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4.4 Case study: office building model . . . . . . . . . . . . . . . . . . . 63
4.5 Building environment . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



4.6 AR Results I – Step 1 – San Francisco . . . . . . . . . . . . . . . . 68
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5.7 AR Results I – Step 2 – South façade - Chicago . . . . . . . . . . . 111
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5.4 AR Results I - Step 2 – South façade – Chicago . . . . . . . . . . . 110
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ABSTRACT

Climate Responsive Façade Optimization Strategy

by

Rudai Shan

Chair: Lars Junghans

The building façade plays a key role in the entire building’s energy performance. In

commercial buildings, energy demand is dominated by space heating, cooling, and

artificial lighting. Façade design variables for these three factors have always been

interacting and sometimes even in conflict with each other. For different climates,

adaptive façade design solutions should be implemented to achieve optimal design ob-

jectives, such as energy performance, human comfort, and life cycle cost. While the

optimal solution is traditionally identified through “trial-and-error”, for complex op-

timization problems that contain a great number of design variables, it might require

extensive hours of computation at early design stage, a condition that is increasingly

infeasible in practice due to cost or time constraints.

Since 2008, there has been a significant trend in building performance optimization

techniques (that used to emphasize solely on simulation) being implemented, instead

of building simulation techniques, to obtain design solutions for building performance

optimization problems. Among widely implemented optimization algorithms, the

genetic algorithm (GAs) have proven effective with its robustness in dealing with

discontinuous variables. However, for complex optimization problems with a great
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number of variables, such as façade performance optimization (FPO) problems, GAs

are still too time-consuming to be implemented at the early design stage, thus effi-

ciency becomes the main area for its augmentation.

The main objective of this study is to develop a new evolutionary algorithm

method, adaptive radiation (AR), based on simple GAs to solve complex optimiza-

tion problems relative to the design approach of the climate-responsive façades. AR is

derived from the biological process of adaptation where specific species are evolution-

arily adapted to their immediate ecological niches. This process can obtain optimal

solutions of façade design variables (infiltration, window-to-wall ratio, shading geom-

etry, glazing types, wall insulation, etc.) in significantly less computation time than

GA. In this study, AR is implemented in three different climates in the United States

to demonstrate its robustness and efficiency. The results validated the potential of

AR through façade design scenarios. The procedure can also be extended towards a

broad field of complex simulation-based architectural optimization problems.
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CHAPTER I

Introduction

1.1 Background

The building industry is the largest energy sector in the United States. It has a

substantial impact on the environment. Building energy consumption accounts for

up to 40 percent of total U.S. energy consumption, including 19% for commercial

buildings and 21% for residential buildings (DOE , 2011). Almost half of the build-

ing energy consumption is implemented for the following three main sectors: space

heating (27% for residential, 14% for commercial), space cooling (16% for residential,

19% for commercial), and artificial lighting (10% for residential, 17% for commercial)

(DOE , 2011). The residential and commercial sectors also contribute to almost 40

percent of carbon dioxide (CO2) emissions in the U.S. (DOE , 2011). It is imperative

to develop the techniques to improve building energy efficiency and sustainability.

Building façade is the main interface between the indoor and outdoor environment.

Improving building façade performance with appropriate design strategies are essen-

tial to reduce building energy consumption and carbon emissions (Fernandes et al.,

2013).

However, the design of appropriate building façade is not straightforward. All

buildings are unique due to the local climate. Façade design variables include such as

Window-to-Wall Ratio (WWR), Glazing Type, Shading Shape and Insulation have
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to be appropriately designed to adapt to the local climate. A conventional approach

known as “parametric simulation”, or sensitivity analysis (SA) is usually used to

identify the uncertainties in input and output of a system and provide decision support

(Wang et al., 2007). According to this approach, the input of each variable is varied

to see the effect on the design objectives while all other variables stay unchanged.

This procedure is then repeated iteratively with all variables. There are two main

disadvantages of this method. First, this method does not provide clear solutions for

designers. Second, it only leads to partial improvement while fails to focus on the

interrelationship between underlying variables. In addition, for a complex façade, the

design space of possible solutions is very large, which usually makes this methodology

time-consuming.

To achieve an optimal solution (or a solution near the optimum) to a façade

design problem, iterative methods which are known as ‘simulation-based optimiza-

tion’ automated by computer program are usually implemented. Simulation-based

optimization techniques can significantly improve the efficiency and robustness of

optimization procedure based on great advances of computational science and math-

ematical optimization methods. Genetic algorithm (GA) is one of the most widely

used algorithms in building performance optimization field for its feasibility in solv-

ing non-linear simulation-based optimization problems. However, GAs are still ex-

tremely time-consuming for solving complex façade performance optimization prob-

lems (FPOs). There is a significant need to improve the existing GAs to reduce the

computation time and labor.

1.2 Research Objectives

The primary objectives of this research are to improve the existing GA, and de-

velop a new evolutionary algorithm based on it to find the optimal solutions of FPOs

in different climates. This new algorithm is named adaptive radiation (AR), which
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is known as a principle in evolution of ecological diversity. AR describes the process

how a single ancestor diverges into an array of species that are adapted to a variety

of environments. Feasibility and robustness of this approach are demonstrated and

validated through a series of case studies for different climates in the United States.

Therefore, this study specifically addresses the following research approaches:

1) To develop a new optimization algorithm – Adaptive Radiation, based on simple

GAs in solving FPOs;

2) To validate the feasibility of the application of AR through different design

scenarios;

3) To provide climate responsive façade design strategies for different climates in

the United States based on the optimization results of design scenarios.

1.3 Dissertation Outline

This chapter made a brief introduction of the background, research objectives and

structure of this dissertation. The main theme of this dissertation is presented: im-

proving existing GA and extending a hierarchical optimization methodology, Adaptive

Radiation, to façade optimization problems.

Chapter 2 reviews the methodological foundations of this dissertation. The first

section reviews the research trends in high-performance building optimization prob-

lems. It then narrows down the research area to façade performance optimization

problems (FPOs). The third section introduces design optimization algorithms that

are most widely implemented in FPOs. The fourth section reviews the development

of GAs and points out the imperative of improving the efficiency of existing GAs.

The fifth section presents the frequently implemented optimization tools. The last

section summarizes this chapter.

Chapter 3 explains the optimization methodology of AR and its integration of

FPOs. The first section explains the design variables and objectives, as well as the
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complexity of the FPOs. The second section introduces the integrated thermal and

lighting simulation methodology. The third section presents the model of AR and the

process involved in its implementation. Chapter 4 extends the AR methodology to

the FPOs context through one design scenario. GA optimization runs are executed to

validate the efficiency and robustness of AR. Chapter 5 implements AR in two other

climates in the U.S. to validate its applicability and stability. Chapter 6 summarizes

this work, enumerates the main contributions, and points out further research areas.
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CHAPTER II

Literature Review

This chapter reviews the implementation of optimization in building optimization

problems in view of current research and practice trends in numerical algorithms

and solution techniques. Recent developments in numerical algorithms validates the

availability and effectiveness of diverse optimization methods in solving simulation-

based optimization problems.

2.1 Optimization Study in High-Performance Building

There is a growing trend in research and practice in the architectural, engineering

and construction (AEC) industry, where optimization approaches have been more

and more frequently implemented in high-performance building optimization prob-

lems. The optimization problem in building design is unique when compared with

optimization problems in other manufacturing industries, such as the automotive or

naval industry. The climatic and environmental situation for each building is unique,

which makes large scale test model production before real construction infeasible.

Therefore, unlike cars or ships, prototypes for buildings are usually not constructed

and tested before manufacture. However, at the early design stage, it is essential to

make a great deal of decisions which aim to achieve the building design objectives,

such as energy performance, cost, environmental impact as well as thermal comfort
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(Negendahl and Nielsen, 2015). Therefore, optimization studies are most commonly

performed at the early-design stage, where the majority of design decisions have yet

to be made.

The study of building optimization has been developed since the year 1980s, which

is based on the advancing development in computational technique and mathematical

optimization methods. A pioneering study was presented by Wright in 1986 which

applied the ‘direct search’ method in HVAC system optimization (Wright , 1986).

The optimization studies were then developed in a variety of building optimization

categories, including shape/geometry (Adamski , 2007), HVAC system (Palonen et al.,

2009), envelope insulation (Baglivo et al., 2014) and control strategies (Coffey et al.,

2010).

Even though the studies in building optimization problems were implemented

much earlier, most studies were published in the late 2000s. Using keyword searches in

ScienceDirect reflects an exponential evolution in the number of research papers that

utilize building optimization algorithms in the past two decades (Figure 2.1). These

type of optimization techniques have increased sharply since the year 2008. About

80% of the papers in this field have been published in the last 5 years, presenting

great potential for future utilization of these techniques, and identifying this as an

emerging field of research.

It is important to know the capability of the optimization method in achieving

the design objectives with less simulation effort, which helps the designers choose an

appropriate method among a number of approaches. It’s worth pointing out that in

optimization problems, efficiency and accuracy usually conflict with each other. In

building optimization problems, it is not necessary to find the global optimal solu-

tion(s) of a problem precisely, since this effort may be infeasible due to the nature of

the simulation-based optimization problems (Baños et al., 2011). Using simulation-

based optimization methodology to achieve sub-optimal solutions with relatively less
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Figure 2.1: Number of papers for selected keyword searches in ScienceDirect for years
1996-2014.

time and simulation effort is one main purpose of researchers. This process is usu-

ally automated by the integration of building simulation engines and optimization

algorithms. A flow chart for simulation-based optimization is shown in Figure 2.2.

While applications for optimization methodologies related to building optimiza-

tion problems are vast and constantly evolving, many researchers focus their interest

on the area of façade optimization (Bichiou and Krarti , 2011; Gossard et al., 2013;

Baglivo et al., 2014; Futrell et al., 2015). This section examines the state-of-the-art

with respect to the most recent optimization algorithms study in FPOs. The aim of

the content is to provide an overview of FPOs, as well as the most widely implemented

algorithms and tools.

FPOs can be expressed as the solution process to achieve the optimal façade de-

sign variables that satisfy the design objectives, based on the integration of building

simulation program(s) with appropriate optimization algorithm(s). The design ob-

jectives are a set of evaluation criteria, including energy performance, human comfort

and/or life cycle cost (Attia et al., 2013). When there is only one design objective,

the problem is called single-objective optimization problem, whereas if when there

are more than one design objective, it is called multi-objective optimization prob-

lem. This study only discusses the field of single-objective optimization problems to
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Figure 2.2: The coupling loop implemented to simulation-based optimization.

simplify the optimization model.

Today, simulation-based optimization has become an efficient technique to provide

high-performance façade design solutions. There have been a great number of studies

using optimization techniques in this process (Wang et al., 2007, 2010; Rapone and

Saro, 2012; Stazi et al., 2012).

The term ‘optimization’ often refers to the procedure of finding the global min-

imum or maximum of a function by choosing a number of variables subject to a

number of constraints. The general formulation for an optimization problem can be

summarized as

min
x∈X

f(x)

s.t.

x ⊂ Rn

(2.1)

where minx∈X f(x) is the objective (cost function or optimization criterion) to be

optimized, x ∈ X the vector of design variables, and x ⊂ Rn is the constraint set.

Design variables of optimization problems are gathered in vector x, and reflect
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the total set of alternative solutions that is available to improve design objective.

The optimum of f(x) can be achieved by gradually changing the vector x. The value

of design variables can be continuous (real numbers), integer or discrete (integer

numbers), or combinatorial (e.g., permutation on a set of numbers of finite size)

(Collette Y , 2013). The set of decision variables constraints can be either linear or

non-linear (or both). The solution set can be reduced through the identification of

feasible solutions subject to the constraints.

In FPO problems, façade design variables can have either integer or discrete values

(e.g. SHGC, U-Value, shading dimension) due to the nature of the simulation-based

algorithms, which lead to a series of disordered and discontinuous simulation outputs

(Wetter , 2004). These discontinuities make the optimization result to be trapped

in the local optimum and stray away from the global optimum. The traditional

‘gradient methods’ thus are infeasible for FPOs. Figure 2.3 represents an example

of how these discontinuous outputs are misled in the Hooke–Jeeves algorithm in a

facade optimization problem. Therefore, ‘non-gradient methods’ are more applicable

in solving façade optimization problems.

The general procedure of non-gradient methods is to sample the design space for

good points, and then use the evaluation result to decide where to sample for the next

loop. There is a great variety of possible approaches. The general categories include

direct search methods, heuristic methods and black-box methods. These terms are

also interchangeable since modern method variants blur classification distinctions.

Genetic Algorithm (GA) is one of the heuristic methods that inspired by natural

processes. GAs are widely implemented in FPOs since they are simple to implement

and make no assumptions about the mathematical form of the functions.

Figure 2.4 shows an estimation of the utilization trend of optimization algorithms

by using the data from the literature related to building optimization algorithms

(Nguyen et al., 2014). It can be seen that the heuristic algorithms such as GA, PSO,
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Figure 2.3: Discontinuity in energy consumption as a function of east and west win-
dow configurations. The dots show the optimization process of the Hooke–Jeeves
algorithm (Wetter and Polak , 2004).

SA, Hooke-Jeeves, hybrid algorithms or other evolutionary algorithms, are the most

frequently implemented algorithms in building optimization problems. Even though

these stochastic algorithms cannot guarantee the global optimal solution(s), they can

provide valuable solution(s) which are close to the global optimum without requiring

a prohibitively long time. Brief introductions of heuristic methods are given below.

Heuristic algorithms are optimization techniques used in solving optimization

problems when classic ‘direct search’ methods are not feasible. Heuristic algorithms

have great potential to find the optimal solutions with less simulation time, but

carry the risk of sacrificing accuracy, precision, or completeness for speed. Heuris-

tic algorithms are often implemented in those problems with unknown mathematical

measures to find a solution quickly and accurately (Cook , 1983). Evolutionary algo-

rithms (EAs) are a family of optimization algorithms under the umbrella of heuristic

methods. EAs are based on the Darwin’s ‘Theory of Evolution’, which explains the

adaptive change of species by the principle of natural selection that those species best
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Figure 2.4: Use frequency of different optimization algorithms, derived from more
than 200 building optimization studies given by SciVerse Scopus of Elsevier (Nguyen
et al., 2014).

adapted to the environmental conditions will survive for further evolution (Darwin,

1859). Darwinian Theory was then extended by microscopic findings concerning the

mechanisms of heredity, which is called ‘Synthetic Theory of Evolution’. EAs in-

volve implementation of biological evolutionary processes which apply the Darwinian

principle of survival of the fittest, by maintaining a population of solutions from

which the elitisms are passed down to subsequent generations. Techniques inspired

by mechanisms of organic evolution are implemented to generate new solutions by

means of mutation, crossover, recombination, and natural selection to find an optimal

configuration for a specific system within specific constraints. Types of evolutionary

algorithms include:

• Genetic algorithm (GA) (Holland , 1975; Goldberg , 1989): the most popular type

of EA which seeks the solution of a problem in the form of strings of numbers,

by applying operators such as recombination and mutation. For example, non-

dominated sorting genetic algorithm (NSGA) and NSGA-II are the GAs most

widely implemented for multi-objective problems (Brownlee and Wright , 2015;
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Carlucci et al., 2015). GA has a fixed, linear data structure.

• Genetic programming (Sette and Boullart , 2001): this method is implemented

in the form of computer programs, and the fitness is determined by the abil-

ity to solve a computational problem. Genetic programming and Evolutionary

programming both have tree-structures that allow hierarchical variables or rep-

resentations of functions and programs.

• Evolutionary programming (EP) : this method was laid by Lawrence Fogel

in San Diego, California (Fogel , 1966). Similar to genetic programming, its

numerical variables are allowed to evolve while the structure of the program is

fixed. Mutation is the main variation operator of EP.

• Evolution strategy (ES): this algorithm is developed by Rechenberg in the Tech-

nical University of Berlin in 1965 (Rechenberg , 1965). It works with vectors of

real numbers as representations of solutions, and typically uses self-adaptive mu-

tation rates. New variable values are sampled from probability distributions, in

which the dependencies are represented by a covariance matrix, updated each

generation, e.g. Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES) (Hansen et al., 2003).

• Differential Evolution (DE) (Price and Storn, 1997): the values of design vari-

able are iteratively improved to find a candidate solution and perturbed by

introducing components of other effective solutions.

There are also other heuristic algorithms that mimic natural processes including:

• Particle Swarm Optimization (PSO) (Kennedy , 1995): this method mimics the

movement of a bird flock or fish school and simplifies it to perform optimiza-

tion. The movement of solutions in a design space is based on their individual

positions and that of the best positions within the swarm.
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• Simulated Annealing (SA): this method is proposed by Kirkpatrick, Gelett and

Vecchi (Kirkpatrick et al., 1983) and Cerny (Černỳ , 1985). It works by emu-

lating the heating and controlled cooling process of a solid material to increase

the size of its crystals and reduce defects at a minimum energy configuration.

It is often implemented in solving discrete optimization problems.

• Ant Colony Optimization (ACO) (Dorigo et al., 1996): this method mimics the

process by which ants deposit pheromones on paths to encourage other ants

to follow, and the variable values are most often implemented will accumulate

‘pheromones’ biasing their selection in future choices.

• Harmony Search (HS) (Geem and Kim, 2001): this method is inspired by the

improvisation process of musicians proposed by Zong Woo Geem in 2001. The

values of each variable are recombined to find a best harmony (global optimum)

all together, with some perturbation to neighboring values.

• Pattern Search (PS, also known as direct-search, derivative-free or black-box

methods), e.g. Hooke-Jeeves (Kolda et al., 2003): this method executes a trial

on one theoretical parameter at a time by steps in each dimension; step size is

halved if there is no further improvement within this dimension. This process

is repeated until steps are deemed sufficiently small. PS can be implemented in

discontinuous or differentiable problems.

Many studies have been investigated to compare the performance of these heuris-

tic algorithms in building optimization problems. Wetter and Wright compared the

performance of direct search, Hooke-Jeeves, coordinate search, GA and PSO in min-

imizing cost functions with different smoothness. The results indicated that GA can

achieve the solutions with fewer simulations with a slight decrease in accuracy (Wetter

and Wright , 2003). Another comparative study examined optimization algorithms in-

cluding PSO, GA, Coordinate Search, Hooke–Jeeves, Nelder–Mead, Discrete Armijo
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gradient and a hybrid version of PSO and Hooke–Jeeves (Wetter and Wright , 2004).

The results found that Nelder–Mead and the Discrete Armijo gradient algorithms

didn’t perform well and shouldn’t be implemented for problems solved by Energy-

Plus. The hybrid PSO + Hooke–Jeeves can achieve the best optimal solution but

require more simulation time. In addition, Tuhus-Dubrow and Krarti compared GA,

PSO and the sequential search (SS) method in building envelope optimal design cases

with more than ten parameters (Tuhus-Dubrow and Krarti , 2010). The results indi-

cated that the GA was more efficient than both approaches of the PSO and the SS,

with a difference in accuracy of 0.5% in locating the optimal solution, and demanding

less than 50% of the iterations. Bichiou and Krarti compared the same three algo-

rithms to evaluate the robustness and effectiveness (Bichiou and Krarti , 2011). They

found that the computation time for SS is significantly higher than both PSO and

GA. Also, GA can save as much as 70% computation time compared with SS. The

results also indicated that even though the hybrid PSO and Hooke-Jeeves achieved

the largest cost reduction, GA got close to a solution with fewer simulation runs.

Wright and Alajmi then investigated the robustness of GA in solving unconstrained

optimization problems with a restricted number of simulation runs (Wright , 2005).

It indicated that the probabilistic nature of GA lacks robustness in finding solutions

and insensitive to the selection of GA control parameters. It also indicated that the

better solutions were obtained by using a small population size with high probabilities

of crossover and mutation.

There are also several doctoral dissertations which implemented GAs to optimize a

specific aspect of the façade design. For example, Caldas implemented GA to generate

and optimize building layouts (Caldas , 2001; Sung , 2014). Comparative studies using

simulated annealing and Tabu Search are presented to validate the efficiency and

accuracy of GA. Results indicated the feasibility of GA in generating entire building

geometries.
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These studies validate the application of GAs in solving building optimization

problems. The main purpose of the next section is to introduce the methodology of

GA, its advantages and disadvantages, as well as the development of its efficiency for

façade optimization problems.

2.2 Development of Genetic Algorithm

Genetic algorithms are heuristic methods originally motivated by Darwin’s princi-

ple of evolution. It was first proposed by John Holland at the University of Michigan

in the early 1970s, particularly in his book Adaptation in Natural and Artificial Sys-

tems (Holland , 1975). Holland’s genetic algorithm is usually called simple genetic

algorithm (sGA). In his description, the basic techniques of the GAs are designed to

simulate the natural processes of evolution, which follow the principles first defined by

Charles Darwin of ”survival of the fittest”, the competition among individuals for in-

sufficient resources results in the fittest individuals dominating over the fragile ones.

The main process/functions of GAs consist of a series, beginning with initial pop-

ulation, selection mechanism, coupling mechanism, and coalescence algorithm and

mutation. Figure 2.5 shows an entire loop of GA, which is presented in following

steps:

1. Initial population: to randomly generate the initial population of genes (bit

strings) depending on the nature of the optimization problem.

2. Selection Mechanism: to extract a subset of genes from the generated genomes,

according to a definition of fitness function. Therefore a set of parents is selected

from the current population to create the next generation. There are three types

of general selection mechanisms. The first is Isotropic Selection, which means

that every genome simply gets the chance to mate. The second is Exclusive

Selection, where only the top N% of genomes can mate. The third is Elitist

15



Selection, where the chance of mating increases as fitness increases. Elitist

selection is the most widely implemented in the process of genetic algorithm. It

is a very successful variant of the general process of constructing a new genome

since it allows the better genomes from the current generation to be carried over

to the next generation.

3. Coupling Algorithm: to randomly mate the genomes generated by the active

Selection Mechanism.

4. Coalescence Algorithm: the algorithm that decides which gene of the genomes

can be assigned to the offspring when two genomes are mated. The most widely

implemented mechanisms for Coalescence Algorithm are Crossover Coalescence

and Blend Coalescence.

5. Mutation: to maintain genetic diversity by altering one or more gene values in

a chromosome from its initial state, since all the other mechanisms (Selection,

Coupling and Coalescence) have a tendency to reduce the bio-diversity in a

population.

GAs are widely implemented in solving FPOs due to the following advantages.

First, GAs can solve multi-dimensional, non-differential and non-continuous problems,

which are very common in FPOs. Second, the evolutionary process of GA makes it

effective in solving problems with great complexity. Third, it is easy to understand

and does not require deep knowledge of mathematics. Last but not least, existing

studies show that it can be easily integrated with building simulation programs.

Since genetic algorithms (GA) can efficiently handle non-linear problems with dis-

continuities very common in building optimization problems, they have been widely

implemented in this field. Wright and Farmani implemented GA in a multi-objective

optimization for building elements thermal design, HVAC system size, and the con-

trol strategy (Wright et al., 2002). Best et al. implemented GA to minimize building
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Figure 2.5: Schematic diagram of the genetic algorithm

mix and energy supply technology for urban districts (Best et al. 2015). Bichiou and

Krarti used GA to optimize the envelope and HVAC system for residential buildings

(Bichiou and Krarti , 2011). Oliveira Panão et al. implemented GA for the opti-

mization of urban building forms in energy efficiency improvement (Oliveira Panão

et al., 2008). Asadi et al. implemented GA for multi-criteria optimization of build-

ing retrofit (Asadi et al., 2012b). Adamski (Adamski , 2007), and Yi and Malkawi

(Yi and Malkawi , 2009) used GA to optimize the form of the building. Wang et al.

implemented GA in a multi-objective optimization model which assisted designers in

green building design (Wang et al., 2005).

There are also some disadvantages that limit the efficiency and applicability of GA.

Most of these disadvantages are caused by the evolutionary mutation and selection
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process. First, GAs sometimes cannot solve variant optimization problems, due to

poor knowledge about fitness functions, which in turn generate bad chromosomes.

Second, GAs cannot guarantee a global optimum, since the optimal solutions are

very easily trapped in a local optimum rather than the global optimum. Third, GAs

cannot guarantee that the best individual will always survive and be transformed to

the next generation. Additionally, the ‘crossover’ process of the simple GAs may not

be efficient when searching the parameter space as expected. Last but not least, the

optimization process of GAs is still very time-consuming in practice, especially when

it almost reaches and varies near the global optimum.

There have been many variations of GAs developed to solve specific problems. The

development of simple GAs occurred in the 1980s. However, most of the improvements

for GAs were developed after the 1990s, such as Non-dominated-and-crowding Sort-

ing Genetic Algorithm II (NSGA-II), Hybrid Genetic Algorithm (HGA) and Pareto

Genetic Algorithm (Pareto GA). NSGA-II is one of the most widely implemented

algorithms in building optimization problems. NSGA-II developed by Deb in 2001, is

one of the most popular multi-objective algorithms (Deb 2001). Brownlee and Wright

applied NSGA-II to three examples of a typical building optimization problem and

compared the results (Brownlee and Wright , 2015). Carlucci et al. implemented

NSGA-II to minimize the thermal and visual discomfort of a nearly zero-energy

building (Carlucci et al., 2015). Lu et al. presented a comparison study for renew-

able energy systems optimization using a single-objective GA and a multi-objective

NSGA-II (Lu et al., 2015). These studies show great potential to improve GAs to

solve single-objective or multi-objective problems in different building optimization

areas.

Another trend is to integrate GA with other forms of optimization algorithms

to improve their efficiency. For example, Palonen et al. integrated NSGA-II with

Hooke–Jeeves pattern search method for building envelope and HVAC system opti-
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mization (Palonen et al., 2009). Magnier and Haghighat integrated NSGA-II with

Artificial Neural Network (ANN) for optimization of building design (Magnier and

Haghighat , 2010) while Gossard et al. implemented the same method in building

envelope optimization for thermal performance (Gossard et al., 2013). Michalek et

al. used GA and SA to search for global solutions of architectural layout design

optimization problems (Michalek et al., 2002). Junghans and Darde presented an

integration of GA and SA to solve building optimization problems (Junghans and

Darde, 2015). Additionally, Hamdy et al. proposed a hybrid algorithm (PR-GA-RF),

which involved running a deterministic algorithm before (PR GA) or after (GA RF)

a multi-objective genetic algorithm (Hamdy et al., 2011). This approach presented

an effort to use the advantages of both methods of PR GA and GA RF. The PR GA

algorithm can prepare the initial population in order to reduce the random behavior

of GA, therefore obtaining effective solutions with a lower number of simulations. The

GA RF can refine the GA results when high quality results are required, offering a

well-defined criterion for terminating the process. Caldas and Norford implemented a

micro-GA procedure to build a design optimization tool (Caldas and Norford , 2002).

Caldas then developed a micro-GA and Pareto GA based generative design system

(GENE-ARCH) (Caldas , 2008). These studies presented great potential in the im-

provement of GAs by using their advantages and complementing their disadvantages

through integration with other optimization algorithms.

Rather than arbitrarily framing a problem and applying an optimization algo-

rithm to it, some researchers divided the entire optimization problem into different

levels and solve this multi-level problem through hierarchical optimizations. For in-

stance, Lee developed a single-objective optimization methodology for an optimal

design tool using a genetic algorithm (GA) and computational fluid dynamics (CFD)

(Lee, 2007). The design variables include random variables (fluctuating outdoor con-

ditions), passive design elements (model variables) and active design elements (HVAC
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system). The optimization process is divided into two steps: a simple analysis using

a coarse mesh to lower the calculation load; and a detailed CFD analysis using a

fine mesh based on the cases in the first step. A reduction of the calculation time

was achieved through this two-step procedure. Evins et al. developed a three-step

framework using the design-of-experiments approach (Evins et al., 2012). In the first

step all variables are selected based on contribution to all outputs. This allowed the

variables to be reduced to a more manageable number by eliminating those with less

impact on the objectives. In the second step an initial optimization was performed

using all significant variables. The variables that remained constant for all optimum

solutions are eliminated. In the third step a detailed optimization was performed for

the remaining variables and the design rules are inferred. This method shows great

potential to improve the efficiency of optimization and maximize the benefit gained

from optimization.

2.3 Building Performance Optimization Tools

The integration of optimization tools with building simulation program(s) to solve

building optimization problems is one of the most popular trends in recent years.

These optimization tools implemented can be classified into two categories: stand-

alone optimization tools and simulation-based optimization tools (Attia et al., 2013).

The 19 tools that can be integrated building optimization are shown in Table 2.1.

This section mainly introduces the stand-alone optimization tools which have been

more and more frequently implemented in building optimization research, such as

GenOpt R©, MATLAB R©, modeFRONTIER R©, Topgui R© and BuildOpt R©.

GenOpt R© developed at the Lawrence Berkeley National Laboratory (LBNL), is

one of the most widely used building optimization programs. It was originally devel-

oped as an optimization program for a single-objective function which can be coupled

with an external building performance simulation program such as EnergyPlus, TRN-
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Table 2.1: Classification of BPO tools (Attia et al., 2013)

Simulation
based opti-
mization

Optimization packages Tailor made-
programming

Public TRNOPT
(2004)
BeOpt (2005)
OptiMaison
(2005)
OptiPlus
(2006)

Commercial ARDOT
(2002)

MATLAB
optimization
toolbox (1990)

Topgui (1990) C++

Polysun (2006) Phoenix inte-
gration (1995)

GenOpt (2001) Cygwin

GENE ARCH
(2008)

GAlib (1995) Paradiso EO
(2003)

Java

Lightsolve
(2008)

modeFrontier
(1999)

ThermalOpt
(2011)

R

ParaGen
(2011)

Homer (2000) Visual Stu-
dio

ZEBO (2012) DER-CAM
(2000)

SYS, DOE-2, SPARK, BLAST, IDA-ICE, Radiance, or any user-written code that

has input and output as text files (Wetter , 2001). The original algorithm library

of Genopt R© does not include multi-objective algorithms. Some multi-objective algo-

rithms such as NSGA-II are developed and recently added to the algorithm library

by the users (Gossard et al., 2013; Carlucci et al., 2015).

Genopt R© has been widely implemented in building optimization problems in

plenty of studies (Asadi et al., 2012a; Bigot et al., 2013; Carlucci et al., 2015; Futrell

et al., 2015). It’s worth illustrating that Wetter and Wright implemented GenOpt

to achieve the office building design solutions for energy efficiency in three different

climates in the U. S. (Wetter and Wright , 2003).

The cost functions of GenOpt can cover any BPO objective functions (energy,
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Figure 2.6: Implementation of optimization algorithms into GenOpt (Wetter , 2001)

indoor air quality, thermal comfort, etc.) from minimization to maximization. The

GenOpt library provides local and global multi-dimensional and one-dimensional opti-

mization algorithms (Wetter and Wright , 2004). The multi-dimensional optimization

algorithms include:

• Generalized pattern search algorithms (the Hooke-Jeeves algorithm and the

coordinate search algorithms) for continuous independent variables, which can

be run by using multiple starting points.

• Discrete Armjio gradient for continuous independent variables.

• Particle swarm optimization (PSO) for continuous and/or discrete independent

variables, with inertia weight or constriction coefficient and velocity clamping,

and with a modification that constricts the continuous independent variables to

22



a mesh to reduce computation time.

• Hybrid generalized pattern search algorithm with particle swarm optimization

for continuous and/or discrete independent variables.

• Nelder-Mead simplex algorithm for continuous independent variables.

• NSGA-II for continuous and/or discrete independent variables.

The one-dimensional optimization algorithms include:

• The golden section interval division.

• The Fibonacci division.

Another widely implemented optimization tool is MATLAB R© Optimization Tool-

boxTM, which provides a variety of algorithms for optimization problems. MATLAB

has been implemented in building optimization problems by several researchers (Dou-

nis and Caraiscos , 2009; Asadi et al., 2012b; Baglivo et al., 2014; Hu and Karava,

2014; Ascione et al., 2015). The algorithms in MATLAB R© Optimization ToolboxTM

can solve both constrained or unconstrained and, continuous or discrete problems.

MATLAB R© includes functions for linear programming, quadratic programming, bi-

nary integer programming, nonlinear optimization, nonlinear least squares, systems

of nonlinear equations, and multi-objective optimization. This allows finding optimal

solutions, performing trade-off analyses, balancing multiple building design alterna-

tives, and incorporating optimization methods into algorithms and models. The func-

tions and toolbox in MATLAB provide opportunities to make use of their additional

functions or the integration of these functions by the users, including data analysis,

plotting functions, curve fitting functions, and graphical user interface (Hamdy et al.,

2011).

Topgui R© is a toolbox that provides a number of optimization methods similar

to Genopt R©. In addition, it provides algorithms for multi-objective optimization
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problems. It consists of a Java graphical user interface (Gui). The batch commands

(that can be controlled by the Gui) can be inserted to start the optimization algorithm

such as number of evaluations and design variables. Extra strategy variables can be

provided for some algorithms, e.g., for the evolution strategy by editing the population

size variables. There are multiple algorithms available in Topgui R© and the list can

be easily extended through inserting new algorithms. Topgui has been implemented

in some studies in building optimization problems (Emmerich et al., 2003, 2008). It

provides several single-objective and multi-objective optimization techniques such as:

• Hooke-Jeeves algorithm

• Generalized pattern search methods (GPS)

• Particle swarm optimization algorithms (PSO)

• Evolution Strategy (ES)

• Non-dominated Sorting Genetic Algorithm II (NSGA-II)

• S-metric selection evolutionary multi-objective optimization algorithm (SMS-

EMOA).

BuildOpt R© is an automated multivariate optimization tool which is an energy

simulation program that is built on models that are defined by differential algebraic

equations (DAE) (Wetter , 2004). It is implemented by Ellis et al. through an opti-

mization model which employs multiple modules, including a graphical user interface,

a database, a preprocessor, the EnergyPlus simulation engine, an optimization engine,

and a simulation run manager.

Besides the aforementioned optimization tools, there are other optimization tools

that can be implemented in building optimization problems, such as modeFRONTIER R©

(Shi , 2011; Baglivo et al., 2014; Padovan and Manzan, 2014; Baglivo and Congedo,
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2015)(Shi 2011, Baglivo et al. 2014, Padovan and Manzan 2014, Baglivo and Con-

gedo 2015), BEoptTM (Parker , 2009; Fazli et al., 2015; Rhodes et al., 2015; Robertson

et al., 2015).

2.4 Summary

This chapter gave an overview of the entire research context. The background and

trends of building optimization problems are introduced first. The research content

is then narrowed down to the field of FPO problems. The background of a simple

genetic algorithm is specifically described. The improvement and implementation of

design optimization algorithms in this field are introduced. Conclusions are reached

show that there is a significant need and great potential to improve the efficiency of

existing GAs to solve FPO problems. The existing optimization tools in the FPO field

are also introduced. The following chapter will explain the objectives and structure

of this study.
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CHAPTER III

Methodology

As discussed in Chapter 2, even though GAs have been proven to be one of the

most efficient optimization methodologies, they remain time-consuming when solving

complex FPO problems with a great number of design variables. It is essential to

improve the efficiency of the existing GA, while not affecting its robustness.

The goal of this chapter is to introduce a new evolutionary optimization method-

ology that is based on improvement of the simple GA. The definition of this algorithm

is derived from ‘adaptive radiation (AR)’ - a phenomenon which was observed by Dar-

win, that describes the evolutionary process of species become adapted to ecological

niches (Schluter , 2000).

The first section explains the characteristics of FPO problems, the design vari-

ables, the optimization objectives and the simulation methodology implemented in

this study. The second section presents an overview of the design optimization algo-

rithms. The distinguishing characteristics of these algorithms are highlighted, which

can help to categorize the optimization problems. The third section focuses on the

simple GA and its implementation in architectural design contexts. The fourth section

defines AR, an explicit approach proposed to improve the simple GA with a hierar-

chical optimization structure and interpolation methodology. The methodology of

AR is introduced, the optimization process is explained and its feasibility regardless
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of FPOs is validated.

3.1 FPO Problems

A thorough understanding of the problem is a prerequisite for optimization. The

modeler has to understand how the design variables will impact the solution pro-

cess as well as optimal results. The mathematical model of optimization problems

can describe the relationships between design variables and optimization objective(s).

This requires a comprehensive understanding of the implemented formulations and

the nature of the problem(s). The designed optimization model will have a significant

impact on the optimization algorithm to be implemented, the setting of the optimiza-

tion process, and the optimization results. Thus, this section focuses on the design

variables and objective functions of FPO problems, which help to better clarify the

FPO problems of this study.

3.1.1 FPO Design Variables

The design variables for FPO problems include parameters such as glazing types,

infiltration, insulation and shading shapes. These design variables can be classified

into different categories by their impacts on optimization objectives, such as the

heating energy demand, daylighting, environmental impact and initial investment.

Studies have investigated the relationship between these design variables and objec-

tive functions. For example, Yang et al. investigated the impact of U-values of the

exterior wall, roof and windows on the retrofitted building envelopes in the hot sum-

mer and warm winter climate of southern China and the cold climate of northern

China (Yang et al., 2012). The results showed that by identifying appropriate façade

design variables, the annual heating energy demand can be reduced by about 66%

in cold climate of northern China, and the annual cooling energy demand can be re-

duced by about 33% in hot summer and warm winter climate of southern China. In
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another study, the air tightness performance and its impact on residential buildings

in northern China was investigated (Chen et al., 2012). The results indicated that the

district heating energy use can be reduced by 12.6% by reducing the average natural

air infiltration from 1.0 h−1 to 0.5 h−1.

Researchers have placed a particular focus on the impact ratio of building design

variables on different design approaches. One traditional methodology is to perform a

sensitivity analysis. For example, Heiselberg et al. made a comprehensive sensitivity

analysis of design parameters of an office building design in Denmark (Heiselberg et al.,

2009). Since the heating demand was dominant in this climate with less ventilation

and a lower lighting demand and no cooling demand, the result of sensitivity analysis

shows lighting control and the amount of ventilation during winter are the two most

important parameters to change in order to reduce energy demand. Yu et al. also

conducted a sensitivity analysis of energy performance for the envelope of high-rise

residential buildings (Yu et al., 2013). The results indicated that the most important

factors are the shading coefficient and window-to-wall ratio (WWR) in the cooling

season, while the heat transfer coefficient of walls and the shape coefficient have crucial

effects in the heating season. They concluded that the heat transfer coefficient of the

walls and WWR play the most important role for annual energy use. Moreover, for

small and large WWRs, the effects of solar absorption of the walls and the roof and

the roof heat transfer coefficient are very small.

The aforementioned studies present the façade design variables that have the most

significant impact on total building energy demand. The following list represents the

most widely studied variables of the FPOs:

• Building shape and orientation

• Window-to-wall ratio (WWR)

• Glazing types
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• Shading shapes

• Insulation

• Infiltration

• Natural ventilation

• Blind/shading control

Natural ventilation and blind/shading control systems are not within the scope

of the passive façade design strategies that are discussed in this study. Also, due to

the aesthetic expectations of conventional office façade design, there are also uniform

requirements for window openings. Therefore, different WWRs are also not included

in this study. The main design variables included in this study are glazing types,

insulation, infiltration, and different parameters that affect the shapes of shading ele-

ments, which are based on the orientation and local environment of the optimization

models.

Studies using conventional methodologies such as sensitivity analysis can help the

designers to get an overview of how design variables affect the objectives. This can be

supportive in the decision-making process by providing comprehensive design options,

which leads to better guidance at the early design stage. However, as the number and

complexity of design variables increase, the complexity of the FPO problems will also

significantly increase. As such, it is very time-consuming to evaluate all the design

variables by these conventional methodologies. In addition, the values of FPO de-

sign variables usually conflict with each other on different objective function(s) (i.e.,

energy demand vs. lighting comfort), which will also reduce the feasibility of con-

ventional methodologies in achieving comprehensive solutions. Thus, a methodology

of optimization is more efficient for solving FPO problems in a systematic way by

providing a set of solutions based on predefined optimization objectives.
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In general, the design variables of FPOs can be characterized as continuous or

discrete, based on the mathematical properties of the values. Design variables that can

use any values over a particular range of real numbers are continuous. For instance,

the WWRs can be represented as continuous values within specified bounds, such

as 20% ¡ WWR ¡ 90%. In contrast, design variables that only use certain values

over a particular range of real numbers are discrete. Examples of discrete variables

include sizes of standardized insulation thickness or building elements, glazing types

and material selection. Most FPO problems have both continuous and discrete design

variables. Sometimes mixed-discrete problems can be represented as entirely discrete

problems. For instance, shading depth, which is seen as a continuous variable in

some problems, can also be represented as a continuous range or incremented over

discrete depths (for example, in 100 millimeter intervals). Also, the dimensions of

building elements must always fit in some specific building module, which makes

continuous variables almost impossible. Therefore, only discrete design variables are

implemented in the optimization scenarios in this study.

The particular problem described in this chapter is the façade design of a typical

office building, in order to optimize its total energy demand of heating, cooling, and

artificial lighting. The façade design variables, which have a significant effect on the

environmental performance of a building, are typically determined at the early design

stage. The optimal values of design variables depend on the local climate, the orien-

tation the façade is facing, the shading elements from the surrounding environment,

and the function of the building (office, commercial, residential, etc.).

3.1.1.1 Glazing

Glazing is the translucent or transparent surface (like windows or skylights) which

covers the opening on the building envelope. The fenestration system is a critical in-

terface between the indoor and outdoor environment, and impacts indoor comfort,
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lighting and thermal performance of perimeter spaces for commercial buildings. The

key properties of glazing include thermal conductance (U-Value), solar radiation coef-

ficient (SHGC), and visible transmittance (Tvis). Appropriate selection of the values

of these glazing properties depends on factors such as the local climate, façade ori-

entation and window-to-wall ratio (WWR). However, it is not easy to predict the

impact of different glazing types on the heating, cooling, and artificial lighting energy

demand.

Table 3.1: Total energy demand for different glazing system

Glazing 1 2 3 4 5 6
U-value [W/m2K] 6.0 2.7 1.8 1.5 1.1 0.7
SHGC [-] 0.70 0.62 0.60 0.34 0.31 0.24
Tvis [-] 0.88 0.80 0.65 0.65 0.47 0.30
H [kWh] 282.5 114.8 61.5 83.7 56.6 40.3
C [kWh] 843.5 637.8 697.7 282.8 331.6 352.5
L [kWh] 119.8 135.7 184.7 184.7 273.0 459.0
Total [kWh] 1245.8 888.3 944.0 551.2 661.1 851.8

Table 3.1 represents the total energy demand of the typical office room in San

Francisco with different glazing systems on the southern orientation façade. It can be

seen in Figure 3.1 that with southern façade, the various types of glazing have different

impacts on the heating, cooling, and artificial lighting energy demand. The heating

and cooling energy demands are influenced by the change of U-value and SHGC.

The artificial lighting energy demand is mainly impacted by the values of SHGC

and visible transmittance. On the southern façade, glazing type 1 has the lowest, a

difference of 55.8%. It can be seen that changing the glazing types, especially the

SHGC value, has a larger impact on the cooling energy demand on the southern

façade, thus influencing the total energy demand. The results represent that the

variation of glazing types, especially the SHGC values, have a significant impact on

the total energy demand.

To achieve the goal of energy efficiency, different kinds of glazing may be imple-
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mented in different places on the same building façade. However, the same type of

glazing is usually implemented on the entire façade for aesthetic purposes.

Figure 3.1: Total energy demand for different glazing system.

3.1.1.2 Insulation

The thermal insulation of the façade has an essential impact on the heating and

cooling energy demands. Table 3.2 represents the energy demands on the southern

façade with different insulation U-values in the climate of San Francisco. It can be

seen in Figure 3.2 that both heating and cooling energy demands decrease with the

increase U-value of insulation. Therefore, the total energy demand decreases as the

U-value of insulation increases in this case. However, the impact of insulation is

not significant. The total energy demand (when insulation is 0.19 W/m2K) is the

smallest in this case, which is only 4.5% smaller than the highest (when insulation

is 0.7 W/m2K). In this case, the results represent that improving the insulation of

exterior walls does not have a significant impact on the total energy demand of south
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facade.

Table 3.2: Total energy demand for different insulation

1 2 3 4 5 6
[W/m2K] 0.70 0.46 0.37 0.32 0.26 0.19
H 282.4 266.8 260.5 256.9 252.4 247.1
C 843.5 837.1 834.6 833.3 831.7 829.8
L 120.0 120.0 120.0 120.0 120.0 120.0
Total 1245.9 1223.8 1215.1 1210.1 1204.0 1196.8

Figure 3.2: Total energy demand for different insulation.

3.1.1.3 Infiltration

Similar to thermal insulation, the infiltration value of a building façade also has a

significant impact on the heating and cooling energy demands. Table 3.3 represents

the impacts of different insulation values on the total annual energy demand. At

first, the heating energy demand increases with the decreasing of infiltration, and

then decreases. In contrast, the cooling energy demand decreases with decreasing of

infiltration at first and then increases. At first, the total energy demand increases

and then decreases with the improvement of infiltration. The results show that in

this climate, the improvement of infiltration has a more significant impact on the

heating energy demand than the cooling energy demand on the south orientation.

However, the impact of infiltration is not as significant as the glazing type. When

the infiltration is 0.15, the total energy demand is the smallest, which is only 4.6%
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Figure 3.3: Total energy demand for different infiltration values.

smaller than the highest when infiltration is 0.18.

Table 3.3: Total energy demand for different infiltration values

1 2 3 4
[-] 0.25 0.18 0.15 0.12
H 314.4 436.2 266.9 252.8
C 820.5 744.5 855.9 867.1
L 127.4 127.4 127.4 127.4
Total 1262.2 1308.0 1250.1 1247.3

3.1.1.4 Overhang depth

Table 3.4: Overhang depth

1 2 3 4 5 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 800 900 1000
H 282.4 281.2 284.3 290.2 289.7 294.2 297.7 297.7 303.8 302.2
C 843.6 716.9 605.8 507 428.5 364.9 311.5 311.5 240.3 207.4
L 120.0 130.4 139.6 142.8 149.4 159.7 158.9 158.9 180.3 182.9
Total 1246.0 1128.5 1029.6 939.9 867.7 818.8 768.1 768.1 724.4 692.5

Overhang shading has an essential impact on the daylight and solar radiation

received by the façade, thus influences heating, cooling, and artificial lighting energy

demands. In this case, the cooling energy demand decreases, while the heating and

artificial lighting energy demands increase, with the increase overhang depth. The

reason is that there is less solar radiation and daylight by the variation of overhang

34



Figure 3.4: Total energy demand for different overhang depth.

depth. The total energy demand is the smallest when overhang depth is 1000 mm

in this case, which is 44% smaller than the highest when overhang depth is 100 mm.

The results represent that improving overhang depth has a significant impact on the

total energy demand.

3.1.1.5 Vertical fin

Table 3.5: Total energy demand for different fin depth

1 2 3 4 5 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 800 900 1000
H 281.7 297.1 312.0 329.8 349.5 363.6 381.6 392.6 402.3 409.9
C 842.2 690.1 574.1 490.4 433.5 393.4 363.3 346.0 330.5 327.6
L 119.1 126.2 142.0 141.9 144.4 148.4 147.4 154.5 155.6 165.5
Total 1243.0 1113.4 1028.1 962.1 927.4 905.4 892.4 893.0 888.4 903.0

Figure 3.5: Total energy demand for different fin depth.

The fin shading system also has a significant impact on the heating, cooling, and
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artificial lighting energy demands. In this case, the cooling energy demand decreases,

while the heating and artificial lighting energy demands increase, with the increase

of overhang depth. The reason is that there is less solar radiation and daylight by

the increasing of the fin’s depth. The total energy demand is the smallest when the

fin depth is 1000 mm in this case, which is 27.3% smaller than the highest when the

fin depth is 100 mm. The results represent that fin depth has a significant impact on

the total energy demand, but not as significant as the overhang depth.

3.1.1.6 Fin angles

Table 3.6: Total energy demand for different fin angle

1 2 3 4 5 6 7 8 9
30 45 60 75 90 105 120 135 150

H 275.3 277.4 291.5 285.0 281.7 276.5 284.4 272.0 268.4
C 893.4 893.9 784.4 861.7 842.2 836.0 778.5 851.2 849.3
L 128.3 129.1 129.9 110.7 119.1 132.1 124.5 142.2 142.8
Total 1296.9 1300.4 1205.8 1257.4 1243 1244.6 1187.4 1265.4 1260.5

Figure 3.6: Total energy demand for different fin angles.

The angles of fins have significant impacts on how much solar radiation and day-

light will get in through the window. In this case, the heating, cooling, and artificial

energy demands all vary with the change of fin angle. The total energy demand is

the smallest when the fin angle is 120◦ in this case, which is 8.7% smaller than the
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highest demand when the fin angle is 45◦. The results represent that fin angle has an

impact on the total energy demand, but not as significant as the shading depth.

It can be seen from the results that all the façade design variables listed above

will impact the total energy demand. Furthermore, the glazing type, overhang depth,

fin depth have more significant impact than the insulation, infiltration and fin angle

on the total energy demand. This is because cooling is domain in the climate of San

Francisco. The next section discusses the combinations of these design variables and

the impacts on different orientations.

3.1.2 FPO Objectives

The objective of FPOs is the function f(x) that is to be optimized. Objective

function can be either linear or non-linear with respect to the design variables. The

goal of optimization is either to find the global minimum minx∈X f(x) or maximum

maxx∈Xf(x) solutions of the objectives. However, the mathematical optimization

problems are usually defined as minimizations of the quantity. When the goal of

an optimization problem is to achieve the maximization maxx∈Xf(x), it generally

converts to minimize the objective’s opposite minx∈X − f(x).

According to the existing research, the objectives for FPOs include but are not

limited to:

• Energy demand: i.e., the heating, cooling, and artificial lighting energy demands

(Seo et al., 2011; Gossard et al., 2013).

• Human comfort: i.e., thermal comfort (Gossard et al., 2013) and lighting com-

fort (PVM, PPD values, discomfort hours, daylight) (Carlucci et al., 2015;

Futrell et al., 2015).

• Cost: i.e., life cycle cost (LCC) that includes investment cost, operation cost

and maintenance cost, etc. (Keoleian et al., 2000; Hasan et al., 2008).
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• Carbon emissions: i.e., life cycle assessment (Baños et al., 2011; Weber et al.,

2006; Stazi et al., 2012; Keoleian et al., 2000).

Generally, FPO problems can be either single-objective or multi-objective prob-

lems. A conventional single-objective optimization problem involves a single objective

function, while a multi-objective optimization problem involves multiple contradic-

tory objective functions. However, FPO problems usually have to achieve more than

one optimization objectives. The optimization objectives usually conflict. Thus they

can be considered through strategies that preserve trade-offs between two or more

of them (Coello, 2006). There are two widely applied approaches for multi-objective

optimization problems. One is the utilization of the weight function that each of the

objectives is normalized with one associated weight factor, thus an entire cost func-

tion is achieved through an equation consisted of different objectives and associated

weight factors. This method is efficient and simple to be implemented. However, this

method requires prior knowledge of the optimization problem and does not provide

information on the compromise between different objectives. Another approach is

Pareto optimal or non-dominated solution. The definition of a Pareto optimal is that

there is no other feasible solution that improves one objective without deteriorating

another one. A set of all these non-dominated solutions is called a Pareto frontier,

which can be represented as a curve. The solutions provided by the Pareto optimal

method can have a great diversity. The disadvantage of this method is that it repre-

sents inadequate efficiency and effectiveness in the optimization process (Machairas

et al., 2014) (Figure 3.7).

The main objective of this study is to improve the existing GA rather than to

achieve solutions for different FPOs. Therefore, it is mainly focusing on single-

objective optimization problem to simplify the FPO model. The configuration of

the FPOs can affect three terms of the annual energy demand: the heating energy

demand (Qheating), the cooling, and dehumidification energy demand (Qcooling), and
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Figure 3.7: Pareto frontier of a double-objective problem(Machairas et al., 2014)

the artificial lighting energy demand (Qlighting). The other terms of building energy

demands such as energy demands for ventilation, humidification and hot water are

not discussed in this study. The objective function is then the minimum of total

energy demand of heating, cooling, and artificial lighting.

min f{Qtotal(v1, v2, v3, . . . , vn)}

Qtotal = Qheating + Qcooling + Qlighting

(3.1)

where v1, v2, v3, . . . , vn are the design variables according to this problem.

Climate and site environment conditions play important roles in the design of a

façade system. The orientation, dimension and properties of the façade have a signif-

icant impact on both daylight and thermal performance of the perimeter zones of an

office building. The hourly change of sun position, cloudiness, shading and reflection

from the surrounding environment have a comprehensive effect on daylight availability

and solar radiation gains on the same façade. The complexity and number of façade

design variables also increase the difficulty to examine the impact of design variables

on optimization objectives. Simplified modeling methods for FPO problems that were

implemented in conventional studies, have been proven to be inaccurate in the pre-

39



diction of thermal and daylight impact. The most effective means of establishing a

high-performance façade that is adapted to local climate should be through detailed,

dynamic, hourly computer simulations for the specific building design, environment

situation and local climate.

In FPO problems, it is essential to achieve the appropriate combination of façade

design variables to keep a good balance between the heating, cooling, and artificial

lighting energy demands. However, some traditional studies to configure the optimal

façade design solution only include running thermal simulation, while the impact on

the artificial lighting energy demand is often neglected.

In addition, the process of thermal (to obtain the heating and cooling energy

demands) and lighting (to obtain the SHGC value of shading elements and lighting

control schedule) simulation is interactive. For instance, small depth shading elements

can lead more daylight into an internal space that may reduce artificial lighting en-

ergy demands as well as cooling energy demands. It will also bring in excessive solar

gains, which may increase glare problems, thus have a significant impact on inter-

nal heating and cooling energy demands, especially for rooms on south and west

orientations. Even though some studies included lighting simulations in the entire

simulation process, the traditional method generally uses static simulation programs

to obtain lighting and thermal energy demands in a separate simulation process, and

then simply adds up the simulation results. This method neglects the hourly inter-

active relationship between the lighting and thermal simulations. The façade design

variables should be selected based on the integrated performance indices obtained

through the continuous interaction between transient hourly thermal and lighting

simulations. Therefore, it is essential to integrate thermal and lighting simulations in

a dynamic simulation process. This study makes a comprehensive approach of FPOs,

which includes the heating, cooling, and artificial lighting energy demands.

Researchers have focused on integrated thermal and daylighting simulations in
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recent years (Franzetti et al., 2004). Pioneering research by Janak that provided a new

method of direct run – time coupling between building energy simulation and global

illuminance (Janak , 1997). By direct coupling at the time step level between ESP-r

and RADIANCE, the building energy simulation is able to get access to an internal

illuminance calculation engine, thus enabling modelling of the complex interactions

between artificial lighting control and the rest of the building energy domain in a fully

integrated way. Tzempelikos then implemented a systematic methodology which

performed a detailed and dynamic simulation for automatic control of motorized

shading in conjunction with controllable electric lighting systems (Tzempelikos and

Athienitis 2007). Jakubiec and Reinhart developed a simulation program that can

integrate the thermal and lighting simulation by coupling Daysim and EnergyPlus

on a Rhinoceros 3D platform (Jakubiec and Reinhart, 2011). This methodology is

then coupled with GA to perform a dynamic and interactive optimization process to

achieve more accurate design solutions in an effective way.

In this case study, the 3D model is generated on a 3D/CAD modeling platform.

The thermal simulation-based on EnergyPlus and the lighting simulation-based on

Radiance are dynamically integrated to achieve the annual total energy demand

Qtotal. The Rhinoceros/Grasshopper platform can prepare 3D/CAD models for com-

plex façades, which is not executable in EnergyPlus platform. At present, there are

limited user interfaces specifically designed for the implementation of optimization

algorithms in architectural design. This workflow represents a visualization platform

between 3D/CAD modeling, building simulation and optimization process, and pro-

vides quick feedback of architectural design variables, which helps architects to make

design decisions at the early design stage and scrutinize the results clearly.

An optimization program is implemented to run AR optimizations and make a

call to the EnergyPlus and Radiance simulation runs on the Rhinoceros/Grasshopper

platform. The optimization process is initiated by executing the optimization pro-
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gram, which accept the design variables to be optimized from the input file. Then,

the optimization engines execute Radiance and EnergyPlus scene files by replacing

these design variables in template files with the values of variables for the initial run.

Thirdly, the optimization engines execute a script that coordinated the execution of

Radiance and EnergyPlus. Radiance is executed first to achieve annual hourly illu-

minance values, which are implemented to calculate the annual lighting schedules.

EnergyPlus is then executed to achieve the total energy demand of heating, cooling,

and artificial lighting. After all the simulations are complete, the optimization en-

gines evaluate the achieved objective function QTotal and produce the design variables

for the next generations. This process will continue until AR meets its convergence

criterion.

Since EnergyPlus calculates illuminance based on the daylight factor method (Tre-

genza, 1980), which is not dynamic. The ray-tracing software Radiance is utilized in

conjunction with EnergyPlus to achieve hourly illuminance values since it uses the

daylight coefficient method (Tregenza, 1983). The sky model is divided in to 578

patches for the daylight coefficient method in Radiance. Additionally, these scripts

calculate the annual hourly lighting schedules that account for the electric lighting

control for the EnergyPlus simulations. For each hour in the office room, a scalar

between 0.1 and 1 is produced to bind the lighting power density to a level that

complement the amount of illuminance value on the work plane. The reduction in

electricity consumption by daylight is accounted for thus, together with the associ-

ated reduction in artificial lighting heat gains. Hourly lighting schedule is obtained

through Radiance, which is based on a target illuminance of 500 lux on the work

plane.

L =

 0, if E ≥ 500

1, if E <500
(3.2)
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where

L = lighting power scalar value for current hour

E = average zone illuminance for current hour

Figure 3.8: The integrated GA and whole building energy simulation.

The objective function of optimization is thus the result of running EnergyPlus

thermal simulation of the office room under study, which in the simplest case is

the annual energy demand of heating, cooling, and artificial lighting, based on the

lighting schedule obtained thru lighting simulations. The energy model is simulated

based on the same EPW weather file of the U.S. cities implemented to obtain the

hourly illuminance results. The simulation module performs the evaluation of the

design variables, and returns its fitness function value to the optimization engine.
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This value is sent to the AR algorithms to guide the generation progression. When

the AR reaches the last population, the corresponding solutions can be fed back to the

3D/CAD modeling module to perform visualization models for the architects. Figure

3.8 shows the workflow of integration of GA and whole building energy simulation

programs.

3.1.3 Solution Space of Variable Combinations

The solution space for combinations of two selected of the façade design variables

are examined in this section.

Figure 3.9 shows the solution space for the combinations of insulation and fin

angle of the four orientations. Seven exterior wall insulations and nine fin angles are

considered at discrete steps, creating a solutions space of 70 for each orientation. In

general, the solutions spaces have several local minima and a global minimum for all

orientations. The existence of local minima and its similarity with the global mini-

mum makes derivative-based search method inappropriate in solving FPO problems.

Therefore, GA is a reasonable approach.

Figure 3.9 (a) shows the solution space for the south-orientation façade. It can

be seen that there is a relatively flat surface of configurations corresponding to low

energy demand. Within that flat surface there are however several local minima and

a global minimum. Being trapped in a local minima would not be too serious in this

case since the objective function difference in relation to the global minimum is small.

The global minimum of 1129.9 kWh is located at point (7, 7), corresponding to fin

angle 120◦ and insulation 0.12 W/m2K. There are a couple of local minima when

the fin angle is 120◦ or 60◦, which shows the effect of accounting for fin angle in the

space.

For the east orientation the global minimum is sharper than the south orientation

(Figure 3.9 (b)). The global minimum of 851.1 kWh is located at point (1, 7),
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Figure 3.9: Annual energy demand [kWh] on different orientations for the design
variables of fin angle and insulation.

corresponding to fin angle 30◦ and insulation 0.12 W/m2K.

For the west orientation the global minimum is consistent with the south orien-

tation (Figure 3.9 (c)). The global minimum of 790.2 kWh is located at point (4, 7),

corresponding to fin angle 75◦ and insulation 0.12 W/m2K.

For the north orientation the global minimum is flatter than the other orientations

(Figure 3.9 (d)). The global minimum of 841.3 kWh is located at point (3, 7),

corresponding to fin angle 60◦ and insulation 0.12 W/m2K.

It could be seen that all the local minima on the four orientations happened when

the insulation is 0.12 W/m2K. However, there is a tiny difference in energy demands
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for different insulation values when the fin angles are the same. Therefore, there is

great potential that the optimization result will be trapped in the local minima which

is close to the global minimum.

Figure 3.10 shows the solution space for the combinations of glazing types and

overhang dimension of the four orientations. Six glazing types and ten overhang

depths are considered at discrete steps, creating a solution space of 60 for each ori-

entation. Similar to the insulation vs. fin-angle problem, the solutions spaces have

several local minima and a global minimum for all orientations.

Figure 3.10: Annual energy demand [kWh] on different orientations for the design
variables of glazing type and overhang depth.

Figure 3.10 (a) shows the solution space for the south-orientation façade. It can
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be seen that there is a relative flat surface of configurations corresponding to low

energy demand. Within that flat surface there are however several local minima and

a global minimum. The global minimum of 443.2 kWh is located at point (9, 4),

corresponding to a 900 mm overhang depth and glazing type 4. There are a couple

of local minima when the glazing is type 4, which shows the effect of accounting for

SHGC value in the space.

For the east orientation the global minimum is sharper than the south orientation

(Figure 3.10 (b)). The global minimum of 828.6 kWh is located at point (2, 4),

corresponding to a 200 mm overhang depth and glazing type 4. There are a couple

of local minima when the glazing is type 4, which also shows the effect of accounting

for SHGC value on this orientation.

For the west orientation the global minimum is similar to the south orientation

(Figure 3.10 (c)). The global minimum of 674.2 kWh is located at point (1, 4),

corresponding to 100 mm overhang depth and glazing type 4.

For the north orientation the global minimum is flatter than the other orientations

(Figure 3.10 (d)). The global minimum of 641.6 kWh is located at point (2, 4),

corresponding to 200 mm overhang depth and glazing type 4.

It could be seen that all of the local minima on the four orientations were seen

when the glazing is type 4. However, there is a tiny difference in the energy demand

for different overhang depths when the glazing types are the same. Therefore, the

optimization will be easily trapped in the local minima next to the global minimum.

These solution spaces in Figure 3.9 and Figure 3.10 show that there are several

local minima and a global minimum for all orientations. The presence of local minima

makes the ‘trial and error’ or derivative-based search methods infeasible for façade

optimization problem.
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3.2 Adaptive Radiation

3.2.1 Overview

Adaptive radiation is an evolutionary phenomenon in biology wherein a group of

animal or plant species develops into a wide variety of types to be adapted to special-

ized modes of different living environments. This phenomenon was first observed by

Charles Darwin on the Galapagos Islands, where he observed native birds from the

same family, in which different finches evolved to adapt to their different living envi-

ronments (Figure 3.11). Darwin then named this phenomenon Adaptive Radiation.

There are four features that are identified by Schluter of adaptive radiation (Schluter ,

2000): (1) a common ancestry for subsequent species, (2) a phenotype-environment

association, (3) trait utility, and (4) rapid speciation.

Figure 3.11: Phylogeny of the Galapagos finches. [Phylogenetic tree after Lack (1947);
head sketches from Grant (1986) after Swarth and Bowman.]

Similar to the Galapagos finches, design variables of building façades also have to

develop their own features to adapt to the local climate. A climate adaptive façade
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should be a building shell with climate adaptive characteristics, which have excellent

energy performance while maintaining a comprehensive series of objectives such as

energy conservation, thermal comfort, cost efficiency and environmental friendness.

Also, with the development of industrial manufacturing technology, modern archi-

tectural design tends toward complex façades. Since the building also has to adapt to

its site environment, the shapes of windows or shading elements can also be different

on varied positions of a façade, which means architects and engineers nowadays have

to solve FPO problems with great complexity.

Take for example, a typical square-plan mid-rise office building located in an

urban area surrounded by several existing mid-rise or high-rise constructions that may

block the annual illuminance and solar irradiation on the office building façade. The

constrcutions on the south or east orientation may cast shadows on the neighboring

south and east windows, while the reflection from the ground and the surrounding

façades will also reflect daylight on the neighboring windows, therefore increasing the

solar radiation for these windows. To achieve the optimal façade design solutions,

each window should have a specific solution. For a typical 5-floor office building with

5 windows on each orientation, there are 100 different windows in total. In the GA

process, it is very common to spend several hours running simulations for one window

(depending on the number and complexity of design variables), so the simulation time

for the entire façade optimization will be multiplied by 100 times, which means several

hundred hours, or half a month. This is not feasible in architecture firm, especially

at the early design stage.

For a flexible organic shape high-rise office building located in a more complicated

environment, the simulation time will be significantly increased since each window

has a unique orientation, which greatly increases the complexity of the FPO problem.

As contemporary architectural design tends toward organic, geometric and paramet-

ric shapes, it is imperative to improve the existing GA optimization, to reduce the
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simulation time at the early design stage.

3.2.2 Formulation and Coordination

The Adaptive Radiation algorithm in this study is an improvement of simple GA

to solve FPOs with great complexity. The main methodology of the AR is to divide

the entire optimization process into different niches and then solve them step by step.

Instead of treating all the design variables equally, AR places the variables with the

same characteristics in the same niche of the optimization process. Additionally, AR

won’t execute optimization for all of the design variables. Instead, AR will achieve

the optimization solutions by making interpolations based on the optimization results

achieved in the former optimization steps. AR can find the common features of

the design variables and prevent optimization tasks for unessential design variables,

therefore largely reduce the simulation times compared to a simple GA.

A nonlinear minimization problem is an optimization problem of the form:

minf(x)

s.t. g(x) ≥ 0

h(x) = 0

x ∈ Rn

(3.3)

For nonlinear problems, solutions are difficult to find when n is large and f(x), g(x)

or h(x) are very nonlinear, have many components, or are expensive for simulation.

For a hierarchical nonlinear problem,
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minf0(x0) +

p∑
j=1

fi(x0, xj)

x ∈ Rn

s.t. g0(x0) ≤ 0

h0(x0) = 0

gj(x0, xj) ≤ 0

hj(x0, xj) = 0

j = 1, . . . , p

(3.4)

where n and p are positive integers. Let f , gi, and hj be real-valued functions on

x for each j in 1, . . . , p.

Linking variables: a vector of variables x0 common to all groups of functions.

Sub-problems: A group of functions which depends only on the vector of linking

variables and upon a single sub-vector xj. Often written as a small nonlinear problem

minfj(x0, xj)

xj ∈ Rnj

s.t. gj(x0, xj) ≤ 0

hj(x0, xj) = 0

(3.5)

There are several main advantages of hierarchical optimization: (1) it can trans-

form a large FPO problem into smaller manageable pieces; (2) each sub-problem is

autonomous; (3) it allows for parallel implementation; and (4) smaller problems are

easier to solve.

The main process of AR is to decompose the optimization problem hierarchically.

Different decomposition strategies can be implemented in the AR process based on

the characteristics of the FPO problem. The problem can be decomposed into sub-

problems by the physical components (for example, zones and components), by sim-
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ulation performance (for example, lighting and thermal simulation), or by design

variable characteristics (for example, variables that stay unchanged and parameters

that keep changing during the entire optimization process). Once the FPO problem

has been decomposed appropriately, different optimization algorithms can be imple-

mented based on the characteristics of each sub-problem. There are horizontal and

vertical links between these sub-problems. Each sub-problem will take the variables

and parameter settings as input from the sub-problem of its upper level, and generate

new variables and parameter settings as the output.

Figure 3.12 shows an example of one optimization system which is decomposed

into five sub-problems (1, 2, 3, 4 and 5) with four design variables (A, B, C and D).

The AR optimization is executed through four stages from Level 1 to Level 4. On

Level 1, the problem is decomposed into five sub-problems (1, 2, 3, 4 and 5) based on

their individual locations. On Level 2, the values for design variables Ax, Bx, Cn and

Dn are achieved for all the sub-problems. The values of linking variables Ax and Bx

are treated as parameters, those for all sub-problems are the same and stay unchanged

during the entire optimization process. The values of the design variables Cn and Dn

are different for each sub-problem. On Level 3, the unchanged design variables Ax and

Bx are passed down from the upper level (Level 2), while each sub-problem achieves

its own design variable C1, C3, C5, D1, D3, D5. On Level 4, the sub-problem 2 and 4

achieve the value of their design variables C2, C4, D2, D4, by the method of gradient

interpolation, based on the values of C1, C3, C5, D1, D3, D5 that achieved on Level 3.

The plan of office buildings can be either square-plan or free-form plan. The

traditional square-plan has four orientations, such as south, north, east and west.

Since windows on different orientations achieve varied solar radiation and daylight,

individual solutions should be considered for each window. For a free-form facade,

there is no clear boundary between the orientations. But the optimization process

can also begin with achieving solutions on several typical sub-problems on different

52



Figure 3.12: Workflow of Adaptive Radiation: a three-level process with four design
variables (A, B, C and D) and five façade decompositions (1, 2, 3, 4 and 5).

orientations first, and then make interpolations between the achieved optimal results,

to accomplish solutions for the remaining the sub-problems. Take for example, a

typical 5-floor office building that has five windows on each orientation for each floor;

an Adaptive Radiation optimization procedure in solving this FPO problem is as

follows:

minx∈Xf(x)

s.t. a, b, c, d ⊂ Rn

(3.6)

where minf(x) is the objective function (cost function or optimization criterion)

to be optimized, a ∈ A, b ∈ B, c ∈ C, d ∈ D are the vectors of design variables,

x ⊂ Rn is the constraint set.

x is a constant value for all design variables, which will be stay unchanged on the

next levels;

n can be any number within the range of the design variables, which will be

changed on the next levels.

Level 1: The first level of setting up an AR process is to decompose the entire
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façade model into different sub-problems (based on individual orientations and floors

in this case study). Then several specific sub-problems are selected to execute GA

optimization on Level 2. As shown in Figure 3.13, each floor of the south façade

is decomposed into 5 individual sub-problems (Sn−1, Sn−2, Sn−3, Sn−4, Sn−5) by the

positions of windows. Sub-problems 1, 3, and 5 (Sn−1, Sn−3, Sn−5) are then selected

for the next level of AR optimization.

Figure 3.13: Level 1 Decomposition

Level 2: Execute optimization for all the design variables that will stay unchanged

for the sub-problems, such as the glazing types or the wall insulation. Even though

different windows on the same façade will receive varied amounts of annual solar

radiation and daylight due to their diverse orientations and positions, which will lead

to different material selections to achieve the minimum annual energy demand, these

variables should be kept at the same value for the entire façade due to the aesthetic

requirement and construction feasibility. On this level, the optimal solutions for

glazing types and wall insulation can be achieved.

As show in Figure 3.14, the goal of Level 2 is to achieve the optimal value minf(x)
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Figure 3.14: Level 2 Optimization for the unchanged design variables A and B

for the unchanged design variables such as glazing type and wall insulation (design

variables A and B on this level) for the different window positions (Sn−1, Sn−3, Sn−5)

and different floor heights (S1, S3, S5). There are thus 9 (3 positions × 3 heights)

subproblems (S1−1, S1−3, S1−5, S3−1, S3−3, S3−5, S5−1, S5−3, S5−5) in total on this level.

Just as the windows on different orientations receive varied solar radiation, the win-

dows on the top floors (S5−1, S5−3, S5−5) can receive more solar radiation and day-

light, while the windows on the ground floors (S1−1, S1−3, S1−5) are more affected by

shadow casted by surrounding buildings. Also, the windows on the ground floors

(S1−1, S1−3, S1−5) also have the potential to receive more daylight compared with the

upper floors (S2−1, S2−3, S2−5) because they can receive more daylight from the ground

reflection.

Level 3: Execute optimization for the sub-problems to achieve values for the

changing design variables C and D. Keep the value of Ax and Bx achieved from the

upper level unchanged, and run optimization for daylight-related design variables

such as window-to-wall ratio, window shape, shading depth and shading angle (the
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design variables are C and D in this case study). The design optimization solu-

tions for each sub-problem can be achieved for each selected window at this step

(C1−1D1−1, C1−3D1−3, C1−5D1−5, C3−1D3−1, C3−3D3−3, C3−5D3−5, C5−1D5−1,

C5−3D5−3, C5−5D5−5) (Figure 3.15).

Figure 3.15: Level 3 Optimization for changing design variables

Level 4: Based on the optimization result achieved from Level 3, make interpola-

tion to get the optimal or near-optimal solutions for the remaining the sub-problems

on the same floor, since the change for design variables such as WWR, shading depth

and shading angle is due to gradient impact from daylight or solar radiation. Com-

putation time can be remarkably reduced by this interpolation methodology (Figure

3.16).

Level 5: Make interpolation and achieve the optimal or near-optimal solutions

for sub-problems between different floors (Figure 3.17). Repeat the process until all

sub-problems achieve their individual optimal solutions (Figure 3.18).

The main advantage of AR is that the computation time can be substantially

reduced by the methods of hierarchical optimization and interpolation, which can
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Figure 3.16: Level 4 Horizontal gradient interpolation

Figure 3.17: Level 5 Vertical gradient interpolation

prevent processing unessential simulation runs. Figure 3.19 represents a hierarchical

workflow of the entire optimization process (Shan 2015) (https://www.researchgate.net/

publication/299497585 Hierarchical optimization workflow of Adaptive Radiation).

The detail of the optimization process is described in the case studies in the next
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Figure 3.18: End of Adaptive Radiation

chapters.

Figure 3.19: Hierarchical optimization workflow of Adaptive Radiation
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3.3 Summary

Following an overview of the design optimization algorithms and simple GA, this

chapter presents a simulation-based hierarchical optimization methodology, which is

based on improvement of the simple GA. The following chapters extend and validate

this methodology through a couple of façade design scenarios in different climates.
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CHAPTER IV

Case Study

This chapter describes the first implementation test of the AR in an FPO problem

in a design scenario. The objective of the test is to gain validation in AR’s performance

before implementing it in more different climates. A prototype of a typical mid-rise

office building is shown. Simple GA is also used in this prototype to validate the

efficiency and robustness of AR by comparing the simulation time and optimization

results. The optimization results validate the feasibility of AR in FPOs.

4.1 Case Study Definition

An FPO problem for a typical mid-rise office building is shown below. The model

is located in a proposed site that is surrounded by several high-rise or mid-rise con-

structions, which create shadows and reflections, affecting the annual total energy

demand of each office room (Figure 4.1). The design scenario in this chapter is tested

for the climate of San Francisco, California, a cooling-dominated situation. The next

chapter will represent the implementations of AR for two other locations: Miami,

Florida, a cooling-dominated climate; and Chicago, Illinois, a heating-dominated cli-

mate. The aim is to provide some insight on how the optimal values of façade design

variables vary with different climatic conditions.

The climate of San Francisco is characterized by cool summers and temperate
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Figure 4.1: Building environment

winters with extremely rare snow. The summer has average maximum temperatures

between 15◦C and 21◦C (60◦F and 70◦F), and minima between 10◦C and 13◦C (50 ◦F

and 55 ◦F). Winter has high temperatures between 13◦C and 15◦C (55 ◦F and 60 ◦F)

and low temperatures in the 7◦C and 10◦C (45 ◦F to 50 ◦F) range. The psychrometric

chart shows that cooling is dominant in this climate (Figure 4.2).

Figure 4.2: Psychrometric chart of San Francisco, CA, United States
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The shade from the surrounding buildings and the reflections from the environ-

ment both have a significant impact on the solar irradiation and daylight on the

façade of each office room. Figure 4.3 shows the variation of shading and radiation

on the building façade on different dates and times throughout the year.

Figure 4.3: Annually variation of shading on the façade – San Francisco

The office building model has five floors. On each floor, there are five typical office

rooms on each orientation. Therefore, there are 100 rooms total (4 orientations × 5

windows on each orientation × 5 floors) in this design scenario. For each window,

different combinations of design variables should be considered to achieve the optimal

solution, which means there are total 100 (5 × 5 × 4) sub-problems to be solved in
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this umbrella FPO problem (Figure 4.4).

Figure 4.4: Case study: office building model

Figure 4.5 shows a 3D model of each typical office room. Each single-occupant

office room has an area of 24 m2, a volume of 57.6 m3 (4m × 6m × 2.4m) and a

window area of 3.2 m2. For internal heat gains, the office room is assumed to have

equipment heat gain of 9 W/m2, artificial lighting heat gain of 13 W/m2 (2 desktop

computers, 2 monitors and 1 printer), and an occupancy of 0.1 person/m2. The

entire office building is assumed to be fully occupied on weekdays between 8 AM and

5 PM with a 1 hour break at noon. A daylight sensor is placed at a 1-meter high

work plane, while the minimum illuminance set for the photo sensor is 500 lux. The

lighting power density is 11.74 W/m2.

Table 4.1: Model setup

Parameter Value
Lighting power
density

11.74 W/m2

Equipment power
density

9 W/m2

Occupancy density 0.1 person/m2

Floor adiabatic
Ceiling adiabatic
Inner walls adiabatic
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Figure 4.5: Building environment

4.2 Optimization Setup

Table 4.2: Variable Settings

Variable Variable settings
Glazing (v1) 1 2 3 4 5 6

U-value [W/m2K] 6 2.7 1.8 1.5 1.1 0.7

SHGC [-] 0.7 0.62 0.6 0.34 0.31 0.24

Tvis. [-] 0.88 0.8 0.65 0.65 0.47 0.3

Insu. (v2) 1 2 3 4 5 6 7

U-value [W/m2K] 0.7 0.46 0.37 0.32 0.26 0.19 0.12

R-Value 8.1 12.3 15.4 17.7 21.8 29.9 47.3

Infil. (v3) 1 2 3 4

ACH [-] 0.25 0.18 0.15 0.12

Fin (v4) 1 2 3 4 5 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 800 900 1000

Overhang (v5) 1 2 3 4 5 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 800 900 1000

Fin an-
gle

(v6) 1 2 3 4 5 6 7 8 9

[◦] 30 45 60 75 90 105 120 135 150

The proposed method is evaluated on a façade optimization problem with six

design variables (Table 4.2). The total combinations of different design variables

values is 151,200. These combinations in this case study can represent most of the

varieties of the building façade design. The façade design variables of this FPO

problem include: (a) the type of glazing (v1); (b) wall insulation (v2); (c) infiltration
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(v3); (d) the depth of vertical shading elements (window fins) (v4); (e) the shading

depth of window overhang (v5); and (f) the rotation angle of vertical shading elements

(window fins) (v6).

Objective function

Generally the total energy demand for a typical office room is mainly consisted

of space heating, space cooling, and artificial lighting. A climate-based calculation

methodology is implemented here to estimate the total building energy demand, Qtotal,

which is the objective function of this study:

Qtotal = Qheating + Qcooling + Qlighting (4.1)

where

Qheating – energy demand for space heating [kWh];

Qcooling – energy demand for space cooling [kWh];

Qlighting – energy demand for artificial lighting [kWh].

The population size is kept in a relatively small size in this study (n = 20). The

optimization process will stop after repeating 10 generations without improvement

for the objective function. If there improvement of the objective function happened,

GA will run further optimizations and stops when there is no improvement in the

next 10 generations. This logic is proved to be a valuable choice, since extending that

number to 20 or 30 generations only lead to tiny improvement in the final solutions,

but takes a much longer simulation time. The simulation time which is counted by

the number of total simulation runs are implemented in this study to evaluate the

performance of AR.
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4.3 Results of AR - San Francisco

For the aesthetic requirement in façade design, the same insulation materials or

glazing types should be implemented on the entire façade, despite the orientation.

Therefore, the variable inputs of the glazing, insulation and infiltration are kept the

same on all the sub-problems in this design scenario. In this case, the total number

of possible solutions based on the combinations of different design variable inputs is:

6× 7× 4× (10× 10× 9)100 (4.2)

For AR, in Step 1, only 36 rooms are considered to achieve the optimal solutions of

the first three design variables. The optimal solutions for each room is then achieved

in Step 2. Thus the total number of possible simulations of AR in this FPO is:

6× 7× 4× (10× 10× 9)36 + (10× 10× 9)× 36 (4.3)

Two AR optimization runs (AR I and AR II) are executed in this section to

validate its feasibility and robustness.

4.3.1 AR Results I – San Francisco

Table 4.3 shows the optimization results achieved by Step 1 in AR optimization

I, focusing on the values of the first three design variables that will stay constant in

subsequent steps. In this step, the users can select the number of sub-problems to

be optimized. However, it’s worth pointing out that there is always a compromise

between the efficiency and accuracy for the selection. Selecting more sub-problems

improves the accuracy of the optimization result, but it takes more simulation effort,

which reduces the efficiency. In this case study, to improve the efficiency, only one

room located at the center of each façade is selected in Step 1. Therefore four runs

(S3−3, N3−3, E3−3,W3−3) are executed in total.
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Table 4.3: AR Results I - Step 1 – San Francisco

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S3−3 5 5 1 9 6 6 375.4 13 260
E3−3 2 6 3 1 3 9 637.3 13 260
N3−3 4 3 1 2 1 3 462.9 20 400
W3−3 4 3 1 5 4 4 585.3 20 400
Avg. 4 4 2 - - - 515.2 16.5 330
Sum. 66 1320

Table 4.3 and Figure 4.6 show that the values of the first three design variables

are achieved by averaging these optimization results, which are v1 = 4, v2 = 4, v3 = 2.

The glazing type 4, the insulation type 4 (0.32 W/m2K), and infiltrate rate of 0.18

are selected by Step 1. San Francisco has cool summers and temperate winters. The

southern façade receives extensive solar radiation in summertime, therefore, effective

glazing and insulation are essential to block the solar heat and reduce the cooling

energy demand. Compared with the south façade, the impact from the solar radiation

is not that apparent on the east, north and west façades, thus lower insulation and

SHGC values are selected on these façades. Additionally, the weather of San Francisco

is not as severe as it is in Miami, which also explains why the design solutions don’t

select the highest insulation and SHGC values. Compromises are made between

different façades, especially the south and east façades. These design variable values

are then implemented for all the 36 sub-problems in Step 2 of AR optimization I.

It can also be seen in Figure 4.6 that the shading depth on the south façade is

large, which is 600 mm for the overhang depth and 900 mm for the fin depth. In

contrast, the shading depth on the north façade is small, which are 100 mm for the

overhang depth and 200 mm for the fin depth. The shading depths on the east façade

are also small, 300 mm for the overhang depth and 100 mm for the fin depth. The

reason is that the high-rise building on the east orientation close to the east façade

blocks most of the daylight and solar radiation over the year. The overhang depth
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on the west façade is 400 mm, and the fin depth is 500 mm, which also reflects the

need to block solar radiation on the western facades in the afternoon.

Figure 4.6: AR Results I – Step 1 – San Francisco

Step 2

Table 4.4 shows the optimization results for south façade achieved by Step 2 of

the AR optimization I. The first three design variables (v1 = 4, v2 = 4, v3 = 2)

stay unchanged. The optimization runs are executed for 9 selected sub-problems

(S1−1, S1−3, S1−5, S3−1, S3−3, S3−5, S5−1, S5−3, S5−5) on the south orientation. The façade

design solutions for these sub-problems are shown in Figure 4.7.

It can be seen in Table 4.4 and Figure 4.7 that the optimization solutions achieved

by Step 2 show large fin and overhang shading depths on the south façade in this

case study, which is consistent with the solutions achieved for S3−3 by Step 1. There

is gradient for the change for the shading depth, especially for the overhang depth of
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Table 4.4: AR Results I - Step 2 – South façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S1−1 4 4 2 8 6 7 317.7 14 280
S1−3 4 4 2 8 4 3 378.8 18 360
S1−5 4 4 2 6 10 6 387.0 16 320
S3−1 4 4 2 6 8 6 332.7 16 320
S3−3 4 4 2 9 6 6 373.3 13 260
S3−5 4 4 2 8 9 7 337.5 17 340
S5−1 4 4 2 2 7 2 350.6 17 340
S5−3 4 4 2 6 10 4 415.4 13 260
S5−5 4 4 2 7 8 7 353.0 17 340
Avg. 360.7 15.7 313.3
Sum. 141 2820

Figure 4.7: AR Results I – Step 2 – South façade – San Francisco

the solutions. For example, for the rooms in the middle of each floor (S1−3, S3−3), the

overhang depths (400 mm for S1−3 and 600 mm for S3−3) are smaller than those for

the rooms on the edges (600 mm for S1−1, 1000 mm for S1−5, 800 mm for S3−1, 900
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mm for S3−5). The reason is that the high-rise building on the south orientation casts

shadows which mainly impact the rooms in the center of the façade. Additionally, the

height and distance of the high-rise building determines that it has less impact on the

rooms on the top floor. The average total energy demand for all the 9 sub-problems

is 360.7 kWh. This result is 3.9% smaller than the 375.4 kWh achieved by Step 1.

It’s worth pointing out that since there are limited number of sub-problems in Step

2, the optimization solutions achieved by Step 2 can only show a trend but cannot

guarantee the solutions are the global optimum for this FPO problem.

Table 4.5: AR Results I – Step 2 – East façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
E1−1 4 4 2 5 2 2 361.9 13 260
E1−3 4 4 2 9 7 3 580.7 14 280
E1−5 4 4 2 4 3 7 364.2 13 260
E3−1 4 4 2 8 3 3 339.8 13 260
E3−3 4 4 2 2 4 4 663.6 18 360
E3−5 4 4 2 8 1 7 338.3 11 220
E5−1 4 4 2 1 5 1 348.7 16 320
E5−3 4 4 2 5 3 2 657.6 13 260
E5−5 4 4 2 8 3 7 356.2 16 320
Avg. 445.7 14.1 282.2
Sum. 127 2540

Table 4.5 represents the optimization results for the east façade achieved by Step

2 of the AR optimization I. The optimization runs are executed for 9 selected sub-

problems (E1−1, E1−3, E1−5, E3−1, E3−3, E3−5, E5−1, E5−3, E5−5) on the east orienta-

tion. The façade design solutions for these sub-problems are shown in Figure 4.8.

It can be seen in Table 4.5 and Figure 4.8 that the optimization solutions achieved

by Step 2 show deep fin shadings on the east façade in this case study, while deep

overhang shadings are not as imperative, comparatively. This is because the eastern

façade is mainly impacted by the sun on a relatively lower solar altitude, which

means the overhang shadings are not as effective as the fin shadings. The average
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total energy demand for all the 9 sub-problems is 445.7 kWh, which is 30.1% smaller

than the 637.3 kWh achieved by Step 1. There is no apparent gradient for the shading

depths on the east façade.

Figure 4.8: AR Results I – Step 2 – East façade – San Francisco

Figure 4.8 also shows that the fin angles for the third rooms (E1−5, E3−5, E5−5) are

relatively larger than that for the first two rooms on each floor (E1−1, E1−3, E3−1, E3−3,

E5−1, E5−3). This is typical for fins to face the south orientation in order to receive

more solar radiation, as well as reflect more daylight in to the room. In contrast,

solutions for the third rooms on each floor (E1−5, E3−5, E5−5) show a north-facing fin

angle (120◦). The reason is that the rooms on the northeast edge are blocked by the

high-rise building on the east and north. The only available daylight and solar radia-

tion is from the space between the east and north buildings. Therefore, the fin angles

are facing this space to achieve as much daylight and solar radiation as possible.
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Table 4.6: AR Results I – Step 2 – North façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
N1−1 4 4 2 2 2 4 639.8 20 400
N1−3 4 4 2 8 1 3 579.1 14 280
N1−5 4 4 2 1 3 6 385.8 13 260
N3−1 4 4 2 4 1 3 541.1 14 280
N3−3 4 4 2 1 1 6 593.5 13 260
N3−5 4 4 2 2 4 7 292.7 11 220
N5−1 4 4 2 4 1 4 528.3 14 280
N5−3 4 4 2 2 1 3 418.3 12 240
N5−5 4 4 2 10 4 6 364.0 20 400
Avg. 481.3 14.6 291.1
Sum. 131 2620

Figure 4.9: AR Results I – Step 2 – North façade – San Francisco

Table 4.6 represents the optimization results for north façade achieved by Step 2 of

the AR optimization I. The optimization runs are executed for 9 selected sub-problems

72



(N1−1, N1−3, N1−5, N3−1, N3−3, N3−5, N5−1, N5−3, N5−5) on the north orientation. The

façade design solutions for these sub-problems are shown in Figure 4.9.

It can be seen in Table 4.6 and Figure 4.9 that the optimization solutions achieved

by Step 2 show small depths for fin and overhang shadings on the north façade in this

case study. This is because the north façade does not receive as much daylight and

solar radiation during the entire year. Thus overhang shading is not necessary on this

orientation. The solutions achieved by this step show a consistent trend compared

with the solutions achieved by Step 1. The average total energy demand for all the 9

sub-problems is 481.3 kWh, which is 4.0% greater than the 462.9 kWh achieved by

Step 1.

It could also be found in Figure 4.9 that the fins are slightly facing east for the

rooms on the east edge and facing west for the rooms on the west edge of north

façade. This can help the rooms to receive as more as daylight and solar radiations

through the reflections by the fin shadings.

Table 4.7 represents the optimization results for western façade achieved by Step

2 of the AR optimization I. The optimization runs are executed for 9 selected sub-

problems (W1−1,W1−3,W1−5,W3−1,W3−3,W3−5,W5−1,W5−3,W5−5) on the west ori-

entation. The façade design solutions for these sub-problems are shown in Figure

4.10.

It can be seen that the optimization solutions achieved by Step 2 show small depths

for fin and/or overhang shadings on the lower and middle floors on the west façade

in this case study. Comparatively, the shading depths for sub-problems on the top

floor is larger, especially the overhang depths. This is because the rooms on the top

floor of western façade receive more solar radiation in the afternoons. Thus overhang

shading is imperative to reduce exposure to solar radiation on this orientation. The

average total energy demand for all the 9 sub-problems is 578.5 kWh, which is 1.2%

smaller than the 585.3 kWh achieved by Step 1.
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Table 4.7: AR Results I – Step 2 – West façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
W1−1 4 4 2 1 2 3 695.3 14 280
W1−3 4 4 2 3 8 4 601.3 12 240
W1−5 4 4 2 1 4 6 562.9 19 380
W3−1 4 4 2 3 1 3 624.1 17 340
W3−3 4 4 2 2 1 3 576.2 15 300
W3−5 4 4 2 2 2 3 505.9 12 240
W5−1 4 4 2 5 10 4 575.8 11 220
W5−3 4 4 2 9 6 3 548.7 14 280
W5−5 4 4 2 2 10 7 516.2 16 320
Avg. 578.5 14.4 288.9
Sum. 130 2600

Figure 4.10: AR Results I – Step 2 – West façade – San Francisco

Figure 4.10 also shows a clear trend for the fin angles. The fins are slightly facing

south for the rooms on the south edge (W1−3,W3−3,W5−3), and facing north for the

rooms on the north edge (W1−1,W3−1,W5−1) of western façade. This can help the
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rooms to receive daylight in the morning and block solar radiation in the afternoon

as much as possible through the reflections by the fin shading elements.

Table 4.8: AR Results I – Step 3 – San Francisco

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6
Unit [kWh] Unit [kWh]
S1−1 4 4 2 8 6 7 317.7 E1−1 4 4 2 5 2 2 361.9
S1−2 4 4 2 8 5 5 505.3 E1−2 4 4 2 7 5 3 821.4
S1−3 4 4 2 8 4 3 378.8 E1−3 4 4 2 9 7 3 580.7
S1−4 4 4 2 7 7 5 619.3 E1−4 4 4 2 7 5 5 969.6
S1−5 4 4 2 6 10 6 387.0 E1−5 4 4 2 4 3 7 364.2
S3−1 4 4 2 6 8 6 332.7 E3−1 4 4 2 8 3 3 339.8
S3−2 4 4 2 8 7 6 404.5 E3−2 4 4 2 5 4 4 683.2
S3−3 4 4 2 9 6 6 373.3 E3−3 4 4 2 2 4 4 663.6
S3−4 4 4 2 9 8 7 442.9 E3−4 4 4 2 5 3 6 838.9
S3−5 4 4 2 8 9 7 330.5 E3−5 4 4 2 8 1 7 338.3
S5−1 4 4 2 2 7 2 350.6 E5−1 4 4 2 1 5 1 348.7
S5−2 4 4 2 4 9 3 472.6 E5−2 4 4 2 3 4 2 808.3
S5−3 4 4 2 6 10 4 415.4 E5−3 4 4 2 5 3 2 657.6
S5−4 4 4 2 7 9 6 523.6 E5−4 4 4 2 7 3 5 891.3
S5−5 4 4 2 7 8 7 353.0 E5−5 4 4 2 8 3 7 356.2
Avg. 413.8 Avg. 601.6
N1−1 4 4 2 2 2 4 639.8 W1−1 4 4 2 1 2 3 695.3
N1−2 4 4 2 5 2 4 838.5 W1−2 4 4 2 2 5 4 660.9
N1−3 4 4 2 8 1 3 579.1 W1−3 4 4 2 3 8 4 601.3
N1−4 4 4 2 5 2 5 802.8 W1−4 4 4 2 2 6 5 704.8
N1−5 4 4 2 1 3 6 385.8 W1−5 4 4 2 1 4 6 562.9
N3−1 4 4 2 4 1 3 541.1 W3−1 4 4 2 3 1 3 624.1
N3−2 4 4 2 3 5 5 751.4 W3−2 4 4 2 3 1 3 628.9
N3−3 4 4 2 1 8 6 593.5 W3−3 4 4 2 2 1 3 576.2
N3−4 4 4 2 2 6 7 534.8 W3−4 4 4 2 2 2 3 529.0
N3−5 4 4 2 2 4 7 292.7 W3−5 4 4 2 2 2 3 505.9
N5−1 4 4 2 4 1 4 528.3 W5−1 4 4 2 5 10 4 575.8
N5−2 4 4 2 3 1 4 549.4 W5−2 4 4 2 7 8 4 610.8
N5−3 4 4 2 2 1 3 418.3 W5−3 4 4 2 9 6 3 548.7
N5−4 4 4 2 6 3 5 603.3 W5−4 4 4 2 6 8 5 597.4
N5−5 4 4 2 10 4 6 364.0 W5−5 4 4 2 2 10 7 516.2
Avg. 556.9 Avg. 595.9

Table 4.8 represents the horizontal interpolation procedure in Step 3 of the AR

optimization II. The design variables v4, v5, v6 for each sub-problem are achieved, the

total energy demand for each sub-problem are then achieved by simulation. The
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average total energy demand for all the sub-problems is 413.8 kWh for the south

façade, 601.6 kWh for the east façade, 556.9 kWh for the north façade, and 595.9 kWh

for the west façade. The average total energy demand for all sub-problems achieved

by this step is 542.1 kWh, which is 16.2% higher than the 466.5 kWh achieved by

Step 3.

Step 4

Table 4.9 shows the vertical interpolation procedure in Step 4 of the AR opti-

mization I. Interpolations are made for the vertical sub-problems based on the op-

timization solutions achieved by Step 4. The shading design variables v4, v5, v6 for

each sub-problem on the second and fourth floors are achieved by this step. The total

energy demand for each sub-problem are then achieved through simulation. The av-

erage total energy demand for all the sub-problems is 422.0 kWh for the south façade,

601.6 kWh for the east façade, 581.4 kWh for the north façade, and 611.6 kWh for

the west façade. The total energy demand achieved by Step 3 is higher than that

achieved by Step 4.

Table 4.9: AR Results I – Step 4 – San Francisco

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6
S1−1 4 4 2 8 6 7 317.7 E1−1 4 4 2 5 2 2 361.9
S1−2 4 4 2 8 5 5 505.3 E1−2 4 4 2 7 5 3 821.4
S1−3 4 4 2 8 4 3 378.8 E1−3 4 4 2 9 7 3 580.7
S1−4 4 4 2 7 7 5 619.3 E1−4 4 4 2 7 5 5 969.6
S1−5 4 4 2 6 10 6 387.0 E1−5 4 4 2 4 3 7 364.2
S2−1 4 4 2 7 7 7 428.7 E2−1 4 4 2 5 2 2 545.8
S2−2 4 4 2 8 6 6 366.9 E2−2 4 4 2 7 3 3 535.1
S2−3 4 4 2 9 5 5 484.6 E2−3 4 4 2 6 4 3 844.6
S2−4 4 4 2 8 7 6 542.0 E2−4 4 4 2 6 6 4 956.1
S2−5 4 4 2 7 10 7 331.3 E2−5 4 4 2 6 4 5 452.4
S3−1 4 4 2 6 8 6 332.7 E3−1 4 4 2 6 2 7 339.8
S3−2 4 4 2 8 7 6 404.5 E3−2 4 4 2 5 4 4 683.2
S3−3 4 4 2 9 6 6 373.3 E3−3 4 4 2 2 4 4 663.6
S3−4 4 4 2 9 8 7 442.9 E3−4 4 4 2 5 3 6 838.9
S3−5 4 4 2 8 9 7 330.5 E3−5 4 4 2 8 1 7 338.3
S4−1 4 4 2 4 8 4 366.6 E4−1 4 4 2 5 4 2 321.0
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v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6
S4−2 4 4 2 6 8 5 468.8 E4−2 4 4 2 4 4 3 525.3
S4−3 4 4 2 8 8 5 445.9 E4−3 4 4 2 4 4 3 609.1
S4−4 4 4 2 8 8 6 540.3 E4−4 4 4 2 6 3 5 859.5
S4−5 4 4 2 8 9 7 368.1 E4−5 4 4 2 8 2 7 366.4
S5−1 4 4 2 2 7 2 350.6 E5−1 4 4 2 1 5 1 348.7
S5−2 4 4 2 4 9 3 472.6 E5−2 4 4 2 3 4 2 808.3
S5−3 4 4 2 6 10 4 415.4 E5−3 4 4 2 5 3 2 657.6
S5−4 4 4 2 7 9 6 523.6 E5−4 4 4 2 7 3 5 891.3
S5−5 4 4 2 7 8 7 353.0 E5−5 4 4 2 8 3 7 356.2
Avg. 422.0 Avg. 601.6
N1−1 4 4 2 2 2 4 639.8 W1−1 4 4 2 1 2 3 695.3
N1−2 4 4 2 5 2 4 838.5 W1−2 4 4 2 2 5 4 660.9
N1−3 4 4 2 8 1 3 579.1 W1−3 4 4 2 3 8 4 601.3
N1−4 4 4 2 5 2 5 802.8 W1−4 4 4 2 2 6 5 704.8
N1−5 4 4 2 1 3 6 385.8 W1−5 4 4 2 1 4 6 562.9
N2−1 4 4 2 2 2 4 616.4 W2−1 4 4 2 2 2 3 654.4
N2−2 4 4 2 3 2 4 727.0 W2−2 4 4 2 2 3 3 653.2
N2−3 4 4 2 4 3 4 779.9 W2−3 4 4 2 3 5 4 622.1
N2−4 4 4 2 5 5 5 710.3 W2−4 4 4 2 2 4 4 648.7
N2−5 4 4 2 3 4 6 438.7 W2−5 4 4 2 2 3 5 628.3
N3−1 4 4 2 2 4 7 541.1 W3−1 4 4 2 3 1 3 624.1
N3−2 4 4 2 3 5 5 751.4 W3−2 4 4 2 3 1 3 628.9
N3−3 4 4 2 1 8 6 593.5 W3−3 4 4 2 2 1 3 576.2
N3−4 4 4 2 2 6 7 534.8 W3−4 4 4 2 2 2 3 529.0
N3−5 4 4 2 2 4 7 292.7 W3−5 4 4 2 2 2 3 505.9
N4−1 4 4 2 4 1 4 560.8 W4−1 4 4 2 4 6 4 614.9
N4−2 4 4 2 3 3 4 618.5 W4−2 4 4 2 5 5 3 663.2
N4−3 4 4 2 2 5 5 674.5 W4−3 4 4 2 6 4 3 674.1
N4−4 4 4 2 4 4 6 633.3 W4−4 4 4 2 4 5 4 616.1
N4−5 4 4 2 6 4 7 363.3 W4−5 4 4 2 2 6 5 575.9
N5−1 4 4 2 4 1 4 528.3 W5−1 4 4 2 5 10 4 575.8
N5−2 4 4 2 3 1 4 549.4 W5−2 4 4 2 7 8 4 610.8
N5−3 4 4 2 2 1 3 418.3 W5−3 4 4 2 9 6 3 548.7
N5−4 4 4 2 6 3 5 603.3 W5−4 4 4 2 6 8 5 597.4
N5−5 4 4 2 10 4 6 364.0 W5−5 4 4 2 2 10 7 516.2
Avg. 581.4 Avg. 611.6

Figure 4.11 shows the optimization solutions for the entire south and east façades.

Figure 4.12 shows the optimization solutions for the entire north and west façades.

Detailed figures for the sub-problems in Step 4 are shown in Appendix A.
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Figure 4.11: AR Results I – Step 4 – South and East façades – San Francisco

Figure 4.12: AR Results I – Step 4 – North and West façade – San Francisco

Table 4.10 represents the average total energy demand for all the rooms achieved

by each Step in AR optimization I. It can be seen that the average total energy

demand for all the sub-problems is 466.5 kWh in Step 2. After the interpolation
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processes in Step 3 and Step 4, the average total energy demands increase, which

are 542.1 kWh and 552.9 kWh, respectively. The reason the total energy demand

increases is that the interpolation cannot guarantee the solutions achieved are the

global optimum. In contrast, the design variables for each sub-problem have to be

compromised with each other. The main objective of the interpolation processes in

Step 3 and Step 4 is to reduce the optimization time and improve the efficiency of

optimization process, while the accuracy is undermined sometimes. There are 1320

simulation runs executed in Step 1 and 10580 simulation runs in Step 2. Therefore,

11900 simulation runs are executed in total for AR optimization I.

Table 4.10: AR Results I - San Francisco

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] [-]

Step 1 375.4 637.3 462.9 585.3 515.2 1320
Step 2 360.7 445.7 481.3 578.5 466.5 10580
Step 3 413.8 601.6 559.6 595.9 542.1
Step 4 422.0 601.6 576.5 611.6 552.9
Total 11900

4.3.2 AR Results II – San Francisco

Table 4.11 shows the optimization results achieved by Step 1 in AR optimization

II. The same as AR optimization I, only one room located at the center of each façade

is selected in Step 1 and four runs (S3−3, N3−3, E3−3,W3−3) in total are executed in

this step.

The values of the first design three variables are achieved by making an average of

these optimization results, which are v1 = 4, v2 = 3, v3 = 1. Therefore, for the entire

façade, the glazing type 4 should be implemented, as well as the 0.37 W/m2K exterior

wall insulation and 0.25 infiltration. These design variable values are implemented

for all the 36 sub-problems in Step 2 of AR optimization II.
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Table 4.11: AR Results II - Step 1 – San Francisco

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S3−3 4 1 1 5 7 7 382.1 13 260
E3−3 5 1 2 4 2 3 635.3 20 400
N3−3 4 4 1 8 1 3 445.0 15 300
W3−3 4 2 1 4 5 3 598.4 13 260

4 3 1 - - - - - -
Avg. 515.2 15.3 560
Sum. 61 1220

Figure 4.13: AR Results II – Step 1 – San Francisco

Step 2

It can be seen in Table 4.12 and Figure 4.14 that the optimization solutions

achieved by Step 2 show large fin and overhang shading depths on the south façade

in this case study, which is consistent with the solutions achieved for S3−3 by Step

1. The average total energy demand for all the 9 sub-problems is 328.6 kWh. This
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result is 14.0% higher than the 382.1 kWh achieved by Step 1.

Table 4.12: AR Results II - Step 2 – South façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S1−1 4 3 1 8 8 3 321.2 15 300
S1−3 4 3 1 8 7 3 345.3 16 320
S1−5 4 3 1 8 8 7 290.4 13 260
S3−1 4 3 1 6 10 4 286.6 13 260
S3−3 4 3 1 8 5 7 330.7 18 360
S3−5 4 3 1 9 2 8 319.0 13 260
S5−1 4 3 1 2 9 2 318.5 12 240
S5−3 4 3 1 8 7 4 415.1 11 220
S5−5 4 3 1 9 6 7 330.8 12 240
Avg. 328.6 13.7 273.3
Sum. 123 2460

Figure 4.14: AR Results II – Step 2 – South façade – San Francisco

Table 4.13 represents the optimization results for east façade achieved by Step 2 of

AR II. The optimization runs are executed for 9 selected sub-problems (E1−1, E1−3,
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E1−5, E3−1, E3−3, E3−5, E5−1, E5−3, E5−5) on the east orientation. The façade design

solutions for these sub-problems are shown in Figure 4.15.

Table 4.13: AR Results II - Step 2 – East façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
E1−1 4 3 1 5 2 2 349.0 13 260
E1−3 4 3 1 2 8 4 735.9 18 360
E1−5 4 3 1 3 2 9 394.2 16 320
E3−1 4 3 1 8 6 3 312.9 11 220
E3−3 4 3 1 9 1 3 541.1 12 240
E3−5 4 3 1 1 1 9 334.3 18 360
E5−1 4 3 1 9 7 3 407.3 12 240
E5−3 4 3 1 1 1 1 635.7 14 280
E5−5 4 3 1 8 4 7 338.6 12 240
Avg. 449.9 14 280
Sum. 126 2520

It can be seen in Table 4.13 and Figure 4.15 that the optimization solutions

achieved by Step 2 show deep fin shadings on the east façade in this case study, while

deep overhang shadings are not so necessary, comparatively. This is consistent with

the solutions achieved by Step 1 of AR II, as well as Step 2 of AR I. The average

total energy demand for all the 9 sub-problems is 449.9 kWh, which is 29.2% smaller

than the 635.3 kWh achieved by Step 1 of AR II, and only 0.9% larger than the 445.7

kWh achieved by Step 2 of AR I.

It can also be found in Figure 4.15 that the solutions of some sub-problems

(E1−1, E1−5, E3−1, E5−5) are quite similar with that achieved in AR I.

Table 4.14 represents the optimization results for north façade achieved by Step

2 of the AR optimization I. The optimization runs are executed for 9 selected sub-

problems (N1−1, N1−3, N1−5, N3−1, N3−3, N3−5, N5−1, N5−3, N5−5) on the north orien-

tation. The façade design solutions for these sub-problems are shown in Figure 4.16.

It can also be seen in Table 4.14 and Figure 4.16 that the optimization solutions

achieved by Step 2 show small depths for fin and overhang shadings for most of the
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Figure 4.15: AR Results II – Step 2 – East façade – San Francisco

Table 4.14: AR Results II - Step 2 – North façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
N1−1 4 3 1 2 1 4 592.3 18 360
N1−3 4 3 1 8 7 7 592.3 17 340
N1−5 4 3 1 3 8 6 378.8 11 220
N3−1 4 3 1 1 2 3 572.0 20 400
N3−3 4 3 1 2 2 3 467.4 14 280
N3−5 4 3 1 1 4 7 304.8 14 280
N5−1 4 3 1 1 1 3 508.1 18 360
N5−3 4 3 1 2 2 7 433.3 11 220
N5−5 4 3 1 2 2 7 286.8 11 220
Avg. 459.5 14.9 297.8
Sum. 134 2680

sub-problems on the north façade, which is steady with that achieved in Step 1. The

solutions achieved by this step also show a constant trend compared with the solutions

achieved in AR I. The average total energy demand for all the 9 sub-problems is 459.5
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kWh, which is 4.5% smaller than the 481.3 kWh achieved by AR I.

Figure 4.16: AR Results II – Step 2 – North façade – San Francisco

Table 4.15 represents the optimization results for western façade achieved by Step

2 of the AR optimization II. The optimization runs are executed for 9 selected sub-

problems (W1−1,W1−3,W1−5,W3−1,W3−3,W3−5,W5−1,W5−3,W5−5) on the west ori-

entation. The façade design solutions for these sub-problems are shown in Figure

4.17.

It can be seen that the optimization solutions achieved by Step 2 show small

depths for fin and overhang shadings for sub-problems on the west façade, which is

consistent with AR I. The average total energy demand for all the 9 sub-problems is

561.1 kWh, which is 6.2% smaller than the 598.4 kWh achieved by Step 1.

It can also be found in Figure 4.17 that the solutions of some sub-problems

(W1−3,W3−1,W3−5,W5−5) are consistent with that achieved in AR I.
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Table 4.15: AR Results II - Step 2 – West façade – San Francisco

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
W1−1 4 3 1 2 3 6 603.0 15 300
W1−3 4 3 1 2 1 4 576.8 16 320
W1−5 4 3 1 6 1 5 612.2 11 220
W3−1 4 3 1 1 1 6 567.7 15 300
W3−3 4 3 1 2 9 3 586.0 13 260
W3−5 4 3 1 2 3 7 479.2 18 360
W5−1 4 3 1 9 1 8 546.0 16 320
W5−3 4 3 1 3 10 4 566.2 12 240
W5−5 4 3 1 2 4 7 512.3 18 360
Avg. 561.1 14.9 297.8
Sum. 134 2680

Figure 4.17: AR Results II – Step 2 – West façade – San Francisco

Step 3 and Step 4 of the second run of AR repeat the same optimization process as

in AR optimization I. Tables and Figures are shown in Appendix B. The optimization

solutions for the entire façade of AR II are shown in Figure 4.18 and Figure 4.19. The
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Figure 4.18: AR Results II – Step 4 – South and East façades – San Francisco

Figure 4.19: AR Results II – Step 4 – North and West façades – San Francisco

figures show a clear trend of large shading depths for the rooms receive more daylight

and solar radiation, and small shading depths for the rooms receive less daylight and

86



solar radiation.

Table 4.16 represents the optimization result of AR optimization II on each step.

It could be seen that the average total energy demand for all the rooms is 449.8

kWh in Step 2. After interpolation processes in step 3 and Step 4, the average total

energy demand for each room is 506.3 kWh, which is 8.4% smaller than the 552.9

kWh achieved by AR I.

Table 4.16: AR Results II - San Francisco

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] [-]

Step 1 382.1 635.3 445.0 598.4 515.2 1220
Step 2 328.6 449.9 459.5 561.1 449.8 10340
Step 3 318.1 557.1 545.6 570.9 497.9
Step 4 310.6 563.3 580.4 570.8 506.3
Total 11560

4.3.3 Summary

Two AR optimization runs are executed in this section. The details of optimization

results and optimal solutions for each step are presented. Table 4.17 and Table 4.18

represents a comparison of the design variables and optimization results of the two

AR runs. It can be seen that, the values of the average total energy demand achieved

by each step are steady in the two runs. The total number of simulation runs for each

AR optimization are also consistent.

The glazing type 4 are shown by both AR I and AR II. Compared with the optimal

solutions achieved by AR I, AR II shows lower insulation value (0.37 W/m2K instead

of 0.32 W/m2K) and higher infiltration rate (0.25 instead of 0.18). The average total

energy demand is 506.3 kWh, which is 8.4% smaller than the 552.9 kWh achieved in

AR I.
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Table 4.17: Comparison of Design Variables for AR I and AR II – San Francisco

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6
AR I AR II
S3−3 5 5 1 9 6 6 S3−3 4 1 1 5 7 7
E3−3 2 6 3 1 3 9 E3−3 5 1 2 4 2 3
N3−3 4 3 1 2 1 3 E3−3 4 4 1 8 3 1
W3−3 4 3 1 5 4 4 E3−3 4 2 1 4 5 3

4 4 2 - - - - 4 3 1 - - -

Table 4.18: Comparison of Results for AR and GA – San Francisco

S E N W Average Runs
AR
AR I Step 1 375.4 637.3 462.9 585.3 515.2 1320

Step 2 360.7 445.7 481.3 578.5 466.5 10580
Step 3 413.8 601.6 556.9 595.9 542.1
Step 4 422.0 601.6 576.5 611.6 552.9
Total 11900

AR II Step 1 382.1 635.3 445.0 598.4 515.2 1220
Step 2 328.6 449.9 459.5 561.1 449.8 10340
Step 3 318.1 557.1 545.6 570.9 497.9
Step 4 310.6 563.3 580.4 570.8 506.3
Total 11560

Average 11070

4.4 Validation of AR Results against Simple GA

Two optimization runs of GA are executed in this section. Same design scenarios

are used in these cases. The optimization results achieved by the two AR optimization

runs are compared with that by these two GA runs. The purpose is to validate the

accuracy and efficiency of AR.

For GA, the total number of possible solutions is:

6× 7× 4× (10× 10× 9)× 100 (4.4)
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4.4.1 GA Results I

Table 4.19 represent the final results of all the sub-problems on the south orienta-

tion in the GA optimization I. The façade design solutions for each room are shown

in Figure 4.20.

It can be seen in Table 4.19 that, the average inputs for south façade show by

GA I are v1 = 4, v2 = 4, v3 = 1. The average inputs for the shading elements are

v4 = 6, v5 = 6, v6 = 5. Relatively large overhang and fin depths are recommended for

the south façade in GA I.

Table 4.19: GA Results I – South façade – San Francisco

Unit [kWh] [kWh] [kWh] [kWh] Gene. Simu.
S1−1 6 1 1 7 5 4 13.1 204.8 96.4 314.3 19 380
S1−2 4 4 1 8 7 3 31.8 149.7 140.2 321.7 26 520
S1−3 4 1 1 8 4 7 44.5 129.4 176.7 350.6 17 340
S1−4 4 4 1 8 6 7 30.9 131.2 194.6 356.8 31 620
S1−5 4 6 1 8 5 7 27.6 126.3 130.3 284.2 32 640
S2−1 4 4 1 3 10 1 20.8 204.2 146.8 371.9 21 420
S2−2 4 3 1 9 5 6 42.1 141.2 158.8 342.1 27 540
S2−3 4 3 1 5 5 6 26.1 204.7 152.2 382.9 24 480
S2−4 4 2 1 1 9 4 20.7 201.3 137.5 359.4 29 580
S2−5 4 7 1 7 5 7 24.6 133.6 129.2 287.4 50 1000
S3−1 4 5 1 6 8 4 33.8 138.0 120.4 292.2 15 300
S3−2 4 3 1 8 7 4 35.3 150.5 153.3 339.1 17 340
S3−3 4 2 1 6 5 6 37.4 154.4 153.9 345.7 11 220
S3−4 4 6 1 4 10 7 20.2 155.8 201.1 377.0 25 500
S3−5 4 3 1 5 7 7 27.0 164.0 126.9 317.9 15 300
S4−1 4 5 1 2 9 2 22.4 161.8 114.1 298.3 29 580
S4−2 4 4 1 5 8 3 24.7 197.6 137.4 359.6 23 460
S4−3 4 2 1 7 5 4 38.6 174.6 141.2 354.5 24 480
S4−4 4 4 1 7 4 4 33.4 168.0 200.0 401.4 21 420
S4−5 4 3 1 7 4 7 31.5 165.7 135.1 332.4 15 300
S5−1 4 7 1 2 10 2 18.2 156.1 104.4 278.7 51 1020
S5−2 4 3 1 4 7 2 24.3 206.1 146.0 376.4 22 440
S5−3 4 5 1 8 5 4 33.0 218.5 154.5 406.1 37 740
S5−4 4 2 1 9 5 7 36.8 200.5 190.4 427.7 9 180
S5−5 4 3 1 9 5 7 34.3 164.7 128.8 327.9 45 900
Avg. 4 4 1 6 6 5 29.3 168.1 146.8 344.2 25.4 508
Sum. 635 12700
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Figure 4.20: GA Results I – South façade – San Francisco

Table 4.20 represents the final results of all the sub-problems on the east orienta-

tion in the GA optimization I. The façade design solutions for each room are shown

in Figure 4.21.

It can be seen in Table 4.20 that, the average inputs for east façade show by
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Table 4.20: GA Results I – East façade – San Francisco

Unit [kWh] [kWh] [kWh] [kWh] Gene. Simu.
E1−1 4 2 1 5 4 2 36.7 105.5 192.5 334.8 25 500
E1−2 4 2 1 4 3 3 39.1 148.4 338.2 525.6 27 540
E1−3 4 1 1 4 1 3 42.6 187.4 401.7 631.6 22 440
E1−4 2 6 1 4 2 7 69.0 144.4 509.5 722.9 29 580
E1−5 4 4 1 4 2 7 51.3 96.7 211.8 359.8 47 940
E2−1 4 5 1 4 3 1 29.2 114.2 216.7 360.1 37 740
E2−2 4 3 1 6 5 3 42.4 140.6 356.4 539.4 20 400
E23 4 1 1 2 3 4 43.0 227.2 375.0 645.3 16 320
E2−4 4 3 2 8 3 3 26.7 223.8 386.1 636.5 13 260
E2−5 4 2 3 1 6 6 25.4 150.9 242.9 419.3 9 180
E3−1 4 2 1 1 5 1 37.5 98.5 199.0 335.0 16 320
E3−2 4 1 2 8 3 3 41.5 120.6 277.9 440.0 26 520
E3−3 4 2 1 5 1 2 44.3 150.1 347.1 541.5 37 740
E3−4 4 1 1 8 1 7 41.3 133.0 476.4 650.7 18 360
E3−5 4 4 3 1 4 9 27.0 96.6 209.5 333.1 107 2140
E4−1 4 7 1 1 5 1 26.3 106.5 193.7 326.5 51 1020
E4−2 4 5 1 5 1 2 36.9 127.5 269.1 433.5 28 560
E4−3 4 2 1 5 1 2 46.2 155.3 323.6 525.1 17 340
E4−4 4 2 1 1 1 9 35.5 143.1 426.4 605.0 40 800
E4−5 4 7 1 1 1 9 43.8 94.6 187.1 325.5 83 1660
E5−1 4 7 1 5 3 2 27.3 118.7 158.9 304.9 75 1500
E5−2 4 2 2 4 6 3 26.5 176.9 332.5 535.9 25 500
E5−3 4 1 1 5 1 2 53.7 162.3 307.3 523.3 19 380
E5−4 4 2 1 1 2 9 39.2 137.2 397.9 574.3 63 1260
E5−5 4 3 2 8 4 7 38.8 116.2 202.1 357.1 20 400
Avg. 4 3 1 4 3 2 38.8 139.0 301.6 479.5 34.8 696
Sum. 870 17400

GA I are v1 = 4, v2 = 3, v3 = 1. The average inputs for the shading elements are

v4 = 4, v5 = 3, v6 = 2. Relatively small overhang and fin depths are recommended for

the east façade in GA I.

Table 4.21 represents the final results of all the sub-problems on the north orien-

tation in the GA optimization I. The façade design solutions for each room are shown

in Figure 4.22.

It can be seen in Table 4.21 that, the average inputs for north façade show by

GA I are v1 = 4, v2 = 3, v3 = 1. The average inputs for the shading elements are
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Figure 4.21: GA Results I – East façade – San Francisco

v4 = 3, v5 = 2, v6 = 4. Small overhang and fin depths are recommended for the north

façade in GA I.

Table 4.22 represents the final results of all the sub-problems on the north orien-

tation in the GA optimization I. The façade design solutions for each room are shown
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Table 4.21: GA Results I – North façade – San Francisco

Unit [kWh] [kWh] [kWh] [kWh] Gene. Simu.
N1−1 4 1 1 2 1 4 36.9 180.4 375.1 592.4 13 260
N1−2 4 1 1 2 2 4 43.8 170.2 374.3 588.3 35 700
N1−3 4 1 1 2 1 4 42.1 175.0 375.1 592.2 19 380
N1−4 4 4 1 5 1 2 35.6 114.8 379.2 529.6 43 860
N1−5 6 1 1 1 2 6 31.6 164.6 158.3 354.6 50 1000
N2−1 4 1 1 1 2 4 38.7 162.0 375.2 575.9 30 600
N2−2 4 3 1 3 2 3 35.5 112.2 373.5 521.1 40 800
N2−3 2 5 2 7 2 3 67.7 107.6 353.7 529.0 25 500
N2−4 4 2 1 3 1 3 41.4 125.9 325.1 492.4 47 940
N2−5 4 5 1 5 6 6 49.3 126.0 183.4 358.7 20 400
N3−1 4 1 1 1 1 3 39.7 182.8 327.1 549.5 25 500
N3−2 4 5 1 2 1 3 36.3 100.7 322.2 459.2 54 1080
N3−3 4 4 1 2 3 7 40.6 112.5 341.9 495.0 25 500
N3−4 4 4 1 2 1 3 47.6 113.8 293.8 455.2 16 320
N3−5 4 3 2 2 2 7 49.7 94.4 126.2 270.3 29 580
N4−1 4 2 1 8 1 3 38.0 113.0 325.5 476.5 26 520
N4−2 4 3 1 4 1 3 45.6 91.2 277.7 414.4 29 580
N4−3 4 1 2 4 2 3 38.7 101.1 308.3 448.2 36 720
N4−4 4 3 1 2 2 3 54.0 102.9 269.1 426.1 22 440
N4−5 4 7 2 2 2 7 39.2 101.0 122.4 262.6 32 640
N5−1 4 2 1 1 1 7 37.7 140.2 323.4 501.3 18 360
N5−2 4 4 1 2 1 3 43.7 97.4 283.9 425.1 26 520
N5−3 4 4 1 2 6 3 46.0 105.9 323.5 475.5 13 260
N5−4 4 5 1 2 1 3 47.0 113.5 232.8 393.3 24 480
N5−5 6 1 1 2 2 7 37.7 112.2 123.5 273.4 34 680
Avg. 4 3 1 3 2 4 42.6 124.9 291 458.4 29.2 584.8
Sum. 731 14620

in Figure 4.23.

It can be seen in Table 4.22 that, the average inputs for west façade show by

GA I are v1 = 4, v2 = 2, v3 = 1. The average inputs for the shading elements are

v4 = 2, v5 = 3, v6 = 5, Small overhang and fin depths are recommended for the west

façade in GA I.

Figure 4.24 and Figure 4.25 represent final design solutions of all the sub-problems

on each orientation achieved by GA optimization I.
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Figure 4.22: GA Results I – North façade – San Francisco

4.4.2 GA Results II

Figure 4.26 and Figure 4.27 represent the final design solutions of all the office

rooms on each orientation for GA optimization II. Tables and Figures for details are

shown in Appendix C.
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Table 4.22: GA Results I – West façade – San Francisco

Unit [kWh] [kWh] [kWh] [kWh] Gene. Simu.
W1−1 2 6 2 2 4 6 72.2 163.8 390.6 626.6 26 520
W1−2 4 1 1 2 2 4 59.3 159.2 392.3 610.8 29 580
W1−3 4 3 1 2 4 6 52.7 154.8 372.4 579.9 16 320
W1−4 4 2 1 2 1 4 51.7 150.3 358 559.9 22 440
W1−5 4 1 1 1 4 6 59.6 142.5 340.1 542.2 26 520
W2−1 4 1 1 1 2 6 62.9 150.8 352.6 566.3 20 400
W2−2 4 1 1 1 3 6 61.2 138.3 363.7 563.2 30 600
W2−3 4 2 1 1 1 6 55.2 136.1 350.1 541.4 24 480
W2−4 4 2 1 1 2 6 58.5 139.5 332.5 530.5 29 580
W2−5 4 6 1 2 3 1 49.8 112.0 358.7 520.4 26 520
W3−1 4 1 1 1 1 6 60.4 181.0 327.5 568.9 22 440
W3−2 4 1 1 1 1 6 59.8 172.1 337.2 569.1 35 700
W3−3 4 1 1 2 1 3 60.6 141.2 346.4 548.2 22 440
W3−4 4 4 1 2 1 3 58.9 117.5 330.0 506.3 29 580
W3−5 4 4 1 2 2 7 52.0 124.2 310.8 487.0 34 680
W4−1 4 1 1 4 1 3 60.9 186.8 303.3 551.0 16 320
W4−2 4 1 1 5 4 4 63.5 135.7 351.9 551.1 19 380
W4−3 4 1 1 4 7 3 65.2 124.8 354.3 544.2 33 660
W4−4 4 3 1 2 1 3 59.0 123.6 321.3 503.9 29 580
W4−5 4 6 1 2 2 3 52.1 115.3 311.2 478.6 51 1020
W5−1 4 2 1 5 10 4 56.0 141.4 350.0 547.4 23 460
W5−2 6 1 1 9 1 3 27.5 199.3 292.9 519.7 35 700
W5−3 4 2 1 2 7 3 55.7 167.4 327.0 550.1 18 360
W5−4 4 5 1 2 7 7 53.2 137.9 304.3 495.4 36 720
W5−5 6 1 1 2 1 3 29.2 201.7 263.9 494.8 35 700
Avg. 4 2 1 2 3 5 55.9 148.7 337.7 542.3 27.4 548
Sum. 685 13700
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Figure 4.23: GA Results I – West façade – San Francisco
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Figure 4.24: GA Results I – South and East façade – San Francisco

Figure 4.25: GA Results I – North and West façade – San Francisco
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Figure 4.26: GA Results II – South and East façade – San Francisco

Figure 4.27: GA Results II – North and West façade – San Francisco
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4.5 Summary

Table 4.23 shows the optimal design variables for the two AR and GA optimiza-

tion runs. AR I achieves the optimal solutions for the glazing type, insulation and

infiltration v1 = 4, v2 = 4, v3 = 2. In the second run, AR II achieves the optimal

solutions for the glazing type, insulation and infiltration v1 = 4, v2 = 3, v3 = 1. Both

GA I and GA II achieve the same optimal solutions v1 = 4, v2 = 3, v3 = 1, which is

the same as that achieved by AR II, and consistent with earlier solutions achieved by

AR I.

Table 4.23: Comparison of Design Variables for AR and GA – San Francisco

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6
AR I AR II
S3−3 5 5 1 9 6 6 S3−3 4 1 1 5 7 7
E3−3 2 6 3 1 3 9 E3−3 5 1 2 4 2 3
N3−3 4 3 1 2 1 3 N3−3 4 4 1 8 1 3
W3−3 4 3 1 5 4 4 W3−3 4 2 1 4 5 3

4 4 2 - - - 4 3 1 - - -
GA I GA II
S 4 4 1 6 6 5 S 4 4 1 7 6 5
E 4 3 1 4 3 2 E 4 2 1 4 2 4
N 4 3 1 3 2 4 N 4 3 1 3 2 4
W 4 2 1 2 3 5 W 4 2 1 2 3 5

4 3 1 - - - 4 3 1 - - -

Table 4.24 represents the optimization results of the two AR and GA optimization

runs. The average total energy demand for each room achieved by Step 2 for AR I

is 456.2 kWh and 449.8 kWh for AR II. The average total energy demand for each

room achieved by the GA I is 456.1 kWh and 456.9 kWh for GA II.

The results show that through the process of interpolation, the sub-problems

achieve optimal solutions that are compromised with each other, thus some of the

sub-problems in Step 3 and Step 4 don’t achieve their global optimal. Therefore,

the optimal results of ARs are larger than that achieved through the global optimal
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Table 4.24: Comparison of Results for AR and GA – San Francisco

S E N W Average Runs
AR
AR I Step 1 375.4 637.3 462.9 585.3 515.2 1320

Step 2 360.7 445.7 481.3 578.5 466.5 10580
Step 3 413.8 601.6 556.9 595.9 542.1
Step 4 422.0 601.6 576.5 611.6 552.9
Total 11900

AR II Step 1 382.1 635.3 445.0 598.4 515.2 1220
Step 2 328.6 449.9 459.5 561.1 449.8 10340
Step 3 318.1 557.1 545.6 570.9 497.9
Step 4 310.6 563.3 580.4 570.8 506.3
Total 11560

Average 11070
GA
GA I 344.2 479.5 458.4 542.3 456.1 58420
GA II 348.5 483.8 449.6 545.8 456.9 53620
Average 56020

achieved by GAs. The main objective of the interpolation processes in Step 3 and Step

4 is to reduce the optimization time and improve the efficiency of optimization process,

while the accuracy is undermined sometimes. However, GAs cannot find overall design

solutions for the design variables v1, v2, v3. The optimal solutions achieved by GAs

for v1, v2 and v3 are different for each room, thus still requires the designers to figure

out a global optimization solution by experience.

Ideally, the solution achieved by the simple GA should be the same or better

than the AR results for the same problem, since the optimal values for the design

variables v1, v2 and v3 are achieved for each room during the simple GA process. The

optimization result shows that similar or better results have been derived by the AR

processes until Step 2: The optimization process of Step 1 can help to find an overall

optimal value for the design variables v1, v2 and v3 at the system level of the AR

allowed better convergence towards the true optimum. Additionally, partitioning of

the problem results in Step 2 of optimization problem (3 variables per sub-problem

as against 6 variables when the problem is solved in one step, and this increases the
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performance of AR and also improves convergence. Even though the energy demand

achieved by final steps (Step 4) of ARs have higher value than that of GAs, this is

mainly because GA does not use an overall equivalent values for the design variables

v1, v2 and v3 for each sub-problem. This means the designers still need to select the

appropriate overall equivalent values at this step, but cannot guarantee the overall

minimum of energy demand for all the sub-problems.

It can also found in Table 4.24 that it needs 11900 simulations in total for AR

I and 11600 simulations in total for AR II to find the global optimum. Compared

with the AR runs, it requires 58420 simulations in total for the GA I and 53620

simulations in total for the GA II to find the global optimum. The total simulation

time is reduced by 80.2%, which shows that the AR can achieve the optimal solutions

with much less simulation effort than GA.

Chapter 4 has validated the applicability of AR in FPOs through a façade opti-

mization problem of a typical square-floorplan mid-rise office. It is illustrated that

the AR method can lead the façade design derives from the original generations and

evolves into new generations. By selecting appropriate sub-problems and making in-

terpolation of the achieved optimization results from the last step, this method can

get optimal solutions for the remaining optimization groups without running unnec-

essary simulations, which may largely reduce simulation time. In this case study, AR

took four steps to accomplish the optimization process. By using interpolation in

Step 3 and Step 4, it can save up to 80.2% of the entire simulation time. Moreover,

this method does not only considers the impacts from the climate, but also from the

environmental situations in the site. Therefore, it validates the potential for more

detailed solutions for complicated façade design.

To be adapted to contemporary architectural design, it is essential to use opti-

mization techniques at the early design stage to solve FPO problems. AR can help

architects to make design decisions efficiently. The obtained groups of appropriate
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solutions are efficient and robustness to help architects to understand the trade-off

relationship between different design solutions.

The above design guidance is valid only for this particular problem as defined by

the ranges of input values and the constants used for these variables. This method-

ology can be used on an individual FPO problem in this design scenario, or further

work could investigate this methodology using different design variables, objective

and constraints, in order to observe the changes in results. For example, the problem

used here could be run for different WWRs, or for a range of active design parameters

to see how the design parameters generated differs. This in turn would enable more

extensive design guidance to be formulated.

It’s worth pointing out that since there are a limited number of sub-problems in

Step 2, the optimization solutions achieved by Step 2 can only show a trend, but

cannot guarantee the solutions are the global optimum for this FPO problem. AR

has the potential to be more efficient and accurate when solving more complex façade

optimization problems with more sub-problems, since there will be more gradients

between different sub-problems.
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CHAPTER V

Validation of AR in Different Climates

5.1 Chapter Outline

There have been various studies on the climate responsive building design strate-

gies. The definition of these climatic zones is largely based on different criteria and

the purpose of establishing such classification. In the early 1960s , Olgyay defined

four main climate types for climatic building design strategies in his study, including

cool, temperate, hot and arid, and hot and humid climate zones (Olgyay , 1992). In

1976, Givoni also defined four major climates for the building design climate, includ-

ing hot, warm-temperate, cool-temperate and cold climate zones. The main purpose

was to develop the impact of climatic characteristics on the human comfort and the

buildings’ thermal response (Givoni , 1976). However, there is still limited study for

climate responsive building design strategies in the United States. Research has been

done for climate impacts on building energy demand in different climate zones in the

U.S. (Wang and Chen, 2014), Australia (Karimpour et al., 2015), Turkey (Mangan

and Oral , 2015) and India (Singjh et al., 2007). These studies provided fundamental

research of the impacts of climate on building performance and shown appropriate

design solutions for climate responsive design strategies. However, these strategies

are still mainly relied on the designer’s experience. A simulation/optimization driven

methodology is essential to be developed and more effective to provide solutions with
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more accuracy at the early design stage.

The primary approaches of this chapter include:

(i) identify the major climates and select a major city in each climate zone, (ii)

investigate the relationship between the design variables and objectives of FPOs in

different climate zones in the United States, and (iii) provide climate responsive design

strategies for high-performance façade for these climates.

AR are implemented in two other cities (Chicago, IL; Miami, FL) in the U.S. The

purpose is to validate the applicability and stability of AR in solving FPOs in different

climates. Section 5.2 describes the climatic characteristics of the selected cities. The

optimization problem with the same design scenario in Chapter 4 is implemented in

the two selected climates in Section 5.3 and Section 5.4, respectively. For each city,

two AR optimization runs (AR I and AR II) are executed. The optimization results

are compared and discussed. FPO design solutions for these two climates are then

summarized.

5.2 Climate Discussion

The territory of United States is mainly located in in central North America

between Canada and Mexico, which covers an area of approximately 9.84 million

km2. The United States includes most climate types with its large territory size

and geographic variety. There are eight major climate zones in United States, which

are based on temperature and humidity, including hot-humid, mixed-humid, hot-dry,

mixed-dry, cold, very-cold, subarctic, marine regions (PNNL, 2015)(Figure 5.2).

ASHRAE 90.1-2010 gives definition of international climatic zones (Figure ??),

which can be found in ANSI/ASHRAE/IESNA Standard 90.1-2007 Normative Ap-

pendix B – Building Envelope Climate Criteria (ASHRAE , 2010). The information

below is from Tables B-2, B-3, and B-4 in that appendix.

Three cities in different climate zones are discussed in this study, which represent
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Figure 5.1: Seven of the eight US climate zones (Recognized by Building America
occur in the continental United States. The sub-arctic U.S. climate zone, not shown
on the map, appears only in Alaska (PNNL, 2015)

Figure 5.2: International Energy Conservation Code (IECC) climate regions (PNNL,
2015)

the climate zones defined in the ASHRAE Standard 90.1-2010 (ASHRAE , 2010).

In addition to San Francisco (CA), which has been discussed in the case study in

Chapter 4, the other two cities are Chicago (IL) and Miami (FL), representing the

Cool-Humid and Very Hot-Humid climates. These cities are also representative for
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Table 5.1: Definition of international climatic zones(ASHRAE , 2010)

Zone Number Zone Name Thermal Criteria Thermal Criteria
(IP Units) (SI Units)

1A and 1B Very Hot - Humid
(1A)

9000 < CDD50◦F 5000 < CDD10◦C

Dry (1B)
2A and 2B Hot-Humid (2A) 6300 < CDD50◦F

≤ 9000
3500 < CDD10◦C
≤ 5000

Dry (2B)
3A and 3B Warm - Humid

(3A)
4500 < CDD50◦F
≤6300

2500 < CDD10◦C
< 3500

Dry (3B)
3C Warm - Marine

(3C)
CDD50◦F ≤ 4500
and HDD 65◦F ≤
3600

CDD10◦C ≤ 2500
≤ HDD18◦C ≤
2000

4A and 4B Mixed-Humid
(4A)

CDD50◦F ≤ 4500
and 3600 < HDD
65◦F ≤ 5400

CDD10◦C ≤ 2500
and HDD18◦C ≤
3000

Dry (4B)
4C Mixed - Marine

(4C)
3600 < HDD 65◦F
≤ 5400

2000 < HDD18◦C
≤ 3000

5A, 5B, and 5C Cool-Humid (5A) 5400 < HDD 65◦F
≤ 7200

3000 < HDD18◦C
≤ 4000

Dry (5B)
Marine (5C)

6A and 6B Cold - Humid
(6A)

7200 < HDD 65◦F
≤ 9000

4000 < HDD18◦C
≤ 5000

Dry (6B)
7 Very Cold 9000 < HDD 65◦F

≤ 12600
5000 < HDD18◦C
≤ 7000

8 Subarctic 12600 < HDD
65◦F

7000 < HDD18◦C

the culture and commercial centers with more commercial office buildings case studies,

in order to involve a broad range of climatic conditions in the United States. The

details of typical meteorological year (TMY) weather data of these cities are readily

available, which validates the feasibility of further study. All TMY weather data

are derived from U.S. Department of Energy. The hourly TMY3 weather data for

simulation are extracted from the EnergyPlus database.

Miami has a tropical climate with hot and mild summers and warm winters.
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Table 5.2: Climate zones of the United States and reference cities.

Climate Zone City Latitude (◦)
Longitude (◦)
1A Miami Very

Hot-Humid
25◦47’N 80◦13’W

3C San Francisco Marine 37◦47’N 122◦25’W
5A Chicago Cool-Humid 41◦53’N 87◦38’W

The average monthly temperature of the coldest months (December and January)

is around 20.1◦C (68.2◦F). The warmest months (July and August) have average

monthly temperatures of 29-35◦C (84-96◦F), accompanied by high humidity. The

lowest daily minimum temperature on record is 7◦C (45◦F) on February, 1990, and

the highest is 29◦C (84◦F) on August 4, 1993.

Figure 5.3: Monthly dry bulb temperatures for three cities in the United States
(◦C/◦F)

Chicago has a climate characterized by four distinct seasons: wet, cool springs;

somewhat hot, and often humid, summers; pleasantly mild autumns; and cold winters.

The average monthly temperature of the coldest month (January) is around -4◦C

(25◦F). The warmest month (July) has average monthly temperature of 24◦C (76◦F).

The recorded lowest temperature is -32◦C (-25◦F) in January, and the highest is 43◦C

(109◦F) in July.
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Figure 5.4: Monthly mean relative humidity for three cities in the United States (%)

Figure 5.5: Monthly global horizontal radiation for three cities in the United States
(Wh/m2)

5.3 AR Results for Chicago

5.3.1 AR results I - Chicago

Step 1

Table 5.3 shows the optimization results achieved by Step 1 in AR optimization

I for Chicago. Optimization runs for four sub-problems (S3−3, N3−3, E3−3,W3−3) are

executed in this step. The first design three variables are achieved by averaging the

optimization results, which are v1 = 6, v2 = 5, v3 = 4. Therefore, the best glazing

(glazing type 6), the third best insulation (0.26 W/m2K) and the lowest infiltration

rate (0.12) are shown for the climate of Chicago. The average total energy demand

108



for all sub-problems is 1370.1 kWh.

Table 5.3: AR Results I - Step 1 – San Francisco

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S3−3 6 5 3 2 9 7 1185.5 19 380
E3−3 6 4 4 3 2 4 1465.2 17 340
N3−3 6 5 3 8 4 7 1394.5 20 400
W3−3 6 6 4 7 7 6 1435.1 18 360
Avg. 6 5 4 - - -
Avg. 1370.1 19 370
Sum. 74 1480

Figure 5.6: AR Results I – Step 1 – Chicago

Chicago has a distinct weather with cold winters and hot summers. High-quality

wall insulation is imperative on all orientations in this climate to maintain the indoor

temperature to reduce the heating energy demand. In addition, the southern façade
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receives extensive solar radiation in the hot summer, therefore, well-insulated windows

with high SHGC glazing are also essential to block the solar heat and reduce the

cooling energy demand. Also, the western façade receives extensive solar radiation

in the afternoons, thus requires high-value insulation. Additionally, the weather of

Chicago is not severe cold climate, which also explains why the design solutions don’t

show the highest insulation values.

It also can be seen in Figure 5.6 that the overhang shading depths on the south

and west façades are large, which are 900 mm and 700 mm, respectively. In contrast,

the shading depths on the east and north façade are small, which are 200 mm and

400 mm.

Step 2

Table 5.4 shows the optimization results for south façade achieved by Step 2 of

the AR optimization I. The first three design variables (v1 = 6, v2 = 5, v3 = 4)

stay unchanged. The optimization runs are executed for 9 selected sub-problems

(S1−1, S1−3, S1−5, S3−1, S3−3, S3−5, S5−1, S5−3, S5−5) on the south orientation. The façade

design solutions for these sub-problems are shown in Figure 5.7.

Table 5.4: AR Results I - Step 2 – South façade – Chicago

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S1−1 6 5 4 8 9 3 1062.8 16 320
S1−3 6 5 4 6 3 6 1176.7 14 280
S1−5 6 5 4 10 1 8 1151.6 11 220
S3−1 6 5 4 1 10 3 1050.3 11 220
S3−3 6 5 4 8 4 4 1147.7 16 320
S3−5 6 5 4 6 5 7 1126.5 12 240
S5−1 6 5 4 2 10 2 1043.6 13 260
S5−3 6 5 4 4 7 4 1189.6 14 280
S5−5 6 5 4 1 7 7 1123.6 16 320
Avg. 1119.1 13.7 273.3
Sum. 123 2460

It can be found in Table 5.4 and Figure 5.7 that the optimization solutions achieved
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Figure 5.7: AR Results I – Step 2 – South façade - Chicago

by Step 2 show large fin and overhang shading depths on the south façade, which is

consistent with the solutions achieved by Step 1. The average total energy demand

for all the 9 sub-problems is 1191.1 kWh. This result is 5.6% smaller than the 1185.5

kWh achieved by Step 1.

Table 5.4 also shows the optimization results for south façade achieved by Step

2 of the AR optimization I. The first three design variables (v1 = 6, v2 = 5, v3 = 4)

stay unchanged. The optimization runs are executed for 9 selected sub-problems

(S1−1, S1−3, S1−5, S3−1, S3−3, S3−5, S5−1, S5−3, S5−5). The average total energy demand

for all the 9 sub-problems is 1119.1 kWh. The façade design solutions for these sub-

problems are shown in Figure 5.7.

The optimization solutions achieved by Step 2 show large overhang shading depths

for the rooms located on the west side of the south façade (S1−1, S3−1, S5−1), to prevent
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extensive solar radiation in the afternoon. Also, the rooms located on the top floors

S5−1, S5−3, S5−5 have larger overhang depths, since they are less influenced by the

high-rise building construction on the south.

Table 5.5 represents the optimization results for east façade achieved by Step 2 of

the AR optimization I. The optimization runs are executed for 9 selected sub-problems

(E1−1, E1−3, E1−5, E3−1, E3−3, E3−5, E5−1, E5−3, E5−5) on the east orientation. The av-

erage total energy demand for all the 9 sub-problems is 1268.1 kWh. The façade

design solutions for these sub-problems are shown in Figure 5.8.

Table 5.5: AR Results I - Step 2 – East façade – Chicago

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
E1−1 6 5 4 9 3 3 1228.8 19 380
E1−3 6 5 4 9 2 3 1418.6 14 280
E1−5 6 5 4 4 3 7 1208.9 15 300
E3−1 6 5 4 1 5 1 1171.4 15 300
E3−3 6 5 4 7 4 3 1456.4 11 220
E3−5 6 5 4 1 7 9 1192.2 13 260
E5−1 6 5 4 5 3 2 1148.6 14 280
E5−3 6 5 4 7 5 2 1414.2 14 280
E5−5 6 5 4 1 3 9 1174.0 15 300
Avg. 1268.1 14.4 288.9
Sum. 130 2600

The optimization solutions show relatively small overhang shading depths on the

east façade than that on the south facade. The eastern façade mainly receives solar

radiation in the morning, with a relatively lower temperature at that time in this

climate. Also, most of the solar radiations is blocked by the high-rise construction

on the east. Therefore, overhang large shading depths are not so imperative in this

climate.

Figure 5.8 also shows that the fin angles are relatively small for the first two

rooms on each floor (E1−1, E1−3, E3−1, E3−3, E5−1, E5−3), which shows a trend to face

the south orientation as much to receive more solar radiation, as well as reflect more
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Figure 5.8: AR Results I – Step 2 – East façade – Chicago

daylight in to the room. In contrast, solutions for the third rooms on each floor

(E1−5, E3−5, E5−5) show a north-facing fin angle (120◦). The reason is that the rooms

on the northeast edge are blocked by the high-rise building on the east and north.

The only available daylight and solar radiation is from the space between the east

and north buildings. Therefore, the fin angles are facing this space to receive as much

daylight and solar radiation as possible.

Table 5.6 represents the optimization results for north façade achieved by Step 2 of

the AR optimization I. The optimization runs are executed for 9 selected sub-problems

(N1−1, N1−3, N1−5, N3−1, N3−3, N3−5, N5−1, N5−3, N5−5) on the north orientation. The

average total energy demand for all the 9 sub-problems is 1301.4 kWh. The façade

design solutions for these sub-problems are shown in Figure 5.9.

The optimization solutions show small depths for overhang shadings on the north
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Table 5.6: AR Results I - Step 2 – North façade – Chicago

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
N1−1 6 5 4 2 2 6 1416.7 11 220
N1−3 6 5 4 8 3 7 1422.1 12 240
N1−5 6 5 4 9 4 7 1171.6 13 260
N3−1 6 5 4 8 1 2 1342.1 14 280
N3−3 6 5 4 6 1 7 1369.7 14 280
N3−5 6 5 4 6 1 6 1163.4 11 220
N5−1 6 5 4 1 3 6 1365.8 13 260
N5−3 6 5 4 10 3 7 1317.0 13 260
N5−5 6 5 4 1 1 3 1144.4 12 240
Avg. 1301.4 12.6 251.1
Sum. 113 2260

Figure 5.9: AR Results I – Step 2 – North façade – Chicago

façade. This is because the north façade does not achieve as much daylight and solar

radiation during the entire year in the climate of Chicago. Thus overhang shading is

not prerequisite. The fins are slightly facing west for most of the rooms, which can
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help to receive as more as daylight and solar radiation through the reflections by the

fin shadings.

Table 5.7: AR Results I - Step 2 – West façade – Chicago

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
W1−1 6 5 4 2 4 6 1456.7 15 300
W1−3 6 5 4 1 4 7 1460.5 13 260
W1−5 6 5 4 1 2 6 1370.3 14 280
W3−1 6 5 4 1 4 6 1428.1 11 220
W3−3 6 5 4 2 10 7 1390.2 12 240
W3−5 6 5 4 1 1 3 1393.7 20 400
W5−1 6 5 4 5 1 7 1393.6 11 220
W5−3 6 5 4 9 3 4 1403.8 11 220
W5−5 6 5 4 4 3 7 1372.7 12 240
Avg. 1407.7 13.2 264.4
Sum. 119 2380

Figure 5.10: AR Results I – Step 2 – West façade – Chicago

Table 5.7 represents the optimization results for western façade achieved by Step
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2 of the AR optimization I. The optimization runs are executed for 9 selected sub-

problems (W1−1,W1−3,W1−5,W3−1,W3−3,W3−5,W5−1,W5−3,W5−5) on the west orien-

tation. The average total energy demand for all the 9 sub-problems is 1407.7 kWh.

The façade design solutions for these sub-problems are shown in Figure 5.10.

The optimization solutions show small depths for fin and overhang shadings for

most of the rooms. The rooms on the top floor (W5−1,W5−3,W5−5) receive more solar

radiation in the afternoons, thus fin shading depths are larger to reduce exposure to

solar radiation on this orientation.

Step 3 and Step 4

Step 3 and Step 4 are shown in the Appendix D. The optimization solutions for

the entire façade of AR II are shown in Figure 5.11 and Figure 5.12.

Figure 5.11: AR Results I – Step 4 – South and East façades – Chicago

Table 5.8 represents the optimization result on each step of AR optimization I. It

can be seen that the average total energy demand for all the rooms is 1370.1 kWh

in Step 1 and 1274.1 in Step 2. After interpolation processes in Step 3 and Step

4, the average total energy demand for each room is 1341.6 kWh. There are 11450
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Figure 5.12: AR Results I – Step 4 – North and West façades – Chicago

simulations in total executed in AR optimization I for Chicago.

Table 5.8: AR Results I - Chicago

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] [-]

Step 1 1185.5 1465.2 1394.5 1435.1 1370.1 1480
Step 2 1119.1 1268.1 1301.4 1407.7 1274.1 9700
Step 3 1191.6 1348.0 1334.0 1419.2 1323.2
Step 4 1223.0 1369.5 1345.4 1428.4 1341.6
Total 11450

5.3.2 AR results II - Chicago

Step 1

Table 5.9 shows the optimization results achieved by Step 1 in AR optimization

II for Chicago. Optimization runs for four sub-problems (S3−3, N3−3, E3−3,W3−3) are

executed in this step. The values of the first design three variables are v1 = 6, v2 =

6, v3 = 4. The best glazing (glazing type 6), the second best insulation (0.19 W/m2K)

and the lowest infiltration rate (0.12) are shown. Compared with the optimal solutions
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achieved in AR optimization I, AR optimization II shows the same glazing system

and infiltration rate, while a lower value insulation is selected. The average total

energy demand is 1339.8 kWh, which is 2.2% lower than the 1370.1 kWh achieved by

AR optimization I.

Table 5.9: AR Results II - Step 1 – San Francisco

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S3−3 6 7 4 2 9 3 1109.3 14 280
E3−3 6 6 3 9 9 3 1514.2 20 400
N3−3 6 4 4 1 1 5 1365.7 15 300
W3−3 6 7 3 4 1 3 1370.0 19 380
Avg. 6 6 4 - - -
Avg. 1339.8 17 340
Sum. 68 1360

Figure 5.13: AR Results II – Step 1 – Chicago

118



Step 2

Table 5.10: AR Results II – Step 2 – South façade – Chicago

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S1−1 6 6 4 1 10 1 1146.4 21 420
S1−3 6 6 4 2 10 1 1157.4 23 460
S1−5 6 6 4 2 9 2 1172.3 17 340
S3−1 6 6 4 2 7 2 1012.8 17 340
S3−3 6 6 4 2 10 8 1175.7 18 360
S3−5 6 6 4 1 10 1 1201.1 19 380
S5−1 6 6 4 9 10 3 1204.0 23 460
S5−3 6 6 4 9 10 3 1198.6 21 420
S5−5 6 6 4 9 9 7 1213.7 25 500
Avg. 1164.7 20.4 408.9
Sum. 184 3680

Figure 5.14: AR Results II – Step 2 – South façade – Chicago

Table 5.10 shows the optimization results for south façade achieved by Step 2 of

the AR optimization I. The first three design variables (v1 = 6, v2 = 6, v3 = 4) stay
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unchanged. The façade design solutions for these sub-problems are shown in Figure

5.14. It can be found that the optimization solutions achieved by Step 2 show large

overhang shading depths on the south façade. The average total energy demand for

all the 9 sub-problems is 1164.7 kWh, which is lower than the 1339.8 kWh achieved

by Step 1.

Figure 5.15: AR Results II – Step 2 – East façade – Chicago

Table 5.11 and Figure 5.15 show the optimization results for east façade achieved

by Step 2. The optimization runs are executed for 9 selected sub-problems (E1−1, E1−3,

E1−5, E3−1, E3−3, E3−5, E5−1, E5−3, E5−5) on the east orientation. The average total

energy demand for all the 9 sub-problems is 1290.1 kWh, which is 1.7% higher than

1268.1 kWh achieved by AR optimization I.

Table 5.12 represents the optimization results for north façade achieved. The opti-

mization runs are executed for 9 selected sub-problems N1−1, N1−3, N1−5, N3−1, N3−3,
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Table 5.11: AR Results II – Step 2 – East façade – Chicago

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
E1−1 6 6 4 5 1 2 1204.9 16 320
E1−3 6 6 4 2 3 4 1475.7 11 220
E1−5 6 6 4 1 7 8 1269.5 13 260
E3−1 6 6 4 1 5 8 1233.8 23 460
E3−3 6 6 4 3 3 3 1354.9 18 360
E3−5 6 6 4 3 5 7 1282.0 19 380
E5−1 6 6 4 7 6 3 1247.5 14 280
E5−3 6 6 4 3 1 3 1394.7 17 340
E5−5 6 6 4 3 3 7 1297.9 15 300
Avg. 1290.1 18.7 373.3
Sum. 168 3360

N3−5, N5−1, N5−3, N5−5) on the north orientation. The façade design solutions for

these sub-problems are shown in Figure 5.16.

Table 5.12: AR Results II – Step 2 – North façade – Chicago

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
N1−1 6 6 4 1 1 8 1355.6 18 360
N1−3 6 6 4 6 1 3 1347.3 16 320
N1−5 6 6 4 3 2 3 1272.7 22 440
N3−1 6 6 4 3 2 3 1320.9 14 280
N3−3 6 6 4 2 1 2 1309.4 14 280
N3−5 6 6 4 6 5 8 1274.5 15 300
N5−1 6 6 4 3 2 3 1304.4 22 440
N5−3 6 6 4 2 1 2 1299.3 14 280
N5−5 6 6 4 6 2 3 1265.2 12 240
Avg. 1305.5 17.4 348.9
Sum. 157 3140

The optimization solutions achieved by Step 2 show small depths for fin and

overhang shadings on the north façade in this case study, which is constant with that

in AR I. The solutions achieved by this step show a consistent trend compared with

the solutions achieved by Step 1. The average total energy demand for all the 9

sub-problems is 1305.5 kWh, which is almost equal to the 1301.4 kWh achieved by

AR optimization I.
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Figure 5.16: AR Results II – Step 2 – North façade – Chicago

Table 5.13 represents the optimization results for western façade achieved by Step

2 of the AR optimization I. The optimization runs are executed for 9 selected sub-

problems (W1−1,W1−3,W1−5,W3−1,W3−3,W3−5,W5−1,W5−3,W5−5) on the west ori-

entation. The façade design solutions for these sub-problems are shown in Figure

5.17.

It can be seen that the optimization solutions achieved by Step 2 show relatively

small depths for fin and overhang shadings on the lower and middle floors on the west

façade in this case study. Comparatively, the shading depths for rooms on the top

floor are larger. The solutions achieved by this step show a consistent trend compared

with the solutions achieved by Step 1. The average total energy demand for all the 9

sub-problems is 1369.5 kWh, which is 2.7% lower than the 1407.7 kWh achieved by

AR optimization I.
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Table 5.13: AR Results II – Step 2 – West façade – Chicago

v1 v2 v3 v4 v5v v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
W1−1 6 6 4 8 1 2 1425.2 10 200
W1−3 6 6 4 2 1 2 1373.6 14 280
W1−5 6 6 4 1 1 8 1367.9 20 400
W3−1 6 6 4 9 1 8 1398.2 19 380
W3−3 6 6 4 1 2 6 1372.1 21 420
W3−5 6 6 4 1 3 7 1350.3 16 320
W5−1 6 6 4 9 1 2 1313.8 15 300
W5−3 6 6 4 9 2 2 1311.9 14 280
W5−5 6 6 4 6 2 4 1412.2 15 300
Avg. 1369.5 16 320
Sum. 144 2880

Figure 5.17: AR Results II – Step 2 – West façade – Chicago

Step 3 and Step 4

The average total energy demand for all the rooms achieved by AR II (1321.2

kWhintheclimateofChicagois1.5%lowerthanthat(1341.6kWh achieved by AR I. The
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optimization solutions for the entire façade of AR II are shown in Figure 5.18 and

Figure 5.19. Details for Step 3 and Step 4 are shown in Appendix E.

Figure 5.18: AR Results II – Step 4 – South and East façades – Chicago

Figure 5.19: AR Results II – Step 4 – North and West façades – Chicago
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Table 5.14 represents the optimization result of AR optimization II for Chicago.

The average total energy demand for all the rooms is 1287.6 kWh in Step 2. After

interpolation processes in step 3 and Step 4, the average total energy demand for each

room is 1321.2 kWh.

Table 5.14: AR Results II - Chicago

S E N W Average Runs
Step 1 1109.3 1514.2 1365.7 1370.0 1339.8 1360
Step 2 1185.3 1290.1 1305.5 1369.5 1287.6 13060
Step 3 1203.8 1344.1 1320.3 1371.6 1310.0
Step 4 1209.4 1361.9 1324.7 1389.1 1321.2
Total 14420

5.3.3 Summary

Table 5.15 shows the optimal design variables achieved through the two AR opti-

mization runs for Chicago. AR I achieves the optimal solutions for the glazing type,

insulation and infiltration v1 = 6, v2 = 5, v3 = 4. AR II achieves the optimal solutions

for the glazing type, insulation and infiltration v1 = 6, v2 = 6, v3 = 4. The solutions

achieved by AR I and AR II are steady, as well as the solutions achieved for each

orientation.

Table 5.15: Comparison of Design Variables for AR I and AR II – Chicago

AR I v1 v2 v3 v4 v5 v6 AR II v1 v2 v3 v4 v5 v6
S3−3 6 5 3 2 9 7 S3−3 6 7 4 2 9 3
E3−3 6 4 4 3 2 4 E3−3 6 6 3 9 9 3
N3−3 6 5 0 8 4 7 N3−3 6 4 4 1 1 5
W3−3 6 6 4 7 7 6 W3−3 6 7 3 4 1 3

6 5 4 - - - 6 6 4 - - -

Table 5.16 represents the optimization results achieved through the two AR opti-

mization runs for Chicago. The average total energy demand for each room achieved

through AR I is 1341.6 kWh and 1321.2 kWh for AR II. There is only a 1.5% differ-

ence, which validates the stability of AR optimization method.
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Table 5.16: Comparison of Results for AR I and AR II – Chicago

S E N W Average Runs
AR
AR I Step 1 1185.5 1465.2 1394.5 1435.1 1370.1 1480

Step 2 1119.1 1268.1 1301.4 1407.7 1274.1 9700
Step 3 1191.6 1348.0 1334.0 1419.2 1323.2
Step 4 1223.0 1369.5 1345.4 1428.4 1341.6
Total 11450

AR II Step 1 1109.3 1514.2 1365.7 1370.0 1339.8 1360
Step 2 1185.3 1290.1 1305.5 1369.5 1287.6 13060
Step 3 1203.8 1344.1 1320.3 1371.6 1310.0
Step 4 1209.4 1361.9 1324.7 1389.1 1321.2
Total 14420

Avg. 12935

It can also found that it needs 11450 simulations in total for AR I and 14420

simulations in total for AR I and AR II, respectively. The number of average total

simulation runs is 12935, which has the same magnitude with the 11070 for San Fran-

cisco. This also validates the robustness for the implementation of AR optimization

methodology.

5.4 AR Results for Miami

5.4.1 AR results I - Miami

Table 5.17: AR Results I – Step 1 – Miami

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S3−3 6 5 1 9 5 6 1714.4 20 400
E3−3 6 3 2 9 4 3 2231.1 12 240
N3−3 1 7 1 4 5 3 2021.3 11 220
W3−3 4 2 1 5 8 4 1999.2 20 400
Avg. 4 5 1 - - -
Avg. 1991.5 15.8 315
Sum. 1260

Table 5.18 represents the optimization result of AR optimization I on each Step.
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Table 5.18: AR Results I - Miami

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] [-]

Step 1 1714.4 2231.1 2021.3 1999.2 1991.5 1260
Step 2 1712.8 1822.0 1883.2 1932.8 1837.7 10240
Step 3 1736.3 1934.5 1877.2 1898.1 1861.5
Step 4 1755.8 1946.8 1880.9 1835.4 1854.7
Total 11500

It could be seen that the average total energy demand for all the rooms is 1837.7 kWh

in Step 2. After interpolation processes in Step 3 and Step 4, the average total energy

demand for each room is 1991.5 kWh. In Step 2, the AR finds the optimal solutions

for all the 36 sub-problems with the same design variables v1 = 4, v2 = 5, v3 = 1.

Figure 5.20: AR Results I – Step 4 – South and East façades - Miami

The optimization solutions for the entire façade of AR I are shown in Figure 5.20

and Figure 5.21. Details of the optimization procedures are shown in Appendix F.
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Figure 5.21: AR Results I – Step 4 – North and West façades - Miami

Table 5.19: AR Results II – Step 1 – Miami

v1 v2 v3 v4 v5 v6 QTotal Gene. Simu.
Unit [kWh] [-] [-]
S3−3 4 7 2 8 5 6 1750.1 20 400
E3−3 4 1 2 9 1 3 2170.6 18 360
N3−3 6 4 1 1 1 8 2121.8 14 280
W3−3 6 3 1 3 2 4 1934.3 20 400

5 4 1 - - -
Avg 1994.2 18 360
Sum. 1440

Table 5.20: AR Results II - Miami

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] [-]

Step 1 1750.1 2170.6 2121.8 1934.3 1994.2 1440
Step 2 1643.4 1613.5 1562.0 1624.6 1610.9 13300
Step 3 1700.4 1774.3 1759.1 1730.5 1741.1
Step 4 1699.0 1833.8 1792.8 1739.3 1766.2
Total 14740

5.4.2 AR results II - Miami

Table 5.19 represents the optimization result of AR optimization II on each Step.

It could be seen that the average total energy demand for all the rooms is 1610.9 kWh
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Figure 5.22: AR Results II – Step 4 – South and East façades - Miami

Figure 5.23: AR Results II – Step 4 – North and West façades - Miami

in Step 2. After interpolation processes in Step 3 and Step 4, the average total energy

demand for each room is 1766.2 kWh. In Step 2 the AR achieves the optimal solutions

for all the 36 sub-problems with the same design variables v1 = 5, v2 = 4, v3 = 1.
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The optimization solutions for the entire façade of AR II are shown in Figure 5.22

and Figure 5.23. Details of the optimization procedures are shown in Appendix G.

5.4.3 Summary

The optimization results show that AR is efficient and robust in solving façade op-

timization problems in different climates as well as providing façade design strategies

at the early design stage.

Table 5.21: Comparison of Design Variables for AR I and AR II – Miami

AR I v1 v2 v3 v4 v5 v6 AR II v1 v2 v3 v4 v5 v6
S3−3 6 5 1 9 5 6 S3−3 4 7 2 8 5 6
E3−3 6 3 2 9 4 3 E3−3 4 1 2 9 1 3
N3−3 1 7 1 4 5 3 N3−3 6 4 1 1 1 8
W3−3 4 2 1 5 8 4 W3−3 6 3 1 3 2 4

4 5 1 - - - 5 4 1 - - -

Table 5.22: Comparison of Results for AR I and AR II – Miami

S E N W Average Runs
AR
AR I Step 1 1714.4 2231.1 2021.3 1999.2 1991.5 1260

Step 2 1712.8 1822.0 1883.2 1932.8 1837.7 10240
Step 3 1736.3 1934.5 1877.2 1898.1 1861.5
Step 4 1755.8 1946.8 1880.9 1835.4 1854.7
Total 11500

AR II Step 1 1750.1 2170.6 2121.8 1934.3 1994.2 1440
Step 2 1643.4 1613.5 1562.0 1624.6 1610.9 13300
Step 3 1700.4 1774.3 1759.1 1730.5 1741.1
Step 4 1699.0 1833.8 1792.8 1739.3 1766.2

Total 14740
Avg. 13120

Table 5.21 shows the optimal design variables achieved through the two AR op-

timization runs for Miami. AR I achieves the optimal solutions for the glazing type,

insulation and infiltration v1 = 4, v2 = 5, v3 = 1. AR II achieves the optimal solutions

for the glazing type, insulation and infiltration v1 = 5, v2 = 4, v3 = 1. The solutions
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achieved by AR I and AR II are steady, as well as the solutions achieved for each

orientation.

Table 5.22 represents the optimization results achieved through the two AR opti-

mization runs for Miami. The average total energy demand for each room achieved

through AR I is 1854.7 kWh and 1766.2 kWh for AR II. There is only a 4.8 %

difference, which validates the stability of AR optimization method.

It can also found that it needs 11500 simulations in total for AR I and 14740

simulations in total for AR I and AR II, respectively. The number of average to-

tal simulation runs is 13120, which has a similar magnitude to the 11070 for San

Francisco, and the 12935 for Chicago. The consistent of these optimization results

validates the robustness of the AR.
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CHAPTER VI

Conclusions

6.1 Dissertation Summary

This dissertation is built upon the premise that hierarchical optimization method-

ology can improve the efficiency of simple genetic algorithm (GA) in solving façade

optimization problems. The main goal of this dissertation is to improve the existing

simple GA for reducing the simulation time while not undermining its robustness. As

an outcome, a set of interrelated design-analysis tasks are posed in a multi-level hi-

erarchical design optimization framework which is named Adaptive Radiation (AR).

Three cities in different climates of the United States are analyzed and the optimal

façade design solutions are achieved through this new methodology.

Genetic algorithm was proposed as an optimization methodology which can solve

non-linear variables that are very common in building optimization problems. How-

ever, it’s still very time-consuming for complicated problems with a large number of

variables. Former studies have validated the efficiency and robustness of the genetic

algorithm in solving FPO problems. Chapter 2 reviewed these studies and proposed

a hierarchical GA which can solve FPO problems with much less simulation time.

This chapter also provided an overview of simulation methods and techniques that

can be implemented in solving FPO problems.

Chapter 3 presented the methodological framework of the algorithm of adaptive

132



radiation. The design optimization model was reviewed for recent developments in the

field, with an emphasis on continuous or discrete, linear or non-linear formulations

of optimization models. Adaptive Radiation (AR) was proposed as a hierarchical

optimization framework for coordination decision-making tasks that require multiple

and diverse simulations, and for extending the scope of optimization in facade design

for deriving consistent and concurrent decisions. The main levels involved in im-

plementing a façade design scenario in AR framework are also described in Chapter

3.

Chapter 4 presented a façade design scenario of typical mid-rise office building to

demonstrate the AR process in simulation-based facade optimization. The optimiza-

tion objective is the total annual energy demand of heating, cooling, and artificial

lighting. Results of this case study presented that the method of adaptive radia-

tion can improve the efficiency of simple genetic algorithm by largely reducing the

computation time.

Chapter 5 further tested the robustness of adaptive radiation by implementing

this methodology in two other climates of the U.S. The optimization results validated

the efficiency and robustness of this process, and provided façade design strategies

which are responsive to different local climates.

6.2 Contributions

The main accomplishment of this dissertation is proposing a hierarchical opti-

mization algorithm – AR, based on the improvement of simple GA, and extending it

towards solving façade optimization problems in different climates, thus providing a

broadened context of design decision-making contributions at early design stage. The

efficiency and robustness of AR are validated through design scenarios in different

climates in the U.S.

This dissertation provides specific contributions in the building optimization field.
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First, the optimization algorithms are organized in a hierarchical structure to solve

complex façade optimization problems with a large number of design variables, based

on the key interrelationships between the design variables and design objectives. Sec-

ond, the organization of optimization is flexible and can be integrated with other

optimization algorithms at different levels, and offers a new approach to coordinating

multiple simulations in the decision-making process, thus can further improve the

efficiency and accuracy of AR. Third, it is simple and easy for use by designers. The

workflow represents a visualization platform between 3D/CAD modeling, building

simulation and optimization process, and provides quick feedback of façade design

variables, which helps architects to make design decisions at the early design stage

and scrutinize the results clearly.

This dissertation has validated the potential of a hierarchical optimization method-

ology through façade design scenarios. The procedure can also be extended towards

a broad field of complex simulation-based architectural optimization problems. The

design variables of the design scenarios in this dissertations are only passive design

strategies for façade optimization problem, and the design objective is solely total en-

ergy demand. Moreover, active design strategies together with more design objectives

can also be involved. On each level of AR, the optimization will have the flexibility

to subject the design to appropriate optimization algorithms and achieve values of

design variables without undermining consistency with the values of design variables

achieved at previous or future levels of the entire optimization process.

6.3 Directions for Future Research

The immediate steps following this study include:

1) Investigate the possibility to integrate different appropriate optimization algo-

rithms on different levels of AR to further improve its efficiency and accuracy.

2) Extend the design variables to more complex façade optimization problems,
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which are not only limited to passive design strategies, but also include active design

strategies.

3) Extend the design scenarios to multi-objective optimization problems with dif-

ferent design objectives.
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APPENDIX A

AR I Result for San Francisco (partial)
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Figure A.1: AR Results I – South façade – San Francisco
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Figure A.2: AR Results I – East façade – San Francisco
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Figure A.3: AR Results I – North façade – San Francisco

140



Figure A.4: AR Results I – West façade – San Francisco
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APPENDIX B

AR II Result for San Francisco (partial)
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Table B.1: AR Results II – Step 3 – San Francisco

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 6 5 4 8 9 3 1062.8 E1−1 6 5 4 9 3 3 1228.8
S1−2 6 5 4 7 6 5 1246.8 E1−2 6 5 4 9 3 3 1337.0
S1−3 6 5 4 6 3 6 1176.7 E1−3 6 5 4 9 2 3 1418.6
S1−4 6 5 4 8 2 7 1298.4 E1−4 6 5 4 7 3 5 1536.3
S1−5 6 5 4 10 1 8 1151.6 E1−5 6 5 4 4 3 7 1208.9
S3−1 6 5 4 1 10 3 1050.3 E3−1 6 5 4 1 5 1 1171.4
S3−2 6 5 4 5 7 4 1280.0 E3−2 6 5 4 4 5 2 1497.3
S3−3 6 5 4 8 4 4 1147.7 E3−3 6 5 4 7 4 3 1456.4
S3−4 6 5 4 7 5 6 1365.1 E3−4 6 5 4 4 6 6 1518.5
S3−5 6 5 4 6 5 7 1126.5 E3−5 6 5 4 1 7 9 1192.2
S5−1 6 5 4 2 10 2 1043.6 E5−1 6 5 4 5 3 2 1148.6
S5−2 6 5 4 3 9 3 1275.2 E5−2 6 5 4 6 4 2 1445.6
S5−3 6 5 4 4 7 4 1189.6 E5−3 6 5 4 7 5 2 1414.2
S5−4 6 5 4 3 7 6 1336.6 E5−4 6 5 4 4 4 6 1472.4
S5−5 6 5 4 1 7 7 1123.6 E5−5 6 5 4 1 3 9 1174.0
Avg. 1191.6 Avg. 1348.0
N1−1 6 5 4 2 2 6 1416.7 W1−1 6 5 4 2 4 6 1456.7
N1−2 6 5 4 5 3 7 1445.1 W1−2 6 5 4 2 4 7 1472.3
N1−3 6 5 4 8 3 7 1422.1 W1−3 6 5 4 1 4 7 1460.5
N1−4 6 5 4 9 4 7 1360.9 W1−4 6 5 4 1 3 7 1462.0
N1−5 6 5 4 9 4 7 1171.6 W1−5 6 5 4 1 2 6 1370.3
N3−1 6 5 4 8 1 2 1342.1 W3−1 6 5 4 1 4 6 1428.1
N3−2 6 5 4 7 1 5 1398.5 W3−2 6 5 4 2 7 7 1425.8
N3−3 6 5 4 6 1 7 1369.7 W3−3 6 5 4 2 10 7 1390.2
N3−4 6 5 4 6 1 7 1358.4 W3−4 6 5 4 2 6 5 1464.5
N3−5 6 5 4 6 1 6 1163.4 W3−5 6 5 4 1 1 3 1393.7
N5−1 6 5 4 1 3 6 1365.8 W5−1 6 5 4 5 1 7 1393.6
N5−2 6 5 4 6 3 7 1382.8 W5−2 6 5 4 7 2 6 1412.2
N5−3 6 5 4 10 3 7 1317.0 W5−3 6 5 4 9 3 4 1403.8
N5−4 6 5 4 6 2 5 1351.4 W5−4 6 5 4 7 3 6 1381.9
N5−5 6 5 4 1 1 3 1144.4 W5−5 6 5 4 4 3 7 1372.7
Avg. 1334.0 Avg. 1419.2
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Table B.2: AR Results II – Step 4 – San Francisco

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 4 3 1 8 8 3 321.2 E1−1 4 3 1 5 2 2 349.0
S1−2 4 3 1 8 8 3 276.8 E1−2 4 3 1 4 5 3 681.8
S1−3 4 3 1 8 7 3 345.3 E1−3 4 3 1 2 8 4 735.9
S1−4 4 3 1 8 8 5 327.1 E1−4 4 3 1 3 5 7 878.1
S1−5 4 3 1 8 8 7 290.4 E1−5 4 3 1 3 2 9 394.2
S2−1 4 3 1 7 9 4 289.1 E2−1 4 3 1 7 4 3 440.9
S2−2 4 3 1 8 8 4 292.7 E2−2 4 3 1 6 4 3 562.9
S2−3 4 3 1 8 6 5 304.2 E2−3 4 3 1 6 5 4 818.2
S2−4 4 3 1 8 6 6 307.0 E2−4 4 3 1 4 3 6 820.5
S2−5 4 3 1 9 5 8 386.6 E2−5 4 3 1 2 2 9 316.4
S3−1 4 3 1 6 10 4 286.6 E3−1 4 3 1 8 6 3 312.9
S3−2 4 3 1 7 8 6 254.9 E3−2 4 3 1 9 4 3 602.9
S3−3 4 3 1 8 5 7 330.7 E3−3 4 3 1 9 1 3 541.1
S3−4 4 3 1 9 4 8 352.6 E3−4 4 3 1 5 1 6 782.9
S3−5 4 3 1 9 2 8 319.0 E3−5 4 3 1 1 1 9 334.3
S4−1 4 3 1 4 10 3 313.8 E4−1 4 3 1 9 7 3 435.6
S4−2 4 3 1 6 8 4 252.3 E4−2 4 3 1 7 4 3 623.7
S4−3 4 3 1 8 6 6 260.6 E4−3 4 3 1 5 1 2 541.7
S4−4 4 3 1 9 5 7 295.5 E4−4 4 3 1 5 2 5 842.4
S4−5 4 3 1 9 4 8 293.1 E4−5 4 3 1 5 3 8 324.5
S5−1 4 3 1 2 9 2 318.5 E5−1 4 3 1 9 7 3 407.3
S5−2 4 3 1 5 8 3 356.2 E5−2 4 3 1 5 4 2 613.1
S5−3 4 3 1 8 7 4 415.1 E5−3 4 3 1 1 1 1 635.7
S5−4 4 3 1 9 7 6 245.6 E5−4 4 3 1 5 3 4 748.5
S5−5 4 3 1 9 6 7 330.8 E5−5 4 3 1 8 4 7 338.6
Avg. 310.6 Avg. 563.3
N1−1 4 3 1 2 1 4 592.3 W1−1 4 3 1 2 3 6 603.0
N1−2 4 3 1 5 4 6 848.1 W1−2 4 3 1 2 2 5 640.2
N1−3 4 3 1 8 7 7 592.3 W1−3 4 3 1 2 1 4 576.8
N1−4 4 3 1 6 8 7 734.2 W1−4 4 3 1 4 1 5 655.8
N1−5 4 3 1 3 8 6 378.8 W1−5 4 3 1 6 1 5 612.2
N2−1 4 3 1 2 2 4 772.5 W2−1 4 3 1 2 2 6 598.2
N2−2 4 3 1 3 3 4 826.9 W2−2 4 3 1 2 4 5 603.4
N2−3 4 3 1 5 5 5 851.2 W2−3 4 3 1 2 5 4 650.8
N2−4 4 3 1 4 5 6 665.9 W2−4 4 3 1 3 4 5 599.9
N2−5 4 3 1 2 6 7 393.4 W2−5 4 3 1 4 2 6 544.7
N3−1 4 3 1 1 2 3 572.0 W3−1 4 3 1 1 1 6 567.7
N3−2 4 3 1 2 2 3 590.2 W3−2 4 3 1 2 5 5 556.2
N3−3 4 3 1 2 2 3 467.4 W3−3 4 3 1 2 9 3 586.0
N3−4 4 3 1 2 3 5 713.6 W3−4 4 3 1 2 6 5 579.2
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v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
N3−5 4 3 1 1 4 7 304.8 W3−5 4 3 1 2 3 7 479.2
N4−1 4 3 1 1 2 3 653.7 W4−1 4 3 1 5 1 7 614.1
N4−2 4 3 1 2 2 4 611.3 W4−2 4 3 1 4 5 5 586.6
N4−3 4 3 1 2 2 5 729.1 W4−3 4 3 1 3 10 4 539.1
N4−4 4 3 1 2 3 6 585.1 W4−4 4 3 1 2 7 5 525.2
N4−5 4 3 1 2 3 7 237.1 W4−5 4 3 1 2 4 7 444.7
N5−1 4 3 1 1 1 3 508.1 W5−1 4 3 1 9 1 8 546.0
N5−2 4 3 1 2 2 5 709.2 W5−2 4 3 1 6 6 6 578.6
N5−3 4 3 1 2 2 7 433.3 W5−3 4 3 1 3 10 4 566.2
N5−4 4 3 1 2 2 7 452.9 W5−4 4 3 1 3 7 6 503.9
N5−5 4 3 1 2 2 7 286.8 W5−5 4 3 1 2 4 7 512.3
Avg. 580.4 Avg. 570.8
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Figure B.1: AR Results II – South façade – San Francisco
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Figure B.2: AR Results II – East façade – San Francisco
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Figure B.3: AR Results II – North façade – San Francisco
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Figure B.4: AR Results II – West façade – San Francisco
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APPENDIX C

GA II Result for San Francisco
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Table C.1: GA Results II – South façade – San Francisco

v1 v2 v3 v4 v5 v6 QH QC QL QTotal Gene. Simu.
Unit [kWh] [kWh] [kWh] [kWh] [-] [-]
S1−1 4 2 1 7 5 4 35.3 194.5 96.4 326.3 20 400
S1−2 4 5 1 8 9 3 31.2 136.2 151.1 318.5 44 880
S1−3 4 4 1 8 7 7 34.2 108.7 195.6 338.5 40 800
S1−4 4 7 1 6 7 2 21.4 141.7 225.5 388.7 38 760
S1−5 4 3 1 6 3 8 27.3 142.1 140.4 309.8 28 560
S2−1 6 1 1 7 9 4 14.7 172.4 120.9 307.9 39 780
S2−2 4 3 1 9 7 6 43.9 124.5 195.5 363.9 26 520
S2−3 4 2 1 9 5 6 44.2 161.2 172.3 377.7 13 260
S2−4 4 2 1 8 6 7 35.1 168.8 181.3 385.1 20 400
S2−5 4 3 1 5 4 6 27.0 193.4 129.6 349.9 14 280
S3−1 4 5 1 1 10 3 17.7 173.8 104.2 295.8 46 920
S3−2 4 7 1 9 6 3 25.4 174.7 135.6 335.7 30 600
S3−3 4 7 1 8 5 4 30.0 155.6 150.4 336.0 14 280
S3−4 4 1 1 5 10 4 43.6 142.5 202.2 388.3 30 600
S3−5 4 5 1 9 6 7 31.3 139.3 141.1 311.8 45 900
S4−1 4 3 1 6 7 4 35.3 157.3 122.1 314.8 13 260
S4−2 4 5 1 6 5 4 31.1 184.3 119.7 335.0 28 560
S4−3 4 6 1 7 5 4 29.2 180.8 141.2 351.2 65 1300
S4−4 4 4 1 7 8 4 40.0 129.3 229.1 398.5 16 320
S4−5 4 6 1 9 2 8 27.0 146.2 132.3 305.5 31 620
S5−1 4 4 1 7 9 6 38.5 153.1 148.5 340.0 12 240
S5−2 4 2 1 9 5 3 37.8 195.6 111.9 345.2 25 500
S5−3 4 4 1 4 7 6 22.0 247.3 150.9 420.2 18 360
S5−4 4 4 1 7 7 4 36.6 167.6 212.0 416.3 20 400
S5−5 4 3 1 7 5 7 31.5 185.4 135.4 352.3 15 300
Avg. 4 4 1 7 6 5 31.7 163.1 153.8 348.5 27.6 552
Sum. 690 13800
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Figure C.1: AR Results II – South façade – San Francisco
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Table C.2: GA Results II – East façade – San Francisco

v1 v2 v3 v4 v5 v6 QH QC QL QTotal Gene. Simu.
Unit [kWh] [kWh] [kWh] [kWh] [-] [-]
E1−1 4 2 1 3 3 2 34.5 120.2 195.3 349.9 27 540
E1−2 4 1 1 4 3 7 45.5 168.4 458.4 672.2 13 260
E1−3 4 1 1 2 1 4 43.5 212.7 359.7 615.9 25 500
E1−4 4 1 1 4 1 3 41.7 189.2 458.2 689.1 38 760
E1−5 4 2 1 2 2 4 45.8 149.1 225.8 420.8 18 360
E2−1 4 3 1 3 8 3 34.6 112.8 217.4 364.8 13 260
E2−2 4 1 1 6 1 3 51.3 142.4 310.8 504.5 15 300
E2−3 4 1 1 8 1 3 48.0 261.0 305.7 614.6 14 280
E2−4 4 1 1 1 1 9 36.1 174.5 450.9 661.6 18 360
E2−5 4 2 1 10 1 6 48.7 135.3 225.7 409.7 23 460
E3−1 4 3 1 8 5 3 42.7 85.4 162.8 290.9 27 540
E3−2 4 3 1 4 1 3 41.9 138.9 287.0 467.8 17 340
E3−3 4 1 1 2 1 4 48.3 188.4 363.0 599.7 18 360
E3−4 2 3 2 9 3 3 86.9 197.7 310.7 595.3 38 760
E3−5 4 4 1 6 4 6 48.1 111.6 232.0 391.7 13 260
E4−1 4 3 1 1 5 1 36.2 99.4 193.7 329.3 25 500
E4−2 2 1 1 8 3 3 129.0 98.6 247.0 474.6 9 180
E4−3 4 2 1 5 1 2 46.2 155.3 323.6 525.1 16 320
E4−4 4 2 1 1 1 9 35.5 143.1 426.4 605.0 34 680
E4−5 4 7 1 1 1 9 43.8 94.6 187.1 325.5 50 1000
E5−1 4 6 1 1 4 1 26.2 129.4 185.6 341.2 45 900
E5−2 4 2 1 8 1 3 50.7 152.1 224.4 427.1 27 540
E5−3 4 1 1 5 1 2 53.7 162.3 307.3 523.3 14 280
E5−4 4 1 1 1 2 9 48.2 129.5 397.9 575.6 28 560
E5−5 4 7 1 1 4 9 46.9 84.6 187.4 318.8 41 820
Avg. 4 2 1 4 2 4 48.6 145.5 289.8 483.8 24.2 484.8
Sum. 606 12120
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Figure C.2: AR Results II – East façade – San Francisco
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Table C.3: GA Results II – North façade – San Francisco

v1 v2 v3 v4 v5 v6 QH QC QL QTotal Gene. Simu.
Unit [kWh] [kWh] [kWh] [kWh] [-] [-]
N1−1 4 1 1 4 1 4 34.6 171.6 383.5 589.6 28 560
N1−2 4 1 1 2 2 4 43.8 170.2 374.3 588.3 45 900
N1−3 4 1 1 2 1 4 42.1 175.0 375.1 592.2 29 580
N1−4 4 3 1 3 5 2 35.6 152.8 415.1 603.5 15 300
N1−5 4 3 1 1 2 6 59.5 143.3 158.3 361.1 28 560
N2−1 4 1 1 1 2 4 38.7 162.0 375.2 575.9 16 320
N2−2 4 1 1 3 1 3 50.4 92.7 325.9 469.0 17 340
N2−3 4 2 1 3 2 3 38.8 108.9 373.5 521.2 24 480
N2−4 2 3 4 3 3 3 59.7 135.5 346.2 541.4 28 560
N2−5 6 1 1 10 4 6 31.5 141.9 157.8 331.3 41 820
N3−1 4 1 1 6 1 2 37.8 140.2 355.4 533.4 22 440
N3−2 4 3 1 2 1 3 40.5 97.2 322.2 460.0 33 660
N3−3 4 6 1 2 1 3 34.9 102.0 314.5 451.4 43 860
N3−4 4 5 1 2 1 3 45.2 116.2 293.8 455.2 30 600
N3−5 4 2 2 2 2 7 53.5 91.5 126.2 271.2 13 260
N4−1 4 4 1 1 5 1 34.2 100.7 193.8 328.6 29 580
N4−2 4 4 1 4 1 3 43.4 92.8 277.7 413.8 20 400
N4−3 4 6 1 2 1 3 37.5 111.1 300.2 448.8 42 840
N4−4 4 4 1 2 2 3 51.8 104.7 269.1 425.7 18 360
N4−5 4 4 2 2 2 7 47.8 92.9 122.4 263.1 28 560
N5−1 4 2 1 1 6 7 41.3 129.7 331.9 503.0 16 320
N5−2 4 5 1 2 1 3 41.2 99.6 283.9 424.8 30 600
N5−3 4 3 1 2 1 3 48.7 98.7 274.0 421.4 24 480
N5−4 4 6 1 2 1 3 43.9 116.5 232.8 393.3 43 860
N5−5 6 1 1 2 2 7 37.7 112.2 123.5 273.4 34 680
Avg. 4 3 1 3 2 4 43.0 122.4 284.3 449.6 27.8 556.8
Sum. 696 13920
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Figure C.3: AR Results II – North façade – San Francisco
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Table C.4: GA Results II – West façade – San Francisco

v1 v2 v3 v4 v5 v6 QH QC QL QTotal Gene. Simu.
Unit [kWh] [kWh] [kWh] [kWh] [-] [-]
W1−1 4 1 1 2 2 6 60.9 146.2 381.5 588.7 48 960
W1−2 2 6 3 2 5 6 64.9 163.9 392.1 620.9 31 620
W1−3 4 1 1 2 3 6 61.7 144.3 386.2 592.2 18 360
W1−4 4 1 1 2 5 6 60.4 137.3 366.7 564.4 19 380
W1−5 4 1 1 1 3 6 59.2 146.6 337.5 543.2 37 740
W2−1 4 1 1 1 2 6 62.9 150.8 352.6 566.3 44 880
W2−2 4 1 1 1 3 6 61.2 138.3 363.7 563.2 28 560
W2−3 4 2 1 1 1 6 55.2 136.1 350.1 541.4 20 400
W2−4 4 2 1 1 2 6 58.5 139.5 332.5 530.5 18 360
W2−5 4 1 2 2 3 1 51.5 111.5 358.7 521.7 27 540
W3−1 4 1 1 1 1 6 60.4 181.0 327.5 568.9 20 400
W3−2 4 1 1 1 1 6 59.8 172.1 337.2 569.1 26 520
W3−3 4 1 1 2 3 3 61.8 136.5 356.3 554.7 21 420
W3−4 4 2 1 2 1 7 57.5 149.7 305.5 512.6 28 560
W3−5 4 6 1 2 1 3 48.1 123.0 333.6 504.8 48 960
W4−1 4 1 1 4 1 3 60.9 186.8 303.3 551.0 32 640
W4−2 4 1 1 5 4 4 63.5 135.7 351.9 551.1 15 300
W4−3 4 1 1 2 1 3 65.0 148.2 310.8 525.0 26 520
W4−4 4 6 1 2 1 3 50.5 131.6 321.3 503.4 39 780
W4−5 4 4 1 2 2 3 58.3 109.7 311.2 479.1 27 540
W5−1 4 1 1 1 7 4 61.1 188.3 314.7 564.1 20 400
W5−2 4 4 1 5 8 4 49.8 163.7 351.4 564.8 23 460
W5−3 4 2 1 2 7 3 55.7 167.4 327.0 550.1 25 500
W5−4 4 5 1 2 5 3 51.9 144.1 315.9 511.9 25 500
W5−5 4 3 1 2 1 3 55.5 183.5 263.9 502.9 24 480
Avg. 4 2 1 2 3 5 58.2 149.4 338.1 545.8 27.6 551.2
Sum. 689 13780
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Figure C.4: AR Results II – West façade – San Francisco
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APPENDIX D

AR I Result for Chicago
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Table D.1: AR Results I – Step 3 - Chicago

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 6 5 4 8 9 3 1062.8 E1−1 6 5 4 9 3 3 1228.8
S1−2 6 5 4 7 6 5 1246.8 E1−2 6 5 4 9 3 3 1337.0
S1−3 6 5 4 6 3 6 1176.7 E1−3 6 5 4 9 2 3 1418.6
S1−4 6 5 4 8 2 7 1298.4 E1−4 6 5 4 7 3 5 1536.3
S1−5 6 5 4 10 1 8 1151.6 E1−5 6 5 4 4 3 7 1208.9
S3−1 6 5 4 1 10 3 1050.3 E3−1 6 5 4 1 5 1 1171.4
S3−2 6 5 4 5 7 4 1280.0 E3−2 6 5 4 4 5 2 1497.3
S3−3 6 5 4 8 4 4 1147.7 E3−3 6 5 4 7 4 3 1456.4
S3−4 6 5 4 7 5 6 1365.1 E3−4 6 5 4 4 6 6 1518.5
S3−5 6 5 4 6 5 7 1126.5 E3−5 6 5 4 1 7 9 1192.2
S5−1 6 5 4 2 10 2 1043.6 E5−1 6 5 4 5 3 2 1148.6
S5−2 6 5 4 3 9 3 1275.2 E5−2 6 5 4 6 4 2 1445.6
S5−3 6 5 4 4 7 4 1189.6 E5−3 6 5 4 7 5 2 1414.2
S5−4 6 5 4 3 7 6 1336.6 E5−4 6 5 4 4 4 6 1472.4
S5−5 6 5 4 1 7 7 1123.6 E5−5 6 5 4 1 3 9 1174.0
Avg. 1191.6 Avg. 1348.0
N1−1 6 5 4 2 2 6 1416.7 W1−1 6 5 4 2 4 6 1456.7
N1−2 6 5 4 5 3 7 1445.1 W1−2 6 5 4 2 4 7 1472.3
N1−3 6 5 4 8 3 7 1422.1 W1−3 6 5 4 1 4 7 1460.5
N1−4 6 5 4 9 4 7 1360.9 W1−4 6 5 4 1 3 7 1462.0
N1−5 6 5 4 9 4 7 1171.6 W1−5 6 5 4 1 2 6 1370.3
N3−1 6 5 4 8 1 2 1342.1 W3−1 6 5 4 1 4 6 1428.1
N3−2 6 5 4 7 1 5 1398.5 W3−2 6 5 4 2 7 7 1425.8
N3−3 6 5 4 6 1 7 1369.7 W3−3 6 5 4 2 10 7 1390.2
N3−4 6 5 4 6 1 7 1358.4 W3−4 6 5 4 2 6 5 1464.5
N3−5 6 5 4 6 1 6 1163.4 W3−5 6 5 4 1 1 3 1393.7
N5−1 6 5 4 1 3 6 1365.8 W5−1 6 5 4 5 1 7 1393.6
N5−2 6 5 4 6 3 7 1382.8 W5−2 6 5 4 7 2 6 1412.2
N5−3 6 5 4 10 3 7 1317.0 W5−3 6 5 4 9 3 4 1403.8
N5−4 6 5 4 6 2 5 1351.4 W5−4 6 5 4 7 3 6 1381.9
N5−5 6 5 4 1 1 3 1144.4 W5−5 6 5 4 4 3 7 1372.7
Avg. 1334.0 Avg. 1419.2
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Figure D.1: AR Results I – South façade – Chicago
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Figure D.2: AR Results I – East façade – Chicago
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Figure D.3: AR Results I – North façade – Chicago
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Figure D.4: AR Results I – West façade – Chicago
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Table D.2: AR Results I – Step 4 - Chicago

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 6 5 4 8 9 3 1062.8 E1−1 6 5 4 9 3 3 1228.8
S1−2 6 5 4 7 6 5 1246.8 E1−2 6 5 4 9 3 3 1337.0
S1−3 6 5 4 6 3 6 1176.7 E1−3 6 5 4 9 2 3 1418.6
S1−4 6 5 4 8 2 7 1298.4 E1−4 6 5 4 7 3 5 1536.3
S1−5 6 5 4 10 1 8 1151.6 E1−5 6 5 4 4 3 7 1208.9
S2−1 6 5 4 5 10 3 1183.3 E2−1 6 5 4 5 4 2 1318.5
S2−2 6 5 4 6 7 4 1211.9 E2−2 6 5 4 7 4 3 1273.8
S2−3 6 5 4 7 4 5 1282.6 E2−3 6 5 4 8 3 3 1418.1
S2−4 6 5 4 8 3 6 1310.0 E2−4 6 5 4 5 4 6 1538.3
S2−5 6 5 4 8 3 8 1251.2 E2−5 6 5 4 3 5 8 1329.3
S3−1 6 5 4 1 10 3 1050.3 E3−1 6 5 4 1 5 1 1171.4
S3−2 6 5 4 5 7 4 1280.0 E3−2 6 5 4 4 5 2 1497.3
S3−3 6 5 4 8 4 4 1147.7 E3−3 6 5 4 7 4 3 1456.4
S3−4 6 5 4 7 5 6 1365.1 E3−4 6 5 4 4 6 6 1518.5
S3−5 6 5 4 6 5 7 1126.5 E3−5 6 5 4 1 7 9 1192.2
S4−1 6 5 4 2 10 3 1294.3 E4−1 6 5 4 3 4 2 1368.5
S4−2 6 5 4 4 8 3 1273.7 E4−2 6 5 4 5 4 2 1451.0
S4−3 6 5 4 6 6 4 1262.5 E4−3 6 5 4 7 5 3 1429.5
S4−4 6 5 4 5 6 6 1362.4 E4−4 6 5 4 4 5 6 1531.4
S4−5 6 5 4 4 6 7 1269.4 E4−5 6 5 4 1 5 9 1358.9
S5−1 6 5 4 2 10 2 1043.6 E5−1 6 5 4 5 3 2 1148.6
S5−2 6 5 4 3 9 3 1275.2 E5−2 6 5 4 6 4 2 1445.6
S5−3 6 5 4 4 7 4 1189.6 E5−3 6 5 4 7 5 2 1414.2
S5−4 6 5 4 3 7 6 1336.6 E5−4 6 5 4 4 4 6 1472.4
S5−5 6 5 4 1 7 7 1123.6 E5−5 6 5 4 1 3 9 1174.0
Avg. 1223.0 Avg. 1369.5
N1−1 6 5 4 2 2 6 1416.7 W1−1 6 5 4 2 4 6 1456.7
N1−2 6 5 4 5 3 7 1445.1 W1−2 6 5 4 2 4 7 1472.3
N1−3 6 5 4 8 3 7 1422.1 W1−3 6 5 4 1 4 7 1460.5
N1−4 6 5 4 9 4 7 1360.9 W1−4 6 5 4 1 3 7 1462.0
N1−5 6 5 4 9 4 7 1171.6 W1−5 6 5 4 1 2 6 1370.3
N2−1 6 5 4 5 2 4 1406.6 W2−1 6 5 4 2 4 6 1442.9
N2−2 6 5 4 6 2 6 1424.5 W2−2 6 5 4 2 6 7 1426.7
N2−3 6 5 4 7 2 7 1428.3 W2−3 6 5 4 2 7 7 1431.2
N2−4 6 5 4 7 2 7 1361.6 W2−4 6 5 4 1 4 6 1414.6
N2−5 6 5 4 8 3 7 1302.3 W2−5 6 5 4 1 2 5 1418.1
N3−1 6 5 4 8 1 2 1342.1 W3−1 6 5 4 1 4 6 1428.1
N3−2 6 5 4 7 1 5 1398.5 W3−2 6 5 4 2 7 7 1425.8
N3−3 6 5 4 6 1 7 1369.7 W3−3 6 5 4 2 10 7 1390.2
N3−4 6 5 4 6 1 7 1358.4 W3−4 6 5 4 2 6 5 1464.5
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v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
N3−5 6 5 4 6 1 6 1163.4 W3−5 6 5 4 1 1 3 1393.7
N4−1 6 5 4 5 2 4 1357.5 W4−1 6 5 4 3 3 7 1437.0
N4−2 6 5 4 6 2 6 1375.7 W4−2 6 5 4 4 5 6 1459.6
N4−3 6 5 4 8 2 7 1312.3 W4−3 6 5 4 6 7 6 1484.6
N4−4 6 5 4 6 2 6 1330.9 W4−4 6 5 4 4 4 5 1472.6
N4−5 6 5 4 4 1 5 1326.4 W4−5 6 5 4 3 2 5 1433.8
N5−1 6 5 4 1 3 6 1365.8 W5−1 6 5 4 5 1 7 1393.6
N5−2 6 5 4 6 3 7 1382.8 W5−2 6 5 4 7 2 6 1412.2
N5−3 6 5 4 10 3 7 1317.0 W5−3 6 5 4 9 3 4 1403.8
N5−4 6 5 4 6 2 5 1351.4 W5−4 6 5 4 7 3 6 1381.9
N5−5 6 5 4 1 1 3 1144.4 W5−5 6 5 4 4 3 7 1372.7
Avg. 1345.4 Avg. 1428.4
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APPENDIX E

AR II Result for Chicago
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Table E.1: AR Results II – Step 3 - Chicago

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 6 7 4 1 10 1 1146.4 E1−1 6 7 4 10 9 2 1204.9
S1−2 6 7 4 2 10 1 1165.3 E1−2 6 7 4 9 6 3 1307.4
S1−3 6 7 4 2 10 1 1157.4 E1−3 6 7 4 8 2 3 1325.3
S1−4 6 7 4 2 10 2 1212.6 E1−4 6 7 4 5 5 6 1448.1
S1−5 6 7 4 2 9 2 1172.3 E1−5 6 7 4 1 7 8 1269.5
S3−1 6 7 4 9 10 3 1198.8 E3−1 6 7 4 1 5 8 1233.8
S3−2 6 7 4 6 10 6 1235.1 E3−2 6 7 4 2 4 6 1409.6
S3−3 6 7 4 2 10 8 1175.7 E3−3 6 7 4 3 3 3 1354.9
S3−4 6 7 4 2 10 5 1278.8 E3−4 6 7 4 3 4 5 1499.3
S3−5 6 7 4 1 10 1 1201.1 E3−5 6 7 4 3 5 7 1282.0
S5−1 6 7 4 9 10 3 1204.0 E5−1 6 7 4 7 6 3 1247.5
S5−2 6 7 4 9 10 3 1165.2 E5−2 6 7 4 5 4 3 1395.0
S5−3 6 7 4 9 10 3 1198.6 E5−3 6 7 4 3 1 3 1394.7
S5−4 6 7 4 9 10 5 1332.4 E5−4 6 7 4 3 2 5 1491.4
S5−5 6 7 4 9 9 7 1213.7 E5−5 6 7 4 3 3 7 1297.9
Avg. 1203.8 Avg. 1344.1
N1−1 6 7 4 1 1 8 1355.6 W1−1 6 7 4 8 1 2 1425.2
N1−2 6 7 4 4 1 6 1414.0 W1−2 6 7 4 5 1 2 1458.8
N1−3 6 7 4 6 1 3 1347.3 W1−3 6 7 4 2 1 2 1373.6
N1−4 6 7 4 5 2 3 1389.3 W1−4 6 7 4 2 1 5 1422.7
N1−5 6 7 4 3 2 3 1272.7 W1−5 6 7 4 1 1 8 1367.9
N3−1 6 7 4 3 2 3 1320.9 W3−1 6 7 4 9 1 8 1398.2
N3−2 6 7 4 3 2 3 1289.4 W3−2 6 7 4 5 2 7 1397.1
N3−3 6 7 4 2 1 2 1309.4 W3−3 6 7 4 1 2 6 1372.1
N3−4 6 7 4 4 3 5 1365.1 W3−4 6 7 4 1 3 7 1392.9
N3−5 6 7 4 6 5 8 1274.5 W3−5 6 7 4 1 3 7 1350.3
N5−1 6 7 4 3 2 3 1304.4 W5−1 6 7 4 9 1 2 1313.8
N5−2 6 7 4 3 2 3 1284.5 W5−2 6 7 4 9 2 2 1272.3
N5−3 6 7 4 2 1 2 1299.3 W5−3 6 7 4 9 2 2 1311.9
N5−4 6 7 4 4 2 3 1313.1 W5−4 6 7 4 8 2 3 1305.2
N5−5 6 7 4 6 2 3 1265.2 W5−5 6 7 4 6 2 4 1412.2
Avg. 1320.3 Avg. 1419.2

1371.2
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Figure E.1: AR Results II – South façade – Chicago
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Figure E.2: AR Results II – East façade – Chicago
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Figure E.3: AR Results II – North façade – Chicago
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Figure E.4: AR Results II – West façade – Chicago
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Table E.2: AR Results II – Step 4 - Chicago

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 6 7 4 1 10 1 1146.4 E1−1 6 7 4 10 9 2 1204.9
S1−2 6 7 4 2 10 1 1165.3 E1−2 6 7 4 9 6 3 1307.4
S1−3 6 7 4 2 10 1 1157.4 E1−3 6 7 4 8 2 3 1325.3
S1−4 6 7 4 2 10 2 1212.6 E1−4 6 7 4 5 5 6 1448.1
S1−5 6 7 4 2 9 2 1172.3 E1−5 6 7 4 1 7 8 1269.5
S2−1 6 7 4 5 10 2 1194.1 E2−1 6 7 4 6 7 5 1357.5
S2−2 6 7 4 4 10 3 1174.2 E2−2 6 7 4 6 5 4 1411.1
S2−3 6 7 4 2 10 5 1189.7 E2−3 6 7 4 6 3 3 1367.3
S2−4 6 7 4 2 10 3 1224.7 E2−4 6 7 4 4 4 5 1492.3
S2−5 6 7 4 2 10 2 1198.8 E2−5 6 7 4 2 6 8 1300.5
S3−1 6 7 4 9 10 3 1198.8 E3−1 6 7 4 1 5 8 1233.8
S3−2 6 7 4 6 10 6 1235.1 E3−2 6 7 4 2 4 6 1409.6
S3−3 6 7 4 2 10 8 1175.7 E3−3 6 7 4 3 3 3 1354.9
S3−4 6 7 4 2 10 5 1278.8 E3−4 6 7 4 3 4 5 1499.3
S3−5 6 7 4 1 10 1 1201.1 E3−5 6 7 4 3 5 7 1282.0
S4−1 6 7 4 9 10 3 1164.7 E4−1 6 7 4 4 6 6 1450.2
S4−2 6 7 4 7 10 4 1228.1 E4−2 6 7 4 4 4 4 1432.6
S4−3 6 7 4 6 10 6 1235.9 E4−3 6 7 4 3 2 3 1345.5
S4−4 6 7 4 5 10 5 1314.4 E4−4 6 7 4 3 3 5 1485.9
S4−5 6 7 4 5 10 4 1253.3 E4−5 6 7 4 3 4 7 1242.4
S5−1 6 7 4 9 10 3 1204.0 E5−1 6 7 4 7 6 3 1247.5
S5−2 6 7 4 9 10 3 1165.2 E5−2 6 7 4 5 4 3 1395.0
S5−3 6 7 4 9 10 3 1198.6 E5−3 6 7 4 3 1 3 1394.7
S5−4 6 7 4 9 10 5 1332.4 E5−4 6 7 4 3 2 5 1491.4
S5−5 6 7 4 9 9 7 1213.7 E5−5 6 7 4 3 3 7 1297.9
Avg. 1209.4 Avg. 1361.9
N1−1 6 7 4 1 1 8 1355.6 W1−1 6 7 4 8 1 2 1425.2
N1−2 6 7 4 4 1 6 1414.0 W1−2 6 7 4 5 1 2 1458.8
N1−3 6 7 4 6 1 3 1347.3 W1−3 6 7 4 2 1 2 1373.6
N1−4 6 7 4 5 2 3 1389.3 W1−4 6 7 4 2 1 5 1422.7
N1−5 6 7 4 3 2 3 1272.7 W1−5 6 7 4 1 1 8 1367.9
N2−1 6 7 4 2 2 6 1406.3 W2−1 6 7 4 9 1 5 1436.3
N2−2 6 7 4 3 1 4 1419.9 W2−2 6 7 4 5 1 5 1431.8
N2−3 6 7 4 4 1 3 1390.2 W2−3 6 7 4 2 2 4 1381.5
N2−4 6 7 4 4 2 4 1362.0 W2−4 6 7 4 1 2 6 1359.4
N2−5 6 7 4 5 4 6 1271.9 W2−5 6 7 4 1 2 8 1422.1
N3−1 6 7 4 3 2 3 1320.9 W3−1 6 7 4 9 1 8 1398.2
N3−2 6 7 4 3 2 3 1289.4 W3−2 6 7 4 5 2 7 1397.1
N3−3 6 7 4 2 1 2 1309.4 W3−3 6 7 4 1 2 6 1372.1
N3−4 6 7 4 4 3 5 1365.1 W3−4 6 7 4 1 3 7 1392.9
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v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
N3−5 6 7 4 6 5 8 1274.5 W3−5 6 7 4 1 3 7 1350.3
N4−1 6 7 4 3 2 3 1283.9 W4−1 6 7 4 9 1 5 1433.0
N4−2 6 7 4 3 2 3 1285.3 W4−2 6 7 4 7 2 5 1420.0
N4−3 6 7 4 2 1 2 1280.0 W4−3 6 7 4 5 2 4 1424.8
N4−4 6 7 4 4 2 4 1337.8 W4−4 6 7 4 4 2 5 1439.8
N4−5 6 7 4 6 4 6 1274.4 W4−5 6 7 4 4 3 6 1403.6
N5−1 6 7 4 3 2 3 1304.4 W5−1 6 7 4 9 1 2 1313.8
N5−2 6 7 4 3 2 3 1284.5 W5−2 6 7 4 9 2 2 1272.3
N5−3 6 7 4 2 1 2 1299.3 W5−3 6 7 4 9 2 2 1311.9
N5−4 6 7 4 4 2 3 1313.1 W5−4 6 7 4 8 2 3 1305.2
N5−5 6 7 4 6 2 3 1265.2 W5−5 6 7 4 6 2 4 1412.2
Avg. 1324.7 Avg. 1389.1
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APPENDIX F

AR I Result for Miami
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Table F.1: AR Results I – Step 1 – Miami

v1 v2 v3 v4 v5 v6 Gene. Simu.
Unit [kWh] [-] [-]
S3−3 6 5 1 9 5 6 1714.4 20 400
E3−3 6 3 2 9 4 3 2231.1 12 240
N3−3 1 7 1 4 5 3 2021.3 11 220
W3−3 4 2 1 5 8 4 1999.2 20 400

4 5 1 - - -
Avg. 1991.5 15.8 315
Sum. 66 1260

Figure F.1: AR Results I – Step 1 – Miami
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Table F.2: AR Results I – Step 2 – South façade – Miami

v1 v2 v3 v4 v5 v6 Q {total} Gene. Simu.
Unit [kWh] [-] [-]
S1−1 4 5 1 9 8 6 1725.6 14 280
S1−3 4 5 1 9 4 6 1722.9 11 220
S1−5 4 5 1 8 10 7 1662.0 13 260
S3−1 4 5 1 6 8 4 1663.7 12 240
S3−3 4 5 1 7 10 4 1722.6 17 340
S3−5 4 5 1 9 9 8 1675.3 11 220
S5−1 4 5 1 6 10 4 1688.1 11 220
S5−3 4 5 1 9 4 6 1808.5 14 280
S5−5 4 5 1 9 10 7 1746.0 18 360
Avg. 1712.8 13.4 268.9
Sum. 121 2420

Figure F.2: AR Results I – Step 2 – South façade – Miami
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Table F.3: AR Results I – Step 2 – East façade – Miami

v1 v2 v3 v4 v5 v6 Q {total} Gene. Simu.
Unit [kWh] [-] [-]
E1−1 4 5 1 5 1 2 1748.7 16 320
E1−3 4 5 1 4 6 3 2209.3 12 240
E1−5 4 5 1 4 3 7 1602.4 19 380
E3−1 4 5 1 4 2 3 1752.9 18 360
E3−3 4 5 1 5 3 2 2189.6 18 360
E3−5 4 5 1 8 4 7 1571.5 12 240
E5−1 4 5 1 8 8 3 1730.1 11 220
E5−3 4 5 1 1 7 9 2079.8 16 320
E5−5 4 5 1 1 7 9 1513.7 14 280
Avg. 1822.0 15.1 302.2
Sum. 136 2720

Figure F.3: AR Results I – Step 2 – East façade – Miami
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Table F.4: AR Results I – Step 2 – North façade – Miami

v1 v2 v3 v4 v5 v6 Q {total} Gene. Simu.
Unit [kWh] [-] [-]
N1−1 4 5 1 8 1 3 2020.7 18 360
N1−3 4 5 1 8 2 3 2090.3 15 300
N1−5 4 5 1 2 2 6 1732.3 13 260
N3−1 4 5 1 8 2 3 1985.0 17 340
N3−3 4 5 1 4 1 3 1915.9 15 300
N3−5 4 5 1 2 1 3 1626.4 15 300
N5−1 4 5 1 4 4 6 2076.9 16 320
N5−3 4 5 1 2 3 7 1917.6 12 240
N5−5 4 5 1 1 6 7 1583.5 15 300
Avg. 1883.2 15.1 302.2
Sum. 136 2720

Figure F.4: AR Results I – Step 2 – North façade – Miami
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Table F.5: AR Results I – Step 2 – West façade – Miami

v1 v2 v3 v4 v5 v6 Q {total} Gene. Simu.
Unit [kWh] [-] [-]
W1−1 5 4 1 1 7 8 1654.4 23 460
W1−3 5 4 1 2 2 2 1578.2 13 260
W1−5 5 4 1 3 4 1 1619.9 18 360
W3−1 5 4 1 9 1 2 1709.3 20 400
W3−3 5 4 1 1 5 3 1596.4 12 240
W3−5 5 4 1 2 5 2 1627.0 27 540
W5−1 5 4 1 9 2 2 1631.5 23 460
W5−3 5 4 1 4 5 2 1545.1 14 280
W5−5 5 4 1 2 3 2 1659.3 14 280
Avg. 1624.6 18.2 364.4
Sum. 164 3280

Figure F.5: AR Results I – Step 2 – West façade – Miami
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Table F.6: AR Results I – Step 3 - Miami

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 4 5 1 9 8 6 1725.6 E1−1 4 5 1 5 1 2 1748.7
S1−2 4 5 1 9 6 6 1682.9 E1−2 4 5 1 5 4 3 2084.4
S1−3 4 5 1 9 4 6 1722.9 E1−3 4 5 1 4 6 3 2209.3
S1−4 4 5 1 9 7 7 1655.5 E1−4 4 5 1 4 5 5 2170.8
S1−5 4 5 1 8 10 7 1662.0 E1−5 4 5 1 4 3 7 1602.4
S3−1 4 5 1 6 8 4 1663.7 E3−1 4 5 1 4 2 3 1752.9
S3−2 4 5 1 7 9 4 1944.8 E3−2 4 5 1 5 3 3 2113.1
S3−3 4 5 1 7 10 4 1722.6 E3−3 4 5 1 5 3 2 2189.6
S3−4 4 5 1 8 10 6 1796.8 E3−4 4 5 1 7 4 5 2146.3
S3−5 4 5 1 9 9 8 1675.3 E3−5 4 5 1 8 4 7 1571.5
S5−1 4 5 1 6 10 4 1688.1 E5−1 4 5 1 8 8 3 1730.1
S5−2 4 5 1 8 7 5 1908.0 E5−2 4 5 1 5 8 6 1992.6
S5−3 4 5 1 9 4 6 1808.5 E5−3 4 5 1 1 7 9 2079.8
S5−4 4 5 1 9 7 7 1642.2 E5−4 4 5 1 1 7 9 2111.5
S5−5 4 5 1 9 10 7 1746.0 E5−5 4 5 1 1 7 9 1513.7
Avg. 1736.3 Avg. 1934.5
N1−1 4 5 1 8 1 3 2020.7 W1−1 4 5 1 2 3 6 2024.0
N1−2 4 5 1 8 2 3 2028.5 W1−2 4 5 1 2 4 5 1895.0
N1−3 4 5 1 8 2 3 2090.3 W1−3 4 5 1 2 5 4 2021.3
N1−4 4 5 1 5 2 5 2025.6 W1−4 4 5 1 2 3 4 1955.0
N1−5 4 5 1 2 2 6 1732.3 W1−5 4 5 1 2 1 4 2032.5
N3−1 4 5 1 8 2 3 1985.0 W3−1 4 5 1 5 7 4 1971.8
N3−2 4 5 1 6 2 3 1765.8 W3−2 4 5 1 4 5 4 1938.4
N3−3 4 5 1 4 1 3 1915.9 W3−3 4 5 1 2 2 3 1914.1
N3−4 4 5 1 3 1 3 1622.4 W3−4 4 5 1 2 2 3 1616.8
N3−5 4 5 1 2 1 3 1626.4 W3−5 4 5 1 2 2 3 1783.7
N5−1 4 5 1 4 4 6 2076.9 W5−1 4 5 1 5 8 4 1931.3
N5−2 4 5 1 3 4 7 1566.6 W5−2 4 5 1 4 9 4 1975.8
N5−3 4 5 1 2 3 7 1917.6 W5−3 4 5 1 2 10 3 1918.8
N5−4 4 5 1 2 5 7 1888.5 W5−4 4 5 1 2 9 3 1696.2
N5−5 4 5 1 1 6 7 1895.0 W5−5 4 5 1 2 8 3 1797.3
Avg. 1877.2 Avg. 1898.1
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Figure F.6: AR Results I – South façade – Miami
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Figure F.7: AR Results I – East façade – Miami

183



Figure F.8: AR Results I – North façade – Miami
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Figure F.9: AR Results I – West façade – Miami
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Table F.7: AR Results I – Step 4 - Miami

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 4 5 1 9 8 6 1725.6 E1−1 4 5 1 5 1 2 1748.7
S1−2 4 5 1 9 6 6 1682.9 E1−2 4 5 1 5 4 3 2084.4
S1−3 4 5 1 9 4 6 1722.9 E1−3 4 5 1 4 6 3 2209.3
S1−4 4 5 1 9 7 7 1655.5 E1−4 4 5 1 4 5 5 2170.8
S1−5 4 5 1 8 10 7 1662.0 E1−5 4 5 1 4 3 7 1602.4
S2−1 4 5 1 8 8 5 1779.0 E2−1 4 5 1 5 2 3 2049.8
S2−2 4 5 1 8 8 5 1733.5 E2−2 4 5 1 5 3 3 2018.1
S2−3 4 5 1 8 7 5 1698.5 E2−3 4 5 1 5 5 3 2073.1
S2−4 4 5 1 8 8 6 1696.5 E2−4 4 5 1 5 4 5 2119.5
S2−5 4 5 1 9 10 8 1742.3 E2−5 4 5 1 6 4 7 1732.7
S3−1 4 5 1 6 8 4 1663.7 E3−1 4 5 1 4 2 3 1752.9
S3−2 4 5 1 7 9 4 1944.8 E3−2 4 5 1 5 3 3 2113.1
S3−3 4 5 1 7 10 4 1722.6 E3−3 4 5 1 5 3 2 2189.6
S3−4 4 5 1 8 10 6 1796.8 E3−4 4 5 1 7 4 5 2146.3
S3−5 4 5 1 9 9 8 1675.3 E3−5 4 5 1 8 4 7 1571.5
S4−1 4 5 1 6 9 4 1859.7 E4−1 4 5 1 6 5 3 2072.5
S4−2 4 5 1 7 8 5 1912.0 E4−2 4 5 1 5 5 4 1933.4
S4−3 4 5 1 8 7 5 1869.6 E4−3 4 5 1 3 5 6 2092.7
S4−4 4 5 1 9 8 6 1709.1 E4−4 4 5 1 4 5 7 2025.4
S4−5 4 5 1 9 10 8 1849.0 E4−5 4 5 1 5 6 8 1731.1
S5−1 4 5 1 6 10 4 1688.1 E5−1 4 5 1 8 8 3 1797.8
S5−2 4 5 1 8 7 5 1908.0 E5−2 4 5 1 5 8 6 1730.1
S5−3 4 5 1 9 4 6 1808.5 E5−3 4 5 1 1 7 9 2079.8
S5−4 4 5 1 9 7 7 1642.2 E5−4 4 5 1 1 7 9 2111.5
S5−5 4 5 1 9 10 7 1746.0 E5−5 4 5 1 1 7 9 1513.7
Avg. 1755.8 Avg. 1946.8
N1−1 4 5 1 8 1 3 2020.7 W1−1 4 5 1 2 3 6 2024.0
N1−2 4 5 1 8 2 3 2028.5 W1−2 4 5 1 2 4 5 1895.0
N1−3 4 5 1 8 2 3 2090.3 W1−3 4 5 1 2 5 4 2021.3
N1−4 4 5 1 5 2 5 2025.6 W1−4 4 5 1 2 3 4 1955.0
N1−5 4 5 1 2 2 6 1732.3 W1−5 4 5 1 2 1 4 2032.5
N2−1 4 5 1 8 2 3 1851.0 W2−1 4 5 1 4 5 5 1908.6
N2−2 4 5 1 7 2 3 2006.9 W2−2 4 5 1 3 4 4 1804.4
N2−3 4 5 1 6 2 3 1797.0 W2−3 4 5 1 2 4 4 1755.4
N2−4 4 5 1 4 2 4 1901.1 W2−4 4 5 1 2 3 4 1748.9
N2−5 4 5 1 2 2 5 1864.2 W2−5 4 5 1 2 2 4 1697.8
N3−1 4 5 1 8 2 3 1985.0 W3−1 4 5 1 5 7 4 1971.8
N3−2 4 5 1 6 2 3 1765.8 W3−2 4 5 1 4 5 4 1938.4
N3−3 4 5 1 4 1 3 1915.9 W3−3 4 5 1 2 2 3 1914.1
N3−4 4 5 1 3 1 3 1622.4 W3−4 4 5 1 2 2 3 1616.8
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v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
N3−5 4 5 1 2 1 3 1626.4 W3−5 4 5 1 2 2 3 1783.7
N4−1 4 5 1 6 3 5 1891.8 W4−1 4 5 1 5 8 4 1740.0
N4−2 4 5 1 5 3 5 2068.0 W4−2 4 5 1 4 7 4 1896.2
N4−3 4 5 1 3 2 5 2055.7 W4−3 4 5 1 2 6 3 1603.3
N4−4 4 5 1 2 3 5 1552.8 W4−4 4 5 1 2 6 3 1579.7
N4−5 4 5 1 2 4 5 1876.2 W4−5 4 5 1 2 5 3 1677.6
N5−1 4 5 1 4 4 6 2076.9 W5−1 4 5 1 5 8 4 1931.3
N5−2 4 5 1 3 4 7 1566.6 W5−2 4 5 1 4 9 4 1975.8
N5−3 4 5 1 2 3 7 1917.6 W5−3 4 5 1 2 10 3 1918.8
N5−4 4 5 1 2 5 7 1888.5 W5−4 4 5 1 2 9 3 1696.2
N5−5 4 5 1 1 6 7 1895.0 W5−5 4 5 1 2 8 3 1797.3
Avg. 1880.9 Avg. 1835.4
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APPENDIX G

AR II Result for Miami
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Table G.1: AR Results II – Step 1 – Miami

v1 v2 v3 v4 v5 v6 Gene. Simu.
Unit [kWh] [-] [-]
S3−3 4 7 2 8 5 6 1750.1 20 400
E3−3 4 1 2 9 1 3 2170.6 18 360
N3−3 6 4 1 1 1 8 2121.8 14 280
W3−3 6 3 1 3 2 4 1934.3 20 400

5 4 1 - - -
Avg. 1994.2 18 360
Sum. 72 1440

Figure G.1: AR Results II – Step 1 – Miami
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Table G.2: AR Results II – Step 2 – South façade – Miami

v1 v2 v3 v4 v5 v6 Qtotal Gene. Simu.
Unit [kWh] [-] [-]
S1−1 5 4 1 10 10 6 1645.3 18 360
S1−3 5 4 1 9 8 7 1594.4 15 300
S1−5 5 4 1 9 10 6 1606.9 24 480
S3−1 5 4 1 9 10 7 1706.1 11 220
S3−3 5 4 1 9 8 7 1564.4 20 400
S3−5 5 4 1 8 10 9 1629.8 19 380
S5−1 5 4 1 6 10 4 1851.7 12 240
S5−3 5 4 1 9 10 7 1564.2 23 460
S5−5 5 4 1 8 9 9 1628.0 14 280
Avg. 1643.4 17.3 346.7
Sum. 156 3120

Figure G.2: AR Results II – Step 2 – South façade – Miami
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Table G.3: AR Results II – Step 2 – East façade – Miami

v1 v2 v3 v4 v5 v6 Qtotal Gene. Simu.
Unit [kWh] [-] [-]
E1−1 5 4 1 10 10 2 1543 18 360
E1−3 5 4 1 3 4 7 1782.1 27 540
E1−5 5 4 1 4 10 7 1439.2 19 380
E3−1 5 4 1 1 10 8 1618.1 21 420
E3−3 5 4 1 7 3 3 1766.1 22 440
E3−5 5 4 1 3 10 7 1458.5 22 440
E5−1 5 4 1 1 10 8 1626.4 23 460
E5−3 5 4 1 3 4 7 1808.6 19 380
E5−5 5 4 1 3 10 7 1479.5 18 360
Avg. 1613.5 21 420
Sum. 189 3780

Figure G.3: AR Results II – Step 2 – East façade – Miami
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Table G.4: AR Results II – Step 2 – North façade – Miami

v1 v2 v3 v4 v5 v6 Qtotal Gene. Simu.
Unit [kWh] [-] [-]
N1−1 5 4 1 1 1 8 1726.4 20 400
N1−3 5 4 1 3 1 1 1595.3 20 400
N1−5 5 4 1 6 7 7 1482.6 16 320
N3−1 5 4 1 2 5 8 1692.6 10 200
N3−3 5 4 1 2 5 2 1520.5 16 320
N3−5 5 4 1 6 5 8 1482.4 18 360
N5−1 5 4 1 3 5 7 1632.4 21 420
N5−3 5 4 1 2 1 2 1449.4 22 440
N5−5 5 4 1 6 6 8 1476.2 13 260
Avg. 1562.0 17.3 346.7
Sum. 156 3120

Figure G.4: AR Results II – Step 2 – North façade – Miami
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Table G.5: AR Results II – Step 2 – West façade – Miami

v1 v2 v3 v4 v5 v6 Qtotal Gene. Simu.
Unit [kWh] [-] [-]
W1−1 5 4 1 1 7 8 1654.4 23 460
W1−3 5 4 1 2 2 2 1578.2 13 260
W1−5 5 4 1 3 4 1 1619.9 18 360
W3−1 5 4 1 9 1 2 1709.3 20 400
W3−3 5 4 1 1 5 3 1596.4 12 240
W3−5 5 4 1 2 5 2 1627.0 27 540
W5−1 5 4 1 9 2 2 1631.5 23 460
W5−3 5 4 1 4 5 2 1545.1 14 280
W5−5 5 4 1 2 3 2 1659.3 14 280
Avg. 1624.6 18.2 364.4
Sum. 164 3280

Figure G.5: AR Results II – Step 2 – West façade – Miami
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Table G.6: AR Results II – Step 3 - Miami

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
S1−1 5 4 1 10 10 6 1645.3 E1−1 5 4 1 10 10 2 1543.0
S1−2 5 4 1 10 9 7 1670.9 E1−2 5 4 1 7 7 5 2183.8
S1−3 5 4 1 9 8 7 1594.4 E1−3 5 4 1 3 4 7 1782.1
S1−4 5 4 1 9 9 7 1660.8 E1−4 5 4 1 4 7 7 1909.3
S1−5 5 4 1 9 10 6 1606.9 E1−5 5 4 1 4 10 7 1439.2
S3−1 5 4 1 9 10 7 1706.1 E3−1 5 4 1 1 10 8 1618.1
S3−2 5 4 1 9 9 7 1604.7 E3−2 5 4 1 4 7 6 2207.6
S3−3 5 4 1 9 8 7 1564.4 E3−3 5 4 1 7 3 3 1766.1
S3−4 5 4 1 9 9 8 2006.0 E3−4 5 4 1 5 7 5 2238.7
S3−5 5 4 1 8 10 9 1629.8 E3−5 5 4 1 3 10 7 1458.5
S5−1 5 4 1 6 10 4 1851.7 E5−1 5 4 1 1 10 8 1626.4
S5−2 5 4 1 8 10 6 1838.3 E5−2 5 4 1 2 7 8 1755.1
S5−3 5 4 1 9 10 7 1564.2 E5−3 5 4 1 3 4 7 1808.6
S5−4 5 4 1 9 10 8 1934.0 E5−4 5 4 1 3 7 7 1798.7
S5−5 5 4 1 8 9 9 1628.0 E5−5 5 4 1 3 10 7 1479.5
Avg. 1700.4 Avg. 1774.3
N1−1 5 4 1 1 1 8 1726.4 W1−1 5 4 1 1 7 8 1654.4
N1−2 5 4 1 2 1 5 2123.0 W1−2 5 4 1 2 5 5 1905.4
N1−3 5 4 1 3 1 1 1595.3 W1−3 5 4 1 2 2 2 1578.2
N1−4 5 4 1 5 4 4 1998.3 W1−4 5 4 1 3 3 2 2022.6
N1−5 5 4 1 6 7 7 1482.6 W1−5 5 4 1 3 4 1 1619.9
N3−1 5 4 1 2 5 8 1692.6 W3−1 5 4 1 9 1 2 1709.3
N3−2 5 4 1 2 5 5 2114.9 W3−2 5 4 1 5 3 3 1966.9
N3−3 5 4 1 2 5 2 1520.5 W3−3 5 4 1 1 5 3 1596.4
N3−4 5 4 1 4 5 5 2052.5 W3−4 5 4 1 2 5 3 1597.8
N3−5 5 4 1 6 5 8 1482.4 W3−5 5 4 1 2 5 2 1627.0
N5−1 5 4 1 3 5 7 1632.4 W5−1 5 4 1 9 2 2 1631.5
N5−2 5 4 1 3 3 5 2054.7 W5−2 5 4 1 7 4 2 1889.1
N5−3 5 4 1 2 1 2 1449.4 W5−3 5 4 1 4 5 2 1545.1
N5−4 5 4 1 4 4 5 1985.3 W5−4 5 4 1 3 4 2 1953.9
N5−5 5 4 1 6 6 8 1476.2 W5−5 5 4 1 2 3 2 1659.3
Avg. 1759.1 Avg. 1730.5
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Figure G.6: AR Results II – South façade – Miami
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Figure G.7: AR Results II – East façade – Miami
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Figure G.8: AR Results II – North façade – Miami
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Figure G.9: AR Results II – West façade – Miami
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Table G.7: AR Results II – Step 4 - Miami

v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]

S1−1 5 4 1 10 10 6 1645.3 E1−1 5 4 1 10 10 2 1543.0
S1−2 5 4 1 10 9 7 1670.9 E1−2 5 4 1 7 7 5 2183.8
S1−3 5 4 1 9 8 7 1594.4 E1−3 5 4 1 3 4 7 1782.1
S1−4 5 4 1 9 9 7 1660.8 E1−4 5 4 1 4 7 7 1909.3
S1−5 5 4 1 9 10 6 1606.9 E1−5 5 4 1 4 10 7 1439.2
S2−1 5 4 1 10 10 7 1689.1 E2−1 5 4 1 6 10 5 1981.3
S2−2 5 4 1 9 9 7 1563.5 E2−2 5 4 1 5 7 5 2123.1
S2−3 5 4 1 9 8 7 1533.1 E2−3 5 4 1 5 4 5 2178.9
S2−4 5 4 1 9 9 7 1586.7 E2−4 5 4 1 4 7 6 2066.2
S2−5 5 4 1 9 10 8 1755.2 E2−5 5 4 1 4 10 7 1684.6
S3−1 5 4 1 9 10 7 1706.1 E3−1 5 4 1 1 10 8 1618.1
S3−2 5 4 1 9 9 7 1604.7 E3−2 5 4 1 4 7 6 2207.6
S3−3 5 4 1 9 8 7 1564.4 E3−3 5 4 1 7 3 3 1766.1
S3−4 5 4 1 9 9 8 2006.0 E3−4 5 4 1 5 7 5 2238.7
S3−5 5 4 1 8 10 9 1629.8 E3−5 5 4 1 3 10 7 1458.5
S4−1 5 4 1 8 10 6 1839.8 E4−1 5 4 1 1 10 8 1618.5
S4−2 5 4 1 8 10 6 1821.4 E4−2 5 4 1 3 7 7 1795.3
S4−3 5 4 1 9 9 7 1569.1 E4−3 5 4 1 5 4 5 2207.2
S4−4 5 4 1 9 9 8 1972.9 E4−4 5 4 1 4 7 6 2117.1
S4−5 5 4 1 8 10 9 1638.8 E4−5 5 4 1 3 10 7 1457.7
S5−1 5 4 1 6 10 4 1851.7 E5−1 5 4 1 1 10 8 1626.4
S5−2 5 4 1 8 10 6 1838.3 E5−2 5 4 1 2 7 8 1755.1
S5−3 5 4 1 9 10 7 1564.2 E5−3 5 4 1 3 4 7 1808.6
S5−4 5 4 1 9 10 8 1934.0 E5−4 5 4 1 3 7 7 1798.7
S5−5 5 4 1 8 9 9 1628.0 E5−5 5 4 1 3 10 7 1479.5
Avg. 1699.0 Avg. 1833.8
N1−1 5 4 1 1 1 8 1726.4 W1−1 5 4 1 1 7 8 1654.4
N1−2 5 4 1 2 1 5 2123.0 W1−2 5 4 1 2 5 5 1905.4
N1−3 5 4 1 3 1 1 1595.3 W1−3 5 4 1 2 2 2 1578.2
N1−4 5 4 1 5 4 4 1998.3 W1−4 5 4 1 3 3 2 2022.6
N1−5 5 4 1 6 7 7 1482.6 W1−5 5 4 1 3 4 1 1619.9
N2−1 5 4 1 2 3 8 1703.2 W2−1 5 4 1 5 4 5 1921.5
N2−2 5 4 1 2 3 5 2136.9 W2−2 5 4 1 3 4 4 1816.7
N2−3 5 4 1 3 3 2 2061.0 W2−3 5 4 1 2 4 3 1630.5
N2−4 5 4 1 4 5 5 2068.8 W2−4 5 4 1 2 4 2 1562.6
N2−5 5 4 1 6 6 8 1470.4 W2−5 5 4 1 3 5 2 1866.7
N3−1 5 4 1 2 5 8 1692.6 W3−1 5 4 1 9 1 2 1709.3
N3−2 5 4 1 2 5 5 2114.9 W3−2 5 4 1 5 3 3 1966.9
N3−3 5 4 1 2 5 2 1520.5 W3−3 5 4 1 1 5 3 1596.4
N3−4 5 4 1 4 5 5 2052.5 W3−4 5 4 1 2 5 3 1597.8
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v1 v2 v3 v4 v5 v6 [kWh] v1 v2 v3 v4 v5 v6 [kWh]
N3−5 5 4 1 6 5 8 1482.4 W3−5 5 4 1 2 5 2 1627.0
N4−1 5 4 1 3 5 8 1932.2 W4−1 5 4 1 9 2 2 1729.7
N4−2 5 4 1 2 4 5 2073.6 W4−2 5 4 1 6 3 2 1792.3
N4−3 5 4 1 2 3 2 1543.2 W4−3 5 4 1 3 5 3 1988.7
N4−4 5 4 1 4 4 5 1985.0 W4−4 5 4 1 2 5 2 1554.4
N4−5 5 4 1 6 6 8 1459.3 W4−5 5 4 1 2 4 2 1662.9
N5−1 5 4 1 3 5 7 1632.4 W5−1 5 4 1 9 2 2 1631.5
N5−2 5 4 1 3 3 5 2054.7 W5−2 5 4 1 7 4 2 1889.1
N5−3 5 4 1 2 1 2 1449.4 W5−3 5 4 1 4 5 2 1545.1
N5−4 5 4 1 4 4 5 1985.3 W5−4 5 4 1 3 4 2 1953.9
N5−5 5 4 1 6 6 8 1476.2 W5−5 5 4 1 2 3 2 1659.3
Avg. 1792.8 Avg. 1739.3
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