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ABSTRACT

Climate Responsive Fagade Optimization Strategy
by
Rudai Shan

Chair: Lars Junghans

The building facade plays a key role in the entire building’s energy performance. In
commercial buildings, energy demand is dominated by space heating, cooling, and
artificial lighting. Facade design variables for these three factors have always been
interacting and sometimes even in conflict with each other. For different climates,
adaptive facade design solutions should be implemented to achieve optimal design ob-
jectives, such as energy performance, human comfort, and life cycle cost. While the
optimal solution is traditionally identified through “trial-and-error”, for complex op-
timization problems that contain a great number of design variables, it might require
extensive hours of computation at early design stage, a condition that is increasingly
infeasible in practice due to cost or time constraints.

Since 2008, there has been a significant trend in building performance optimization
techniques (that used to emphasize solely on simulation) being implemented, instead
of building simulation techniques, to obtain design solutions for building performance
optimization problems. Among widely implemented optimization algorithms, the
genetic algorithm (GAs) have proven effective with its robustness in dealing with

discontinuous variables. However, for complex optimization problems with a great

xiil



number of variables, such as facade performance optimization (FPO) problems, GAs
are still too time-consuming to be implemented at the early design stage, thus effi-
ciency becomes the main area for its augmentation.

The main objective of this study is to develop a new evolutionary algorithm
method, adaptive radiation (AR), based on simple GAs to solve complex optimiza-
tion problems relative to the design approach of the climate-responsive facades. AR is
derived from the biological process of adaptation where specific species are evolution-
arily adapted to their immediate ecological niches. This process can obtain optimal
solutions of fagade design variables (infiltration, window-to-wall ratio, shading geom-
etry, glazing types, wall insulation, etc.) in significantly less computation time than
GA. In this study, AR is implemented in three different climates in the United States
to demonstrate its robustness and efficiency. The results validated the potential of
AR through facade design scenarios. The procedure can also be extended towards a

broad field of complex simulation-based architectural optimization problems.
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CHAPTER I

Introduction

1.1 Background

The building industry is the largest energy sector in the United States. It has a
substantial impact on the environment. Building energy consumption accounts for
up to 40 percent of total U.S. energy consumption, including 19% for commercial
buildings and 21% for residential buildings (DOE, 2011). Almost half of the build-
ing energy consumption is implemented for the following three main sectors: space
heating (27% for residential, 14% for commercial), space cooling (16% for residential,
19% for commercial), and artificial lighting (10% for residential, 17% for commercial)
(DOE, 2011). The residential and commercial sectors also contribute to almost 40
percent of carbon dioxide (CO2) emissions in the U.S. (DOE, 2011). It is imperative
to develop the techniques to improve building energy efficiency and sustainability.
Building facade is the main interface between the indoor and outdoor environment.
Improving building facade performance with appropriate design strategies are essen-
tial to reduce building energy consumption and carbon emissions (Fernandes et al.,
2013).

However, the design of appropriate building facade is not straightforward. All
buildings are unique due to the local climate. Facade design variables include such as

Window-to-Wall Ratio (WWR), Glazing Type, Shading Shape and Insulation have



to be appropriately designed to adapt to the local climate. A conventional approach
known as “parametric simulation”, or sensitivity analysis (SA) is usually used to
identify the uncertainties in input and output of a system and provide decision support
(Wang et al., 2007). According to this approach, the input of each variable is varied
to see the effect on the design objectives while all other variables stay unchanged.
This procedure is then repeated iteratively with all variables. There are two main
disadvantages of this method. First, this method does not provide clear solutions for
designers. Second, it only leads to partial improvement while fails to focus on the
interrelationship between underlying variables. In addition, for a complex facade, the
design space of possible solutions is very large, which usually makes this methodology
time-consuming.

To achieve an optimal solution (or a solution near the optimum) to a facade
design problem, iterative methods which are known as ‘simulation-based optimiza-
tion” automated by computer program are usually implemented. Simulation-based
optimization techniques can significantly improve the efficiency and robustness of
optimization procedure based on great advances of computational science and math-
ematical optimization methods. Genetic algorithm (GA) is one of the most widely
used algorithms in building performance optimization field for its feasibility in solv-
ing non-linear simulation-based optimization problems. However, GAs are still ex-
tremely time-consuming for solving complex facade performance optimization prob-
lems (FPOs). There is a significant need to improve the existing GAs to reduce the

computation time and labor.

1.2 Research Objectives

The primary objectives of this research are to improve the existing GA, and de-
velop a new evolutionary algorithm based on it to find the optimal solutions of FPOs

in different climates. This new algorithm is named adaptive radiation (AR), which



is known as a principle in evolution of ecological diversity. AR describes the process
how a single ancestor diverges into an array of species that are adapted to a variety
of environments. Feasibility and robustness of this approach are demonstrated and
validated through a series of case studies for different climates in the United States.

Therefore, this study specifically addresses the following research approaches:

1) To develop a new optimization algorithm — Adaptive Radiation, based on simple
GAs in solving FPOs;

2) To validate the feasibility of the application of AR through different design
scenarios;

3) To provide climate responsive fagade design strategies for different climates in

the United States based on the optimization results of design scenarios.

1.3 Dissertation Outline

This chapter made a brief introduction of the background, research objectives and
structure of this dissertation. The main theme of this dissertation is presented: im-
proving existing GA and extending a hierarchical optimization methodology, Adaptive
Radiation, to fagade optimization problems.

Chapter 2 reviews the methodological foundations of this dissertation. The first
section reviews the research trends in high-performance building optimization prob-
lems. It then narrows down the research area to facade performance optimization
problems (FPOs). The third section introduces design optimization algorithms that
are most widely implemented in FPOs. The fourth section reviews the development
of GAs and points out the imperative of improving the efficiency of existing GAs.
The fifth section presents the frequently implemented optimization tools. The last
section summarizes this chapter.

Chapter 3 explains the optimization methodology of AR and its integration of

FPOs. The first section explains the design variables and objectives, as well as the



complexity of the FPOs. The second section introduces the integrated thermal and
lighting simulation methodology. The third section presents the model of AR and the
process involved in its implementation. Chapter 4 extends the AR methodology to
the FPOs context through one design scenario. GA optimization runs are executed to
validate the efficiency and robustness of AR. Chapter 5 implements AR in two other
climates in the U.S. to validate its applicability and stability. Chapter 6 summarizes

this work, enumerates the main contributions, and points out further research areas.



CHAPTER II

Literature Review

This chapter reviews the implementation of optimization in building optimization
problems in view of current research and practice trends in numerical algorithms
and solution techniques. Recent developments in numerical algorithms validates the
availability and effectiveness of diverse optimization methods in solving simulation-

based optimization problems.

2.1 Optimization Study in High-Performance Building

There is a growing trend in research and practice in the architectural, engineering
and construction (AEC) industry, where optimization approaches have been more
and more frequently implemented in high-performance building optimization prob-
lems. The optimization problem in building design is unique when compared with
optimization problems in other manufacturing industries, such as the automotive or
naval industry. The climatic and environmental situation for each building is unique,
which makes large scale test model production before real construction infeasible.
Therefore, unlike cars or ships, prototypes for buildings are usually not constructed
and tested before manufacture. However, at the early design stage, it is essential to
make a great deal of decisions which aim to achieve the building design objectives,

such as energy performance, cost, environmental impact as well as thermal comfort



(Negendahl and Nielsen, 2015). Therefore, optimization studies are most commonly
performed at the early-design stage, where the majority of design decisions have yet
to be made.

The study of building optimization has been developed since the year 1980s, which
is based on the advancing development in computational technique and mathematical
optimization methods. A pioneering study was presented by Wright in 1986 which
applied the ‘direct search’ method in HVAC system optimization (Wright, 1986).
The optimization studies were then developed in a variety of building optimization
categories, including shape/geometry (Adamski, 2007), HVAC system (Palonen et al.,
2009), envelope insulation (Baglivo et al., 2014) and control strategies (Coffey et al.,
2010).

Even though the studies in building optimization problems were implemented
much earlier, most studies were published in the late 2000s. Using keyword searches in
ScienceDirect reflects an exponential evolution in the number of research papers that
utilize building optimization algorithms in the past two decades (Figure 2.1). These
type of optimization techniques have increased sharply since the year 2008. About
80% of the papers in this field have been published in the last 5 years, presenting
great potential for future utilization of these techniques, and identifying this as an
emerging field of research.

It is important to know the capability of the optimization method in achieving
the design objectives with less simulation effort, which helps the designers choose an
appropriate method among a number of approaches. It’s worth pointing out that in
optimization problems, efficiency and accuracy usually conflict with each other. In
building optimization problems, it is not necessary to find the global optimal solu-
tion(s) of a problem precisely, since this effort may be infeasible due to the nature of
the simulation-based optimization problems (Baros et al., 2011). Using simulation-

based optimization methodology to achieve sub-optimal solutions with relatively less
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Figure 2.1: Number of papers for selected keyword searches in ScienceDirect for years
1996-2014.

time and simulation effort is one main purpose of researchers. This process is usu-
ally automated by the integration of building simulation engines and optimization
algorithms. A flow chart for simulation-based optimization is shown in Figure 2.2.

While applications for optimization methodologies related to building optimiza-
tion problems are vast and constantly evolving, many researchers focus their interest
on the area of facade optimization (Bichiou and Krarti, 2011; Gossard et al., 2013;
Baglivo et al., 2014; Futrell et al., 2015). This section examines the state-of-the-art
with respect to the most recent optimization algorithms study in FPOs. The aim of
the content is to provide an overview of FPOs, as well as the most widely implemented
algorithms and tools.

FPOs can be expressed as the solution process to achieve the optimal facade de-
sign variables that satisfy the design objectives, based on the integration of building
simulation program(s) with appropriate optimization algorithm(s). The design ob-
jectives are a set of evaluation criteria, including energy performance, human comfort
and/or life cycle cost (Attia et al., 2013). When there is only one design objective,
the problem is called single-objective optimization problem, whereas if when there
are more than one design objective, it is called multi-objective optimization prob-

lem. This study only discusses the field of single-objective optimization problems to
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Figure 2.2: The coupling loop implemented to simulation-based optimization.

simplify the optimization model.

Today, simulation-based optimization has become an efficient technique to provide
high-performance fagade design solutions. There have been a great number of studies
using optimization techniques in this process (Wang et al., 2007, 2010; Rapone and
Saro, 2012; Stazi et al., 2012).

The term ‘optimization’ often refers to the procedure of finding the global min-
imum or maximum of a function by choosing a number of variables subject to a
number of constraints. The general formulation for an optimization problem can be

summarized as

min f(z)
s.t. (2-1)
rCR"

where min,¢cx f(z) is the objective (cost function or optimization criterion) to be
optimized, x € X the vector of design variables, and x C R™ is the constraint set.

Design variables of optimization problems are gathered in vector x, and reflect



the total set of alternative solutions that is available to improve design objective.
The optimum of f(x) can be achieved by gradually changing the vector x. The value
of design variables can be continuous (real numbers), integer or discrete (integer
numbers), or combinatorial (e.g., permutation on a set of numbers of finite size)
(Collette Y, 2013). The set of decision variables constraints can be either linear or
non-linear (or both). The solution set can be reduced through the identification of
feasible solutions subject to the constraints.

In FPO problems, facade design variables can have either integer or discrete values
(e.g. SHGC, U-Value, shading dimension) due to the nature of the simulation-based
algorithms, which lead to a series of disordered and discontinuous simulation outputs
(Wetter, 2004). These discontinuities make the optimization result to be trapped
in the local optimum and stray away from the global optimum. The traditional
‘gradient methods’ thus are infeasible for FPOs. Figure 2.3 represents an example
of how these discontinuous outputs are misled in the Hooke-Jeeves algorithm in a
facade optimization problem. Therefore, ‘non-gradient methods’ are more applicable
in solving facade optimization problems.

The general procedure of non-gradient methods is to sample the design space for
good points, and then use the evaluation result to decide where to sample for the next
loop. There is a great variety of possible approaches. The general categories include
direct search methods, heuristic methods and black-box methods. These terms are
also interchangeable since modern method variants blur classification distinctions.
Genetic Algorithm (GA) is one of the heuristic methods that inspired by natural
processes. GAs are widely implemented in FPOs since they are simple to implement
and make no assumptions about the mathematical form of the functions.

Figure 2.4 shows an estimation of the utilization trend of optimization algorithms
by using the data from the literature related to building optimization algorithms

(Nguyen et al., 2014). It can be seen that the heuristic algorithms such as GA, PSO,
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Figure 2.3: Discontinuity in energy consumption as a function of east and west win-
dow configurations. The dots show the optimization process of the Hooke—Jeeves
algorithm (Wetter and Polak, 2004).

SA, Hooke-Jeeves, hybrid algorithms or other evolutionary algorithms, are the most
frequently implemented algorithms in building optimization problems. Even though
these stochastic algorithms cannot guarantee the global optimal solution(s), they can
provide valuable solution(s) which are close to the global optimum without requiring
a prohibitively long time. Brief introductions of heuristic methods are given below.
Heuristic algorithms are optimization techniques used in solving optimization
problems when classic ‘direct search’ methods are not feasible. Heuristic algorithms
have great potential to find the optimal solutions with less simulation time, but
carry the risk of sacrificing accuracy, precision, or completeness for speed. Heuris-
tic algorithms are often implemented in those problems with unknown mathematical
measures to find a solution quickly and accurately (Cook, 1983). Evolutionary algo-
rithms (EAs) are a family of optimization algorithms under the umbrella of heuristic
methods. EAs are based on the Darwin’s ‘Theory of Evolution’, which explains the

adaptive change of species by the principle of natural selection that those species best
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Figure 2.4: Use frequency of different optimization algorithms, derived from more
than 200 building optimization studies given by SciVerse Scopus of Elsevier (Nguyen
et al., 2014).

adapted to the environmental conditions will survive for further evolution (Darwin,
1859). Darwinian Theory was then extended by microscopic findings concerning the
mechanisms of heredity, which is called ‘Synthetic Theory of Evolution’. EAs in-
volve implementation of biological evolutionary processes which apply the Darwinian
principle of survival of the fittest, by maintaining a population of solutions from
which the elitisms are passed down to subsequent generations. Techniques inspired
by mechanisms of organic evolution are implemented to generate new solutions by
means of mutation, crossover, recombination, and natural selection to find an optimal
configuration for a specific system within specific constraints. Types of evolutionary

algorithms include:

e Genetic algorithm (GA) (Holland, 1975; Goldberg, 1989): the most popular type
of EA which seeks the solution of a problem in the form of strings of numbers,
by applying operators such as recombination and mutation. For example, non-
dominated sorting genetic algorithm (NSGA) and NSGA-II are the GAs most

widely implemented for multi-objective problems (Brownlee and Wright, 2015;
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Carlucci et al., 2015). GA has a fixed, linear data structure.

e Genetic programming (Sette and Boullart, 2001): this method is implemented
in the form of computer programs, and the fitness is determined by the abil-
ity to solve a computational problem. Genetic programming and Evolutionary
programming both have tree-structures that allow hierarchical variables or rep-

resentations of functions and programs.

e Evolutionary programming (EP) : this method was laid by Lawrence Fogel
in San Diego, California (Fogel, 1966). Similar to genetic programming, its
numerical variables are allowed to evolve while the structure of the program is

fixed. Mutation is the main variation operator of EP.

e Evolution strategy (ES): this algorithm is developed by Rechenberg in the Tech-
nical University of Berlin in 1965 (Rechenberg, 1965). It works with vectors of
real numbers as representations of solutions, and typically uses self-adaptive mu-
tation rates. New variable values are sampled from probability distributions, in
which the dependencies are represented by a covariance matrix, updated each
generation, e.g. Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) (Hansen et al., 2003).

e Differential Evolution (DE) (Price and Storn, 1997): the values of design vari-
able are iteratively improved to find a candidate solution and perturbed by

introducing components of other effective solutions.
There are also other heuristic algorithms that mimic natural processes including:

e Particle Swarm Optimization (PSO) (Kennedy, 1995): this method mimics the
movement of a bird flock or fish school and simplifies it to perform optimiza-
tion. The movement of solutions in a design space is based on their individual

positions and that of the best positions within the swarm.
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e Simulated Annealing (SA): this method is proposed by Kirkpatrick, Gelett and
Vecchi (Kirkpatrick et al., 1983) and Cerny (Cerng, 1985). It works by emu-
lating the heating and controlled cooling process of a solid material to increase
the size of its crystals and reduce defects at a minimum energy configuration.

It is often implemented in solving discrete optimization problems.

e Ant Colony Optimization (ACO) (Dorigo et al., 1996): this method mimics the
process by which ants deposit pheromones on paths to encourage other ants
to follow, and the variable values are most often implemented will accumulate

‘pheromones’ biasing their selection in future choices.

e Harmony Search (HS) (Geem and Kim, 2001): this method is inspired by the
improvisation process of musicians proposed by Zong Woo Geem in 2001. The
values of each variable are recombined to find a best harmony (global optimum)

all together, with some perturbation to neighboring values.

e Pattern Search (PS, also known as direct-search, derivative-free or black-box
methods), e.g. Hooke-Jeeves (Kolda et al., 2003): this method executes a trial
on one theoretical parameter at a time by steps in each dimension; step size is
halved if there is no further improvement within this dimension. This process
is repeated until steps are deemed sufficiently small. PS can be implemented in

discontinuous or differentiable problems.

Many studies have been investigated to compare the performance of these heuris-
tic algorithms in building optimization problems. Wetter and Wright compared the
performance of direct search, Hooke-Jeeves, coordinate search, GA and PSO in min-
imizing cost functions with different smoothness. The results indicated that GA can
achieve the solutions with fewer simulations with a slight decrease in accuracy ( Wetter
and Wright, 2003). Another comparative study examined optimization algorithms in-

cluding PSO, GA, Coordinate Search, Hooke—Jeeves, Nelder-Mead, Discrete Armijo
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gradient and a hybrid version of PSO and Hooke—Jeeves ( Wetter and Wright, 2004).
The results found that Nelder-Mead and the Discrete Armijo gradient algorithms
didn’t perform well and shouldn’t be implemented for problems solved by Energy-
Plus. The hybrid PSO + Hooke-Jeeves can achieve the best optimal solution but
require more simulation time. In addition, Tuhus-Dubrow and Krarti compared GA,
PSO and the sequential search (SS) method in building envelope optimal design cases
with more than ten parameters (Tuhus-Dubrow and Krarti, 2010). The results indi-
cated that the GA was more efficient than both approaches of the PSO and the SS,
with a difference in accuracy of 0.5% in locating the optimal solution, and demanding
less than 50% of the iterations. Bichiou and Krarti compared the same three algo-
rithms to evaluate the robustness and effectiveness (Bichiou and Krarti, 2011). They
found that the computation time for SS is significantly higher than both PSO and
GA. Also, GA can save as much as 70% computation time compared with SS. The
results also indicated that even though the hybrid PSO and Hooke-Jeeves achieved
the largest cost reduction, GA got close to a solution with fewer simulation runs.
Wright and Alajmi then investigated the robustness of GA in solving unconstrained
optimization problems with a restricted number of simulation runs ( Wright, 2005).
It indicated that the probabilistic nature of GA lacks robustness in finding solutions
and insensitive to the selection of GA control parameters. It also indicated that the
better solutions were obtained by using a small population size with high probabilities
of crossover and mutation.

There are also several doctoral dissertations which implemented GAs to optimize a
specific aspect of the facade design. For example, Caldas implemented GA to generate
and optimize building layouts ( Caldas, 2001; Sung, 2014). Comparative studies using
simulated annealing and Tabu Search are presented to validate the efficiency and
accuracy of GA. Results indicated the feasibility of GA in generating entire building

geometries.
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These studies validate the application of GAs in solving building optimization
problems. The main purpose of the next section is to introduce the methodology of
GA, its advantages and disadvantages, as well as the development of its efficiency for

facade optimization problems.

2.2 Development of Genetic Algorithm

Genetic algorithms are heuristic methods originally motivated by Darwin’s princi-
ple of evolution. It was first proposed by John Holland at the University of Michigan
in the early 1970s, particularly in his book Adaptation in Natural and Artificial Sys-
tems (Holland, 1975). Holland’s genetic algorithm is usually called simple genetic
algorithm (sGA). In his description, the basic techniques of the GAs are designed to
simulate the natural processes of evolution, which follow the principles first defined by
Charles Darwin of ”survival of the fittest”, the competition among individuals for in-
sufficient resources results in the fittest individuals dominating over the fragile ones.
The main process/functions of GAs consist of a series, beginning with initial pop-
ulation, selection mechanism, coupling mechanism, and coalescence algorithm and
mutation. Figure 2.5 shows an entire loop of GA, which is presented in following

steps:

1. Initial population: to randomly generate the initial population of genes (bit

strings) depending on the nature of the optimization problem.

2. Selection Mechanism: to extract a subset of genes from the generated genomes,
according to a definition of fitness function. Therefore a set of parents is selected
from the current population to create the next generation. There are three types
of general selection mechanisms. The first is Isotropic Selection, which means
that every genome simply gets the chance to mate. The second is Exclusive

Selection, where only the top N% of genomes can mate. The third is Elitist
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Selection, where the chance of mating increases as fitness increases. Elitist
selection is the most widely implemented in the process of genetic algorithm. It
is a very successful variant of the general process of constructing a new genome
since it allows the better genomes from the current generation to be carried over

to the next generation.

. Coupling Algorithm: to randomly mate the genomes generated by the active

Selection Mechanism.

. Coalescence Algorithm: the algorithm that decides which gene of the genomes
can be assigned to the offspring when two genomes are mated. The most widely
implemented mechanisms for Coalescence Algorithm are Crossover Coalescence

and Blend Coalescence.

. Mutation: to maintain genetic diversity by altering one or more gene values in
a chromosome from its initial state, since all the other mechanisms (Selection,
Coupling and Coalescence) have a tendency to reduce the bio-diversity in a

population.

GAs are widely implemented in solving FPOs due to the following advantages.

First, GAs can solve multi-dimensional, non-differential and non-continuous problems,

which are very common in FPOs. Second, the evolutionary process of GA makes it

effective in solving problems with great complexity. Third, it is easy to understand

and does not require deep knowledge of mathematics. Last but not least, existing

studies show that it can be easily integrated with building simulation programs.

Since genetic algorithms (GA) can efficiently handle non-linear problems with dis-

continuities very common in building optimization problems, they have been widely

implemented in this field. Wright and Farmani implemented GA in a multi-objective

optimization for building elements thermal design, HVAC system size, and the con-

trol strategy ( Wright et al., 2002). Best et al. implemented GA to minimize building
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mix and energy supply technology for urban districts (Best et al. 2015). Bichiou and
Krarti used GA to optimize the envelope and HVAC system for residential buildings
(Bichiou and Krarti, 2011). Oliveira Panao et al. implemented GA for the opti-
mization of urban building forms in energy efficiency improvement (Oliveira Pando
et al., 2008). Asadi et al. implemented GA for multi-criteria optimization of build-
ing retrofit (Asadi et al., 2012b). Adamski (Adamski, 2007), and Yi and Malkawi
(Yi and Malkawi, 2009) used GA to optimize the form of the building. Wang et al.
implemented GA in a multi-objective optimization model which assisted designers in
green building design (Wang et al., 2005).

There are also some disadvantages that limit the efficiency and applicability of GA.

Most of these disadvantages are caused by the evolutionary mutation and selection
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process. First, GAs sometimes cannot solve variant optimization problems, due to
poor knowledge about fitness functions, which in turn generate bad chromosomes.
Second, GAs cannot guarantee a global optimum, since the optimal solutions are
very easily trapped in a local optimum rather than the global optimum. Third, GAs
cannot, guarantee that the best individual will always survive and be transformed to
the next generation. Additionally, the ‘crossover’ process of the simple GAs may not
be efficient when searching the parameter space as expected. Last but not least, the
optimization process of GAs is still very time-consuming in practice, especially when
it almost reaches and varies near the global optimum.

There have been many variations of GAs developed to solve specific problems. The
development of simple GAs occurred in the 1980s. However, most of the improvements
for GAs were developed after the 1990s, such as Non-dominated-and-crowding Sort-
ing Genetic Algorithm II (NSGA-II), Hybrid Genetic Algorithm (HGA) and Pareto
Genetic Algorithm (Pareto GA). NSGA-II is one of the most widely implemented
algorithms in building optimization problems. NSGA-II developed by Deb in 2001, is
one of the most popular multi-objective algorithms (Deb 2001). Brownlee and Wright
applied NSGA-II to three examples of a typical building optimization problem and
compared the results (Brownlee and Wright, 2015). Carlucci et al. implemented
NSGA-IT to minimize the thermal and visual discomfort of a nearly zero-energy
building (Carlucci et al., 2015). Lu et al. presented a comparison study for renew-
able energy systems optimization using a single-objective GA and a multi-objective
NSGA-IT (Lu et al., 2015). These studies show great potential to improve GAs to
solve single-objective or multi-objective problems in different building optimization
areas.

Another trend is to integrate GA with other forms of optimization algorithms
to improve their efficiency. For example, Palonen et al. integrated NSGA-II with

Hooke—Jeeves pattern search method for building envelope and HVAC system opti-
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mization (Palonen et al., 2009). Magnier and Haghighat integrated NSGA-II with
Artificial Neural Network (ANN) for optimization of building design (Magnier and
Haghighat, 2010) while Gossard et al. implemented the same method in building
envelope optimization for thermal performance (Gossard et al., 2013). Michalek et
al. used GA and SA to search for global solutions of architectural layout design
optimization problems (Michalek et al., 2002). Junghans and Darde presented an
integration of GA and SA to solve building optimization problems (Junghans and
Darde, 2015). Additionally, Hamdy et al. proposed a hybrid algorithm (PR-GA-RF),
which involved running a deterministic algorithm before (PR-GA) or after (GA_RF)
a multi-objective genetic algorithm (Hamdy et al., 2011). This approach presented
an effort to use the advantages of both methods of PR_.GA and GA_RF. The PR_GA
algorithm can prepare the initial population in order to reduce the random behavior
of GA, therefore obtaining effective solutions with a lower number of simulations. The
GA_RF can refine the GA results when high quality results are required, offering a
well-defined criterion for terminating the process. Caldas and Norford implemented a
micro-GA procedure to build a design optimization tool (Caldas and Norford, 2002).
Caldas then developed a micro-GA and Pareto GA based generative design system
(GENE-ARCH) (Caldas, 2008). These studies presented great potential in the im-
provement of GAs by using their advantages and complementing their disadvantages
through integration with other optimization algorithms.

Rather than arbitrarily framing a problem and applying an optimization algo-
rithm to it, some researchers divided the entire optimization problem into different
levels and solve this multi-level problem through hierarchical optimizations. For in-
stance, Lee developed a single-objective optimization methodology for an optimal
design tool using a genetic algorithm (GA) and computational fluid dynamics (CFD)
(Lee, 2007). The design variables include random variables (fluctuating outdoor con-

ditions), passive design elements (model variables) and active design elements (HVAC
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system). The optimization process is divided into two steps: a simple analysis using
a coarse mesh to lower the calculation load; and a detailed CFD analysis using a
fine mesh based on the cases in the first step. A reduction of the calculation time
was achieved through this two-step procedure. Evins et al. developed a three-step
framework using the design-of-experiments approach (Fwvins et al., 2012). In the first
step all variables are selected based on contribution to all outputs. This allowed the
variables to be reduced to a more manageable number by eliminating those with less
impact on the objectives. In the second step an initial optimization was performed
using all significant variables. The variables that remained constant for all optimum
solutions are eliminated. In the third step a detailed optimization was performed for
the remaining variables and the design rules are inferred. This method shows great
potential to improve the efficiency of optimization and maximize the benefit gained

from optimization.

2.3 Building Performance Optimization Tools

The integration of optimization tools with building simulation program(s) to solve
building optimization problems is one of the most popular trends in recent years.
These optimization tools implemented can be classified into two categories: stand-
alone optimization tools and simulation-based optimization tools (Attia et al., 2013).
The 19 tools that can be integrated building optimization are shown in Table 2.1.
This section mainly introduces the stand-alone optimization tools which have been
more and more frequently implemented in building optimization research, such as
GenOpt®, MATLAB®, modeFRONTIER®, Topgui® and BuildOpt®.

GenOpt® developed at the Lawrence Berkeley National Laboratory (LBNL), is
one of the most widely used building optimization programs. It was originally devel-
oped as an optimization program for a single-objective function which can be coupled

with an external building performance simulation program such as EnergyPlus, TRN-
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Table 2.1: Classification of BPO tools (Attia et al., 2013)

Simulation Optimization packages Tailor made-
based opti- programming
mization
Public TRNOPT
(2004)
BeOpt (2005)
OptiMaison
(2005)
OptiPlus
(2006)
Commercial | ARDOT MATLAB Topgui (1990) | C++
(2002) optimization
toolbox (1990)
Polysun (2006) | Phoenix inte- | GenOpt (2001) | Cygwin
gration (1995)
GENE_ARCH | GAlib (1995) Paradiso EO | Java
(2008) (2003)
Lightsolve modeFrontier ThermalOpt R
(2008) (1999) (2011)
ParaGen Homer (2000) Visual = Stu-
(2011) dio
ZEBO (2012) | DER-CAM
(2000)

SYS, DOE-2, SPARK, BLAST, IDA-ICE, Radiance, or any user-written code that

has input and output as text files (Wetter, 2001). The original algorithm library

of Genopt® does not include multi-objective algorithms. Some multi-objective algo-

rithms such as NSGA-II are developed and recently added to the algorithm library

by the users (Gossard et al., 2013; Carlucci et al., 2015).

Genopt® has been widely implemented in building optimization problems in

plenty of studies (Asadi et al., 2012a; Bigot et al., 2013; Carlucci et al., 2015; Futrell

et al., 2015). It’s worth illustrating that Wetter and Wright implemented GenOpt

to achieve the office building design solutions for energy efficiency in three different

climates in the U. S. (Wetter and Wright, 2003).

The cost functions of GenOpt can cover any BPO objective functions (energy,
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Figure 2.6: Implementation of optimization algorithms into GenOpt ( Wetter, 2001)

indoor air quality, thermal comfort, etc.) from minimization to maximization. The
GenOpt library provides local and global multi-dimensional and one-dimensional opti-
mization algorithms ( Wetter and Wright, 2004). The multi-dimensional optimization

algorithms include:

e Generalized pattern search algorithms (the Hooke-Jeeves algorithm and the
coordinate search algorithms) for continuous independent variables, which can

be run by using multiple starting points.
e Discrete Armjio gradient for continuous independent variables.

e Particle swarm optimization (PSO) for continuous and/or discrete independent
variables, with inertia weight or constriction coefficient and velocity clamping,

and with a modification that constricts the continuous independent variables to
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a mesh to reduce computation time.

e Hybrid generalized pattern search algorithm with particle swarm optimization

for continuous and/or discrete independent variables.
e Nelder-Mead simplex algorithm for continuous independent variables.
e NSGA-II for continuous and/or discrete independent variables.
The one-dimensional optimization algorithms include:
e The golden section interval division.
e The Fibonacci division.

Another widely implemented optimization tool is MATLAB®) Optimization Tool-
boxTM, which provides a variety of algorithms for optimization problems. MATLAB
has been implemented in building optimization problems by several researchers (Dou-
nis and Caraiscos, 2009; Asadi et al., 2012b; Baglivo et al., 2014; Hu and Karava,
2014; Ascione et al., 2015). The algorithms in MATLAB® Optimization Toolbox™
can solve both constrained or unconstrained and, continuous or discrete problems.
MATLAB® includes functions for linear programming, quadratic programming, bi-
nary integer programming, nonlinear optimization, nonlinear least squares, systems
of nonlinear equations, and multi-objective optimization. This allows finding optimal
solutions, performing trade-off analyses, balancing multiple building design alterna-
tives, and incorporating optimization methods into algorithms and models. The func-
tions and toolbox in MATLAB provide opportunities to make use of their additional
functions or the integration of these functions by the users, including data analysis,
plotting functions, curve fitting functions, and graphical user interface (Hamdy et al.,
2011).

Topgui® is a toolbox that provides a number of optimization methods similar

to Genopt®. In addition, it provides algorithms for multi-objective optimization
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problems. It consists of a Java graphical user interface (Gui). The batch commands
(that can be controlled by the Gui) can be inserted to start the optimization algorithm
such as number of evaluations and design variables. Extra strategy variables can be
provided for some algorithms, e.g., for the evolution strategy by editing the population
size variables. There are multiple algorithms available in Topgui® and the list can
be easily extended through inserting new algorithms. Topgui has been implemented
in some studies in building optimization problems (Emmerich et al., 2003, 2008). Tt

provides several single-objective and multi-objective optimization techniques such as:

Hooke-Jeeves algorithm

Generalized pattern search methods (GPS)

Particle swarm optimization algorithms (PSO)

Evolution Strategy (ES)

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

S-metric selection evolutionary multi-objective optimization algorithm (SMS-

EMOA).

BuildOpt® is an automated multivariate optimization tool which is an energy
simulation program that is built on models that are defined by differential algebraic
equations (DAE) (Wetter, 2004). It is implemented by Ellis et al. through an opti-
mization model which employs multiple modules, including a graphical user interface,
a database, a preprocessor, the EnergyPlus simulation engine, an optimization engine,
and a simulation run manager.

Besides the aforementioned optimization tools, there are other optimization tools
that can be implemented in building optimization problems, such as modeFRONTIER®
(Shi, 2011; Baglivo et al., 2014; Padovan and Manzan, 2014; Baglivo and Congedo,
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2015)(Shi 2011, Baglivo et al. 2014, Padovan and Manzan 2014, Baglivo and Con-
gedo 2015), BEoptTM (Parker, 2009; Fazli et al., 2015; Rhodes et al., 2015; Robertson
et al., 2015).

2.4 Summary

This chapter gave an overview of the entire research context. The background and
trends of building optimization problems are introduced first. The research content
is then narrowed down to the field of FPO problems. The background of a simple
genetic algorithm is specifically described. The improvement and implementation of
design optimization algorithms in this field are introduced. Conclusions are reached
show that there is a significant need and great potential to improve the efficiency of
existing GAs to solve FPO problems. The existing optimization tools in the FPO field
are also introduced. The following chapter will explain the objectives and structure

of this study.
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CHAPTER III

Methodology

As discussed in Chapter 2, even though GAs have been proven to be one of the
most efficient optimization methodologies, they remain time-consuming when solving
complex FPO problems with a great number of design variables. It is essential to
improve the efficiency of the existing GA, while not affecting its robustness.

The goal of this chapter is to introduce a new evolutionary optimization method-
ology that is based on improvement of the simple GA. The definition of this algorithm
is derived from ‘adaptive radiation (AR)’ - a phenomenon which was observed by Dar-
win, that describes the evolutionary process of species become adapted to ecological
niches (Schluter, 2000).

The first section explains the characteristics of FPO problems, the design vari-
ables, the optimization objectives and the simulation methodology implemented in
this study. The second section presents an overview of the design optimization algo-
rithms. The distinguishing characteristics of these algorithms are highlighted, which
can help to categorize the optimization problems. The third section focuses on the
simple GA and its implementation in architectural design contexts. The fourth section
defines AR, an explicit approach proposed to improve the simple GA with a hierar-
chical optimization structure and interpolation methodology. The methodology of

AR is introduced, the optimization process is explained and its feasibility regardless
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of FPOs is validated.

3.1 FPO Problems

A thorough understanding of the problem is a prerequisite for optimization. The
modeler has to understand how the design variables will impact the solution pro-
cess as well as optimal results. The mathematical model of optimization problems
can describe the relationships between design variables and optimization objective(s).
This requires a comprehensive understanding of the implemented formulations and
the nature of the problem(s). The designed optimization model will have a significant
impact on the optimization algorithm to be implemented, the setting of the optimiza-
tion process, and the optimization results. Thus, this section focuses on the design
variables and objective functions of FPO problems, which help to better clarify the

FPO problems of this study.

3.1.1 FPO Design Variables

The design variables for FPO problems include parameters such as glazing types,
infiltration, insulation and shading shapes. These design variables can be classified
into different categories by their impacts on optimization objectives, such as the
heating energy demand, daylighting, environmental impact and initial investment.
Studies have investigated the relationship between these design variables and objec-
tive functions. For example, Yang et al. investigated the impact of U-values of the
exterior wall, roof and windows on the retrofitted building envelopes in the hot sum-
mer and warm winter climate of southern China and the cold climate of northern
China ( Yang et al., 2012). The results showed that by identifying appropriate facade
design variables, the annual heating energy demand can be reduced by about 66%
in cold climate of northern China, and the annual cooling energy demand can be re-

duced by about 33% in hot summer and warm winter climate of southern China. In
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another study, the air tightness performance and its impact on residential buildings
in northern China was investigated (Chen et al., 2012). The results indicated that the
district heating energy use can be reduced by 12.6% by reducing the average natural
air infiltration from 1.0 ~=* to 0.5 A™1.

Researchers have placed a particular focus on the impact ratio of building design
variables on different design approaches. One traditional methodology is to perform a
sensitivity analysis. For example, Heiselberg et al. made a comprehensive sensitivity
analysis of design parameters of an office building design in Denmark (Heiselberg et al.,
2009). Since the heating demand was dominant in this climate with less ventilation
and a lower lighting demand and no cooling demand, the result of sensitivity analysis
shows lighting control and the amount of ventilation during winter are the two most
important parameters to change in order to reduce energy demand. Yu et al. also
conducted a sensitivity analysis of energy performance for the envelope of high-rise
residential buildings ( Yu et al., 2013). The results indicated that the most important
factors are the shading coefficient and window-to-wall ratio (WWR) in the cooling
season, while the heat transfer coefficient of walls and the shape coefficient have crucial
effects in the heating season. They concluded that the heat transfer coefficient of the
walls and WWR play the most important role for annual energy use. Moreover, for
small and large WWRs, the effects of solar absorption of the walls and the roof and
the roof heat transfer coefficient are very small.

The aforementioned studies present the facade design variables that have the most
significant impact on total building energy demand. The following list represents the

most widely studied variables of the FPOs:

e Building shape and orientation
e Window-to-wall ratio (WWR)

e Glazing types
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Shading shapes

Insulation

Infiltration

Natural ventilation

Blind /shading control

Natural ventilation and blind/shading control systems are not within the scope
of the passive facade design strategies that are discussed in this study. Also, due to
the aesthetic expectations of conventional office fagade design, there are also uniform
requirements for window openings. Therefore, different WWRs are also not included
in this study. The main design variables included in this study are glazing types,
insulation, infiltration, and different parameters that affect the shapes of shading ele-
ments, which are based on the orientation and local environment of the optimization
models.

Studies using conventional methodologies such as sensitivity analysis can help the
designers to get an overview of how design variables affect the objectives. This can be
supportive in the decision-making process by providing comprehensive design options,
which leads to better guidance at the early design stage. However, as the number and
complexity of design variables increase, the complexity of the FPO problems will also
significantly increase. As such, it is very time-consuming to evaluate all the design
variables by these conventional methodologies. In addition, the values of FPO de-
sign variables usually conflict with each other on different objective function(s) (i.e.,
energy demand vs. lighting comfort), which will also reduce the feasibility of con-
ventional methodologies in achieving comprehensive solutions. Thus, a methodology
of optimization is more efficient for solving FPO problems in a systematic way by

providing a set of solutions based on predefined optimization objectives.
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In general, the design variables of FPOs can be characterized as continuous or
discrete, based on the mathematical properties of the values. Design variables that can
use any values over a particular range of real numbers are continuous. For instance,
the WWRs can be represented as continuous values within specified bounds, such
as 20% ;| WWR | 90%. In contrast, design variables that only use certain values
over a particular range of real numbers are discrete. Examples of discrete variables
include sizes of standardized insulation thickness or building elements, glazing types
and material selection. Most FPO problems have both continuous and discrete design
variables. Sometimes mixed-discrete problems can be represented as entirely discrete
problems. For instance, shading depth, which is seen as a continuous variable in
some problems, can also be represented as a continuous range or incremented over
discrete depths (for example, in 100 millimeter intervals). Also, the dimensions of
building elements must always fit in some specific building module, which makes
continuous variables almost impossible. Therefore, only discrete design variables are
implemented in the optimization scenarios in this study.

The particular problem described in this chapter is the facade design of a typical
office building, in order to optimize its total energy demand of heating, cooling, and
artificial lighting. The facade design variables, which have a significant effect on the
environmental performance of a building, are typically determined at the early design
stage. The optimal values of design variables depend on the local climate, the orien-
tation the facade is facing, the shading elements from the surrounding environment,

and the function of the building (office, commercial, residential, etc.).

3.1.1.1 Glazing

Glazing is the translucent or transparent surface (like windows or skylights) which
covers the opening on the building envelope. The fenestration system is a critical in-

terface between the indoor and outdoor environment, and impacts indoor comfort,
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lighting and thermal performance of perimeter spaces for commercial buildings. The
key properties of glazing include thermal conductance (U-Value), solar radiation coef-
ficient (SHGC), and visible transmittance (Tvis). Appropriate selection of the values
of these glazing properties depends on factors such as the local climate, facade ori-
entation and window-to-wall ratio (WWR). However, it is not easy to predict the
impact of different glazing types on the heating, cooling, and artificial lighting energy
demand.

Table 3.1: Total energy demand for different glazing system

Glazing 1 2 3 4 5 6
U-value [W/m?K] 6.0 2.7 1.8 1.5 1.1 0.7
SHGC [ 070 0.62 060 034 031 024
Tvis -] 0.88 0.80 0.65 0.65 0.47 0.30
H [kWh] 2825 114.8 61.5 83.7 56.6 40.3
C [kWh] 843.5 637.8 697.7 282.8 331.6 352.5
L [kWh] 119.8  135.7 184.7 184.7 273.0 459.0
Total [kWh] 1245.8 888.3 944.0 551.2 661.1 851.8

Table 3.1 represents the total energy demand of the typical office room in San
Francisco with different glazing systems on the southern orientation facade. It can be
seen in Figure 3.1 that with southern facade, the various types of glazing have different
impacts on the heating, cooling, and artificial lighting energy demand. The heating
and cooling energy demands are influenced by the change of U-value and SHGC.
The artificial lighting energy demand is mainly impacted by the values of SHGC
and visible transmittance. On the southern facade, glazing type 1 has the lowest, a
difference of 55.8%. It can be seen that changing the glazing types, especially the
SHGC value, has a larger impact on the cooling energy demand on the southern
facade, thus influencing the total energy demand. The results represent that the
variation of glazing types, especially the SHGC values, have a significant impact on
the total energy demand.

To achieve the goal of energy efficiency, different kinds of glazing may be imple-
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mented in different places on the same building fagcade. However, the same type of

glazing is usually implemented on the entire facade for aesthetic purposes.
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Figure 3.1: Total energy demand for different glazing system.

3.1.1.2 Insulation

The thermal insulation of the facade has an essential impact on the heating and
cooling energy demands. Table 3.2 represents the energy demands on the southern
facade with different insulation U-values in the climate of San Francisco. It can be
seen in Figure 3.2 that both heating and cooling energy demands decrease with the
increase U-value of insulation. Therefore, the total energy demand decreases as the
U-value of insulation increases in this case. However, the impact of insulation is
not significant. The total energy demand (when insulation is 0.19 W/m?K) is the
smallest in this case, which is only 4.5% smaller than the highest (when insulation
is 0.7 W/m?2K). In this case, the results represent that improving the insulation of

exterior walls does not have a significant impact on the total energy demand of south
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facade.

Table 3.2: Total energy demand for different insulation

1 2 3 4 5 6
[W/m2K] 0.70 0.46 0.37 0.32 0.26 0.19
H 282.4  266.8 260.5 2569 2524 247.1
C 843.5 837.1 834.6 833.3 831.7 829.8
L 120.0 120.0 120.0 120.0 120.0 120.0
Total 12459 1223.8 1215.1 1210.1 1204.0 1196.8
= 1400.0
g 1200.0 e =
] 1000.0 ——H
= 800.0 b * * * 4 ——
;:?E 600.0 _._f
,i: T 4000 — —e—Total
E 200.0
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Figure 3.2: Total energy demand for different insulation.

3.1.1.3 Infiltration

Similar to thermal insulation, the infiltration value of a building facade also has a
significant impact on the heating and cooling energy demands. Table 3.3 represents
the impacts of different insulation values on the total annual energy demand. At
first, the heating energy demand increases with the decreasing of infiltration, and
then decreases. In contrast, the cooling energy demand decreases with decreasing of
infiltration at first and then increases. At first, the total energy demand increases
and then decreases with the improvement of infiltration. The results show that in
this climate, the improvement of infiltration has a more significant impact on the
heating energy demand than the cooling energy demand on the south orientation.
However, the impact of infiltration is not as significant as the glazing type. When

the infiltration is 0.15, the total energy demand is the smallest, which is only 4.6%
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Figure 3.3: Total energy demand for different infiltration values.

smaller than the highest when infiltration is 0.18.

Table 3.3: Total energy demand for different infiltration values

1 2 3 4

0.25 0.18 0.15 0.12
3144 436.2  266.9  252.8
820.5 7445  855.9  867.1
1274 1274 1274 1274
Total 1262.2 1308.0 1250.1 1247.3

I
—

Qo

3.1.1.4 Overhang depth

Table 3.4: Overhang depth

1 2 3 4 > 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 80 900 1000

H 2824 2812 2843 290.2 289.7 294.2 297.7 297.7 303.8 302.2
C 843.6 7169 605.8 507 4285 3649 311.5 311.5 240.3 2074
L 120.0 1304 139.6 1428 1494 159.7 158.9 1589 180.3 182.9
Total 1246.0 1128.5 1029.6 939.9 867.7 818.8 768.1 768.1 7244 692.5

Overhang shading has an essential impact on the daylight and solar radiation
received by the facade, thus influences heating, cooling, and artificial lighting energy
demands. In this case, the cooling energy demand decreases, while the heating and
artificial lighting energy demands increase, with the increase overhang depth. The

reason is that there is less solar radiation and daylight by the variation of overhang
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Figure 3.4: Total energy demand for different overhang depth.

depth. The total energy demand is the smallest when overhang depth is 1000 mm

in this case, which is 44% smaller than the highest when overhang depth is 100 mm.

The results represent that improving overhang depth has a significant impact on the

total energy demand.

3.1.1.5 Vertical fin

Table 3.5: Total energy demand for different fin depth
1 2 3 4 5 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 800 900 1000
H 281.7 297.1 312.0 329.8 349.5 363.6 381.6 392.6 402.3 409.9
C 842.2 690.1 574.1 4904 433.5 393.4 363.3 346.0 330.5 327.6
L 119.1  126.2 142.0 1419 1444 1484 1474 1545 155.6 165.5
Total 1243.0 1113.4 1028.1 962.1 927.4 9054 8924 &93.0 888.4 903.0
2 14000
£ 12000
ia 10000 ‘K .
< 8000 ——C
52 6000 \\\& ——L
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Fin
Figure 3.5: Total energy demand for different fin depth.

The fin shading system also has a significant impact on the heating, cooling, and
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artificial lighting energy demands. In this case, the cooling energy demand decreases,
while the heating and artificial lighting energy demands increase, with the increase
of overhang depth. The reason is that there is less solar radiation and daylight by
the increasing of the fin’s depth. The total energy demand is the smallest when the
fin depth is 1000 mm in this case, which is 27.3% smaller than the highest when the
fin depth is 100 mm. The results represent that fin depth has a significant impact on

the total energy demand, but not as significant as the overhang depth.

3.1.1.6 Fin angles

Table 3.6: Total energy demand for different fin angle

1 2 3 4 D 6 7 8 9

30 45 60 75 90 105 120 135 150
H 275.3 2774 2915 285.0  281.7 276.5 2844 272.0 268.4
C 893.4 8939 7844 861.7 8422 836.0 7785 851.2 849.3
L 128.3 129.1 1299 110.7 119.1 1321 1245 1422 1428
Total 1296.9 1300.4 1205.8 1257.4 1243 1244.6 1187.4 12654 1260.5
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Figure 3.6: Total energy demand for different fin angles.

The angles of fins have significant impacts on how much solar radiation and day-
light will get in through the window. In this case, the heating, cooling, and artificial
energy demands all vary with the change of fin angle. The total energy demand is

the smallest when the fin angle is 120° in this case, which is 8.7% smaller than the
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highest demand when the fin angle is 45°. The results represent that fin angle has an
impact on the total energy demand, but not as significant as the shading depth.

It can be seen from the results that all the facade design variables listed above
will impact the total energy demand. Furthermore, the glazing type, overhang depth,
fin depth have more significant impact than the insulation, infiltration and fin angle
on the total energy demand. This is because cooling is domain in the climate of San
Francisco. The next section discusses the combinations of these design variables and

the impacts on different orientations.

3.1.2 FPO Objectives

The objective of FPOs is the function f(z) that is to be optimized. Objective
function can be either linear or non-linear with respect to the design variables. The
goal of optimization is either to find the global minimum min,cx f(z) or maximum
maxcx f(x) solutions of the objectives. However, the mathematical optimization
problems are usually defined as minimizations of the quantity. When the goal of
an optimization problem is to achieve the maximization maz,cx f(x), it generally
converts to minimize the objective’s opposite mingcx — f(z).

According to the existing research, the objectives for FPOs include but are not

limited to:

e Energy demand: i.e., the heating, cooling, and artificial lighting energy demands

(Seo et al., 2011; Gossard et al., 2013).

e Human comfort: i.e., thermal comfort (Gossard et al., 2013) and lighting com-
fort (PVM, PPD values, discomfort hours, daylight) (Carlucci et al., 2015;
Futrell et al., 2015).

e Cost: i.e., life cycle cost (LCC) that includes investment cost, operation cost

and maintenance cost, etc. (Keoleian et al., 2000; Hasan et al., 2008).
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e Carbon emissions: i.e., life cycle assessment (Banos et al., 2011; Weber et al.,

2006; Stazi et al., 2012; Keoleian et al., 2000).

Generally, FPO problems can be either single-objective or multi-objective prob-
lems. A conventional single-objective optimization problem involves a single objective
function, while a multi-objective optimization problem involves multiple contradic-
tory objective functions. However, FPO problems usually have to achieve more than
one optimization objectives. The optimization objectives usually conflict. Thus they
can be considered through strategies that preserve trade-offs between two or more
of them (Coello, 2006). There are two widely applied approaches for multi-objective
optimization problems. One is the utilization of the weight function that each of the
objectives is normalized with one associated weight factor, thus an entire cost func-
tion is achieved through an equation consisted of different objectives and associated
weight factors. This method is efficient and simple to be implemented. However, this
method requires prior knowledge of the optimization problem and does not provide
information on the compromise between different objectives. Another approach is
Pareto optimal or non-dominated solution. The definition of a Pareto optimal is that
there is no other feasible solution that improves one objective without deteriorating
another one. A set of all these non-dominated solutions is called a Pareto frontier,
which can be represented as a curve. The solutions provided by the Pareto optimal
method can have a great diversity. The disadvantage of this method is that it repre-
sents inadequate efficiency and effectiveness in the optimization process (Machairas
et al., 2014) (Figure 3.7).

The main objective of this study is to improve the existing GA rather than to
achieve solutions for different FPOs. Therefore, it is mainly focusing on single-
objective optimization problem to simplify the FPO model. The configuration of
the FPOs can affect three terms of the annual energy demand: the heating energy

demand (Qpeating), the cooling, and dehumidification energy demand (Qcooting), and
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Figure 3.7: Pareto frontier of a double-objective problem(Machairas et al., 2014)

the artificial lighting energy demand (Qyighting). The other terms of building energy
demands such as energy demands for ventilation, humidification and hot water are
not discussed in this study. The objective function is then the minimum of total

energy demand of heating, cooling, and artificial lighting.

min f{Qtoml(Vb V2,03, ... 7UTL>}
(3.1)

Qiotal = Qheating + Qeooling + Qlighting

where vy, v9,v3, ..., v, are the design variables according to this problem.

Climate and site environment conditions play important roles in the design of a
fagade system. The orientation, dimension and properties of the facade have a signif-
icant impact on both daylight and thermal performance of the perimeter zones of an
office building. The hourly change of sun position, cloudiness, shading and reflection
from the surrounding environment have a comprehensive effect on daylight availability
and solar radiation gains on the same facade. The complexity and number of facade
design variables also increase the difficulty to examine the impact of design variables
on optimization objectives. Simplified modeling methods for FPO problems that were

implemented in conventional studies, have been proven to be inaccurate in the pre-
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diction of thermal and daylight impact. The most effective means of establishing a
high-performance facade that is adapted to local climate should be through detailed,
dynamic, hourly computer simulations for the specific building design, environment
situation and local climate.

In FPO problems, it is essential to achieve the appropriate combination of facade
design variables to keep a good balance between the heating, cooling, and artificial
lighting energy demands. However, some traditional studies to configure the optimal
fagade design solution only include running thermal simulation, while the impact on
the artificial lighting energy demand is often neglected.

In addition, the process of thermal (to obtain the heating and cooling energy
demands) and lighting (to obtain the SHGC value of shading elements and lighting
control schedule) simulation is interactive. For instance, small depth shading elements
can lead more daylight into an internal space that may reduce artificial lighting en-
ergy demands as well as cooling energy demands. It will also bring in excessive solar
gains, which may increase glare problems, thus have a significant impact on inter-
nal heating and cooling energy demands, especially for rooms on south and west
orientations. Even though some studies included lighting simulations in the entire
simulation process, the traditional method generally uses static simulation programs
to obtain lighting and thermal energy demands in a separate simulation process, and
then simply adds up the simulation results. This method neglects the hourly inter-
active relationship between the lighting and thermal simulations. The fagade design
variables should be selected based on the integrated performance indices obtained
through the continuous interaction between transient hourly thermal and lighting
simulations. Therefore, it is essential to integrate thermal and lighting simulations in
a dynamic simulation process. This study makes a comprehensive approach of FPOs,
which includes the heating, cooling, and artificial lighting energy demands.

Researchers have focused on integrated thermal and daylighting simulations in
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recent years (Franzetti et al., 2004). Pioneering research by Janak that provided a new
method of direct run — time coupling between building energy simulation and global
illuminance (Janak, 1997). By direct coupling at the time step level between ESP-r
and RADIANCE, the building energy simulation is able to get access to an internal
illuminance calculation engine, thus enabling modelling of the complex interactions
between artificial lighting control and the rest of the building energy domain in a fully
integrated way. Tzempelikos then implemented a systematic methodology which
performed a detailed and dynamic simulation for automatic control of motorized
shading in conjunction with controllable electric lighting systems (Tzempelikos and
Athienitis 2007). Jakubiec and Reinhart developed a simulation program that can
integrate the thermal and lighting simulation by coupling Daysim and EnergyPlus
on a Rhinoceros 3D platform (Jakubiec and Reinhart, 2011). This methodology is
then coupled with GA to perform a dynamic and interactive optimization process to
achieve more accurate design solutions in an effective way.

In this case study, the 3D model is generated on a 3D/CAD modeling platform.
The thermal simulation-based on EnergyPlus and the lighting simulation-based on
Radiance are dynamically integrated to achieve the annual total energy demand
Qotal. The Rhinoceros/Grasshopper platform can prepare 3D/CAD models for com-
plex facades, which is not executable in EnergyPlus platform. At present, there are
limited user interfaces specifically designed for the implementation of optimization
algorithms in architectural design. This workflow represents a visualization platform
between 3D/CAD modeling, building simulation and optimization process, and pro-
vides quick feedback of architectural design variables, which helps architects to make
design decisions at the early design stage and scrutinize the results clearly.

An optimization program is implemented to run AR optimizations and make a
call to the EnergyPlus and Radiance simulation runs on the Rhinoceros/Grasshopper

platform. The optimization process is initiated by executing the optimization pro-

41



gram, which accept the design variables to be optimized from the input file. Then,
the optimization engines execute Radiance and EnergyPlus scene files by replacing
these design variables in template files with the values of variables for the initial run.
Thirdly, the optimization engines execute a script that coordinated the execution of
Radiance and EnergyPlus. Radiance is executed first to achieve annual hourly illu-
minance values, which are implemented to calculate the annual lighting schedules.
EnergyPlus is then executed to achieve the total energy demand of heating, cooling,
and artificial lighting. After all the simulations are complete, the optimization en-
gines evaluate the achieved objective function Q)74 and produce the design variables
for the next generations. This process will continue until AR meets its convergence
criterion.

Since EnergyPlus calculates illuminance based on the daylight factor method ( Tre-
genza, 1980), which is not dynamic. The ray-tracing software Radiance is utilized in
conjunction with EnergyPlus to achieve hourly illuminance values since it uses the
daylight coefficient method (Tregenza, 1983). The sky model is divided in to 578
patches for the daylight coefficient method in Radiance. Additionally, these scripts
calculate the annual hourly lighting schedules that account for the electric lighting
control for the EnergyPlus simulations. For each hour in the office room, a scalar
between 0.1 and 1 is produced to bind the lighting power density to a level that
complement the amount of illuminance value on the work plane. The reduction in
electricity consumption by daylight is accounted for thus, together with the associ-
ated reduction in artificial lighting heat gains. Hourly lighting schedule is obtained
through Radiance, which is based on a target illuminance of 500 lux on the work

plane.

0, if E > 500
1, if E <500
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where

L = lighting power scalar value for current hour

E = average zone illuminance for current hour

Rapsating the whole process
several generations until
achieving optimal solutions

Figure 3.8: The integrated GA and whole building energy simulation.

The objective function of optimization is thus the result of running EnergyPlus
thermal simulation of the office room under study, which in the simplest case is
the annual energy demand of heating, cooling, and artificial lighting, based on the
lighting schedule obtained thru lighting simulations. The energy model is simulated
based on the same EPW weather file of the U.S. cities implemented to obtain the
hourly illuminance results. The simulation module performs the evaluation of the

design variables, and returns its fitness function value to the optimization engine.

Ifnot, create new generation

Simulation process

Radiance

Lighting schedule,
SHGC, OF, etc.

EnergyPlus, DOE2,
TRNSYS, ESP, efc.

If converged. ..
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This value is sent to the AR algorithms to guide the generation progression. When
the AR reaches the last population, the corresponding solutions can be fed back to the
3D/CAD modeling module to perform visualization models for the architects. Figure
3.8 shows the workflow of integration of GA and whole building energy simulation

programs.

3.1.3 Solution Space of Variable Combinations

The solution space for combinations of two selected of the fagade design variables
are examined in this section.

Figure 3.9 shows the solution space for the combinations of insulation and fin
angle of the four orientations. Seven exterior wall insulations and nine fin angles are
considered at discrete steps, creating a solutions space of 70 for each orientation. In
general, the solutions spaces have several local minima and a global minimum for all
orientations. The existence of local minima and its similarity with the global mini-
mum makes derivative-based search method inappropriate in solving FPO problems.
Therefore, GA is a reasonable approach.

Figure 3.9 (a) shows the solution space for the south-orientation fagade. It can
be seen that there is a relatively flat surface of configurations corresponding to low
energy demand. Within that flat surface there are however several local minima and
a global minimum. Being trapped in a local minima would not be too serious in this
case since the objective function difference in relation to the global minimum is small.
The global minimum of 1129.9 kWh is located at point (7, 7), corresponding to fin
angle 120° and insulation 0.12 W/m?K. There are a couple of local minima when
the fin angle is 120° or 60°, which shows the effect of accounting for fin angle in the
space.

For the east orientation the global minimum is sharper than the south orientation

(Figure 3.9 (b)). The global minimum of 851.1 kWh is located at point (1, 7),
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Insulation

Figure 3.9: Annual energy demand [kWh]| on different orientations for the design
variables of fin angle and insulation.

corresponding to fin angle 30° and insulation 0.12 W/m?K.

For the west orientation the global minimum is consistent with the south orien-
tation (Figure 3.9 (c)). The global minimum of 790.2 kWh is located at point (4, 7),
corresponding to fin angle 75° and insulation 0.12 W/m?K.

For the north orientation the global minimum is flatter than the other orientations
(Figure 3.9 (d)). The global minimum of 841.3 kWh is located at point (3, 7),
corresponding to fin angle 60° and insulation 0.12 W/m?K.

It could be seen that all the local minima on the four orientations happened when

the insulation is 0.12 W/m?K. However, there is a tiny difference in energy demands
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for different insulation values when the fin angles are the same. Therefore, there is
great potential that the optimization result will be trapped in the local minima which
is close to the global minimum.

Figure 3.10 shows the solution space for the combinations of glazing types and
overhang dimension of the four orientations. Six glazing types and ten overhang
depths are considered at discrete steps, creating a solution space of 60 for each ori-
entation. Similar to the insulation vs. fin-angle problem, the solutions spaces have

several local minima and a global minimum for all orientations.

kWh kWh

91500. 0

Figure 3.10: Annual energy demand [kWh] on different orientations for the design
variables of glazing type and overhang depth.

Figure 3.10 (a) shows the solution space for the south-orientation fagade. It can
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be seen that there is a relative flat surface of configurations corresponding to low
energy demand. Within that flat surface there are however several local minima and
a global minimum. The global minimum of 443.2 kWh is located at point (9, 4),
corresponding to a 900 mm overhang depth and glazing type 4. There are a couple
of local minima when the glazing is type 4, which shows the effect of accounting for
SHGC value in the space.

For the east orientation the global minimum is sharper than the south orientation
(Figure 3.10 (b)). The global minimum of 828.6 kWh is located at point (2, 4),
corresponding to a 200 mm overhang depth and glazing type 4. There are a couple
of local minima when the glazing is type 4, which also shows the effect of accounting
for SHGC value on this orientation.

For the west orientation the global minimum is similar to the south orientation
(Figure 3.10 (c)). The global minimum of 674.2 kWh is located at point (1, 4),
corresponding to 100 mm overhang depth and glazing type 4.

For the north orientation the global minimum is flatter than the other orientations
(Figure 3.10 (d)). The global minimum of 641.6 kWh is located at point (2, 4),
corresponding to 200 mm overhang depth and glazing type 4.

It could be seen that all of the local minima on the four orientations were seen
when the glazing is type 4. However, there is a tiny difference in the energy demand
for different overhang depths when the glazing types are the same. Therefore, the
optimization will be easily trapped in the local minima next to the global minimum.

These solution spaces in Figure 3.9 and Figure 3.10 show that there are several
local minima and a global minimum for all orientations. The presence of local minima
makes the ‘trial and error’ or derivative-based search methods infeasible for fagade

optimization problem.
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3.2 Adaptive Radiation

3.2.1 Overview

Adaptive radiation is an evolutionary phenomenon in biology wherein a group of
animal or plant species develops into a wide variety of types to be adapted to special-
ized modes of different living environments. This phenomenon was first observed by
Charles Darwin on the Galapagos Islands, where he observed native birds from the
same family, in which different finches evolved to adapt to their different living envi-
ronments (Figure 3.11). Darwin then named this phenomenon Adaptive Radiation.
There are four features that are identified by Schluter of adaptive radiation (Schluter,
2000): (1) a common ancestry for subsequent species, (2) a phenotype-environment

association, (3) trait utility, and (4) rapid speciation.
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Figure 3.11: Phylogeny of the Galapagos finches. [Phylogenetic tree after Lack (1947);
head sketches from Grant (1986) after Swarth and Bowman.|

Similar to the Galapagos finches, design variables of building facades also have to

develop their own features to adapt to the local climate. A climate adaptive facade
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should be a building shell with climate adaptive characteristics, which have excellent
energy performance while maintaining a comprehensive series of objectives such as
energy conservation, thermal comfort, cost efficiency and environmental friendness.

Also, with the development of industrial manufacturing technology, modern archi-
tectural design tends toward complex fagades. Since the building also has to adapt to
its site environment, the shapes of windows or shading elements can also be different
on varied positions of a fagade, which means architects and engineers nowadays have
to solve FPO problems with great complexity.

Take for example, a typical square-plan mid-rise office building located in an
urban area surrounded by several existing mid-rise or high-rise constructions that may
block the annual illuminance and solar irradiation on the office building facade. The
constrcutions on the south or east orientation may cast shadows on the neighboring
south and east windows, while the reflection from the ground and the surrounding
facades will also reflect daylight on the neighboring windows, therefore increasing the
solar radiation for these windows. To achieve the optimal facade design solutions,
each window should have a specific solution. For a typical 5-floor office building with
5 windows on each orientation, there are 100 different windows in total. In the GA
process, it is very common to spend several hours running simulations for one window
(depending on the number and complexity of design variables), so the simulation time
for the entire facade optimization will be multiplied by 100 times, which means several
hundred hours, or half a month. This is not feasible in architecture firm, especially
at the early design stage.

For a flexible organic shape high-rise office building located in a more complicated
environment, the simulation time will be significantly increased since each window
has a unique orientation, which greatly increases the complexity of the FPO problem.
As contemporary architectural design tends toward organic, geometric and paramet-

ric shapes, it is imperative to improve the existing GA optimization, to reduce the
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simulation time at the early design stage.

3.2.2 Formulation and Coordination

The Adaptive Radiation algorithm in this study is an improvement of simple GA
to solve FPOs with great complexity. The main methodology of the AR is to divide
the entire optimization process into different niches and then solve them step by step.
Instead of treating all the design variables equally, AR places the variables with the
same characteristics in the same niche of the optimization process. Additionally, AR
won’t execute optimization for all of the design variables. Instead, AR will achieve
the optimization solutions by making interpolations based on the optimization results
achieved in the former optimization steps. AR can find the common features of
the design variables and prevent optimization tasks for unessential design variables,
therefore largely reduce the simulation times compared to a simple GA.

A nonlinear minimization problem is an optimization problem of the form:

min f(z)
st. g(x)>0
(3.3)
h(xz) =0
r e R"
For nonlinear problems, solutions are difficult to find when n is large and f(x), g(z)

or h(x) are very nonlinear, have many components, or are expensive for simulation.

For a hierarchical nonlinear problem,

20



s.t. go(wo) <0
(3.4)

where n and p are positive integers. Let f, g;, and h; be real-valued functions on
x for each 7 in 1,...,p.

Linking variables: a vector of variables xy common to all groups of functions.

Sub-problems: A group of functions which depends only on the vector of linking

variables and upon a single sub-vector z;. Often written as a small nonlinear problem

min f; (o, ;)
xr; € R™
(3.5)
st. gi(zo,z;) <0
hj(zg,x;) =0
There are several main advantages of hierarchical optimization: (1) it can trans-
form a large FPO problem into smaller manageable pieces; (2) each sub-problem is
autonomous; (3) it allows for parallel implementation; and (4) smaller problems are
easier to solve.
The main process of AR is to decompose the optimization problem hierarchically.
Different decomposition strategies can be implemented in the AR process based on
the characteristics of the FPO problem. The problem can be decomposed into sub-

problems by the physical components (for example, zones and components), by sim-
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ulation performance (for example, lighting and thermal simulation), or by design
variable characteristics (for example, variables that stay unchanged and parameters
that keep changing during the entire optimization process). Once the FPO problem
has been decomposed appropriately, different optimization algorithms can be imple-
mented based on the characteristics of each sub-problem. There are horizontal and
vertical links between these sub-problems. Each sub-problem will take the variables
and parameter settings as input from the sub-problem of its upper level, and generate
new variables and parameter settings as the output.

Figure 3.12 shows an example of one optimization system which is decomposed
into five sub-problems (1, 2, 3, 4 and 5) with four design variables (A, B, C and D).
The AR optimization is executed through four stages from Level 1 to Level 4. On
Level 1, the problem is decomposed into five sub-problems (1, 2, 3, 4 and 5) based on
their individual locations. On Level 2, the values for design variables A,, B,, C,, and
D,, are achieved for all the sub-problems. The values of linking variables A, and B,
are treated as parameters, those for all sub-problems are the same and stay unchanged
during the entire optimization process. The values of the design variables C,, and D,
are different for each sub-problem. On Level 3, the unchanged design variables A, and
B, are passed down from the upper level (Level 2), while each sub-problem achieves
its own design variable C, Cs, Cs, Dy, D3, Ds. On Level 4, the sub-problem 2 and 4
achieve the value of their design variables Cy, Cy, Do, D4, by the method of gradient
interpolation, based on the values of Cy, Cs5, Cs, Dy, D3, D5 that achieved on Level 3.

The plan of office buildings can be either square-plan or free-form plan. The
traditional square-plan has four orientations, such as south, north, east and west.
Since windows on different orientations achieve varied solar radiation and daylight,
individual solutions should be considered for each window. For a free-form facade,
there is no clear boundary between the orientations. But the optimization process

can also begin with achieving solutions on several typical sub-problems on different
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Figure 3.12: Workflow of Adaptive Radiation: a three-level process with four design
variables (A, B, C and D) and five fagade decompositions (1, 2, 3, 4 and 5).

orientations first, and then make interpolations between the achieved optimal results,
to accomplish solutions for the remaining the sub-problems. Take for example, a
typical 5-floor office building that has five windows on each orientation for each floor;
an Adaptive Radiation optimization procedure in solving this FPO problem is as

follows:

minmeX f ([L‘)

(3.6)
st. a,b,c,d C R"

where minf(x) is the objective function (cost function or optimization criterion)
to be optimized, a € A,b € B,c € C,d € D are the vectors of design variables,
x C R™ is the constraint set.

x is a constant value for all design variables, which will be stay unchanged on the
next levels;

n can be any number within the range of the design variables, which will be
changed on the next levels.

Level 1: The first level of setting up an AR process is to decompose the entire
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fagade model into different sub-problems (based on individual orientations and floors
in this case study). Then several specific sub-problems are selected to execute GA
optimization on Level 2. As shown in Figure 3.13, each floor of the south facade
is decomposed into 5 individual sub-problems (S,_1,S, 2, 5,3, Sn_4,Sn_5) by the
positions of windows. Sub-problems 1, 3, and 5 (S,_1,S,_3,5,_5) are then selected

for the next level of AR optimization.
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Figure 3.13: Level 1 Decomposition

Level 2: Execute optimization for all the design variables that will stay unchanged
for the sub-problems, such as the glazing types or the wall insulation. Even though
different windows on the same fagade will receive varied amounts of annual solar
radiation and daylight due to their diverse orientations and positions, which will lead
to different material selections to achieve the minimum annual energy demand, these
variables should be kept at the same value for the entire facade due to the aesthetic
requirement and construction feasibility. On this level, the optimal solutions for
glazing types and wall insulation can be achieved.

As show in Figure 3.14, the goal of Level 2 is to achieve the optimal value min f(z)
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Figure 3.14: Level 2 Optimization for the unchanged design variables A and B

for the unchanged design variables such as glazing type and wall insulation (design
variables A and B on this level) for the different window positions (S,,_1, S,_3, Sn—5)
and different floor heights (Sy, S3,.55). There are thus 9 (3 positions x 3 heights)
subproblems (S1_1, S1-3, S1-5, S3-1, S3-3, S3_5, S5_1, S5_3, S5_5) in total on this level.
Just as the windows on different orientations receive varied solar radiation, the win-
dows on the top floors (S5_1,55_3,55_5) can receive more solar radiation and day-
light, while the windows on the ground floors (S;_1, S1_3,.51_5) are more affected by
shadow casted by surrounding buildings. Also, the windows on the ground floors
(S1-1, S1-3, S1-5) also have the potential to receive more daylight compared with the
upper floors (S3_1, S2_3, So_5) because they can receive more daylight from the ground
reflection.

Level 3: Execute optimization for the sub-problems to achieve values for the
changing design variables C and D. Keep the value of A, and B, achieved from the
upper level unchanged, and run optimization for daylight-related design variables

such as window-to-wall ratio, window shape, shading depth and shading angle (the
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design variables are C and D in this case study). The design optimization solu-
tions for each sub-problem can be achieved for each selected window at this step
(C11D11,C13D13,C1 5Dy 5,03 1D31,C3 3D3 3,C3 5D3 5,C51 D54,
Cs5_3D5_3,C5_5D5_5) (Figure 3.15).
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Figure 3.15: Level 3 Optimization for changing design variables

Level 4: Based on the optimization result achieved from Level 3, make interpola-
tion to get the optimal or near-optimal solutions for the remaining the sub-problems
on the same floor, since the change for design variables such as WWR, shading depth
and shading angle is due to gradient impact from daylight or solar radiation. Com-
putation time can be remarkably reduced by this interpolation methodology (Figure
3.16).

Level 5: Make interpolation and achieve the optimal or near-optimal solutions
for sub-problems between different floors (Figure 3.17). Repeat the process until all
sub-problems achieve their individual optimal solutions (Figure 3.18).

The main advantage of AR is that the computation time can be substantially

reduced by the methods of hierarchical optimization and interpolation, which can
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Figure 3.16: Level 4 Horizontal gradient interpolation

Figure 3.17: Level 5 Vertical gradient interpolation

prevent processing unessential simulation runs. Figure 3.19 represents a hierarchical
workflow of the entire optimization process (Shan 2015) (https://www.researchgate.net/
publication /299497585 Hierarchical optimization workflow_of_Adaptive Radiation).

The detail of the optimization process is described in the case studies in the next
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Figure 3.19: Hierarchical optimization workflow of Adaptive Radiation

Figure 3.18: End of Adaptive Radiation
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3.3 Summary

Following an overview of the design optimization algorithms and simple GA, this
chapter presents a simulation-based hierarchical optimization methodology, which is
based on improvement of the simple GA. The following chapters extend and validate

this methodology through a couple of facade design scenarios in different climates.
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CHAPTER IV

Case Study

This chapter describes the first implementation test of the AR in an FPO problem
in a design scenario. The objective of the test is to gain validation in AR’s performance
before implementing it in more different climates. A prototype of a typical mid-rise
office building is shown. Simple GA is also used in this prototype to validate the
efficiency and robustness of AR by comparing the simulation time and optimization

results. The optimization results validate the feasibility of AR in FPOs.

4.1 Case Study Definition

An FPO problem for a typical mid-rise office building is shown below. The model
is located in a proposed site that is surrounded by several high-rise or mid-rise con-
structions, which create shadows and reflections, affecting the annual total energy
demand of each office room (Figure 4.1). The design scenario in this chapter is tested
for the climate of San Francisco, California, a cooling-dominated situation. The next
chapter will represent the implementations of AR for two other locations: Miami,
Florida, a cooling-dominated climate; and Chicago, Illinois, a heating-dominated cli-
mate. The aim is to provide some insight on how the optimal values of facade design
variables vary with different climatic conditions.

The climate of San Francisco is characterized by cool summers and temperate
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Figure 4.1: Building environment

winters with extremely rare snow. The summer has average maximum temperatures
between 15°C and 21°C (60°F and 70°F), and minima between 10°C and 13°C (50 °F
and 55 °F). Winter has high temperatures between 13°C and 15°C (55 °F and 60 °F)
and low temperatures in the 7°C and 10°C (45 °F to 50 °F) range. The psychrometric

chart shows that cooling is dominant in this climate (Figure 4.2).
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Figure 4.2: Psychrometric chart of San Francisco, CA, United States
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The shade from the surrounding buildings and the reflections from the environ-
ment both have a significant impact on the solar irradiation and daylight on the
fagade of each office room. Figure 4.3 shows the variation of shading and radiation

on the building facade on different dates and times throughout the year.

9 am, March 1 12 am, March 1 3 pm, March 1

9am, June 1 12 am, June 1

9 am, September 1 12 am, September 1 3 pm, September 1

9 am, December 1 12 am, December 1 3 pm, December 1

3pm,Junel

Figure 4.3: Annually variation of shading on the fagade — San Francisco

The office building model has five floors. On each floor, there are five typical office
rooms on each orientation. Therefore, there are 100 rooms total (4 orientations x 5
windows on each orientation x 5 floors) in this design scenario. For each window,
different combinations of design variables should be considered to achieve the optimal

solution, which means there are total 100 (5 x 5 x 4) sub-problems to be solved in
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this umbrella FPO problem (Figure 4.4).

Figure 4.4: Case study: office building model

Figure 4.5 shows a 3D model of each typical office room. Each single-occupant
office room has an area of 24 m?, a volume of 57.6 m? (4m x 6m x 2.4m) and a
window area of 3.2 m2. For internal heat gains, the office room is assumed to have
equipment heat gain of 9 W/m?, artificial lighting heat gain of 13 W/m? (2 desktop
computers, 2 monitors and 1 printer), and an occupancy of 0.1 person/m?. The
entire office building is assumed to be fully occupied on weekdays between 8 AM and
5 PM with a 1 hour break at noon. A daylight sensor is placed at a 1-meter high
work plane, while the minimum illuminance set for the photo sensor is 500 lux. The

lighting power density is 11.74 W/m?.

Table 4.1: Model setup

Parameter Value
Lighting power 9

. 11.74 W/m
density
Equipment power g /m?
density
Occupancy density 0.1 person/m?
Floor adiabatic
Ceiling adiabatic
Inner walls adiabatic
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Figure 4.5: Building environment

4.2 Optimization Setup

Table 4.2: Variable Settings

Variable Variable settings

Glazing (v1) 1 2 3 4 5 6

U-value  [W/m2K] 6 27 1.8 1.5 1.1 0.7

SHGC 1] 0.7 062 0.6 0.340.31 0.24

Tvis. ] 0.88 0.8 0.65 0.65 0.47 0.3

Insu. (va) 1 2 3 4 5 6 7

Uvalue  [W/m2K] 0.7 046 0.37 0.32 0.26 0.19 0.12

R-Value 81 123 154 17.7 21.8 29.9 47.3

Infil. (Vg) 1 2 3 4

ACH [ 0.25 0.18 0.15 0.12

Fin (vq) 1 2 3 4 5 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 800 900 1000

Overhang  (vs) 1 2 3 4 5 6 7 8 9 10
[mm] 100 200 300 400 500 600 700 800 900 1000

gfen W (v 1 29 3 4 5 6 T 8 9
[°] 30 45 60 75 90 105 120 135 150

The proposed method is evaluated on a fagade optimization problem with six
design variables (Table 4.2). The total combinations of different design variables
values is 151,200. These combinations in this case study can represent most of the
varieties of the building facade design. The facade design variables of this FPO

problem include: (a) the type of glazing (v1); (b) wall insulation (vq); (c) infiltration
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(v3); (d) the depth of vertical shading elements (window fins) (v4); (e) the shading
depth of window overhang (vs); and (f) the rotation angle of vertical shading elements
(window fins) (vg).

Objective function

Generally the total energy demand for a typical office room is mainly consisted
of space heating, space cooling, and artificial lighting. A climate-based calculation
methodology is implemented here to estimate the total building energy demand, Q;otar,

which is the objective function of this study:

Qtotal = Qheating + Qcooling + Qlighting (41)

where

Qheating — energy demand for space heating [kWh];

Qcooling — energy demand for space cooling [kWh];

Quighting — energy demand for artificial lighting [kWHh].

The population size is kept in a relatively small size in this study (n = 20). The
optimization process will stop after repeating 10 generations without improvement
for the objective function. If there improvement of the objective function happened,
GA will run further optimizations and stops when there is no improvement in the
next 10 generations. This logic is proved to be a valuable choice, since extending that
number to 20 or 30 generations only lead to tiny improvement in the final solutions,
but takes a much longer simulation time. The simulation time which is counted by
the number of total simulation runs are implemented in this study to evaluate the

performance of AR.
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4.3 Results of AR - San Francisco

For the aesthetic requirement in facade design, the same insulation materials or
glazing types should be implemented on the entire facade, despite the orientation.
Therefore, the variable inputs of the glazing, insulation and infiltration are kept the
same on all the sub-problems in this design scenario. In this case, the total number

of possible solutions based on the combinations of different design variable inputs is:

6 x 7 x4x (10 x 10 x 9)1 (4.2)

For AR, in Step 1, only 36 rooms are considered to achieve the optimal solutions of
the first three design variables. The optimal solutions for each room is then achieved

in Step 2. Thus the total number of possible simulations of AR in this FPO is:

6% 7 x4 x (10 x 10 x 9)* 4 (10 x 10 x 9) x 36 (4.3)

Two AR optimization runs (AR I and AR II) are executed in this section to

validate its feasibility and robustness.

4.3.1 AR Results I — San Francisco

Table 4.3 shows the optimization results achieved by Step 1 in AR optimization
I, focusing on the values of the first three design variables that will stay constant in
subsequent steps. In this step, the users can select the number of sub-problems to
be optimized. However, it’s worth pointing out that there is always a compromise
between the efficiency and accuracy for the selection. Selecting more sub-problems
improves the accuracy of the optimization result, but it takes more simulation effort,
which reduces the efficiency. In this case study, to improve the efficiency, only one
room located at the center of each facade is selected in Step 1. Therefore four runs

(S3-3, N3_3, E5_3, W3_3) are executed in total.
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Table 4.3: AR Results I - Step 1 — San Francisco

v1 Uy w3 V4 U5V Vg Qrow Gene.  Simu.

Unit [kWh] [-] [

S35 5 5 1 9 6 6 3754 13 260
Ess 2 6 3 1 3 9 6373 13 260
Nys 4 3 1 2 1 3 4629 20 400
Wss 4 3 1 5 4 4 58.3 20 400
Avg. 4 4 2 - - - 5152 165 330
Sum. 66 1320

Table 4.3 and Figure 4.6 show that the values of the first three design variables
are achieved by averaging these optimization results, which are vy = 4, v, = 4, v3 = 2.
The glazing type 4, the insulation type 4 (0.32 W/m?K), and infiltrate rate of 0.18
are selected by Step 1. San Francisco has cool summers and temperate winters. The
southern fagade receives extensive solar radiation in summertime, therefore, effective
glazing and insulation are essential to block the solar heat and reduce the cooling
energy demand. Compared with the south fagade, the impact from the solar radiation
is not that apparent on the east, north and west fagades, thus lower insulation and
SHGC values are selected on these fagades. Additionally, the weather of San Francisco
is not as severe as it is in Miami, which also explains why the design solutions don’t
select the highest insulation and SHGC values. Compromises are made between
different facades, especially the south and east fagades. These design variable values
are then implemented for all the 36 sub-problems in Step 2 of AR optimization I.

It can also be seen in Figure 4.6 that the shading depth on the south fagade is
large, which is 600 mm for the overhang depth and 900 mm for the fin depth. In
contrast, the shading depth on the north fagade is small, which are 100 mm for the
overhang depth and 200 mm for the fin depth. The shading depths on the east fagade
are also small, 300 mm for the overhang depth and 100 mm for the fin depth. The
reason is that the high-rise building on the east orientation close to the east facade

blocks most of the daylight and solar radiation over the year. The overhang depth
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on the west fagade is 400 mm, and the fin depth is 500 mm, which also reflects the

need to block solar radiation on the western facades in the afternoon.

S 1-1 E 1-1
N 1-1 w 1-1

Figure 4.6: AR Results I — Step 1 — San Francisco

Step 2

Table 4.4 shows the optimization results for south facade achieved by Step 2 of
the AR optimization I. The first three design variables (v; = 4,v9 = 4,03 = 2)
stay unchanged. The optimization runs are executed for 9 selected sub-problems
(S1-1,51-3,51-5,53-1,53_3, 53_5, 551, 95_3, S5_5) on the south orientation. The facade
design solutions for these sub-problems are shown in Figure 4.7.

It can be seen in Table 4.4 and Figure 4.7 that the optimization solutions achieved
by Step 2 show large fin and overhang shading depths on the south facade in this
case study, which is consistent with the solutions achieved for S3_3 by Step 1. There

is gradient for the change for the shading depth, especially for the overhang depth of
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Table 4.4: AR Results I - Step 2 — South fagade — San Francisco

vi vy w3 vy Vs Vg Qrow Gene. Simu.
Unit [(kWh] [] -]

Si. 4 4 2 8 6 7 3177 14 230
Si.s 4 4 2 8 4 3 3788 18 360
Si.s 4 4 2 6 10 6 387.0 16 320
Se i 4 4 2 6 8 6 3327 16 320
Se s 4 4 2 9 6 6 3733 13 260
Sss 4 4 2 8 9 7 33715 17 340
Ss. 4 4 2 2 7 2 3506 17 340
Sss 4 4 2 6 10 4 4154 13 260
Sss 4 4 2 7 8 7 3530 17 340
Avg. 360.7 15.7 313.3
Sum 141 2820

o
e
5 o

5-1 5-3 5-5

Figure 4.7: AR Results I — Step 2 — South fagade — San Francisco

the solutions. For example, for the rooms in the middle of each floor (S7_3, S3_3), the
overhang depths (400 mm for S;_3 and 600 mm for S5_3) are smaller than those for

the rooms on the edges (600 mm for S;_;, 1000 mm for S;_5, 800 mm for S5_;, 900
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mm for S3_5). The reason is that the high-rise building on the south orientation casts
shadows which mainly impact the rooms in the center of the facade. Additionally, the
height and distance of the high-rise building determines that it has less impact on the
rooms on the top floor. The average total energy demand for all the 9 sub-problems
is 360.7 kWh. This result is 3.9% smaller than the 375.4 kWh achieved by Step 1.
It’s worth pointing out that since there are limited number of sub-problems in Step
2, the optimization solutions achieved by Step 2 can only show a trend but cannot

guarantee the solutions are the global optimum for this FPO problem.

Table 4.5: AR Results I — Step 2 — East facade — San Francisco

v Uy w3 vy Vs Vs Qrotw Gene. Simu.
Unit [kWh] -] ]

E.y 4 4 2 5 2 2 3619 13 260
E.5 4 4 2 9 7 3 5807 14 280
E.s 4 4 2 4 3 7 3642 13 260
Esy 4 4 2 &8 3 3 3398 13 260
Ess 4 4 2 2 4 4 6636 18 360
Es s 4 4 2 8 1 7 3383 11 220
Esy 4 4 2 1 5 1 3487 16 320
Ess 4 4 2 5 3 2 6576 13 260
Ess 4 4 2 &8 3 7 3562 16 320
Avg. 4457  14.1 282.2
Sum. 127 2540

Table 4.5 represents the optimization results for the east fagade achieved by Step
2 of the AR optimization I. The optimization runs are executed for 9 selected sub-
problems (Fy_1, F1_3, By 5, E3 1, FE3 3, F3 5, F5 1, F5 3, E5_5) on the east orienta-
tion. The facade design solutions for these sub-problems are shown in Figure 4.8.

It can be seen in Table 4.5 and Figure 4.8 that the optimization solutions achieved
by Step 2 show deep fin shadings on the east facade in this case study, while deep
overhang shadings are not as imperative, comparatively. This is because the eastern
facade is mainly impacted by the sun on a relatively lower solar altitude, which

means the overhang shadings are not as effective as the fin shadings. The average
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total energy demand for all the 9 sub-problems is 445.7 kWh, which is 30.1% smaller
than the 637.3 kWh achieved by Step 1. There is no apparent gradient for the shading

depths on the east facade.

w0 e
o

E E

5-1 5-3 5-5

Figure 4.8: AR Results I — Step 2 — East facade — San Francisco

Figure 4.8 also shows that the fin angles for the third rooms (E;_5, F3_5, E5_5) are
relatively larger than that for the first two rooms on each floor (Ey_1, Ey_3, F3_1, F3_3,
FEs5 1, E5_3). This is typical for fins to face the south orientation in order to receive
more solar radiation, as well as reflect more daylight in to the room. In contrast,
solutions for the third rooms on each floor (F;_5, F3_5, E5_5) show a north-facing fin
angle (120°). The reason is that the rooms on the northeast edge are blocked by the
high-rise building on the east and north. The only available daylight and solar radia-
tion is from the space between the east and north buildings. Therefore, the fin angles

are facing this space to achieve as much daylight and solar radiation as possible.
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Table 4.6: AR Results I — Step 2 — North fagade — San Francisco

vi Vo vz V4 Vs Vg Qroa  Gene. Simu.

Unit [kWh]  [-] [

N 4 4 2 2 2 4 6398 20 400
Nis 4 4 2 8 1 3 5791 14 280
Nis 4 4 2 1 3 6 3858 13 260
Nay 4 4 2 4 1 3 5411 14 280
Nys 4 4 2 1 1 6 5935 13 260
Nos 4 4 2 2 4 7 2027 11 220
No, 4 4 2 4 1 4 5283 14 280
Nss 4 4 2 2 1 3 4183 12 240
Nss 4 4 2 10 4 6 3640 20 400
Avg. 4813 146 291.1
Sum. 131 2620
N]-] N]--S_ N]-S

g

Figure 4.9: AR Results I — Step 2 — North facade — San Francisco

Table 4.6 represents the optimization results for north facade achieved by Step 2 of

the AR optimization I. The optimization runs are executed for 9 selected sub-problems
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(N1_1, N1_3, N1_5, N3_1, N3_3, N3_5, N5s_1, N5_3, N5_5) on the north orientation. The
facade design solutions for these sub-problems are shown in Figure 4.9.

It can be seen in Table 4.6 and Figure 4.9 that the optimization solutions achieved
by Step 2 show small depths for fin and overhang shadings on the north facade in this
case study. This is because the north facade does not receive as much daylight and
solar radiation during the entire year. Thus overhang shading is not necessary on this
orientation. The solutions achieved by this step show a consistent trend compared
with the solutions achieved by Step 1. The average total energy demand for all the 9
sub-problems is 481.3 kWh, which is 4.0% greater than the 462.9 kWh achieved by
Step 1.

It could also be found in Figure 4.9 that the fins are slightly facing east for the
rooms on the east edge and facing west for the rooms on the west edge of north
facade. This can help the rooms to receive as more as daylight and solar radiations
through the reflections by the fin shadings.

Table 4.7 represents the optimization results for western fagade achieved by Step
2 of the AR optimization I. The optimization runs are executed for 9 selected sub-
problems (W 1, Wy _g, Wy 5, W3 1, W3 3, W3 5, W51, W5_3,W5_5) on the west ori-
entation. The fagade design solutions for these sub-problems are shown in Figure
4.10.

It can be seen that the optimization solutions achieved by Step 2 show small depths
for fin and/or overhang shadings on the lower and middle floors on the west facade
in this case study. Comparatively, the shading depths for sub-problems on the top
floor is larger, especially the overhang depths. This is because the rooms on the top
floor of western facade receive more solar radiation in the afternoons. Thus overhang
shading is imperative to reduce exposure to solar radiation on this orientation. The
average total energy demand for all the 9 sub-problems is 578.5 kWh, which is 1.2%
smaller than the 585.3 kWh achieved by Step 1.
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Table 4.7: AR Results I — Step 2 — West facade — San Francisco

Vi Vg V3 Vg4 V5 Vg QTotal Gene. Simu.

Unit [kWh] [] [

Wi, 4 4 2 1 2 3 69.3 14 230
Wis 4 4 2 3 8 4 6013 12 240
Wis 4 4 2 1 4 6 5629 19 380
Ws, 4 4 2 3 1 3 6241 17 340
Wss 4 4 2 2 1 3 5762 15 300
Wss 4 4 2 2 2 3 5059 12 240
Ws, 4 4 2 5 10 4 5758 11 220
Wss 4 4 2 9 6 3 5487 14 230
Wss 4 4 2 2 10 7 5162 16 320
Avg. 5785 144 2889
Sum. 130 2600
W]-] W1-3 W]-S
W31 W3-3 W35
W W Y

5-1 5-3 5-5

Figure 4.10: AR Results I — Step 2 — West facade — San Francisco

Figure 4.10 also shows a clear trend for the fin angles. The fins are slightly facing
south for the rooms on the south edge (W;_3, W3_3, W;5_3), and facing north for the

rooms on the north edge (Wj_1, W5_1, W5_1) of western fagade. This can help the



rooms to receive daylight in the morning and block solar radiation in the afternoon
as much as possible through the reflections by the fin shading elements.

Table 4.8: AR Results I — Step 3 — San Francisco

Vi V2 Vg Vg Vs Vg Vi V2 V3 Vg4 Vs Vg
Unit [kWh] Unit [kWh
S, 4 4 2 8 6 7 3177 E,, 4 4 2 5 2 2 3619
S 4 4 2 8 5 5 5063 Ey o, 4 4 2 7 5 3 8214
Si.3 4 4 2 8 4 3 388 E3 4 4 2 9 7 3 5807
Si.a 4 4 2 7 7T 5 6193 E4, 4 4 2 7 5 5 969.6
S5 4 4 2 6 10 6 3870 Eys 4 4 2 4 3 7 3642
S 4 4 2 6 8 6 3327 E34, 4 4 2 8 3 3 3398
Ss o 4 4 2 8 7 6 4045 FE3, 4 4 2 5 4 4 6832
Se s 4 4 2 9 6 6 3733 L3y 4 4 2 2 4 4 6636
S3q 4 4 2 9 8 7 4429 E3, 4 4 2 5 3 6 8389
S35 4 4 2 8 9 7 3305 Ess; 4 4 2 8 1 7 3383
Sy 4 4 2 2 7 2 3506 FE; 4 4 2 1 5 1 3487
Ss o 4 4 2 4 9 3 4726 FE;, 4 4 2 3 4 2 8083
Sss 4 4 2 6 10 4 4154 Ess 4 4 2 5 3 2 6576
S5y 4 4 2 7 9 6 5236 FE;4 4 4 2 7 3 5 8913
Ss-5 4 4 2 7 8 7 3530 Ess 4 4 2 8 3 7 356.2
Avg. 413.8  Avg. 601.6
N 4 4 2 2 2 4 6398 W, 4 4 2 1 2 3 6953
Nio 4 4 2 5 2 4 8385 W, 4 4 2 2 5 4 6609
Nisg 4 4 2 8 1 3 5791 W3 4 4 2 3 8 4 6013
N4 4 4 2 5 2 5 8028 W4, 4 4 2 2 6 5 7048
N 4 4 2 1 3 6 388 W.; 4 4 2 1 4 6 5629
Ny, 4 4 2 4 1 3 5411 Ws4 4 4 2 3 1 3 6241
Nso 4 4 2 3 5 5 7514 Wso 4 4 2 3 1 3 6289
Ny3 4 4 2 1 8 6 5935 W33 4 4 2 2 1 3 5762
Ny 4 4 4 2 2 6 7 5348 W4 4 4 2 2 2 3 5290
Ns 5 4 4 2 2 4 7 2927 Wss; 4 4 2 2 2 3 5059
Ns_y 4 4 2 4 1 4 5283 W, 4 4 2 5 10 4 5758
Ns—o 4 4 2 3 1 4 5494 W, 4 4 2 7 8 4 6108
Nss 4 4 2 2 1 3 4183 Wsj3 4 4 2 9 6 3 5487
Ns—y 4 4 2 6 3 5 6033 W4, 4 4 2 6 8 5 5974
Ns5 4 4 2 10 4 6 3640 W5 4 4 2 2 10 7 5162
Avg. 556.9  Avg. 595.9

Table 4.8 represents the horizontal interpolation procedure in Step 3 of the AR
optimization II. The design variables vy, vs, vg for each sub-problem are achieved, the

total energy demand for each sub-problem are then achieved by simulation. The
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average total energy demand for all the sub-problems is 413.8 kWh for the south
facade, 601.6 kWh for the east facade, 556.9 kWh for the north fagade, and 595.9 kWh
for the west facade. The average total energy demand for all sub-problems achieved
by this step is 542.1 kWh, which is 16.2% higher than the 466.5 kWh achieved by
Step 3.

Step 4

Table 4.9 shows the vertical interpolation procedure in Step 4 of the AR opti-
mization I. Interpolations are made for the vertical sub-problems based on the op-
timization solutions achieved by Step 4. The shading design variables vy, vs, vg for
each sub-problem on the second and fourth floors are achieved by this step. The total
energy demand for each sub-problem are then achieved through simulation. The av-
erage total energy demand for all the sub-problems is 422.0 kWh for the south fagade,
601.6 kWh for the east fagade, 581.4 kWh for the north facade, and 611.6 kWh for
the west facade. The total energy demand achieved by Step 3 is higher than that

achieved by Step 4.

Table 4.9: AR Results I — Step 4 — San Francisco

V1 V2 V3 Vg Vs Vg Vi V2 V3 Ug Vs Vg
Si.. 4 4 2 8 6 7 3177 By, 4 04 2 5 2 2 3619
Sio 4 4 2 8 5 5 5053 Ey, 4 4 2 7 5 3 8214
Si.3 4 4 2 8 4 3 388 Ei3 4 4 2 9 7 3 580.7
Siq 4 4 2 7T 7 5 6193 Ei4 4 4 2 7 5 5 9696
Si.s 4 4 2 6 10 6 3870 By 4 4 2 4 3 T 3642
So-r 4 04 2 7T T T 4287 Eyy 4 4 2 5 2 2 5458
Soe 4 4 2 8 6 6 3669 E,o 4 4 2 7 3 3 5351
Seeg 4 4 2 9 5 5 4846 FEy 3 4 4 2 6 4 3 8446
Seoy 4 4 2 8 7T 6 5420 Eyy 4 4 2 6 6 4 936.1
Ses 4 4 2 7 10 7T 3313 Eys 4 4 2 6 4 5 4524
Ss 4 4 2 6 8 6 3327 E;, 4 4 2 6 2 7 3398
Ss—o 4 4 2 8 T 6 4045 Es; o, 4 4 2 5 4 4 6832
S3-3 4 4 2 9 6 6 3733 Es3 4 4 2 2 4 4 6636
Ss—y 4 4 2 9 8 7 4429 Es 4, 4 4 2 5 3 6 8389
S35 4 4 2 8 9 7 3305 E;s; 4 4 2 8 1 7 3383
Ser 4 4 2 4 8 4 3666 Ey4q 4 4 2 5 4 2 3210
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V1 V2 Vg Vg4 Vs Vg Vi V2 V3 Vg4 Vs Vg
Sio 4 4 2 6 8 5 4688 Ey o 4 4 2 4 4 3 5253
Sig 4 4 2 8 8 5 4459 Ey3 4 04 2 4 4 3 6091
Siea 404 2 8 8 6 5403 Eiqy 4 4 2 6 3 5 8595
Ses 4 4 2 8 9 7 3681 E,5 4 4 2 8 2 7 3664
Ss—1 4 4 2 2 7 2 3506 E;y 4 4 2 1 5 1 3487
Ss—o 4 4 2 4 9 3 4726 LE;, 4 4 2 3 4 2 8083
Ss—3 4 4 2 6 10 4 4154 E; 3 4 4 2 5 3 2 6576
Ss—g 4 4 2 7T 9 6 5236 Es;y 4 4 2 7 3 5 8913
Ss.s 4 4 2 7 8 7 3530 Ess 4 4 2 8 3 7 35.2
Avg. 422.0 Avg. 601.6
N, 4 4 2 2 2 4 6398 W,, 4 4 2 1 2 3 69%.23
N 4 4 2 5 2 4 885 Wy, 4 4 2 2 5 4 6609
N 4 4 2 8 1 3 5791 W3 4 4 2 3 8 4 6013
Ny 4 4 2 5 2 5 8028 Wi, 4 4 2 2 6 5 7048
Nis 4 4 2 1 3 6 3858 W,.s 4 4 2 1 4 6 5629
Noy 4 4 2 2 2 4 6164 Wy, 4 4 2 2 2 3 6544
Noo 4 4 2 3 2 4 7210 Weo 4 4 2 2 3 3 6532
Nos 4 4 2 4 3 4 7199 Wes 4 4 2 3 5 4 6221
Noy 4 4 2 5 5 5 7103 Wey 4 4 2 2 4 4 6487
Noos 4 4 2 3 4 6 4387 Wes 4 4 2 2 3 5 6283
Ny, 4 4 2 2 4 7 5411 We, 4 4 2 3 1 3 6241
Ns o 4 4 2 3 5 5 7514 Wz 4 4 2 3 1 3 6289
Nssg 4 4 2 1 8 6 95935 W3 4 4 2 2 1 3 5762
Ns_y 4 4 2 2 6 7 5348 W4 4 4 2 2 2 3 5290
Ns_5 4 4 2 2 4 7 2927 Wy 4 4 2 2 2 3 5059
Nyy 4 4 2 4 1 4 5608 Wyy 4 4 2 4 6 4 6149
Nyp 4 4 2 3 3 4 6185 Wy 4 4 2 5 5 3 6632
Nys 4 4 2 2 5 5 6745 Wyes 4 4 2 6 4 3 6741
Nyy 4 4 2 4 4 6 6333 Wyy 4 4 2 4 5 4 6161
Nys 4 4 2 6 4 7 3633 Wes 4 4 2 2 6 5 5759
Nsoy 4 4 2 4 1 4 5283 Wsoy 4 4 2 5 10 4 5758
Nso 4 4 2 3 1 4 5494 W 4 4 2 7 8 4 6108
Nss 4 4 2 2 1 3 4183 Wiy 4 4 2 9 6 3 5487
Ny 4 4 2 6 3 5 6033 Wsy 4 4 2 6 8 5 5974
Nss 4 4 2 10 4 6 3640 W5 4 4 2 2 10 7 516.2
Avg. 581.4  Avg. 611.6

Figure 4.11 shows the optimization solutions for the entire south and east facades.
Figure 4.12 shows the optimization solutions for the entire north and west facades.

Detailed figures for the sub-problems in Step 4 are shown in Appendix A.
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Figure 4.12: AR Results I — Step 4 — North and West fagade — San Francisco

Table 4.10 represents the average total energy demand for all the rooms achieved
by each Step in AR optimization I. It can be seen that the average total energy

demand for all the sub-problems is 466.5 kWh in Step 2. After the interpolation

\]
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processes in Step 3 and Step 4, the average total energy demands increase, which
are H42.1 kWh and 552.9 kWh, respectively. The reason the total energy demand
increases is that the interpolation cannot guarantee the solutions achieved are the
global optimum. In contrast, the design variables for each sub-problem have to be
compromised with each other. The main objective of the interpolation processes in
Step 3 and Step 4 is to reduce the optimization time and improve the efficiency of
optimization process, while the accuracy is undermined sometimes. There are 1320
simulation runs executed in Step 1 and 10580 simulation runs in Step 2. Therefore,

11900 simulation runs are executed in total for AR optimization I.

Table 4.10: AR Results I - San Francisco

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] ]
Step 1 3754 637.3 4629 585.3 515.2 1320
Step 2 360.7 445.7 481.3 5785 466.5 10580
Step 3 413.8 601.6 559.6 595.9 542.1
Step 4 422.0 601.6 5765 611.6 5529
Total 11900

4.3.2 AR Results IT — San Francisco

Table 4.11 shows the optimization results achieved by Step 1 in AR optimization
II. The same as AR optimization I, only one room located at the center of each facade
is selected in Step 1 and four runs (S5_3, N3_3, F3_3, W3_3) in total are executed in
this step.

The values of the first design three variables are achieved by making an average of
these optimization results, which are v; = 4, v, = 3,v3 = 1. Therefore, for the entire
facade, the glazing type 4 should be implemented, as well as the 0.37 W/m?K exterior
wall insulation and 0.25 infiltration. These design variable values are implemented

for all the 36 sub-problems in Step 2 of AR optimization II.
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Table 4.11: AR Results II - Step 1 — San Francisco

v1 Uy w3 V4 U5V Vg Qrow Gene.  Simu.

Unit [kWh] [-] [

S35 4 1 1 5 7 7 3821 13 260
Es s 5 1 2 4 2 3 6353 20 400
Ns—5 4 4 1 8 1 3 4450 15 300
Wss 4 2 1 4 5 3 95984 13 260

4 3 1 - - - - - -
Avg. 515.2 153 560
Sum. 61 1220

S 1-1 E 1-1

N W

11 1-1

Figure 4.13: AR Results II — Step 1 — San Francisco

Step 2

It can be seen in Table 4.12 and Figure 4.14 that the optimization solutions
achieved by Step 2 show large fin and overhang shading depths on the south facade
in this case study, which is consistent with the solutions achieved for S5_5 by Step

1. The average total energy demand for all the 9 sub-problems is 328.6 kWh. This
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result is 14.0% higher than the 382.1 kWh achieved by Step 1.
Table 4.12: AR Results II - Step 2 — South facade — San Francisco

vy Vs w3 vy Vs Vg Qrow Gene. Simu.

Unit [kWh]  [-] [

S., 4 3 1 8 8 3 3212 15 300
Sis 4 3 1 8 7 3 3453 16 320
Sis 4 3 1 8 8 7 204 13 260
Ssr 4 3 1 6 10 4 2866 13 260
Sy 4 3 1 8 5 7 3307 18 360
Ses 4 3 1 9 2 8 3190 13 260
Ss, 4 3 1 2 9 2 3185 12 240
Sss 4 3 1 8 7 4 4151 11 220
Sss 4 3 1 9 6 7 3308 12 240
Avg. 3286 13.7 273.3
Sum. 123 2460

T

S1-1 S1-3
8371 S373 5375
S S S

5-1 5-3 5.5

Figure 4.14: AR Results II — Step 2 — South facade — San Francisco

Table 4.13 represents the optimization results for east facade achieved by Step 2 of

AR II. The optimization runs are executed for 9 selected sub-problems (F;_1, F_3,
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Ey 5,FE3 1,FE3 3,F3 5,E5 1, E5_3, E5_5) on the east orientation. The facade design

solutions for these sub-problems are shown in Figure 4.15.

Table 4.13: AR Results II - Step 2 — East facade — San Francisco

vi Uy v3 Vs Vs Vs Qro Gene. Simu.

Unit [kWh] [-] [

Ei, 4 3 1 5 2 2 3490 13 260
Eis 4 3 1 2 8 4 7359 18 360
Eis 4 3 1 3 2 9 3942 16 320
By, 4 3 1 8 6 3 3129 11 220
Esys 4 3 1 9 1 3 5411 12 240
Ess 4 3 1 1 1 9 3343 18 360
Es, 4 3 1 9 7 3 4073 12 240
Ess 4 3 1 1 1 1 6357 14 280
Ess 4 3 1 8 4 7 3386 12 240
Avg. 4499 14 230
Sum. 126 2520

It can be seen in Table 4.13 and Figure 4.15 that the optimization solutions
achieved by Step 2 show deep fin shadings on the east facade in this case study, while
deep overhang shadings are not so necessary, comparatively. This is consistent with
the solutions achieved by Step 1 of AR II, as well as Step 2 of AR I. The average
total energy demand for all the 9 sub-problems is 449.9 kWh, which is 29.2% smaller
than the 635.3 kWh achieved by Step 1 of AR II, and only 0.9% larger than the 445.7
kWh achieved by Step 2 of AR I.

It can also be found in Figure 4.15 that the solutions of some sub-problems
(E1-1, E1_5, E5_1, E5_5) are quite similar with that achieved in AR 1.

Table 4.14 represents the optimization results for north facade achieved by Step
2 of the AR optimization I. The optimization runs are executed for 9 selected sub-
problems (Ny_1, Ny_3, N1_5, N3_1, N3_3, N3_5, N5_1, N5_3, N5_5) on the north orien-
tation. The fagade design solutions for these sub-problems are shown in Figure 4.16.

It can also be seen in Table 4.14 and Figure 4.16 that the optimization solutions

achieved by Step 2 show small depths for fin and overhang shadings for most of the
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Figure 4.15: AR Results I1 — Step 2 — East fagcade — San Francisco

Table 4.14: AR Results II - Step 2 — North fagade — San Francisco

v Uy w3 vy Vs Vs Qrotar Gene. Simu.
Unit [kWh]  [-] ]
Ni, 4 3 1 2 1 4 5923 18 360
Nis 4 3 1 8 7 7 5923 17 340
Ni_s 4 3 1 3 8 6 3788 11 220
Nsy 4 3 1 1 2 3 5720 20 400
Nss 4 3 1 2 2 3 4674 14 280
Nss 4 3 1 1 4 7 3048 14 280
Nsy 4 3 1 1 1 3 5081 18 360
Nog 4 3 1 2 2 7 4333 11 220
Nss 4 3 1 2 2 7 2868 11 220
Avg. 459.5 149  297.8
Sum 134 2680

sub-problems on the north fagade, which is steady with that achieved in Step 1. The

solutions achieved by this step also show a constant trend compared with the solutions

achieved in AR I. The average total energy demand for all the 9 sub-problems is 459.5



kWh, which is 4.5% smaller than the 481.3 kWh achieved by AR 1.

N11 N1-3 N1.5
Na1 N2-3 Nss
N N N

5-1 5-3 5-5

Figure 4.16: AR Results II — Step 2 — North fagade — San Francisco

Table 4.15 represents the optimization results for western fagade achieved by Step

2 of the AR optimization II. The optimization runs are executed for 9 selected sub-

problems (Wlfl, Wlfg, W1,5, W3,1, ng'g,, W3,5, W5,1, W5,3, W5,5) on the west ori-

entation. The facade design solutions for these sub-problems are shown in Figure

4.17.

It can be seen that the optimization solutions achieved by Step 2 show small

depths for fin and overhang shadings for sub-problems on the west fagade, which is

consistent with AR 1. The average total energy demand for all the 9 sub-problems is

561.1 kWh, which is 6.2% smaller than the 598.4 kWh achieved by Step 1.

It can also be found in Figure 4.17 that the solutions of some sub-problems

(Wi_3, W3_1, W5_5,W5_5) are consistent with that achieved in AR I.
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Table 4.15: AR Results II - Step 2 — West facade — San Francisco

vi Uy w3 Uy Vs Vs Qrow Gene. Simu.
Unit [kWh]  [-] ]

Wiy 4 3 1 2 3 6 6030 15 300
Wis 4 3 1 2 1 4 576.8 16 320
Wies 4 3 1 6 1 5 6122 11 220
Ws-y 4 3 1 1 1 6 567.7 15 300
Ws_s 4 3 1 2 9 3 586.0 13 260
Ws.s 4 3 1 2 3 7 4792 18 360
Weere 43 1 9 1 8 546.0 16 320
Wees 4 3 1 3 10 4 566.2 12 240
Ws.s 4 3 1 2 4 7 5123 18 360
Avg. 561.1 14.9 297.8
Sum. 134 2680
W, W, W,
W, ., W.., W,
W W W

5-1 5-3 5-5

Figure 4.17: AR Results II — Step 2 — West facade — San Francisco

Step 3 and Step 4 of the second run of AR repeat the same optimization process as
in AR optimization I. Tables and Figures are shown in Appendix B. The optimization

solutions for the entire fagade of AR II are shown in Figure 4.18 and Figure 4.19. The



Figure 4.19: AR Results II — Step 4 — North and West fagades — San Francisco

figures show a clear trend of large shading depths for the rooms receive more daylight

and solar radiation, and small shading depths for the rooms receive less daylight and
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solar radiation.

Table 4.16 represents the optimization result of AR optimization II on each step.
It could be seen that the average total energy demand for all the rooms is 449.8
kWh in Step 2. After interpolation processes in step 3 and Step 4, the average total
energy demand for each room is 506.3 kWh, which is 8.4% smaller than the 552.9
kWh achieved by AR I.

Table 4.16: AR Results II - San Francisco

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] ]
Step 1 382.1 635.3 445.0 5984 515.2 1220
Step 2 328.6  449.9 459.5 561.1 449.8 10340
Step 3 318.1 557.1 545.6 570.9 4979
Step 4 3106 563.3 580.4 570.8 506.3
Total 11560

4.3.3 Summary

Two AR optimization runs are executed in this section. The details of optimization
results and optimal solutions for each step are presented. Table 4.17 and Table 4.18
represents a comparison of the design variables and optimization results of the two
AR runs. It can be seen that, the values of the average total energy demand achieved
by each step are steady in the two runs. The total number of simulation runs for each
AR optimization are also consistent.

The glazing type 4 are shown by both AR T and AR II. Compared with the optimal
solutions achieved by AR I, AR II shows lower insulation value (0.37 W/m?K instead
of 0.32 W/m?K) and higher infiltration rate (0.25 instead of 0.18). The average total
energy demand is 506.3 kWh, which is 8.4% smaller than the 552.9 kWh achieved in
AR L

87



Table 4.17: Comparison of Design Variables for AR I and AR II — San Francisco

V1 Vg2 V3 Vg Vs Vg Vi V2 Vg Vg4 Vs Vg
AR AR II
S35 5 5 1 9 6 6 S.3 4 1 1 5 7 7
Ess 2 6 3 1 3 9 E;s 5 1 2 4 2 3
Nssz 4 3 1 2 1 3 Eys 4 4 1 8 3 1
Was 4 3 1 5 4 4 Eys 4 2 1 4 5 3
4 4 2 - - - - 4 3 1 - - -

Table 4.18: Comparison of Results for AR and GA — San Francisco

S E N W Average Runs

AR
AR Step 1 3754 637.3 4629 585.3 515.2 1320
Step 2 360.7 445.7 481.3 578.5 466.5 10580
Step 3 413.8 601.6 556.9 595.9 542.1
Step 4 422.0 601.6 576.5 611.6 552.9
Total 11900
AR II Step 1 382.1 635.3 445.0 598.4 515.2 1220
Step 2 328.6 449.9 459.5 561.1 449.8 10340
Step 3 318.1 557.1 545.6 570.9 497.9
Step 4 310.6 563.3 580.4 570.8 506.3
Total 11560
Average 11070

4.4 Validation of AR Results against Simple GA

Two optimization runs of GA are executed in this section. Same design scenarios
are used in these cases. The optimization results achieved by the two AR optimization
runs are compared with that by these two GA runs. The purpose is to validate the
accuracy and efficiency of AR.

For GA, the total number of possible solutions is:

6 x7x4x(10x 10 x9) x 100 (4.4)
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4.4.1 GA Results 1

Table 4.19 represent the final results of all the sub-problems on the south orienta-
tion in the GA optimization I. The facade design solutions for each room are shown
in Figure 4.20.

It can be seen in Table 4.19 that, the average inputs for south fagade show by
GA I are v; = 4,v9 = 4,v3 = 1. The average inputs for the shading elements are
vy = 6,v5 = 6,v5 = 5. Relatively large overhang and fin depths are recommended for

the south facade in GA 1.

Table 4.19: GA Results I — South fagade — San Francisco

Unit [kWh] [kWh] [kWh] [kWh] Gene. Simu.
S5 6 1 1 7 5 4 131 204.8 964 314.3 19 380
S 4 4 1 8 7 3 318 149.7  140.2  321.7 26 520
Si.s 4 1 1 8 4 7 445 1294 176.7 350.6 17 340
Si.a 4 41 8 6 7 309 131.2 1946 356.8 31 620
S5 4 6 1 8 5 7 276 126.3  130.3 284.2 32 640
S 4 4 1 3 10 1 208 2042 146.8 3719 21 420
Seo 4 3 1 9 5 6 421 141.2  158.8 342.1 27 240
Sees 4 3 1 5 5 6 261 204.7 1522 3829 24 480
Sy 4 2 1 19 4 207 201.3 1375 3594 29 280
Sos 4 7T 1 7T 5 7T 246 133.6 129.2 2874 50 1000
S31 4 5 1 6 8 4 338 138.0 1204 2922 15 300
S3 o 4 3 1 8 7 4 353 150.5 153.3 339.1 17 340
Ss—3 4 2 1 6 5 6 374 154.4 1539 3457 11 220
S3—y 4 6 1 4 10 7 20.2 155.8 201.1 377.0 25 200
S35 4 3 1 5 7 7 270 164.0 1269 3179 15 300
Sy 4 51 2 9 2 224 161.8 1141 2983 29 280
Sy 4 4 1 5 8 3 247 197.6 1374 3359.6 23 460
S 4 2 1 7 5 4 386 1746 1412 3545 24 480
Sig 4 4 1 7T 4 4 334 168.0  200.0 4014 21 420
Sis 4 3 1 7 4 7 315 165.7 1351 3324 15 300
Ss-1 4 7T 1 2 10 2 182 156.1 104.4 2787 51 1020
S5 4 3 1 4 7 2 243 206.1 146.0 3764 22 440
Ss—3 4 5 1 8 5 4 330 2185 1545 406.1 37 740
Ss—y 4 2 1 9 5 7 368 2005 1904 4277 9 180
Ss-s 4 3 1 9 5 7 343 164.7 128.8 3279 45 900
Avg. 4 4 1 6 6 5 293 168.1 146.8 3442 254 508
Sum. 635 12700
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Figure 4.20: GA Results I —

Table 4.20 represents the final results of all the sub-problems on the east orienta-

tion in the GA optimization I. The facade design solutions for each room are shown

in Figure 4.21.

It can be seen in Table 4.20 that, the average inputs for east fagade show by
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Table 4.20: GA Results I — East facade — San Francisco

38.8 116.2 202.1 357.1 20 400
38.8 139.0 301.6 479.5 34.8 696
Sum. 870 17400

Unit [kWh] [kWhL] [kWh] [kWh] Gene. Simu.
Er, 4 2 1 5 4 2 367 1055 1925 3348 25 500
Ein 4 2 1 4 3 3 391 1484 3382 5256 27 540
Eis 4 1 1 4 1 3 426 1874 4017 631.6 22 440
Eiy 2 6 1 4 2 7 690 1444 5095 7229 29 580
Eis 4 4 1 4 2 7 513 967 2118 359.8 47 940
By 4 5 1 4 3 1 202 1142 2167 360.1 37 740
Fan 4 3 1 6 5 3 424 1406 3564 5394 20 400
Esy 4 1 1 2 3 4 430 2272 3750 6453 16 320
Fpy 4 3 2 8 3 3 267 2238 3861 6365 13 260
Ers 4 2 3 1 6 6 254 1509 2429 4193 9 180
Fsq 4 2 1 1 5 1 375 985 1990 3350 16 320
Eso 4 1 2 8 3 3 415 1206 2779 4400 26 520
Fss 4 2 1 5 1 2 443  150.1 3471 5415 37 740
Fsy 4 1 1 8 1 7 413 1330 4764 650.7 18 360
Fss 4 4 3 1 4 9 270 966 2095 3331 107 2140
Ei y 4 7 1 1 5 1 23 1065 1937 3265 51 1020
Eyo 4 5 1 5 1 2 369 1275 2691 4335 28 560
Eis 4 2 1 5 1 2 462 1553 3236 5251 17 340
Ei gy 4 2 1 1 1 9 355 1431 4264 6050 40 800
Ei s 4 7 1 1 1 9 438 946 1871 3255 83 1660
Fsy 4 7 1 5 3 2 273 1187 1589 3049 75 1500
Fso 4 2 2 4 6 3 265 1769 3325 5359 25 500
Fs3 4 1 1 5 1 2 537 1623 3073 5233 19 380
Fsy 4 2 1 1 2 9 392 1372 3979 5743 63 1260
43 2 8 47
4 3 1 4 3 2

GA I are v; = 4,v9 = 3,v3 = 1. The average inputs for the shading elements are
vy = 4,v5 = 3,v6 = 2. Relatively small overhang and fin depths are recommended for
the east fagade in GA 1.

Table 4.21 represents the final results of all the sub-problems on the north orien-
tation in the GA optimization I. The facade design solutions for each room are shown
in Figure 4.22.

It can be seen in Table 4.21 that, the average inputs for north facade show by

GA T are v; = 4,v9 = 3,v3 = 1. The average inputs for the shading elements are
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Figure 4.21: GA Results I — East facade —

3,v5 = 2,v6 = 4. Small overhang and fin depths are recommended for the north

Vy =

facade in GA L.

problems on the north orien-

Table 4.22 represents the final results of all the sub-

tation in the GA optimization I. The facade design solutions for each room are shown
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Table 4.21: GA Results I — North facade — San Francisco

37.7 112.2 1235 2734 34 680
42.6 1249 291 4584  29.2  584.8
Sum. 731 14620

Unit [kWh] [kWhL] [kWh] [kWh] Gene. Simu.
N, 4 1 1 2 1 4 369 1804 375.1 5924 13 260
Ni, 4 1 1 2 2 4 438 1702 3743 5883 35 700
Nis 4 1 1 2 1 4 421 1750 3751 5922 19 380
Nig 4 4 1 5 1 2 356 1148 3792 5296 43 860
Nis 6 1 1 1 2 6 316 1646 1583 3546 50 1000
Nooy 4 1 1 1 2 4 387 1620 3752 5759 30 600
Nay 4 3 1 3 2 3 355 1122 3735 5211 40 800
Nog 25 2 7 2 3 67.7 1076 3537 5290 25 500
Nooy 4 2 1 3 1 3 414 1259 3251 4924 47 940
Nos 4 5 1 5 6 6 493 1260 1834 3587 20 400
Ny, 4 1 1 1 1 3 397 1828 3271 5495 25 500
Ny 4 5 1 2 1 3 363 1007 3222 4592 54 1080
Nyos 4 4 1 2 3 7 406 1125 3419 4950 25 500
Nyy 4 4 1 2 1 3 476 1138 2938 4552 16 320
Nys 4 3 2 2 2 7 497 944 1262 2703 29 580
Noyp 4 2 1 8 1 3 380 1130 3255 4765 26 520
Noo 4 3 1 4 1 3 456 912 2777 4144 29 580
Nis 4 1 2 4 2 3 387 1011 3083 4482 36 720
Nog 4 3 1 2 2 3 540 1029 2691 4261 22 440
Nos 4 7 2 2 2 7 392  101.0 1224 2626 32 640
Nsoy 4 2 1 1 1 7 377 1402 3234 5013 18 360
Ns, 4 4 1 2 1 3 437 974 2839 4251 26 520
Nsos 4 4 1 2 6 3 460 1059 3235 4755 13 260
Nsoy 4 5 1 2 1 3 470 1135 2328 3933 24 480
6 1 1 2 2 7
4313 2 4

in Figure 4.23.

It can be seen in Table 4.22 that, the average inputs for west facade show by
GA I are v; = 4,v9 = 2,v3 = 1. The average inputs for the shading elements are
vy = 2,v5 = 3,06 = 5, Small overhang and fin depths are recommended for the west
facade in GA L.

Figure 4.24 and Figure 4.25 represent final design solutions of all the sub-problems

on each orientation achieved by GA optimization I.
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Figure 4.22: GA Results I — North fagade — San Francisco

4.4.2 GA Results 11

Figure 4.26 and Figure 4.27 represent the final design solutions of all the office
rooms on each orientation for GA optimization II. Tables and Figures for details are

shown in Appendix C.
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Table 4.22: GA Results I — West facade — San Francisco

Unit [kWh] [kWh] [kWh] [kWh] Gene. Simu.
Wise 2 6 2 2 4 6 722 163.8  390.6 626.6 26 520
Wie 4 1 1 2 2 4 393 159.2 3923 610.8 29 580
Wies 4 3 1 2 4 6 527 154.8 3724 579.9 16 320
Wiy 4 2 1 2 1 4 517 150.3 358 559.9 22 440
Wis 4 1 1 1 4 6 596 142.5  340.1 5422 26 520
Wy 4 1 1 1 2 6 629 150.8  352.6 566.3 20 400
Weo 4 1 1 1 3 6 612 138.3  363.7 563.2 30 600
Wy 402 1 1 1 6 552 136.1  350.1 5414 24 480
Woy 4 2 1 1 2 6 585 139.5 3325 5305 29 580
Wos 4 6 1 2 3 1 498 112.0  358.7 5204 26 520
Ws.y 41 1 1 1 6 604 181.0  327.5 568.9 22 440
Wso 4 1 1 1 1 6 398 172.1 3372  569.1 35 700
Ws-g 4 1 1 2 1 3 606 141.2  346.4 5482 22 440
Wsy 4 4 1 2 1 3 589 1175  330.0 506.3 29 580
Wss 4 4 1 2 2 7 520 124.2  310.8 487.0 34 680
Wy 4 1 1 4 1 3 609 186.8  303.3 551.0 16 320
Wyo 4 1 1 5 4 4 635 135.7 351.9 551.1 19 380
Wys 4 1 1 4 7 3 652 124.8 3543 5442 33 660
Wyey 4 3 1 2 1 3 59.0 123.6  321.3 503.9 29 580
Wis 4 6 1 2 2 3 521 115.3  311.2 478.6 51 1020
Ws.y 4 2 1 5 10 4 56.0 1414 350.0 5474 23 460
Wse 6 1 1 9 1 3 275 199.3 2929 519.7 35 700
Ws_s 4 2 1 2 7 3 3557 1674 327.0 550.1 18 360
Ws_y 4 51 2 7 7 532 1379 3043 4954 36 720
Wses 6 1 1 2 1 3 292 201.7 2639 4948 35 700
Avg. 4 2 1 2 3 5 559 148.7  337.7 5423 274 048
Sum. 685 13700
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Figure 4.23: GA Results I — West fagade — San Francisco
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Figure 4.25: GA Results I — North and West facade — San Francisco
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Figure 4.27: GA Results II — North and West facade — San Francisco
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4.5 Summary

Table 4.23 shows the optimal design variables for the two AR and GA optimiza-
tion runs. AR I achieves the optimal solutions for the glazing type, insulation and
infiltration v; = 4,v9 = 4,v3 = 2. In the second run, AR II achieves the optimal
solutions for the glazing type, insulation and infiltration v; = 4, v, = 3,v3 = 1. Both
GA T and GA II achieve the same optimal solutions v; = 4,vy = 3,v3 = 1, which is
the same as that achieved by AR II, and consistent with earlier solutions achieved by
AR L.

Table 4.23: Comparison of Design Variables for AR and GA — San Francisco

Vi V2 V3 Vg4 Vs Vg Vi V2 VU3 Vg4 Vs Vg
AR1 AR II
S33 5 5 1 9 6 6 S33 4 1 1 5 7 7
Ess 2 6 3 1 3 9 E;s 5 1 2 4 2 3
Nas 4 3 1 2 1 3 Nsag 4 4 1 8 1 3
Wss 4 3 1 5 4 4 Wss 4 2 1 4 5 3
4 4 2 - - - 4 3 1 - - -
GA 1 GA II
S 4 4 1 6 6 5 S 4 4 1 7 6 5
E 4 3 1 4 3 2 E 4 2 1 4 2 4
N 4 3 1 3 2 4 N 4 3 1 3 2 4
W 4 2 1 2 3 5 W 4 2 1 2 3 5
4 3 1 - - - 4 3 1 - - -

Table 4.24 represents the optimization results of the two AR and GA optimization
runs. The average total energy demand for each room achieved by Step 2 for AR I
is 456.2 kWh and 449.8 kWh for AR II. The average total energy demand for each
room achieved by the GA T is 456.1 kWh and 456.9 kWh for GA II.

The results show that through the process of interpolation, the sub-problems
achieve optimal solutions that are compromised with each other, thus some of the
sub-problems in Step 3 and Step 4 don’t achieve their global optimal. Therefore,

the optimal results of ARs are larger than that achieved through the global optimal
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Table 4.24: Comparison of Results for AR and GA — San Francisco

S E N W Average Runs

AR
AR 1 Step 1 375.4 637.3 462.9 585.3 515.2 1320
Step 2 360.7 445.7 481.3 5785 466.5 10580
Step 3 413.8 601.6 556.9 595.9 542.1
Step 4 422.0 601.6 576.5 611.6 552.9
Total 11900
AR II Step 1 382.1 635.3 445.0 598.4 515.2 1220
Step 2 328.6 449.9 459.5 561.1 449.8 10340
Step 3 318.1 557.1 545.6 570.9 497.9
Step 4 310.6 563.3 580.4 570.8 506.3

Total 11560
Average 11070
GA
GAI 344.2 479.5 458.4 542.3 456.1 58420
GAII 348.5 483.8 449.6 545.8 456.9 53620
Average 56020

achieved by GAs. The main objective of the interpolation processes in Step 3 and Step
4 is to reduce the optimization time and improve the efficiency of optimization process,
while the accuracy is undermined sometimes. However, GAs cannot find overall design
solutions for the design variables vy, vy, v3. The optimal solutions achieved by GAs
for vy, v9 and vy are different for each room, thus still requires the designers to figure
out a global optimization solution by experience.

Ideally, the solution achieved by the simple GA should be the same or better
than the AR results for the same problem, since the optimal values for the design
variables vy, vy and vz are achieved for each room during the simple GA process. The
optimization result shows that similar or better results have been derived by the AR
processes until Step 2: The optimization process of Step 1 can help to find an overall
optimal value for the design variables v;, vy and v3 at the system level of the AR
allowed better convergence towards the true optimum. Additionally, partitioning of
the problem results in Step 2 of optimization problem (3 variables per sub-problem

as against 6 variables when the problem is solved in one step, and this increases the
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performance of AR and also improves convergence. Even though the energy demand
achieved by final steps (Step 4) of ARs have higher value than that of GAs, this is
mainly because GA does not use an overall equivalent values for the design variables
vy, vg and wvs for each sub-problem. This means the designers still need to select the
appropriate overall equivalent values at this step, but cannot guarantee the overall
minimum of energy demand for all the sub-problems.

It can also found in Table 4.24 that it needs 11900 simulations in total for AR
I and 11600 simulations in total for AR II to find the global optimum. Compared
with the AR runs, it requires 58420 simulations in total for the GA I and 53620
simulations in total for the GA II to find the global optimum. The total simulation
time is reduced by 80.2%, which shows that the AR can achieve the optimal solutions
with much less simulation effort than GA.

Chapter 4 has validated the applicability of AR in FPOs through a facade opti-
mization problem of a typical square-floorplan mid-rise office. It is illustrated that
the AR method can lead the fagade design derives from the original generations and
evolves into new generations. By selecting appropriate sub-problems and making in-
terpolation of the achieved optimization results from the last step, this method can
get optimal solutions for the remaining optimization groups without running unnec-
essary simulations, which may largely reduce simulation time. In this case study, AR
took four steps to accomplish the optimization process. By using interpolation in
Step 3 and Step 4, it can save up to 80.2% of the entire simulation time. Moreover,
this method does not only considers the impacts from the climate, but also from the
environmental situations in the site. Therefore, it validates the potential for more
detailed solutions for complicated facade design.

To be adapted to contemporary architectural design, it is essential to use opti-
mization techniques at the early design stage to solve FPO problems. AR can help

architects to make design decisions efficiently. The obtained groups of appropriate
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solutions are efficient and robustness to help architects to understand the trade-off
relationship between different design solutions.

The above design guidance is valid only for this particular problem as defined by
the ranges of input values and the constants used for these variables. This method-
ology can be used on an individual FPO problem in this design scenario, or further
work could investigate this methodology using different design variables, objective
and constraints, in order to observe the changes in results. For example, the problem
used here could be run for different WWRs, or for a range of active design parameters
to see how the design parameters generated differs. This in turn would enable more
extensive design guidance to be formulated.

It’s worth pointing out that since there are a limited number of sub-problems in
Step 2, the optimization solutions achieved by Step 2 can only show a trend, but
cannot guarantee the solutions are the global optimum for this FPO problem. AR
has the potential to be more efficient and accurate when solving more complex fagade
optimization problems with more sub-problems, since there will be more gradients

between different sub-problems.
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CHAPTER V

Validation of AR in Different Climates

5.1 Chapter Outline

There have been various studies on the climate responsive building design strate-
gies. The definition of these climatic zones is largely based on different criteria and
the purpose of establishing such classification. In the early 1960s , Olgyay defined
four main climate types for climatic building design strategies in his study, including
cool, temperate, hot and arid, and hot and humid climate zones (Olgyay, 1992). In
1976, Givoni also defined four major climates for the building design climate, includ-
ing hot, warm-temperate, cool-temperate and cold climate zones. The main purpose
was to develop the impact of climatic characteristics on the human comfort and the
buildings’ thermal response (Givoni, 1976). However, there is still limited study for
climate responsive building design strategies in the United States. Research has been
done for climate impacts on building energy demand in different climate zones in the
U.S. (Wang and Chen, 2014), Australia (Karimpour et al., 2015), Turkey (Mangan
and Oral, 2015) and India (Singgh et al., 2007). These studies provided fundamental
research of the impacts of climate on building performance and shown appropriate
design solutions for climate responsive design strategies. However, these strategies
are still mainly relied on the designer’s experience. A simulation/optimization driven

methodology is essential to be developed and more effective to provide solutions with
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more accuracy at the early design stage.

The primary approaches of this chapter include:

(i) identify the major climates and select a major city in each climate zone, (ii)
investigate the relationship between the design variables and objectives of FPOs in
different climate zones in the United States, and (iii) provide climate responsive design
strategies for high-performance facade for these climates.

AR are implemented in two other cities (Chicago, IL; Miami, FL) in the U.S. The
purpose is to validate the applicability and stability of AR in solving FPOs in different
climates. Section 5.2 describes the climatic characteristics of the selected cities. The
optimization problem with the same design scenario in Chapter 4 is implemented in
the two selected climates in Section 5.3 and Section 5.4, respectively. For each city,
two AR optimization runs (AR I and AR II) are executed. The optimization results
are compared and discussed. FPO design solutions for these two climates are then

summarized.

5.2 Climate Discussion

The territory of United States is mainly located in in central North America
between Canada and Mexico, which covers an area of approximately 9.84 million

km?.

The United States includes most climate types with its large territory size
and geographic variety. There are eight major climate zones in United States, which
are based on temperature and humidity, including hot-humid, mixed-humid, hot-dry,
mixed-dry, cold, very-cold, subarctic, marine regions (PNNL, 2015)(Figure 5.2).

ASHRAE 90.1-2010 gives definition of international climatic zones (Figure ?7),
which can be found in ANSI/ASHRAE/IESNA Standard 90.1-2007 Normative Ap-
pendix B — Building Envelope Climate Criteria (ASHRAE, 2010). The information
below is from Tables B-2, B-3, and B-4 in that appendix.

Three cities in different climate zones are discussed in this study, which represent
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Figure 5.1: Seven of the eight US climate zones (Recognized by Building America
occur in the continental United States. The sub-arctic U.S. climate zone, not shown
on the map, appears only in Alaska (PNNL, 2015)

International Energy Conservation Code (IECC) Climate Regions
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Figure 5.2: International Energy Conservation Code (IECC) climate regions (PNNL,
2015)

the climate zones defined in the ASHRAE Standard 90.1-2010 (ASHRAE, 2010).
In addition to San Francisco (CA), which has been discussed in the case study in
Chapter 4, the other two cities are Chicago (IL) and Miami (FL), representing the

Cool-Humid and Very Hot-Humid climates. These cities are also representative for
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Table 5.1: Definition of international climatic zones(ASHRAE, 2010)

Zone Number

Zone Name

Thermal Criteria
(IP Units)

Thermal Criteria
(ST Units)

1A and 1B Very Hot - Humid 9000 < CDD50°F 5000 < CDD10°C
(1A)
Dry (1B)
2A and 2B Hot-Humid (2A) 6300 < CDD50°F 3500 < CDD10°C
< 9000 < 5000
Dry (2B)
3A and 3B Warm - Humid 4500 < CDD50°F 2500 < CDD10°C
(3A) <6300 < 3500
Dry (3B)
3C Warm - Marine CDD50°F < 4500 CDD10°C < 2500
(3C) and HDD 65°F < < HDDI18°C <
3600 2000
4A and 4B Mixed-Humid CDD50°F < 4500 CDD10°C < 2500
(4A) and 3600 < HDD  and HDD1&°C <
65°F < 5400 3000
Dry (4B)
4C Mixed - Marine 3600 < HDD 65°F 2000 < HDD18°C
(4C) < 5400 < 3000
5A, 5B, and 5C Cool-Humid (5A) 5400 < HDD 65°F 3000 < HDD18°C
< 7200 < 4000
Dry (5B)
Marine (5C)
6A and 6B Cold - Humid 7200 < HDD 65°F 4000 < HDD18°C
(6A) < 9000 < 5000
Dry (6B)
7 Very Cold 9000 < HDD 65°F 5000 < HDD18°C
< 12600 < 7000
8 Subarctic 12600 < HDD 7000 < HDD18&°C
65°F

the culture and commercial centers with more commercial office buildings case studies,
in order to involve a broad range of climatic conditions in the United States. The
details of typical meteorological year (TMY) weather data of these cities are readily
available, which validates the feasibility of further study. All TMY weather data
are derived from U.S. Department of Energy. The hourly TMY3 weather data for
simulation are extracted from the EnergyPlus database.

Miami has a tropical climate with hot and mild summers and warm winters.
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Table 5.2: Climate zones of the United States and reference cities.

Climate Zone  City Latitude (°)

Longitude (°)

1A Miami Very 25°47'N 80°13'W
Hot-Humid

3C San Francisco  Marine 37°47'N 122°25'W

5A Chicago Cool-Humid 41°53’N 87°38'W

The average monthly temperature of the coldest months (December and January)
is around 20.1°C (68.2°F). The warmest months (July and August) have average
monthly temperatures of 29-35°C (84-96°F), accompanied by high humidity. The
lowest daily minimum temperature on record is 7°C (45°F) on February, 1990, and

the highest is 29°C (84°F) on August 4, 1993.
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Figure 5.3: Monthly dry bulb temperatures for three cities in the United States
(°C/°F)

Chicago has a climate characterized by four distinct seasons: wet, cool springs;
somewhat hot, and often humid, summers; pleasantly mild autumns; and cold winters.
The average monthly temperature of the coldest month (January) is around -4°C
(25°F). The warmest month (July) has average monthly temperature of 24°C (76°F).
The recorded lowest temperature is -32°C (-25°F) in January, and the highest is 43°C

(109°F) in July.
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5.3 AR Results for Chicago

5.3.1 AR results I - Chicago

Step 1

Table 5.3 shows the optimization results achieved by Step 1 in AR optimization
[ for Chicago. Optimization runs for four sub-problems (S3_3, N3_3, F3_3,W3_3) are
executed in this step. The first design three variables are achieved by averaging the
optimization results, which are v; = 6,v5 = 5,v3 = 4. Therefore, the best glazing
(glazing type 6), the third best insulation (0.26 W/m?K) and the lowest infiltration

rate (0.12) are shown for the climate of Chicago. The average total energy demand
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for all sub-problems is 1370.1 kWh.

Table 5.3: AR Results I - Step 1 — San Francisco

Vi V2 U3 Vs UV Us Qrotal

Gene. Simu.

Unit [kWh]  [-] ]
S33 6 5 3 2 9 7 11855 19 380
Es s 6 4 4 3 2 4 14652 17 340
Ns 35 6 5 3 8 4 7 13945 20 400
W33 6 6 4 7 7 6 1435.1 18 360
Avg. 6 5 4 - - -

Avg. 1370.1 19 370
Sum. 74 1480

S 1-1
N 1-1

i
e

1-1

Figure 5.6: AR Results I — Step 1 — Chicago

Chicago has a distinct weather with cold winters and hot summers. High-quality

wall insulation is imperative on all orientations in this climate to maintain the indoor

temperature to reduce the heating energy demand. In addition, the southern fagade
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receives extensive solar radiation in the hot summer, therefore, well-insulated windows
with high SHGC glazing are also essential to block the solar heat and reduce the
cooling energy demand. Also, the western facade receives extensive solar radiation
in the afternoons, thus requires high-value insulation. Additionally, the weather of
Chicago is not severe cold climate, which also explains why the design solutions don’t
show the highest insulation values.

It also can be seen in Figure 5.6 that the overhang shading depths on the south
and west facades are large, which are 900 mm and 700 mm, respectively. In contrast,
the shading depths on the east and north facade are small, which are 200 mm and
400 mm.

Step 2

Table 5.4 shows the optimization results for south fagade achieved by Step 2 of
the AR optimization I. The first three design variables (v; = 6,v9 = 5,03 = 4)
stay unchanged. The optimization runs are executed for 9 selected sub-problems
(S1-1,51-3,51-5,53-1, 533, S35, S5_1, S5_3, S5_5) on the south orientation. The fagade
design solutions for these sub-problems are shown in Figure 5.7.

Table 5.4: AR Results I - Step 2 — South facade — Chicago

v Uy w3 vy Vs Vs Qrow Gene. Simu.
Unit [kWh]  [-] ]

S, 6 5 4 8 9 3 10628 16 320
Si.s 6 5 4 6 3 6 11767 14 280
Si.s 6 5 4 10 1 8 11516 11 220
Sey 6 5 4 1 10 3 10503 11 220
Ses 6 5 4 8 4 4 11477 16 320
Se s 6 5 4 6 5 7 11265 12 240
Ss.1 6 5 4 2 10 2 10436 13 260
Sss 6 5 4 4 7 4 11896 14 280
Sss 6 5 4 1 7 7 11236 16 320
Avg. 1119.1 137 2733
Sum. 123 2460

It can be found in Table 5.4 and Figure 5.7 that the optimization solutions achieved
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Figure 5.7: AR Results I — Step 2 — South fagade - Chicago

by Step 2 show large fin and overhang shading depths on the south fagade, which is
consistent with the solutions achieved by Step 1. The average total energy demand
for all the 9 sub-problems is 1191.1 kWh. This result is 5.6% smaller than the 1185.5
kWh achieved by Step 1.

Table 5.4 also shows the optimization results for south fagade achieved by Step
2 of the AR optimization I. The first three design variables (v; = 6,v9 = 5,v3 = 4)
stay unchanged. The optimization runs are executed for 9 selected sub-problems
(S1-1,51-3, 515,531,533, 535, 55_1, S5_3, S5_5). The average total energy demand
for all the 9 sub-problems is 1119.1 kWh. The facade design solutions for these sub-
problems are shown in Figure 5.7.

The optimization solutions achieved by Step 2 show large overhang shading depths

for the rooms located on the west side of the south fagade (S;_1, S5_1, S5_1), to prevent
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extensive solar radiation in the afternoon. Also, the rooms located on the top floors
Ss5_1,55_3,55_5 have larger overhang depths, since they are less influenced by the
high-rise building construction on the south.

Table 5.5 represents the optimization results for east facade achieved by Step 2 of
the AR optimization I. The optimization runs are executed for 9 selected sub-problems
(E1_1,E1-3,E1_5,FE3 1, F3 3, F3 5, F5 1, E5_3, E5_5) on the east orientation. The av-
erage total energy demand for all the 9 sub-problems is 1268.1 kWh. The fagade

design solutions for these sub-problems are shown in Figure 5.8.

Table 5.5: AR Results I - Step 2 — East facade — Chicago

vi vy w3 vy Vs Vs Qrotw Gene. Simu.
Unit [kWh]  [-] -]

Ei, 6 5 4 9 3 3 12288 19 380
E,s 6 5 4 9 2 3 14186 14 280
Ers 6 5 4 4 3 7 12089 15 300
Es, 6 5 4 1 5 1 11714 15 300
Es s 6 5 4 7 4 3 14564 11 220
Ess 6 5 4 1 7 9 11922 13 260
Esy, 6 5 4 5 3 2 11486 14 280
Es s 6 5 4 7 5 2 14142 14 280
Ess 6 5 4 1 3 9 11740 15 300
Avg. 1268.1 144  288.9
Sum. 130 2600

The optimization solutions show relatively small overhang shading depths on the
east facade than that on the south facade. The eastern facade mainly receives solar
radiation in the morning, with a relatively lower temperature at that time in this
climate. Also, most of the solar radiations is blocked by the high-rise construction
on the east. Therefore, overhang large shading depths are not so imperative in this
climate.

Figure 5.8 also shows that the fin angles are relatively small for the first two
rooms on each floor (Ey_y, Fy_3, F5_1, E5_3, F5_1, E5_3), which shows a trend to face

the south orientation as much to receive more solar radiation, as well as reflect more
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Figure 5.8: AR Results I — Step 2 — East fagade — Chicago

daylight in to the room. In contrast, solutions for the third rooms on each floor
(E1_5, B35, E5_5) show a north-facing fin angle (120°). The reason is that the rooms
on the northeast edge are blocked by the high-rise building on the east and north.
The only available daylight and solar radiation is from the space between the east
and north buildings. Therefore, the fin angles are facing this space to receive as much
daylight and solar radiation as possible.

Table 5.6 represents the optimization results for north facade achieved by Step 2 of
the AR optimization I. The optimization runs are executed for 9 selected sub-problems
(N1-1, N1_3, N1_5, N3_1, N3_3, N3_5, N5_1, N5_3, N5_5) on the north orientation. The
average total energy demand for all the 9 sub-problems is 1301.4 kWh. The facade
design solutions for these sub-problems are shown in Figure 5.9.

The optimization solutions show small depths for overhang shadings on the north
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Table 5.6: AR Results I - Step 2 — North facade — Chicago

vi Uy w3 Uy Us Vs Qrotw Gene. Simu.
Unit [kWh]  [-] ]
Ny 6 5 4 2 2 6 1416.7 11 220
N3 6 5 4 &8 3 7 14221 12 240
Ni.s 6 5 4 9 4 7 11716 13 260
Ny 6 5 4 8 1 2 13421 14 280
Nss 6 5 4 6 1 7 1369.7 14 280
Nss 6 5 4 6 1 6 11634 11 220
Ns.y 6 5 4 1 3 6 13658 13 260
Ns.3 6 5 4 10 3 7 13170 13 260
Nos 6 5 4 1 1 3 11444 12 240
Avg. 1301.4 12.6 251.1
Sum 113 2260

N1-1 N1-3 N1-5
N3-1 N3-3 N3-5
N5,1 N573 sts

Figure 5.9: AR Results I — Step 2 — North fagade — Chicago

facade. This is because the north facade does not achieve as much daylight and solar

radiation during the entire year in the climate of Chicago. Thus overhang shading is

not prerequisite. The fins are slightly facing west for most of the rooms, which can
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help to receive as more as daylight and solar radiation through the reflections by the
fin shadings.
Table 5.7: AR Results I - Step 2 — West facade — Chicago

v vy w3 vy vy Vs Qrorw Gene. Simu.

Unit kWh [ [

Wi, 6 5 4 2 4 6 14567 15 300
Wis 6 5 4 1 4 7 14605 13 260
Wis 6 5 4 1 2 6 13703 14 280
Ws, 6 5 4 1 4 6 14281 11 220
Was 6 5 4 2 10 7 1390.2 12 240
Wss 6 5 4 1 1 3 13937 20 400
Wsy 6 5 4 5 1 7 13936 11 220
Wss 6 5 4 9 3 4 14038 11 220
Wss 6 5 4 4 3 7 137127 12 240
Avg. 14077 132  264.4
Sum. 119 2380
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Figure 5.10: AR Results I — Step 2 — West facade — Chicago

Table 5.7 represents the optimization results for western facade achieved by Step
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2 of the AR optimization I. The optimization runs are executed for 9 selected sub-
problems (W;_1, Wy _g, Wy_5, W31, W3_3, W3_5, Ws_1, W5_3, W5_5) on the west orien-
tation. The average total energy demand for all the 9 sub-problems is 1407.7 kWh.
The facade design solutions for these sub-problems are shown in Figure 5.10.

The optimization solutions show small depths for fin and overhang shadings for
most of the rooms. The rooms on the top floor (Ws5_1, W5_3, W5_5) receive more solar
radiation in the afternoons, thus fin shading depths are larger to reduce exposure to
solar radiation on this orientation.

Step 3 and Step 4

Step 3 and Step 4 are shown in the Appendix D. The optimization solutions for

the entire fagade of AR II are shown in Figure 5.11 and Figure 5.12.

Figure 5.11: AR Results I — Step 4 — South and East facades — Chicago

Table 5.8 represents the optimization result on each step of AR optimization I. It
can be seen that the average total energy demand for all the rooms is 1370.1 kWh
in Step 1 and 1274.1 in Step 2. After interpolation processes in Step 3 and Step

4, the average total energy demand for each room is 1341.6 kWh. There are 11450
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Figure 5.12: AR Results I — Step 4 — North and West fagades — Chicago

simulations in total executed in AR optimization I for Chicago.

Table 5.8: AR Results I - Chicago

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] ]
Step 1 1185.5 1465.2 1394.5 1435.1 1370.1 1480
Step 2 1119.1 1268.1 1301.4 1407.7 1274.1 9700
Step 3 1191.6 1348.0 1334.0 1419.2 1323.2
Step 4 1223.0 1369.5 1345.4 1428.4 1341.6
Total 11450

5.3.2 AR results IT - Chicago

Step 1

Table 5.9 shows the optimization results achieved by Step 1 in AR optimization

IT for Chicago. Optimization runs for four sub-problems (S5_3, N3_3, E5_3, W3_3) are

executed in this step. The values of the first design three variables are v; = 6, vy

6,v3 = 4. The best glazing (glazing type 6), the second best insulation (0.19 W/m?K)

and the lowest infiltration rate (0.12) are shown. Compared with the optimal solutions
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achieved in AR optimization I, AR optimization II shows the same glazing system

and infiltration rate, while a lower value insulation is selected. The average total

energy demand is 1339.8 kWh, which is 2.2% lower than the 1370.1 kWh achieved by

AR optimization I.

Table 5.9: AR Results II - Step 1 — San Francisco

v V2 U3 Vs UV Us Qrotal

Gene. Simu.

Unit [kWh]  [-] -]
S35 6 7 4 2 9 3 11093 14 280
Es3 6 6 3 9 9 3 1514.2 20 400
Ny 3 6 4 4 1 1 5 1365.7 15 300
Ws—s 6 7 3 4 1 3 1370.0 19 380
Avg. 6 6 4 - - -

1339.8

17
68

340
1360

1-1

Avg.

Sum.
E 1-1
W

1-1

Figure 5.13: AR Results II — Step 1 — Chicago
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Step 2
Table 5.10: AR Results IT — Step 2 — South fagade — Chicago

Vi V2 V3 Vg VUsV Vg QTotal Gene. Simu.

Unit kWh] [ 8

S, 6 6 4 1 10 1 11464 21 420
Sis 6 6 4 2 10 1 11574 23 460
Si.s 6 6 4 2 9 2 11723 17 340
Ssy 6 6 4 2 7 2 10128 17 340
Ses 6 6 4 2 10 8 11757 18 360
Ses 6 6 4 1 10 1 1201.1 19 380
Ss, 6 6 4 9 10 3 12040 23 460
Sss 6 6 4 9 10 3 11986 21 420
Sss 6 6 4 9 9 7 12137 25 500
Avg. 1164.7 20.4 4089
Sum. 184 3680

S S S

5-1 5-3 5-5

Figure 5.14: AR Results II — Step 2 — South facade — Chicago

Table 5.10 shows the optimization results for south facade achieved by Step 2 of

the AR optimization I. The first three design variables (v; = 6,v2 = 6,v3 = 4) stay
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unchanged. The facade design solutions for these sub-problems are shown in Figure
5.14. Tt can be found that the optimization solutions achieved by Step 2 show large
overhang shading depths on the south facade. The average total energy demand for
all the 9 sub-problems is 1164.7 kWh, which is lower than the 1339.8 kWh achieved

by Step 1.

E E E,

5-1 5-3

Figure 5.15: AR Results II — Step 2 — East fagade — Chicago

Table 5.11 and Figure 5.15 show the optimization results for east facade achieved
by Step 2. The optimization runs are executed for 9 selected sub-problems (E;_1, Ey_3,
Ey 5,E5 1,FE3 3,FE5 5,F5 1, F5 3, E5_5) on the east orientation. The average total
energy demand for all the 9 sub-problems is 1290.1 kWh, which is 1.7% higher than
1268.1 kWh achieved by AR optimization I.

Table 5.12 represents the optimization results for north facade achieved. The opti-

mization runs are executed for 9 selected sub-problems Ny_q, N1_3, N1_5, N3_1, N3_3,
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Table 5.11: AR Results II — Step 2 — East facade — Chicago

vi Uy w3 vy U5V Vg Qrotr  Gene.  Simu.

Unit [kWh]  [] [

E., 6 6 4 5 1 2 12049 16 320
Eis 6 6 4 2 3 4 14757 11 220
Eis 6 6 4 1 7 8 12605 13 260
Eyy 6 6 4 1 5 8 12338 23 460
Bys 6 6 4 3 3 3 13549 18 360
Eys 6 6 4 3 5 7 12820 19 380
Es: 6 6 4 7 6 3 12475 14 280
Ess 6 6 4 3 1 3 13047 17 340
Ess 6 6 4 3 3 7 12979 15 300
Avg. 1200.1 18.7 3733
Sum. 168 3360

N3_5,N5_1, N5_3, N5_5) on the north orientation. The fagade design solutions for
these sub-problems are shown in Figure 5.16.

Table 5.12: AR Results IT — Step 2 — North facade — Chicago

vy Vg w3 vy U5V Vg Qroa  Gene.  Simu.

Unit kWh] [ 8

N, 6 6 4 1 1 8 13556 18 360
Nis 6 6 4 6 1 3 13473 16 320
Ni.s 6 6 4 3 2 3 12727 22 440
Nyy 6 6 4 3 2 3 13209 14 280
Nys 6 6 4 2 1 2 13094 14 280
Nys 6 6 4 6 5 8 12745 15 300
Nsy 6 6 4 3 2 3 13044 22 440
Nss 6 6 4 2 1 2 12993 14 280
Nss 6 6 4 6 2 3 12652 12 240
Avg. 1305.5 17.4 3489
Sum. 157 3140

The optimization solutions achieved by Step 2 show small depths for fin and
overhang shadings on the north fagade in this case study, which is constant with that
in AR I. The solutions achieved by this step show a consistent trend compared with
the solutions achieved by Step 1. The average total energy demand for all the 9
sub-problems is 1305.5 kWh, which is almost equal to the 1301.4 kWh achieved by

AR optimization I.
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Figure 5.16: AR Results IT — Step 2 — North fagade — Chicago

Table 5.13 represents the optimization results for western fagade achieved by Step
2 of the AR optimization I. The optimization runs are executed for 9 selected sub-
problems (W;_y, Wy _g, Wy_5, W3_1, W3_3, W3_5, W5_1, W5_35, W5_5) on the west ori-
entation. The facade design solutions for these sub-problems are shown in Figure
5.17.

It can be seen that the optimization solutions achieved by Step 2 show relatively
small depths for fin and overhang shadings on the lower and middle floors on the west
facade in this case study. Comparatively, the shading depths for rooms on the top
floor are larger. The solutions achieved by this step show a consistent trend compared
with the solutions achieved by Step 1. The average total energy demand for all the 9
sub-problems is 1369.5 kWh, which is 2.7% lower than the 1407.7 kWh achieved by

AR optimization I.
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Table 5.13: AR Results II — Step 2 — West facade — Chicago

v Uy w3 Uy sV Vg Qrotw  Gene.  Simu.
Unit [kWh]  [-] ]
Wiy 6 6 4 8 1 2 14252 10 200
Wi_s 6 6 4 2 1 2 13736 14 280
Wis 6 6 4 1 1 8 1367.9 20 400
Ws-y 6 6 4 9 1 8 1398.2 19 380
Wes 6 6 4 1 2 6 13721 21 420
Ws.s 6 6 4 1 3 7 1350.3 16 320
Ws-y 6 6 4 9 1 2 1313.8 15 300
Ws_s 6 6 4 9 2 2 13119 14 280
Wss 6 6 4 6 2 4 14122 15 300
Avg. 1369.5 16 320
Sum. 144 2880

W]-] W1-3 W]-S
W, ., W5
4 W A

5-1

5-5

Figure 5.17: AR Results II — Step 2 — West facade — Chicago

Step 3 and Step 4

The average total energy demand for all the rooms achieved by AR II (1321.2

kWhintheclimateo f Chicagoisl.5%lowerthanthat(1341.6kW h achieved by AR 1. The
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optimization solutions for the entire facade of AR II are shown in Figure 5.18 and

Figure 5.19. Details for Step 3 and Step 4 are shown in Appendix E.
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Figure 5.19: AR Results II — Step 4 — North and West facades — Chicago
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Table 5.14 represents the optimization result of AR optimization II for Chicago.
The average total energy demand for all the rooms is 1287.6 kWh in Step 2. After
interpolation processes in step 3 and Step 4, the average total energy demand for each
room is 1321.2 kWh.

Table 5.14: AR Results II - Chicago

S E N W Average Runs
Step 1 1109.3 1514.2 1365.7 1370.0 1339.8 1360
Step 2 1185.3 1290.1 1305.5 1369.5 1287.6 13060
Step 3 1203.8 1344.1 1320.3 1371.6 1310.0
Step 4 1209.4 1361.9 1324.7 1389.1 1321.2
Total 14420

5.3.3 Summary

Table 5.15 shows the optimal design variables achieved through the two AR opti-
mization runs for Chicago. AR I achieves the optimal solutions for the glazing type,
insulation and infiltration v; = 6, vy = 5,v3 = 4. AR II achieves the optimal solutions
for the glazing type, insulation and infiltration v; = 6,v9 = 6,v3 = 4. The solutions
achieved by AR I and AR II are steady, as well as the solutions achieved for each
orientation.

Table 5.15: Comparison of Design Variables for AR I and AR II — Chicago

AR I (%1

Va2 V3 Vg Vs Vg AR II Vi V2 V3 Vg Vs Vg
S33 6 5 3 2 9 7 S35 6 7T 4 2 9 3
Es 3 6 4 4 3 2 4 Ey3s3 6 6 3 9 9 3
Nssz 6 5 0 8 4 7 Nyy 6 4 4 1 1 5
Wss 6 6 4 7 7 6 W;3 6 7 3 4 1 3
6 5 4 - - - 6 6 4 - - -

Table 5.16 represents the optimization results achieved through the two AR opti-
mization runs for Chicago. The average total energy demand for each room achieved
through AR Tis 1341.6 kWh and 1321.2 kWh for AR II. There is only a 1.5% differ-

ence, which validates the stability of AR optimization method.
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Table 5.16: Comparison of Results for AR I and AR II — Chicago

S E N W Average Runs

AR
ART Step1 1185.5 1465.2 1394.5 1435.1 1370.1 1480

Step 2 1119.1 1268.1 1301.4 1407.7 1274.1 9700

Step 3 1191.6 1348.0 1334.0 1419.2 1323.2

Step 4 1223.0 1369.5 1345.4 1428.4 1341.6

Total 11450
AR II Step 1 1109.3 1514.2 1365.7 1370.0 1339.8 1360

Step 2 1185.3 1290.1 1305.5 1369.5 1287.6 13060

Step 3 1203.8 1344.1 1320.3 1371.6 1310.0

Step 4 1209.4 1361.9 1324.7 1389.1 1321.2

Total 14420
Avg. 12935

It can also found that it needs 11450 simulations in total for AR I and 14420
simulations in total for AR I and AR II, respectively. The number of average total
simulation runs is 12935, which has the same magnitude with the 11070 for San Fran-

cisco. This also validates the robustness for the implementation of AR optimization

methodology.

5.4 AR Results for Miami

5.4.1 AR results I - Miami

Table 5.17: AR Results I — Step 1 — Miami

V1 V2 V3 Vg U5 Vg QTotaz

Gene. Simu.

Unit [kWh]  [-] ]
S323 6 5 1 9 5 6 17144 20 400
Fy s 6 3 2 9 4 3 2231.1 12 240
Nsy_g 1 7 1 4 5 3 20213 11 220
Ws_a 4 2 1 5 8 4 1999.2 20 400
Avg. 4 5 1 - - -

Avg. 1991.5 15.8 315
Sum. 1260

Table 5.18 represents the optimization result of AR optimization I on each Step.
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Table 5.18: AR Results I - Miami

S E N W Average Runs
[kWh] [kWh] [kWh] [kWh] [kWh] [
Step 1 1714.4 2231.1 2021.3 1999.2 1991.5 1260
Step 2 1712.8 1822.0 1883.2 1932.8 1837.7 10240
Step 3 1736.3 1934.5 1877.2 1898.1 1861.5
Step 4 1755.8 1946.8 1880.9 1835.4 1854.7
Total 11500

|
—

It could be seen that the average total energy demand for all the rooms is 1837.7 kWh
in Step 2. After interpolation processes in Step 3 and Step 4, the average total energy
demand for each room is 1991.5 kWh. In Step 2, the AR finds the optimal solutions

for all the 36 sub-problems with the same design variables vy = 4, vy, = 5,v3 = 1.

Figure 5.20: AR Results I — Step 4 — South and East facades - Miami

The optimization solutions for the entire fagade of AR I are shown in Figure 5.20

and Figure 5.21. Details of the optimization procedures are shown in Appendix F.
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Figure 5.21: AR Results I — Step 4 — North and West fagades - Miami
Table 5.19: AR Results II — Step 1 — Miami

v1 Vs w3 Uy Vs Vs Qrotw Gene. Simu.

Unit kWh] [ 1]

Ss_3 4 7 2 8 5 6 1750.1 20 400

Ess 4 1 2 9 1 3 21706 18 360

Nsys 6 4 1 1 1 8 2121.8 14 280

Ws.s 6 3 1 3 2 4 19343 20 400
5 4 1 - - -

Avg 1994.2 18 360
Sum. 1440
Table 5.20: AR Results II - Miami

S E N W Average Runs

[kWh] [kWh] [kWh] [kWh] [kWh] ]
Step 1 1750.1 2170.6 2121.8 1934.3 1994.2 1440
Step 2 1643.4 1613.5 1562.0 1624.6 1610.9 13300
Step 3 1700.4 1774.3 1759.1 1730.5 1741.1
Step 4 1699.0 1833.8 1792.8 1739.3 1766.2
Total 14740

5.4.2 AR results II - Miami

Table 5.19 represents the optimization result of AR optimization II on each Step.
It could be seen that the average total energy demand for all the rooms is 1610.9 kWh

128



Figure 5.23: AR Results II — Step 4 — North and West fagades - Miami

in Step 2. After interpolation processes in Step 3 and Step 4, the average total energy
demand for each room is 1766.2 kWh. In Step 2 the AR achieves the optimal solutions

for all the 36 sub-problems with the same design variables v; = 5, v, = 4,v3 = 1.
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The optimization solutions for the entire facade of AR II are shown in Figure 5.22

and Figure 5.23. Details of the optimization procedures are shown in Appendix G.

5.4.3 Summary

The optimization results show that AR is efficient and robust in solving fagade op-
timization problems in different climates as well as providing facade design strategies

at the early design stage.

Table 5.21: Comparison of Design Variables for AR I and AR II — Miami

ART wv; vy wg w4 vs vg ARII vy vy w3 vg4 vs g
S323 6 5 1 9 5 6 Ss;_3 4 7 2 8 5 6
Esys 6 3 2 9 4 3 Eys 4 1 2 9 1 3
Nyyg 1 7 1 4 5 3 Nyg 6 4 1 1 1 8
Ws_3 4 2 1 5 8 4 W33 6 3 1 3 2 4
4 5 1 - - - 5 4 1 - - -

Table 5.22: Comparison of Results for AR I and AR II — Miami

S E N W% Average Runs

AR
ART Step1 1714.4 2231.1 2021.3 1999.2 1991.5 1260
Step 2 1712.8 1822.0 1883.2 1932.8 1837.7 10240
Step 3 1736.3 1934.5 1877.2 1898.1 1861.5
Step 4 1755.8 1946.8 1880.9 1835.4 1854.7
Total 11500
ARII Step1 1750.1 2170.6 2121.8 1934.3 1994.2 1440
Step 2 1643.4 1613.5 1562.0 1624.6 1610.9 13300
Step 3 1700.4 1774.3 1759.1 1730.5 1741.1
Step 4 1699.0 1833.8 1792.8 1739.3 1766.2
Total 14740
Avg. 13120

Table 5.21 shows the optimal design variables achieved through the two AR op-
timization runs for Miami. AR I achieves the optimal solutions for the glazing type,
insulation and infiltration v; = 4, v, = 5,v3 = 1. AR II achieves the optimal solutions

for the glazing type, insulation and infiltration v; = 5,v9 = 4,v3 = 1. The solutions
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achieved by AR I and AR II are steady, as well as the solutions achieved for each
orientation.

Table 5.22 represents the optimization results achieved through the two AR opti-
mization runs for Miami. The average total energy demand for each room achieved
through AR T is 1854.7 kWh and 1766.2 kWh for AR II. There is only a 4.8 %
difference, which validates the stability of AR optimization method.

It can also found that it needs 11500 simulations in total for AR T and 14740
simulations in total for AR I and AR II, respectively. The number of average to-
tal simulation runs is 13120, which has a similar magnitude to the 11070 for San
Francisco, and the 12935 for Chicago. The consistent of these optimization results

validates the robustness of the AR.
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CHAPTER VI

Conclusions

6.1 Dissertation Summary

This dissertation is built upon the premise that hierarchical optimization method-
ology can improve the efficiency of simple genetic algorithm (GA) in solving facade
optimization problems. The main goal of this dissertation is to improve the existing
simple GA for reducing the simulation time while not undermining its robustness. As
an outcome, a set of interrelated design-analysis tasks are posed in a multi-level hi-
erarchical design optimization framework which is named Adaptive Radiation (AR).
Three cities in different climates of the United States are analyzed and the optimal
facade design solutions are achieved through this new methodology.

Genetic algorithm was proposed as an optimization methodology which can solve
non-linear variables that are very common in building optimization problems. How-
ever, it’s still very time-consuming for complicated problems with a large number of
variables. Former studies have validated the efficiency and robustness of the genetic
algorithm in solving FPO problems. Chapter 2 reviewed these studies and proposed
a hierarchical GA which can solve FPO problems with much less simulation time.
This chapter also provided an overview of simulation methods and techniques that
can be implemented in solving FPO problems.

Chapter 3 presented the methodological framework of the algorithm of adaptive
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radiation. The design optimization model was reviewed for recent developments in the
field, with an emphasis on continuous or discrete, linear or non-linear formulations
of optimization models. Adaptive Radiation (AR) was proposed as a hierarchical
optimization framework for coordination decision-making tasks that require multiple
and diverse simulations, and for extending the scope of optimization in facade design
for deriving consistent and concurrent decisions. The main levels involved in im-
plementing a facade design scenario in AR framework are also described in Chapter
3.

Chapter 4 presented a facade design scenario of typical mid-rise office building to
demonstrate the AR process in simulation-based facade optimization. The optimiza-
tion objective is the total annual energy demand of heating, cooling, and artificial
lighting. Results of this case study presented that the method of adaptive radia-
tion can improve the efficiency of simple genetic algorithm by largely reducing the
computation time.

Chapter 5 further tested the robustness of adaptive radiation by implementing
this methodology in two other climates of the U.S. The optimization results validated
the efficiency and robustness of this process, and provided facade design strategies

which are responsive to different local climates.

6.2 Contributions

The main accomplishment of this dissertation is proposing a hierarchical opti-
mization algorithm — AR, based on the improvement of simple GA, and extending it
towards solving facade optimization problems in different climates, thus providing a
broadened context of design decision-making contributions at early design stage. The
efficiency and robustness of AR are validated through design scenarios in different
climates in the U.S.

This dissertation provides specific contributions in the building optimization field.
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First, the optimization algorithms are organized in a hierarchical structure to solve
complex facade optimization problems with a large number of design variables, based
on the key interrelationships between the design variables and design objectives. Sec-
ond, the organization of optimization is flexible and can be integrated with other
optimization algorithms at different levels, and offers a new approach to coordinating
multiple simulations in the decision-making process, thus can further improve the
efficiency and accuracy of AR. Third, it is simple and easy for use by designers. The
workflow represents a visualization platform between 3D/CAD modeling, building
simulation and optimization process, and provides quick feedback of facade design
variables, which helps architects to make design decisions at the early design stage
and scrutinize the results clearly.

This dissertation has validated the potential of a hierarchical optimization method-
ology through facade design scenarios. The procedure can also be extended towards
a broad field of complex simulation-based architectural optimization problems. The
design variables of the design scenarios in this dissertations are only passive design
strategies for facade optimization problem, and the design objective is solely total en-
ergy demand. Moreover, active design strategies together with more design objectives
can also be involved. On each level of AR, the optimization will have the flexibility
to subject the design to appropriate optimization algorithms and achieve values of
design variables without undermining consistency with the values of design variables

achieved at previous or future levels of the entire optimization process.

6.3 Directions for Future Research

The immediate steps following this study include:
1) Investigate the possibility to integrate different appropriate optimization algo-
rithms on different levels of AR to further improve its efficiency and accuracy.

2) Extend the design variables to more complex fagade optimization problems,
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which are not only limited to passive design strategies, but also include active design
strategies.
3) Extend the design scenarios to multi-objective optimization problems with dif-

ferent design objectives.
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APPENDIX A

AR T Result for San Francisco (partial)
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Figure A.1: AR Results I — South fagade — San Francisco
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Figure A.2: AR Results I — East facade — San Francisco
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Figure A.3: AR Results I — North fagade — San Francisco
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Figure A.4: AR Results I — West fagade — San Francisco
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APPENDIX B

AR ITI Result for San Francisco (partial)
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Table B.1: AR Results II — Step 3 — San Francisco

v; vy w3 vy vy vg |kKWHh] v1 vy w3 vy vy vg |kKWh]
Si., 6 5 4 8 9 3 10628 E,; 6 5 4 9 3 3 12288
Sis 6 5 4 7 6 5 12468 E;_, 6 5 4 9 3 3 1337.0
Si.3 6 5 4 6 3 6 11767 E,.3 6 5 4 9 2 3 14186
Si.4« 6 5 4 8 2 7 12984 E,., 6 5 4 7 3 5 1536.3
Si.s 6 5 4 10 1 8 11516 Ei—5 6 5 4 4 3 7 1208.9
Ss31 6 5 4 1 10 3 10503 E3y 6 5 4 1 5 1 11714
S 6 5 4 5 7 4 12800 FE3 5, 6 5 4 4 5 2 14973
Ss_3 6 5 4 8 4 4 11477 Es; 3 6 5 4 7 4 3 14564
S34, 6 5 4 7 5 6 13651 E34, 6 5 4 4 6 6 15185
Sy 6 5 4 6 5 7 11265 E;s 6 5 4 1 7 9 11922
Ss-; 6 5 4 2 10 2 10436 Es—; 6 5 4 5 3 2 11486
Ss.» 6 5 4 3 9 3 12752 Es o 6 5 4 6 4 2 14456
Ss—.3 6 5 4 4 7 4 11896 FEs3 6 5 4 7 5 2 1414.2
Ss.4 6 5 4 3 7 6 13366 Es_, 6 5 4 4 4 6 14724
Ss.s 6 5 4 1 7 7 11236 Es-s 6 5 4 1 3 9 1174.0
Avg. 11916 Avg. 1348.0
N, 6 5 4 2 2 6 14167 Wiy 6 5 4 2 4 6 1456.7
Ny 6 5 4 5 3 7 14451 W1 6 5 4 2 4 7 14723
Ni.3 6 5 4 8 3 7 14221 W3 6 5 4 1 4 7 1460.5
N4 6 5 4 9 4 7 13609 W, 6 5 4 1 3 7 1462.0
Ni_s 6 5 4 9 4 7 11716 Wi 6 5 4 1 2 6 1370.3
Ny 6 5 4 8 1 2 13421 W5, 6 5 4 1 4 6 1428.1
Ns o 6 5 4 7 1 5 13985 W3, 6 5 4 2 7 7 14258
Ns 3 6 5 4 6 1 7 13697 W33 6 5 4 2 10 7 1390.2
Ns_y, 6 5 4 6 1 7 13584 W34, 6 5 4 2 6 5 14645
Nss 6 5 4 6 1 6 11634 W55 6 5 4 1 1 3 1393.7
Ny_y 6 5 4 1 3 6 13658 Wz 6 5 4 5 1 7 13936
Nso 6 5 4 6 3 7 13828 Ws_o 6 5 4 7 2 6 1412.2
Ny3 6 5 4 10 3 7 13170 Ws_3 6 5 4 9 3 4 14038
Nsy, 6 5 4 6 2 5 13514 W54 6 5 4 7 3 6 13819
Ns_s 6 5 4 1 1 3 11444 Wy 6 5 4 4 3 7 13727
Avg. 13340 Avg. 1419.2
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Table B.2: AR Results II — Step 4 — San Francisco

v; vy w3y vy vy vg |kKWHh] v1 vy vy vy vy vg |kKWh]
Si-1 4 3 1 8 8 3 3212 Ei_, 4 3 1 5 2 2 349.0
S, 4 3 1 8 8 3 2168 E,_», 4 3 1 4 5 3 6818
Si.s 4 3 1 8 7 3 3453 FE,.3 4 3 1 2 8 4 7359
Si., 4 3 1 8 8 5 3271 FE_4, 4 3 1 3 5 7 8781
Si.s 4 3 1 8 8 7 2904 FEi_5 4 3 1 3 2 9 3942
Sy 4 3 1 7 9 4 281 FEy,; 4 3 1 7 4 3 4409
Soo 4 3 1 8 8 4 2927 FE,», 4 3 1 6 4 3 5629
So.3 4 3 1 8 6 5 3042 FEy 3 4 3 1 6 5 4 8182
Soy 4 3 1 8 6 6 3070 Eey 4 3 1 4 3 6 8205
Sos 4 3 1 9 5 8 386 FEr5 4 3 1 2 2 9 3164
S31 4 3 1 6 10 4 2866 FE3, 4 3 1 8 6 3 3129
S3 o 4 3 1 7 8 6 25649 FE3o, 4 3 1 9 4 3 6029
S;s 4 3 1 8 b5 7 3307 Es3 4 3 1 9 1 3 5411
S3, 4 3 1 9 4 8 3526 E;3 4 4 3 1 5 1 6 7829
S35 4 3 1 9 2 8 3190 FE3s 4 3 1 1 1 9 3343
Sp-y 4 3 1 4 10 3 3138 E,; 4 3 1 9 7 3 4356
Sio 4 3 1 6 8 4 2523 E; o 4 3 1 7 4 3 6237
Si3 4 3 1 8 6 6 2006 FE43 4 3 1 5 1 2 5417
Sps 4 3 1 9 5 7 2955 E;, 4 3 1 5 2 5 8424
S;.s 4 3 1 9 4 8 2931 E;,5 4 3 1 5 3 8 3245
Ss.1 4 3 1 2 9 2 3185 FEs; 4 3 1 9 7 3 4073
Ss.» 4 3 1 5 8 3 3562 FEy, 4 3 1 5 4 2 6131
Ss.3 4 3 1 8 7 4 4151 FEs3 4 3 1 1 1 1  635.7
Ss_y 4 3 1 9 7 6 2456 Es_4 4 3 1 5 3 4 7485
Sss 4 3 1 9 6 7 3308 FEss 4 3 1 8 4 7 3386
Avg. 310.6 Avg. 563.3
N 4 3 1 2 1 4 5923 W, 4 3 1 2 3 6 6030
Ni_ 4 3 1 5 4 6 8481 W;, 4 3 1 2 2 5 6402
N3 4 3 1 8 7 7 5923 W3 4 3 1 2 1 4 5768
N4, 4 3 1 6 8 7 7342 W_,4 4 3 1 4 1 5 6558
N_s 4 3 1 3 8 6 318 W 4 3 1 6 1 5 6122
Noqy 4 3 1 2 2 4 77125 Wy 4 3 1 2 2 6 5982
Noo 4 3 1 3 3 4 8269 Wy, 4 3 1 2 4 5 6034
Nosg 4 3 1 5 5 5 812 Wy 3 4 3 1 2 5 4 6508
Noy 4 3 1 4 5 6 6609 Woy 4 3 1 3 4 5 5999
Nos 4 3 1 2 6 7 3934 Wes 4 3 1 4 2 6 5447
Nsyy 4 3 1 1 2 3 5720 W;; 4 3 1 1 1 6 5677
Nso 4 3 1 2 2 3 5902 W3, 4 3 1 2 5 5 5562
Ns_3 4 3 1 2 2 3 4674 W53 4 3 1 2 9 3 586.0
Ns4, 4 3 1 2 3 5 7136 W4 4 3 1 2 6 5 5792
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V1 Vg2 V3 Vg Vs Vg [kWh] Vp Vg V3 Vg Vs Vg [kWh]
Nsy5 4 3 1 1 4 7 3048 W5 4 3 1 2 3 7 4792
Ny 4 3 1 1 2 3 6337 Wyy 4 3 1 5 1 7 6141
Nyo 4 3 1 2 2 4 6113 Wyo 4 3 1 4 5 5 586.6
Nys 4 3 1 2 2 5 7291 W, 4 3 1 3 10 4 539.1
Nyy 4 3 1 2 3 6 581 Wy 4 3 1 2 7 5 5252
Nys 4 3 1 2 3 7 2311 W, 4 3 1 2 4 7 4447
Nsoy 43 1 1 1 3 5081 Wy 4 3 1 9 1 8 546.0
Nso 4 3 1 2 2 5 7092 Ws;» 4 3 1 6 6 6 5786
Nss 4 3 1 2 2 7 4333 W3 4 3 1 3 10 4 566.2
Ns—y 4 3 1 2 2 7 4529 W4 4 3 1 3 7 6 5039
Nys 4 3 1 2 2 7 2868 Wss 4 3 1 2 4 7 5123
Avg. 580.4  Avg. 570.8
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Figure B.1: AR Results II — South fagade — San Francisco
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Figure B.2: AR Results II — East fagade — San Francisco
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Figure B.3: AR Results II — North facade — San Francisco
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Figure B.4: AR Results II — West facade — San Francisco
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APPENDIX C

GA 1II Result for San Francisco
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Table C.1: GA Results IT — South facade — San Francisco

v vy vz vy vs Vs Qp Qo QL Qrota  Gene. Simu.
Unit [kWh] [kWh] [kWh] [kWh] [ ]
Si; ., 4 2 1 7 5 4 353 1945 964 326.3 20 400
Si» 4 5 1 8 9 3 312 1362 151.1 3185 44 880
Si_s 4 4 1 8 7 7 342 108.7 195.6 338.5 40 800
Si.a 4 7 1 6 7 2 214 1417 2255 388.7 38 760
Si.s 4 3 1 6 3 8 273 142.1 1404 309.8 28 560
Sy 6 1 1 7 9 4 147 1724 1209 307.9 39 780
Seoo 4 3 1 9 7 6 439 1245 1955 363.9 26 520
Soos 4 2 1 9 5 6 442 1612 1723 3777 13 260
Seoy 4 2 1 8 6 7 351 168.8 181.3 3851 20 400
Soos 4 3 1 5 4 6 270 1934 1296 3499 14 280
Ss.y 4 5 1 1 10 3 177 173.8 104.2 295.8 46 920
Ss3_o 4 7 1 9 6 3 254 174.7 135.6 335.7 30 600
Ss_s 4 7 1 8 5 4 300 155.6 1504 336.0 14 280
Ss_y 4 1 1 5 10 4 436 1425 202.2 388.3 30 600
Sss 4 5 1 9 6 7 313 139.3 141.1 311.8 45 900
Se1 4 3 1 6 7 4 353 157.3 1221 314.8 13 260
Sy o 4 5 1 6 5 4 311 184.3 119.7 335.0 28 560
S,.s 4 6 1 7 5 4 292 180.8 1412 3512 65 1300
Siqs 4 4 1 7 8 4 400 129.3 229.1 3985 16 320
Sis 4 6 1 9 2 8 270 146.2 132.3 3055 31 620
Ss1 4 4 1 7 9 6 385 1531 1485 340.0 12 240
Ss.» 4 2 1 9 5 3 378 1956 111.9 3452 25 500
Ss.s 4 4 1 4 7 6 220 247.3 150.9 420.2 18 360
Sey 4 4 1 7 7 4 366 1676 212.0 4163 20 400
Ss.s 4 3 1 7 5 7 315 1854 1354 3523 15 300
Avg. 4 4 1 7 6 5 317 163.1 153.8 3485 27.6 552
Sum 690 13800
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— San Francisco

Figure C.1: AR Results II — South facade
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Table C.2: GA Results II — East facade — San Francisco

v vy vz vy vs Vs Qp Qo QL Qrota  Gene. Simu.
Unit [kWh] [kWh] [kWh] [kWh] [ 8
EF., 4 2 1 3 3 2 345 120.2 195.3 349.9 27 540
EFis, 4 1 1 4 3 7 455 168.4 458.4 672.2 13 260
Fis 4 1 1 2 1 4 435 212.7 359.7 6159 25 500
EFi,2 4 1 1 4 1 3 41.7 189.2 458.2 689.1 38 760
Fis 4 2 1 2 2 4 458 1491 2258 4208 18 360
Fy, 4 3 1 3 8 3 346 1128 2174 3648 13 260
Ey s 4 1 1 6 1 3 513 142.4  310.8 504.5 15 300
Fys 4 1 1 8 1 3 480 261.0 3057 6146 14 280
Ey o, 4 1 1 1 1 9 36.1 174.5 4509 661.6 18 360
Fys 4 2 1 10 1 6 487 1353 2257 409.7 23 460
EFsy 4 3 1 8 5 3 427 85.4 162.8 2909 27 540
FEs s 4 3 1 4 1 3 419 138.9 287.0 467.8 17 340
FEs 5 4 1 1 2 1 4 483 188.4 363.0 599.7 18 360
FEsy 2 3 2 9 3 3 869 197.7  310.7 595.3 38 760
Fsys 4 4 1 6 4 6 481 1116 2320 391.7 13 260
EFi7 4 3 1 1 5 1 36.2 99.4 193.7 329.3 25 500
Eio 2 1 1 &8 3 3 1290 98.6 247.0 4746 9 180
E,5 4 2 1 5 1 2 462 1553 3236 525.1 16 320
E,y 4 2 1 1 1 9 355 143.1 4264 605.0 34 680
Fi.s 4 7 1 1 1 9 438 94.6 187.1 3255 50 1000
Fsqy 4 6 1 1 4 1 262 1294 1856 3412 45 900
FEs o 4 2 1 8 1 3 507 152.1 2244 4271 27 540
FEs s 4 1 1 5 1 2 537 162.3 307.3 523.3 14 280
FEsy 4 1 1 1 2 9 482 129.5 3979 5756 28 560
Fss 4 7 1 1 4 9 469 846 1874 3188 41 820
Avg. 4 2 1 4 2 4 486 1455 289.8 483.8 24.2 4848
Sum 606 12120
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IT

Figure C.2: AR Results
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Table C.3: GA Results II — North facade — San Francisco

v vy vz vy vs Vs Qp Qo QL Qrota  Gene. Simu.
Unit [kWh] [kWh] [kWh] [kWh] [ 8
Ny, 4 1 1 4 1 4 346 1716 3835 589.6 28 560
Ni_ 4 1 1 2 2 4 438 170.2 374.3 588.3 45 900
N3 4 1 1 2 1 4 421 175.0 375.1 5922 29 580
N4, 4 3 1 3 5 2 356 152.8 415.1 603.5 15 300
Ni_s 4 3 1 1 2 6 595 143.3 1583 361.1 28 560
Noy 4 1 1 1 2 4 387 162.0 3752 5759 16 320
Noog 4 1 1 3 1 3 504 92.7 325.9 469.0 17 340
Nog 4 2 1 3 2 3 388 1089 3735 5212 24 480
Noy 2 3 4 3 3 3 597 135.5 346.2 5414 28 560
Nog 6 1 1 10 4 6 315 1419 157.8 331.3 41 820
Ny, 4 1 1 6 1 2 378 1402 3554 5334 22 440
Ny, 4 3 1 2 1 3 405 97.2 322.2  460.0 33 660
Nig 4 6 1 2 1 3 349 1020 3145 4514 43 860
Ns_y 4 5 1 2 1 3 452 116.2 293.8 455.2 30 600
Nss 4 2 2 2 2 7 535 915 1262 2712 13 260
Ny 4 4 1 1 5 1 34.2 100.7 193.8 3286 29 580
Nyo 4 4 1 4 1 3 434 92.8 2777 413.8 20 400
Nies 4 6 1 2 1 3 375 111.1 3002 448.8 42 840
Nyy 4 4 1 2 2 3 518 104.7  269.1 425.7 18 360
Nys 4 4 2 2 2 7 478 92.9 1224  263.1 28 560
Ns.y 4 2 1 1 6 7 413 129.7 3319 503.0 16 320
Ns o 4 5 1 2 1 3 41.2 99.6 283.9 424.8 30 600
Ny_3 4 3 1 2 1 3 487 98.7 274.0 4214 24 480
Ns_y 4 6 1 2 1 3 439 116.5 232.8 393.3 43 860
Nos 6 1 1 2 2 7 377 1122 1235 2734 34 680
Avg. 4 3 1 3 2 4 430 1224 2843 4496 27.8  556.8
Sum 696 13920
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Figure C.3: AR Results II — North fagade — San Francisco
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Table C.4: GA Results IT — West facade — San Francisco

v vy vz vy U5 Vs Qpm Qe QL Qrotar  Gene. Simu.
Unit kWh] [kWh] [kWh] [kWh] [ 1]
Wi, 4 1 1 2 2 6 609 146.2 381.5 588.7 48 960
Wi 2 6 3 2 5 6 64.9 163.9 392.1 6209 31 620
Wi 4 1 1 2 3 6 617 144.3 386.2 592.2 18 360
W4 4 1 1 2 5 6 604 137.3 366.7 5644 19 380
Wi 4 1 1 1 3 6 592 146.6  337.5 543.2 37 740
Weey, 4 1 1 1 2 6 629 150.8 352.6 566.3 44 880
Woeo 4 1 1 1 3 6 612 138.3 363.7 563.2 28 560
Wes 4 2 1 1 1 6 552 1361 350.1 5414 20 400
Woy 4 2 1 1 2 6 5H&H 139.5 3325 530.5 18 360
Wes 4 1 2 2 3 1 515 1115 3587 521.7 27 540
Wsy 4 1 1 1 1 6 604 181.0 3275 5689 20 400
Ws, 4 1 1 1 1 6 598 172.1  337.2 569.1 26 520
Ws;.s 4 1 1 2 3 3 618 136.5 356.3 554.7 21 420
Wiy 4 2 1 2 1 7 575 149.7 305.5 512.6 28 560
Wss 4 6 1 2 1 3 481 123.0 333.6 504.8 48 960
Wyey 4 1 1 4 1 3 609 186.8 303.3 551.0 32 640
Wieo 4 1 1 5 4 4 635 135.7 351.9 551.1 15 300
Wsys 4 1 1 2 1 3 650 148.2  310.8 525.0 26 520
Wyy 4 6 1 2 1 3 505 131.6 321.3 5034 39 780
W,s 4 4 1 2 2 3 583 1097 311.2 479.1 27 540
Wy 4 1 1 1 7 4 61.1 1883 3147 5641 20 400
Wss 4 4 1 5 8 4 498 163.7 3514 564.8 23 460
Ws_s 4 2 1 2 7 3 557 167.4 327.0 550.1 25 500
Wsy 4 5 1 2 5 3 519 144.1 3159 511.9 25 500
Wss 4 3 1 2 1 3 555 183.5 2639 5029 24 480
Avg. 4 2 1 2 3 5 582 1494 3381 5458 27.6  551.2
Sum. 689 13780
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Figure C.4: AR Results IT — West facade — San Francisco
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APPENDIX D

AR I Result for Chicago
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Table D.1: AR Results I — Step 3 - Chicago

v; vy w3 vy vy vg |kKWHh] v1 vy w3 vy vy vg |kKWh]
Si., 6 5 4 8 9 3 10628 E,; 6 5 4 9 3 3 12288
Sis 6 5 4 7 6 5 12468 E;_, 6 5 4 9 3 3 1337.0
Si.3 6 5 4 6 3 6 11767 E,.3 6 5 4 9 2 3 14186
Si.4« 6 5 4 8 2 7 12984 E,., 6 5 4 7 3 5 1536.3
Si.s 6 5 4 10 1 8 11516 Ei—5 6 5 4 4 3 7 1208.9
Ss31 6 5 4 1 10 3 10503 E3y 6 5 4 1 5 1 11714
S 6 5 4 5 7 4 12800 FE3 5, 6 5 4 4 5 2 14973
Ss_3 6 5 4 8 4 4 11477 Es; 3 6 5 4 7 4 3 14564
S34, 6 5 4 7 5 6 13651 E34, 6 5 4 4 6 6 15185
Sy 6 5 4 6 5 7 11265 E;s 6 5 4 1 7 9 11922
Ss-; 6 5 4 2 10 2 10436 Es—; 6 5 4 5 3 2 11486
Ss.» 6 5 4 3 9 3 12752 Es o 6 5 4 6 4 2 14456
Ss—.3 6 5 4 4 7 4 11896 FEs3 6 5 4 7 5 2 1414.2
Ss.4 6 5 4 3 7 6 13366 Es_, 6 5 4 4 4 6 14724
Ss.s 6 5 4 1 7 7 11236 Es-s 6 5 4 1 3 9 1174.0
Avg. 11916 Avg. 1348.0
N, 6 5 4 2 2 6 14167 Wiy 6 5 4 2 4 6 1456.7
Ny 6 5 4 5 3 7 14451 W1 6 5 4 2 4 7 14723
Ni.3 6 5 4 8 3 7 14221 W3 6 5 4 1 4 7 1460.5
N4 6 5 4 9 4 7 13609 W, 6 5 4 1 3 7 1462.0
Ni_s 6 5 4 9 4 7 11716 Wi 6 5 4 1 2 6 1370.3
Ny 6 5 4 8 1 2 13421 W5, 6 5 4 1 4 6 1428.1
Ns o 6 5 4 7 1 5 13985 W3, 6 5 4 2 7 7 14258
Ns 3 6 5 4 6 1 7 13697 W33 6 5 4 2 10 7 1390.2
Ns_y, 6 5 4 6 1 7 13584 W34, 6 5 4 2 6 5 14645
Nss 6 5 4 6 1 6 11634 W55 6 5 4 1 1 3 1393.7
Ny_y 6 5 4 1 3 6 13658 Wz 6 5 4 5 1 7 13936
Nso 6 5 4 6 3 7 13828 Ws_o 6 5 4 7 2 6 1412.2
Ny3 6 5 4 10 3 7 13170 Ws_3 6 5 4 9 3 4 14038
Nsy, 6 5 4 6 2 5 13514 W54 6 5 4 7 3 6 13819
Ns_s 6 5 4 1 1 3 11444 Wy 6 5 4 4 3 7 13727
Avg. 13340 Avg. 1419.2
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Figure D.1: AR Results I — South fagade — Chicago
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Figure D.2: AR Results I — East facade — Chicago
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Figure D.3: AR Results I — North facade — Chicago
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Table D.2: AR Results I — Step 4 - Chicago

v; vy w3y vy vy vg |kKWHh] v; vy vy vy vy vg |kKWHh]
Si-1 6 5 4 8 9 3 10628 E;; 6 5 4 9 3 3 12288
S, 6 5 4 7 6 5 12468 E,, 6 5 4 9 3 3 13370
Si.3 6 5 4 6 3 6 11767 E,.3s 6 5 4 9 2 3 14186
Si.4« 6 5 4 8 2 7 12984 E,., 6 5 4 7 3 5 1536.3
Si.s 6 5 4 10 1 8 11516 E;,.5 6 5 4 4 3 7 12089
Sy 6 5 4 5 10 3 1183 Ey, 4y 6 5 4 5 4 2 13185
Seo 6 5 4 6 7 4 12119 Ey o 6 5 4 7 4 3 12738
Seo3 6 5 4 7 4 5 12826 Ey; 3 6 5 4 &8 3 3 1418.1
Seo.y 6 5 4 8 3 6 13100 Ey4, 6 5 4 5 4 6 15383
S5 6 5 4 8 3 8 12512 Ey 5 6 5 4 3 5 8 13293
S3.1 6 5 4 1 10 3 10503 FE3; 6 5 4 1 5 1 11714
S3o 6 5 4 5 7 4 12800 Es3 o, 6 5 4 4 5 2 14973
Sea 6 5 4 8 4 4 11477 FEss 6 5 4 7 4 3 14564
S34, 6 5 4 7 5 6 13651 E34, 6 5 4 4 6 6 15185
S35 6 5 4 6 5 7 11265 E35 6 5 4 1 7 9 11922
Si.1 6 5 4 2 10 3 12943 E, 4 6 5 4 3 4 2 13685
Sy o 6 5 4 4 8 3 127137 E4 o 6 5 4 5 4 2 14510
Si3 6 5 4 6 6 4 12625 E, 3 6 5 4 7 5 3 14295
Si-4 6 5 4 5 6 6 13624 E,4, 6 5 4 4 5 6 15314
Sys 6 5 4 4 6 7 126094 Ess 6 5 4 1 5 9 13589
Ss.¢, 6 5 4 2 10 2 10436 Es, 6 5 4 5 3 2 11486
Ss.» 6 5 4 3 9 3 12752 Es; 5, 6 5 4 6 4 2 14456
Ss—.3 6 5 4 4 7 4 11896 Es3 6 5 4 7 5 2 1414.2
Ss_y 6 5 4 3 7 6 13366 FEs_4, 6 5 4 4 4 6 14724
Ss.s 6 5 4 1 7 7 11236 Es5s 6 5 4 1 3 9 11740
Avg. 1223.0 Avg. 1369.5
N 6 5 4 2 2 6 14167 Wy 6 5 4 2 4 6 1456.7
Ni_ 6 5 4 5 3 7 14451 W1, 6 5 4 2 4 7 14723
N3 6 5 4 &8 3 7 14221 W3 6 5 4 1 4 7 1460.5
N4, 6 5 4 9 4 7 13609 W, 6 5 4 1 3 7 1462.0
N_ 6 5 4 9 4 7 11716 W, 6 5 4 1 2 6 13703
No_y 6 5 4 5 2 4 14066 Wo_y 6 5 4 2 4 6 14429
Noo 6 5 4 6 2 6 14245 Wy o 6 5 4 2 6 7 1426.7
Nog 6 5 4 7 2 7 142883 Wh.5 6 5 4 2 7 7 1431.2
Noy, 6 5 4 7 2 7 13616 Wey 6 5 4 1 4 6 14146
Nos 6 5 4 8 3 7 13023 Whs 6 5 4 1 2 5 14181
Ns_y 6 5 4 8 1 2 13421 W53, 6 5 4 1 4 6 1428.1
Ns o 6 5 4 7 1 5 13985 W3, 6 5 4 2 7 7 14258
Ns_3 6 5 4 6 1 7 13697 W33 6 5 4 2 10 7 1390.2
Nyy, 6 5 4 6 1 7 13584 W34 6 5 4 2 6 5 1464.5
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V1 Vg Vs Vg4 Vs Vg [kWh] Vp UV V3 Vg Vs Vg [kWh]
Ny 6 5 4 6 1 6 11634 Ws; 6 5 4 1 1 3 13937
NyHy 6 5 4 5 2 4 13575 Wy 6 5 4 3 3 7 1437.0
Nyp 6 5 4 6 2 6 13757 Wy 6 5 4 4 5 6 14596
Nys 6 5 4 8 2 7 13123 Wy,3 6 5 4 6 7 6 1484.6
Nyy 6 5 4 6 2 6 13309 W,y 6 5 4 4 4 5 14726
Nys 6 5 4 4 1 5 13264 Wy,5 6 5 4 3 2 5 14338
Nsy 6 5 4 1 3 6 13658 Ws4 6 5 4 5 1 7 13936
Ns—o 6 5 4 6 3 7 13828 W5 6 5 4 7 2 6 14122
Ns—s 6 5 4 10 3 7 13170 Ws_3 6 5 4 9 3 4 14038
Ns—y 6 5 4 6 2 5 13514 W5y 6 5 4 7 3 6 13819
Nss 6 5 4 1 1 3 11444 W55 6 5 4 4 3 7 13727
Avg. 13454 Avg. 1428.4
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APPENDIX E

AR 1I Result for Chicago
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Table E.1: AR Results II — Step 3 - Chicago

V1 V2 Vg Vg Uy Vg [kWh] Vi V2 Vg Vg4 Vs Vg [kWh]

S, 6 7 4 1 10 1 11464 Ey 4 6 7 4 10 9 2 12049
Si—e 6 7 4 2 10 1 116563 E,» 6 7 4 9 6 3 13074
Si.s 6 7 4 2 10 1 11574 Ey3 6 7 4 8 2 3 13253
S« 6 7 4 2 10 2 12126 E4 6 7 4 5 5 6 14481
Sis 6 7 4 2 9 2 11723 E_; 6 7 4 1 7 8 12695
S3y 6 7T 4 9 10 3 11988 E;; 6 7 4 1 5 8 12338
S3o 6 7 4 6 10 6 12351 Es; o 6 7 4 2 4 6 1409.6
Ss33 6 7 4 2 10 8 1177 FE33 6 7 4 3 3 3 13549
Ss—y 6 7 4 2 10 5 12788 FE34 6 7 4 3 4 5 14993
S35 6 7 4 1 10 1 12011 E35 6 7 4 3 5 7 12820
Ss—.y 6 7 4 9 10 3 12040 Esy 6 7 4 T 6 3 12475
Ss—o 6 7 4 9 10 3 11652 E; o 6 7 4 5 4 3 1395.0
Ss—3 6 7 4 9 10 3 11986 Es—3 6 7 4 3 1 3 13947
Ss—4 6 7 4 9 10 5 13324 Esy 6 7 4 3 2 5 14914
Ss—s 6 7 4 9 9 7 12137 Ess 6 7 4 3 3 7 12979
Avg. 1203.8 Avg. 1344.1
N, 6 7 4 1 1 8 13556 W, 6 7 4 8 1 2 14252
N 6 7 4 4 1 6 14140 Wy 6 7 4 5 1 2 14588
N 6 7 4 6 1 3 13473 Wy3 6 7 4 2 1 2 13736
N 6 7 4 5 2 3 13893 Wi, 6 7 4 2 1 5 14227
N 6 7 4 3 2 3 127127 Wi 6 7 4 1 1 8 13679
Nsy 6 7 4 3 2 3 13209 Ws, 6 7 4 9 1 8 13982
Ns o 6 7 4 3 2 3 12804 Ws, 6 7 4 5 2 7 13971
Nysg 6 7 4 2 1 2 13094 Wss 6 7 4 1 2 6 13721
Nsy 6 7 4 4 3 5 13651 Wz, 6 7 4 1 3 7 13929
Nss 6 7 4 6 5 8 12745 Wss 6 7 4 1 3 7 13503
Nsoy 6 7 4 3 2 3 13044 W5y 6 7 4 9 1 2 13138
Nso 6 7 4 3 2 3 12845 W 6 7 4 9 2 2 12723
Ns s 6 7 4 2 1 2 12993 Wss 6 7 4 9 2 2 13119
Nsy 6 7 4 4 2 3 13131 Ws.y 6 7 4 8 2 3 13052
Nss 6 7 4 6 2 3 12652 Wss 6 7 4 6 2 4 14122
Avg. 1320.3 Avg. 1419.2
1371.2
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AR Results II — South

Figure E.1:
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Figure E.2: AR Results II — East faga
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Figure E.4: AR Results I - We
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Table E.2: AR Results IT — Step 4 - Chicago

v; vy w3y vy vy vg |kKWHh] vy vy w3 vy vy vg |kKWHh]
S~ 6 7 4 1 10 1 11464 E,4 6 7 4 10 9 2 12049
Si—, 6 7 4 2 10 1 11653 E,, 6 7 4 9 6 3 13074
Si.3 6 7 4 2 10 1 11574 FE, .3 6 7 4 8 2 3 13253
Si_4« 6 7 4 2 10 2 12126 Ey_4, 6 7 4 5 5 6 1448.1
Si.s 6 7 4 2 9 2 11723 E,.s 6 7 4 1 7 & 1269.5
Sey 6 7 4 5 10 2 11941 Eyy 6 7 4 6 7 5 13575
Seg 6 7 4 4 10 3 11742 Ey,, 6 7 4 6 5 4 1411.1
Se_s 6 7 4 2 10 5 11897 Ey 3 6 7 4 6 3 3 1367.3
So_y 6 7 4 2 10 3 12247 Ey, 6 7 4 4 4 5 14923
Seos 6 7 4 2 10 2 11988 Ess 6 7 4 2 6 & 1300.5
Ss.y, 6 7 4 9 10 3 11988 FE3; 6 7 4 1 5 8 12338
S3 o 6 7 4 6 10 6 12351 FE3 o, 6 7 4 2 4 6 1409.6
S;3s 6 7 4 2 10 8 11757 Es_3 6 7 4 3 3 3 13549
Sy 6 7 4 2 10 5 12788 Es34, 6 7 4 3 4 5 1499.3
Ss.s 6 7 4 1 10 1 12011 Ess 6 7 4 3 5 7 1282.0
Sqeq 6 7 4 9 10 3 11647 E,, 6 7 4 4 6 6 1450.2
Sie 6 7 4 7 10 4 12281 Es, 6 7 4 4 4 4 14326
Sis 6 7 4 6 10 6 12359 E; 3 6 7 4 3 2 3 13455
Siy 6 7 4 5 10 5 13144 E,4 6 7 4 3 3 5 14859
Sis 6 7 4 5 10 4 12533 E, 5 6 7 4 3 4 7 12424
Ss—.y 6 7 4 9 10 3 12040 Es, 6 7 4 7 6 3 12475
S5 6 7 4 9 10 3 11652 Eso, 6 7 4 5 4 3 1395.0
Ss_3 6 7 4 9 10 3 11986 FEs3 6 7 4 3 1 3 13947
Ss.4 6 7 4 9 10 5 13324 FEs.4, 6 7 4 3 2 5 14914
Ss.s 6 7 4 9 9 7 12137 Es.s 6 7 4 3 3 7 12979
Avg. 1209.4  Avg. 1361.9
N 6 7 4 1 1 8 13556 Wi,y 6 7 4 8 1 2 14252
Ni_o 6 7 4 4 1 6 14140 W;» 6 7 4 5 1 2 14588
Ni_3 6 7 4 6 1 3 13473 W;_3 6 7 4 2 1 2 13736
N4, 6 7 4 5 2 3 13893 Wi, 6 7 4 2 1 5 14227
Ni_ 6 7 4 3 2 3 127227 W 6 7 4 1 1 8 13679
Noy 6 7 4 2 2 6 14063 Wey 6 7 4 9 1 5 1436.3
No o 6 7 4 3 1 4 14199 Wy 6 7 4 5 1 5 1431.8
Nog 6 7 4 4 1 3 13902 We.s 6 7 4 2 2 4 1381.5
Noy 6 7 4 4 2 4 13620 Wy 6 7 4 1 2 6 13594
Nos 6 7 4 5 4 6 12719 Wy 6 7 4 1 2 8 14221
Nsy 6 7 4 3 2 3 13209 Wiy 6 7 4 9 1 8 13982
Nso 6 7 4 3 2 3 128904 Wi, 6 7 4 5 2 7 1397.1
Nag 6 7 4 2 1 2 13094 Wiss 6 7 4 1 2 6 13721
Nsy 6 7 4 4 3 5 13651 W5, 6 7 4 1 3 7 13929
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V1 V2 V3 Vg Uy Vg [kWh] Vi VU2 V3 Vg Vs Vg [kWh]
Nss 6 7 4 6 5 8 12745 Wss 6 7 4 1 3 7 13503
Nyyw 6 7 4 3 2 3 1289 Wy, 6 7 4 9 1 5 1433.0
Nyop 6 7 4 3 2 3 1283 Wy 6 7 4 7 2 5 14200
Nys 6 7 4 2 1 2 12800 Wys 6 7 4 5 2 4 14248
Nyyw 6 7 4 4 2 4 13378 Wyy 6 7 4 4 2 5 14398
Nys 6 7 4 6 4 6 12744 W, 6 7 4 4 3 6 14036
Nsy 6 7 4 3 2 3 13044 Ws-y 6 7 4 9 1 2 13138
Nso 6 7 4 3 2 3 12845 W 6 7 4 9 2 2 12723
Nys 6 7 4 2 1 2 12993 W3 6 7 4 9 2 2 13119
Nsy 6 7 4 4 2 3 13131 Wsy 6 7 4 8 2 3 13052
Nys 6 7 4 6 2 3 12662 Wrs_s 6 7 4 6 2 4 14122
Avg. 1324.7 Avg. 1389.1
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Table F.1: AR Results I — Step 1 — Miami

V1 Uy U3 VU4 Vs Vg Gene. Simu.
Unit [kWh]  [-] ]
S33 6 5 1 9 5 6 17144 20 400
Fy s 6 3 2 9 4 3 22311 12 240
Nsy5 1 7 1 4 5 3 20213 11 220
Ws_3 4 2 1 5 8 4 1999.2 20 400

4 5 1 - - -

19915 15.8 315
66 1260

Avg.
Sum.

1-1 1-1

Figure F.1: AR Results I — Step 1 — Miami
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Table F.2: AR Results I — Step 2 — South facade — Miami

vy vy vy vy vy v Qftotal} Gene. Simu.
Unit [kWh] ] ]

Si. 4 5 1 9 8 6 17256 14 280
S; s 4 5 1 9 4 6 17229 11 220
Sis 4 5 1 8 10 7 16620 13 260
Sey 4 5 1 6 8 4 1663.7 12 240
Ses 4 5 1 7 10 4 17226 17 340
Se s 4 5 1 9 9 8 16753 11 220
Ssi 4 5 1 6 10 4 1688.1 11 220
Sss 4 5 1 9 4 6 18085 14 280
Sss 4 5 1 9 10 7 1746.0 18 360
Avg. 1712.8 134 2689
Sum. 121 2420

o o o
o &
% e o

5-1 5-3 5-5

Figure F.2: AR Results I — Step 2 — South facade — Miami
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Table F.3: AR Results I — Step 2 — East fagade — Miami

v; vy vy vy vy vg Q{total} Gene. Simu.
Unit [kWh] -] -]

Er, 4 5 1 5 1 2 17487 16 320
E,s 4 5 1 4 6 3 22093 12 240
Evs 4 5 1 4 3 7 16024 19 380
Es, 4 5 1 4 2 3 17529 18 360
Es s 4 5 1 5 3 2 2189.6 18 360
Es s 4 5 1 8 4 7 15715 12 240
Es, 4 5 1 8 8 3 17301 11 220
Es s 4 5 1 1 7 9 20798 16 320
Ess 4 5 1 1 7 9 15137 14 280
Avg. 1822.0 15.1 302.2
Sum. 136 2720

o
o o o
& &

5-1 5-3 5-5

Figure F.3: AR Results I — Step 2 — East facade — Miami
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Table F.4: AR Results I — Step 2 — North fagade — Miami

v; vy vy vy vy vg Q{total} Gene. Simu.
Unit [kWh] -] -]

N, 4 5 1 8 1 3 20207 18 360
Nis 4 5 1 8 2 3 20903 15 300
Ns 4 5 1 2 2 6 17323 13 260
Nyy 4 5 1 8 2 3 1985.0 17 340
Nys 4 5 1 4 1 3 19159 15 300
Nas 4 5 1 2 1 3 16264 15 300
Ney 4 5 1 4 4 6 20769 16 320
Nss 4 5 1 2 3 7 19176 12 240
Nss 4 5 1 1 6 7 15835 15 300
Avg. 1883.2 151 3022
Sum. 136 2720

Nl—l leS NI—S
N3-1 N3-3 N3-5
N5-1 N5-3 NS-S

Figure F.4: AR Results I — Step 2 — North fagade — Miami
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Table F.5: AR Results I — Step 2 — West facade — Miami

vy vy wy vy vy vg Q{total} Gene. Simu.
Unit [kWh] ] -]

Wi, 5 4 1 1 7 8 16544 23 460
Wis 5 4 1 2 2 2 15782 13 260
Wis 5 4 1 3 4 1 16199 18 360
Wey 5 4 1 9 1 2 1709.3 20 400
Was 5 4 1 1 5 3 1596.4 12 240
Wes 5 4 1 2 5 2 1627.0 27 540
Wsy, 5 4 1 9 2 2 16315 23 460
Wss 5 4 1 4 5 2 15451 14 280
Wss 5 4 1 2 3 2 1659.3 14 280
Avg. 1624.6 182 364.4
Sum. 164 3280

S
e
S & &

5-1 5-3 5-5

Figure F.5: AR Results I — Step 2 — West facade — Miami
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Table F.6: AR Results I — Step 3 - Miami

vy vy w3y vy vy vg |kKWHh] vy vy vy vy vy vg |kWHh]
S, 4 5 1 9 8 6 17256 Ei_; 4 5 1 5 1 2 17487
S, 4 5 1 9 6 6 16829 E,_, 4 5 1 5 4 3 20844
Si.3 4 5 1 9 4 6 17229 FE,.3 4 5 1 4 6 3 2209.3
Si—4« 4 5 1 9 7 7 16555 E,_4, 4 5 1 4 5 5 2170.8
Si.s 4 5 1 8 10 7 16620 E,_s 4 5 1 4 3 7 16024
S, 4 5 1 6 8 4 16637 Es;-; 4 5 1 4 2 3 17529
S;» 4 5 1 7 9 4 19448 E; 4 5 1 5 3 3 2113.1
Ses 4 5 1 7 10 4 17226 Ess 4 5 1 5 3 2 21896
Sy 4 5 1 8 10 6 17968 Fs4 4 5 1 7 4 5 2146.3
S35 4 5 1 9 9 8 1673 Es;s 4 5 1 8 4 7 15715
S5y 4 5 1 6 10 4 16881 Es; 4 5 1 & &8 3 1730.1
Ss.» 4 5 1 8 7 5 19080 Es, 4 5 1 5 8 6 19926
Ss.3 4 5 1 9 4 6 18085 FEs3 4 5 1 1 7 9 20798
Ss.4 4 5 1 9 7 7 16422 FEs4, 4 5 1 1 7 9 21115
Ss.s 4 5 1 9 10 7 17460 FEs.s 4 5 1 1 7 9 15137
Avg. 1736.3 Avg. 1934.5
Ni_; 4 5 1 8 1 3 20207 Wiy 4 5 1 2 3 6 2024.0
Ni_o 4 5 1 8 2 3 20285 Wi, 4 5 1 2 4 5 18950
Ni_3 4 5 1 &8 2 3 20903 W;_s 4 5 1 2 5 4 2021.3
Ni_4 4 5 1 5 2 5 20256 W;_, 4 5 1 2 3 4 19550
Ni_.s 4 5 1 2 2 6 17323 Wi_s 4 5 1 2 1 4 20325
Ny 4 5 1 8 2 3 1980 Wiz, 4 5 1 5 7 4 19718
Nso 4 5 1 6 2 3 1758 Wi, 4 5 1 4 5 4 19384
Ns_3 4 5 1 4 1 3 19159 Wi 4 5 1 2 2 3 1914.1
Ny, 4 5 1 3 1 3 16224 Wiy 4 5 1 2 2 3 1616.8
Nss 4 5 1 2 1 3 16264 W5 4 5 1 2 2 3 17837
Ns_y 4 5 1 4 4 6 2079 Ws_;y 4 5 1 5 &8 4 19313
Ns_o 4 5 1 3 4 7 15666 Ws_o 4 5 1 4 9 4 19758
Ns_3 4 5 1 2 3 7 19176 Ws_3 4 5 1 2 10 3 19188
Ns_y 4 5 1 2 5 7 18885 Ws_4, 4 5 1 2 9 3 1696.2
Nys 4 5 1 1 6 7 18950 Wss 4 5 1 2 8 3 17973
Avg. 1877.2 Avg. 1898.1
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Figure F.6: AR Results I — South facade — Miami
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Figure F.8: AR Results I — North faga
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Table F.7: AR Results I — Step 4 - Miami

V1 Vg2 V3 Vg Vs Vg [kWh] V1 Vg2 V3 Vg Vs Vg [kWh]
Si.1 4 5 1 9 8 6 17256 Ei1.y 4 5 1 5 1 2 17487
Sie 4 5 1 9 6 6 16829 Ei», 4 5 1 5 4 3 20844
Si.3 4 5 1 9 4 6 17229 Ey, 3 4 5 1 4 6 3 22093
Sy 4 5 1 9 7 7 16555 E_4 4 5 1 4 5 5 21708
S 4 5 1 8 10 7 16620 E_5; 4 5 1 4 3 7 16024
Ser 4 5 1 8 8 5 1790 Eyy 4 5 1 5 2 3 20498
Seg 4 5 1 8 8 5 17335 FEy,o 4 5 1 5 3 3 20181
See3 4 5 1 8 7 5 16985 E,3 4 5 1 5 5 3 20731
Sy 4 5 1 8 8 6 16965 Eyy 4 5 1 5 4 5 21195
Sees 4 5 1 9 10 8 17423 Ey 5 4 5 1 6 4 T 17327
S3 4 5 1 6 8 4 16637 Es;y 4 5 1 4 2 3 17529
S3o 4 5 1 7 9 4 19448 E; -, 4 5 1 5 3 3 21131
S3_3 4 5 1 7 10 4 17226 Es;3 4 5 1 5 3 2 21896
Ss—y 4 5 1 8 10 6 17968 E34 4 5 1 7 4 5 21463
S35 4 5 1 9 9 8 1673 FE3s 4 5 1 8 4 7 15715
See1 4 5 1 6 9 4 1897 E4q 4 5 1 6 5 3 20725
Sio 4 5 1 7 8 5 19120 E4,» 4 5 1 5 5 4 19334
Sieg 4 5 1 8 7 5 18696 E4 s 4 5 1 3 5 6 20927
Segy 4 5 1 9 8 6 17091 Eyy 4 5 1 4 5 7 20254
Sges 4 5 1 9 10 8 18490 E,5 4 5 1 5 6 8 17311
Ss-1 4 5 1 6 10 4 16881 FE;y 4 5 1 8 8 3 17978
S;—o 4 5 1 8 7 5 19080 E;» 4 5 1 5 8 6 1730.1
Ss—.3 4 5 1 9 4 6 18085 E;3 4 5 1 1 7 9 20798
Ss—y 4 5 1 9 7 7 16422 E;4, 4 5 1 1 7 9 21115
Ss—s 4 5 1 9 10 7 17460 E;5 4 5 1 1 7 9 15137
Avg. 1755.8 Avg. 1946.8
N, 4 5 1 8 1 3 2027 Wi, 4 5 1 2 3 6 20240
N 4 5 1 8 2 3 20285 Wy, 4 5 1 2 4 5 189.0
N 4 5 1 8 2 3 20903 W3 4 5 1 2 5 4 20213
N 4 5 1 5 2 5 20256 Wi, 4 5 1 2 3 4 19550
N 4 5 1 2 2 6 17323 Wi, 4 5 1 2 1 4 20325
Noy 4 5 1 8 2 3 1810 Wey 4 5 1 4 5 5 19086
Noo 4 5 1 7 2 3 20069 Weo 4 5 1 3 4 4 18044
Nos 4 5 1 6 2 3 17970 Wes 4 5 1 2 4 4 17554
Noy 4 5 1 4 2 4 19011 Wey 4 5 1 2 3 4 17489
Nos 4 5 1 2 2 5 18642 Wy 4 5 1 2 2 4 16978
Nsy 4 5 1 8 2 3 1980 Ws; 4 5 1 5 7 4 19718
Nso 4 5 1 6 2 3 17658 Wiz, 4 5 1 4 5 4 19384
Ns_3 4 5 1 4 1 3 19159 W3 4 5 1 2 2 3 19141
Nsy 4 5 1 3 1 3 16224 W34 4 5 1 2 2 3 1616.8
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V1 Vg2 V3 Vg Vs Vg [kWh] (% Vg Vs VU4 Us Vg [kWh]
Ns5 4 5 1 2 1 3 16264 Wss 4 5 1 2 2 3 17837
NyHy 4 5 1 6 3 5 18918 Wyyy 4 5 1 5 8 4 17400
Nyp 4 5 1 5 3 5 20680 Wy 4 5 1 4 7 4 1896.2
Nys 4 5 1 3 2 5 20557 Wyey 4 5 1 2 6 3 16033
Nyy 4 5 1 2 3 5 15528 Wyy4 4 5 1 2 6 3 1579.7
Nys 4 5 1 2 4 5 187162 Wy 4 5 1 2 5 3 16776
Nsoy 4 5 1 4 4 6 20769 Wy 4 5 1 5 8 4 19313
Nso 4 5 1 3 4 7 15666 Wso 4 5 1 4 9 4 19758
Nys 4 5 1 2 3 7 19176 W3 4 5 1 2 10 3 19188
Ns—y 4 5 1 2 5 7 18885 Wsy 4 5 1 2 9 3 16962
Nys 4 5 1 1 6 7 18950 Wy 4 5 1 2 8 3 17973
Avg. 1880.9 Avg. 1835.4
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APPENDIX G

AR II Result for Miami
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Table G.1: AR Results II — Step 1 — Miami

V1 Uy U3 VU4 Vs Vg Gene. Simu.
Unit [kWh]  [-] ]
Ss3 4 7 2 8 5 6 1750.1 20 400
Es 5 4 1 2 9 1 3 21706 18 360
Ny 3 6 4 1 1 1 8 2121.8 14 280
Wz 6 3 1 3 2 4 19343 20 400

5 4 1 - - -
Avg. 1994.2 18 360
Sum. 72 1440

S 1-1 E 1-1
N 1-1 w 1-1

Figure G.1: AR Results II — Step 1 — Miami
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Table G.2: AR Results II — Step 2 — South fagade — Miami

v vy wy vy Vs Vs Qi  Gene. Simu.
Unit [kWh]  [-] ]

S1 5 4 1 10 10 6 16453 18 360
Si.3 5 4 1 9 8 7 15944 15 300
S5 5 4 1 9 10 6 16069 24 480
Sy 5 4 1 9 10 7 17061 11 220
Ss3 5 4 1 9 8 7 15644 20 400
S5 5 4 1 8 10 9 1629.8 19 380
Sy 5 4 1 6 10 4 1851.7 12 240
S35 5 4 1 9 10 7 1564.2 23 460
S5 5 4 1 8 9 9 1628.0 14 280
Ave. 16434 17.3  346.7
Sum. 156 3120

o
o o
o &

5-1 5-3 5-5

Figure G.2: AR Results II — Step 2 — South facade — Miami
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Table G.3: AR Results II — Step 2 — East facade — Miami

v vy wy vy Vs Vs Qi  Gene. Simu.
Unit [kWh]  [-] ]

EFr ., 5 4 1 10 10 2 1543 18 360
E,s 5 4 1 3 4 7 17821 27 540
Ei s 5 4 1 4 10 7 14392 19 380
Esy 5 4 1 1 10 8 16181 21 420
Es s 5 4 1 7 3 3 1766.1 22 440
Es s 5 4 1 3 10 7 14585 22 440
Esy 5 4 1 1 10 8 16264 23 460
Es s 5 4 1 3 4 7 18086 19 380
Ess 5 4 1 3 10 7 14795 18 360
Avg. 1613.5 21 420
Sum. 189 3780

E E E

5-1 5-3 5-5

Figure G.3: AR Results II — Step 2 — East facade — Miami
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Table G.4: AR Results II — Step 2 — North fagade — Miami

vp vy w3 vy Vs Vs Qi  Gene. Simu.
Unit [kWh]  [-] -]

Ni_ 5 4 1 1 1 8 17264 20 400
Ni3 5 4 1 3 1 1 15953 20 400
Ni_s 5 4 1 6 7 7 14826 16 320
Ny 5 4 1 2 5 8 16926 10 200
Ns_3 5 4 1 2 5 2 1520.5 16 320
Nss 5 4 1 6 5 8 14824 18 360
Ns.4 5 4 1 3 5 7 16324 21 420
Ns_3 5 4 1 2 1 2 14494 22 440
Nys 5 4 1 6 6 8 1476.2 13 260
Avg. 1562.0 17.3 346.7
Sum. 156 3120
N, , N, N, 5
N, N, N,
N N N

5-1 5-3 5-5

Figure G.4: AR Results II — Step 2 — North facade — Miami
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Table G.5: AR Results II — Step 2 — West fagade — Miami

v1 Uy w3 Uy Vs Vs Quotw  Gene. Simu.
Unit [kWh]  [-] ]

Wi, 5 4 1 1 7 8 16544 23 460
Wis 5 4 1 2 2 2 15782 13 260
Wis 5 4 1 3 4 1 16199 18 360
We, 5 4 1 9 1 2 17093 20 400
Was 5 4 1 1 5 3 15964 12 240
Wes 5 4 1 2 5 2 1627.0 27 540
Wsy 5 4 1 9 2 2 16315 23 460
Wss 5 4 1 4 5 2 15451 14 280
Wss 5 4 1 2 3 2 1659.3 14 280
Avg. 1624.6 18.2  364.4
Sum. 164 3280

Figure G.5: AR Results II — Step 2 — West facade — Miami
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Table G.6: AR Results II — Step 3 - Miami

v; vy vy vy vy vg |kKWHh] v; vy vy vy vy vg |kKWHh]
Sy 5 4 1 10 10 6 16453 Ei—; 5 4 1 10 10 2 1543.0
S, 5 4 1 10 9 7 16709 E, ., 5 4 1 7 7 5 21838
Si.3 5 4 1 9 8 7 15944 FE, 5 5 4 1 3 4 7 1782.1
S« 5 4 1 9 9 7 16608 E,_, 5 4 1 4 7 7 1909.3
Si.s 5 4 1 9 10 6 16069 FE,_5s 5 4 1 4 10 7 14392
S;-; 5 4 1 9 10 7 17061 FE3; 5 4 1 1 10 8 1618.1
S3 o 5 4 1 9 9 7 16047 E35 5 4 1 4 7 6 22076
S33 5 4 1 9 8 7 15644 E3 3 5 4 1 7 3 3 1766.1
Ss4 5 4 1 9 9 &8 20060 Es34, 5 4 1 5 7 5 22387
S35 5 4 1 8 10 9 16298 E35 5 4 1 3 10 7 14585
Ss_1 5 4 1 6 10 4 18517 FEs; 5 4 1 1 10 8 16264
Ss.» 5 4 1 &8 10 6 18383 Es» 5 4 1 2 7 8 17551
Ss.3 5 4 1 9 10 7 15642 Es3 5 4 1 3 4 7 1808.6
Ss.4« 5 4 1 9 10 8 19340 Es4, 5 4 1 3 7 7 17987
Ss-s 5 4 1 8 9 9 16280 Es.s 5 4 1 3 10 7 14795
Avg. 1700.4 Avg. 1774.3
Ni_ 5 4 1 1 1 8 17264 Wiy 5 4 1 1 7 8 1654.4
Ny, 5 4 1 2 1 5 21230 W;_, 5 4 1 2 5 5 19054
Ni_3 5 4 1 3 1 1 1593 W13 5 4 1 2 2 2 15782
Ni_4 5 4 1 5 4 4 19983 Wy, 5 4 1 3 3 2 20226
Ni_.s 5 4 1 6 7 7 14826 W;_s 5 4 1 3 4 1 1619.9
Ny 5 4 1 2 5 8 16926 W5y 5 4 1 9 1 2 1709.3
Ns_o 5 4 1 2 5 5 21149 W3, 5 4 1 5 3 3 1966.9
Ns_3 5 4 1 2 5 2 15205 W33 5 4 1 1 5 3 15964
Nsy, 5 4 1 4 5 5 20525 Wi, 5 4 1 2 5 3 15978
Nss 5 4 1 6 5 8 14824 W35 5 4 1 2 5 2 1627.0
Ns_y 5 4 1 3 5 7 16324 W4y 5 4 1 9 2 2 16315
Ns_o 5 4 1 3 3 5 20647 Ws_o 5 4 1 7 4 2 1889.1
Ns_3 5 4 1 2 1 2 14494 Ws_s 5 4 1 4 5 2 15451
Ns_y 5 4 1 4 4 5 1983 Ws_, 5 4 1 3 4 2 19539
Nys 5 4 1 6 6 8 14762 Wss 5 4 1 2 3 2 16593
Avg. 1759.1 Avg. 1730.5
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Figure G.6: AR Results II — South fagade — Miami




Figure G.7: AR Results II — East fagade — Miami
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Figure G.8: AR Results II — North facade — Miami
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Figure G.9: AR Results II — West facade — Miami
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Table G.7: AR Results IT — Step 4 - Miami

v; vy w3y vy vy vg |kKWHh] v; vy vy vy vy vg |kWHh]
Si-1 5 4 1 10 10 6 16453 E;,; 5 4 1 10 10 2 1543.0
Sio 5 4 1 10 9 7 16709 E,», 5 4 1 7 7 5 21838
S 5 4 1 9 &8 7 15944 E, 3 5 4 1 3 4 7 17821
Si.4«+ 5 4 1 9 9 7 16608 E,_4, 5 4 1 4 7 7 1909.3
Sis 5 4 1 9 10 6 16069 FEi_5 5 4 1 4 10 7 1439.2
Sey 5 4 1 10 10 7 1689.1 FEsy 5 4 1 6 10 5 1981.3
Soo b 4 1 9 9 7 15635 Ey o, 5 4 1 5 7 5 21231
So3 b 4 1 9 8 7 15331 Ey 3 5 4 1 5 4 5 21789
Sy 5 4 1 9 9 7 15867 Ey_4, 5 4 1 4 7T 6 2066.2
Se.s 5 4 1 9 10 8 17552 FEs 5 5 4 1 4 10 7 1684.6
S;; 5 4 1 9 10 7 17061 FE3—;y 5 4 1 1 10 8 1618.1
S3 o b 4 1 9 9 7 16047 E; o 5 4 1 4 7 6 2207.6
S33 5 4 1 9 8 7 15644 E3 3 5 4 1 7 3 3 1766.1
Ss, 5 4 1 9 9 8 20060 FE34, 5 4 1 5 7 5 22387
S35 b 4 1 8 10 9 16298 E35 5 4 1 3 10 7 14585
Si1 5 4 1 8 10 6 18398 E, 7y 5 4 1 1 10 8 1618.5
Sio 5 4 1 8 10 6 18214 FE, 5 5 4 1 3 7 7 17953
Si.3 5 4 1 9 9 7 15691 E, 3 5 4 1 5 4 5 22072
Siy 5 4 1 9 9 & 19729 E,4 5 4 1 4 7 6 21171
Sis b 4 1 8 10 9 16388 E; 5 5 4 1 3 10 7 1457.7
Ss-1 5 4 1 6 10 4 18517 FEs; 5 4 1 1 10 8 16264
Ss.o» 5 4 1 8 10 6 18383 Es; - 5 4 1 2 7 8 1755.1
Ss.3 5 4 1 9 10 7 15642 Es 3 5 4 1 3 4 7 1808.6
Ss—4 5 4 1 9 10 8 19340 Es4, 5 4 1 3 7 7 17987
Ss.5 5 4 1 8 9 9 16280 Es5 5 4 1 3 10 7 1479.5
Avg. 1699.0 Avg. 1833.8
Ni_ 5 4 1 1 1 8 17264 Wi, 5 4 1 1 7 8 1654.4
Nio 5 4 1 2 1 5 21230 W;, 5 4 1 2 5 5 19054
Ni_3 5 4 1 3 1 1 15953 Wi3 5 4 1 2 2 2 1578.2
N4 5 4 1 5 4 4 19983 Wi, 5 4 1 3 3 2 20226
Ni_s 5 4 1 6 7 7 14826 W, 5 4 1 3 4 1 16199
Noqy 5 4 1 2 3 8 17032 Wy 5 4 1 5 4 5 19215
Noo 5 4 1 2 3 5 21369 Wy o 5 4 1 3 4 4 1816.7
Nog 5 4 1 3 3 2 20610 W3 5 4 1 2 4 3 1630.5
No_y 5 4 1 4 5 5 20688 Wy, 5 4 1 2 4 2 1562.6
Nos 5 4 1 6 6 8 14704 Wy 5 4 1 3 5 2 1866.7
Ns_y 5 4 1 2 5 8 16926 W3-y 5 4 1 9 1 2 1709.3
Ns_o 5 4 1 2 5 5 21149 W5, 5 4 1 5 3 3 1966.9
Nys 5 4 1 2 5 2 15205 Weys 5 4 1 1 5 3 1596.4
Ns_y, 5 4 1 4 5 5 20525 Wi, 5 4 1 2 5 3 15978
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V1 Vg Vs Vg4 Vs Vg [kWh] V1 V2 V3 Vg Vs Vg [kWh]
Ns_5s 5 4 1 6 5 8 14824 W5 5 4 1 2 5 2 1627.0
NyHy 5 4 1 3 5 8 19322 Wy, 5 4 1 9 2 2 1729.7
Nyo 5 4 1 2 4 5 20736 Wy 5 4 1 6 3 2 17923
Nys 5 4 1 2 3 2 15432 Wy 5 4 1 3 5 3 19887
Nyy 5 4 1 4 4 5 1980 Wyy 5 4 1 2 5 2 15544
Nys 5 4 1 6 6 8 14593 W,s 5 4 1 2 4 2 16629
Nsey 5 4 1 3 5 7 16324 Wsy 5 4 1 9 2 2 16315
Ns—o 5 4 1 3 3 5 20547 Wso 5 4 1 7 4 2 1889.1
Ns—s 5 4 1 2 1 2 14494 W3 5 4 1 4 5 2 15451
Ns—y 5 4 1 4 4 5 1983 W, 5 4 1 3 4 2 19539
Ns—s 5 4 1 6 6 8 14762 Ws5 5 4 1 2 3 2 16593
Avg. 1792.8 Avg. 1739.3
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