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ABSTRACT 

The loss of hand function is a distressing and debilitating experience. Brain-machine interfaces 

(BMIs) hold the potential to restore natural movement to those with limb loss and paralysis by 

obtaining prosthetic control signals directly from the brain. Cortical BMI performance lags 

behind advances in prosthetic hardware, which may be due to lack of sensory feedback to the 

user and incomplete understanding of how motor cortex processes and uses sensory information. 

In this thesis, we explore tactile sensory representation in primary motor cortex (M1) and its 

relevance to the refinement of upper limb BMI with three independent but related studies. 

The first study quantifies the frequency and robustness of tactile somatosensory responses within 

the same M1 cortical populations that are used for motor decoding. We show that M1 neurons 

are tuned to specific tactile fingertip inputs in both nonhuman primates and humans, and that 

units can be tuned differently to different sensory modalities. The modulation in firing rates is 

strong enough to interfere with motor decodes trained only on active motor tuning. 

The second study investigates the source of this information stream, and its importance to 

sensory perception, using ketamine anesthesia. We show that corticocortical communication of 

tactile information between sensory cortex (S1) and M1 is interrupted during anesthetic-induced 

unconsciousness. When viewed along with the literature, the data suggest that M1/S1 

communication is necessary for accurate conscious perception of sensory inputs, further 

reinforcing the need for sensory feedback in BMI experiments to enable naturalistic motor 

planning and execution. 

The final study presents the design and testing of intracortical optogenetic stimulation devices 

for the further exploration of sensory processing, as well as the delivery of sensory feedback, by 

manipulation of specific neuronal subpopulations. We demonstrate that our implantable LED 

devices can safely drive neural activity in transgenic mice, and describe how they can be used to 

further refine closed-loop BMI. 



x 

 

Overall, we have advanced our understanding of M1 tactile sensory processing and developed 

stimulation devices for continued progress toward high performance neuroprosthetic systems.  
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Chapter 1 

 

Introduction 

We use our hands for hundreds of tasks each day: to communicate, to eat and drink, to groom 

ourselves, to interact with the world. The loss of hand function, then, can be a distressing and 

debilitating experience. Upper limb amputees experience greater frequency and severity of post-

amputation pain, as well as more social and emotional issues related to their limb loss, than do 

lower limb amputees (Davidson et al., 2010). Over 500,000 people are living with upper-limb 

loss in the U.S. alone as of 2005, and this number is expected to more than double by 2050 

(Ziegler-Graham et al., 2008). For these individuals, the tasks of everyday life present many 

challenges, even with the use of a prosthetic. Many amputees express dissatisfaction with the 

available options in prosthetic technology (Wijk and Carlsson, 2015), and current prosthetics 

available to the public (both body-powered and myoelectric) exhibit a high rejection rate. Even 

amongst consistent users of these devices, about 25% wear them simply for aesthetics and do not 

use any built-in functionality (Biddiss and Chau, 2007). In response to a 2002 questionnaire, 

56% of amputees wore their prostheses “once in a while” or “never,” and 64% rated them “fair” 

or “not acceptable” (Davidson, 2002). Underperforming prosthetics cause many amputees not to 

return to the workforce (40% of transradial amputees and 57% of proximal amputees) (Davidson, 

2002), or return to a less demanding and lower-paying job, leading to a decrease in quality of life 

 “If I had a prosthesis that did what I want, 

then of course I would have been a full time 

prosthesis user.” 

“I've broken a lot of things. I really have to 

watch what I do because…if I look the other 

way while lifting it, it will break.” 

 - Upper limb prosthesis users describe their 

experiences. (Wijk and Carlsson, 2015) 
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as well as loss of income. Additionally, there are 1.3 million individuals with spinal cord injury 

in the U.S., over 140,000 of whom are tetraplegic (Spinal Cord Injury and Paralysis Research 

Center, 2009) and could benefit from brain-controlled prosthetics. There are currently no 

products for those with high level spinal cord injury to regain voluntary hand movements.  

 

The roadblock to better prosthetic control is not the hardware – advanced, many degree-of-

freedom prosthetic hands have been developed by a number of research institutions and private 

companies. It is the control signals to pilot these devices that need refinement (Andersen et al., 

2014; Li, 2014). Signals obtained with currently available myoelectric controllers are simply not 

complete or precise enough to take advantage of the full complexity of hand movements, and 

typically are limited to a single grasp or pinching motion of varying quality. Some researchers 

are working on improving the signal quality of peripheral nerve implants, but ultimately the most 

effective solution is likely to be drawing signals directly from the source – the brain. 

 

Brain-machine interfaces (BMIs) interpret brain activity to control external devices. Rich, finely 

tuned signals from individual neurons can be taken directly from the cortical motor output 

regions of the brain using intracortical microelectrode arrays and decoded into usable movement 

commands. Many years of research have gone into improving and optimizing the algorithms for 

this technique. Yet even as motor decoders become more sophisticated, a limiting factor in 

performance is the lack of sensory feedback to the brain. Patients with myoelectric prosthetics 

rely on visual and auditory feedback in order to properly grasp objects. When visual attention 

moves away from the hand or the line of sight is interrupted, control usually becomes 

impossible. This is frustrating to users, because the hand itself can obscure the object being held. 

In a survey of over 100 electrical upper limb prosthetics users, 45% rated sensory feedback as 

‘absolutely important,’ with an additional 43% rating ‘medium importance,’ and more than half 

rated ‘grasping and holding’ most important, over touch and proprioception (Lewis et al., 2012). 

Patients in the clinical trials for intracortical BMIs experience the same difficulty – limitations in 

visual feedback make control very difficult (Wodlinger et al., 2015). 
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The following sections will discuss the connection between poor prosthetic control and the 

brain’s need for accurate sensory information, and detail the gaps in knowledge addressed in this 

thesis. 

 

1.1. Recent progress in upper limb prosthetic control 

Over the past two decades, the BMI community has grown tremendously and reached some 

impressive milestones, including the first human clinical trials using chronically implanted 

intracortical electrodes. Substantial advances have been made in human cortical BMI over the 

past decade by multiple groups working with subjects with tetraplegia (Hochberg et al., 2006, 

2012; Simeral et al., 2011; Collinger et al., 2013; Gilja et al., 2015; Jarosiewicz et al., 2015; 

Wodlinger et al., 2015). In these studies, subjects have been able to control an external prosthetic 

hand (in a laboratory setting) to feed themselves, shake hands, and interact with objects.  

 

The advances in performance stem primarily from two concurrent efforts: first, to increase our 

understanding of how primary motor cortex (M1) naturally encodes movements, and second, to 

optimize decoding algorithms to maximize the amount of information that can be obtained from 

a limited subset of neural data. On the first point, it may surprise the reader to know that many of 

the bricks in our basic understanding of motor control are still missing or actively debated. 

Fortunately, BMI experiments in nonhuman primates (most commonly Rhesus macaque) have 

provided the perfect sandbox for the testing of M1 coding schemes (Hatsopoulos and Donoghue, 

2009; Georgopoulos and Carpenter, 2015). Instead of analyzing individual cells’ responses to 

movements offline, larger populations of neurons must be used to reconstruct movement 

parameters in real time. Shortcomings in our understanding of whole movement encoding 

immediately become clear under these conditions, demanding ever more comprehensive models.  

 

One important enabler of upper limb BMI was the description of population coding of arm 

kinematics (Georgopoulos et al., 1986, 1988) – that an accurate estimate of reach direction could 

be drawn from a consensus of multiple individually tuned neurons. This was followed by a wave 

of closed-loop reaching experiments (Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 

2003) using M1 recordings, but there were still many open questions about the planning and 

generation of even a simple reach. The question of whether M1 encodes “intrinsic” (muscle 
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activity) or “extrinsic” (movement direction, limb position in space) variables has been long 

standing. Though decoders based on extrinsic variables have demonstrated impressive 

performance, they lack a mechanistic explanation. On the other hand, intrinsic models have 

recently been accumulating evidence. It is possible to predict myoelectric (EMG) signals in the 

arm using the activity of certain M1 units (Pohlmeyer et al., 2007; Ethier et al., 2012), and to 

generate realistic EMG from neural network models (Sussillo et al., 2015; DePasquale et al., 

2016). But M1 correlates of both high and low level information have been abundant, and cells 

often unexpectedly change their coding schemes across behavioral contexts such as speed and 

posture (Scott, 2008), leaving the question very much an active area of exploration. 

Another basic and enduring question for BMI control is the following: how much brain do we 

need to record from in order to control a complex, many degree-of-freedom arm? It is now 

known that M1 does not exhibit a highly segragated somatotopy (bodily map), as does primary 

somatosensory cortex (S1). Major bodily areas are segregated within M1, but smaller regions 

intermingle (Sanes and Donoghue, 2000; Sanes and Schieber, 2001; Schieber, 2001), with 

substantial overlap of, for example, muscles and joints of the hand and fingers. It’s expected that 

an array placed in hand representation of primate M1 will produce a disorderly mixture of digit 

preferences. This is important to know for surgical implant logistics, but also points to the 

multifaceted response properties of M1 output cells. We know that M1 neurons exhibit both 

convergence and divergence: individual neurons diverge to innervate multiple muscles, and 

many M1 cells converge to innervate any given muscle. In keeping with this, several more recent 

studies have shown that both reaching and grasping can be decoded from the same (relatively) 

small population of cells on a single array (Carmena et al., 2003; Velliste et al., 2008; Vargas-

Irwin et al., 2010). The latter study demonstrated that cells recorded from one 4 x 4 mm array 

could reconstruct 25 joint angles encompassing the hand, wrist and arm, and that individual cells 

often represented both proximal and distal joints. Human experiments have also achieved high 

dimensional control using only one or two 96-channel Utah arrays (Wodlinger et al., 2015). The 

authors believe that these data suggest M1 units encode quantities related to muscle activation, 

rather than explicit kinematics or kinetics of movements, and that M1 utilizes a distributed 

control scheme. This discovery is very encouraging for BMI, given that neuron counts (and the 

volume of tissue from an electrode array) are a limiting factor in decoding. We can likely do very 



5 

 

well with a limited number of arrays implanted in M1, if we have a system of sensory feedback 

in place, and continue working on the decoding algorithms. 

1.1.1. Decoding algorithms 

Neural firing rates can be decoded into motor commands by something as simple as a linear 

model, where the firing rate of a given neuron is linearly dependent on some set of kinematic 

movement parameters (hand position, velocity) (Georgopoulos et al., 1986). This technique is 

still sometimes used in human experiments (Wodlinger et al., 2015, for example) because it is 

relatively effective (at least in simple arm reaching paradigms), easy to train by patient 

observation of movements, and is not computationally intensive. However, there are other 

decoders that enable higher performance, a prominent option being the Kalman filter (Wu et al., 

2006). The Kalman filter takes a Bayesian approach to the problem, incorporating prior 

information about neuron behavior and how kinematics evolve over time during a movement. 

This was shown to improve performance in monkey and human experiments (Kim et al., 2008; 

Simeral et al., 2011; Gilja et al., 2012). 

 

At this point, it is pertinent to specifically draw attention to the fact that in the human BMI 

experiments, the decoders are typically trained by having participants observe actions, taking 

advantage of the fact that M1 neurons are responsive to this visual sensory stimulus and will 

‘mirror’ the observed motor behavior. It becomes unclear how much of the decoded signal in 

subsequent online experiments is sensory, rather than a pure motor signal. In monkey 

experiments as well, proprioceptive signals are known to contribute to, or contaminate 

(depending on your outlook), motor decodes. This distinction might be unimportant were it not 

for the fact that the small population of recorded cells most likely has different tuning properties 

for different sensorimotor contexts, to say nothing of the differences in tuning between ‘tasks,’ 

such as an arm reach vs. grasping motion. And once experimenters begin providing tactile 

feedback, e.g. with intracortical microstimulation (ICMS) to S1, it will likely not be efficient to 

control a hand by both sending and receiving sensory information. 

1.2. Somatosensory processing in the cortex 

To begin to think about how to put sensory signals back into the brain, we need to understand the 

organization of natural somatosensory processing. 
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1.2.1. Somatosensory cortex 

Somatosensory cortex (S1) of the primate is a mediolateral strip of cortex located just posterior 

to the central sulcus, across from M1 (Brodmann area 4). It is composed of Brodmann areas 3a, 

3b, 1, and 2, moving anterior to posterior across the region (Qi et al., 2007). Area 3b is referred 

to as primary somatosensory cortex and is mainly concerned with sense of touch, having the 

most cells that respond to skin indentation, while 3a is concerned with proprioception, 1 with 

texture, and 2 with size and shape of objects (Krubitzer et al., 2004). Area 5 is not part of S1, but 

is known as association cortex, and has been shown to be involved with many kinds of sensory 

processing. Area 3b is highly somatotopic – most 

neurons in this area are responsive to touch on only a 

small region of skin. These areas are clustered by 

body part, which allows us to target most of the 

finger-specialized area of one hemisphere of the 

macaque with one 2 mm by 2 mm Utah array (Harvey 

et al., 2013). 

S1 receives sensory information from multiple 

thalamic nuclei (Jones and Porter, 1980; Jones and 

Friedman, 1982). The pathways are fairly segregated, 

as shown in Figure 1.1. 

1.2.2. Primary motor cortex 

M1 lies on the rostral bank of central sulcus. As 

mentioned earlier, it displays a generalized 

somatotopy for motor representation. It is much less 

appreciated, however, that M1 is also responsive to 

many kinds of sensory stimuli. An action like an arm reach-to-grasp requires the integration of 

visual, proprioceptive, and tactile information from multiple regions; for a detailed review of 

sensory integration for reaching, see (Sabes, 2011). Neuronal populations in M1 are sensitive to 

each of these types of sensory inputs. This has been shown in nonhuman primates (for an 

excellent and relatively recent review, see (Hatsopoulos and Suminski, 2011)) and to some 

extent in humans (Shaikhouni et al., 2013). Many cells are tuned to both sensory and motor 

Figure 1.1 Thalamocortical and 

corticocortical flow of sensory 

information. VPLo: ventral 

posteriolateral nucleus (oral). VPLc: 

ventral posteriolateral nucleus (caudal). 

LP: lateral posterior nucleus.  Adapted 

from  (Jones and Porter, 1980) and (Jones 

and Friedman, 1982). 
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variables, though the tunings are not always directionally similar. Proprioception-tuned cells 

were found to be most tuned to the same or opposite direction as an active reach (Suminski et al., 

2009). In studies on fast feedback control, corrective muscle responses occurring just 50-100 ms 

after a perturbation of the limb (Pruszynski et al., 2011, 2014), M1 neurons have been 

documented integrating arm joint information into corrective motor commands within 50 ms, 

reinforcing that M1 has significant and important sensory processing responsibilities. 

M1 receives direct sensory inputs from deep muscle spindles via the ventral posteriolateral 

nucleus, oral portion (Figure 1.1, (Jones and Porter, 1980; Jones and Friedman, 1982)). 

Communication with S1 areas 3a, 1, 2, and 5 is necessary to access cutaneous information, and a 

substantial amount of ‘deep’ information comes via this route as well: stimulation of peripheral 

nerves elicits responses in M1, called ‘evoked potentials,’ which are reduced by 75% by ablation 

of S1 in the monkey (Asanuma et al., 1980).   

1.3. Sensory feedback  

Sensory inputs to M1 help to guide motor performance. Without them (or with only visual 

feedback, as is typically the case in BMI experiments), M1 is forced to adapt its control strategy. 

Multiple studies have shown that tuning of M1 cells is different during BMI control and natural 

movement (Taylor et al., 2002; Ganguly and Carmena, 2009), and that better performance can be 

achieved by allowing the ensemble to learn a new approach (Ganguly and Carmena, 2009; 

Orsborn and Carmena, 2013). While these measures have helped the situation, ‘closing the loop’ 

and delivering sensory signals to M1 will likely enable a large leap in performance, and will give 

users the sensation they desire.  

1.3.1. Strategies for delivery of sensory feedback 

How should we provide feedback to BMI systems? The capability to automatically sense and 

adjust prosthetic hand outputs is being developed (Edin et al., 2008; Roberts et al., 2011) using 

mechanosensors and optical sensors, but these methods do not give control to the users (users 

wish to handle a glass of water differently from a child’s hand), and will not be useful at all for 

feedback of touch and proprioception. They also do not address the fact that M1 needs access to 

sensory inputs to generate correct commands. 
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The next option is electrical ICMS, which has been explored in rodents and primates, and works 

well enough in terms of supplying enough information to affect behavioral outputs. O’Doherty et 

al (2009) showed that monkeys could use ICMS as well as vibrotactile stimulation to inform the 

direction of an arm reach. Berg et al (2013) were able to transmit a percept of force applied to the 

finger with ICMS to S1. The problem is that ICMS does not integrate into closed-loop BMI well, 

because the electrical stimulus interferes with recordings in M1. The time intervals in which 

stimulation occurs must be removed, or ‘blanked’ from recordings (O'Doherty et al., 2012). This 

is a small amount of time (in the cited paper, 2-5 ms after each pulse), but enough to impact 

online control. Therefore, a different stimulus modality – light – is suggested to provide feedback 

similar in nature to ICMS but without the interference.  

Optogenetics is a technique in which we use a viral vector to transfect a specific population of 

neurons with light-sensitive channels (Figure 1.2A). This allows us to stimulate these cells with 

Figure 1.2 Overview of optogenetic techniques. (A) Method of creating light-sensitive cells: a viral 

vector (typically lentivirus or adeno-associated virus) is used to deliver a light-sensitive ion channel 

to the animal’s brain. (B) Photograph of optogenetic mouse with laser-coupled fiber optic implant 

for light delivery. (C) Examples of light-driven action potentials. Blue dashes indicate laser pulses.  

(D) Laser-coupled fiber optic inside stainless steel guide tube for light delivery. (E) Laser waveguide 

integrated into Utah microelectrode array. (A-C) from (Diesseroth, 2015); (D-E) from (Wang et. al, 

2011).  
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the application of light, instead of with electrical pulses that interfere with electrophysiology 

recordings. This technique has been widely adopted in the neuroscience community over the past 

decade thanks to its specificity – it is used to better understand neural circuitry by probing 

individual cells and pathways (Boyden et al., 2005; Zhang et al., 2007; review: Deisseroth, 

2015). Since local populations of neurons can be precisely targeted (the spread of virus is limited 

around the injection site(s)), this technique is ideal for stimulating or inhibiting neurons to 

investigate sensory processing, or to provide multiple channels of sensory feedback in a BMI 

experiment. While the feasibility of translating this technology to humans is hotly debated, it 

remains a very useful technique in animal models.  

Unfortunately, the currently available light delivery devices for primate experiments are single 

channel setups. Researchers use rigid glass optical fibers or microfabricated glass waveguides, 

either coupled to a recording electrode (Zhang et al., 2009; Wang et al., 2011, 2012; Abaya et al., 

2012), or inserted separately (Jazayeri et al., 2012; Sparta et al., 2012; Ruiz et al., 2013). A high-

power LED or laser is then coupled to the other end (Campagnola et al., 2008). In primates, this 

fiber must be inserted and removed for each recording session, limiting the number of total 

recording sessions based on tissue damage. It is possible to integrate fibers into a chronic Utah 

electrode array and let them remain in the brain for longer periods (Wang et al., 2012). 

Unfortunately, this has not been implemented successfully in primates without breaking the 

fibers or inflicting a large amount damage to the brain, due to larger motion of the brain inside 

the skull. An additional drawback of single-fiber implants in primates is the inability to excite or 

inhibit large volumes of brain, since light intensity drops off very quickly when passing through 

brain tissue. There is therefore a need for many-channel, chronically implantable light delivery 

devices for primate experiments. Such devices would greatly facilitate the development of 

sensory feedback strategies for upper limb BMI. 

1.4. Summary of thesis 

In this thesis, we explore tactile sensory representation in motor cortex and its relevance to the 

refinement of upper limb neuroprosthetics 

In Chapter 2, we quantify the frequency and robustness of tactile somatosensory tuning within 

the same M1 cortical populations as are used for motor decoding. We show that M1 neurons are 

tuned to specific tactile inputs to the fingertips in both nonhuman primates and humans. The 
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modulation is strong enough to potentially interfere with motor decodes trained only on active 

motor tuning. 

In Chapter 3, we study the source of this information stream and its importance to sensory 

perception using ketamine anesthesia. We show that corticocortical communication of tactile 

information between S1 and M1 is interrupted during anesthetic-induced unconsciousness. When 

viewed along with the literature, the data suggest that M1/S1 communication is necessary for 

accurate conscious perception of sensory inputs, further reinforcing the need for sensory 

feedback in BMI experiments to enable naturalistic motor planning and execution. 

In Chapter 4, we develop and test intracortical optogenetic stimulation devices for the further 

exploration of sensory processing. We demonstrate that our implantable LED devices are 

functional in in vivo mouse experiments, in which we stimulated S1 while recording responsive 

units in M1. The ability to stimulate and record in different brain areas is a particularly useful 

achievement of this work, as this is precisely the setup that will be used for closed-loop BMI 

with tactile sensation. 

In Chapter 5, we summarize the results and discuss future directions for this area of research. 
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Chapter 2 

Chapter 2. Chapter 2 

Quantification of tactile sensory finger representation in primary motor cortex of 

nonhuman primates and humans 

 

2.1. Abstract  

Challenges in the control of dexterous upper-limb brain-machine interfaces (BMIs) have 

prompted renewed interest in the amount and nature of sensory information encoded in primary 

motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile 

stimulation, as well as passive and active movement of the limbs. Recent work in this area has 

focused on proprioception, so here we examined how tactile somatosensation of the hand and 

fingers is represented in M1. We recorded multi- and single units and thresholded neural activity 

from macaque M1 while gently brushing individual finger pads at 2 Hz. Units displaying 

significant differences in firing rates between individual fingers (p<.05) represented 16.7% to 

76.7% of sorted multiunits across four animals. After normalizing by the number of channels 

with significant motor finger responses, the percentage of electrodes with significant tactile 

responses was 74.9% ± 24.7%. No somatotopic organization of finger preference was obvious 

across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient 

sensory information was present in M1 to correctly decode stimulus position from multiunit 

activity above chance levels in all animals, and also from electrocorticogram (ECoG) gamma 

power in two human subjects. Preliminary examination of unit tuning during tactile and 

proprioceptive inputs indicates cells are often tuned differently in different contexts, providing 

motivation for the refinement of BMI decoding approaches to dexterous grasping. 

2.2. Introduction  

Intracortical brain-machine interfaces (BMIs) hold the potential to restore natural movement to 

those with limb loss and paralysis by drawing prosthetic control signals directly from the brain. 
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Multiple research groups have enabled human subjects with tetraplegia to control an external 

prosthetic hand to feed themselves, shake hands, and interact with objects using signals obtained 

with microelectrode arrays (Hochberg et al. 2006; Simeral et al. 2011; Collinger et al. 2013; 

Gilja et al. 2015; Jarosiewicz et al. 2015; Wodlinger et al. 2015). Recently, there has been 

increased focus on the development of bidirectional interfaces to provide sensory signals back to 

users. It is likely that such feedback is necessary to enable high performance with many degree-

of-freedom systems, particularly those involving dexterous manipulation of objects (Lebedev 

and Nicolelis 2006; Kwok 2013; Tabot et al. 2015). Intracortical microstimulation (ICMS) of 

primary somatosensory cortex (S1) cannot perfectly mimic a natural sensory percept, but it can 

provide a virtual tactile signal that monkeys can to use to complete BMI tasks (O’Doherty 2009; 

Berg et al. 2013).  

With the development of these systems, it is important to consider the effects of sensory stimuli 

(both endogenous stimulation of the skin and virtual stimulation via ICMS) on M1 firing patterns 

used for motor control. Primary motor cortex (M1) itself is responsive to many types of sensory 

inputs, including proprioceptive, visual, and tactile (for a review, see (Hatsopoulos and Suminski 

2011)). Many cells are tuned to both sensory and motor variables, though the tunings are not 

always directionally similar. M1 receives direct proprioceptive inputs from deep muscle spindles 

via the ventral posteriolateral nucleus (Jones and Porter 1980; Jones and Friedman 1982). 

Communication with cortical sensory areas 3a, 1, 2, and 5 is necessary to access cutaneous 

information, though a substantial amount of ‘deep’ information comes via this route as well: 

stimulation of peripheral nerves elicits responses in M1, called ‘evoked potentials,’ which are 

reduced 75% by ablation of S1 in the monkey (Asanuma et al. 1980). Though largely unexplored 

in more recent literature, specific examples of M1 cells responsive to tactile stimulation have 

been described in a number of single unit electrophysiology studies in monkeys (Lemon and 

Porter 1976; Wong et al. 1978; Lemon 1981; Tanji and Wise 1981). These studies found 

anywhere between 27-53% of units were responsive to cutaneous inputs, and the great majority 

of their receptive fields were on the glabrous skin of the hands and feet. Still, the extent, 

frequency, and tuning properties of these responses have not been fully documented, particularly 

in the context of array recordings, where the population of recordable units is more fixed.  
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Ignoring the importance of sensory signals in normal M1 firing patterns will likely become more 

of a problem as experiments incorporate more dexterous tasks. In human clinical trials, the 

presence of an object in or near the hand during an attempted grasp negatively affected decoder 

performance such that specialized calibration was required, and it could not be entirely corrected 

(Wodlinger et al. 2015). This and other BMI studies featuring interaction with objects (Velliste et 

al. 2008; Ethier et al. 2012; Hochberg et al. 2012) require a training set featuring objects to 

properly train the decoder. Wodlinger et al. note that without object training, the decoder will 

produce movements that repel the hand away from the object, instead of moving toward and 

grasping it. They suggest several explanations for this, one being expectations of tactile 

feedback. While unproven, this explanation would agree with the single unit data indicating the 

hands and feet have special M1 representation. It would also indicate robust sensory responses 

on those same motor electrodes, if the effects are strong enough to interfere with the decoder.  

Another implication of M1 tactile responses is the possibility that they may cause overestimates 

in decoder performance during finger-related tasks. The most well-studied data sets for 

predicting our capability to decode finger movements online have come from mixed motor and 

sensory signals, as monkeys flexed their fingers to activate microswitches within a 

manupulandum (Ben Hamed et al. 2007; Aggarwal et al. 2008). These animals had constant 

tactile feedback as they performed the task, which would not be present in a patient using a 

clinical BMI system. Hand and finger decoding have also continued to improve in the ECoG 

BMI literature (Pistohl et al. 2012; Chestek et al. 2013; Hotson et al. 2016), but there is a 

persistent lack of clarity about the extent to which the decodes are relying on sensory versus 

motor signals. 

In this study, we investigated the responses of M1 units to passive tactile and proprioceptive 

stimulation of the fingers of four macaque monkeys using intracortical microelectrode arrays. 

Although array recordings provide fewer isolatable units than can be achieved with repeated 

single unit insertions, their sensory content is of relevance to BMI performance. We found 

omnipresent M1 tactile fingertip representation, though the fraction of modulated units varied 

between animals. The tactile modulation was robust enough to successfully decode the sensory 

stimuli in these four animals, as well as in two humans with ECoG grids over M1. Many 

multiunits exhibited orderly tuning across the fingers that differed for the two types of stimuli. 
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The modulation in firing rates is potentially strong enough to interfere with motor decodes 

trained only on active motor tuning. 

 

2.3. Methods 

All animal procedures were carried out in accordance with protocols approved by IACUC at the 

University of Michigan. All human procedures were carried out in accordance with protocols 

approved by the IRB at the University of Michigan. 

2.3.1. Surgery and experimental structure 

Four rhesus macaques were implanted with multielectrode arrays in finger area of M1, as 

diagrammed in Figure 2.1A. Monkeys P and O were implanted with 2.5mm x 1.95mm 16-

channel Floating Microelectrode Arrays (FMAs, Microprobes). Monkeys L and S were 

implanted with 4mm x 4mm 96-channel Utah Arrays (Blackrock Microsystems). Finger area was 

located by finding the point at which a line projecting from the genu of the arcuate sulcus would 

intersect central sulcus, and the arrays were placed as close to this point as possible, just anterior 

to the sulcus.  

Figure 2.1 Placement of electrodes. (A) Array placement in four monkeys. Monkeys P and O 

had FMAs, while monkeys L and S had Utah arrays. CS: central sulcus; Sp: spur of the arcuate 

sulcus; A: anterior; P: posterior. (B) Subdural grid placement in two human patients. Blue 

circles indicate which electrodes were used in analysis.  
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We trained the monkeys over the course of several weeks to sit quietly in a chair (Crist 

Instruments) using small juice rewards. Animals’ heads remained secured to the chair and 

motionless during all training and experiments with a titanium post (Crist Instruments) 

embedded in the head cap. For the brushing stimulus, the hand contralateral to the implant was 

immobilized against an acrylic plate, and a cotton-tipped applicator was used to stroke the 

appropriate finger pad at 2 Hz, as timed by a metronome. For the bending stimulus, the 

appropriate finger was grasped on each side and bent towards and away from the palm 

repeatedly for the duration of the trial. 

All of the monkeys also performed an active motor task on different days from the sensory tasks. 

Monkeys S, L, and P performed a finger flexion task: each monkey sat in a shielded chamber 

with its hand resting on an acrylic surface, thumb pointing upward. The monkey was cued to flex 

and extend the four fingers to hit virtual targets with a virtual model of a monkey hand 

(Musculoskeletal Modeling Software; MDDF, Los Angeles, CA) displayed on a computer 

monitor. A resistive flex sensor (Spectra Symbol, West Valley City, UT) was attached to the 

index finger to measure finger position. Monkey O performed a grasping task: the monkey 

grasped a manipulandum instrumented with a pressure sensor (Interlink Electronics, Westlake 

Village, CA) located under the index finger pad and squeezed to hit virtual targets with up to 1 N 

of force. 

2.3.2. Neural recording 

A computer running xPC Target (Mathworks) cued the experimenter and synchronized 

behavioral and neural data for analysis. Trials were randomized and interspersed with rest trials, 

each lasting 5 seconds. The stimuli were entirely passive; if the monkey moved during any trial, 

it was flagged as invalid by an observing experimenter and not used in subsequent analysis. For 

monkey L experiments, the applicator was instrumented with a triple axis analog accelerometer 

(SparkFun) to better align behavioral and neural data. 

Neural data were recorded at 30 ksps using a Cerebus neural signal processor (Blackrock 

Microsystems), high-pass filtered with a cutoff of 250 Hz, and sorted into single and multiunits 

offline using Plexon Offline Sorter (Fig. 2.2A). Only clusters that were completely separated in 

component space from the other waveforms on that channel, with blank space between, were 

considered to be single units. The remaining clusters, whether clearly containing multiple cells or 
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only slightly overlapping with other clusters, were combined to form up to one multiunit per 

electrode. 

2.3.3. Human ECoG 

Broadband neural data were recorded at 30 ksps from two human subjects who had been 

implanted with clinical subdural ECoG grids, as described in (Irwin et al., 2015). Grid placement 

is shown in Figure 2.1B. The same task structure was used as described in the previous section. 

The data were decimated to 10 ksps, and a common average reference was implemented for each 

bank. The data were then bandpass filtered between 66 and 114 Hz using a 3
rd

 order Butterworth 

filter in MATLAB before calculating the power in that band during each trial.  

 A Naive Bayes decoder with leave-one-out cross-validation was used to classify the location of 

the stimulus on a given trial. The inputs to the decoder were the average band power on each 

included electrode during 2 seconds of stimulation. Chance level was 33.3% for a 1 of 3 choice, 

and the decoder could not perform better by choosing the most common condition, as the number 

of trials per finger condition were always balanced – between 20 and 24 trials per digit for the 

three datasets used (two from Patient 1, one from Patient 2). The two datasets from Patient 1 

Figure 2.2 Processing of neural data. (A) Spikes were sorted in Plexon OFS into single 

units (SU) and multiunits (MU). (B) Human ECoG voltage data were common average 

referenced and filtered before being squared to obtain power. Mean power during three 

finger conditions were the feature set for the decoder. 
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were recorded on consecutive days. Electrodes were chosen by starting with the set of all 

electrodes that were entirely anterior to central sulcus on co-registration imaging. In Patient 1, a 

single row of electrodes over M1 was used, as seen in Figure 1B. In Patient 2, only a cluster over 

hand knob of M1 was used. 

2.3.4. Spiking analysis and statistics 

Significantly tuned units during the sensory brushing and bending tasks were determined with a 

one-way ANOVA, α=.05, of firing rates during trials of the different finger conditions. The total 

number of recorded units from each animal are the following: from monkey S, 73 multiunits and 

68 single units from one recording; from monkey P, 27 multiunits and 12 single units from three 

recordings; from monkey L, 96 multiunits and 51 single units from two recordings; from monkey 

O, 15 multiunits and 12 single units from one recording.  

Significantly tuned channels during the active motor task were determined by computing 

correlation coefficients between the finger speed (flex/extend task) or applied force (force task) 

and neural firing rates. In this case, spikes were detected by thresholding at -4.5 times the RMS 

voltage on each channel, after high-pass filtering the broadband signal at 250 Hz. Spike times 

were separated into 100 ms bins for each electrode. A null distribution was created by shuffling 

the firing rate bins and re-computing the correlation coefficients. Electrodes with coefficients at 

least two standard deviations above the mean of the null distribution were considered modulated 

by the motor task. 

Tuning curves were fit to a Von Mises function (Amirikian and Georgopulos, 2000) in 

MATLAB, defined as: 

𝑓 = 𝑏 + 𝑚 exp [𝜅 cos (𝑥 − 𝜇)] 

The parameter b represents the baseline firing rate, m the depth of modulation, κ the width, and µ 

the preferred ‘direction,’ or finger. 

A Naive Bayes decoder with leave-one-out cross-validation was used to classify the location of 

the stimulus on a given trial, as in 2.3.3, except the inputs to the decoder were the firing rates of 

multiunits during the center 3 seconds of each trial. The beginning and end of each trial were 

excluded to avoid the periods of time when the experimenter was switching between fingers. 
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Chance level was 33.3% for a 1 of 3 choice, and the decoder could not perform better by 

choosing the most common condition, as the number of trials per finger condition were always 

balanced. Significance was determined with a 1-sample z-test with α=.01. 

2.4. Results 

We found units in each monkey that were visibly modulated by the tactile stimulus, as seen in 

the raster plots of multiunit spike trains sorted by 2 Hz content (Figure 3). M1 units with 

significant finger brushing modulation were found in all four animals tested (Fig. 4), though the 

fraction of units varied widely across animals, from 16.7% to 76.7% of sorted multiunits. Here, 

modulation indicates a significant difference in firing rates between finger conditions in the 

brushing task. Finger bending responses are also shown where available, for monkeys L, P and 

O. Passive finger bending is a proprioceptive stimulus that would be predicted to modulate some 

M1 neurons, though this fraction also varied widely. The difference in the number of  modulated 

units between monkeys can be attributed to some combination of poorer placement and inherent 

variance in sampling from a relatively low number of cells. To determine how well the arrays 

were placed in finger area, we examined the number of electrodes with significant modulation in 

a motor finger task that each monkey performed on a different day. Monkeys S, P, and L 

performed a finger flex/extend task, and monkey O performed a power grasp squeezing task. All 

Figure 2.3 Example rasters from each monkey. For each monkey, all multiunits are shown for 

a single trial, sorted top to bottom by 2 Hz content. 
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four monkeys had some amount of motor modulation, and the relative amount appeared to track 

with the sensory modulation, implying that a fair amount of the variance seen in sensory 

modulation was due to placement of the arrays. After normalizing by the fraction of electrodes 

with motor tuning, the percentage of electrodes modulated by the tactile stimulus was 74.9% ± 

24.7%. The highest normalized fraction was seen in monkey P, who displayed, on average, an 

equal number of sensory and motor modulated electrodes. 

No somatotopic or orderly organization of digit preferences was observed across cortex (Fig. 

2.5), but rather an even scattering of multi and single units across the arrays. In monkey S, 

multiple single units were separable on certain electrodes, but only in some cases did those units 

share the same digit preference (Fig. 2.7). This result is consistent with our understanding of M1 

somatotopy: large bodily areas are segregated, but representation of smaller features, like the 

digits, overlap significantly (Sanes and Donoghue, 2000; Sanes and Schieber, 2001; Schieber, 

2001). 

  

Figure 2.4 Fraction of recorded multiunits 

(MU) and single units (SU) that were 

significantly modulated by brushing and 

bending stimuli. 
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Investigating the receptive fields of these modulated units, we found that many of them were 

responsive to stimulation on multiple finger pads. Tuning curves for the single unit data (some 

example units shown in Fig. 2.6) exhibit different shapes, but shapely curves were seen far more 

often than linear slopes. As a comparison with directional tuning of motor cortical cells 

(Amirikian and Georgopulos, 2000), we fit the curves with a Von Mises cosine function. This 

function fit the data better than a linear or simple exponential for the majority of units, but there 

are only 5 digits on the hand, so it is most certainly overfitting the points. Still, the general shape 

of the fit is very good for the majority of units – R
2 

was greater than 0.8 for over half of 

modulated units – indicating that these units generally have a receptive field that encompasses 

multiple adjacent finger pads with firing rates decreasing as the stimulus moves farther from the 

preferred digit.  

 

Figure 2.5 Distribution of digit preferences across electrode arrays. (A) Multiunit locations and 

(B) Single unit locations of modulated cells for brushing stimulus, colored by digit with 

maximum firing rate. Monkey S had several channels with multiple single units; preferences 

shown as divided squares. Grey squares represent units that were not significantly tuned. CS: 

central sulcus. 
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Figure 2.6 Tuning curves for brushing task. Example tuning curves showing the range of shapes 

observed in all four monkeys. Blue curves are data with linear interpolation; error bars show 

S.E.M. Red curves are Von Mises fits as described in Methods; R
2
 shown for each panel. 

Bottom right: R
2
 histogram for all modulated multiunits; value less than zero indicates a linear 

fit is better than the model. 
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Given the depth of tuning we found, along with the fairly even distribution of finger preferences, 

we were able to apply a Naïve Bayes decoder to classify the stimulated finger on a given trial 

based only on single or multiunit firing rates (Fig. 2.8). Multiunit decodes were significantly 

above chance levels (33.3% for a 1 of 3 choice, p<.01) in all animals. Single unit decodes were 

significant in two monkeys, but less reliable in monkeys L and P due to the very low number of 

modulated units available (visible in Fig. 2.5). Confusion matrices for Monkey O (Fig. 2.8A) 

demonstrate that digits 1, 4, and 5 were best represented, which agrees with recorded digit 

preferences (visible in Fig. 2.5).  

We then applied the same Naïve Bayes decoder to gamma band (60-120 Hz) power recorded 

from subdural ECoG arrays in two human subjects. Above chance decodes were achieved in 

both subjects (Figure 2.9) using only M1 electrodes, and on two consecutive days in the first 

subject (P1 – 63.9% and 52.4% correct; P2 – 66.7% correct). 

Monkeys P, L, and O underwent finger bending trials on the same day as brushing trials. We 

wanted to see if units were similarly tuned to both these sensory stimuli. Of those units that were 

significantly tuned in both conditions, only one shared the same finger preference during both 

(Figure 2.10). Though we had a small number of units, this data dovetails with previous work 

(Hatsopoulos and Suminski, 2011) showing that units in M1 are tuned differently to different 

types of stimuli.  

Figure 2.7 Tuning curves for 

multiple single units recorded on 

the same channel. All from monkey 

S. 
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Figure 2.8 Decoding sensory 

stimulus from M1 firing rates. (A) 

Example 5 finger and 3 finger 

confusion matrices for monkeys S 

and O. (B) All 3 finger decoding 

performances for multiunits (MU) 

and single units (SU). Horizontal 

line indicates chance (33.3%). 

Asterisk (*) indicates significantly 

above chance (p<.01). 

Figure 2.9 Decoding sensory 

stimulus from human gamma 

band power over M1. Patient 1 

was also tested on a second day, 

with fairly similar performance 

(52.38%). 
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Figure 2.10 Comparison of tuning to tactile (brush) and proprioceptive (bend) stimuli. The 

Venn diagram shows the number of significantly tuned multiunits from monkeys P, L, and 

O when both types of stimuli were given in the same recording session. Examples of tuning 

curves for cases when units were tuned to the same and different digits are also shown. 

    

2.5. Discussion  

We have demonstrated that a substantial fraction of the M1 population is deeply tuned to tactile 

sensory inputs and readily apparent in multielectrode array recordings. The tuning was deep 

enough to correctly decode the location of a tactile stimulus from multiunit firing rates. While 

lower than previously reported finger motor decodes from M1 (Ben Hamed et al., 2007; 

Aggarwal et al., 2008, 2009; Egan et al., 2012), correct classification rates of 65-90% for a 

purely somatosensory stimulus were surprising, especially given the relatively low number of 

units recorded in monkeys P and O. This result provides evidence that motor finger decodes 

obtained previously are to some degree due to sensory responses. This result provides evidence 

for the possibility that motor finger decodes are to some degree due to sensory responses. 

Similarly, the ECoG result demonstrates that sensory information is present in M1 recordings, in 

addition to the known motor responses in S1. In one ECoG study with successful individual 

finger decoding (Hotson et al., 2016), there was a large amount of overlap between channels 

used for motor (finger tapping) and sensory (vibrotactile) tasks, with the majority of electrodes 
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used being postcentral in both cases. The authors consider that the decoded “motor task” 

information may be mostly cutaneous and proprioceptive, or may also be to some extent an 

efference copy from motor areas.  

This issue has probably not been a major factor in BMI decoding until recently because of the 

specificity of these responses to the hand and fingers. Tactile inputs are not as important to upper 

limb control as they are to fine motor control, evidenced by the specificity of representation to 

the hands and feet. Both rats and mice have a sensorimotor overlap zone (OL) where forelimb 

and hindlimb sensory and motor representations overlap (Donoghue and Wise, 1982; Tennant et 

al., 2011), and it is thought to be utilized for dexterous digit manipulation. While such a zone is 

not found in primates, it appears that M1 and S1 both engage in processing of sensory and motor 

information, and must therefore utilize corticocortical communication for dexterous tasks. There 

is ample evidence that M1 generates and sends sensory predictions that not only shape, but are in 

fact necessary for accurate sensory perception (Zagha et al., 2013; Manita et al., 2015; Morillon 

et al., 2015). Still, it is not possible to determine whether the responses recorded here represent 

M1 sampling or sending sensory information. 

Given that the tactile M1 neurons we found also seem to be responsive to other types of stimuli 

(proprioceptive finger bending), and that proprioceptive-tuned cells in the literature can also 

encode motor outputs (Suminski et al., 2009), it seems likely that we are not recording a sensory-

specific subpopulation. The changes in firing rates seen here were robust, and seem very capable 

of causing difficulty with motor decodes based purely on rate coding, in the cases where tunings 

differ. The multiunits such decoders are trained on are expected to have consistent preferred 

directions across all phases of the reach and grasp movements, when in reality, their preferences 

and functions change over time based on sensory context. The subject studied by Wodlinger et 

al. (2015) was able to grasp different kinds of objects, after having only trained on one kind, but 

still required an object-specific model. This was an important advance, but effective use of an 

arm in the real world will require many more types of grasps and movements in many contexts. 

Rather than viewing sensory responses as a troublesome contamination of motor signals, it’s 

possible they could be harnessed to improve performance. Future work can develop strategies for 

training decoders in all of these contexts to best utilize the wealth of different tunings present on 

one electrode array. It’s encouraging that with good placement, a single array is able to capture 
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representation of all the digits. Additionally, by studying the natural responses of M1 to tactile 

inputs, we can identify what information is important to provide when thinking about sensory 

feedback delivered to the cortex. 

Overall, we have used chronically implanted microelectrode arrays to study the tactile sensory 

responses of a random sample of M1 neurons. This preliminary work motivates a more in-depth 

examination of population dynamics during fine dexterous tasks. 
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Chapter 3 

Chapter 3.  

Disruption of corticocortical information transfer during ketamine anesthesia in the 

primate brain 

This chapter was published, as presented here, in the journal NeuroImage 

(doi:10.1016/j.neuroimage.2016.04.039) 

3.1. Abstract 

The neural mechanisms of anesthetic-induced unconsciousness have yet to be fully elucidated, in 

part because of the diverse molecular targets of anesthetic agents. We demonstrate, using 

intracortical recordings in macaque monkeys, that information transfer between structurally 

connected cortical regions is disrupted during ketamine anesthesia, despite preserved primary 

sensory representation. Furthermore, transfer entropy, an information-theoretic measure of 

directed connectivity, decreases significantly between neuronal units in the anesthetized state. 

This is the first direct demonstration of a general anesthetic disrupting corticocortical 

information transfer in the primate brain. Given past studies showing that more commonly used 

GABAergic drugs inhibit surrogate measures of cortical communication, this finding suggests 

the potential for a common network-level mechanism of anesthetic-induced unconsciousness. 

3.2. Introduction 

Most clinically-used general anesthetics act by potentiating the transmission of γ-aminobutyric 

acid (GABA), leading to depression of neuronal function and conscious processing (Alkire et al., 

2008).   Ketamine, however, does not depress the cortex and fails to conform to most 

mechanistic frameworks of general anesthesia: it does not bind with high affinity to the GABAA 

receptor (Antkowiak, 1999; Salmi et al., 2005), depress thalamic metabolism (Långsjö et al., 

2005), activate the sleep-promoting ventrolateral preoptic nucleus (Lu et al., 2008), or depress 

high-frequency electroencephalographic activity  (Lee et al., 2013). Identifying common neural 

features of ketamine and GABAergic anesthetics would therefore be an important step toward a 

foundational understanding of anesthetic-induced unconsciousness. We have recently 
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Figure 3.1 Electrode placement and 

experimental structure (A) Electrode placement 

in three monkeys. A: anterior; P: posterior; CS: 

central sulcus; Sp: spur of the arcuate. (B) 

Experimental trial structure and digits 

stimulated on each animal – color legend same 

as (A). (C) Trial block structure for each day of 

experiments. Blue marker denotes block of 

stimulation trials. Inj: intramuscular ketamine 

injection. 

demonstrated in human surgical patients that ketamine, like the GABAergic drugs propofol and 

sevoflurane, depresses directed connectivity across frontal-parietal networks
 
(Lee et al., 2013; 

Blain-Moraes et al., 2014). However, these and other electroencephalogram(EEG)- (Ferrarelli et 

al., 2010; Casali et al., 2013) and fMRI-based (Schrouff et al., 2011) connectivity studies of 

large-scale brain networks are based upon an assumption that the measured activity actually 

reflects information transfer along corticocortical pathways. A more direct measurement of 

functional connectivity of neurons and information integration is essential to validate these data. 

In the current study, we used intracortical multi-electrode arrays in the Macaque brain to directly 

observe sensory information being shared between primary somatosensory cortex (S1, area 3b) 

and primary motor cortex (M1, area 4), two regions that communicate bidirectionally via local 

circuits through areas 1, 2 and 5
 
(Jones et al., 1978). We provided passive stimulation to the 

fingers of two monkeys (Fig. 3.1A), and recorded neural data from M1 and S1 before, during, 

and after ketamine-induced unconsciousness. 

We used a purely somatosensory, 2 Hz 

rhythmic stroking stimulation of the glabrous 

finger pads, which are quite sensitive to light 

touch. Along with S1, neurons in monkey M1 

(particularly those in the most posterior 

region) are responsive to purely tactile 

stimulation of the digits, as well as passive 

movement (Fetz et al., 1980; Lemon, 1981; 

Tanji and Wise, 1981). 

3.3. Methods 

All procedures were carried out in accordance 

with protocols approved by the University 

Committee on Use and Care of Animals at the 

University of Michigan. 

3.3.1. Surgery and experimental structure 

Three rhesus macaques were implanted with multielectrode arrays in motor and sensory cortices, 
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as diagrammed in Figure 3.1A. In Monkey P, data was recorded from two 2.5mm x 1.95mm 16-

channel Floating Microelectrode Arrays (FMAs, Microprobes), one of which was placed in 

finger area of M1, and the other placed in finger area of S1. In Monkey L, data was recorded 

from two 4mm x 4mm 96-channel Utah Arrays (Blackrock Microsystems), one of which was 

placed in finger area of M1, and the other placed in finger area of S1. In Monkey S, data were 

recorded from one 4mm x 4mm 96-channel Utah Array (Blackrock Microsystems) implanted in 

finger area of M1. The arrays were placed by first locating the point at which a line projecting 

from the genu of the arcuate sulcus would intersect central sulcus. The M1 array was placed at 

this location, just anterior to central sulcus. The S1 arrays were placed across from it, just 

posterior to central sulcus. Given the placement, size, and electrode length  (1.5mm for Utah, 

1.0-4.5mm for FMA) of the S1 arrays, a Rhesus atlas (Saleem and Logothetis, 2012) predicted 

that the majority of the recording sites would fall in Brodmann area 3b, although it is possible 

that a small minority, particularly in monkey P, were located in area 1. 

We trained the three monkeys over the course of several weeks to sit quietly in a chair (Crist 

Instruments) using small juice rewards. Animals’ heads remained secured to the chair and 

motionless during all training and experiments with a titanium post (Crist Instruments) 

embedded in the head cap. The hand contralateral to the implant was immobilized against an 

acrylic plate, and a cotton-tipped applicator was used to stroke the appropriate finger pad at 2 Hz, 

as timed by a metronome (Fig. 3.1B). Once monkeys were sufficiently trained, they each 

participated in 1 or 2 days of experiments with anesthesia. The time course of an experiment is 

shown in Figure 1C. Animals remained connected to the data acquisition system continuously for 

the first three time points to enable tracking of multiunits and oscillations over time. Monkey S is 

the exception to this, and only participated in an abbreviated experiment with two time points. At 

least two weeks were allowed between experiments for a given animal to minimize stress caused 

by side effects of anesthesia. 

3.3.2. Neural recording 

A computer running xPC Target (Mathworks) cued the experimenter and synchronized 

behavioral and neural data for analysis. Trials were randomized and interspersed with rest trials, 

each lasting 5 seconds. The stimuli were entirely passive; if the monkey moved during any trial, 

it was flagged as invalid by an observing experimenter and not used in subsequent analysis. For 
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monkey L experiments, the applicator was instrumented with a triple axis analog accelerometer 

(SparkFun) to better align behavioral and neural data. 

Broadband neural data was sampled at 30 kHz and recorded using a Cerebus neural signal 

processor (NSP, Blackrock Microsystems). Collected data were processed and analyzed in three 

forms: 30 kHz broadband was saved and subsequently decomposed into frequency bands (see 

section 2.5), thresholded unit activity was obtained by thresholding at -4.5 times the RMS 

voltage on each channel, and multiunit activity was hand sorted using Plexon Offline Sorter. The 

data collected from each animal is summarized in Table I. 

TABLE I 

SUMMARY OF COLLECTED DATA 

*Only pre-drug and +:10 time points collected; **Only 64 channels from each array were recorded simultaneously
 

3.3.3. Anesthesia 

Ketamine was administered once per experiment as a 10 mg/kg intramuscular injection to the 

upper thigh while the animal was seated in a chair. Arousal was monitored at least every 15 

minutes until the animal was fully responsive, particularly before each set of experimental trials. 

The metrics of arousal used were vertical nystagmus, pedal (toe pinch) reflex, blink reflex, limb 

manipulation (picking up arm or leg and allowing to fall into experimenter’s hand), and 

spontaneous movements. Although ketamine levels in the blood were not monitored, anesthetic 

effects seen at each time point were common to all animals, and are described in Table II. Due to 

the one-time administration of the drug, the level of anesthesia was not identical at the different 

time points; indeed, we wished to investigate features of the neural signal at these different 

points. 

 

 
Monkey L Monkey P Monkey S 

# Experiments 2 2 1* 

Implant(s) M1+S1, Utah M1+ S1, FMA M1 Utah 

# Electrodes M1/S1 64/64** 16/16 96/0 

# Multiunits M1/S1 94/37 17/18 50/0 

# Trials per time point  48-66 30-65 40-75 
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TABLE II 

OBSERVATIONS OF ANESTHETIC DEPTH 

Test +10 Minutes +40 Minutes +240 Minutes 

Spontaneous movement None 
Occasional facial or 

hand movement 

Normal movement of 

limbs, face and torso 

Pedal reflex No movement 
Minimal response, if 

any; some digit flexion 
Strong withdrawal 

Blink reflex No movement 
Occasional weak 

blinking 
Normal blinking 

Limb manipulation 
No response when 

handled 

Minimal response; 

some digit flexion 

Limb withdrawn when 

handled 

Vertical nystagmus Present Present Not present 

 

3.3.4. Data analysis - Spikes 

A Naive Bayes decoder with leave-one-out cross-validation was used to classify the location of 

the stimulus on a given trial. The inputs to the decoder were the firing rates of either thresholded 

activity or hand sorted multiunits during the center 3 seconds of each trial. The beginning and 

end of each trial were excluded to avoid the periods of time when the experimenter was 

switching between fingers. Only three fingers per animal were used in order to increase the 

number of trials completed per finger, given the time restraints of the anesthesia. The particular 

fingers used for each monkey were chosen during a separate session of awake stimulation. The 

fingers with the greatest number of channels responsive to stimulation, as compared with a rest 

condition, were used for subsequent experiments. Only modulated thresholded channels or 

multiunits were used; modulation was determined with an ANOVA (α=.05) of firing rates during 

the different finger conditions. Chance level was 33.3% for a 1 of 3 choice, and the decoder 

could not perform better by choosing the most common condition, as the number of trials per 

finger condition were always balanced. Percent correct at each time point was tested for 

significance versus chance with a one-sided one-sample z-test. The number of datasets used for 

decoding from each brain area were 5 for M1 (3 animals) and 4 for S1 (2 animals). 

The power spectrum for each multiunit was computed using the center 3 seconds of each trial, 
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split into 1 ms bins. These binned spike trains were then converted to a spike density function 

(SDF) by convolution with a Gaussian kernel (σ=15 ms). The power spectra of the SDFs were 

then computed with Matlab’s discrete Fourier transform, fft. The spectra of all units for all trials 

were then averaged together and normalized by the peak power, which occurred between 0 and 1 

Hz. Data for this analysis were taken from two monkeys (P and L), who each completed two 

experiments. 

High order transfer entropy (HOTE) was computed using the Transfer Entropy Toolbox for 

Matlab (Ito et al., 2011). Data for this analysis were taken from two monkeys (P and L), who 

each completed two experiments. Data were prepared by taking multiunit sorted spike trains, 

extracting spike times during the center 3 seconds of each trial (the same portions as used for 

decoding), and concatenating them to form one vector per multiunit per experiment with length 

between 3 and 6 minutes. Equal numbers of awake and ketamine trials were used for each 

experiment. Spikes were then binned in 1ms bins and passed to the toolbox, which calculated 

HOTE for each possible multiunit pair. All entropies were 5th order, with possible time lags of 1 

to 30 ms. Only the peak, or maximum, value for each multiunit pair over all possible time lags 

was included in plots. For shuffled HOTE, S1 spike trains were shuffled using Matlab’s 

randperm before calculating peak HOTE for each pair. 

3.3.5. Data Analysis – Oscillations  

The recording sessions from monkeys L and P were split into 5 second bins where the signal was 

free from high amplitude artifacts, and then power spectra were created for each bin using 

MATLAB’s fft function. Power at 1Hz increments (1-4 Hz for delta, 13-30 Hz for beta, and 40-

80 Hz with 59-61 Hz excluded for gamma) were calculated and then averaged together in 1 

minute increments over 100 minutes of the experiment. Power on all electrodes were averaged 

together, smoothed with a window size of 10, and normalized by dividing by average power over 

the entire 1-80Hz band. Example spectrograms (Fig. 3.5B) represent single electrode activity 

from a single experiment with monkey L. The Chronux toolbox for Matlab was used to generate 

the spectrogram plots after data were decimated and bandpass filtered between 0 and 80 Hz.  
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Figure 3.2 Loss of sensory 

representation from motor cortex under 

ketamine. (A) Percent correct 

classification of stimulated finger across 

all monkeys and sessions. *p<.001 when 

compared to chance level (dashed line). 

Error bars denote S.E.M. (B) Example 

confusion matrices showing decoder 

performance for one session of Monkey 

P. 

 

3.4. Results 

3.4.1. Loss of sensory information transfer during ketamine exposure 

Before ketamine administration, the identity of the stimulated finger could be correctly classified 

from thresholded neural activity on the M1 and S1 electrodes (Fig. 3.2A) using a Naïve Bayes 

decoder, with a mean accuracy of 68.7% from M1 electrodes and 89.3% from S1 electrodes. 

After an intramuscular injection of ketamine (10 

mg/kg), animals reached unconsciousness within 10 

minutes, as judged by lack of pedal and eye blink 

reflexes. From 10 to 30 minutes post-injection, while 

animals were completely unresponsive, decoding 

performance from M1 decreased to chance levels (Fig. 

3.2A), with a mean of 27.4% correct. The consistency 

of the stimulus in monkey L was verified with 

stimulator-mounted accelerometers; no difference in the 

number of strokes before or after ketamine were found 

on either day (p=.67/p=.26, t-test). At 4 hours post-

injection, when consciousness had returned, M1 

decodes recovered to 54.4% correct, significantly above 

chance. Importantly, even when M1 decodes were 

disrupted, S1 decodes did not significantly decrease. 

This result is consistent with the hypothesis that, during 

exposure to ketamine, sensory information can still 

reach S1 from the thalamus, but is prevented from 

reaching M1 via an interruptible corticocortical 

pathway.  It should be noted that surrogates of 

preserved primary sensory processing, such as 

somatosensory-evoked potentials and intra-network 

connectivity of primary sensory cortex, have been 

observed during unconsciousness induced by 
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GABAergic anesthetics in humans (Banoub et al., 2003; Boveroux et al., 2010).  

In addition to ensemble representation, the behavior of hand-sorted multiunits was analyzed (see 

Methods). Decodes performed with multiunits followed the same pattern as thresholded data, 

with a mean percent correct classification of 52.5% correct from M1 and 74.84% correct from S1 

while awake, decreasing to 26.12% (chance level) and 68.69% respectively at 10 minutes post-

injection, and finishing at 49.15% and 76.28% after 4 hours. Lower percentages than those 

achieved with thresholded data were expected, considering the small number of well-isolated 

units compared with the number of unsortable channels with clear bipolar activity. Mean firing 

rates remained stable among M1 and S1 multiunits (Fig. 3.3A): while some cells increased and 

others decreased their firing rate, paired t-tests revealed no significant changes in overall firing 

rates in any animal, after correcting for multiple tests. Examples of unit responses are shown in 

Fig. 3.3 B and C, with stimulus-aligned bursting activity shown for several M1 units. The 

Figure 3.3 Multiunit behavior and power spectra. (A) Firing rates of sorted 

multiunits before and after ketamine (+10’ time point). (B) Example raster plot 

of all recorded multiunits during portions of one awake trial and one ketamine 

trial from monkey L. Grey bars: stimulator in contact with digit. (C) PSTHs of 

two example M1 units, aligned to first stimulus of trial. (D) Normalized mean 

power spectra for unit activity averaged across modulated units from monkeys P 

and L. Red vertical line emphasizes 2Hz, the frequency of stimulation.   
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Figure 3.4 Loss of corticocortical effective 

connectivity under ketamine. (A) Peak high 

order transfer entropy (HOTE) between 

multiunit pairs during one monkey L 

experiment. (B) Comparison of Peak HOTE 

including all sessions for monkeys P and L. 

*p<.001. (C) HOTE between multiunit pairs 

after shuffling S1 spikes; same dataset as (A).   

presence of a 2 Hz peak (the frequency of stimulation) in the power spectra of M1 and S1 single 

unit spike trains (Fig. 3.3D) followed the pattern of decoding performance, disappearing in M1 

units under ketamine anesthesia and recovering at the final time point. The magnitudes of the 

peaks from pre-normalized S1 unit spectra did not change significantly (paired t-test, α=.05) 

from pre-drug to 10 minutes post-injection.  

 

3.4.2. Loss of functional connectivity during ketamine exposure 

Knowing that M1 and S1 have reciprocal, though not necessarily monosynaptic, corticocortical 

connections (Jones et al., 1978), we investigated whether the disappearance of M1 representation 

could be explained by a loss of functional connectivity between the two regions. We applied high 

order transfer entropy (HOTE), an 

information-theoretic measure of directed 

connectivity between neurons (Ito et al., 

2011), to multiunit spike trains from monkeys 

L and P. HOTEs were computed for each 

possible multiunit pair during a given 

recording session. Inter-region connectivity 

decreased significantly for combined monkey 

sessions (Fig. 3.4B) as well as for each 

individual session (all paired t-tests, α=.05, 

n=1,889 total M1/S1 pairs). These results 

support the observation of reduced 

information transfer between the two cortical 

regions under ketamine. Intra-areal S1 HOTE 

also decreased, which was not necessarily 

expected, given its sustained sensory 

representation. This reflects a decrease in the 

ability of S1 neurons to help predict each 

other’s behavior in general, which may 

indicate a larger change in S1 firing behavior 



 

36 

 

Figure 3.5 S1 electrodes lose beta power, gain 

gamma under ketamine. (A) Band power 

modulations of two monkey P sessions and two 

monkey L sessions (shaded area: SD, red 

vertical bar: injection). (B) Spectrograms from 

representative electrodes in S1 and M1 during a 

single Monkey L session (red vertical bar: 

injection).  

beyond task-relevant information transfer.    

3.4.3. Spectral changes during ketamine exposure 

Finally, we investigated changes in neural oscillations that could potentially explain the observed 

cortical disconnection. S1 exhibited changes 

in oscillatory activity that were time-locked 

with the administration of ketamine and 

correlated with the conscious state of the 

monkey (Fig. 3.5A-B). Relevant modulations 

in the delta (1-4 Hz), beta (15-30 Hz) and 

gamma (40-80 Hz) bands were observed in 

S1, while modulations in M1 beta and 

gamma were smaller, if at all present. The 

reversible decrease in beta and increase in 

delta and gamma power seen on S1 

electrodes are directly homologous to our 

EEG observations in humans (Lee et al., 

2013) during ketamine-induced 

unconsciousness, suggesting that the 

monkeys were in a comparable state of 

clinical anesthesia.  

3.5. Discussion 

We have demonstrated that (1) primary 

sensory representation persists during 

ketamine anesthesia, as evidenced by the 

preserved ability to decode tactile stimuli in 

S1; (2) information transfer is disrupted 

between S1 and M1 during ketamine 

anesthesia, as evidenced by the inability to 

decode tactile stimuli in M1; (3) transfer 
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entropy, a surrogate for information exchange, is disrupted between neuronal units in S1 and M1; 

and (4) in S1, beta oscillations are suppressed while gamma and delta oscillations are augmented, 

as found with scalp EEG during ketamine anesthesia in humans. This experimental paradigm 

represents the most compelling evidence to date for reduced cortical information transfer and the 

unbinding of cortical representations in the anesthetized state (Mashour, 2013).
 
One potential 

concern with this interpretation is the possibility that somatosensory information may be 

reaching M1 directly from thalamus, which would allow the possibility of a thalamocortical 

rather than a corticocortical breakdown of information exchange. According to the literature, the 

thalamus does not send M1 information about tactile sensation, only proprioception and other 

movement-related parameters (Rizzolatti and Luppino, 2001; Shipp, 2005). Regardless, the 

cortical connections between M1 and S1 are of primary interest here. Somatosensory stimulation 

is known to elicit both short- and long-latency evoked potentials in S1, with the long-latency 

responses attributed to corticocortical communication. It is these late responses that are normally 

associated with conscious awareness of a stimulus (Cauller and Kulics, 1991; Supèr et al., 2001; 

Del Cul et al., 2007) and selectively suppressed under anesthesia in S1 and primary visual cortex 

(V1) (Banoub et al., 2003; Hudetz et al., 2009). These late evoked responses are sometimes 

thought of as “top-down” processes, as they involve reentrant communication from areas higher 

in the cognitive hierarchy, such as association cortices. In the case of S1, motor areas are the 

source of some important top-down communication: Manita and colleagues (Manita et al., 2015) 

showed that long-latency inputs from M2 to S1 in the mouse were critical for accurate sensory 

perception. Taken together, the data support a top-down mechanism for accurate perceptual 

representation, where reciprocal corticocortical connections are necessary for conscious 

experience (Mashour, 2014). 
 

Although disrupted cortical information transfer may represent a proximate cause for 

unconsciousness, the root cause of communication breakdown remains just as uncertain as the 

details of the communication itself. Top-down sensory processing necessitates coordination 

across distributed populations, a complex task that is almost certainly driven by oscillatory 

activity (Engel et al., 2001; Bressler and Richter, 2015). Low beta in particular, where we saw 

the most modulation, is relevant to top-down synchrony (Bressler and Richter, 2015), though we 

did not see significant modulations in M1. Beta oscillations have previously been implicated as 

information carriers in the sensorimotor system: synchronous beta activity in motor cortex 
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appears to mediate directionally-specific information flow (Rubino et al., 2006), and postcentral 

beta causally influences precentral beta (Brovelli et al., 2004). Conversely, gamma oscillations 

may mediate bottom-up, or feed-forward, sensory processing (Bressler and Richter, 2015), 

perhaps providing local gain on subsets of neurons (Pritchett et al., 2015). It is unclear whether 

our observed increase in gamma indicates an attempt at communication, or is simply the 

response of a circuit that has become disconnected and unbalanced. As for the origins of these 

waves, evidence supports the thalamus as responsible for overall control over cortical 

oscillations (Jones, 2001; Saalmann, 2014), and our data are consistent with the temporal binding 

model, where thalamocortical circuits synchronize cortical networks, modifying and enhancing 

cortical inputs to enable sensory awareness. Although the precise thalamic population 

responsible is unknown, ketamine is known to modulate normal thalamic function in general, as 

evidenced by increased glucose metabolism (Långsjö et al., 2005). Simultaneous cortical and 

thalamic recordings could potentially clarify these issues.  

In summary, we have shown evidence for intact first-order thalamocortical information transfer 

to S1 during ketamine anesthesia and, through oscillatory behavior, indirect evidence for a 

higher-order thalamic influence on S1 that might account for the reduced transfer entropy of S1-

M1 neuronal pairs that are functionally coupled in the waking state. The fact that this was 

demonstrated with the anesthetic ketamine is even more striking considering its unique traits at 

the molecular and systems neuroscience level. This direct demonstration of disrupted 

corticocortical information transfer, along with accumulating evidence for reduced surrogates of 

cortical communication during GABAergic anesthesia in humans (Ferrarelli et al., 2010; Casali 

et al., 2013; Lee et al., 2013), suggest a common final pathway for unconsciousness induced by 

molecularly distinct anesthetics. It should be noted, however, that spectral changes and 

depression of directed and effective connectivity can also be observed at subanesthetic doses of 

ketamine in humans (Lee et al., 2013; Muthukumaraswamy et al., 2015; Rivolta et al., 2015). 

Further work is required to assess whether functional disconnections in the cortex are 

epiphenomenal to general anesthesia or are dose-dependently reduced to a critical threshold that 

causes the anesthetized state.     
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Chapter 4 

Chapter 4.  

Individuated intracortical LEDs for optogenetic stimulation and interrogation of 

sensorimotor circuits 

 

4.1. Abstract 

Optogenetics studies in nonhuman primates currently take one of two approaches: inserting an 

optical fiber into cortex on a daily basis, causing damage and rendering long-term multichannel 

stimulation unfeasible, or stimulating and recording with a micro-electrocorticography grid, 

limiting the depth and placement of recordings. We wanted to develop an implant optimized for 

a primate study that allows for the arbitrary configuration of light sources as the experiment 

requires, including compatibility with intracortical microelectrode arrays. We wire bonded 

commercially available bare-die Cree blue LEDs (220x270x50 μm, 460nm wavelength) onto a 

glass wafer (100 μm thickness) and diced it to get individual devices. We used conductive epoxy 

to attach 75 μm wire to the devices, and dip coated them to provide strength and a watertight 

encapsulation. As a first step toward primate implants, we tested their functionality in a 

transgenic mouse model. We demonstrated their utility by performing a behavioral experiment, 

in which application of 50 Hz stimulation in motor cortex elicited robust increases in 

locomotion. We also demonstrated concurrent electrophysiological recordings by recording 

spikes from motor cortex while stimulating primary sensory cortex, a directly and densely 

connected region. These LEDs are novel compared with other devices in the literature in that 

they can be implanted individually in any configuration, including locations distant from 

recording sites, as well as surrounding an electrode array. The wires can run along the surface of 

the brain and emerge through the bone as a bundle, reducing strain and making the surgical close 

easier. Finally, they are fabricated simply, using commercially available materials.  
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4.2. Introduction 

The current state of the art in light delivery in nonhuman primate (NHP) optogenetics is to use 

rigid glass optical fibers or microfabricated glass waveguides, either coupled to a recording 

electrode (Zhang et al., 2009; Abaya et al., 2012; Wang et al., 2012), or inserted separately 

(Jazayeri et al., 2012; Sparta et al., 2012; Ruiz et al., 2013). A high-power LED or laser is then 

coupled to the other end (Campagnola et al., 2008). In primates, this fiber must be inserted and 

removed for each recording session, limiting the number of total recording sessions based on 

tissue damage. It is possible to integrate fibers into a chronic Utah electrode array and let them 

remain in the brain for longer periods (Wang et al., 2012). Unfortunately, this has not been 

implemented successfully in primates without breaking the fibers or inflicting damage to the 

brain, due to motion of the brain inside the skull. An additional drawback of single-fiber 

implants in primates is the inability to excite or inhibit large volumes of brain. More recently, 

optogenetic stimulation and recording have been demonstrated in NHP using micro-

electrocorticography (µECoG) grids (Yazdan-Shahmorad et al., 2015, 2016). Similar approaches 

have been taken in vitro (Poher et al., 2008; Grossman et al., 2010) and in vivo on the surface of 

the rodent cortex as part of an ECoG array (Ledochowitsch et al., 2011; Kwon et al., 2012). 

These are attractive, but it is unlikely light will penetrate deep enough into the primate brain to 

excite a large cortical volume. Light transmission through brain tissue falls off as one over the 

square of the distance to the source. Less than 1/8 of the original light will be transmitted at 1 

mm away from the emitter (Aravanis et al., 2007), and we wish to excite cells 1.5 mm or more 

away from the surface. This is why optogenetic stimulation for brain-machine interfaces (BMI) 

seems to require intracortical devices.  

In a recent paper, Kim et al. (2013) demonstrated the use of custom-made microLEDs for 

optogenetics. They injected their devices into rat cortex and were able to drive behavior in a 

place preference task. However, their devices were insulated with poly(dimethylsiloxane), or 

PDMS, which is not expected to retain a hermetic seal for many months (Lachhman et al., 2012). 

Montgomery et al. (2015) developed a wireless LED implant from commercially available LEDs 

with a parylene-C encapsulating coating. Both of these studies characterized the optical and 

thermal properties of their devices very well, but neither discussed device lifetime or showed 
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evoked action potentials, two very important features for many potential applications. Despite 

this, the success of the work in enabling behavioral experiments reinforces the notion that this is 

an outstanding problem in the field worth addressing. The prospect of putting powered 

electronics into the brain chronically has been daunting. If the insulation on implanted LEDs 

were to fail, the electrical power delivered directly to the tissue would be enough to cause 

damage. A conservative safe limit of leak current is 1 µA – this amount would not even stimulate 

the closest neuron to the device. Since our LEDs operate at 20 mA, it is essential to minimize the 

leakage current with hermetic encapsulation. Recording electrodes (like those in the Utah array 

(Hsu et al., 2009)) are typically insulated with parylene-C. Parylene has found widespread use 

due to its biocompatibility, high tensile strength, and relatively low water absorption. We also 

compared aramid nanofiber (ANF)/epoxy film, which has demonstrated superior adhesion 

performance than the more commonly used parylene-C in recent testing (Yang et al., 2011). 

In this work, we created individually addressable intracortical devices that would be useful in a 

variety of rodent and NHP experiments, from basic neuroscience to patterned stimulation for 

brain-machine interfaces (BMIs). We demonstrated the capability of these devices to elicit motor 

behavior in mice, and to stimulate neurons in sensory cortex while simultaneously recording 

evoked action potentials with a recording electrode implanted in M1. We also performed 

accelerated lifetime soak testing of both parylene and aramid epoxy film coatings. The results of 

the soak testing indicate that safely packaging active electronics for long-term experiments 

remains a significant challenge and roadblock to chronic NHP implantation. 

4.3. Methods 

4.3.1. LED device fabrication 

4.3.1.1. Mounting 

Small (approximately 220um by 270um rectangular with 50um thickness) bare die LEDs are 

commercially available at the correct wavelengths and optical power for optogenetic stimulation. 

We chose Cree TR2227 devices for their minimal size, color, and power. The LEDs were wire 

bonded onto a 100 µm thick glass wafer patterned with gold pads, and diced to release individual 

devices with an ADT 7100 dicing saw (Advanced Dicing Technologies). Next, 75 µm copper 

wire (California Fine Wire, Grover Beach, California, #M287160) was attached by hand to the 

bond pads using conductive epoxy (EpoTek H20E), and oven cured.  The optical output of the 
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devices were characterized with a Thorlabs power sensor (S302C, Thorlabs, Newton, New 

Jersey). Power density in mW/mm^2 was calculated by dividing by the area of the emitting 

surface of the die. 

4.3.1.2. Hermetic coatings 

We tested the performance of multiple coating materials: parylene-C, parylene-C with an 

additional aluminum oxide layer, and a medical grade epoxy.  

For the epoxy devices, we used a layer by layer dip coating process incorporating aramid fibers. 

Macroscale aramid fiber, commonly known as Kevlar™, is a widely-used polymeric material for 

advanced composites. The unique advantages of aramid fibers include high tensile strength (~3.6 

GPa), low density (~1.4g/cm3), and excellent thermal and chemical stability. Dispersions of 

aramid nanofibers (ANFs) with diameters ranging from 3 nm to 30 nm can be produced by 

dissolving bulk aramid fibers in organic solvent dimethyl sulfoxide (DMSO). When interlaid 

with medical grade epoxy, a clear, strong, and waterproof coating is formed. In this work, 1g of 

purchased Kevlar® thread was dissolved in 100ml of DMSO with 4g of KOH for a week to 

prepare a 10 mg/ml ANF dispersion. Each device was dipped into ANF nanofiber dispersion 

first, and then rinsed with water to remove the excess DMSO. Then, the device was dipped into 

3% epoxy resin in acetone and dried at 80 degrees Celsius. This process was repeated until the 

device was covered in a 10 μm pinhole-free film.  

For the parylene-C coatings, two groups of devices were prepared. The first group only received 

10 µm parylene with silane adhesion promoter using a physical vapor deposition (PVD) process 

in a parylene deposition tool (Specialty Coating Systems). The second group subsequently 

received 52 nm of alumina (Al2O3) with an atomic layer disposition (ALD) tool (OpAL, Oxford 

Instruments) to enhance the hermeticity of the devices, as shown previously with Utah electrode 

arrays (Xie et al., 2014).    

4.3.1.3. Driver circuitry  

The voltages and currents applied to these devices need to be tightly regulated for safety 

purposes, and the timing of light pulses needs to be precise. We developed a custom shield for an 

Arduino Mega 2560 microcontroller board that can independently control 32 LEDs using two 

16-channel LED drivers (TLC5940, Texas Instruments). A laptop running MATLAB was used 
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to communicate with the microcontroller via USB (Figure 4.1). The brightness of the LEDs was 

controlled with a digital potentiometer (AD5206, Analog Devices Inc.), and the generated pulses 

were synced with the neural data via a BNC hookup to the Arduino’s digital output. 

 

Figure 4.1 Control of optical stimulation. An Arduino microcontroller is used to drive the LEDs 

at the desired brightness, frequency, and duty cycle.  

4.3.2. In vivo testing  

All procedures and post-operative care complied with the University of Michigan's University 

Committee on Use and Care of Animals. 

4.3.2.1. Surgery 

Acute implantation of LEDs for demonstration of electrophysiological recordings was performed 

in two adult male Thy1-ChR2-YFP line 9 mice (Jackson Laboratories, stock no. 007615) 

weighing 26-28 g. Mice were first anesthetized using 4% isoflurane (v/v) to knock-out and then 

given an intraperitoneal (IP) injection of ketamine (100 mg/kg) with xylazine (10 mg/kg). 

Regular IP injections of ketamine (30 mg/kg) were given every 30 minutes to maintain anesthetic 

depth. Dual-shank tetrode probes (NeuroNexus, Ann Arbor, MI) deposited with PEDOT (as in 

Patel et al., 2015) to reduce site impedance were used for recordings. Reference and ground 

wires on the probe were attached to a single bone screw. Following craniotomies and resection of 

the dura, the probe was inserted into primary motor cortex (relative to bregma, AP:+1, ML:+1.5, 

DV:-.8 mm) with a digital stereotaxic frame. A single LED device was inserted into S1 (relative 

to bregma, AP:-0.9, ML:+3, DV:-1 mm). During surgery, animal vitals were monitored using a 

pulse-oximeter and rectal temperature probe.  

Chronic implantation of LEDs for demonstration of induced behavior followed the same 

anesthesia protocol. Two mice (Thy1-ChR2-YFP line 18, Jackson Laboratories stock no. 

007612) were each implanted with one LED device in M2 (relative to bregma, AP:+1, ML:+0.5, 
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DV:-1 mm). Dental acrylic was used to form a headcap, and a 2 pin header connector (Mill-Max, 

Oyster Bay, NY) was embedded in the acrylic for connecting the LED to power during 

experiments. The animals were recovered on a heating pad and were not optically stimulated 

until the following day. 

4.3.2.2. Electrophysiology 

The stimulator box (see 2.2) was used to stimulate neurons in S1 while recording from M1. Pulse 

trains were generated at 50 Hz (10% duty cycle, 2ms pulse width). All acquisition of 

electrophysiology recordings were taken using a ZC16 headstage, RA16PA pre-amplifier and 

RX5 Pentusa base station (Tucker-Davis Technologies, Alachua, FL). During data acquisition, 

the pre-amplifier high pass filtered at 2.2 Hz, anti-aliased filtered at 7.5 kHz, and sampled at a 

rate of ~25 kHz. Data from all working channels were common average referenced (CAR) to 

minimize stimulation artifact, imported into Offline Sorter (Plexon, Dallas, TX) and high-pass 

filtered (250 Hz corner, 4th order Butterworth). Each channel was manually thresholded and the 

sorted by a trained operator before exporting to MATLAB for plotting. 

4.3.2.3. Behavioral experiment 

The stimulator box (see 2.2) was used to stimulate neurons in M2 to elicit circling behavior. The 

two mice that were chronically implanted were each tested on the two days consecutively 

following their surgeries. They were placed in a clear behavioral chamber, and stimulated 10 

times for 10 seconds each pulse train (50 Hz, 2 ms pulses), with 10 seconds of rest in between. 

Viewer software (Biobserve, St. Augustin, Germany) was used for motion tracking of the animal 

within overhead camera footage, and computed the percentage of time the animal was active 

(moving at least 0.1 cm/s).  

4.3.3. Accelerated lifetime soak testing  

A crucial aspect of this design is the hermetic seal of the LED packaging. In order to test the 

ability of this package to keep the LED dry for extended time in the brain, we performed 

accelerated soak tests of these devices in saline and use the Arrhenius equation to determine the 

mean-time-to-failure (Dokmeci et al., 1997; Harpster et al., 2005). Devices were soaked in 1x 

phosphate buffered saline (PBS) solution (BP3994, Fisher, Waltham, MA) in individual sealed 

vials (Figure 4.5A) in an incubator at 70ºC. Stimulus pulse trains and measurements were 
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performed with a PGSTAT12 Autolab (EcoChemie, Utrecht, Netherlands), controlled by vendor 

supplied NOVA software. On each day of measurements, the LEDs were removed from the 

incubator and  pulsed at 50 Hz (10% duty cycle and 3 V pulse amplitude, the same parameters 

used in the in vivo experiments) for 10 minutes to simulate the stresses of an experiment. Then, 

one pulse was given below the turn-on voltage of the LED (1 V) while the current was measured, 

to approximate the leakage current. Finally, the 1 kHz impedance was measured. Measurements 

were taken every day for the first 7 days, and then every other day thereafter until failure. Failure 

occurred either by a lack of light output, a leakage current of greater than 1 μA, or a decrease in 

impedance of one order of magnitude or more, whichever occurred first. 

4.4. Results  

4.4.1. Fabrication 

LED devices were created by wire bonding commercially available bare die LEDs onto a glass 

wafer, and dicing the wafer to release individuated LEDs (Fig. 4.2A). The glass serves two 

purposes. First, it provides bond pads that are large enough to interface with standard sized wire. 

Second, it slices through brain tissue easily to minimize the damage caused by insertion. Wires 

could then be attached (Fig. 4.2B) and the device treated with a waterproof coating (Fig. 4.2C). 

Figure 4.2 Device fabrication and characterization. (A) A single LED on glass after wire bonding 

and dicing. (B) A device after application of 75 µm wires. (C) A device after aramid nanofiber 

dip coating. (D) Optical power output of devices. The standard operating input power (20 mW) 

produces optical power density similar to that used with fiber-coupled lasers (50-60 mW/mm^2).  
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Using this process and very thin LEDs, we were able to keep the entire device under 500 µm 

thick. We believe this is an acceptable size to insert into the brain, being similar to many other 

neural probes and cannulae. The light output of the devices was measured to ensure sufficient 

light output following coating. We found that these devices could produce more than sufficient 

power (Fig. 4.2D). When operated at the recommended electrical input power, they emit similar 

optical power density to that used with fiber-coupled lasers (50-60 mW/mm^2). 

4.4.2. In vivo testing 

To demonstrate they can be used to drive behavior, aramid nanofiber coated LEDs were 

chronically implanted in area M2 (premotor cortex) of two mice. The devices were easily 

inserted into using a stereotaxic micromanipulator (Fig. 4.3A) without bleeding and with 

minimal dimpling of the cortex. We only implanted one device in each mouse, as they are 

significantly larger compared to the size of mouse brain than they would be in monkey, but no 

Figure 4.3 LEDs produce behavior in mice. (A) An LED device implanted 1 mm deep into 

mouse cortex, with wires visible. The device inserted with minimal dimpling and no bleeding. 

(B) Screen capture of mouse behavioral experiment. Blue light is visible through the acrylic 

headcap. (C) Behavioral data for two mice on two consecutive days. Mouse circling activity 

increased significantly (paired t-test) with 50 Hz stimulation (red), but not when LED was 

reverse biased (blue).  
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motor deficits were noted in the two chronically implanted animals. Stimulation of M2 at 50 Hz 

produced circling behavior in both mice (Fig. 4.3C) on two consecutive days. No effect was seen 

with reversed polarity stimulation, indicating that the observed behavior was not due to leakage 

current causing an electrical microstimulation (ICMS) effect. 

To demonstrate the utility of these devices in electrophysiological experiments, we performed 

some acute recordings. Two separate mice were implanted with LED devices in primary 

somatosensory cortex (S1) and recording electrodes in primary motor cortex (M1) to mimic a 

BMI sensory feedback experiment (Fig. 4.4A). Spikes from multiple stimulus-responsive cells 

were recorded in each animal (Fig. 4.4B,C). While stimulus artifact was visible on many 

channels during recording, it could be mitigated with common average referencing (CAR), and 

was also easily separable during spike sorting. Perhaps due to the polysynaptic distance between 

Figure 4.4 LEDs produce spikes in connected cortical regions. (A) Stimulation was delivered via 

LEDs implanted in S1, while recordings were taken from M1. (B) Example of M1 neuron that did 

not precisely follow a 50 Hz stimulus train (blue bar), but fired throughout the stimulus and 

exhibited onset and offset bursting. Left: all recorded waveforms of the given neuron with mean 

waveform overlaid. Right: spike trace after common average referencing.  (C) Example M1 

neurons that followed 5 Hz and 1 Hz stimulus trains. A small stimulus artifact is visible at time of 

LED pulses (blue strokes). Left: all recorded waveforms of the given neuron with mean waveform 

overlaid. Right: spike trace after common average referencing. 
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the stimulus and recording, cells did not precisely follow a 50 Hz stimulus train, but fired 

irregularly or in a bursting manner throughout. We observed multiple cells display a stimulus 

onset and offset bursting pattern (visible in the example cell in Fig. 4.4B). When the stimulus 

frequency was decreased, selected cells fired in a one-to-one manner following the stimulus 

train, with an expected interareal delay. 

4.4.3. Longevity testing 

Although these devices functioned well during short 

term mouse experiments, we needed to know how 

they would perform when implanted and stimulated 

through chronically, on the scale of weeks or 

months, before implanting in a monkey. The aramid 

epoxy coated devices in the chronically implanted 

mice stopped producing light after a few days of 

experiments, which led us to perform benchtop 

accelerated soak testing (Fig. 4.5A). We compared 

the performance of three coatings: aramid nanofiber 

epoxy, parylene, and parylene with alumina. The 

devices coated with parylene and alumina vastly 

outperformed the aramid epoxy and plain parylene 

coatings (Fig. 4.5C), though the majority of the 

devices were still failing at under one week of 

heated soaking, which is equivalent to six weeks at 

body temperature. This lifespan is sufficient for a 

rodent experiment, but most likely not for a chronic 

monkey implant. We investigated the cause of the 

coating failures by inspection under a microscope. 

No obvious holes or delamination in the coatings were found (Fig. 4.5B), implying that pinhole 

defects are likely the primary failure mode.   

 

 

Figure 4.5 Soak testing of devices 

reveals longevity challenges. (A) LED 

soak testing vial with visible blue light 

(arrow). (B) Image of parylene and 

alumina coated device after failure. (C) 

Lifetimes of tested devices in heated 

saline soak with three different coatings.  



 

49 

 

4.5. Discussion 

We fabricated implantable LEDs using inexpensive, off-the-shelf components, and relatively 

simple microfabrication processes. These devices produce enough light at the correct wavelength 

to excite neurons, and can be placed as desired to reach any cortical layer, or even subcortical 

structures.  

Given the results of accelerated soak testing, the 

LED implant described here (with parylene and 

alumina coating) is appropriate for both rodent 

experiments spanning multiple weeks and acute or 

short term primate studies. The longevity is 

somewhat limiting, but is explained by our rigorous 

stress testing. Most soak tests are performed 

passively, without actually passing current through 

the devices. We simulated 10 minutes of 

stimulation each day, which places a significant 

amount of stress on the coatings. Recent 

implantable LED papers (Kim et al., 2013; 

Montgomery et al., 2015) have not discussed 

longevity. These devices use similar coating 

materials, so we believe they likely suffer the same 

longevity challenges as those described here. The 

creation of a hermetic coating that is biocompatible, long-lasting under stressful conditions, thin, 

and optically clear remains an engineering challenge. Thicker coatings (beyond 10 µm) of the 

same materials tested here might extend device lifetime long enough to balance the tradeoff of a 

larger device. Complete glass encapsulation, or combined glass and silicon packaging, is another 

appealing option (Harpster et al., 2005). 

Though challenges remain, we believe individuated implantable LEDs are a technology worth 

pursuing for their numerous applications in both primate and rodent work. Figure 4.6 shows 

several experimental configurations that could be done in a simple and cost-effective manner 

with these devices. Up to 32 independently addressable channels enable patterned stimulation for 

Figure 4.6 Examples of experiments that 

could be done in nonhuman primates with 

individuated optical stimulation devices. 

They include many-channel stimulation 

or inhibition (left top and bottom), 

illumination of entire Utah array 

recording volume (top right), and 

arbitrary placement of stimulation devices 

for sensory inputs (bottom right). 
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sensory feedback in BMI experiments or for the study of communication between sensory and 

motor areas. Since the devices are not tied at all to the placement of recording electrodes, they 

can be moved to allow for more channels where they’re needed. This also means they are 

compatible with Utah and other multielectrode arrays. The amount of photoelectric artifact on 

recording channels also decreases when the LEDs are moved farther away from the recording 

sites. This is an issue that is infrequently discussed in the literature, but rather mitigated by 

running LEDs on a DC voltage or sinusoidal stimulus rather than square pulses.  

Future work will focus on the extension of device longevity and further miniaturization via 

refinement of the fabrication methods. Overall, the technology we fabricated and tested here 

represents a novel and useful approach to optogenetic stimulation of cortex, and could enable 

many circuit-level investigations where multiple input channels are desired. 
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Chapter 5 

Chapter 5.  

Discussion 

5.1. Summary of work  

In this thesis, we have presented further evidence for the importance of sensation to improved 

BMI performance, and detailed our progress in the development of technology to provide 

sensory feedback.  

In the first study, we quantified the frequency and robustness of tactile somatosensory responses 

within the same M1 cortical populations that are used for motor decoding. We showed that some 

M1 neurons are naturally well tuned to tactile fingertip inputs, and that they can be tuned 

differently to different sensory modalities. These results highlight the importance of sensory 

information to motor control, even at the high level of the cortex. We know that control of 

movements without sensory feedback is difficult even with intact anatomy, in part because of 

natural variability in motor commands. There is now a body of evidence that the brain maintains 

accuracy by using a forward model that predicts the sensory consequences of motor commands 

(review, Shadmehr et al., 2010), which can then be updated via feedback (sensory prediction 

errors). The exact form of the model employed by M1 is not known, but Verstynen and Sabes ( 

2011) developed an adaptive Bayesian model featuring Hebbian learning that mimicked the 

variance and directional biases of reaches made by humans. The presence of tactile 

representation in M1 implies that such computations are (at least in part) performed there. Of 

course, since human BMI are currently trained with visual observation or imagined movements, 

“I felt what I was doing … it was exactly 

as it was my own fingers. What a feeling!” 

-Upper limb prosthesis user describing his 

experience in a sensory feedback 

experiment. (Wijk and Carlsson, 2015) 
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and the only sensory stream available to M1 during task performance is visual, we would not 

expect to see the presence of tactile signals interfering with decodes. Instead, it is the lack of 

expected signal that the system is struggling to contend with. In monkey BMI, this same 

situation would be seen when monkeys are using brain control, and not allowed to touch the 

screen or manipulandum with the hand. However, in this case, the monkeys are usually trained 

on a manual task. Training the decoder in the presence of sensation and then expecting it to work 

properly once removing it is just as problematic. And once experimenters begin providing tactile 

feedback, e.g. with ICMS to S1, the presence of this signal will be something to contend with. 

In the second study, we investigated the source of the tactile information, and its importance to 

sensory perception, using ketamine anesthesia. We showed that corticocortical communication of 

tactile information between S1 and M1 is interrupted during anesthetic-induced unconsciousness, 

while thalamocortical communication was maintained. As well as providing evidence for 

reduced cortical information transfer as a unifying property of anesthetic-induced 

unconsciousness, the data suggest that M1/S1 communication is necessary for accurate conscious 

perception of sensory inputs. This work further reinforces the need for sensory feedback in BMI 

experiments to enable naturalistic motor planning and execution.  

In the final study, we presented the design and testing of intracortical optogenetic stimulation 

devices for the further exploration of sensory processing, as well as the delivery of sensory 

feedback in primate BMI experiments. We demonstrated that our implantable LED devices can 

safely drive behavior and neural activity in transgenic mice. When faced with hermetic 

encapsulation failure after a few days of use, we were spurred to perform accelerated soak testing 

of the devices using several candidate coating materials. We showed that a combination of 

parylene and aluminum oxide performed best, but with vast room for improvement. The ability 

to stimulate and record in different brain areas is a particularly useful achievement of this work, 

as this is precisely the setup that will be used for closed-loop BMI with tactile sensation. 

 
5.2. Future directions  

As we learn more about the extent to which sensory signals are essential to motor behavior, it is 

clear that we can no longer ignore this component of M1 activity if we want to continue to 

improve performance. It may seem as though we have created or uncovered more problems than 
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we have solved. Here, we suggest some avenues of research that we believe will advance our 

understanding of the system and move us toward high performance, closed-loop BMI systems. 

5.2.1. Decoding 

Decoders such as the Kalman filter (and even simpler linear estimation techniques) have 

achieved remarkable performance in highly constrained behavioral tasks such as cursor control 

and typing, even over several days without recalibration (Jarosiewicz et al., 2015). Calibrating 

the system in ‘closed loop’ mode certainly helps (Jarosiewicz et al., 2013). But what happens 

when we move into three dimensions, with prosthetics hands comprising many joints and real-

world objects with strange dimensions that must be grasped and manipulated? As mentioned 

earlier, specialized calibration with objects is necessary before using decoders to interact with 

them (Wodlinger et al., 2015), and even with this training, there is room for improvement in 

performance. This is not surprising, as moving from two dimensional control to actually 

handling the weight and physics of an object is a large leap in complexity, both in the number of 

joints and muscles involved, and the mechanics of the environment. One solution is to use a state 

decoder to break the problem into more manageable pieces, then approach each piece (reach, 

grasp, lift, etc.) using its own unique model parameters based on separate training sessions. This 

has been executed successfully offline in monkeys performing a reach-to-grasp (Aggarwal et al., 

2013), but it is unclear whether this approach will actually increase efficiency in online 

experiments. 

Ultimately, decoding from linear models may not be the most promising approach. Instead of 

attempting to catalogue the contribution of each recorded neuron individually under every 

possible movement component, it may be better to take a step back and think about how the 

larger system initiates and executes a movement. Renewed interest in the dynamical systems 

perspective has led to some interesting findings; by reducing the dimensionality of a many-

neuron data set, it’s possible to observe the trajectory of the system through a state space that 

encompasses preparation and movement epochs (for review, see Shenoy et al., 2013). This 

approach employs the idea that there are many more neurons in M1 than muscles in the system it 

controls. Novel dimensionality reduction methods were developed that revealed a rotational 

structure to reaching trajectories (Churchland et al., 2012), suggesting non-periodic movements 

like reaches may be controlled in a similar way to rhythmic movements like walking, using a 
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central pattern generator. It has most recently been shown that reach kinematics are well 

represented in low-dimensional dynamics of M1 (as well as PMd and PMv) (Aghagolzadeh and 

Truccolo, 2016), and as some had predicted, decoding from these low-dimensional trajectories 

produced higher performance than decoding from the entire recorded neuronal population.  

A large advantage of decoding based on trajectories extracted from M1 state space is its 

unsupervised nature. No assumptions are made about whether cells code for certain kinematics; 

rather, these associations fall out naturally. In this case, we can view sensory content of M1 

firing rates as purely an asset to decoding. If modulation is strong enough, state space 

dimensions representing sensory responses or sensory processing will emerge as important. This 

technique has not been tested in the context of grasping and object manipulation, but it may be 

more suited to dealing with the rapidly changing cortical dynamics involved.  

5.2.2. Stimulation 

In Chapter 4, we discussed our success in developing implantable LEDs for cortical stimulation. 

We believe these devices will be useful for experiments exploring stimulation strategies for 

closed-loop control, but we are still faced with the problem of longevity. There are a few 

approaches to this problem. The first is to attempt thicker coatings; 10 µm parylene is commonly 

used in implanted devices, but this could easily be increased two or threefold in an attempt to 

extend device lifetime. If the primary failure mode is indeed pinholes or tiny cracks in the 

coatings, then a layer by layer process may help. The second is to find better coating materials. 

While the epoxy technology we tested did not outperform parylene, there are a few other options. 

One is to avoid films entirely and try a complete glass encapsulation, which could be achieved 

with by laser melting, or anodically bonded glass-silicon (Harpster et al., 2005). Graphene is 

another tempting possibility: it has recently been used to create transparent recording electrodes 

for simultaneous optical imaging (Kuzum et al., 2014), but could also be made as a 

nonconductive coating. 

Once we have chronically implantable optical stimulation devices, we can ask a variety of 

interesting questions related to the timing and direction of sensory information flow between S1 

and M1 and the response of M1 to various patterns of S1 stimulation while resting and during 

active movement. It has recently been demonstrated that monkeys can learn to interpret and use 
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multichannel ICMS in S1 representing proprioception to reach to nonvisible targets, and that 

they can integrate ICMS and visual feedback to achieve better performance on visible targets 

(Dadarlat et al., 2015). What has not yet been shown is how this stimulation affects M1 

dynamics during an active motor task, a matter our devices would be well suited to addressing, 

since they enable simultaneous stimulation and recording. We can also investigate how much 

different types or amounts of stimulation can improve performance, and whether it is possible to 

put in multiple modalities of sensory information simultaneously.  

Fortunately, there is ample evidence that cortex can learn to interpret new and somewhat 

arbitrary sensory inputs, and that M1 can adapt to non-ideal mappings. Sensorimotor learning in 

general involves learning new mappings between motor and sensory variables (Wolpert et al., 

2011), whether those mappings represent the interactions between your fingers and some piano 

keys, or motor signals mapped directly from cortex with a BMI. Ganguly et al. (Ganguly and 

Carmena, 2009; Ganguly et al., 2011) demonstrated the creation of new cortical maps following 

perturbation of the way in which the decoder mapped firing rates to cursor control – tuning 

curves developed, deepened and then remained well-tuned for more than a week. They also 

showed that neurons not directly used in decoders underwent changes in tuning depth, though 

they were smaller than in directly used cells, and that multiple maps could be stored by the same 

population of cells, indicating widespread changes in motor cortical activity. Utilizing the idea 

that neuronal firing rates can be transformed into a low-dimensional subspace that captures 

important activity patterns, Sadtler et al. showed that monkeys could more easily adapt to 

perturbations within the original neural firing rate space, or “manifold” (Sadtler et al., 2014). 

Ideally, this will work out nicely in BMI control, as the point of stimulating in S1 is to allow M1 

populations to behave as naturally as possible. 

By continuing to work on these issues, it’s very likely we will be able to develop a complete, 

clinically-viable BMI system that balances the risks of an invasive implantation surgery. The 

restoration of useful hand movement and sensation to those who have lost it stands to greatly 

improve the lives of those living with limb loss and paralysis. 
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