosity by:

µB +
2

3
µ = 0 . (2.12)

8. Thermal radiation: Thermal radiation is a heat transfer mechanism that can influ-
ence flame quenching processes, which in turn modify the combustion regime [60].
The effects of radiation can be modeled by optically-thin approximation or Monte-
Carlo method, which have been extensively reviewed by Coelho [61]. However,
given that radiation does not exhibit a significant feedback, especially in diluted hy-
drocarbon flame configurations considered by the present work, it is simply neglected
in this study.

9. Thermally perfect gas: In general, the environment within practical combustion
devices will not be so stringent that the pressure affects the specific heat capacities
significantly. As a result, the thermally perfect gas model, in which cp and cv are
functions of temperature only, is usually adequate, thus allowing the species specific
enthalpy to be written as:

hα =

∫ T

TRef
cp,α (T ′)dT ′ + ∆hRef

f,α = hs,α + ∆hRef
f,α , (2.13)

where the first term on the RHS is the sensible enthalpy, hs,α, the second term, com-
monly known as the chemical enthalpy, represents the heat-release due to mass for-
mation, and the superscript Ref indicates that the quantity is taken with respect to
reference conditions, which are typically T Ref = 298.15 K and pRef = 1 bar.

10. Viscous heating: Using dimensional arguments, the viscous heating effect in the en-
ergy equation (2.1c) is shown to scale with the ratio of the square of the Mach num-
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ber to the Reynolds number, O(Ma2Re−1). Since the current work focuses mainly
on cases that are characterized by low Mach number and moderate Reynolds number,
the viscous dissipation effect is appropriately neglected. In high Mach number flows,
however, viscous heating will require consideration and may be estimated by com-
pressible, high Mach number combustion models such as that developed in Ref. [56].

Applying these simplifying assumptions to Eqs. (2.1), the resulting working equation
set is given by:

∂ρ

∂t
+
∂ρui
∂xi

= 0 , (2.14a)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
2µ

(
sij −

1

3

∂uk
∂xk

Iij

)]
, (2.14b)

∂ρT

∂t
+
∂ρTui
∂xi

=
1

cp

∂

∂xi

[
κ
∂T

∂xi

]
−
∑
α

ρ

cp
cp,α

∂T

∂xi
Yαvα,i −

∑
α

ρ

cp
(hαω̇α) , (2.14c)

∂ρYα
∂t

+
∂ρYαui
∂xi

= −∂ρYαvα,i
∂xi

+ ρω̇α , (2.14d)

with vα,i, equation of state, and hα described by Eqs. (2.6), (2.9), and (2.13), respectively.
Note that we have replaced the total specific energy equation (2.1c) with the temperature

equation (2.14c) for the reason that the latter is more physically relatable, but the two
equations are essentially equivalent. In fact, Eq. (2.14c) can be derived from the simplified
form of Eq. (2.1c) [62] by considering the kinetic energy equation (total specific energy is
the sum of internal and kinetic energies), energy-enthalpy relation (2.10), and assumption
of a thermally perfect gas. However, the use of the temperature equation will not be suitable
in high Mach number condition, in which the total specific energy or enthalpy equation
should be employed instead.

2.3 LES Filtering Technique

In this work, the numerical simulations are performed in the context of the LES methodol-
ogy, which essentially solves the governing equations (2.14) on a computational grid that
is too coarse to represent the smallest spatial scales. However, turbulence theory dictates
that all relevant scales be coupled, thus necessitating turbulence models that accommodate
the interactions between the resolved- and subgrid-scales (SGS). The derivation of such
models is most intuitively demonstrated by considering the omission of small scales by
LES as a high-pass filtering (i.e. low-pass in frequency space) procedure on the governing
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equations. This filtering process can be defined as a convolution [14]:

φ (xi) =

∫
φ (x′i)G (xi − x′i; ∆i)dx

′
i , (2.15a)

φ̃ (xi) =
1

ρ (xi)

∫
ρ (x′i)φ (x′i)G (xi − x′i; ∆i)dx

′
i , (2.15b)

where ( ) and (̃ ) denote the spatial-filter and Favre-filter (i.e. density-weighted), respec-
tively, and G( ; ∆i) is the spatial-filter operator for a given filter width of ∆i. Note that
the integration will formally be a function of time, t, as well, which we have neglected in
Eqs. (2.15) for ease of discussion. The filter kernel G has to conserve constants, so:∫

G(xi − x′i; ∆i)dx
′
i = 1 . (2.16)

The Favre-filtered quantities are related to the spatial-filtered quantities by:

ρφ̃ = ρφ = ρφ+ (ρφ)′ , (2.17)

where (φψ)′ = φψ − φ̄ψ̄ is the SGS variance of the spatial-filtered scalar product (φψ).
The use of Eq. (2.15), however, is strictly for illustrative purposes, and is not explicitly

implemented in the present study. Instead, this work applies the method of implicit filtering,
in which the filter is defined by the computational grid. Therefore, the definition of G( ; ∆i)

is ambiguous and grid-dependent.

2.3.1 Governing Equations

Using the convolution equation (2.15), the Favre-filtered working equations are given by:

∂ρ

∂t
+
∂ρũi
∂xi

= 0 , (2.18a)

∂ρũi
∂t

+
∂ρũiũj
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
2ρν̃

(
s̃ij −

1

3

∂ũk
∂xk

Iij

)]
+
∂(σij)

SGS

∂xj
, (2.18b)

∂ρT̃

∂t
+
∂ρT̃ ũi
∂xi

=
1

c̃p

∂

∂xi

[
ρ

(̃
κ

ρ

)
∂T̃

∂xi

]
−
∑
α

ρ

c̃p
c̃p,α

∂T

∂xi
Yαṽα,i

−
∑
α

ρ

c̃p
(̃hαω̇α) +

1

c̃p

∂(σT,i)
SGS

∂xi
− ρ

c̃p
(̃uiT )′′

∂c̃p
∂xi

, (2.18c)

∂ρỸα
∂t

+
∂ρỸαũi
∂xi

= −∂ρỸαṽα,i
∂xi

+ ρ˜̇ωα +
∂(σα,i)

SGS

∂xi
. (2.18d)
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The SGS turbulent fluxes of Eqs. (2.18b)–(2.18d) can be expanded as:

(σij)
SGS = −ρ(̃uiuj)

′′ + ρ

(̃
ν

(
sij −

1

3

∂uk
∂xk

Iij

))′′
, (2.19)

(σT,i)
SGS = −ρc̃p(̃uiT )′′ + ρ

˜(κ
ρ

∂T

∂xi

)′′
− ρ

∑
α

(̃
cp,α

∂T

∂xi
Yαvα,i

)′′
, (2.20)

(σα,i)
SGS = −ρ ˜(uiYα)′′ − ρ ˜(vα,iYα)′′ , (2.21)

where (̃φψ)′′ = φ̃ψ − φ̃ψ̃ is the SGS variance of the Favre-filtered φψ. Based on observa-
tions [62] that the first term on the RHS of the Eqs. (2.19)–(2.21) is usually dominating, all
the other contributions are neglected in the present work. Dynamic models for the remain-
ing residual contributions are described in the following section.

Wherever applicable, a gradient assumption will be implemented, for instance:

˜
Dα

∂Yα
∂xi

= D̃α
∂Ỹα
∂xi

, cp
∂ρT

∂t
= c̃p

∂ρT

∂t
, c̃p,α

∂T

∂xi
Yα = c̃p,α

∂T̃

∂xi
Ỹα , (2.22)

while the filtered form of the Hirschfelder and Curtiss approximation and equation of state
are, respectively, evaluated as:

ṽC,i =
∑
α

ỸαD̃α

(
∂Ỹα
∂xi

+
1

W̃

∂W̃

∂xi

)
, p = ρR̃T̃ . (2.23)

Note that, in the derivation of Eqs. (2.18), the filter operator has been assumed to satisfy
the commutation property [14]:∫

G(xi − x′i; ∆i)
∂φ (x′i)

∂xi
dx′i =

∂

∂xi

[∫
G(xi − x′i; ∆i)φ (x′i)dx

′
i

]
. (2.24)

In principle, this property is only true for homogeneous filters. However, the error incurred
by non-homogeneous filters, which has been studied in Ref. [63], is commonly neglected.

2.3.2 SGS Closure Models

The turbulent SGS fluxes of Eqs. (2.19)–(2.21) are modeled by a dynamic approach [64–
66], which essentially improves on the Smagorinsky model [67] by dynamically determin-
ing the model parameter, CS . As a result, the model parameter becomes a function of space
and time, instead of a constant of 0.1 .

√
CS . 0.2, as suggested by several preceding

studies [68–70].
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The basis of the dynamic approach is given by the eddy-viscosity assumption:

(σij)
SGS = −ρ(̃uiuj)

′′ = 2ρν̃ts̃ij −
2

3
ρ(̃k)′′Iij , (2.25)

where the SGS kinetic energy, (̃k)′′ = 0.5 ˜(ukuk)′′, is usually small and therefore neglected,
and the eddy viscosity, ν̃t, is given by the Smagorinsky model [67]:

ν̃t = CS ‖∆i‖2 ‖s̃ij‖ , ‖s̃ij‖ =
√

2s̃ij s̃ij . (2.26)

In order to extract information for the SGS dissipation from the smallest resolved scales,
a test-filter, ∆̂, which has a larger filter-width than the LES grid-spacing (i.e. ∆̂ > ‖∆i‖),
is introduced and applied over the SGS turbulent flux:

(̂σij)
SGS = −

(
ρ̂ũiuj − ρ̂ũiũj

)
= 2̂ρCS ‖∆i‖2 ‖s̃ij‖ s̃ij −

2

3

̂
ρ(̃k)′′Iij . (2.27)

Assuming that a similarity exists between the turbulent scales [71], the corresponding un-
resolved turbulent flux at the test-filter level is given by:

Ŝij = −
(
ρ̂ũiuj − ρ̂ ̂̃ui ̂̃uj) = 2ρ̂CS∆̂2‖̂s̃ij‖̂̃sij − 2

3
ρ̂
̂̃
(k)′′Iij . (2.28)

The Germano identity is then given by subtracting Eq. (2.28) from Eq. (2.27) :

L̂ij = ρ̂ ̂̃ui ̂̃uj − ρ̂ũiũj = 2ρ̂CS∆̂2
∥∥∥̂̃sij∥∥∥ ̂̃sij − 2̂ρCS ‖∆i‖2 ‖s̃ij‖ s̃ij , (2.29)

from which the Smagorinsky model parameter, CS , can be determined. However, this sys-
tem of equations is over-determined, and is thus solved with a least-square method [65]
under the assumption that CS has small spatial and temporal variabilities:

CS =
1

2

〈L̂ijM̂ij〉
〈M̂ijM̂ij〉

, M̂ij = ρ̂∆̂2
∥∥∥̂̃sij∥∥∥ ̂̃sij −̂ρ ‖∆i‖2 ‖s̃ij‖ s̃ij , (2.30)

where 〈 〉 indicates averaging along the spatially homogeneous directions.
Similar to the SGS turbulent flux, the residual scalar fluxes are modeled as:

(σφ,i)
SGS = −ρ(̃uiφ)′′ = ρD̃t

∂φ̃

∂xi
, D̃t = Cφ ‖∆i‖2 ‖s̃ij‖ , Cφ =

1

2

〈L̂φM̂φ〉
〈M̂φM̂φ〉

,

L̂φ = ρ̂ ̂̃uî̃φ− ρ̂ũiφ̃ , M̂φ = ρ̂∆̂2
∥∥∥̂̃sij∥∥∥ ∂̂̃φ

∂xi
− ρ̂ ‖∆i‖2 ‖s̃ij‖

∂φ̃

∂xi
. (2.31)
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CHAPTER 3

Classical Flamelet Models

Building on Williams’ concept of laminar flamelets in a turbulent diffusion flame [72], Pe-
ters [7,73] developed the class of flamelet models for turbulent combustion. These flamelet-
type models share a common view that the turbulent diffusion flame can be considered as
an ensemble of laminar flamelets, which is embedded in and interacts with the surrounding
turbulent flow. At sufficiently high activation energy, chemical reactions and heat trans-
fer are confined to a thin reaction-diffusion layer. The order of the activation energy in a
reacting flow can be characterized by the Damköhler number, Da:

Da =
tFlow

tChem , (3.1)

which indicates the ratio of the characteristic convection time to the characteristic reaction
time, respectively. Hence, a large Da will correspond to a high activation energy, and vice
versa.

A flamelet regime exists if the characteristic length-scale of the reaction-diffusion layer
is smaller than the smallest turbulent scale [9], in which case the turbulent structures are
unable to penetrate or destroy the reaction zone of the flame. Consequently, the effect of
turbulence will result only in a deformation and stretching of the flame-structure, a causality
that can be described by the flamelet equations, which will be derived in Sec. 3.1. Note
that, in strongly turbulent flows, the characteristic convection time may be comparable to
the characteristic chemical time, so non-equilibrium effects may require consideration.

3.1 Mixture-Fraction

The transport of energy and species in a turbulent diffusion flame is governed by a com-
petition between advection, diffusion, and reaction. Since the turbulent transport typically
controls mixing, the flame-structure, which is characterized by a reaction-diffusion layer,
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can be solved separately from the turbulent flow dynamics [74] by an implicit consideration
of the mixing phenomena, analogous to the Lagrangian particle-tracking method. For this
consideration, the mixture-fraction, a conserved scalar that quantifies the mixedness of a
flow, is evidently the logical candidate.

The mixture-fraction, Z, can be defined by a coupling function that is derived from
elemental mass fractions [75]:

Z =
Z − ZO
ZF −ZO

, Z =
∑
β

∑
α

[
γβ
nαβWβ

Wα

Yα

]
, (3.2)

where the subscripts ( )F and ( )O refer to conditions in the fuel and oxidizer streams,
respectively. With this definition, a transport equation for mixture-fraction can be derived
from a linear combination of the species conservation equation (2.14d):

∂ρZ

∂t
+
∂ρZui
∂xi

=
∂

∂xi

[
ρDZ

∂Z

∂xi

]
+
∂ρεi
∂xi

, DZ = Dth =
κ

ρcp
, (3.3)

where εi is a variable that represents the differential diffusion effect [76] and is given by:

εi =
−1

ZF −ZO

∑
β

∑
α

[
γβ
nαβWβ

Wα

Yαvα,i

]
−DZ

∂Z

∂xi
. (3.4)

For unity Lewis number cases, εi will reduce to 0, and the mixture-fraction definition by
Eq. (3.3) will be identical to that of Pitsch and Peters [77].

The flamelet equations can be derived by considering a local coordinate system that
attaches to the mixture-fraction iso-surface:

z = [Z(xj, t), Z2(xj, t), Z3(xj, t)]
T ,

where Z2 and Z3 denote any two orthogonal directions that span the local tangent plane
of the iso-surface. The coordinate transformation of partial-differential operators is then
given by a Crocco-type transformation [78]:

(x, t)→ (z, τ) ,

∂

∂t
→ ∂

∂τ
+
∂Z

∂t

∂

∂Z
− (ui − (ukn̂Z,k)n̂Z,i)

∂

∂xi
,

∂

∂xi
→ ∂Z

∂xi

∂

∂Z
+
∂Zk
∂xi

∂

∂Zk
, (3.5)

where n̂Z,i = ∇Z/ ‖∇Z‖ denotes the normalized gradient of mixture-fraction. Note that
the advection term in the temporal transformation of Eq. (3.5) arises from the consideration
of a local mixture-fraction coordinate system and accounts for the motion of the iso-surface.
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Applying the transformation to the temperature and species equations (2.14c)–(2.14d)
and using the mixture-fraction transport equation (3.3):

∂T

∂τ
=
χZ
2

∂2T

∂Z2
−
∑
α

1

cp
hαω̇α

+
χZ
2cp

(
∂cp
∂Z

+
∑
α

[
cp,α
Leα

(
∂Yα
∂Z

+
Yα
W

∂W

∂Z

)])
∂T

∂Z

− ∂Z

∂xi

(
∂vC,i
∂Z

+
∂ρεi
∂Z

)
∂T

∂Z
+ HOTT , (3.6a)

∂Yα
∂τ

=
χZ

2Leα

(
∂2Yα
∂Z2

+
Yα
W

∂2W

∂Z2

)
+ ω̇α

+
1− Leα
4ρLeα

(
∂ρχZ
∂Z

+
χZ
DZ

∂ρDZ

∂Z
− 2ρχZ

Leα (1− Leα)

∂Leα
∂Z

)
∂Yα
∂Z

+
1

4ρLeα

(
∂

∂Z

[
ρχZYα
W

]
+
χZ
DZ

∂

∂Z

[
ρDZYα
W

]
− 2ρχZYα

LeαW

∂Leα
∂Z

)
∂W

∂Z

− 1

ρ

∂Z

∂xi

(
∂ρYαvC,i
∂Z

+
∂ρεi
∂Z

∂Yα
∂Z

)
− 1

Leα
κZ

√
DZχZ

2

(
(Leα − 1)

∂Yα
∂Z

+
Yα
W

∂W

∂Z

)
+ HOTα , (3.6b)

where χZ = 2DZ ‖∇Z‖2 is the scalar-dissipation rate of mixture-fraction, which can be
interpreted as the reciprocal of the characteristic diffusion time and hence describes the
local rate of mixing, and κZ = ∇ · (∇Z/ ‖∇Z‖) is the local curvature of the mixture-
fraction field. The higher-order terms of Eqs. (3.6a)–(3.6b) correspond to the terms in the
Z2- and Z3-directions, and are shown by Peters’ asymptotic analysis [9] to be insignificant
relative to the terms in the Z-direction. The expanded forms of the vC,i-containing term
and HOT for the temperature and species equations are expanded in Appendix A, and are
not written in the above in the interest of brevity.

3.2 Scalar-Dissipation Rate

Neglecting all higher-order terms, the flamelet equations (3.6) are one-dimensional partial
differential equations that can be solved in terms of the flamelet time, τ , and mixture-
fraction space, Z, for a given profile of the scalar-dissipation rate, χZ . In turbulent flows,
the scalar-dissipation rate distribution is affected by the surrounding turbulent structures
and can therefore be interpreted as the boundary condition of the flamelet equations that
couples the flame and turbulence dynamics. This interpretation, however, indicates that
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the scalar-dissipation rate has to be modeled in the flamelet model, because the exact χZ-
profile will assert that the transport and corresponding flamelet equations be equivalent.
Hence, there is no advantage to solving Eqs. (3.6a)–(3.6b) over Eqs. (2.14c)–(2.14d).

For a one-dimensional mixing layer problem, Peters [73] showed that χZ has an ana-
lytical expression:

χZ (Z) = χZ,st exp
[
2
((

erfc−1 [2Zst]
)2 −

(
erfc−1 [2Z]

)2
)]

, (3.7)

where erfc−1 is the inverse complementary error function. Analytical scalar-dissipation
rate profile are also derived for a semi-infinite mixing layer [79]:

χZ (Z) = χZ,st

(
Z

Zst

)2
ln [Z]

ln [Zst]
, (3.8)

which can allow for a better description of the complete fuel-air mixing.
Using analytical expressions of mixture-fraction for the scalar-dissipation rate, such

as Eqs. (3.7)–(3.8), and neglecting the temporal derivative of the flamelet equations (3.6),
the thermochemical structure of a flamelet, φφφ = [T, Yα], can then be represented by a
two-dimensional manifold of the form:

φφφ = Fφφφ (Z, χZ,st) . (3.9)

The manifold described by Eq. (3.9) is the steady laminar flamelet model (SLFM) and can
be illustrated by the S-shaped curve, as shown by the solid lines of the left plot in Fig. 3.1.
The S-shaped curve can be sub-divided into three distinctive branches, namely the upper
(stable, reacting), middle (unstable, reacting), and lower (stable, non-reacting) branches;
instability of the middle branch refers to the tendency for the solution to move away from
the branch when perturbed, towards the upper branch when the scalar-dissipation rate de-
creases (i.e. ∆χZ,st < 0; leftward shift relative to the S-shaped curve), and vice versa.

The omission of the temporal dependence by the SLFM implies that the flame-structure
has an infinitely fast response time to changes in the scalar-dissipation rate, which will re-
quire the time-scale of χZ be significantly slower than that of thermochemistry. In cases
where this condition is not satisfied, the transient term in Eqs. (3.6) has to be retained. Sev-
eral models, for example the ad hoc SLFM [80], representative interactive flamelets (RIF)
model [81], and Eulerian particle flamelet model (EPFM) [82], have been developed to
accommodate unsteady effects by considering a time-varying scalar-dissipation rate. The
unsteady flame response to changes in χZ has been studied by Cuenot et al. [83]. For turbu-
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Figure 3.1: Illustration of a S-shaped curve (left) and the flamelet solutions (right). In the
left plot, the solid and dotted lines denote the SLFM and FPV state-space trajectories, re-
spectively. The vertical line in the right plot refers to the stoichiometric mixture-fraction,
while the two arrows indicate the direction in which χZ,st increases. The solution on which
the two arrows meet is the flame-quenching solution, denoted by (χZ)Qch on the S-shaped
curve. For illustration, the various solutions for χZ,st = 5000 1/s are denoted by the sym-
bols and thickened lines on, while the thin lines are solutions at other χZ,st values.

lent jet diffusion flames, the relevant time-scale can be described by the flamelet residence
time, τ :

τ (xi) =

∫ xi

0

(∥∥∥∥ui (x′i)− uk (x′i)

‖∇Z (x′i)‖
2

∂Z (x′i)

∂xk

∂Z (x′i)

∂xi

∥∥∥∥∣∣∣∣Zst

)−1

dx′i , (3.10)

where the second term of the integrand denotes the advection component normal to the
stoichiometric mixture-fraction iso-surface.

3.3 Reaction Progress-Variable

From Fig. 3.1, the use of the manifold by Eq. (3.9) will not provide a unique parameteri-
zation of the entire S-shaped curve since multiple solutions exist for any scalar-dissipation
rate value within the range: (χZ)Ign ≤ χZ ≤ (χZ)Qch. Therefore, the implementation of
the SLFM is typically limited to only the upper branch of the S-shaped curve, unless the
manifold is filtered with a log-normal distribution over the χZ-space [33]. Otherwise, the
SLFM is formally consistent only in steady-state calculations of fully-ignited flames [84].

In order to access the flamelet solutions along the middle branch of the S-shaped curve,
Pierce & Moin [10, 33] developed the FPV model, wherein the thermochemical structure
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of a flamelet is given by:
φφφ = Fφφφ (Z, Λ) . (3.11)

In Eq. (3.11), Λ is any indicator of the reaction progress that satisfies the two constraints:
(i) Λ uniquely identifies all flame states along the entire S-shaped curve [85]; and (ii) Λ is
statistically independent of the mixture-fraction. Therefore, a possible definition of Λ will
be the stoichiometric value of a reaction progress-variable, C:

Λ = C|Zst , (3.12)

where C can be represented by the temperature or a linear combination of major species
product mass fractions. Hence, C is also described by the FPV manifold:

C = FC (Z, Λ) . (3.13)

In practice, the FPV model makes use of (Z, C), instead of (Z, Λ), to parameterize the
thermochemical states:

φφφ = Fφφφ (Z, C) = Fφφφ
(
Z, F−1

C (Z, C)
)
, Λ = F−1

C (Z, C) , (3.14)

where the inverse function-mapping F−1
C (Z, C) implies that FC is bijective. This ap-

proach is taken in order to circumvent the non-trivial complexities in solving the transport
equation of Λ [35]. On the contrary, the definition of C as the temperature or a linear com-
bination of species indicates that the transport equation of C is typically well-defined and
convenient to solve. To further reduce the ambiguity in the definition of C as a combina-
tion of a pre-defined set of Yα, an optimization problem [86] can be solved to enforce a
monotonicity condition on C:

∂C

∂Λ
> ε ≥ 0 , (3.15)

thus satisfying the bijective property of FC (Z, Λ). However, an optimal progress-variable
appears to give only marginal improvements in simulation results [35, 84], suggesting that
the definition of C may be a secondary factor in representing the thermochemical states.

While its ability to access the entire S-shaped curve certainly gives the FPV model
a wider applicability than the SLFM model, the FPV model should not be mistaken for
a transient flamelet model. In fact, the FPV model is a steady-state model that will, by
design, drive the simulation results towards the steady flamelet solutions given by the S-
shaped curve. Ihme [35] has pointed out that a flamelet with a particular Λ-value can
correspond to either an extinguishing, reigniting, or steady state, in which the flamelet
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will be characterized by a different flame-structure. The differences in flame-structure
for the various flamelet states are attributed to the unsteady transport of a flamelet during
extinction and reignition [85]. In cases that are far from the transient states, however, the
FPV model will be sufficient because its formulation provides the leading-order unsteady
flamelet effects, which are due solely to the dynamics of the scalar-dissipation rate [35].
Otherwise, the unsteady FPV model developed by Ihme & See [36] should be considered.

3.4 Turbulence Closure

In order to be applicable in LES, which considers filtered quantities (cf. Sec. 2.3.1),
flamelet-type models have to accommodate the loss of information with regards to the
residual velocity and scalars due to filtering. Considering the approach in flamelet models
where the thermochemical states are described by a lower-order manifold, such as that of
Eqs. (3.9) and (3.14), Pope’s concept of filter-density function (FDF) [87] can be employed
to couple the two techniques. This coupling can be described by:

φ̃φφ =

∫ max[ψψψ]

min[ψψψ]

∫ max[Z]

min[Z]

Fφφφ (Z, ψψψ) P̃ (Z, ψψψ) dZdψψψ , (3.16)

where P̃ (Z, ψψψ) is the joint-FDF of Z and ψψψ, which denotes the group of parameterizing
variables that the flamelet model in consideration uses for its lower-order manifold. The
SLFM and FPV models are obtained whenψψψ is simply χZ,st and C, respectively. Note that
P̃ (Z, ψψψ) is formally a function of space and time and pertains to the sample space of Z
andψψψ, but such properties have not been made in Eq. (3.16) for simplicity.

Similar to the relation (2.17), the joint-FDF P̃ (Z, ψψψ) is essentially the density-weighted
joint-distribution of Z andψψψ within a computational cell, P (Z, ψψψ):

ρP̃ (Z, ψψψ) = ρ (Z,ψψψ)P (Z, ψψψ) . (3.17)

Using Bayes’ theorem, the joint-FDF can be expressed in terms of a marginal-FDF of Z
and a conditional-FDF ofψψψ with respect to Z:

P̃ (Z, ψψψ) =
ρ

ρ
P (Z)P (ψψψ|Z) =

ρ

ρ
P̃ (Z) P̃ (ψψψ|Z) . (3.18)

If ψψψ is statistically independent of Z, the conditional-FDF of ψψψ in Eq. (3.18) can be
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further reduced to the marginal-FDF ofψψψ:

P̃ (Z, ψψψ) =
ρ

ρ
P̃ (Z) P̃ (ψψψ) , (3.19)

thus leading to significant simplifications in the representation of the joint-FDF. Therefore,
the rationale for the second constraint of the FPV model that Λ and Z are statistically
independent is now apparent. However, this constraint is only valid in the steady flamelet
limit because conditional effects can become important in the presence of flame extinction
and reignition [85].

While a FDF-transport equation can be solved for P̃ (Z, ψψψ), such an approach is typ-
ically not taken due to its computational complexity and prohibitive cost. Instead, one
of the more common methods is to describe the two PDF’s of Eqs. (3.18)–(3.19) by pre-
sumed distributions, or the so-called presumed-FDF approach. For the marginal-FDF of
the mixture-fraction, an often utilized model is the beta distribution, which is parameter-
ized by the filtered mixture-fraction, Z̃, and its SGS variance, Z̃ ′′2. Further details on the
presumed beta distribution and closure models for Z̃ ′′2 are given in Sec. 5.3.3.

On the other hand, the conditional- or marginal-FDF ofψψψ, which usually comprises of
reactive scalars, cannot be easily represented by a presumed shape because of the FDF’s
multi-modal shape that depends on: (i) turbulence-chemistry interactions; (ii) chemical
time-scales; and (iii) higher moment information. Practical models for such a FDF include
the (double) delta functions, (clipped) Gaussian functions, beta distribution, and statisti-
cally most likely distributions.

Fo the FPV model, Pierce & Moin [10] assumed that the residual state in a computa-
tional cell is representated by one single flamelet. Hence, the marginal FDF of Λ is given
by a delta distribution:

P̃ (Λ) = δ
(

Λ− Λ̃
)
. (3.20)

Consequently, the FPV manifold in the context of LES is given by:

F̃φφφ
(
Z̃, Z̃ ′′2, Λ̃

)
=

x
Fφφφ (Z, Λ) β

(
Z; Z̃, Z̃ ′′2

)
δ
(

Λ− Λ̃
)

dZdΛ , (3.21)

where β
(
Z; Z̃, Z̃ ′′2

)
refers to the beta distribution for a given combination of Z̃ and Z̃ ′′2.

Following from the assumption of a bijective F̃φφφ, the relation (3.21) can be inverted to give
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a FPV flamelet library:

φ̃φφ = F̃φφφ
(
Z̃, Z̃ ′′2, C̃

)
= F̃φφφ

(
Z̃, Z̃ ′′2, F̃C

−1
(
Z̃, Z̃ ′′2, C̃

))
,

Λ̃ = F̃C
−1
(
Z̃, Z̃ ′′2, C̃

)
. (3.22)

Finally, the utilization of the FPV flamelet library (3.22) in an LES will require that the
transport equations of Z̃, Z̃ ′′2, and C̃ be solved, in place of the temperature and species
equations (2.18c)–(2.18d). The working equation set of the FPV model is then given by:

∂ρZ̃

∂t
+
∂ρZ̃ũi
∂xi

=
∂

∂xi

[
ρ
(
D̃Z + D̃t

) ∂Z̃
∂xi

]
, (3.23a)

∂ρC̃

∂t
+
∂ρC̃ũi
∂xi

=
∂

∂xi

[
ρ
(
D̃C + D̃t

) ∂C̃
∂xi

]
+ ρ˜̇ωC , (3.23b)

along with Eqs. (2.18a)–(2.18b) and Eq. (5.27) for Z̃ ′′2. Note that, in Eqs. (3.23), the SGS
turbulent fluxes of Z̃ and C̃ have been represented by the closure models that are described
in Sec. 2.3.2, and Z̃ is defined in accordance to Pitsch & Peters [77].

Extensions to the aforementioned FPV model have been investigated in Refs. [35]
and [88], and applied in the LES simulations [36] of a vitiated co-flow burner [37]. In
essence, these extended FPV models will consider a presumed Λ-distribution that requires
higher-moment information, for example the statistically most-likely distribution [89]. As
a result, higher-moment transport equations of C̃ will have to be solved, in addition to the
equations (3.23), and modeled in a manner analogous to that for Z̃ ′′2 (cf. Sec. 2.3.2).
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CHAPTER 4

Assessment of Classical Flamelet Assumptions

Most of the flamelet models in the previous chapter adopt Peters’ asymptotic assumption
that only effects in the Z-direction are important [9] and disregard the higher-order terms
of the flamelet equations (3.6), and some even assume a steady-state such that the temporal
term can be neglected. While applications have shown that such treatments are reasonable,
the importance of the transient and higher-order terms is worth exploring. For instance,
by modeling one of the higher-order terms, Pitsch et al. demonstrated that the flamelet
model can capture the reignition phenomenon reasonably [12]. Therefore, two a-priori

studies [90,91] that specifically investigate the significance of the commonly omitted terms
were conducted in this work, as detailed in the following sections. Then, a flamelet regime
diagram that accounts for the numerical fidelity will be described as a potential diagnostic
tool for future assessments of the flamelet model.

4.1 Methodology

To date, investigations have focused largely on the validation of flamelet models for LES
and RANS, while underlying assumptions that are associated with the derivation of the
flamelet formulation are seldom rigorously evaluated. The main reason for such a lack of
evaluations is that these assumptions require information at very fine turbulent scales and
thus cannot be fully addressed through experimental and theoretical investigations. Instead,
DNS of relevant flame configurations are necessary to systematically examine the flamelet
assumptions, including the effects of differential diffusion, omission of higher-order terms,
and representation of combustion-physical mechanisms due to flame propagation.

Since a flamelet spans a transformed coordinate system (see Eq. (3.5)), a set of diag-
nostic techniques that accounts for the transformation [90] was developed to make use of
the three-dimensional, Cartesian DNS data for flamelet analyses. The essential steps of the
diagnosis are summarized as follow:
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Stoichiometric iso-surface parameterization

The flamelet coordinate is constructed by tracing along the mixture-fraction gradi-
ent, which requires the definition of a certain starting point. Since the greatest con-
tribution of chemical reaction typically occurs within a reaction-zone layer around
stoichiometry [9], the logical choice for the starting point will be a stoichiometric
location. The description of the entire domain in flamelet perspective demands that
multiple flamelets be constructed, thus needing multiple starting points, which col-
lectively represent the stoichiometric iso-surface.

The utilization of the stoichiometric iso-surface requires that the set of starting points
be of a finite number, yet sufficient to represent the surface. This requirement is met
by a parameterization of the stoichiometric iso-surface, which will be dependent on
the flow configuration. In essence, the parameterization will result in a simplified
description of the stoichiometric iso-surface, as shown in Fig. 4.1.

(a) Jet-in-crossflow parameterization. (b) Turbulent counterflow parameterization.

Figure 4.1: Parameterization of the stoichiometric iso-surface for the jet-in-crossflow (left)
and turbulent counterflow diffusion flame (right) configurations. In both sub-figures, the
iso-surface is the stoichiometric mixture-fraction iso-surface, the two arrows denote the two
reactant injection directions, and the symbols indicate the points from the parameterization.
Note that the parameterizations are performed using two different methods, which consider:
(i) for the jet-in-crossflow, the mean jet-trajectories [92] stemming from four azimuthal
locations around the nozzle; and (ii) for the counterflow flame, the points projected from
the centerplane to the iso-surface.
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Mixture-fraction gradient tracing

From each stoichiometric point, a flamelet is constructed by tracing along the gradi-
ent of the mixture-fraction in both fuel-lean (−∇Z) and fuel-rich (∇Z) directions.
This tracing operation is formally given by the integration, at a particular instant in
time, of the following equation:

∆xi =
∆Z

‖∇Z‖−2

∂Z

∂xi
, (4.1)

where ∆Z is a user-defined finite spacing in mixture-fraction space. The relation
maps the flamelet space to the physical space in a Lagrangian point-of-view, so ∆xi

refers to the change in position from a previous location, starting from a stoichio-
metric point. From experience, however, this Lagrangian gradient tracing method
is unsuitable for the domain decomposition procedure typical of a parallel program-
ming environment, so an equivalent Eulerian flamelet extraction method is developed
and applied in the a-posteriori studies of the current work. Following the iso-surface
parameterization of Fig. 4.1, the corresponding instantaneous flamelets of the con-
sidered flow configurations are illustrated in Fig. 4.2.

(a) Jet-in-crossflow flamelet extraction. (b) Turbulent counterflow flamelet extraction.

Figure 4.2: Extracted flamelets following the iso-surface parameterization of Fig. 4.1 for
the jet-in-crossflow (left) and turbulent counterflow diffusion flame (right) configurations.
The flamelets are colored by temperature. Refer to Fig. 4.1 for further details on the con-
tents of the two plots.
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Conditional averaging

The three-dimensional, Cartesian mixture-fraction, scalar-dissipation rate, and ther-
mochemical information can be interpolated onto each flamelet, which essentially
spans a curve in space, constituting the one-dimensional flamelet species and temper-
ature profiles that satisfy the flamelet equations (3.6). Treating the mixture-fraction
as the independent coordinate, these one-dimensional profiles can be averaged to
give the mean mixture-fraction conditioned distributions, which give insights to the
statistical importance of the individual terms of the flamelet equations. The analysis
of the mean flamelet terms can be conducted in the form of a budget analysis, similar
to the turbulent kinetic energy budget [93].

The diagnostic tools were applied to the DNS of two different turbulent reacting flows,
namely a jet-in-crossflow (JICF) [94,95] and a turbulent lifted jet flame [96,97], as further
examined in the following.

4.2 Reacting Jet-In-Crossflow

The JICF configuration is schematically illustrated by Fig. 4.3, and the essential parameters
of the configuration are given in Tab. 4.1. The JICF configuration is of practical relevance
as fuel-injection system for high-speed propulsion applications and as mixing strategies in
gas-turbine combustors. Despite its simplistic setup, the JICF configuration is character-
ized by complex vortical structures, which are associated with shear-layer and horseshoe
vortices near the injector and counter-rotating and wake vortices in the jet far-field [98,99].
These vortical structures will control the mixing, ignition, and combustion dynamics, re-
sulting in a significantly more complex flow-field than uni-directional jet flame configura-
tions. Furthermore, the flame stabilization in a reacting JICF is affected by the interactions
of different mechanisms, including autoignition, partially-premixed flame behavior, and
vortex-induced recirculation modes [95, 100, 101].

In this study, the focus is on the temperature equation (2.14c) without the considera-
tion of correction velocity in the diffusion velocity term. The corresponding temperature
flamelet equation is written as:

∂T

∂τ
= J Z

1 + J Z
2 + J Z

3 + J Z
5︸ ︷︷ ︸

Flame-aligned contribution

+ J ⊥4 + J ⊥5︸ ︷︷ ︸
Flame-orthogonal contribution

, (4.2)

where the flame-aligned terms refer to the first to fourth RHS terms of Eq. (3.6a), rewritten
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Figure 4.3: JICF DNS configuration and streamwise (x) and wall-normal (y) boundary
conditions [94, 95]; the spanwise (z) direction uses a periodic boundary condition. The
contour line refers to the stoichiometric mixture-fraction isoline.

Parameter Value

Jet

Nozzle diameter 1 mm
Mean velocity [0, 250, 0]T m/s
Composition YH2 , YN2 = 0.14, 0.86
Temperature 420 K

Jet Reynolds number 4000

Crossflow
Mean velocity [55, 0, 0]T m/s
Composition YO2 , YN2 = 0.23, 0.77
Temperature 750 K

Domain size 25× 20× 20 mm
Grid resolution 1408× 1080× 1100

Chemical kinetics 9 species, 19 reactions [102]
Stoichiometric mixture-fraction 0.17

Momentum ratio,
√

(ρ ‖ui‖2)Jet/(ρ ‖ui‖2)Crossflow 3.5

Velocity fluctuation, (‖u′i‖ / ‖ui‖)Crossflow 0.1

Table 4.1: Essential parameters of the JICF DNS by Grout et al. [94, 95].

here for reference:

∂T

∂τ
=
χZ
2

∂2T

∂Z2
−
∑
α

1

cp
hαω̇α

+
χZ
2cp

(
∂cp
∂Z

+
∑
α

[
cp,α
Leα

(
∂Yα
∂Z

+
Yα
W

∂W

∂Z

)])
∂T

∂Z

− ∂Z

∂xi

(
∂vC,i
∂Z

+
∂ρεi
∂Z

)
∂T

∂Z
+ HOTT , (3.6a)
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and the flame-orthogonal terms are the explicit forms of the higher-order terms. The non-
zero J5 terms are due to the use of the mixture-fraction in accordance to Bilger et al. [75],
given by Eq. (3.2), instead of that by Pitsch & Peters [77].

4.2.1 Flamelet Topology

The physical locations of nine representative conditionally averaged flamelets, three for
each of the three regions: (i) near-nozzle region; (ii) flame-ignition region; and (iii) far-
field region; are shown in Fig. 4.4, with flamelets {1, 4, 7}, {2, 5, 8}, and {3, 6, 9}
representing the windward, sideline, and leeward sides of the configuration, respectively.

(a) Isometric view. (b) Top view.

(c) Rear view. (d) Side view.

Figure 4.4: Locations of the evaluated conditionally averaged flamelets with respect to the
mean stoichiometric mixture fraction iso-surface. The flamelets are colored by temperature
normalized by T Ref = 300 K. The coordinate system is normalized by lRef = 1.5 cm. Each
flamelet is labeled by a number, ranging from 1 to 9, where flamelets 1–3 are in the jet
near-field, 4–6 are in the flame-ignition region, and 7–9 are in the far-field. The two arrows
denote the fuel and cross-flow injection directions.
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Using the extracted flamelets, the flame structure can be characterized in terms of the
flamelet topologies at the near-, ignition-, and far-field regions along the three azimuthal
sides, which are illustrated in Figs. 4.5–4.7, respectively. Note that, in these figures, the
notation ξ = {0, 0.25, 0.5} has been introduced to denote the windward, sideline, and
leeward sides of the JICF configuration, while η indicates the distance from the nozzle.

Shown in the first row is the conditionally averaged flamelet topology and its intersec-
tion with the mean stoichiometric mixture-fraction iso-surface. The flamelets are colored
by the temperature, which is normalized by its reference value of 300 K, and the con-
ditional velocity field along each flamelet is shown by vectors. A reference coordinate
system is included for reference. In the second row, the conditional averaged temperature
and arclength, ξ, of the flamelet with respect to mixture-fraction are shown. The third
row consists of the mixture-fraction conditioned velocity field along the flamelet, where
〈uZ〉 = 〈u|Z · ∇Z/ ‖∇Z‖〉 is the mean velocity component in the flame-aligned direc-
tion, and 〈u⊥〉 = ‖〈u|Z − uZ∇Z/ ‖∇Z‖〉‖ is the net velocity component orthogonal to
the flamelet. The last row gives the conditional mean profiles of the scalar-dissipation rate
and the most compressive and extensional strain rates. The latter two quantities correspond
to the minimum and maximum eigenvalues that are evaluated from the decomposition of
the strain-rate tensor, sij (cf. Eq. (2.2)).

From Fig. 4.5, high shearing by the flow-field can be observed, causing all flamelets
to exhibit insignificant amount of folding. Therefore, the averaged flamelet topology at
this near-nozzle region has a quasi one-dimensional structure, which is consistent with the
corresponding temperature and flame-length profiles. From the velocity plots, the results
indicate that: (i) uZ is relatively insignificant for all azimuthal locations, suggesting that
there is little flow in the flame-aligned direction; (ii) a low velocity region occurs on the
fuel-lean side, which is attributed to the stagnation flow induced by the interactions of the
fuel jet and the crossflow; and (iii) u⊥ noticeably increases at the fuel-rich mixture, so
the flame-orthogonal velocity component is mostly aligned with the bulk flow of the jet in
the wall-normal direction. Interestingly, the scalar-dissipation rate and extensional strain,
which is the dominant component here, exhibit a qualitatively common trend, although the
maximum points of the two quantities do not usually coincide and the strain rate has a wider
structure than the dissipation rate. Similar observations have been reported in a study of the
effects of unsteady strain on scalar-dissipation rate [103]. In addition, the principal strain
components appear to have an azimuthal dependence, in which the most extensional and
most compressive strains dominate the windward and leeward sides, respectively. Such
exchange in the dominance of the strain component may be due to the high shear at the
windward side and strong compression due to vortices at the leeward side. Results for the
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sideline location show comparable strain components. The leeward fuel-rich region at this
near-nozzle location is seen to display a large compressive strain that is at least twice as
strong as the dominating strain components at all other locations.

At the flame-ignition region, as shown by Fig. 4.6, little difference can be observed for
all the flamelet structures than those in Fig. 4.5. For example, all flamelets still exhibit
insignificant amount of bending and are distorted only by flame-aligned compression and
extension. The most obvious indication of a flame-ignition is given by the rise in the max-
imum leeward temperature, whereas the windward and sideline locations retain the same
mixing temperature profile shown in Fig. 4.5. In contrast to the flamelets in the nozzle-near
region, all the flamelets in this ignition region are seen to possess a flame-aligned velocity
component, uZ , especially for the fuel-rich mixtures. The alignment between the flame-
orthogonal velocity component, u⊥, and bulk flow of the jet is sustained for the windward
and leeward sides, while u⊥ at the sideline location is relatively constant. The correlation
between the dominant principal strain component and scalar-dissipation rate is still appar-
ent, although the distinction between the most compressive and most extensional strains
has largely diminished. The two strain components also maintain their dominance at the
leeward and windward sides, respectively.

Flamelets at the far-field region, given by Fig. 4.7, are discernibly different from the
earlier flamelets, exhibiting significant distortions due to folding and stretching. However,
these distortions are partially attributed to an insufficient temporal sample size because the
downstream region is characterized by large-scale mixing processes and hence associated
with long hydrodynamic time-scales. None of the temperature distribution resembles the
aforementioned mixing temperature profile, but corresponds to reacting profiles that are
increasingly close to the laminar flamelet equilibrium solution from the windward to lee-
ward sides. The reduction in the mixture-fraction range is an expected result of reactant
mixing. From the velocity plots, the u⊥-component is less sensitive to the azimuthal lo-
cation than its uZ counterpart, with the former being approximately constant at 0.1, while
the latter decreases to zero as ξ increases. The greatest difference at the far-field region is
seen in the strain and dissipation rate terms, where: (i) the scalar-dissipation rate is hardly
representative of its analytical Gaussian profile [9]; (ii) the principal strain components and
scalar-dissipation rate are no longer correlated; and (iii) the most compressive strain com-
ponent dominates all flamelets. Note that the magnitudes of the strain and dissipation rate
terms are reduced by as much as three orders compared to the near-nozzle region.

In summary, this analysis showed that the flamelet structure is dominantly quasi one-
dimensional, except in the downstream regions where statistical results are not fully con-
verged. This finding is relevant for experimental investigations, suggesting that the planar
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Figure 4.5: Flamelet-topology at the nozzle-near region. Velocity vectors are shown by
black arrows (scaled relatively by magnitude), and the flame normal vector (pointing to-
wards the fuel side) is denoted by n̂. Symbols are colored by normalized temperature,
and individual flamelets are labeled following the notation in Fig. 4.4. The vertical dashed
line denotes the location of the stoichiometric mixture. Conditional temperature and flame-
length, velocity components, and scalar dissipation and principal strain rates are shown
in the second to fourth rows and normalized by reference values of 300 K and 1.5 cm,
550 m/s, and 3.7× 104 1/s, respectively.
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Figure 4.6: Flamelet topology at the leeward flame-ignition region. See Fig. 4.5 for de-
scription.
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Figure 4.7: Flamelet topology at the far-field region. See Fig. 4.5 for description.
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measurements that account for the alignment of the mixture-fraction field can provide valu-
able insights to the flame-topology. The differences in the flamelets at various regions of
the flame indicate qualitatively different flame-regimes, which are characterized by dif-
ferent velocity and strain rate profiles and the resulting ignition scenarios, which can be
represented by the flamelet formulation.

4.2.2 Mixture-Fraction Conditioned Data

The conditionally averaged normalized scalar-dissipation rate and temperature profiles (ref-
erence value of 3.7×104 1/s and 300 K) at the three sides are given by Figs. 4.8–4.9. Most
noticeable of these profiles is the difference in their flame regimes in different regions,
which are characterized by different velocity and strain rate profiles, and the resulting ig-
nition scenarios where the windward and leeward sides demonstrate the latest and earli-
est flame-ignition, respectively. Considering the variations in the scalar-dissipation rate
and temperature, the early ignition at the leeward side, as compared to the windward and
sideline sides, is attributed to a faster reduction in the dissipation rate. Interestingly, the
scalar-dissipation rate profiles suggest that the flame-ignition occurs only when the sto-
ichiometric dissipation value, χZ,st, falls below the laminar flamelet quenching value of
approximately 4000 1/s. In addition, the comparison with the laminar profiles (thin solid
line) indicates that: (i) the extracted scalar-dissipation rate profiles are generally asym-
metric about Z = 0.5, in contrast to the quenching dissipation rate; and (ii) the far-field
temperature profiles have not reached the flame-equilibrium state.

χ

(a) Windward. (b) Sideline.

η

η

η

η

η

(c) Leeward.

Figure 4.8: Conditionally-averaged scalar dissipation rate profile for the three azimuthal
sides and different locations along the jet-trajectory. The vertical dashed line indicates
the stoichiometric mixture-fraction, and the analytic scalar dissipation rate profile [9] at
laminar flamelet quenching condition (Qch) is denoted by the thin line. The results are
normalized by χRef

Z = 3.7× 104 1/s.
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(a) Windward. (b) Sideline.

η

η

η

η

η

(c) Leeward.

Figure 4.9: Conditionally-averaged temperature profiles for the three azimuthal sides and
different locations along the jet-trajectory. The vertical dashed line indicates the stoichio-
metric mixture-fraction, and the laminar flamelet equilibrium solution (Eqm) is denoted by
the thin line. The results are normalized by T Ref = 300 K.

The conditionally averaged flamelet budget plots are shown in Fig. 4.10, where a neg-
ative contribution can be interpreted as a heat-sink term that delays flame-ignition. All
contributions along the flame-aligned and flame-orthogonal directions are denoted by lines
and symbols, respectively, in Fig. 4.10. From the budgets, the collective contribution due
to curvature and lateral diffusion effects, as indicated by the J ⊥4 term, is observed to be
negligible in this analysis, possibly due to the averaging of the information. In contrast, the
temporal derivative term (dotted line), which represents the flamelet unsteady effect, is not
always negligible, indicating a stronger compatibility with the unsteady flamelet models
than the steady types. Also, the budget plots illustrate that the differential diffusion effect,
represented by the J5 terms, is dominant by the flame-aligned contribution, confirming that
only the consideration of the J Z

5 term is necessary in order to represent the effect.
Prior to flame-ignition, which initiates at the leeward side between 0.1 < η < 0.25,

the budget plots show similar relative significance between the various flamelet terms of
the three sides, even though differences in their absolute values are apparent. Specifically,
the prominent contributions are from the J Z

1 , J Z
3 , and J Z

5 terms, where the initial two
terms are consistently competing against each other such that the transient heat-sinking
effect is dominantly due to the last term. In physical sense, the pre-ignition dynamics are
then given by the competition between the scalar mixing (J Z

1 ) and enthalpy flux due to
species diffusion (J Z

3 ) and the heat-transfer from the fuel-rich mixture to the fuel-lean side
by flame-aligned differential diffusion (J Z

5 ). Comparing the windward budget plots at the
first three η-locations, the flamelet terms exhibit similar relative magnitudes, suggesting the
existence of a consistent pattern in the non-reacting flamelet budgets.
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Figure 4.10: Budget-analysis of the temperature flamelet equation (4.2). Columns denote
the three azimuthal positions, and rows correspond to the locations along the jet-trajectory.
The flamelets with labels correspond to those shown in Fig. 4.4. The vertical dashed line
indicates the location of the stoichiometric mixture-fraction. Note that all budget terms are
mixture-fraction conditioned results and normalized by a reference value of 1.1× 107 K/s.
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Upon successful flame-ignition (η > 0.5), the major contributors become the J Z
1 and

J Z
2 terms, while a decay in the other terms can be observed. Hence, the post-ignition

dynamics is governed by the competition between the scalar mixing (J Z
1 ), which is now a

heat-sink term, and heat-release rate (J Z
2 ), with the latter being the dominant contribution

such that the overall temporal term is positive.
In summary, this study shows that the flamelet paradigm [7] remains on average valid

in the JICF configuration, despite its complex flow-field. This deduction is based on the
budget analysis, which shows that the flame-aligned terms are dominant contributions to
the temperature flamelet equation (4.2), while the flame-orthogonal terms are on average
negligible. In addition, the flame-aligned differential diffusion effect is found to be crucial
and favors ignition. These findings are encouraging because they indicate that the JICF
configuration may be represented by a flamelet model that accounts for non-unity Lewis
number and unsteady effects.

4.3 Turbulent Lifted Jet Flame

The turbulent lifted jet flame configuration is schematically illustrated in Fig. 4.11, and
the essential parameters of the configuration are given in Tab. 4.2. Turbulent lifted jet
flames have been widely investigated due to their practical relevance to fuel-injection in-
ternal combustion engines and theoretical suitability for understanding autoignition and
partial-premixing phenomena. Specifically, the stabilization mechanism of turbulent lifted
jet flames has been examined extensively, with various theories proposed. These theo-
ries can be categorized based on the degree of fuel-air premixing upstream of the flame
base [104–106], or on the local turbulence effect on the flame base [107, 108]. For lifted
flames in a heated coflow [37, 109], autoignition was considered as an additional contri-
bution to the flame stabilization phenomenon. Using DNS, Yoo et al. [96] concluded that
autoignition is indeed the key mechanism for stabilization of lifted jet flames in heated
coflow. The same DNS results, but at a slightly lower coflow temperature of 950 K, are
employed for the current study.

The focus of this study is on an asymptotic scaling analysis, developed by Scholtissek et

al. [91], for the identification of different flamelet regimes that are relevant to the turbulent
lifted jet flame. The analysis in the general case will distinguish three regimes, as given in
Tab. 4.3, using two characteristic ratios:

ε

ν
,

ε3

ν2
, (4.3)
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Coflow: Laminar bulk flow

Jet: tanh with HIT fluctuations

Outflow

Outflow

Outflow

Coflow: Laminar bulk flow

Figure 4.11: Turbulent lifted jet flame DNS configuration and traverse (x) and stream-
wise (y) boundary conditions [96]; the spanwise (z) direction uses a periodic boundary
condition. The contour line denotes the stoichiometric mixture-fraction isoline.

Parameter Value

Jet

Slot width 2 mm
Mean velocity [240, 0, 0]T m/s
Composition YH2 , YN2 = 0.12, 0.88
Temperature 400 K

Reynolds number 8000

Coflow
Mean velocity [4, 0, 0]T m/s
Composition YO2 , YN2 = 0.23, 0.77
Temperature 950 K

Domain size 24× 32× 6.3 mm
Grid resolution 1600× 1372× 430

Chemical kinetics 9 species, 19 reactions [102]
Stoichiometric mixture-fraction 0.2

Velocity fluctuation, (‖u′i‖ / ‖ui‖)Jet 0.091
Integral length 0.7 mm

Turbulent Reynolds number, ReΛ 340

Table 4.2: Essential parameters of the turbulent lifted jet flame DNS by Yoo et al. [96].

where ε and ν refer to two small parameters that scale with the reaction-zone thickness
and flame curvature, respectively. The first ratio in Eq. (4.3) is related to the order of the
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curvature term of Eq. (3.6b):(
1

Leα
− 1

)
κZ

√
DZχZ

2

∂Yα
∂Z
∼ O

( ε
ν

)
,

and has a dependence on non-unity Lewis number effects, hence does not concern the tem-
perature flamelet equation (3.6a) since LeT = DZ/Dth = 1. The latter ratio represents
the magnitude of the primary effect of the higher-order terms in both flamelet equations
(i.e. HOT ∼ O(ε3/ν2)), and will be present regardless of differential diffusion effects, but
can be negligible in the asymptotic limit of a thin reaction-zone thickness [78] or config-
urations, for example the counterflow diffusion flame [110], where scalar diffusion occurs
dominantly in the direction of the mixture-fraction gradient.

Regime Limit
I Classical flamelet ε/ν < 1
II Curvature-affected ε/ν > 1, ε3/ν2 < 1
III Higher-order flamelet ε/ν > 1, ε3/ν2 > 1

Table 4.3: Flamelet regimes derived from asymptotic scaling flamelet analysis [91].

These physical distinctions of the various flamelet regimes render the current turbulent
lifted jet flame a suitable configuration to study, since: (i) the turbulence from the flow will
distort the mixture-fraction field on fine-scale levels, inducing significant local curvatures;
(ii) the use of a hydrogen/air mixture ensures that non-unity Lewis number effects are not
negligible because of the difference in molecular diffusivity of the light-weighted hydrogen
and the heavier nitrogen and oxygen; and (iii) the flame stabilization mechanism suggests
that flamelets near the flame base cannot be isolated structures, and will influence one
another in conceptually analogous manner as those of the interactive flamelet model [5].
Due to the last point, Scholtissek et al. [91] had addressed the higher-order flamelet regime
of the current work as the multi-dimensional regime because the flamelet interactions can
be interpreted as scalar diffusion in the direction orthogonal to mixture-fraction gradient.

An instantaneous planar view of the temperature field along the centerplane is shown in
Fig. 4.12, along with four representative flamelets . For convention, the four flamelets will
be distinguished by their stoichiometric streamwise locations xst = {5, 14, 17, 27} mm

and labels 1–4. The regime and budget plots of the same four flamelets are illustrated by
Figs. 4.13–4.14, respectively. Note that the legends of Fig. 4.14 are notations introduced
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by rewriting of the flamelet equations (3.6a)–(3.6b):

∂T

∂τ
=
χZ
2

∂2T

∂Z2
−
∑
α

1

cp
hαω̇α

+
χZ
2cp

(
∂cp
∂Z

+
∑
α

[
cp,α
Leα

(
∂Yα
∂Z

+
Yα
W

∂W

∂Z

)])
∂T

∂Z

− ∂Z

∂xi

(
∂vC,i
∂Z

+
∂ρεi
∂Z

)
∂T

∂Z
+ HOTT , (3.6a)

∂Yα
∂τ

=
χZ

2Leα

(
∂2Yα
∂Z2

+
Yα
W

∂2W

∂Z2

)
+ ω̇α

+
1− Leα
4ρLeα

(
∂ρχZ
∂Z

+
χZ
DZ

∂ρDZ

∂Z
− 2ρχZ

Leα (1− Leα)

∂Leα
∂Z

)
∂Yα
∂Z

+
1

4ρLeα

(
∂

∂Z

[
ρχZYα
W

]
+
χZ
DZ

∂

∂Z

[
ρDZYα
W

]
− 2ρχZYα

LeαW

∂Leα
∂Z

)
∂W

∂Z

− 1

ρ

∂Z

∂xi

(
∂ρYαvC,i
∂Z

+
∂ρεi
∂Z

∂Yα
∂Z

)
− 1

Leα
κZ

√
DZχZ

2

(
(Leα − 1)

∂Yα
∂Z

+
Yα
W

∂W

∂Z

)
+ HOTα , (3.6b)

in the form:

∂T

∂τ
= ft1 + ftsource + (ft2 + ft3) + ftC , (4.5a)

∂Yα
∂τ

= fα,1 + fα,source + (fα,2 + fα,3 + fα,7) + fα,C3 + fα,C1 , (4.5b)

where the correction velocity in the diffusion velocity term is not considered, the mixture-
fraction is defined in accordance to Pitsch & Peters [77], and the mixture molecular weight
is assumed constant. Here, the curvature and higher-order terms are differentiated from the
classical terms by the subscript ( )C .

From the regime diagram in Fig. 4.13, flamelet 1 and 2 are seen to occupy only the
classical and curvature-affected flamelet regimes I and II, while flamelet 3 and 4 cross over
into the higher-order flamelet regime III as well. Therefore, only flamelet 3 and 4 will be
expected to be affected by the higher-order fα,C1- and ftC-terms in their corresponding
flamelet budgets.

Referring to the budget plots in Fig. 4.14, which have been normalized by their cor-
responding maximum absolute budget value, the budgets for H2O- and OH-mass fraction
and temperature of flamelet 2, 3, and 4 exhibit higher-order fα,C1- and ftC-terms that are
comparable to the classical flamelet terms. On the other hand, the curvature-induced differ-
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Figure 4.12: Instantaneous temperature profile along the centerplane at simulation time
t = 1.3 ms. The blue curves represent various flamelets in physical space, while the four
windows serve to single out the flamelets that were used in further analyses.
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Figure 4.13: Regime diagram of the four representative flamelets shown in Fig. 4.12 The
black solid and dashed lines are the boundaries between regimes I and II and regimes II
and III, respectively. Note that only the points located within the interval 0.1 < Z < 0.3
are shown, since chemical reactions typically do not occur outside of this range.
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Figure 4.14: Instantaneous flamelet budgets for (top to bottom row) YH2O, YOH, YHO2, and
T of the four chosen flamelets, as shown in Fig. 4.12. The columns are arranged (left to
right) in ascending order of the stoichiometric streamwise location, xst, of the flamelets.
The vertical dashed line indicates the stoichiometric mixture fraction. Note that each plot
has been normalized by its corresponding maximum absolute budget value.

ential diffusion fα,C3-term is generally of a smaller order than the major flamelet terms. The
only exception is observed in the budget plots for H2O- and OH-mass fraction of flamelet
2, where the curvature fα,C3-term appears to be comparable to the reaction-rates. Interest-
ingly, a competition between the curvature-induced and conventional differential diffusion
terms, given by fα,C3 and (fα,2 + fα,3), respectively, can be discerned in the budgets for
H2O- and OH-mass fraction budgets of flamelet 4. In contrast to the other evaluated scalars,
all the HO2-mass fraction budgets show little dependence on the higher-order effects.

The temporal term of the flamelet equations (4.5a)–(4.5b), denoted by the black “Bal-
ance” line in the budget plots, deviates significantly from zero, suggesting that the evaluated
flamelets are unsteady. This transient character can be attributed to the lifted flame con-

46



figuration because the unsteadiness will be expected to reduce in magnitude for anchored
flame configurations.

Combining the results of the regime diagram and budget plots, the two diagnostic tools
are generally consistent with each other, although there is a slight disagreement with re-
gards to the importance of the higher-order flamelet effects along flamelet 2. However, such
discrepancy is reasonable because the the regime analysis is relevant only to the order-of-
magnitude of the scaling parameters, ε and ν, and thus susceptible to uncertainties within
the same order. Hence, the fact that the regime diagram, which is based on an asymptotic
scaling analysis, provides such a robust flamelet regime characterization is remarkable.

In summary, this study shows that both the higher-order and unsteady flamelet effects
are significant instantaneous flamelet contributions in the turbulent lifted flame configu-
ration. The omission of such effects, as in the case of the SLFM and FPV models, may
introduce modeling errors with respect to flame structure and ignition characteristics in
some regions of the flow, for instance the flame base of lifted jet flames. However, pre-
processing the flamelet equations including the unsteady and higher-order terms requires
modeling since these contributions, in contrary to the classical flamelet terms, are unclosed.
This closure is addressed in the subsequent chapters by the higher-order flamelet model.

4.4 Flamelet Regime Diagram

For this investigation, we will consider the simplified species flamelet equation that con-
tains the higher-order term, which is rewritten as:

∂Yα
∂τ

= (1 + ψ)
χZ
2

∂2Yα
∂Z2

+ ω̇α , (4.6)

where the term ψ denotes the diffusion orthogonal to the mixture-fraction gradient relative
to that along the flamelet. This term is defined as:

ψ =

(
1

ρ

∂

∂xi

[
ρD

∂Yα
∂xi

]
− χZ

2

∂2Yα
∂Z2

)(
χZ
2

∂2Yα
∂Z2

)−1

. (4.7)

Note that Eq. (4.6) can be demonstrated to be: (i) equivalent to the classic flamelet equa-
tion [7] when ψ → 0; (ii) consistent with the higher-order formulation by Scholtissek et

al. [91]; and (iii) analogous to the interacting flamelet equation by Pitsch et al. [12].
The term ψ of Eq. (4.7) can be approximated through a scaling argument similar to that
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presented in Ref. [91]:

ψ ∼ O

(
∆Yα⊥

(l⊥)2

(lZ)2

∆YαZ

)
= O

(
(∆Z)r

(
lZ
l⊥

)2
)
, (4.8)

where (∆Z)r is the reaction-zone thickness in mixture-fraction space [111], the subscripts
( )⊥ and ( )Z indicate the direction orthogonal and parallel to the mixture-fraction gra-
dient, respectively, and l represents a characteristic lengthscale. Note that Eq. (4.8) is
scaled with the square of a lengthscale because it considers diffusion effects. In Ref. [91],
the higher-order flamelet effects were attributed to the corrugation of the mixture-fraction
field, thus rendering the orthogonal length l⊥ to scale at the order of the reciprocal of the
mixture-fraction curvature. However, due to the multi-dimensionality of turbulent flows,
the interaction of flamelets should be feasible regardless of the corrugation intensity of
the mixture-fraction field. Hence, a more appropriate definition of l⊥ will be based on
the concept of the dissipation element [112], which is a notional turbulent structure that is
characterized by the Kolmogorov lengthscale, η, for a practical range of Taylor-Reynolds
numbers up to O(102). For the remaining terms of Eq. (4.8), we will follow the arguments
presented in Ref. [91], giving:

log (ψ) = −2 log

(
∆

δr

)
+ log

(
2Zst

(
∆

η

)2
)
. (4.9)

where δr is the reaction-zone thickness. For LES with ∆ of the order of the integral length-
scale the ratio ∆/η can be written as Re

3/4
Λ , based on Kolmogorov’s turbulent theories.

The (2Zst) term arises from the estimation of (∆Z)r using the prescribed beta PDF for the
mixture-fraction (cf. Sec. 5.3.3):

(∆Z)r ∼ O

2Zst

(
1 +

Z̃ ′′2

Z2
st

)1/2
 , (4.10)

where Z̃ ′′2 is the SGS mixture-fraction variance introduced by the LES spatial-filtering. It
is interesting to note that Eq. (4.10) will approach Peters’ approximation for diffusion flame
thickness [9] in the limit of small Z̃ ′′2. In this case, the square-root term of Eq. (4.10) will
approach unity, so (∆Z)r → 2Zst. This approximation is typically reasonable for regions
away from the reactant injection point, where the flow composition is more homogeneous
due to more complete mixing.

From Eq. (4.9), different regimes can be demarcated, as shown in Fig. 4.15. The broad-
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est categorization is separated by the abscissa. The region above this line is characterized
by significant flamelet interaction, hence invalidating the isolated flamelet model that con-
siders only diffusion along a flamelet. For this reason, we will refer to this region as the
“Multi-Dimensional Flamelet (MDFM) Regime”, following Ref. [91]. Below the abscissa,
a sub-section defined by ψ ≤ 2Zst can be extracted. A flame within this sub-section will
have a reaction zone that is thinner than the smallest turbulent eddy, which, in accordance
to Peters [9], is the criterion for the validity of the isolated flamelet theory. Hence, we
will refer to this zone as the “Peters’ Regime”. Recognizing that the ordinate and diagonal
∆ = η indicate the grid resolution relative to the reaction-zone thickness and smallest tur-
bulent length, respectively, the diagram can be divided according to the level of numerical
fidelity. These divisions are addressed by the terms DNS and LES in Fig. 4.15.

Two properties of the regime diagram are distinguished. First, a mere change in grid
resolution will result in only a horizontal shift, thus not altering the regime categorization.
However, the fidelity of the simulation will obviously be affected, moving closer to or
further from a DNS. Second, keeping the grid resolution constant, a shift away from Peters’
regime can be attributed to: (i) a thicker flame (a diagonal shift at constant ∆/η); and (ii) a
higher turbulent Reynolds number (a vertical shift). Since the two effects are not mutually
exclusive, a transition in the regime is more likely due to a combination of the pair.

Referring to Eq. (4.7), the regime-diagram parameter ψ is related to the difference be-
tween the total diffusion and the diffusion along a flamelet. To leading-order, this difference
is given by the diffusion along the mixture-fraction iso-surface [91, 113]:(

1

ρ

∂

∂xi

[
ρD

∂Yα
∂xi

]
− χZ

2

∂2Yα
∂Z2

)
∼ O

(
∂2Yα

∂Zk
2

)
,

which can be readily evaluated by interpolating information from the Cartesian space onto
the locally orthogonal curvilinear coordinates, z̃ = [Z̃, Z̃2, Z̃3]T , where the Z̃k terms are
defined according to Eq. (3.5). The local mixture-fraction coordinate can be extracted using
the iso-surface parameterization and gradient tracing procedures described in Sec. 4.1.
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Figure 4.15: Schematic illustration of the flamelet regime diagram from Eq. (4.9).
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CHAPTER 5

Development of Higher-Order Flamelet Model

In this chapter, the development of the higher-order flamelet model is presented, first by
revisiting the laminar flamelet equation derivation from a Lagrangian perspective. Similar
to the unfiltered reacting flow governing equations in Sec. 2.1, the laminar flamelet equa-
tion will be shown to possess a filtered counterpart, of which we refer to as the turbulent
flamelet equations in Sec. 5.2. Similar to the filtered working equations in Sec. 2.1, the
turbulent flamelet equation consists of unclosed, SGS terms that are modeled in the fol-
lowing section. An a priori analysis of the resulting model in the context of a turbulent
counterflow diffusion flame is provided in the final Sec. 5.4. Note that the utilization of the
simplest form of the species transport equation hereafter is without a loss of generality, be-
cause similar conclusions will be drawn for the detailed species equation (2.1d) and other
thermochemical variables, such as temperature.

5.1 Laminar Flamelet Equations

Assuming: (i) unity Lewis number (Leα = 1); (ii) Fick’s law (vα,i = −DZ∇Xα/Xα);
and (iii) constant mixture molecular weight; the resulting species transport equation for
reacting flows, in the non-conservative form, is given by:

∂Yα
∂t

+ ui
∂Yα
∂xi

=
1

ρ

∂

∂xi

[
ρD

∂Yα
∂xi

]
+ ω̇α . (5.1)

Similar to Lagrangian particle-tracking, we can define a material derivative with Gib-
son’s velocity [114] along the mixture-fraction iso-surface, uG,i, by:

∂Yα
∂τ

=
∂Yα
∂t

+ uG,i
∂Yα
∂xi

, (5.2)

uG,i = ui −
1

ρ ‖∇Z‖

(
∂

∂xj

[
ρD

∂Z

∂xj

])
n̂Z,i , (5.3)
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where the flamelet time τ can be interpreted as the Lagrangian residence time of Eq. (3.10)
and n̂Z,i refers to the normalized mixture-fraction gradient. Combining Eqs. (5.1)–(5.3):

∂Yα
∂τ

=
1

ρ

∂

∂xi

[
ρD

((
∂Yα
∂xj

n̂Z,j

)
n̂Z,i +

(
∂Yα
∂xj

n̂Z⊥,j

)
n̂Z⊥,i

)]
+ ω̇α

− 1

ρ ‖∇Z‖

(
∂

∂xj

[
ρD

∂Z

∂xj

])
n̂Z,i

∂Yα
∂xi

,

= D
∂Z

∂xi

∂

∂xi

[
‖∇Z‖−1

(
∂Yα
∂xj

n̂Z,j

)]
+ ω̇α

+
1

ρ

∂

∂xi

[
ρD

((
∂Yα
∂xj

n̂Z⊥,j

)
n̂Z⊥,i

)]
, (5.4)

where Z⊥ denotes a local quantity constrained by the condition:

∂Z

∂xi

∂Z⊥

∂xi
= ‖∇Z‖

∥∥∇Z⊥∥∥ n̂Z,in̂Z⊥,i = 0 . (5.5)

Therefore,∇Z⊥ is a directional vector along the local tangent plane of the mixture-fraction
field, which is spanned by the (Z2, Z3)-coordinates of Eq. (3.5).

The physical interpretation of the ∇Z and ∇Z⊥, along with the gradient of a scalar, in
this case ∇YH2O, is shown in Fig. 5.1. In the figure, the scalar gradient along the stoichio-
metric iso-line Zst = 0.5 (solid line), which is indicated by the thin, open arrows, is seen to
be opposing, but aligned with the mixture-fraction gradient. Therefore, we can expect that
the last term on the RHS of Eq. (5.4) will be small relative to the first term.

Considering the following geometrical argument:

∂Yα
∂Z

= lim
∆Z→0

∆Yα
∆Z

= lim
‖∆x‖→0

(
∂Z

∂xi
‖∆x‖ n̂Z,i

)−1(
∂Yα
∂xi
‖∆x‖ n̂Z,i

)
= lim
‖∆x‖→0

(‖∇Z‖ ‖∆x‖)−1

((
∂Yα
∂xj

n̂Z,j

)
n̂Z,i +

(
∂Yα
∂xj

n̂Z⊥,j

)
n̂Z⊥,i

)
‖∆x‖ n̂Z,i

= lim
‖∆x‖→0

(
‖∇Z‖−1

(
∂Yα
∂xj

n̂Z,j

)
+ ‖∇Z‖−1

(
∂Yα
∂xj

n̂Z⊥,j

)
��

���:
0

n̂Z⊥,in̂Z,i

)
= ‖∇Z‖−1

(
∂Yα
∂xj

n̂Z,j

)
, (5.6)

where the local orthogonality of Z and Z⊥ is applied, we see that the first term on the RHS
of Eq. (5.4) can be rewritten as:
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Figure 5.1: Illustration of the normalized ∇Z and ∇Z⊥ vectors (thickened, closed arrows
denoted by n̂Z and n̂Z⊥ , respectively) along a stoichiometric iso-line (solid line) of Zst =
0.5. The numerical labels denote the level of the various mixture-fraction iso-lines (dashed
line), and the thin, open arrows represent the normalized∇YH2O along the Zst iso-line.

D
∂Z

∂xi

∂

∂xi

[
‖∇Z‖−1

(
∂Yα
∂xj

n̂Z,j

)]
= D ‖∇Z‖2

(
‖∇Z‖−1 ∂

∂xi

[
∂Yα
∂Z

]
n̂Z,i

)
=
χZ
2

∂2Yα
∂Z2

, (5.7)

As a result, we arrive at the Lagrangian form of Eq. (5.1):

∂Yα
∂τ

=
χZ
2

∂2Yα
∂Z2

+ ω̇α +
1

ρ

∂

∂xi

[
ρD

∂Y ⊥α
∂xi

]
,

∂Y ⊥α
∂xi

=

(
∂Yα
∂xj

n̂Z⊥,j

)
n̂Z⊥,i , (5.8)

which is identical to the unsteady species flamelet equation [36, 78], except for the addi-
tional last term on the RHS. However, recognizing that the last term will reduce to zero for:
(i) the case of a perfect alignment between mixture-fraction and species; or (ii) the asymp-
totic limit of a thin reaction-zone, Eq. (5.8) can be regarded as the higher-order form of the
leading-order species flamelet equation [73]. Note that Eq. (5.8) incorporates Klimenko’s
notion of coordinate-invariant flamelets [13] by the use of Gibson’s velocity via Eq. (5.2).

Therefore, we now have a formal physical interpretation for the derivation of flamelet
equation through Crocco-type coordinate transformation [78]: The one dimensional profile
from the projection of a scalar field onto a mixture-fraction gradient-trajectory will vary in
accordance to the flamelet equation (5.8), where the temporal variations include the local
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motion of the mixture-fraction iso-surface (i.e. Gibson’s velocity) and the spatial diffusion
is separated into two terms, one that aligns with the mixture-fraction gradient and the other
orthogonal to the gradient (i.e. in the direction of n̂Z,i and n̂Z⊥,i, respectively; cf. Fig. 5.1).
In addition, if we advance the species transport equation (5.1), we are essentially solving
the species flamelet equation (5.8) with the higher-order terms accounted for.

5.2 Turbulent Flamelet Equations

In the context of LES, the scalar transport equations will be solved in a spatially-filtered
form. The filtered species transport equation for reacting flows that corresponds to Eq. (5.1)
is given by:

∂Ỹα
∂t

+ ũi
∂Ỹα
∂xi

=
1

ρ

∂

∂xi

[
ρD̃

∂Ỹα
∂xi

]
+˜̇ωα+

1

ρ

∂

∂xi

ρ
− ˜(uiYα)′′ +

˜(
D
∂Yα
∂xi

)′′ . (5.9)

Recalling the equivalence of transport and flamelet equations (cf. Sec. 5.1), the filter
operation can similarly be applied to Eq. (5.8):

∂̃Yα
∂τ

=
∂Ỹα
∂t

+
˜
uG,i

∂Yα
∂xi

=
˜χZ
2

∂2Yα
∂Z2

+ ˜̇ωα +
1

ρ

∂

∂xi

[
ρ
˜
D
∂Y ⊥α
∂xi

]
. (5.10)

Note that Eq. (5.10) implicitly contains unclosed SGS terms on both sides of the equation,
and is not useful for modeling purposes. In order to gain more insights from Eq. (5.10), we
will need to differentiate between the resolved and SGS components, denoted by ( )Res and
( )SGS, respectively, of Gibson’s velocity

ũG,i = (ũG,i)
Res + (ũG,i)

SGS , (5.11a)

(ũG,i)
Res = ũi −

1

ρ
∥∥∥∇Z̃∥∥∥

(
∂

∂xj

[
ρD̃

∂Z̃

∂xj

])
n̂Z̃,i , (5.11b)

and mixture-fraction dissipation rate:

χ̃Z = (χ̃Z)Res + (χ̃Z)SGS , (5.12a)

(χ̃Z)Res = 2D̃
∂Z̃

∂xi

∂Z̃

∂xi
. (5.12b)
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Accordingly, the SGS components of Eqs. (5.11a) and (5.12a) are given by:

(ũG,i)
SGS = −

 1̃

ρ ‖∇Z‖

(
∂

∂xj

[
ρD

∂Z

∂xj

])
n̂Z,i

− 1

ρ
∥∥∥∇Z̃∥∥∥

(
∂

∂xj

[
ρD̃

∂Z̃

∂xj

])
n̂Z̃,i

 , (5.13)

(χ̃Z)SGS = 2

(
˜

D
∂Z

∂xi

∂Z

∂xi
− D̃ ∂Z̃

∂xi

∂Z̃

∂xi

)
. (5.14)

Rewriting Eq. (5.10) with and rearranging in accordance to the resolved and SGS terms,
we will obtain:

∂Ỹα
∂t

+ (ũG,i)
Res ∂Ỹα

∂xi
=

(χ̃Z)Res

2

∂2Ỹα

∂Z̃2
+ ˜̇ωα +

1

ρ

∂

∂xi

[
ρD̃

∂Ỹ ⊥α
∂xi

]

−

(ũG,i)
SGS ∂Ỹα

∂xi
+

˜(
uG,i

∂Yα
∂xi

)′′
+

(χ̃Z)SGS

2

∂2Ỹα

∂Z̃2
+
χ̃Z
2

(
∂̃2Yα
∂Z2

− ∂2Ỹα

∂Z̃2

)
+

˜(
χZ
2

∂2Yα
∂Z2

)′′
+

1

ρ

∂

∂xi

ρ ˜(
D
∂Y ⊥α
∂xi

)′′ , (5.15)

where all, except the last three terms on the RHS, are resolved. Referring to Eq. (5.8),
the resolved components of the rewritten filtered species flamelet equation (5.15) clearly
resemble their unfiltered counterparts.

Following the derivation in Sec. 5.1, we can define a material derivative with the re-

solved component of Gibson’s velocity, which combines with Eq. (5.9) to give:

∂Ỹα
∂τ̃

=
∂Ỹα
∂t

+ (ũG,i)
Res ∂Ỹα

∂xi
=

(χ̃Z)Res

2

∂2Ỹα

∂Z̃2
+ ˜̇ωα +

1

ρ

∂

∂xi

[
ρD̃

∂Ỹ ⊥α
∂xi

]

+
1

ρ

∂

∂xi

ρ
− ˜(uiYα)′′ +

˜(
D
∂Yα
∂xi

)′′ . (5.16)

Comparing the two filtered species flamelet equations, we can deduce that the unclosed
SGS terms of Eq. (5.15) are derived from the SGS turbulent fluxes of Eq. (5.9).
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Interestingly, a Crocco-type coordinate-transformation [78] of Eq. (5.9) with respect to
Z̃ will also result in the filtered species flamelet equation (5.16), suggesting that the physi-
cal interpretation of flamelet equations will still apply in the filtered setting: The one dimen-
sional profile from the projection of a filtered scalar field onto a filtered mixture-fraction
gradient-trajectory will vary in accordance to the filtered flamelet equation (5.16), where
the temporal variations include the local resolved motion of the filtered mixture-fraction
iso-surface and the spatial diffusion is separated into the filtered mixture-fraction gradient
aligned and orthogonal components. In addition, the filtered species transport and flamelet
equations are equivalent, and unclosed SGS terms will be prevalent in both equations. We
also note that the SGS turbulent fluxes of Eqs. (5.9) and (5.16) have corresponding flamelet
forms that are described by the last three terms on the RHS of Eq. (5.15).

In the limit of resolution at the DNS level (i.e. all relevant spatial/temporal scales
resolved), all SGS terms will approach zero, thus reducing the turbulent flamelet equa-
tion (5.15), or equivalently Eq. (5.16) to the corresponding laminar flamelet equation (5.8).
Therefore, the turbulent flamelet equations are consistent with LES [14] in that they con-
verge the filtered system to the DNS limit as resolution increases.

5.3 Turbulent Flamelet Model

In the following, our closure models for the turbulent flamelet equation are described. Ad-
ditional numerical techniques and procedures for the turbulent flamelet model to be func-
tional are subsequently provided.

5.3.1 Mixture-Fraction Conditioned Equations

In general, the spatial-filter operation on the species field can be described by a convolution
of the species’ conditional profile on mixture-fraction and the FDF of mixture-fraction:

Ỹα(xi) =
1

ρ(xi)

∫
ρ(x′i)Yα(x′i)δ(Z(x′i)− ζ)G(xi − x′i; ∆i)dx

′
i

=
1

ρ(xi)

∫
(Yα| ζ) P̃ (Z = ζ)dζ , (5.17)

where δ( ) is the fine-grained PDF, ζ is the independent variable of the mixture-fraction
space, and ( | ζ) and P̃ (Z = ζ) denote the mixture-fraction conditioned profile and density-
weighted FDF of the mixture-fraction, respectively. Note that the filter/convolution rela-
tion (5.17) can be applied to scalar fields other than species as well.
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Recalling Eq. (5.10), which can now be written in the convolution form:∫ (
∂Yα
∂τ

∣∣∣∣ ζ) P̃ (Z = ζ) dζ = (5.18)∫ (
χZ
2

∂2Yα
∂Z2

+ ω̇α +
1

ρ

∂

∂xi

[
ρD

∂Y ⊥α
∂xi

]∣∣∣∣ ζ) P̃ (Z = ζ) dζ , (5.19)

we see that each point of a filtered flamelet, which satisfies the turbulent flamelet equation
Eq. (5.10) or Eqs. (5.15)–(5.16), is essentially the convolution of the representative mixture-
fraction conditioned laminar flamelet profile within the filter-cell surrounding the point.

Considering a filtered mixture-fraction field that is co-located with the filtered species
profile, Ỹα(xi), the filtered species profile can be expressed as a function of Z̃:

Ỹα(xi) = Ỹα

((
Z̃(xi)

)
f

)
, (5.20)

where ( )f denotes a particular path-f that follows the gradient of the filtered mixture-
fraction and passes through the point of evaluation. The one-dimensional filtered species
distribution projected onto the path-f will vary according to the turbulent flamelet equa-
tion (5.15), given that the latter is derived for filtered profiles along a gradient-trajectory.

This relation between the projected filtered species profile and the turbulent flamelet
equation, which has also been pointed out in Sec. 5.2, forms the basis of the turbulent
flamelet model. In essence, the model will represent the filtered reaction rate, ˜̇ωα, by using
information along the instantaneous filtered flamelets that are present in the computational
domain. Further details of this closure are provided in the subsequent sections.

5.3.2 Conditional Source Term Estimation

In the preceding section, the filtered species profile that is projected onto a filtered mixture-
fraction gradient trajectory , as given by Eq. (5.20), is demonstrated to evolve according to
the turbulent flamelet equation (5.10), or Eqs. (5.15)–(5.16). However, we should recognize
that the formulation is at this point unclosed due to the presence of the filtered reaction
term (i.e. ˜̇ωα). This observation is based on the fact that the turbulent flamelet equation is
equivalent to the LES species equation (5.9), hence inherits the latter’s closure problem.

In order to close the turbulent flamelet equations, we first note that convolution such as
Eq. (5.17) belongs to a general class of problem that is typically referred to as the Fredholm
equation of the first kind. In discrete form, such problem is described by a linear system:

Amnxn = bm ,

57



where A is the matrix populated by m FDF’s, each spanning n points on the ζ-space, of
the filtered mixture-fraction field, Z̃, x is the variable (solution) vector with n components
on ζ-space that describe the mixture-fraction conditioned profile, ( )| ζ , and b is the RHS
(known) sampled from m locations along a flamelet and projected onto the corresponding
Z̃-space. Following these notations, we can write the discrete form of Eq. (5.17) as:

P̃
(
Z = ζn; Z̃m

)
(Yα| ζn) ∆ζn = Ỹα

(
Z̃m

)
. (5.21)

In general, the linear system described by Eq. (5.21) is ill-posed, thus requiring further
treatment before it can be solved [115]. One conventional technique for this issue is to
apply Tikhonov’s regularization [116] to the problem, which essentially implements a low-
pass filter on the system such that a representative distribution of the exact solution of
Eq. (5.21) can be obtained. One caveat to this approach is its implicit assumption that the
exact solution has some inherent smoothness, which is generally true for flamelet profiles
(on ζ- or Z-space). Mathematically, Tikhonov’s regularization method on Eq. (5.21) is to
find a regularized mixture-fraction conditioned solution, (Yα| ζ)λ, for the problem:

min

[∥∥∥P̃ (Z = ζn; Z̃m

)
(Yα| ζn)λ ∆ζn − Ỹα(Z̃m)

∥∥∥2

+ λ2
∥∥∥Imn ((Yα| ζn)λ − (Yα| ζn)Guess

)∥∥∥2
]
, (5.22)

where λ is the regularization parameter that controls the weight given to the minimization
of the regularization constraint (i.e. the second L2-norm) and ( )Guess denotes a reasonable
estimate of the solution. Clearly, the asymptotic choice of λ → {0, ∞} will drive the
regularized solution to Yα| ζn and (Yα| ζn)Guess, respectively. Therefore, an appropriate
choice of λ is important to ensure that the problem does not: (i) reduce to the original ill-
posed form; and (ii) relax to the prescribed estimate of the solution. Following Ref. [117],
we will choose λ = Tr

[
P̃
(
Z = ζn; Z̃m

)
∆ζn

]
/Tr [Imn], which has demonstrated good

performance for the regularized inversion [118].
With the regularized solution, (Yα| ζ)λ, we can assume first-order conditional-moment

closure:
( ω̇α (Yα, T )| ζn) ≈ ω̇α ((Yα, T | ζn)λ) , (5.23)

based on the general observations [17] that: (i) the conditional species profiles are more rep-
resentative of the reactive species fields than the filtered terms, Ỹα; (ii) the conditional vari-
ances are typically of smaller order than SGS species variances, Ỹ ′′α ; and (iii) the mixture-
fraction provides information on the stoichiometry of the mixture, which is relevant to the

58



chemical structure of the reacting flow. Subsequently, we can retrieve the discrete filtered
reaction term with Eq. (5.21):

˜̇ωα (Z̃m) = P̃
(
Z = ζn; Z̃m

)
( ω̇α| ζn) ∆ζn , (5.24)

thus providing a closure to the filtered reaction-rate of the turbulent flamelet model.
At this point, we should note that the described closure is similar to the conditional-

source term estimation (CSE) [25] method. However, this similarity extends only to the
fact that both methods share the same objective to approximate mixture-fraction condi-
tioned information from LES filtered quantities, but the fundamental concepts that led the
methods to the objective are different. First, the CSE model assumes a region in physical
space, usually a cross-section of an axisymmetric configuration, where mixture-fraction
conditioned profiles are homogeneous. The turbulent flamelet model also assumes homo-
geneous mixture-fraction conditioned profiles, but only along individual filtered flamelets,
thus allowing the model to be applied to more complex configurations where a symmetry
plane is hard to define. Furthermore, the choice to use mixture-fraction as the conditioning
variable in CSE is based on phenomenological observations that the mixture-fraction, being
intrinsically related to the mixture’s stoichiometry, generally represents the flow’s chemical
states well. In contrast, the utilization of mixture-fraction for conditioning in the turbulent
flamelet model is attributed to: (i) the equivalence of laminar flamelet and transport equa-
tions (cf. Sec. 5.1); and (ii) the existence of some mixture-fraction conditioned profiles
within a filter-cell, which corresponds to a point on a filtered flamelet. Third, the CSE
model often considers a doubly CMC approach, with a reaction progress indicator (e.g.
scalar-dissipation rate, sensible enthalpy) as the second conditioning variable, in order to
improve the model’s accuracy in the presence of transient events, such as flame-extinction.
The turbulent flamelet model circumvents this need for a second conditioning variable by
extracting numerous filtered flamelets from different locations in the flow-field.

5.3.3 Presumed FDF Method

In the exchange of LES filtering with FDF convolution, such as Eq. (5.17), the knowledge
of the FDF has been implied. Pope has interpreted the FDF as a distribution in composition
space, weighted by the spatial-filter function, G, within a filter-cell [87]; the FDF is equal
to the PDF in the asymptotic limit of zero filter width:

lim
∆i→0

P (φ = ψ) = lim
∆i→0

∫
δ(φ(x′i)− ψ)G(xi − x′i; ∆i)dx

′
i = P (ψ ≤ φ ≤ ψ + dψ)/dψ ,
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where P (φ = ψ) is the FDF that does not consider density-weighting (i.e. (ρ|ψ)P (φ =

ψ) = P̃ (φ = ψ)). In principle, the FDF can be transported in the form of a conservation
equation, but this approach is computationally expensive due to the need of a Monte-Carlo
method and the closure problem due to molecular diffusion. Due to these computational
complexities, and the fact that the present model requires only the FDF of mixture-fraction,
which is a conserved, non-reacting scalar, the current work does not consider any trans-
ported FDF approach. Instead, a presumed FDF closure is implemented.

A common model for the presumed FDF of the mixture-fraction is the beta-distribution,
which has been shown by a-priori studies [119–121] to reasonably represent non-reacting
scalar distribution in most turbulent flows. However, experimental results by Tong [122]
showed that the beta-distribution may not be appropriate in extreme cases, for instance
strongly sheared flows. In such conditions, one may consider the direct quadrature method
of moments (DQMOM) [123, 124] approach, which is an Eulerian transported PDF tech-
nique that does not rely on stochastic method and has demonstrated potential in transporting
FDF practically in the LES framework.

The beta distribution for mixture-fraction is parameterized by its first two moments in a
filter-cell, namely the filtered mixture-fraction, Z̃, and the SGS mixture-fraction variance,
Z̃ ′′2 = Z̃2 − Z̃2. For a given interval Z ∈ [ζ−, ζ+], the beta distribution is written as:

β
(
ζ; Z̃, Z̃ ′′2

)
=

Γ(a+ b)

Γ(a)Γ(b)

(
ζ − ζ−

)a−1 (
ζ+ − ζ

)b−1 (
ζ+ − ζ−

)1−a−b
, (5.25)

where Γ( ) denotes the gamma function and

a =
Z̃ − ζ−

ζ+ − ζ−
γ , b =

ζ+ − Z̃
ζ+ − ζ−

γ , γ =

(
Z̃ − ζ−

)(
ζ+ − Z̃

)
Z̃ ′′2

− 1 . (5.26)

Clearly, the use of the beta distribution will require the solutions of Z̃ and Z̃ ′′2. The
LES transport equation for Z̃ has been given as:

∂ρZ̃

∂t
+
∂ρZ̃ũi
∂xi

=
∂

∂xi

[
ρ
(
D̃Z + D̃t

) ∂Z̃
∂xi

]
, (3.23a)

while the SGS mixture-fraction variance can be obtained from the following filtered trans-
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port equation:

∂ρZ̃ ′′2

∂t
+
∂ρũiZ̃ ′′2

∂xi
=

∂

∂xi

[
ρD̃

∂Z̃ ′′2

∂xi

]
− 2ρ(̃uiZ)′′

∂Z̃

∂xi
− ρ (χ̃Z)SGS

− ∂

∂xi

[
ρ

((
ũiZ2 − ũiZZ̃ − (̃uiZ)′′Z̃

)
− ũiZ̃ ′′2

)]

+
∂

∂xi

ρ ˜(
D
∂Z2

∂xi

)′′− 2Z̃
∂

∂xi

ρ ˜(
D
∂Z

∂xi

)′′ , (5.27)

where the second and third terms on the RHS are the production and dissipation terms,
respectively, the fourth term corresponds to transport by turbulent motions, and the last two
terms are related to SGS molecular diffusion; further modeling is required to close these
specific terms. Following Poinsot & Veynante [62], the production and turbulent transport
terms will be modeled by a gradient transport assumption:

(̃uiZ)′′ = −D̃t
∂Z̃

∂xi
,

((
ũiZ2 − ũiZZ̃ − (̃uiZ)′′Z̃

)
− ũiZ̃ ′′2

)
= −D̃t

∂Z̃ ′′2

∂xi
,

with D̃t is determined from a dynamic approach (see Sec. 2.3.2). Using spectral argu-
ments [35], the dissipation term can be modeled as:

(χ̃Z)SGS =
CεCχZ

Sct
Cu

D̃t

∆2
Z̃ ′′2 ,

where Cε/Cu and CχZ
are chosen as π2 and 2.25, respectively, and Sct = 0.4 [34] is the

turbulent Schmidt number. Finally, based on the general observation of negligible molecu-
lar diffusion relative to turbulent transport, all SGS molecular diffusion effects are omitted,
thus giving the closed form of the SGS mixture-fraction variance transport equation as:

∂ρZ̃ ′′2

∂t
+
∂ρũiZ̃ ′′2

∂xi
=

∂

∂xi

[
ρ
(
D̃ + D̃t

) ∂Z̃ ′′2
∂xi

]
+ 2ρD̃t

∂Z̃

∂xi

∂Z̃

∂xi

− CεCχZ
Sct

Cu
D̃t

∆2
Z̃ ′′2 . (5.28)

5.3.4 Adaptive Inverse-Distance Weighting

One inconvenience of using filtered flamelet information to predict the reaction in a LES is
the need to redistribute the filtered reaction-rate from the filtered flamelet space to Carte-
sian space. This requirement arises from the fact that the reconstructed reaction term, as
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shown in Eq. (5.24), co-locates with individual flamelets, instead of the three-dimensional
coordinate system. However, if the connections between adjacent flamelet points via the fil-
tered mixture-fraction gradient are disregarded, the space covered by the extracted flamelets
can be considered as a set of sampled locations. Therefore, the redistribution of filtered
reaction-rate information can be accomplished by a spatial-interpolation scheme. Borrow-
ing knowledge from the field of geoscience, the common tools for such a task are the deter-
ministic inverse-distance weighting (IDW) method [125] or the geostatistical kriging ap-
proach [126]. To this end, we employed the adaptive IDW (AIDW) interpolation technique
by Lu & Wong [127], which circumvents the lack of consideration of spatial variability by
the classic IDW method, while not introducing as much computationally complexities as
kriging does.

The AIDW method retains the fundamental assumptions of IDW: (i) Tobler’s first law
of geography [128]: “everything is related to everything else, but near things are more
related than distant things” holds true for the sampled dataset. (ii) The data’s probabilistic
distribution is not needed for the spatial-interpolation. As a result, the spatial-interpolation
can be expressed as:

˜̇ωα (xi) =

Np∑
p=1

[
‖xi − xpi ‖

−ξ∑Np

p=1 ‖xi − x
p
i ‖
−ξ
˜̇ωα (xpi )

]
, (5.29)

where ξ is the interpolation exponent and each xpi corresponds to a point in space occu-
pied by one flamelet. Clearly, the formulation stated in Eq. (5.29) will induce a so-called
distance-decay effect that will bias against locations that are far from the sampled points,
hence the name inverse-distance weighting. Interestingly, the two asymptotic limits of the
exponent ξ at 0 and ∞ will automatically reduce the spatial-interpolation method to the
sample-averaging (across all Np samples) and nearest-neighbor schemes, respectively.

As aforementioned, the classic IDW method usually lacks spatial variability consid-
eration because it prescribes and applies the interpolation exponent uniformly across the
domain-of-interest, thus fixing the distance-decay relation (5.29). The general idea behind
the AIDW approach is to introduce variability in the distance-decay effect by prescribing
the function, instead of the value, of the exponent, ξ, in accordance to the neighborhood
point pattern. Specifically, the AIDW technique will emphasize on the sample-averaging
scheme (ξ → 0) when the point-of-evaluation at xi lies in a region with highly clus-
tered samples, and give weight to the nearest-neighbor scheme (ξ → ∞) if the point-
of-evaluation resides in an area where the samples are relatively dispersed. In order to
quantify the neighborhood point pattern so the appropriate scheme can be selected, the
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AIDW method considers the nearest-neighbor statistic, r:

r(xi) =

((
4πρN

3

)−1/3

Γ

(
4

3

))−1 ∑Nq

p=1 sort+ [‖xi − xpi ‖]
Nq

, (5.30)

where ρN is the number density given by the ratio of NV points that defines the study
region to the region’s volume V , and sort+[ ] indicates that the set of ‖xi − xpi ‖ is sorted
in ascending order. The coefficient on the RHS of Eq. (5.30) corresponds to the expected
nearest-neighbor distance for a random three-dimensional pattern, while the fraction refers
to the observed average nearest-neighbor distance of the Nq nearest samples. Note that the
sorting function is critical for an efficient estimation of r because it allows for Nq ≤ Np

(i.e. a subset of the total Np samples), thus limiting the number of evaluations of Eq. (5.30)
to (NV ×Nq) times.

In order to invoke some degree of uncertainty in the method, fuzzy logic is implemented
to map r to the interpolation exponent, ξ. Following Ref. [127], we define the fuzzy set by
a triangular membership function with five categories, as shown in Fig. 5.2. In doing so,
the determination ξ is divided into two steps:

1. Use r to evaluate the weights (w±) of the relevant upper/lower categories, as given
by the ordinate.

2. Compute ξ by the sum: w+ξ+ + w−ξ−, where ξ± are the prescribed values of the
relevant upper/lower categories.

For example, if (r−rmin)/(rmax−rmin) = 0.34, as indicated by the vertical line in Fig. 5.2,
then the corresponding weights will bew+ = 0.2 andw− = 0.8, as shown by the horizontal
lines, so ξ = 0.2(1) + 0.8(0.5) = 0.6. After the interpolation exponent has been computed
for all the domain points, the spatial-interpolation can be performed with Eq. (5.29), with
ξ now a function of xi instead of a constant value as in the case of the IDW method.

While relatively robust, spatial-interpolation using the AIDW technique was found to
return undesirably noisy profiles of chemical source terms. These noisy outputs are at-
tributed to the locality of chemical reactions, thus allowing only samples that are extremely
close by (i.e. a stringent upper limit on Nq) in order for the results to be smooth as they
should be. To circumvent this issue, the spatial-interpolation is currently applied on a com-
position space, consisting of the mixture-fraction and its SGS variance, Z̃ and Z̃ ′′2, and
temperature, T̃ . This switch of the interpolation space is possible because all three vari-
ables are transported fields that exist at every xi-location (i.e. φ̃ = φ̃(xi)). For this reason,
we will not differentiate between the space in which the AIDW interpolation scheme is
performed, and simply express the interpolation in terms of xi wherever applicable. Note
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Figure 5.2: Fuzzy set as described by triangular membership function with five categories
for AIDW interpolation technique [127].

that the current composition space interpolation can be interpreted as a dynamic FPV tab-
ulation, with temperature being the progress-variable and in contrast to the conventional
FPV model in which the tabulation is static and done a-priori.

5.3.5 Model Implementation Procedure

Having established the theories and components of the turbulent flamelet model, we will
now summarize the implementation procedure of the model, which will be performed for
each global time-step iteration.

Step 1: Compute the filtered mixture-fraction gradient,∇Z̃, at allNV domain points.

Step 2: Choose Nf points (Nf ≤ NV ) at which the tracing of Nf flamelets will
begin; a sensible choice should consider the stoichiometric mixture-fraction iso-
surface, Zst, or its vicinity.

Step 3: Construct the Nf flamelets by tracing in the positive and negative direction
of ∇Z̃. This tracing step will terminate at either a stationary point of the filtered
mixture-fraction profile, or the domain boundary faces. To this end, an Eulerian
pseudo-time-stepping method is utilized for efficient extraction of the flamelet paths.
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Adjacent points along each flamelet will be separated by a defined bin-width in the
filtered mixture-fraction space, ∆Z̃ = 1/Nb, where Nb is the user-defined maximum

number of bins per flamelet. Note that the flamelets may not have an equal number of
occupied bins, since the turbulent flow should affect each flamelet differently. Hence,
the total of Np flamelet points will lie within the range Nf ≤ Np ≤ (Nf ×Nb),
where the lower and upper bounds of the inequality correspond to the cases where
all flamelets have only 1 or all Nb bins occupied, respectively.

Step 4: Populate the Np flamelet points with filtered information relevant to the CSE
method (cf. Sec. 5.3.2), including density, mixture-fraction and its SGS variance,
species, and temperature. Currently, a tri-linear interpolation scheme is used for this
step, and the benefits of higher-order interpolation schemes are worth exploring.

Step 5: Evaluate the mixture-fraction FDF for all Np flamelet points, using the pre-
sumed FDF method described in Sec. 5.3.3. One caveat to this step is the implicit
condition that the number of bins in the ζ-space, Nn,f has to be less than or equal to
the number of occupied bins of each flamelet, Nm,f :

Nn,f ≤ Nm,f , (5.31)

where the notations of m and n corresponds to that of Eqs. (5.21) and (5.24), while
f indicates that the stated bin numbers have a dependence on the flamelet being
evaluated. In other words, the regularized matrix inversion, similar to the least
square method, is only applicable for over-determined (Nn,f < Nm,f ) or consistent
(Nn,f = Nm,f ) systems. For simplicity, a consistent linear system is always enforced
by equating Nn,f to Nm,f . In the case where Nm,f = Nn,f = 1, the inversion will be
replaced by the assignment: φ (ζn) = φ̃

(
Z̃m

)
.

Step 6: Perform the regularized inversion as described by Eq. (5.22), using the fil-
tered flamelet profile as the estimate of the solution (i.e. (φ| ζ)Guess = φ̃

(
Z̃
)

). If a
consistent linear system is not enforced (i.e. Nn,f < Nm,f ), an extra interpolation
step will be needed to reduce the (Nm,f × 1) φ̃

(
Z̃
)

-array to a (Nn,f × 1) array.

Step 7: Compute the mixture-fraction conditioned reaction-rate, ω̇φ| ζ , using the
converged conditional thermochemical profiles from the previous step. Currently,
the first-order CMC, given by Eq. (5.23), is used for this calculation. Next, convolve
the conditional reaction-rate with its corresponding mixture-fraction FDF from Step
5 in accordance to Eq. (5.24), thus obtaining the filtered reaction-rate, ˜̇ωφ. This step
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will be performed for all Nf flamelets, so ω̇φ| ζ and ˜̇ωφ will be one-dimensional
arrays with Nn,f and Nm,f entities, respectively.

Step 8: Distribute ˜̇ωφ, which at this point correspond only to the physical space
occupied by the filtered flamelets, to the three-dimensional space using the AIDW
approach of Sec. 5.3.4. Since the AIDW method disregards the relation between
adjacent flamelet points via ∇Z̃, ˜̇ωφ and their corresponding spatial locations (xpi )
can be gathered into a set of Np samples.

Subsequently, the AIDW interpolation weights for each of theNV domain points (xi)
can be evaluated by sorting theNp samples in ascending order of ‖xi − xpi ‖ and using
the first Nq ≤ Np samples of the sorted list. Without intensive parametric analyses,
Nq = 40 is currently chosen based on its observed balance in solver efficiency and
model accuracy.

Since the combustion model is developed with a consideration of the high-performance
computing (HPC) architecture, the described implementation procedure is applicable to
both serial- and parallel-processing simulations. For the latter case, a program interface
that enables process communication will be necessary for Steps 1, 3–4, and 8. In addition,
a performance gain in the model may be possible with an optimatization of the parallel-
process workload, but is not pursued in this work.

Admittedly, the model implementation is not trivial and incurs approximately 14 times
more computational overhead as compared to the standard FPV model and 8 times more
than the laminar approximation model. However, this price is deemed reasonable in light
of the advantages provided by the turbulent flamelet model, as will be demonstrated in
the following study. In particular, the flamelet extraction step of the model (i.e. Step 3)
will, by virtue of the equivalence of flamelet and transport equations (see Secs. 5.1–5.2),
include the higher-order flamelet terms that are conventionally neglected by classic flamelet
models. Since these higher-order flamelet terms are introduced without resolving to further
modeling, our turbulent flamelet model is indeed a higher-order flamelet model. Also worth
mentioning is the model’s flexibility to be coupled to any LES flow-solver that transports
the filtered mixture-fraction and its variance.
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5.4 A-Priori Investigations

This section presents the study that was utilized to assess the higher-order flamelet model.
The study was conducted in the context of a turbulent counterflow diffusion flame (TCDF)
simulation, which is further described in the following sub-section. Subsequently, the ref-
erence DNS solutions of the TCDF configuration, including the instantaneous flow-field
characteristics, turbulent kinetic energy spectrum, and scalar-dissipation rate PDF, will be
analyzed. Then, a diagnostic LES method that is designed for the a-priori investigation of
combustion models’ performance in a time-varying fashion will be introduced, followed
by the results of the analysis.

5.4.1 Turbulent Counterflow Diffusion Flame

The choice to use a turbulent counterflow diffusion flame to assess the higher-order flamelet
model was made in consideration of the configuration’s advantages from a computational
viewpoint [129]. Specifically, the benefits of TCDF are:

• Simple, but versatile setup that allows for conditions from flame equilibrium to
quenching, hence covering a broad range of turbulent Reynolds and Damköhler num-
bers (ReΛ and DaΛ, respectively).

• Compact system, on the order of centimeters, approximately one to two orders-of-
magnitude smaller than typical turbulent jet flames.

• Little influence from flame-surface interactions or pilot flames since the flame is
hydrodynamically stabilized in the vicinity of the stagnation plane.

Furthermore, the counterflow configuration finds relevance as the flame stabilization strat-
egy in aviation gas turbine combustors, and also serves as the canonical model that rep-
resents the near-field environment of strongly strained mixing layers [9]. In a series of
studies [129–131], the TCDF configuration was demonstrated to operate under conditions
in the Williams’ regime diagram [11] that are relevant to Diesel engines and gas turbines
(ReΛ = [102, 103], DaΛ = [100, 102]), exhibiting localized flame holes, flame reignition,
strain-induced flame quenching, and substantial flame sheet distortions.

The TCDF configuration that is used in the present work is schematically illustrated
in Fig. 5.3, and the essential parameters of the configuration are given in Tab. 5.1. The
global turbulent Reynolds and Damköhler numbers are based on the mean integral scale
of the homogeneous isotropic turbulence (HIT) simulation that was separately performed
to introduce turbulent fluctuations at the fuel and oxidizer boundaries. In order to reduce
complexities in the model analysis so that the combustion model’s performance can be
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Figure 5.3: TCDF DNS and LES configuration and streamwise (x) and traverse (y) bound-
ary conditions; the spanwise (z) direction uses a periodic boundary condition. The contour
line refers to the stoichiometric mixture-fraction isoline.

thoroughly understood, a one-step, irreversible hydrogen/air chemistry mechanism [132] is
currently considered. It is noted, however, that the utilization of such a reactive mechanism
will favor a stable flame, thus eliminating any occurrence of overall flame extinction in the
simulations. The high reactivity of the one-step mechanism is reflected by the high DaΛ,
for which the chemical time-scale is estimated with the formulation of Marinov et al. [132]:

H2 +
1

2
O2

kg−→ H2O ,

kg =
(
1.8× 1013

)
exp

(
−17614 K

T

)
, ω̇ = kg

(
ρYH2

WH2

)(
ρYO2

WO2

)0.5

, (5.32)

where the average of the mixing (300 K) and adiabatic (1600 K) temperatures and a stoi-
chiometric composition were used.

5.4.2 DNS Flow-Field Analysis

In this section, the flow-field characteristics of the TCDF DNS will be explored. These
analyses will facilitate later discussions on the corresponding LES results (cf. Chap. 6),
where the DNS results will be regarded as the reference solutions.

The flame-vortex interactions at three instants, each separated by half a characteristic
time step, are shown in Fig. 5.4. The characteristic time of the current configuration is
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Parameter Value

Fuel

Slot width 2 cm
Mean velocity [−1, 0, 0]T m/s
Composition YH2 , YN2 = 0.03, 0.97
Temperature 300 K

Oxidizer

Slot width 2 cm
Mean velocity [1, 0, 0]T m/s
Composition YO2 , YN2 = 0.23, 0.77
Temperature 300 K

Domain size 4× 3× 2 cm
Grid resolution 256× 192× 128

Chemical kinetics 4 species, 1 reaction [132]
Stoichiometric mixture-fraction 0.49

Velocity fluctuation, (‖u′i‖ / ‖ui‖)Fuel/Oxidizer 0.2
Integral length 5 mm

Turbulent Reynolds number, ReΛ 47
Turbulent Damköhler number, DaΛ 3.2× 104

Table 5.1: Essential parameters of the TCDF DNS.

defined by the reciprocal of the global strain rate:

ag =

∣∣∣〈‖ui‖〉Fuel − 〈‖ui‖〉Oxidizer
∣∣∣

lx
=
|−1− 1|

0.04
= 50 1/s , (5.33)

where the values on the RHS are given in Tab. 5.1. From the figure sequence, we see that
the flame-sheet, which is represented by the stoichiometric mixture-fraction iso-surface,
is constantly distorted by the vortical structures of the turbulent flow; in figure 5.4, these
vortical structures are represented by the definition of Jeong & Hussain [133]. Some of
the flame distortions that can be discerned in Fig. 5.4 are: (i) compression, resulting in a
relatively flat (quasi two-dimensional) flame-sheet in the earliest instant; and (ii) folding,
leading to a multi-dimensional flame-sheet of the latest time. The variation of the temper-
ature field along the flame-sheet indicates that the strain on the flame-sheet, which tends
to induce flame-quenching and hence is reflected by the low temperature region, is shifting
from the negative spanwise side towards the centerplane (z = 0). However, based on the
temperature of the flame-sheet, which is always at least five times larger than the injec-
tion temperature of 300 K, we note that there is no occurrence of flame-extinction in the
DNS across the evaluated time period. This resilience of the flame is attributed to the use
of a one-step hydrogen/air chemistry mechanism [132], which is highly reactive. Another
indication of the strong reaction from using the one-step chemistry is the small flame-
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thickness, lFl, that can be observed from the temperature contours along the y = 0 plane
shown in Fig. 5.4. The contour lines in the y-plane describe the planar intersection with the
vortices, emphasizing the correlation between the flame-sheet and vortical structures.

The mean turbulent kinetic energy spectrum, which is shown in Fig. 5.5, is obtained
by averaging over one characteristic time period of 0.02 s, using the results presented in
Fig. 5.4. The convergence (arrow) of the spectrum at intermediate instants (thin curves)
towards the mean spectrum (thickened curve) suggests that this dataset, which is used in
the subsequent studies, has sufficiently approached a statistically-steady state. Compared
to the analytical Kolmogorov −5/3-spectrum, which is indicated by the slope of the thick-
ened linear line, the mean energy spectrum does not display a noticeable integral range.
This absence of scale is common to the low turbulent Reynolds number regime, wherein
the current TCDF configuration belongs. Due to low Reynolds number, the Kolmogorov
length-scale, η, is just approximately 1/3 of the mean flame-thickness, lFl (solid vertical
line) and therefore more likely to be larger than the reaction-zone thickness, resulting in
the lack of flame-extinction as aforementioned.

Further indication of a statistical-steady state in the current dataset can be inferred from
the smoothness of the scalar-dissipation rate PDF, shown in a discrete form in Fig. 5.6.
The dissipation-rate profile is seen to approximately resemble its analytical log-normal
distribution [134], which is given by the thin line in Fig. 5.6 and calculated using the mean
and variance of the logarithm of the scalar-dissipation rate. The discrepancies between
the two PDFs may be attributed to the presence of reaction in the current flow, which will
increase diffusivity and laminarize the flow. In turn, the laminarization is possibly the cause
of the dense region at low χZ-values seen in the PDF extracted from the DNS.

The joint PDF of scalar-dissipation rate and temperature along the flame-sheet, shown
in Fig. 5.4, is given in Fig. 5.7, along with the S-shaped curve that corresponds to the
current configuration. From the distribution, we see that the variations in both χZ,st and Tst

are modest, spanning a range of ∼ 10 1/s and ∼ 50 K, respectively. However, analysis
within the region of high probability, which is denoted by darker colors, indicates that the
results deviate from the solutions of SLFM, which reside on the S-shaped curve. Therefore,
we can deduce that the flamelets in the current TCDF are mildly unsteady.

Overall, this flow-field study demonstrates that the current TCDF does possess the nec-
essary complexities, namely flamelet unsteadiness and turbulence-flame interactions, but
at a moderate level so that the assessment of the proposed model will not be overwhelmed
by the difficulties posed by the flow-field. From a modeling perspective, this approach
is acceptable because the characteristics of the combustion model can then be understood
thoroughly, thus facilitating its further application to more complicated configurations.
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Figure 5.4: Flame-vortex interactions from the TCDF DNS at three instants, increasing in steps of half a characteristic time of 0.02 s
from left to right. In each figure, the flame-sheet (stoichiometric mixture-fraction iso-surface) is colored by temperature, and the vortex
tubes are represented by the iso-surface of the second eigenvalue, λ2 = 0, of the symmetric tensor sijsji + ΩijΩji [133], where sij and
Ωij refer the symmetric and asymmetric components of the velocity-gradient tensor. The intersection of the vortex tubes and the y = 0
plane, which is also colored by temperature, is shown by the contour lines.
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5.4.3 Constrained LES Methodology

As aforementioned, the current study is conducted with a method that considers the tempo-
ral effects of the combustion model. This method, hereafter referred to as the constrained
LES technique, is introduced to make full use of the autonomy from performing our own
DNS. In essence, the method consists of the DNS of the TCDF configuration, along with
the additional procedures of: (i) spatial-filtering of all flow-field information (i.e. density,
diffusivities, and velocities); and (ii) solving of filtered transport equations that utilize the
filtered DNS flow quantities; which are performed simultaneously. Through these treat-
ments, the method is essentially considering an LES with a perfect turbulence model, thus
constraining errors to be dominantly attributed to the combustion model. Numerical er-
rors, which are usually insignificant relative to the model errors, will not be relevant since
the calculations are performed with mathematical operators of the same solver, thus affect-
ing each step in a consistent and impartial manner. In contrast to the proposed technique,
conventional combustion model assessments will usually involve the post-processing of
individual instantaneous DNS snapshots, which may overpredict the model performance
because the error accumulation over time cannot be accounted for.

To further illustrate the concept, the constrained LES technique will, for each iteration,
solve the following equation set:

∂ρ

∂t
+
∂ρui
∂xi

= 0 , (2.14a)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
2µ

(
sij −

1

3

∂uk
∂xk

Iij

)]
, (2.14b)

∂ρYα
∂t

+
∂ρuiYα
∂xi

=
∂

∂xi

[
ρD

∂Yα
∂xi

]
+ ρω̇α , (5.34a)

∂ρỸα
∗
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∂

∂xi

[
ρD

∂Ỹα
∗

∂xi

]
+ ρ˜̇ωα∗

+
∂

∂xi

[
−ρ ˜(uiYα)′′ + ρ

(̃
D
∂Yα
∂xi

)′′]
, (5.34b)

where the first three equations denote the standard DNS formulation, while the asterisk
( )∗ in Eq. (5.34b) indicates a modeled variable. All the spatially-filtered ( )-terms and
turbulent fluxes in the latter equation are provided from the DNS solutions of the first two
equations of the set. Therefore, if a combustion model is exact, the modeled Ỹα

∗
term of

Eq. (5.34b) will be identical to the Favre-filtered Yα solution of Eq. (5.34a). Conversely, any
inaccuracies in the combustion model will lead to discrepancies between the transported
Ỹα
∗

term and the Favre-filtered Yα field.
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Figure 5.5: Mean turbulent kinetic energy spectrum, averaged across one characteristic
time period of 0.02 s using the results shown in Fig. 5.4. The intermediate spectrums are
illustrated by the thin curves, showing clearly a convergence towards the final mean spec-
trum (thickened curve) and hence a statistically steady-state. The shaded region denotes the
range that contains 98% of the turbulent energy, and the dashed ( ) and solid ( ) vertical
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Figure 5.7: Joint PDF of scalar-dissipation rate and temperature along the flame-sheet (cf.
Fig 5.4) across one characteristic time period of 0.02 s. The inset, which better illustrates
the region of high probability (dark color), demonstrates that the dataset deviates from the
steady laminar flamelet formulation, which is described by the S-shaped curve ( ). The
arrow indicates the general region on the S-shaped curve where the FPV model will obtain
its solutions.

Note that the conservative form of the simplified species equation (5.34a) is used here
only for brevity. The method is in fact general, and has been applied to the working tem-
perature and species equations (2.14c)–(2.14d), in which the consideration of a correction
velocity term and a non-homogeneous mixture molecular weight profile (cf. Eq. (2.6)) will
only introduce additional diffusive and turbulent flux terms of forms analogous to those
given in Eq. (5.34b).

5.4.4 Constrained LES Analysis

The TCDF simulation results from the constrained LES using three combustion models,
namely the current higher-order flamelet model (HOFM), conventional FPV model, and
laminar approximation model (i.e. no combustion closure), and a filter-width of ∆/lFl = 3

are shown in Fig. 5.8–5.9. Note that, in these figures, the DNS results are filtered before
the spanwise-averaging step, which is applied on all results. The two instants shown in the
figures refer to the half (center column) and full (right column) period of the characteristic
time of 0.02 s, which is defined by the reciprocal of the global strain rate (cf. Eq. (5.33)).
All three constrained LES use the same initial condition that is represented by the mean
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filtered DNS results of the earliest instant shown by the left diagram of Fig. 5.4 and borrow
the closure for turbulence from the simultaneous DNS, as explained in Sec. 5.4.3. For the
ease of discussion, this earliest instant will be taken as the temporal origin and referred to
as t = 0 hereafter, so the other two instants will be t = 0.01 s and t = 0.02 s accordingly.

In Fig. 5.8, the spanwise-averaged, filtered temperature profile for all combustion mod-
els exhibit qualitative agreement with the reference mean filtered DNS solutions, which
is expected from the simplicity of the current setup and the omission of errors from the
turbulence SGS model.

While not apparent in the qualitative comparison of filtered temperature in Fig. 5.8,
the filtered temperature profile predicted by the different combustion models does vary in
its accuracy relative to the reference DNS solution. This observation can be best made
in terms of a correlation plot using scattered data that are derived from the point-to-point
comparison of results against the reference DNS solutions. The correlation plots for the
mean filtered temperature corresponding to Fig. 5.8 are given in Fig. 5.9, where the abscissa
and ordinate denote the reference DNS results and modeled solutions, respectively, and any
error is reflected as a deviation from the perfect correlation line, which is denoted by the
diagonal of the plot. This deviation can be quantified by the slope of the linear best-fit
line of the scatters, which are illustrated by the thickened lines in the figures and presented
in Tab. 5.2. In essence, a slope that is more than one indicates an overprediction in the
evaluated quantity, and vice versa.

Combustion Model Linear Best-Fit Slope
t = 0.01 s t = 0.02 s

Mean Filtered Temperature
HOFM 0.95 1.06

FPV 0.93 0.89
Laminar 0.96 0.93

Table 5.2: Comparison of the slope of the linear best-fit for the modeled results relative to
the reference DNS solutions, which are illustrated in Fig. 5.9 by the thickened lines.

In consistent with the qualitative comparison, the filtered temperature profiles are rea-
sonably captured in the LES, with all the slopes of the linear best-fit approximately within
10% of unity. Slight underprediction in the filtered temperature are consistently observed
for the FPV and laminar model results, while the HOFM temperature solution is slightly
underpredicted at t = 0.01 s and evolve to an overprediction at the later time.

In summary, this analysis shows that the proposed HOFM model can be applied as a
combustion closure model for turbulent reacting flow LES, showing improvement over the
laminar approximation model in the TCDF configuration. It should be recognized, how-
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Figure 5.8: Spanwise-averaged, filtered temperature from DNS, HOFM, FPV, and laminar
model (top to bottom) at t = 0.01 s (center) and t = 0.02 s (right). The filter-width is
∆/lFl = 3. Only the filtered DNS profile is needed for t = 0 (left) because it is the initial
condition for the LES.
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Figure 5.9: Correlation plot for the spanwise-averaged, filtered temperature of HOFM (l,
), FPV (�, ), and laminar (4, ) model relative to that of DNS at t = 0.01 s (left)

and t = 0.02 s (right). The thickened lines are the respective linear best-fit of the scatters,
while the thin line denotes a perfect correlation. The filter-width is ∆/lFl = 3.

ever, that the analysis has specifically eliminated errors due to the turbulence SGS model,
which can lead to further inaccuracies in the combustion model predictions. Therefore,
further model performance evaluations on the HOFM were performed in similar fashion to
this section, but in the context of actual LES, as discussed in the following section.
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CHAPTER 6

Application of Higher-Order Flamelet Model

Following on from the formal model derivations and encouraging a-priori assessment re-
sults of the preceding chapter, the proposed higher-order flamelet model is applied to ac-
tual LES in the following. The LES are performed in the context of the same turbulent
counterflow diffusion as the a-priori studies. Therefore, the presented DNS results can
be employed as the reference solutions, because they are computed with all combustion
and turbulent scales resolved and without additional models other than those discussed in
Sec. 2.2. However, in order to compare to LES results, which pertain to Favre-filtered vari-
ables (cf. Sec. 2.3), the DNS solutions first have to be explicitly filtered. The effects of
such treatment on the DNS solutions, performed in accordance to the Favre formulation,
are first investigated. Then, the LES with three combustion closure models, namely HOFM,
FPV, and laminar approximation, will be presented, followed by a study of one particular
flamelet extracted from the filtered field to substantiate HOFM’s good agreements with the
reference DNS solutions.

6.1 Filtered Flow Field Analysis

The resolved flame-vortex interactions at three instants, each separated by half a charac-
teristic time step, defined by the reciprocal of the global strain rate (see Eq. (5.33)), are
shown in Fig. 6.1. These data are filtered from the results of Fig. 5.4 using a filter-width
of ∆/lFl = 2 , thus allowing for direct comparisons with the earlier observations of the
unfiltered results. The amount of information lost from the filtering is quantified by the
region to the right of the dashed-dotted line at higher wavenumber of the turbulent kinetic
energy spectrum, as shown in Fig. 5.5. From the energy spectrum, we see that more than
98% of the turbulent energy (shaded region) is resolved with the current filter-width.
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Figure 6.1: Resolved flame-vortex interactions from the Favre-filtered TCDF DNS at three instants, increasing in steps of half a char-
acteristic time of 0.02 s from left to right. In each figure, the resolved flame-sheet (stoichiometric filtered mixture-fraction iso-surface)
is colored by Favre-filtered temperature, and the vortex tubes are represented by the iso-surface of the second eigenvalue, λ2 = 0, of
the symmetric tensor [133] constructed by the symmetric and asymmetric components of the resolved velocity-gradient tensor. The
intersection of the vortex tubes and the y = 0 plane, which is also colored by filtered temperature, is shown by the contour lines. Note
that the unfiltered counterparts of these results are given in Fig. 5.4 and the filter-width is ∆/lFl = 2.
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Most noticeable of all is the loss in fine-scale features in both types of iso-surface, espe-
cially for the vortex tubes. In contrast, the filtered flame-sheet still bears a resemblance to
its unfiltered counterpart, exhibiting features of quasi two-dimensionality due to compres-
sion and vortex-induced folding at the earliest and later instants, respectively. Applying
the earlier conventions of Sec. 5.4.2, these snapshots will hereafter be referred to as t = 0,
t = 0.01 s, and t = 0.02 s.

Another prominent difference between the filtered and unfiltered results is the substan-
tially lower resolved temperature, with a maximum value of approximately 1500 K, which
is the minimum temperature along the unfiltered flame-sheet. This decrease in temperature,
which is reflected by the dark region along the filtered flame-sheet, is so dominant that the
shifting of high strain on the sheet towards the centerplane in the unfiltered case is no longer
apparent. Instead, multiple cool spots are discerned along the filtered flame-sheet.

From the y = 0 plane in figure 6.1, the filtered flame is slightly thicker than its un-
filtered counterpart, but overall still thin relative to the domain length-scales. In addition,
the influence of the resolved vortical structures on the filtered flame-sheet is still noticeable
from the contour lines shown on the y-plane.

In Fig. 6.2, one-dimensional filtered (thickened solid line) and unfiltered (thin solid
lines) temperature profiles in mixture-fraction space at t = 0 are presented. The filtered
profile in figure 6.2 corresponds to the flamelet that passes through the spatial origin, which
we will hereafter refer to as the centerline flamelet. The centerline flamelet profile is ex-
tracted using the technique described in Sec. 4.1, wherein the spatial origin is used as the
starting point for the gradient-tracing operation. On the other hand, the unfiltered distri-
butions correspond to the various flamelets that are enclosed by the filter-cell around the
origin, and are extracted with the same technique as the centerline flamelet, but using the
grid points within the filter-cell as the starting locations for the gradient-tracing.

Comparing the filtered and unfiltered profiles in Fig. 6.2, the resolved temperature is
clearly lower than the unfiltered temperature, which is a typical effect due to filtering.
Interestingly, we see that the resolved and unfiltered temperature profiles will converge at
both fuel-lean and fuel-rich regions, suggesting that the turbulence-chemistry interactions
occur mostly in a mixture-fraction range that is closer to the inner flame- and reaction-
zones [111]. Also, in contrast to the unfiltered profiles, which peak at the stoichiometric
mixture-fraction value of 0.5, the filtered T̃ -profile skews slightly towards the fuel-lean and
has its maximum point at Z̃ ≈ 0.45.

Considering the SLFM solution (thickened dashed-dotted line of Fig. 6.2) with the same
peak unfiltered temperature value of max[T ] = 1600 K, the unfiltered profiles are seen to
be accurately described by the steady flamelet profile on the fuel-rich side, but are slightly
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lower than the flamelet solution on the fuel-lean side. An inset that emphasizes on the
close-up region around the peak of these profiles has been provided in figure 6.2 to further
demonstrate this discrepancy between the SLFM and DNS profiles at the fuel-lean side.
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Figure 6.2: Instantaneous one-dimensional Favre-filtered (thickened solid line) and unfil-
tered (thin solid lines) temperature profiles in mixture-fraction space at t = 0. The dashed-
dotted curve indicates the SLFM solution that has the same maximum temperature as the
unfiltered profiles, and the dashed vertical line denotes the stoichiometric mixture-fraction
Zst = 0.5. The inset is provided to emphasize the discrepancies between the SLFM and
unfiltered profiles. Note that the filtered distribution corresponds to the centerline flamelet
that passes through the spatial origin, while the unfiltered profiles are extracted from mul-
tiple flamelets that are contained within the ∆×∆×∆ = 2l3Fl filter-cell around the origin.
Refer to Fig. 6.12(b) for an illustration of the different flamelets and filter-cell.

In general, the effects of explicit filtering of the DNS solutions are reflected by: (i) a
loss of spatial information, which can be quantified with a turbulent kinetic energy spectrum
(cf. Fig. 5.5) and qualitatively observed in the decrease in fine-scale structures; and (ii) a
decrease in the maximum absolute scalar value, which is attributed to the smoothing of
sharp profiles in the scalar field. As previously discussed, these filtering effects will pose
problems in the LES of turbulent reacting flows because the Favre-filtered reaction-rates
and turbulent flux terms in Eqs. (2.18) are then unclosed. The role of a combustion closure
model is to describe the interaction between the lost subgrid information and the resolved
scale so that the unclosed reaction terms can be accurately predicted.
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6.2 Large-Eddy Simulations of TCDF

The LES results for the TCDF configuration introduced in Sec. 5.4.1 are presented in this
section. This study will first focus on the case of filter-width ∆/lFl = 2, analyzing qual-
itatively and quantitatively the performance of three combustion models, namely the pro-
posed HOFM, classical steady FPV model, and no-closure laminar approximation, using
the spanwise-averaged, filtered DNS results as the reference solutions. Then, the effects of
different filter-width on the accuracies of the three models are evaluated in terms of the er-
rors relative to the reference filtered DNS solutions. For this evaluation, three filter-widths
of ∆/lFl = {1, 2, 4} are considered. For reference, these filter levels are denoted on the
turbulent spectrum in Fig. 5.5 by a vertical solid and two dashed-dotted lines.

6.2.1 LES Results

In Fig. 6.3, the spanwise-averaged, filtered temperature profile for the two flamelet models
exhibit qualitative agreement with the reference mean filtered DNS solutions, which has
also been observed in the constrained LES study in Sec. 5.4.4. In contrary to the a-priori

analysis, however, this agreement is not expected here due to the inclusion of turbulence
SGS model errors and loss of subgrid information.

While one may argue based on the low turbulent Reynoldes number of the current setup
that the turbulence-chemistry interactions are likely insignificant, the influence of the lost
information due to filtering is definitely not negligible, resulting a significant underpredic-
tion of temperature by the laminar model. This observation is worthnoting because HOFM
is in fact currently programmed in the reacting flow-solver using the code-structure of the
laminar model as its basis. In other words, the role of HOFM in these LES can be inter-
preted as a closure to the laminar approximation. Hence, considering the improvement of
HOFM results over the laminar approximation solutions, it is reasonable to deduce that
HOFM is indeed properly closing the filtered reaction term, in accordance to the model
derivation given in Sec. 5.3.

For the spanwise-averaged, filtered heat-release profile, which is shown in Fig. 6.4,
only HOFM is seen to provide a reasonable description of the reference mean filtered DNS
solutions in terms of the profile range in x and its averaged values. In contrast, the steady
FPV model exhibits a significantly overpredicted heat-release rate that is noticeably broader
than the reference solutions. On the other hand, the laminar model shows an underpredicted
heat-release rate profile that lacks spreading to the fuel-rich side (i.e. +x-direction), which
is consistent with the underprediction in the Favre-filtered temperature field shown in the
last row of Fig. 6.3.
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Figure 6.3: Spanwise-averaged, filtered temperature from DNS, HOFM, FPV, and laminar
model (top to bottom) at t = 0.01 s (center) and t = 0.02 s (right). The filter-width
is ∆/lFl = 2. Only the filtered DNS profile is needed for t = 0 (left) because it is the
initial condition for the LES. The three horizontal lines at the t = 0 plot indicate the three
y-locations that were considered by Figs. 6.5–6.6.
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Figure 6.4: Spanwise-averaged, filtered heat-release rate from DNS, HOFM, FPV, and
laminar model (top to bottom) at two instants. Refer to Fig. 6.3 for further details.
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Quantitative comparisons with the reference DNS solutions are provided in terms of
three streamwise profiles of T̃ and ˜̇ωT for y = {−0.01, 0, 0.01}m at t = 0.01 s. The three
y-locations are indicated by the horizontal lines shown in the t = 0 plot of Figs. 6.3–6.4.
Note that the analysis for t = 0.02 s is not provided in the interest of brevity, since similar
conclusions to the given case will be drawn.

From Fig. 6.5, the good agreement between the flamelet LES solutions and the ref-
erence DNS results remains obvious, while the underprediction in the Favre-filtered tem-
perature by the laminar model is observed for all three locations. Also, the peak value of
the laminar model profile displays a higher tendency to deviate from the stoichiometric
mixture-fraction, which can be attributed to the model’s underprediction in the stoichio-
metric ˜̇ωT value seen in Fig. 6.6. Note that the ordinate of figure 6.6 has been shown in a
logarithmic scale to accommodate the O(10) overprediction in the heat-release rate by the
steady FPV model. In contrast, HOFM consistently demonstrates a good agreement with
the reference filtered heat-release rates around the vicinity of the stoichiometric mixture-
fraction, but overpredicts the term at both fuel-lean and fuel-rich regions. However, the
inaccuracies at these regions are typically not severe since the corresponding flow is usu-
ally not sensitive to the reaction-rate, as demonstrated by the resolved temperature profiles.

Similar to the constrained LES study, correlation plots for the filtered temperature and
heat-release rate are generated using scattered data that are derived from the point-to-point
comparison of LES results against the mean filtered DNS solutions, which have been shown
in Figs. 6.3–6.4. The corresponding correlation plots for the mean T̃ and ˜̇ωT are given in
Fig. 6.7 and 6.8, respectively, where, as in Fig. 5.9, the abscissa and ordinate denote the
reference DNS results and modeled solutions, respectively. Any error is reflected as a
deviation from the perfect correlation line, which is denoted by the diagonal of the plot.
This deviation is presented in Tab. 5.2 in terms of the slope of the linear best-fit line of each
scatter dataset, where a value larger than unity indicates an overprediction of the evaluated
quantity, and vice versa.

In consistent with the previous analyses, the filtered temperature profiles, shown in
Fig. 6.7, are accurately captured in the LES with the two flamelet models, with all the slopes
of the linear best-fit within 5% of unity. The underprediction in the filtered temperature are
consistently observed for the laminar model results, for which the slope of the best-fit
line deviates from unity by as much as 40%. For the filtered heat-release rate predictions,
which are illustrated in Fig. 6.8, only the HOFM results show a reasonable agreement
with the reference solutions, featuring a linear best-fit gradient that has only 1% error at
t = 0.01 s and deteriorates to an overprediction of approximately 20%. Despite its accurate
prediction of the filtered temperature, the FPV model is observed to provide a significant
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Figure 6.5: One-dimensional streamwise profiles of the spanwise-averaged, filtered tem-
perature at t = 0.01 s from DNS (#), HOFM (thickened ), FPV (thickened ), and
laminar model (thin ) at y = 0.01 m (top), y = 0 (middle), and y = −0.01 m (bottom).
These locations are denoted by the three horizontal lines shown in the t = 0 plot of Fig. 6.3.
The vertical dashed line indicates the location of the mean, filtered Zst = 0.5.

overprediction in the heat-release rate that approaches ∼ O(10), which is an order higher
than the reference value of unity. In contrast, the laminar model is seen to consistently
underpredict the heat-release rate with more than 25% error.

Hence, we see in this section from both qualitative and quantitative analyses that, for
the current TCDF configuration: (i) both the flamelet models are capable of capturing
the Favre-filtered thermochemical scalar profiles; (ii) only HOFM provides a reasonable
description of the filtered source terms, whereas FPV model is always overpredicting the
reaction-rates; and (iii) a lack in the representation of subgrid information will lead to
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Figure 6.6: One-dimensional streamwise profiles of the spanwise-averaged, filtered heat-
release rate at t = 0.01 s for three y-locations, which are denoted by the three horizontal
lines shown in the t = 0 plot of Fig. 6.4. Refer to Fig. 6.5 for further details.

insufficient chemicalreactions, as inferred from the consistent underprediction in filtered
temperature and heat-release by the laminar approximation model.

6.2.2 Filter-Width Dependence

In the interest of exploring the limits of the combustion models relative to the amount
of subgrid information that is lost from filtering, the LES of the TCDF are performed at
two other filter-widths, namely ∆/lFl = {1, 4}, using the same three models as Sec. 6.2.1.
Based on the turbulent energy spectrum in Fig. 5.5, the three filter-widths ∆/lFl = {1, 2, 4}
will correspond to LES resolutions that are 4, 8, and 16 times, respectively, coarser than
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Figure 6.7: Correlation plot for the spanwise-averaged, filtered temperature of HOFM (l,
), FPV (�, ), and laminar (4, ) model relative to that of DNS at t = 0.01 s and
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Refer to Fig. 6.7 for further details.
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Combustion Model Linear Best-Fit Slope
t = 0.01 s t = 0.02 s

Mean Filtered Temperature
HOFM 1.05 1.02

FPV 0.99 0.96
Laminar 0.71 0.61
Mean Filtered Heat-Release Rate
HOFM 1.01 1.23

FPV 8.10 11.0
Laminar 0.73 0.74

Table 6.1: Comparison of the slope of the linear best-fit for the modeled results relative to
the reference DNS solutions, which are illustrated in Figs. 6.7–6.8 by the thickened lines.

the reference DNS solutions discussed in Sec. 5.4.2. The study will be performed in terms
of the time-varying relative error, which is defined as:

〈(·)DNS − (·)∗
∣∣∣ t〉∣∣∣〈(·)DNS

∣∣∣ t〉∣∣∣ , (6.1)

where 〈 | t〉 refers to volume-averaging at a given time t and the superscripts ( )DNS and
( )∗ denote the reference DNS and modeled results, respectively. Since the numerator of
Eq. (6.1) is not an absolute value, a positive error will correspond to an underprediction of
the evaluated quantity, and vice versa.

We will first investigate the model performance in representing the non-reacting com-
ponents of the flow, which is shown in terms of the relative error of the volume-averaged,
filtered mixture-fraction with time in Fig. 6.9. Interestingly, despite their differences in the
predictions of the Favre-filtered temperature and heat-release rate, the three models demon-
strate a comparably small error of approximately 2% in the resolved mixture-fraction field.
This observation indicates the consistency in the non-reacting part of the flow-solver, which
has been applied equally on all three combustion models. More importantly, this unani-
mous good agreement of the different combustion models suggests that the flow and chem-
istry in the current configuration are not strongly coupled, possibly attributed to the thin
reaction thickness due to the use of a one-step hydrogen/air chemical mechanism [132].
Consequently, a large part of the domain will then be non-reacting and therefore not af-
fected by the combustion model errors. Note that this observation applies regardless of
filter-width, so only one set of the results, in this case that of ∆/lFl = 2, is presented.

The relative error of the volume-averaged, filtered temperature with time is shown in
Fig. 6.10. From the figure, the flamelet models are shown to predict the filtered tempera-
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Figure 6.9: Relative error of the volume-averaged, filtered mixture-fraction of HOFM
(l, ), FPV (�, ), and laminar (4, ) model across the characteristic time period of
∆t = 0.02 s. The filter-width is ∆/lFl = 2.

ture profile accurately up to a filter-width of ∆/lFl = 2, exhibiting relative errors that vary
approximately within the range of ±1%. For the cases of the two smaller filter-widths of
∆/lFl = {1, 2}, the laminar model always underpredicts the Favre-filtered temperature
with a relative error that increases with time, indicating that the omission of subgrid contri-
butions to the flame is inappropriate for the current configuration. In the largest filter-width
case of ∆/lFl = 4 in figure 6.10, all the combustion models appear to perform comparably,
suggesting that the application of a combustion model is not useful at a very coarse LES
level (in this case, an LES grid consisting of only 16× 12× 8 = 1536 cells).

Similar to the comparisons in the preceding section, the filtered heat-release results in
the ∆/lFl = {1, 2} cases of Fig. 6.11 show that only HOFM predicts the source term
reasonably, with a relative error of ranging approximately from -10% to -30%. Regardless
of the filter-widths, the FPV model is always overpredicting the filtered heat-release rate
by an approximate order of O(10). As a result, the FPV model results are presented at a
reduced level of 10% in Fig. 6.11 so that the comparison can be performed on a same plot.
In contrast to the FPV model, the laminar model is consistently underpredicting the filtered
heat-release term, substantiating the aforementioned claim that the SGS contributions to
chemical reactions are not negligible. At the coarsest LES level of ∆/lFl = 4, the HOFM
and laminar model perform similarly, while the FPV model continues to overpredict the
filtered heat-release rate.
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Figure 6.10: Relative error of the volume-averaged, filtered temperature of HOFM (l,
), FPV (�, ), and laminar (4, ) model across the characteristic time period of ∆t =

0.02 s. The filter-widths are ∆/lFl = {1, 2, 4} from top to bottom, respectively.
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Given that the steady FPV model accurately predicts the Favre-filtered temperature,
its overprediction in the reaction-rate can be explained by referring to the joint PDF of
stoichiometric scalar-dissipation rate and temperature, as shown in Fig. 5.7, along with
the S-shaped curve that represents the steady flamelet solutions. These steady flamelet
solutions collectively constitute the lower-order manifold (cf. Sec.3.3) from which the FPV
model obtains the information on the thermochemical states, including the heat-release rate.

In essence, the FPV model will identify a thermochemical states by a horizontal pro-

jection from a given (χZ,st, Tst)-pair to the nearest point on the S-shaped curve [35]. For
the current configuration, this projection, which is indicated by the arrow in Fig. 5.7, will
return thermochemical states that correspond to a higher strained condition and are closer
to the flame-quenching point. Since the steady flamelet model asserts a balance between
diffusion and reaction in the flamelet space [7, 73], the reaction-rate that is obtained from
the higher χZ,st location will be stronger than the reaction-rate at the given lower χZ,st value.

Note that, while only unfiltered quantities are used in the above discussion, the explana-
tions will apply to the filtered case too because the FPV solution lookup, as demonstrated
by Fig. 5.7, will occur along the upper stable branch of the S-shaped curve. Consequently,
the effects of filtering will only lead to a general decrease in the estimated heat-release rate,
but the reaction-rate is still extracted from a significantly overpredicted region.

Using the same reasoning, the observation that the heat-release overprediction by the
FPV model does not vanish with increasing resolution, or equivalently smaller filter-widths,
is attributed to the same state-space projection towards thermochemical states that corre-
spond to a higher χZ,st-value. In fact, this error will be noticeable unless: (i) the vertical
deviation from the S-shaped curve is asymptotically small; or (ii) the thermochemical states
outside of the S-shaped curve are accounted for, for instance using the unsteady flamelet
model [36]. Recognizing this potential source of error in the FPV model, the need for a
combustion model to converge to the DNS limit is now apparent. By utilizing the steady
flamelet formulation, an implicit assumption is that the unfiltered temperature and species
equations (2.14c)–(2.14d) can be described by the steady flamelet formulations. However,
as have been demonstrated above, this assumption may not always be valid, thus reinstat-
ing the necessity for a more general flamelet model that accommodates the transient and
multi-dimensional diffusion effects on a flamelet.

6.3 Centerline Flamelet Study

The analysis of the HOFM results in Sec. 6.2 indicates that HOFM is a feasible closure
for turbulent combustion simulations. To ensure that this finding is not fortuitous, a further
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study on the centerline flamelet that supports HOFM’s feasibility is presented in the fol-
lowing. The centerline flamelet is illustrated in by symbols that are colored by temperature
in Fig. 6.12 and is extracted from the filtered DNS mixture-fraction field at t = 0. For ref-
erence, the filter-cell surrounding the spatial origin, unfiltered flame-sheet, and unfiltered
flamelets are also shown in Fig. 6.12 by the cube, isosurface, and colored solid lines, re-
spectively. The corresponding temperature profiles of the centerline flamelet and unfiltered
flamelets are given by the thickened line and thin lines in Fig. 6.2, respectively.

(a) Global view.

X

Y

Z

T [K]: 300 560 820 1080 1340 1600

(b) Close-up view.

Figure 6.12: Global (left) and close-up (right) view of the centerline flamelet at t = 0. In
both illustrations, the centerline flamelet is denoted by symbols that are colored by temper-
ature, and is extracted from the filtered mixture-fraction field of ∆/lFl = 2 using the spatial
origin as its initial tracing location. The flame-sheet in Fig. 6.12(a) is the unfiltered stoi-
chiometric mixture-fraction iso-surface that has been shown in Fig. 5.4, and the solid lines
in Fig. 6.12(b), also colored by temperature, represent the unfiltered flamelets that pass
through the filter-cell in which the spatial origin is contained. The filter-cell is described
by the cube in both subplots.

Following on from the model development in Sec. 5.3, HOFM will essentially use
the resolved flamelet information, such as the filtered temperature profile in Fig. 6.2, to
reconstruct representative conditional profiles that can be used to compute the representa-
tive conditional source-term. As discussed, the reconstruction is performed with the CSE
methodology, and the calculation of the conditional source-term is based on the CMC con-
cept. In the current configuration, the conditional temperature, for example, will be given
by the conditional mean of the unfiltered temperature distributions in figure 6.2, which is
also the average of these flamelet profiles.

Since the unfiltered flamelet profiles are discernibly similar to one another in Fig. 6.2,
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the consideration of the CMC formulation in the modeling of the conditional source-term
will be appropriate. However, this similarity in the unfiltered profiles may not be rele-
vant to higher turbulent Reynolds number regimes, in which the CMC concept can only
be regarded as a leading-order approximation of the true conditional source-term. While
higher-order CMC method [135] has been investigated, this approach is not pursued in the
current study, but will be considered in future works.

The flamelet budget of ỸH2O along the centerline flamelet is shown in Fig. 6.13, where
the J̃k-notations are defined by:

∂Ỹα
∂τ̃

=
∂Ỹα
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∂Ỹ ⊥α
∂xi

]
︸ ︷︷ ︸

J̃⊥
3

+
1

ρ

∂
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ρ
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D
∂Yα
∂xi

)′′ . (5.16)

In addition, the turbulent flux terms, which formally will be present, are found to be small
and hence omitted in this discussion.

From the budget analysis, we can discern that the multi-dimensional diffusion [91],
which is introduced in Sec. 4.3 and given by the J̃ ⊥3 profile, is indeed smaller than the clas-
sical flamelet diffusion (J̃ Z

1 ) and reaction (J̃ Z
2 ) terms, but not to a negligible level. More

importantly, the sum of the balance of these flamelet terms, which constitute the ∂/∂τ̃ -
profile (positive thin solid line), and the resolved Gibson’s transport contribution (negative
thin solid line) is seen to agree well with the Eulerian time-derivative ∂/∂t-profile, which
is denoted in Fig. 6.13 by open symbols. Since the ∂/∂t-term is first calculated in the
three-dimensional space, via the sum of the RHS of Eq. (5.9), and then interpolated onto
the centerline flamelet, this agreement shows that the Eulerian transport equations are in-
deed equivalent to their corresponding flamelet equations, provided that all the relevant
flamelet contributions are accounted for. Note that this equivalence is general, even though
only the results of the centerline flamelet at t = 0 have been discussed, because the same
observations can be found at other instants and for other flamelets.

Recognizing the equivalence of the Eulerian transport and flamelet equations, the com-
bustion closure incorporated in HOFM can now be explained:

• By utilizing the filtered flamelet profiles, the turbulent flamelet equations (5.16) are
implicitly considered by HOFM.

• As demonstrated by the filtered and unfiltered temperature profiles in Fig. 6.2, the fil-
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Figure 6.13: Flamelet budgets of ỸH2O along the evaluated centerline flamelet. The
J̃ Z

1 - (thin ) and J̃ Z
2 -terms (thin ) are the flame-aligned terms that provide the clas-

sical diffusion-reaction flamelet balance, and the J̃ ⊥3 -term (thickened ) is the multi-
dimensional diffusion [91]. The flamelet transient term (positive thin solid line) with the
addition of resolved Gibson’s transport contribution (negative thin solid line) is denoted
by the thickened solid line ( ). The Eulerian time-derivative profile (#) is computed in
three-dimensional space and interpolated onto the centerline flamelet. The vertical dashed
line indicates the stoichiometric mixture-fraction Zst = 0.5.

tered flamelet profiles contain SGS information, which can be described by represen-
tative conditional distributions. These conditional distributions can be reconstructed
using the CSE concepts and, based on CMC, employed to compute the conditional
source-term, thus providing HOFM with the necessary combustion closure.

• By advancing the Eulerian transport equations (5.9) in time using filtered reaction-
rates that are estimated from the conditional source-term, HOFM is effectively solv-
ing the turbulent flamelet equations, but in the Eulerian coordinates instead of the
flamelet space.

Based on the good agreement between HOFM results and filtered DNS solutions observed
in Sec. (6.2), the HOFM combustion closure is deemed successful for the TCDF configu-
ration, thus providing empirical supports to the claims made above.
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CHAPTER 7

Conclusions and Directions for Future Work

Forecast of energy outlooks has shown that combustion of fossil fuel will remain as the
dominant source of power generation for the years to come, thus necessitating a fast devel-
opment of combustion devices that are characterized by high combustion efficiency, low
pollutant emissions, and flexibility to fuel sources. Large-eddy simulations have shown
great potential in meeting this need by complementing physical experiments with accurate
predictions of turbulent reacting flows. Non-premixed combustion is a common injection
strategy that is employed in aircraft turbine engines and industrial burners because of its
efficiency and stability. The flamelet model, which is frequently used for the prediction
of non-premixed combustion, was developed by Peters [7, 78], and extended by Pierce &
Moin [10] for LES applications. While reacting simulations using the flamelet model have
demonstrated outstanding results [10, 84, 136, 137], in some complex configurations the
model was found to be underperforming. The objective of this research was to identify the
limitations of current flamelet-type combustion models, and develop a flamelet-type model
that can overcome these shortcomings.

In order to do so, diagnostic tools were designed in Chap. 4 for the specific purpose of
flamelet assumption assessments. These tools were applied in two a-priori studies using
DNS of a reacting jet-in-crossflow and turbulent lifted jet flame configurations. Results on
the applicabiltiy of the flamelet formulation, flame structure in terms of flamelet topologies,
and mixture-fraction conditioned data were reported. A flamelet regime diagram that is
useful for the direct assessment of the flamelet formulation in numerical simulations was
introduced as a potential tool to complement the established techniques of this work. Our
analyses showed that the commonly neglected unsteady and higher-order flamelet effects
are significant, especially when the reacting flow is transient and characterized by complex
turbulent and vortical structures.

The focus of Chap. 5 was on developing the higher-order flamelet model that can ac-
count for the unsteady and higher-order flamelet effects. For this, the turbulent flamelet
equations, which serve as the counterpart of Peters’ laminar flamelet equations in the LES
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regime, were derived and form the basis of the proposed model. In order to implement
the model, instantaneous filtered flamelets and their quasi one-dimensional thermochem-
ical properties have to be extracted during the flow simulations. The utilization of these
flamelet information requires various closures, including the conditional source term esti-
mation method, presumed FDF approach, and spatial-interpolation scheme. By applying
this model in a constrained LES of a turbulent counterflow diffusion flame, we have demon-
strated that the model concepts are applicable. The constrained LES is a combustion model
assessment method that was introduced to eliminate the errors due to the turbulence SGS
models by using the solutions of the accompanying DNS, and has the advantage over con-
ventional validation technique in capturing temporal effects in the model implementation.

Finally, in Chap. 6, we applied the proposed model in actual LES of the same turbu-
lent counterflow diffusion flame configuration that was investigated in the constrained LES.
The results by the proposed model were shown to perform better than two other combus-
tion closures, namely the steady FPV model and laminar approximation. The successful
application of the proposed model was substantiated with a separate numerical investiga-
tion of the characteristics of filtered flamelets in the evaluated configuration, showing that
the improvement was indeed due to the expected behaviors of the current model.

A higher-order flamelet model was developed and applied, demonstrating the poten-
tial to provide a more general description of turbulence-combustion interactions than the
classical flamelet models. However, in order to utilize the model in more complex config-
urations, more work that fully explores the potential and limitations of the current model
will be necessary. Some important model extensions and future research topics that are
related to this work are discussed below:

• Chemical reduction: The proposed model currently requires that all species of the
relevant chemical mechanisms be transported. While this approach may be manage-
able for small mechanisms such as the hydrogen-air system, it will incur prohibitive
cost in the consideration of more complex chemical mechanisms such as those de-
scribing kerosene (reactions and species on order of O(103) and O(102), respec-
tively). One method to rectify this issue is to employ a reduced reaction mechanism
procedure so that the problem size can remain tractable.

• Fundamental flamelet formulation assessment: With the flamelet diagnostic tools
that were introduced in this work, numerical studies of the flamelet formulation can
be conducted more consistently and effectively and should be considered. Insights
from these investigations will be useful for the extension of current flamelet-type
models, of which one of the lacking areas is in accounting for the compressibility
effects in supersonic reacting flows. Interesting academic inquiries, such as when
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the flamelet regime is (in)valid, how does turbulence destroy a flamelet, and how
flamelets respond when passing a shock, can be also be approached, facilitating the
theoretical understanding of combustion in general.

• Higher-order flamelet terms modeling: Although the combustion closure incorpo-
rated in the current model will, by design, account for the omitted flamelet effects,
the approach comes with a relatively high cost. Hence, the investigation in models
that can accommodate the omitted flamelet effects will be worthwhile, particularly if
the models allow for an a-priori description of the higher-order flamelet effects. In
this case, the cost-effective lookup technique that is common to the classical flamelet
models can be retained, but with increased fidelity from the modeling of higher-order
effects.

• Higher-order conditional moment closure: One potential shortcoming of the cur-
rent model is in the utilization of the first-order conditional moment closure, which
is valid only when the variations in the conditional profile are moderate. Since this
assumption does not apply in highly turbulent flows, the extension to a higher-order
conditional moment closure needs to be considered. Alternatively, the current model
can be incorporated with the capabilities to identify regions where the first-order
conditional moment closure is locally satisfied.

• PDF modeling: The current model uses the presumed PDF approach to represent
the mixture-fraction subgrid statistics. However, this approach is not guaranteed
to deliver in all configurations, for instance in the presence strongly sheared flows.
Hence, the importance of more accurate PDF description should be investigated.
One possible technique is to employ the DQMOM strategy, which is an Eulerian
transported PDF technique that has the potential to transport FDF practically in LES.
Another approach that can be considered is the statistically most-likely distribution,
which has demonstrated the capability to improve the FDF description of both non-
reacting and reacting scalars.

• Solver optimization: In the current high-performance computing framework, the
usual partitioning of work is through a decomposition of the computational domain.
This approach is, however, incompatible with the current model since both flamelets
and reaction-zone are local structures, resulting in substantial idle time in the pro-
cesses that are far away from the reacting region. Therefore, a distribution of work-
load to these idling processes should be considered so that the overall solver effi-
ciency can be improved. In addition, the current model will benefit from the incorpo-
ration of mathematical libraries that are optimized for some of its routine operations,
for example spatial-interpolation in a parallel framework and matrix inversion.

99



APPENDIX A

Higher-Order Flamelet Terms

In the derivation of the flamelet equations in Sec. 3.1 and subsequent discussions in ear-
lier sections, the flamelet terms that have complicated expanded forms were kept compact.
Incidentally, some of these convoluted terms are also the flamelet components that are
conventionally regarded as higher-order effects, and hence neglected. While keeping the
complex terms short has been useful for delivering one of the key findings of this research
that the commonly omitted flamelet terms may require consideration, the physical interpre-
tations of these effects will require that they be expanded. In this section, all the implicit
forms of the flamelet terms in Eqs. (3.6) will be given, constituting the fully expanded form
of the laminar flamelet equations. To facilitate the following discussions, the temperature
and species flamelet equations in Sec. 3.1 are repeated here:
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A.1 Fully Expanded Laminar Flamelet Equations

We will first focus on the terms common to both the equations, namely the vC,i- and εi-
terms. For the correction velocity term, which is given by:
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∂xi
, (2.6)

the expanded form will be:

vC,i =
∑
α

Dα

(
∂Yα
∂xi

+
Yα
W

∂W

∂xi

)
=
∑
α

DZ

Leα

(
∂Yα
∂Z

+
Yα
W

∂W

∂Z

)
∂Z

∂xi
+
∑
α

DZ

Leα

(
∂Yα
∂Z⊥

+
Yα
W

∂W

∂Z⊥

)
∂Z⊥

∂xi
. (A.1)

As explained in Sec.5.1, the Z⊥ term in Eq. (A.1) is a local quantity constrained by:
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The diffusion-differential parameter, which is given by:

εi =
−1

ZF −ZO

∑
β

∑
α

[
γβ
nαβWβ

Wα

Yαvα,i

]
−DZ

∂Z

∂xi
, (3.4)

will be expanded as:
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where the ZB term indicates a mixture-fraction according to Bilger’s definition [75].
To facilitate the derivations, some useful relations are introduced:
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Note that, from Eq. (A.4), the curvature effect of the mixture-fraction field can be inter-
preted as the change of Z⊥-gradient along the Z⊥-space.

Hence, the derivative of εi is expanded as:
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and

∂ρεi
∂Z⊥

∂Z⊥

∂xi
=

1

ZF −ZO

∑
β

∑
α

[
γβ
nαβWβ

Wα

(
∂

∂xi

[
ρDZ

Leα

∂Z⊥

∂xi

(
∂Yα
∂Z⊥

+
Yα
W

∂W

∂Z⊥

)]

− ρ

Leα
κZ

√
DZχZ

2

(
∂Yα
∂Z

+
Yα
W

∂W

∂Z

))]

− ρDZ

∥∥∇Z⊥∥∥2 ∂ZB
∂Z⊥

∑
α′

[
1

Leα′

(
∂Yα′

∂Z ′
+
Yα′

W

∂W

∂Z⊥

)]

+ (ZB −ZO)
∑
α′

[
ρ

Leα′
κZ

√
DZχZ

2

(
∂Yα′

∂Z
+
Yα′

W

∂W

∂Z

)]

− ρκZ

√
χZDZ

2
. (A.7)

In Eq. (A.7), the expanded form of the primary species HOT-term has been given as:

HOTα ∼ O
(
∂

∂xi

[
ρDZ

Leα

∂Z⊥

∂xi

(
∂Yα
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+
Yα
W
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∂Z⊥

)])
. (A.8)

From Eq. (A.8), the notion that the higher-order term of the species flamelet equation is
a multi-dimensional effect is now clear because the term is given by diffusion in the Z⊥-
direction, which is orthogonal to the flamelet space along Z. In fact, the differential op-
erators corresponding to the Yα-part of Eq. (A.8) will represent the primary higher-order
effects, thus apply also to the temperature flamelet equation:

HOTT ∼ O
(
∂

∂xi

[
ρDZ

∂Z⊥

∂xi

∂T

∂Z⊥

])
. (A.9)

For temperature, there is a secondary multi-dimensional effect that is derived directly
from the temperature gradient:
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However, this secondary multi-dimensional effect is observed only in the correction veloc-
ity part of the species flamelet equation:
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Putting together all the terms, the fully expanded flamelet equations are given by:
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where the expansion of the εi-fluxes has been given in Eqs. (A.6)–(A.7).
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