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ABSTRACT 

Graphene, the one-atom-thick carbon crystal, represents the first of an entire class 

of two-dimensional materials. Many interesting optical properties arise from the atomic 

thickness and the electronic band structure with Dirac cones. In this thesis, the 

opportunities of graphene as a building block for optoelectronics and metamaterials are 

explored.  

Several key frontiers of graphene research specifically for the applications in 

optoelectronics and metamaterials are addressed. The first frontier, which concerns the 

understanding of the fundamental optical properties of graphene, is investigated using 

experimental methods. In one of the projects, experiments are conducted to study the 

nonlinear harmonic generation of graphene at terahertz frequencies. 10-layer epitaxial 

graphene is excited with 40 kV/cm terahertz fields but no harmonic generation with an 

efficiency greater than 2% is observed. This result reveals the fundamental role played by 

the strong carrier-carrier scattering, which had been neglected by previously published 

theories of nonlinearity. Another project develops an ellipsometry-based technique that 

allows for accurate and robust measurement of the optical conductivities of two-

dimensional materials. Measurements of the optical conductivities of mono- and bilayer 

graphene from the ultraviolet to mid-infrared range are demonstrated. This technique is 

also applied to study the effect of chemical doping on the optical conductivity of graphene. 

Another class of projects aims to push the second frontier of graphene research — 

the new opportunities in physics and applications enabled by the fabrication of complex 

graphene layered structures. These include the development of a double-layer graphene 

photodetector, which achieves broadband infrared operation and high responsivity on the 

order of A/W utilizing the phototransistor gain, and the realization of vertically-stacked 
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graphene-dielectric multilayers, which turns into a hyperbolic metamaterial for 

wavelengths longer than 4.5 µm. 

The third frontier of graphene research addressed in this thesis investigates the 

combination of graphene with metasurfaces, as graphene and metasurfaces share the same 

reduced dimensionality compared to their bulk counterparts. A new type of metasurface 

based on the guided resonance of a photonic hypercrystal is proposed, which can serve as 

a two-dimensional resonator for enhancing the light-graphene interaction. Using full-wave 

electromagnetic simulation, it is demonstrated that the combined system can create optical 

modulators with high modulation depth and photodetectors with enhanced absorption. 
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Introduction 

Section 1.1 Motivation and thesis organization 

Since the first isolation of single-layer graphene in 2004 [1,2], many other 

crystalline materials, such as transition metal dichalcogenides (TMDs), hexagonal boron 

nitride (h-BN), and black phosphor, have also been exfoliated or grown into atomically 

thin layers [3-6]. They are now classified as two-dimensional (2D) materials, which have 

very distinct properties from their bulk counterparts. The discovery of graphene and other 

2D materials led to the Nobel Prize in 2010. Different 2D materials can be combined into 

the so-called van der Waals crystals, thanks to the strong in-plane covalent bonds and weak 

interlayer van der Waals force [5]. This opens unprecedented freedom of creating artificial 

crystals because there is no need for lattice match between layers. Each layer of the 2D 

material can be considered an atomic Lego brick that we can play arbitrarily. Moreover, 

we have all kinds of Lego bricks in our toolbox, including semimetals, insulators, 

semiconductors and superconductors. 

Recently, the advance in growing and transferring high-quality graphene and other 

2D materials has enabled reliable fabrication of more complicated structures [5-10]. We 

are now at a stage to explore new device concepts by building complicated structures with 

various atomic Lego bricks. In this thesis, I am particularly interested in the opportunities 

of graphene in the fields of optoelectronics and metamaterials. As will be discussed in 

Section 1.4, graphene has many unique optical properties that make it a promising photonic 



2 

 

building block — it is electrically tunable, it allows photodetection, it has interesting 

optical nonlinearity, and it is a good plasmonic material. 

My thesis covers several different interrelated frontiers in graphene-based 

optoelectronics and metamaterials. In Chapter 2, I conduct an experimental study of the 

nonlinear response of graphene at terahertz (THz) frequencies. In Chapter 3, a double-layer 

graphene photodetector with broad band and high responsivity is developed. In Chapter 4, 

I develop an ellipsometry-based technique that allows for accurate and robust measurement 

of the optical properties of graphene. In Chapter 5, I realize experimentally a hyperbolic 

metamaterial (HMM) with graphene-dielectric multilayers.  

Metasurfaces are analogous to 2D materials [11,12]. By designing constituent 

subwavelength structures, metasurfaces can be homogenized into 2D layers with optical 

functionalities. In Chapter 6, a metasurface made of an ultra-thin photonic hypercrystal 

slab is investigated with numerical simulation. I also demonstrate a combination of 

metasurface and graphene for creating optical modulators and better photodetectors.  

Section 1.2 Electronic properties of graphene 

 

Figure 1.1 The lattice and the band structure of graphene. (a) The hexagonal honeycomb lattice of 

graphene. (b) The Brillouin zone and band structure of graphene. The conduction band and the valence band 

are represented with pink and green color, respectively. The red arrows represent the direction of pseudospin.  

Graphene is an amazing material in many different aspects. It is the thinnest 

material imaginable and mechanically the strongest material ever measured. It has 

extremely high intrinsic carrier mobility and thermal conductivity [13]. Among many 

interesting properties of graphene, optical properties are the main interest of this thesis. 
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Since the optical response of graphene originates from electronic transitions, I begin this 

chapter with an introduction to the electronic properties of graphene [14].  

Graphene has a hexagonal honeycomb lattice, which can be viewed as two 

triangular sublattices (labeled by A and B), as plotted in Figure 1.1(a). Strong sp2 bonds 

are formed between the nearest carbon atoms, while the fourth valence electron of each 

carbon atom is in the pz orbital. It is the pz electrons that form the interesting band structure 

of graphene. The band theory of graphene has been known for more than half a century 

[15,16], which can be derived from the tight-binding model. The tight-binding Hamiltonian 

of graphene in position representation can be expressed by [14,17-19] 

H = −t∑ 𝑎𝑖
+𝑏𝑗<𝑖,𝑗> − t∑ 𝑏𝑖

+𝑎𝑗<𝑖,𝑗>  ,    (1) 

where 𝑎𝑖
+ and 𝑏𝑖

+ are creation operators at position 𝑖 for A and B sublattices, respectively.  

< 𝑖, 𝑗 > represents the nearest neighbors. t is the nearest-neighbor hopping energy. We can 

rewrite Eq. (1) in the momentum representation as  

H = ∫
𝑑2𝐤

(2𝜋)2
 (𝑎𝐤

+ 𝑏𝐤
+)ℋ(𝐤) (

𝑎𝐤
𝑏𝐤
) ,    (2) 

where 𝑎𝐤
+ and 𝑏𝐤

+ are the creation operators for the A and B sublattices in the momentum 

representation. ℋ(𝐤) is given by 

ℋ(𝐤) = −𝑡 ( 0 𝑒−𝑖𝐤∙𝒆1 + 𝑒−𝑖𝐤∙𝒆2 + 𝑒−𝑖𝐤∙𝒆3

𝑒𝑖𝐤∙𝒆1 + 𝑒𝑖𝐤∙𝒆2 + 𝑒𝑖𝐤∙𝒆3 0
) ,  (3) 

where 𝒆1 = (0, 𝑎) , 𝒆2 = (−
√3

2
𝑎,−

𝑎

2
)  and 𝒆3 = (

√3

2
𝑎,−

𝑎

2
)  are the nearest-neighbor 

vectors, and 𝑎 is the lattice constant. We can further expand ℋ(𝐤) near 𝑲 and 𝑲′ points of 

the Brillouin zone (see Figure 1.1). The low-energy effective Hamiltonian in the vicinity 

of the 𝑲 point is given by 

ℋ(𝐤) = ℋ(𝑲+ 𝐪) = ℏ𝑣F (
0 q𝑥 − 𝑖q𝑦

q𝑥 + 𝑖q𝑦 0
) = ℏ𝑣F𝝈 ∙ 𝐪 ,   (4) 

where 𝝈 = 𝜎𝑥𝒙̂ + 𝜎𝑦𝒚̂ are the Pauli matrices, and 𝑣F =
3

2
𝑡𝑎/ℏ is the Fermi velocity. In the 

first quantization language, this Hamiltonian gives the Dirac equation in the momentum 

representation, 
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ℏ𝑣F𝝈 ∙ 𝐪 |𝜓𝐪⟩ = 𝐸|𝜓𝐪⟩,          (5) 

from which we can obtain the energy dispersion and the two-component wavefunction: 

𝐸 = ±ℏ𝑣F|q| ,      (6) 

|𝜓𝐪⟩ =
1

√2
(𝑒

−𝑖𝜃𝐪/2

±𝑒𝑖𝜃𝐪/2
) |𝐪⟩ .     (7) 

Eq. (6) represents the famous linear energy dispersion of graphene, as plotted in Figure 

1.1(b). The + and – signs correspond to the conduction band (electron) and valence band 

(hole), respectively. 𝜃𝐪 = arctan(q𝑦/q𝑥) is the angle between 𝐪 and the x-axis, and the 

two-component column vector in Eq. (7) is the pseudospinor. We can see from Eq. (7) that 

the pseudospinor is tied to 𝐪. The relation between pseudospinor and 𝐪 defines the chirality 

of the particle, which has important consequences in suppressing the backscattering and 

contributing to the high mobility of graphene [17,20]. The electron and the hole near the 

𝑲 point are the antiparticles of each other, and have the opposite chiralities [17].  Similarly, 

the low-energy effective Hamiltonian near 𝑲′ point is given by 

ℋ(𝐤) = ℋ(𝑲′ − 𝐪) = ℏ𝑣F (
0 q𝑥 + 𝑖q𝑦

q𝑥 − 𝑖q𝑦 0
) = ℏ𝑣F𝝈

∗ ∙ 𝐪 .   (8) 

The corresponding Dirac equation in the first quantization language is given by 

ℏ𝑣F𝝈
∗ ∙ 𝐪|𝜓′𝐪⟩ = 𝐸|𝜓′𝐪⟩.           (9) 

The energy dispersion and the two-component wavefunction are given by 

𝐸 = ±ℏ𝑣F|q| ,              (10) 

|𝜓′𝐪⟩ =
1

√2
( 𝑒𝑖𝜃𝐪/2

±𝑒−𝑖𝜃𝐪/2
) |𝐪⟩.     (11) 

Notice that the particle in each of the two valleys (i.e. near 𝑲 or 𝑲′ point) forms a Weyl 

fermion, and together, they form a Dirac fermion.  
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Section 1.3 Basic optical properties of graphene 

 

 

Figure 1.2 Light-induced interband and intraband transition in doped graphene.  

The optical properties of a truly 2D material are fully described by the optical 

conductivity 𝜎(𝜔), which is defined by   

𝐽 = 𝜎(𝜔)𝐸∥,          (12) 

where 𝐽 is the surface current in graphene and 𝐸∥ is the in-plane component of the electric 

field. As plotted in Figure 1.2, when electromagnetic fields interact with graphene, they 

can induce interband and intraband transitions, which are the origin of optical conductivity. 

Considering the Dirac band structure of graphene, an analytical expression for the optical 

conductivity can be derived perturbatively from the linear response theory [21-23]:  

σinter(𝜔) =
𝜎0

2
(tanh

ℏ𝜔+2𝐸F

4𝑘B𝑇
+ tanh

ℏ𝜔−2𝐸F

4𝑘B𝑇
) − 𝑖

𝜎0

2𝜋
log [

(ℏ𝜔+2𝐸F)
2

(ℏ𝜔−2𝐸F)2+(2𝑘B𝑇)2
],       (13) 

σintra(𝜔) = 𝑖
4𝜎0

𝜋

𝐸F

ℏ𝜔+𝑖ℏ𝛾
  .                (14) 

σinter(𝜔)  and σintra(𝜔)  represent the conductivity contributed by the interband and 

intraband transition, respectively. The conductivity 𝜎(𝜔) equals σinter + σintra, the sum 

of the two contributions.  𝜎0  equals 𝑒2 (4ℏ)⁄ , a constant often called the universal 

conductivity of graphene. 𝐸F  is the Fermi energy relative to the Dirac point (positive 

regardless of whether the graphene is p-doped or n-doped), and 𝛾 is the intraband scattering 

rate.  
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Figure 1.3 The theoretical optical conductivity of graphene. (a) The conductivity 𝜎(𝜔) = σinter(𝜔) +
σintra(𝜔) is plotted. (b) The interband and intraband conductivity, σinter(𝜔)  and σintra(𝜔) , are plotted 

separately. This figure is plotted with 𝐸F=250 meV and ℏ𝛾=40 meV. 

Many important optical properties of graphene can be understood from Eq. (13-14), 

which are plotted in Figure 1.3. First, notice that the low-frequency response is dominated 

by the intraband conductivity σintra(𝜔), while the high-frequency response comes mainly 

from the interband conductivity σinter(𝜔). σinter(𝜔) exhibits Pauli blocking when ℏ𝜔 ≲

2𝐸F and approaches the universal conductivity 𝜎0 at high frequencies. It is this universal 

conductivity 𝜎0 that gives the famous 2.3% absorption of suspended graphene in the visible 

spectral range [24]. The form of Eq. (14) indicates that σintra(𝜔) is described by the Drude 

model. However, the Drude weight for graphene is proportional to √𝑛,  the square root of 

the carrier density, since  σintra(𝜔) ∝ 𝐸F ∝ √𝑛. This is different from the Drude model of 

a bulk metal, in which the Drude weight is proportional to 𝑛. 

The detailed derivation of Eq. (13-14) can be found in Ref. [21-23]. In Appendix 

A, I provide the derivation of two special cases that can be derived rather straightforwardly. 

In the first case, it can be derived from the Fermi’s golden rule that σinter(𝜔) equals 𝜎0 

when there is no Pauli blocking [24]. In the second case, the Drudic form of σintra(𝜔) in 

Eq. (14) is derived semi-classically using the Boltzmann equation [25].  
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Figure 1.4 The optical conductivity of graphene measured experimentally with our technique described 

in Chapter 4. The solid lines are measured directly, while dash lines are extrapolated from the experimental 

data using Eq. (14), as they are beyond our detection range. 

In fact, the theoretical analytical expression of Eq. (13-14) has limitations, and there 

are optical properties of graphene that cannot be captured by this theory. Figure 1.4 shows 

the optical conductivity of graphene measured experimentally with a technique developed 

by us. This ellipsometry-based technique will be reported in Chapter 4. From the 

experimental conductivity shown in Figure 1.4, we can see the limitations of the theoretical 

expressions Eq. (13-14), and obtain a better understanding of some optical properties 

beyond this theory. First, the theory is developed with the assumption of the Dirac 

Hamiltonian. Recall that the Dirac Hamiltonian (see Section 1.2.) is the low-energy 

effective Hamiltonian, which is not accurate for high photon energies.  This can be seen 

from Figure 1.4; the conductivity deviates from 𝜎0 when the photon energy is larger than 

~ 2 eV. In particular, there is a peak at 4.6 eV in the real part of the conductivity. This peak 

is due to the van Hove singularity at the M point of the Brillouin zone, which is beyond the 

low-energy linear band structure. Second, Eq. (13-14) are obtained with a non-interacting 

theory, where electron-hole interaction is absent.  However, it has been shown both in 

experiments and in first-principle calculation that excitonic effects play an important role 

at high photon energies [26,27]. In fact, the peak associated with the M point is at 5.1 eV 

according to the non-interacting theory, and it is shifted to 4.6 eV due to the formation of 

excitons. The excitonic effects alter 𝜎(𝜔)  significantly at high photon energies, and 

therefore Eq. (13-14) are not capable of describing the optical conductivity of graphene for 

ℏ𝜔 ≳ 2eV. On the other hand, the Drudic intraband conductivity Eq. (14) has been proved 
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experimentally to be an accurate description for graphene from the mid-infrared to far-

infrared ranges [28,29].  

Section 1.4 Graphene as a unique photonic building block 

 Electrically tunable optical conductivity 

One of the most unique properties of graphene is its electrically tunable optical 

conductivity, which has been exploited to realize active photonic devices such as optical 

modulators and tunable filters [30-32]. The tuning can be performed with a speed as high 

as tens of GHz, thanks to the high mobility of graphene [30,32]. Such a graphene-based 

tunable device often incorporates a resonant structure, such as a metallic metasurface [30] 

or graphene plasmonic structure [33], to further enhance the tunability. In particular, I will 

report in Chapter 6 a graphene-based optical modulator proposed by us, which incorporates 

graphene with an ultra-thin resonant photonic hypercrystal. 

The tuning is often realized with a gate structure shown in Figure 1.5. The carrier 

concentration in graphene or other 2D materials can be effectively tuned by electrical 

gating. As a consequence of the change in carrier concentration, the optical conductivity is 

also changed. The carrier concentration 𝑛 is simply given by the formula of a parallel-plate 

capacitor: 𝑛 = (
𝜀

𝑒𝑑
) 𝑉g, where 𝜀 and 𝑑 are the DC permittivity and thickness of the gate 

dielectric, respectively, and 𝑉g is the gate voltage. According to this relation, in order to 

obtain good tunability, it is preferable to use a high 𝜀 material as the gate dielectric, or to 

reduce the thickness 𝑑 . The latter can be achieved particularly with an ion gel gate 

dielectric [34].  

 

Figure 1.5 A gate structure to electrically tune the carrier concentration and the optical conductivity 

of a 2D material.  
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An important reason that enables the electrical tunability of the optical properties 

of graphene is the low density of states. Because of the Dirac band structure, graphene has 

a very low density of states near the Dirac point. As a result, the change of carrier 

concentration can shift the Fermi level very effectively [35], and therefore changes the 

optical conductivity significantly. In Figure 1.6, we plot the optical conductivity of 

graphene at different Fermi energies using Eq. (13-14). It can be seen that, by varying the 

Fermi energy, we can shift the wavelength at which the Pauli blocking of the interband 

transition begins. The Drude weight of the intraband conductivity is also controlled directly 

by the Fermi energy.  

 

Figure 1.6 The electrically tunable optical conductivity of graphene. Real (a) and imaginary (b) part of 

the optical conductivity of graphene at different Fermi energies, plotted by using the theoretical expression 

Eq. (13-14).  ℏ𝛾 = 40 𝑚𝑒𝑉 in this plot.  

 Photodetection 

Light absorption in graphene creates photo-excited carriers, which can be detected 

electrically. Therefore, graphene can be used as a building block for photodetection. The 

photo-excited carriers in graphene exhibit interesting dynamics: When light is absorbed via 

interband transition, it creates electrons and holes, and establishes two quasi-Fermi levels 

in the conduction band and valence band. The two quasi-Fermi levels merge within the 

first ~ 130 fs [36] due to very fast carrier-carrier scattering. Therefore all the electrons 

thermalize into a hot electron gas. The hot electrons eventually cool down by the heat 

transfer to phonons on a time scale of picoseconds, depending on the doping of graphene 

and the substrate temperature [37,38].  
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Photodetection with graphene has unique advantages [39,40]. Because graphene 

has no bandgap, it absorbs light over a very broad spectrum, covering the entire range from 

ultraviolet to THz [28,41,42], which enables ultra-broadband photodetection. Furthermore, 

graphene-based detectors can operate with an ultrafast speed (speeds up to 40 GHz have 

been reported in Ref. 43), thanks to the high mobility and ultrafast carrier dynamics 

[39,40].  

Various mechanisms have been exploited for graphene-based photodetection [39]. 

First, the photodetection can be accomplished with the photovoltaic effect. The electrons 

and holes are separated by the built-in electric fields at junctions [43]. Because the photo-

excited carriers in graphene have very short life time, the photovoltaic effect happens only 

near the junction. Second, photodetection can be accomplished with the photo-

thermoelectric effect, in which a voltage is created because of the difference in Seebeck 

coefficients or temperature [44]. This is an important mechanism in graphene particularly 

because the photo-excited carriers remain a hot electron gas for picoseconds. Third, the 

bolometric effect can also utilized for photodetection, which relies on the change of 

electrical conductivity when the carriers in graphene are heated by the incident light [45]. 

Fourth, the photodetection can be accomplished with the photogating effect [46-48]. This 

effect is realized with another material (or another graphene layer) that transfers carriers to 

the graphene channel under light illumination. Therefore, the graphene channel is gated in 

the presence of light illumination, resulting in a change of carrier concentration in the 

graphene channel. In Chapter 3, I will report our work on an ultra-broadband and high 

responsivity graphene photodetector, which is based on this mechanism [48]. Fifth, 

recently it was found that the lateral photo-Dember effect can take place at the graphene 

boundaries, which give rise to photocurrents [49].  

 Nonlinear optics 

The optical conductivity discussed in Section 1.3 is appropriate for describing the 

linear response of graphene. However, when excited by intense light, graphene exhibits 

nonlinear behaviors, and can be used as a building block for applications in nonlinear 

optics. For example, graphene has been used as the saturable absorber for mode-locked 

lasers [50]. A saturable absorber is an optical component that shows higher transmission 



11 

 

(smaller absorption) under stronger optical intensity, which is a key component in passive 

mode-locking. Under intense illumination, a significant amount of electrons and holes are 

created in the conduction and valence bands, respectively, resulting in Pauli blocking of 

further interband transitions, consequently decreasing the absorption. Because the linear 

energy dispersion, saturable absorption in graphene is broadband, allowing for applications 

in wide spectral ranges. Another important figure of merit for a saturable absorber is the 

recovery time. Because of the ultrafast carrier relaxation in graphene, a graphene-based 

saturable absorber has a short recovery time that is useful for producing ultrafast laser 

pulses. A mode-locked fiber laser using graphene flakes as the saturable absorber has been 

demonstrated to produce pulses with a duration of 460 fs [50].  

While the second-order nonlinear susceptibility is absent because of symmetry, 

graphene has a large third-order nonlinear susceptibility 𝜒(3)(−𝜔;𝜔1, 𝜔2, 𝜔3). This can be 

attributed to the linear energy dispersion of the band structure, which allows resonance for 

all the frequencies that participate in the nonlinear parametric process (i.e. 𝜔,𝜔1, 𝜔2, 𝜔3 

are all on resonance) [51,52]. Examples such as four-wave mixing and third harmonic 

generation have been demonstrated experimentally in graphene [51,53]. 

In Chapter 2, I will report on our study of the nonlinearity of graphene in the THz 

spectral range. We have found that the graphene nonlinearity in the THz range can be 

suppressed by the carrier scattering. 

 Plasmonic material 

Graphene is a semi-metal that supports plasmons. Therefore, graphene can be used 

as a building block to provide field confinement or enhancement by exploiting its 

plasmonic behaviours [54, 55]. The relevant spectral range of graphene plasmonics lies in 

the mid-infrared to THz frequencies. Resonances due to localized plasmons in graphene 

have been demonstrated in various structures, such as graphene ribbons and discs 

[34,56,57]. One important feature of the graphene plasmons is the tunability. Because the 

plasmons depend on the carrier concentration, graphene plasmonics is highly tunable, since 

the carrier concentration can be controlled by electrical gating or chemical doping (see 

Section 1.4.1) [34,56]. This is not attainable in metal plasmonics.  
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The basic plasmonic behaviors of graphene can be described with a semi-classical 

model [58, 59]. Interestingly, unlike metals that only support TM plasmons, both TM and 

TE plasmon modes are allowed in graphene. The dispersion relations of TM and TE 

plasmon modes for suspended graphene are given by [58] 

1 + 𝑖
𝜎(𝜔)√𝑞2−(𝜔/𝑐)2

2𝜖0𝜔
= 0,      (15) 

        1 − 𝑖
𝜔𝜇0𝜎(𝜔)

2√𝑞2−(𝜔/𝑐)2
= 0,                 (16) 

respectively. Here 𝑞 is the wave number of the plasmonic mode. It can be seen from Eq. 

(15) and (16) that the sign of Im 𝜎 determines which mode can be supported. TM plasmon 

mode exists when  Im 𝜎 > 0, which is satisfied in most mid-infrared to THz range. On the 

other hand, TE plasmon mode exists when Im 𝜎 < 0. TE plasmon mode has less practical 

applications because of the weak confinement; therefore, I will focus on TM plasmon mode 

in the following discussion.  

We can look closer at the dispersion relation of the TM plasmons by inserting the 

expression of 𝜎(𝜔) in Eq. (14) into Eq. (15). Consider only the intraband conductivity and 

neglect the loss, we obtain [55,59] 

𝜔 = √(
2𝜎0

𝜋𝜖0ℏ
)𝐸F𝑞 .      (17) 

This expression demonstrates the important signatures of 2D Dirac plasmons: 𝜔 ∝ 𝑛1/4 

and 𝜔 ∝ 𝑞1/2  (recall that  𝐸F = 𝑉Fℏ√𝜋𝑛 ∝ 𝑛
1/2  in graphene, where 𝑉F  is the Fermi 

velocity) [34,56].  

As a closing remark, the results of Eq. (15-17) are based on a semi-classical model, 

and they only works well when 𝑞 ≪ 𝑘F  [59]. A more general dispersion relation of 

graphene plasmons can be derived from the random phase approximation (RPA) [59,60]. 
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High-field THz response of graphene 

Section 2.1 Chapter introduction 

Among various applications, graphene is considered a promising electronic 

material for high speed electronic devices because of the high room-temperature carrier 

mobility and Fermi velocity (~1/300 of the speed of light). Experimentally, high speed 

graphene devices such as 100-GHz transistors, 30-GHz modulators and 40-GHz 

photodetectors have been demonstrated [32,43,61,63,64]. As the operating frequency of 

graphene devices improves, it becomes crucial to understand how it behaves in the 

terahertz (THz) regime. In addition, due to many unique THz properties of graphene, such 

as strong THz absorption of one atomic layer [65] and plasmon resonances of patterned 

structures [34], graphene can play an important role in the so-called THz gap (0.1 to 10 

THz), where there is a need for improved sources, components and detectors.  

In a weak field where graphene behaves linearly, the optical properties have been 

studied extensively over a broad spectral range from visible to THz [24,66-67]. Basic linear 

optical properties of graphene have been discussed in Section 1.3. In addition, I will report 

in Chapter 4 an ellipsometry-based technique we develop to measure the linear optical 

property precisely.  

Previous theoretical works on the THz high-field response of graphene have 

predicted that the Dirac band structure can lead to strong optical nonlinearities [25,68-77]. 

In particular, efficient harmonic generation at THz frequencies is predicted [25,73-77], 



14 

 

which makes graphene an attractive material for THz frequency multipliers. In addition, 

since the internal electric field in many graphene devices could reach 100 kV/cm, it is 

important to determine whether the transport is still linear under such a strong field. We 

are therefore motivated to conduct an experimental study of the THz nonlinearity of 

graphene and, in particular, the harmonic generation.   

Contrary to these early theoretical predictions, our experiment shows no detectable 

harmonic generation in the transmitted field, indicating that the early theories have missed 

some important physics of graphene and have overestimated the nonlinearity. It is noted 

that the early theoretical works neglect all scattering mechanisms in developing their 

theories. Our experimental results, which is published in New Journal of Physics in 2013 

along with another experiment performed by our collaborator at Oregon State University 

[78], suggest that the nonlinear effects can be suppressed by carrier scattering. Our 

observation is later supported by more recent theories [76,77]. 

Section 2.2 Theories of THz harmonic generation in graphene 

Theories of THz harmonic generation in graphene have been developed by several 

different groups before our experimental study [25,74-75]. The earliest work was done by 

Mikhailov et al. in 2007, who analyze the intraband contribution using the semi-classical 

kinetic theory [25,73]. The basic idea of this theory can be described as follows. The group 

velocity of electrons can be obtained from the band structure by 𝑣gx = 𝜕𝐸/𝜕𝑝x, where 𝑣gx 

is the group velocity in x direction,  𝐸 is the energy, and 𝑝x is the crystal momentum in x-

direction. For parabolic-band materials, as shown by Figure 2.1(a), 𝑣gx  is linearly 

proportional to 𝑝x. However, this is not the case for graphene due to its Dirac-cone band 

structure. Considering the conduction-band electrons in graphene, there is a step-function 

relation between 𝑣gx and 𝑝x, as indicated by Figure 2.1(b). This step-function relation can 

gives rise to efficient harmonic generation.  
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Figure 2.1. The mechanism for the THz harmonic generation in graphene. (a) and (b) The band structure 

and group velocity of a parabolic-band material and graphene. (c) An oscillating electric field and the induced 

sheet current density in graphene. (d) Fourier spectrum of the sheet current density.  

According to the semi-classical equation of motion 𝑑𝑝x/𝑑𝑡 = −𝑒𝐸x(𝑡), an electron 

gains a momentum 𝑝x(𝑡) = −(𝑒𝐸0/𝜔0)sin(𝜔0𝑡) in an oscillating electric field of 𝐸x(𝑡) =

𝐸0 cos(𝜔0𝑡). Because of the step-function relation between 𝑣gx and 𝑝x in graphene, the 

electron moves in the same direction with 𝑝x(𝑡)  with a constant speed, i.e., 𝑣gx(𝑡) =

−𝑣F sgn[sin(𝜔0𝑡)], where 𝑣F is the Fermi velocity of graphene. Accordingly, the sheet 

current density in graphene is expressed by  

𝐽x(𝑡) = 𝑒𝑛𝑣F sgn[sin(𝜔0𝑡)],                                             (1) 

 where n is the carrier density. This means that a sinusoidal excitation can produce a square 

wave-like sheet current in graphene, and therefore odd harmonics are generated efficiently 

[25], as shown by Figure 2.1(c-d). Notice that here we consider only the simplest case 

where 𝑝y of the electron equals 0, which can easily be generalized to cases of 𝑝y ≠ 0 [25].  
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The simple calculation described above is extended to an ensemble of electrons 

using Boltzmann equation in Mikhailov’s work [25]. Notice that in their theory only 

intraband contribution is taken into account. Also, in order for the semi-classical equation 

of motion to work, the frequency 𝜔 needs to satisfy ℏ𝜔 ≪ 𝑚𝑎𝑥{𝐸F, 𝑘B𝑇 }, where 𝐸F and 

𝑘B𝑇 are the Fermi energy and thermal energy. Using their theory, Mikhailov et al. obtain 

the critical electric field strength to observe efficient harmonic generation, which is given 

by 0.3 kV/cm×  𝑛(1011cm−2). For a graphene sample of Fermi energy of 200 meV, the 

critical field strength is ~ 9 kV/cm. 

Since the semi-classical theory developed by Mikhailov et al., there have been other 

theoretical works that treat this problem quantum-mechanically. In 2009, Wright et al. 

calculate the harmonic generation in undoped graphene by solving the Dirac equation in 

frequency domain, and predict a strong frequency-tripled current [74]. The critical field 

strength to observe the harmonic generation in their theory is ~ 2 kV/cm. In 2010, Ishikawa 

takes a time-domain approach by casting the time-dependent Dirac equation into extended 

optical Bloch equations, which reveals the importance of the interplay between interband 

and intraband dynamics [75]. Finite doping is considered in Ishikawa’s theory.  

It is important to note that, in the theoretical works described above [25,74-75], all 

scattering mechanisms in graphene are neglected. However, this is not well-justified. In 

fact, it has been shown that in graphene carrier-carrier scattering is strong and can damp 

the current [79-82]. Carrier dynamics in graphene is also susceptible to defect scattering 

and electron-photon scattering [14]. Therefore, in realistic graphene systems, the predicted 

nonlinear harmonic generation may be obscured by various intrinsic and extrinsic 

scattering mechanisms, which will be discussed in more detail the Section 2.5. 

Section 2.3 Strong THz source based on two-color air 

ionization 

In order to conduct experiments to look for the nonlinear harmonic generation in 

graphene, a strong ultrafast THz source that produces an electric field of at least 2 kV/cm 

[25,74-75] is required. However, such a strong field is not achievable with commonly 

available ultrafast THz sources such as photoconductive emitters and optical rectification 
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[83]. Therefore, I have built a THz source based on two-color air ionization [84-87], which 

is able to produce strong single-cycle pulses with a spectrum extending from mid-infrared 

(MIR) to THz. 

Figure 2.2 shows a schematic of the two-color air ionization. A 500 Hz 

regeneratively amplified Ti-sapphire laser system (Lambda Cubed laser system at 

University of Michigan) produces 30-fs, 3-mJ pulses [88]. The beam is focused by a lens, 

and a β-Barium borate (BBO) crystal is placed between the lens and the focal point to 

generate second harmonics at 400 nm wavelength. The fundamental and second-harmonic 

pulses add coherently to produce a symmetry-broken field at the focus [84-87], which 

ionizes the air at the focal point via tunneling ionization process. Because of the broken 

symmetry, the air plasma at the focal point contains a directional transient current [86,87], 

which give rise to the broadband MIR and THz radiation.  

 

Figure 2.2. THz source based on two-color air ionization. (a) The schematic of the optical setup. (b) The 

phase modulation of the THz generation obtained by changing the distance 𝑑 . (c) The polarization 

dependence of the THz generation obtained by rotating the BBO crystal. The THz power is measured with a 

bolometer.  

Since the radiation is created by a coherent process, the phase difference between 

the fundamental and second-harmonic pulses ∆Φ needs optimization, which can be done 

by adjusting by the distance between the BBO and the focal point [84]. This simple phase 
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adjustment is possible because the refractive index of air is different for fundamental and 

second-harmonic pulses. The phase difference is given by  

∆Φ = 𝑘0(𝑛𝜔 − 𝑛2𝜔)𝑑 + ∆Φ0,    (2) 

where  𝑘0 is the wave number in vacuum, 𝑑 is the distance between the BBO crystal and 

the focal point. 𝑛𝜔 and 𝑛2𝜔 are the refractive index of air for fundamental and harmonic 

pulses, respectively. ∆Φ0 is a constant phase difference that is independent of 𝑑. Figure 

2.2(b) shows our experimental optimization of ∆Φ. The THz generation depends critically 

on ∆Φ, which is consistent with Ref. 84. The orientation of the BBO crystal also needs 

optimization. Here we use a type-I BBO crystal, which gives best phase matching for 

second harmonic generation (SHG) when the angle ψ , defined as the angle between 

extraordinary axis and the fundamental electric field, equals 90°. However, in this case the 

electric fields of the fundamental and SHG pulses are perpendicular to each other, and the 

THz generation becomes inefficient. On the other hand, when ψ equals 0, there is no THz 

generation because of the lack of SHG. As a result, the optimal angle for ψ we observe is 

about 45°, which is also consistent with Ref. 84. 

 

Figure 2.3. The optical setup of the THz source based on two-color air ionization and the detection 

system. (a) The radiation is detected by a Michelson interferometer. (b) The radiation is detected by a grating 

spectrometer.   
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The optical setup of the THz source and the detection system are shown in Figure 

2.3. The generated THz and MIR radiation from the plasma is collected and re-focused by 

parabolic mirrors. The unwanted light at near-infrared (NIR) and visible frequencies is 

blocked by a silicon long-pass filter. To analyze the spectrum of the generated radiation, 

we use two detection systems, a Michelson interferometer and a grating spectrometer, for 

different spectral ranges. As shown by Figure 2.3(a), the Michelson interferometer consists 

of a pellicle beamsplitter and two arms, where one arm is equipped with a delay translation 

stage.  Interferograms are acquired by moving the delay translation stage, and their Fourier 

transform gives the power spectra. A bolometer (HD-3, IRLabs) and an HgCdTe (MCT) 

photoconductive detector (MCT-13-1.0, Infrarred Associates) are used for detecting in the 

THz and MIR ranges, respectively. Figure 2.4(a) shows the interferograms acquired with 

both detectors, and Figure 2.4(b) shows the corresponding power spectra. However, the 

Michelson interferometer is not suitable for MIR range because the vibration of the pellicle 

beamsplitter kills the interference. Instead of the Michelson interferometer, we use a 

grating spectrometer (Spectra-Pro-500i, Acton) to obtain better MIR spectra, which are 

shown in Figure 2.3(b) and Figure 2.4(b). These results demonstrate that the two-color air-

ionization source creates extremely broadband radiation, ranging from at least 0.15 THz to 

80 THz (or equivalently, from wavelengths of 3.75 μm to 2000 μm.)  

According to the previous theoretical works of THz harmonic generation in 

graphene, we need THz electric field of least 2 kV/cm to examine their theoretical 

predictions [25,74-75]. We can calculate the electric field strength at the focal point of the 

parabolic mirror 2 in Figure 2.3. The bolometer detects radiations from 0.15 THz to 15 

THz. Within this spectral range, we obtained a pulse energy of 6 nJ. The pulse duration is 

~0.1 ps, estimated from the interferograms. The spot size at focus is ~300 μm, obtained 

from a knife-edge measurement. Given these numbers, the calculated electric field strength 

is 350 kV/cm, which is more than enough to examine the theoretical prediction of the 

harmonic generation in graphene.  
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Figure 2.4. THz radiation from the two-color air ionization source. (a) Interferomgrams acquired by the 

Michelson interferometer with a bolometer (blue curve) and a MCT detector (red curve).  (b) Power spectra 

acquired by the Michelson interferometer with a bolometer (blue curve) and a MCT detector (red curve).  

The green curve is obtained by using a grating spectrometer with a MCT detector. Note that the relative 

sensitivities between different measurement methods are not calibrated.  

The next section will discuss the experiment that searches for the THz harmonic 

generation in graphene using this optical setup. The strong THz source I built is also used 

in another work collaborating with Prof. L. Jay Guo group. In that work, we demonstrate 

experimentally a THz detector based on photoacoustic effect in carbon nanotube 

nanocomposite. However, that work, published in Nature Photonics in 2014 [89], is 

beyond the scope of this dissertation.   

Section 2.4 Experiment of THz harmonic generation in 

graphene 

The goal of this work is to excite graphene with strong THz pules and search for 

the harmonic generation. Only few experimental works on the strong THz-field response 

of graphene were reported before our work [65,79], and none of them looked for the THz 

harmonic generation. On the other hand, Dragoman et al. have observed harmonic 
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generation from graphene in the millimeter wave range, with extremely low generation 

efficiency [90]. 

We use an epitaxial graphene sample, which is ideal for this measurement because 

it has a large area and consists of both highly-doped and nearly-intrinsic layers. Such a 

wide doping distribution allows us to search for the harmonic generation from both 

interband and intraband contributions. The sample has approximately 10 graphene layers 

grown on C-face 4H-SiC substrate. The first few layers close to the SiC substrate are highly 

n-doped (up to a Fermi level of 360 meV), while other layers are nearly intrinsic [91,92].  

 

Figure 2.5. The experimental setup designed to search for the THz nonlinear harmonic generation in 

graphene. Strong single-cycle THz pulses, produced by two-color air ionization, are focused to a multilayer 

epitaxial graphene sample. The spectrum is obtained by a Michelson interferometer and a bolometer. 

 The optical setup, as shown in Figure 2.5, is similar to Figure 2.3 of Section 2.4, 

where the details of the optical setup have been described. An epitaxial graphene sample 

is placed at the focal point of the second parabolic mirror, and a 3-THz low-pass filter 

(C103, IRLabs) is inserted right before the epitaxial graphene sample to restrict the 

excitation spectral range to below 3 THz. The electric field strength at the focal point is 40 

kV/cm, calculated from the measured pulse energy, duration and spot size. This electric 

field strength is weaker than the value reported in last section due to the presence of the 3-

THz low-lass filter, but still much stronger than the critical field strength (~ 2 kV/cm) 

predicted by early theoretical works. The interferograms and spectra of the transmitted THz 

radiation is obtained by using the Michelson interferometer. The THz energy is detected 

by the bolometer. The experiment is done at the room temperature. 
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Figure 2.6. The interferogram of the THz radiation that transmits through multilayer epitaxial 

graphene. (a) The interferogram of the THz radiation that transmits through the graphene sample and the 

reference interferogram acquired with the graphene sample removed. (b) The same interferograms as (a) but 

with their peaks normalized to the same value. 

Figure 2.6(a) shows the interferogram of the transmitted THz radiation, along with 

the reference interferogram acquired when the epitaxial graphene sample is not present. 

The transmission through this 10-layer epitaxial graphene sample is ~50%, and the two 

interferograms are identical within the noise level when they are normalized, as shown in 

Figure 2.6(b), indicating that the graphene sample responds linearly to the incident THz 

field with a nearly flat spectral response. Figure 2.7(a) shows the transmission and 

reference spectra, calculated from the Fourier transform of the interferograms in Figure 

2.6(a). Most of the power of the incident THz radiation is below 3 THz because of the 

presence of the 3-THz low-pass filter. However, the transmission spectrum shows no 

increase of power above 3 THz. In the presence of noise and nonzero transmission through 

the low-pass filter above 3 THz, the minimal detectable harmonic generation efficiency is 

~ 2%. The fact that the transmitted power is smaller than excitation power at all frequencies 

indicates that no nonlinear harmonic generation larger than ~2% is observed. We also vary 

the field strength by moving the graphene sample away from the focal point. Figure 2.7(b) 

shows that the normalized interferograms acquired from different field strengths are nearly 

identical, indicating again the lack of nonlinear harmonic generation.   

As a summary, our experiment observe no detectable (less than 2%) THz nonlinear 

harmonic generation under strong THz excitation, which contradicts the early theoretical 
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predictions. This is an indication that the early theories overestimate the nonlinearity and 

miss some important physics of graphene, which will be discussed in the next section. 

 

Figure 2.7. The spectra and interferogram of the THz radiation that transmits through multilayer 

epitaxial graphene. (a) Reference and transmission power spectra obtained by the Fourier transform of the 

interferograms shown in Figure 2.6(a). (b) Normalized interferograms of the THz radiation transmitted 

through the graphene sample under different incident field strengths. 

Section 2.5 Discussions 

Our measurements show no observable (< 2 %) THz harmonic generation from 10-

layer epitaxial graphene, even though the incident field exceeds significantly the critical 

field strength predicted by early theories. When we published this experimental result in 

New Journal of Physics in 2013, we proposed that the most likely explanation is the 

presence of fast carrier-carrier scattering when the electrons of graphene are excited by a 

strong field [78]. Scattering mechanisms are neglected in the early theoretical studies 

[25,74-75], where this neglect is only justified by the high mobility of graphene in a low 

field [25]. However, in a strong field, electrons gain great amount of energy from the field 

and become hot electrons. Various experiments and calculations have shown that hot 

electrons in graphene undergo extremely fast carrier-carrier scattering [79-81], which 

becomes the dominant thermalization mechanism that brings the electrons to equilibrium. 

Furthermore, unlike in materials with parabolic bands, carrier-carrier scattering in 

graphene does not conserve current [80,82] and directly leads to damping of current. As 

the fast thermalization can lead to suppression of nonlinear harmonic current, a theory of 

nonlinear harmonic generation would have to include the scattering mechanisms. 
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Our explanation is supported by the following theoretical works after the 

publication of our experiment in 2013. In 2014, Al-Naib et al. published a more 

sophisticated theory based the density-matrix formalism, which is capable to take 

scattering into account by introducing a phenomenological scattering time [76,77]. Their 

calculation shows that carrier scattering can diminish the harmonic generation by 

destroying the coherence, which agrees with our explanation of the experiment [78].  

Another reason for not observing the harmonic generation in our experiment, inferred from 

their theoretical calculation, is that the surface current created in graphene actually produce 

very weak radiation. In their theory, the THz transmitted and reflected fields are calculated 

self-consistently. According to their calculation, the harmonic radiation fields are very 

small compared to the incident field, even though the harmonic surface current in some 

case can be comparable to the fundamental surface current in graphene. This means that a 

monolayer of graphene does not have enough interaction with light to produce strong 

harmonic radiation.  

 Al-Naib et al. also show in their theoretical work that low cryogenic temperature 

and low doping are critical for obtaining harmonic generation. They show that strong 

harmonic current can be generated in undoped graphene under a temperature of 10 K, a 

scattering time of 50 fs, and a field strength of 0.2 kV/cm. However, even in this case where 

the surface current induced in graphene is highly nonlinear, the radiation generated by the 

nonlinear current is still extremely weak. In the transmission direction, the power of the 

third harmonic radiation is only ~ 3×10-7 of the incident power.  

There is a more recent experimental work on this topic reported by another group 

after the publication of our experiment results. Bowlan et al. report in Physical Review B 

in 2014 of observing the THz harmonic generation in graphene [93]. They use 45-layer 

epitaxial graphene and cool the sample to 50 K. Under a field of ~ 40 kV/cm, they observe 

third harmonic generation with power ~ 3×10-3 of the fundamental transmitted power. The 

significantly higher efficiency than Al-Naib’s theoretical prediction may due to the use of 

multilayer sample and much stronger field.  
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Ultra-broadband and high responsivity  

graphene photodetector 

Section 3.1 Chapter introduction 

Graphene is a promising building block for optoelectronics especially because of 

the Dirac band structure and high mobility. Because of the lack of bandgap, graphene 

absorbs light over a very broad spectrum, covering entire range from ultraviolet to THz 

[41,42,56,66]. This unique property of graphene enables ultra-broadband photodetectors. 

Graphene photodetectors based on different detection mechanisms (e.g., photovoltaic, 

photo-thermoelectric, and bolometric effects. See Section 1.4.2) and different operating 

spectral ranges have been reported by many research groups [39]. However, there are two 

challenges in graphene-based photodetection. First, the optical absorption of graphene is 

much weaker than bulk materials due to its atomic thickness. Second, the photo-excited 

carriers in graphene have ultrashort lifetime before recombination. The ultrashort lifetime 

has been demonstrated in different experiments, including a study with time-resolved 

angle-resolved photoemission spectroscopy (ARPES), which  shows that the two quasi-

Fermi levels in conduction band and valence band merge within ~130 fs [36]. As a result 

of the weak absorption and the ultrashort carrier lifetime, the responsivities of most 

graphene photodetectors are limited to only tens of mA/W-1 [94-98].  There have been 

several approaches to increase the responsivity, such as incorporating optical cavities, 

optical antennas or plasmonic structures to enhance the absorption in graphene [99-101]. 
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However, these approaches sacrifice the ultra-broadband advantage of graphene in 

exchange of improved responsivity, since the cavities, antennas and plasmonics structures 

can only operate near resonance. 

In this chapter, I will describe a graphene photodetector with high responsivity 

without sacrificing the ultra-broadband advantage of graphene. It utilizes a gain mechanism 

to increase the responsivity. The photodetector is composed of two graphene layers 

sandwiching an ultra-thin tunneling barrier. When light is absorbed by the graphene layers, 

asymmetric tunneling between the two layers results in the photogating effect, which 

strongly modifies the conductivity of the channel graphene and provides huge 

phototransistor gain. Detailed mechanism will be described in Section 3.2. Similar gain 

mechanisms have also been used in quantum dot-graphene and MoS2-graphene hybrid 

systems [46-47]. In those systems, quantum dots or MoS2 is used as a strong light-

absorbing material. When light is absorbed by this material, it transfers charges to graphene 

channel and produces the photogating effect. However, quantum dots and MoS2 can only 

absorb in a narrow spectral range, which again sacrifices the ultra-broadband advantage of 

graphene. 

This work was done in collaboration with Prof. Zhaohui Zhong’s group. The device 

design and fabrication were performed by Chang-Hua Liu in Zhong group. I performed the 

optical characterization of the devices. The results of this work are published in Nature 

Nanotechnology in 2014 [48] and are the basis of a submitted patent. 

Section 3.2 Device structure and operating principle 

The device structure of our photodetector is shown in Figure 3.1(a), which is based 

on a double-layer graphene heterostructure. It has a field effect transistor (FET) 

architecture, where a p-doped silicon wafer with 285 nm thermal oxide forms the back gate 

of the device, allowing electrical gating of the bottom layer graphene. Two graphene layers 

sandwiches a thin tunnel barrier, where the bottom graphene works as the channel and the 

top graphene works as a floating top gate. A voltage bias is applied between the source and 

drain, and the drain-source current is detected by the external circuit. The graphene used 

in our device is grown by chemical vapor deposition (CVD) on copper foil and then 
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transferred using Poly(methyl methacrylate) (PMMA) method. A 6-nm-thick intrinsic 

silicon layer is chosen as the tunnel barrier. In another device design that operates in the 

visible range, we choose a 5-nm-thick Ta2O5 layer as the tunnel barrier instead. 

 

Figure 3.1 The device structure and the mechanism of the double-layer graphene photodetector. (a) The 

device structure. (b) The energy diagram and asymmetric tunneling under light illumination.  (c) A schematic 

demonstrating the photogating effect under light illumination. (a) and (b) are adapted from Ref. 48.  

The operating principle of the double-layer graphene photodetector can be 

understood from the band diagram shown in Figure 3.1(b). The top-layer graphene has 

heavier p-doping compared to the bottom-layer graphene. The average Fermi energy 

difference is ~0.12 eV, as determined from the gate-dependent transfer curves [48]. As a 

result of the doping difference, the energy band in the tunnel barrier is tilted due to charge 

transfer, which equilibrates the Fermi level of the two graphene layers. When light is 

absorbed by the two graphene layers, the tunneling of electrons and holes is asymmetric: 

Electrons tunnel preferentially from the top-layer graphene to the bottom-layer graphene, 

while holes tunnel preferentially from bottom to top, as indicated by Figure 3.1(b). After 

tunneling, because the tunneled electrons and holes are physically separated, they do not 

suffer from the ultrashort recombination time. They remain trapped in the separated two 

graphene layers for a period of time (denoted by 𝜏lifetime). This results in the photogating 
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effect, where the bottom graphene channel is gated by the top graphene under light 

illumination, as indicated by Figure 3.1(c).  

Therefore, this device operates as a phototransistor with an optically controlled top 

gate. In a phototransistor, there is a so-called phototransistor gain that enhances the 

responsivity. The phototransistor gain originates from the fact that the photo-generated 

charges can remain trapped for a period of time and recirculate in the circuit many times. 

The phototransistor gain is given by 𝜏lifetime 𝜏transit⁄  [46], where 𝜏lifetime is the lifetime 

during which the tunneled carriers remain trapped in the two graphene layers; 𝜏transit is the 

transit time, which is related to the mobility of the channel material. Because of the high 

mobility of graphene, the transit time is small, which makes graphene an ideal material for 

utilizing the phototransistor gain [46]. It is worth emphasizing that because our approach 

of increasing responsivity does not reply on resonant behaviors like optical cavities or 

plasmonic structures, it preserves the ultra-broadband advantage of graphene, enabling 

ultra-broadband high responsivity photodetectors.  

The operating principle described above is supported by direct measurement of the 

gate-dependent tunneling current [48]. We also scan a focused laser spot at different 

positions of the device while measuring the tunneling current, producing a 2D spatial 

mapping. The 2D spatial mapping shows that the tunneling current is generated from the 

overlapped region between the two graphene layers, further confirming the mechanism 

described above [48].  

Section 3.3 Measurement of the infrared responsivity  

To demonstrate the high responsivity across a broad spectrum, we characterize the 

double-layer graphene photodetector with different light sources from visible to mid-

infrared ranges. We use continuous wave (CW) lasers at 532 nm, 800 nm and 900 nm 

wavelengths. For longer wavelengths, we use an optical parametric amplifier (OPA) and a 

difference frequency generation (DFG) system. The OPA is pumped by a 250 kHz 

Ti:sapphire regenerative amplifier (Coherent, RegA 9000), generating signal and the idler 

waves at wavelengths of 1.3 µm and 2.1 µm respectively. Both waves are sent to DFG to 

produce light with a wavelength of 3.2 µm. In the following I will describe only the optical 
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setup and experimental results at wavelengths of 1.3 µm, 2.1 µm, and 3.2 µm. Results of 

532 nm, 800 nm, and 900 nm wavelengths can be found in Ref. 48. 

The optical setup for characterizing the infrared response (wavelengths of 1.3 µm, 

2.1 µm, and 3.2 µm) of the double-layer graphene photodetector is shown in Figure 3.2. It 

is a home-built infinite conjugate laser scanning microscope with a ZnSe objective lens 

(Edmund optics, 12 mm focal length). The graphene photodetector sample is placed on a 

2D motorized stage with 100-nm position resolution (Newport MFA-PPD and VP-25XA). 

In order to focus precisely the laser spot onto the center of the graphene detector, we scan 

the 2D motorized stage and collect the reflected light with an auxiliary detector (Thorlabs 

DET10D or Infrared Associates, IS-2.0, depending on the wavelength), forming a 2D 

scanning reflective image to determine the exact position of the device. This method also 

allows us to measure precisely the laser spot size by scanning the laser spot across the edge 

of a metal contact. The power is calibrated by a thermopile broadband power meter (Melles 

Griot, 13PEM001). All the characterizations are done at room temperature with the 

graphene photodetector in vacuum to control the environmental doping of graphene. 

Another similar setup with scanning mirror is used for characterizing the graphene detector 

in the visible to near-infrared range [48,102].  

 

Figure 3.2 The optical setup for characterizing the infrared response of the graphene photodetector. 
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Figure 3.3 shows the response of the double-layer graphene photodetector when the 

illumination is at the wavelength of 1.3 µm. The minimum of the transfer curve (drain-

source current as a function of back gate voltage Vg) shifts toward a more negative Vg value 

with the increase of laser power. Such a shift indicates an increase of n-doping. This 

observation supports the detection mechanism described in the previous section (see Figure 

3.1): the asymmetric tunneling and the photogating effect provide n-doping to the bottom 

graphene channel. Similar shift in the transfer curves is observed when laser is at other 

wavelengths [48].  

 

Figure 3.3 The gate dependence of the drain-source current under different incident power. The 

wavelength is at 1.3 µm. This figure is adapted from Ref. 48.  

The photocurrent is obtained by subtracting the dark current from the drain-source 

current. In Figure 3.4(a-c) we show the gate dependence of the photocurrent at wavelengths 

of 1.3 µm, 2.1 µm, and 3.2 µm under different incident power. A 1.5 V drain-source bias 

voltage is applied to the bottom channel graphene. We can further calculate the power 

dependence of the photocurrent at different gate voltages, as shown by Figure 3.4(d-f). 

From the power dependence we observe a saturation of photoresponse at large incident 

power. This can be explained by the decrease of asymmetry in the band diagram (see Figure 

3.1b) after opposite charges build up in the separated two graphene layers. From the 

measured photoresponse, we obtain responsivities of 4 A/W, 1.9 A/W, and 1.1 A/W at 

wavelengths of 1.3 µm, 2.1 µm and, 3.2 µm, respectively. This result demonstrates high 
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responsivity over a broad spectral range, which is much higher than the tens of mA/W-1 

responsivity of many reported graphene-based detector [94-98]. 

 

 

Figure 3.4 The infrared response of the double-layer graphene photodetector. (a-c) The gate dependence 

of the photocurrent under different incident power. (d-f) The power dependence of the photocurrent under 

different gate voltage. The wavelengths are at 1.3 µm (a,d), 2.1 µm (b,e) and 3.2 µm (c,f), respectively. This 

figure is adapted from Ref. 48.  
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Section 3.4 Temporal response with rest gate pulses 

In the previous section, our measurements have demonstrated the high responsivity 

of the double-layer graphene photodetector. However, there is a trade-off between gain and 

operation speed, since we rely on 𝜏lifetime, the lifetime during which the tunneled carriers 

remain trapped in the two graphene layers, to boost the gain (see Section 3.2 and 

[46,47,103]). Therefore, the operation speed of our graphene photodetector is significantly 

slower than many other graphene photodetectors, which can have an ultrafast operation 

speed even up to 40 GHz [43].  

 

Figure 3.5 The temporal response of the double-layer graphene photodetector with (a) a constant back 

gate voltage and (b) with reset back gate pulses. The laser illumination is turned on and off by a mechanical 

shutter (light intensity shown by the red curves). In (b), the voltage pulses sent to the back gate is shown by 

the blue curve. The drain-source current is measured (black curve). This figure is adapted from Ref. 48.  
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Figure 3.5(a) shows the temporal response of our double-layer graphene 

photodetector.  We turn on and off the laser illumination (λ=532 nm) with a mechanical 

shutter. From the shapes of the two curves in Figure 3.5(a), it is clearly seen that the 

measured current is not directly proportional to the illumination, which is different from 

common power detectors such as photodiodes. When the illumination is turned on and kept 

constant, the current changes gradually because the tunneled carriers continue 

accumulating in the two graphene layers and modifying the channel conductivity. When 

the illumination is turned off, it takes several hundred seconds for the trapped carrier in the 

two graphene layers to return to equilibrium. Therefore, the double-layer graphene 

photodetector is not a power detector with signal directly reflecting the incident power.  

The slow operation speed can be improved with rest back gate pulses [46,47]. 

Positive back gate pulses can raise the Fermi level of the bottom channel graphene, 

facilitating the trapped electrons in the bottom graphene to move to the top graphene. In 

this experiment we use a voltage source (Keithley 2400 series) to produce 10 ms pulses, 

and we synchronize the pulses with the mechanical shutter such that the pulses are applied 

right after the shutter is off. The drain-source bias is 1V. As Figure 3.5(b) shows, the gate 

pulses quickly reset the channel conductivity (in this case to a larger value) and allow the 

graphene photodetector to make the next measurement. With the reset gate pulses, the 

graphene detector can operate with a speed of more than 1 Hz. 

Section 3.5 Noise characterization and the noise-equivalent 

power 

Noise-equivalent power (NEP) is one of the most practical figure of merit for 

photodetectors. It is defined as the optical power that yields a unity signal-to-noise ratio 

for a 1 Hz bandwidth, and can be calculated from the noise spectral density and responsivity 

[104]: 

 NEP =
Noise spectral density

Responsivity
.    (1) 

To obtain NEP, we first analyze the noise in the dark current waveform of the double-layer 

graphene photodetector. As shown in Figure 3.6(a), the dark current waveform is acquired 



34 

 

by a current preamplifier and a data acquisition card with a sampling rate of 10 kHz. The 

drain-to-source bias voltage applied to the bottom graphene layer is 1V in this measurement. 

The noise spectral density is defined as 

 𝑆(𝑓) = lim
𝑇→∞

1

√𝑇
√〈|∫ 𝐼dark(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

𝑇/2

−𝑇/2
|
2
〉,   (2) 

where 〈 〉 denotes the expectation value, and 𝐼dark(𝑡) is the dark current waveform. The 

definition can be generalized to discrete finite sampling of the dark current 𝐼dark(𝑡𝑛): 

   𝑆(𝑓𝑛) =
1

√𝐹S𝑁
√〈|𝑰dark(𝑓𝑛)|

2〉,    (3) 

where 𝑰dark(𝑓𝑛) denotes the discrete Fourier transform of 𝐼dark(𝑡𝑛); 𝐹S is the sampling rate; 

𝑁 is the number of data points. Notice that the Fourier transform used here is defined so 

that 𝑆(𝑓𝑛) is non-zero only at positive frequencies [105]. The unit of 𝑆(𝑓𝑛) is 𝐴/𝐻𝑧1/2. 

Figure 3.6(b) shows the noise spectral density calculated from Figure 3.6(a) using Eq. (3). 

We also confirm our measurement of noise spectral density with another instrument. We 

send the dark current to a fast Fourier transform (FFT) spectrum analyzer (Stanford 

Research Systems SR760). The measured noise spectral density is shown in Figure 3.6(c), 

which is consistent with the result in Figure 3.6(b).  

NEP can be calculated using Eq. (1). The responsivity of graphene photodetector 

in the visible range can reach ~1000 A/W [48]. If the modulation frequency is 1 Hz, we 

can read from Figure 3.6(b-c) that the noise spectral density at this modulation frequency 

is ~ 10-8 𝐴/𝐻𝑧1/2, and therefore the NEP  is ~ 10-11 𝑊/𝐻𝑧1/2. On the other hand, the 

responsivity in the infrared range (λ=1.3~3.2µm) is on the order of 1 A/W, which 

corresponds to a NEP of ~ 10-8 𝑊/𝐻𝑧1/2 at a modulation frequency of 1 Hz. The NEP 

values are comparable to commercial infrared detectors based on narrow-bandgap 

semiconductors. 
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Figure 3.6 The noise spectral density of the double-layer graphene photodetector. (a) The dark current 

waveform. (b) The noise spectral density obtained by performing Fourier transform to the dark current 

waveform in (a). (c) The noise spectral density measured directly by using a commercial FFT spectrum 

analyzer. This figure is adapted from Ref. 48.  

Section 3.6 Discussions 

We have demonstrated that our double-layer graphene photodetector has high 

responsivity over a broad spectrum. There are several directions to further improve or 

modify the device for specific applications. To improve the NEP, the channel graphene can 

potentially be replaced with a semiconductor. Because a semiconductor has a bandgap, the 

dark current can be much smaller than graphene, and therefore the noise can be suppressed. 

Also, because the detection only requires very little absorption in graphene, it can be 

implemented as a transparent detector, by using a transparent substrate and a transparent 

gate electrode such as indium tin oxide (ITO) or graphene. The detector can also 

incorporate resonant plasmonic or antenna structures to further enhance the graphene 

absorption if the spectral bandwidth is not a concern. We will discuss in Chapter 6 that  the 

responsivity can be enhanced with a photonic hypercrystal structure, which boosts the 

graphene absorption by guided resonance (see Section 6.5.2). Regarding the device 

physics, the detailed carrier dynamics of carrier tunneling, trapping, and equilibrating is 
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worth studying. With a better understanding of the carrier dynamics, it is possible to obtain 

a larger responsivity or a faster operation speed by further optimizing the material choice, 

thickness, and fabrication method of the tunnel barrier. 
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Extraction of the complex optical conductivity  

of graphene by ellipsometry 

Section 4.1 Chapter introduction 

Two-dimensional (2D) materials have very distinct properties from their bulk 

counterparts [1-5]. As the dimension reduces from 3D to 2D, many important physical 

quantities require different descriptions. In particular, the refractive index is no longer well-

defined in a truly 2D material, since the induced polarization per unit volume has rigorous 

definition only in 3D.  A better physical quantity to describe the optical properties of a truly 

2D material is its optical conductivity, which is associated with the induced surface current 

(see Section 1.3) [21-23]. Consequently, conventional methods of characterizing the 

optical properties of materials need modification. In this work, we develop a modified 

ellipsometry technique that can provide accurate and robust measurements of the optical 

conductivity of truly 2D materials.  

The importance of characterizing the optical conductivity of 2D materials cannot 

be overemphasized. 2D materials have become unique building blocks for more 

complicated and sophisticated structures that create desired optical functionalities in 

optoelectronics and metamaterials [29,40,48,106,107]. Various 2D material-based 

optoelectronic devices, such as photodetectors and modulators, have been demonstrated. 

Examples include our works on the double-layer graphene photodetector and the photonic 

hypercrystal-graphene based optical modulator, which are reported in Chapter 3 and 6, 
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respectively. 2D material-based plasmonic structures and metamaterials have also been 

reported, including our work of graphene hyperbolic metamaterial [29], which will be 

discussed in Chapter 5. Reliable optical characterization of 2D materials is the key to 

realizing these devices and metamaterials. Accurate measurements of the optical 

conductivity is also important for testing theoretical predictions, from which we can gain 

knowledge of the underlying carrier physics.  

The optical conductivity is a complex number, whose real part determines the loss. 

The real part is relatively easy to obtain by transmission or reflection measurements, which 

has been demonstrated in many previous works on graphene [26,108,109]. On the other 

hand, the imaginary part of the optical conductivity is closely related to many important 

phenomena in optics. For example, whether graphene supports transverse-electric (TE) or 

transverse-magnetic (TM) plasmons depends on the sign of the imaginary part of the 

optical conductivity (see Section 1.4.4) [58]. The imaginary part also determines the optical 

topological transition of a graphene-based hyperbolic metamaterial [29]. However, 

obtaining the imaginary part is not as straightforward as the real part, and in many cases 

(e.g. graphene) Kramers-Kronig relations is not applicable due to the broadband optical 

response. As a result, more sophisticated techniques have been developed to obtain the 

complex optical conductivity of 2D materials. For example, Li et al. extract the complex 

optical conductivity of graphene by carefully measuring the reflection and transmission 

together with the help of an interference layer and electrostatic gating [66]. However, such 

a technique requires additional fabrication steps, which is not always practical to the 

general need. 

The technique we develop here is based on spectroscopic ellipsometry. More 

specifically, we modify the conventional data analysis in order to treat the truly 2D 

materials properly. In fact, ellipsometry has been used extensively to graphene in many 

previous works [110-115]. However, they have used a phenomenological approach that 

models graphene, just like any other bulk material, as a layer with a nonzero effective 

thickness and an effective refractive index. In contrast, we model a truly 2D material as an 

infinitely-thin sheet fully described by the surface conductivity. Our approach uses a 
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quantity with a clear physical definition, which allows a more direct connection to 

theoretical predictions and applications. 

Experimentally, we have applied this technique to mono- and bilayer chemical-

vapor-deposited (CVD) graphene, obtaining measurements of the optical conductivity 

from ultraviolet to mid-infrared wavelengths (from 230 nm to 7 µm). The mid-infrared 

properties are particularly interesting since graphene has been shown to be a good material 

for mid-infrared plasmonics and metamaterials [59,116]. We also study how chemical 

doping with nitric acid modifies the optical conductivity [28]. 

This work is published in Applied Physics Letters in 2014 [41]. In addition, it is the 

basis of a free data analysis software “Photonicvasefit” published on nanoHUB.org, which 

is developed in collaboration with Prof. Alexander V. Kildishev and Dr. Ludmila J. 

Prokopeva at Purdue University [117,118]. According to the record of nanoHUB.org, up 

to now this software have been used more than 600 times by users all over the world in the 

2D material community. 

Section 4.2 Basic principles of ellipsometry 

 

Figure 4.1 Basic principles of ellipsometry. (a) The schematic optical setup of a reflection ellipsometer. (b) 

The procedure of working with an ellipsometer. 

Ellipsometry is the most accurate technique of measuring the optical constants and 

film thicknesses of a layered structure [119]. It is robust and requires no baseline correction 

or reference samples. Figure 4.1(a) shows the schematic setup of a reflection ellipsometer. 

Incident light with a controlled polarization state is sent to the sample, and the reflected 
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light is measured in the specular direction with an analyzer. With this setup, the 

ellipsometric angles Ψ and Δ, defined by 𝑟p 𝑟𝑠⁄ = (tanΨ)𝑒𝑖Δ, can be obtained. Here 𝑟p and 

𝑟s  are the reflection coefficients for p and s light, respectively. In other words, an 

ellipsometer acquires the amplitude ratio and phase difference between 𝑟p and 𝑟s, rather 

than the absolute values of either. This is the reason why ellipsometry is a reference-free 

and robust technique. The measurement is insensitive to fluctuations of the light source 

and the environment. 

When working with ellipsometry, measurement is usually straightforward and 

relatively simple, but the data analysis is key and rather complicated. The procedure is 

shown in Figure 4.1(b). First, we perform the measurement to obtain Ψ  and Δ  of the 

sample. This step is usually done at several different incident angles and at different 

wavelengths to obtain more information about the sample. Second, we need to model the 

Ψ and Δ of the layered structure in terms of analytical expressions that contain some 

unknown free parameters. In bulk materials, the unknown free parameters are usually 

refractive indexes and thicknesses, while in 2D materials, the complex conductivity is the 

unknown parameter. For simple samples with only one interface, the analytical expression 

can be derived from Fresnel equations, while for most more complicated layered structure, 

transfer matrix method is used to obtain the analytical expression. This second step is most 

important, which requires correct physical understanding of the sample as well as 

experience. In fact, the main contribution of our work is to propose the correct modeling 

of 2D materials, which will be discussed in Section 4.3. The third step is to fit the model 

to the acquired data of Ψ and Δ. By finding the values of the unknown parameters that 

minimize the error between the model and the experimental data, we obtain accurate 

numbers of these parameters. 

Section 4.3 Modeling truly 2D materials 

Figure 4.2(a) shows the conventional modeling in ellipsometry. For samples 

consisting of bulk layers, a model is constructed such that each layer is described by the 

refractive index (with real and imaginary parts) and the thickness. Actually, this 

conventional modeling has been applied to graphene by several groups to extract what they 
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call the effective refractive index of graphene [110-115]. However, such a modeling is 

phenomenological and lacks clear physical meaning. For a truly 2D material, it is more 

physical to model the layer by an infinitely thin sheet with an in-plane sheet optical 

conductivity σ, as shown in Figure 4.2(b). Interestingly, this is mathematically very similar 

to the treatment of metasurface, which will be discussed in Chapter 6. Here we discuss the 

simplest case where an infinitely thin sheet is sandwiched between semi-infinite medium 

1 and medium 2. It can be extended to more complicated structures using the transfer matrix 

method. The reflection coefficients for s and p light can be derived by matching the 

boundary conditions of the Maxwell equations (see APPENDIX B):  

𝑟s =
𝑘1z−𝑘2z−𝜎𝜔𝜇0

𝑘1z+𝑘2z+𝜎𝜔𝜇0
  ,     𝑟p =

𝜀1 𝑘1z⁄ −𝜀2 𝑘2z⁄ −𝜎 𝜔⁄

𝜀1 𝑘1z⁄ +𝜀2 𝑘2z⁄ +𝜎 𝜔⁄
 ,    (1) 

where 𝑘1z, 𝑘2z are the out-of-plane wave vectors in medium 1 and medium 2, respectively; 

𝜀1, 𝜀2 are the permittivities of the two media. In an ellipsometric measurement of a 2D 

material, medium 1 and medium 2 are the air and the substrate. Eq. (1) is in fact a modified 

version of the Fresnel equation, which takes into account the surface conductivity at the 

interface. Ψ and Δ can therefore be calculated from Eq. (1) using the definition of 𝑟p 𝑟s⁄ =

(tanΨ)𝑒𝑖Δ. In this model, the real and imaginary parts of the optical conductivity σ are the 

unknown parameters of interest.  

 

Figure 4.2 Modeling a bulk layer (a) and a truly 2D material (b). 

Fitting the model to the experimental Ψ and Δ data gives the value of unknown 

parameters, which is done in MATLAB. In our MATLAB code, we apply the Marquardt-

Levenberg algorithm to find the optical conductivity that minimizes the mean square error 

(MSE), which is defined by  
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MSE =

√
1

3𝑛−𝑚
∑ [(𝑁𝑖

EXP − 𝑁𝑖
MOD)

2
+ (𝐶𝑖

EXP − 𝐶𝑖
MOD)

2
+ (𝑆𝑖

EXP − 𝑆𝑖
MOD)

2
]𝑛

𝑖=1 × 1000 .         (2) 

Here n equals the number of wavelengths multiplied by the number of incidence angles 

acquired in the measurement; m is the number of fitting parameters; 𝑁𝑖 = cos(2Ψ𝑖); 𝐶𝑖 =

sin(2Ψ𝑖)cosΔ𝑖 ; 𝑆𝑖 = sin(2Ψ𝑖)sinΔ𝑖 . The superscripts of EXP  and MOD  correspond to 

measured and model-predicted values, respectively. The subscript 𝑖 indicates the particular 

set of data of a wavelength and an incident angle.  

In our MATLAB code, the real and imaginary parts of the unknown optical 

conductivity σ as functions of wavelength are further parameterized. Because σ(λ) should 

be a smooth function, we have found that parameterization with cubic splines works very 

well. It is also usesful to parametrize σ(λ)  with physical models that describes the 

dispersion of the 2D material [29], such as the analytical expression for graphene 

conductivity described in Section 1.3. We use transparent substrates in most experiments, 

whose refractive index is well described by the Sellmeier equation. The coefficients in the 

Sellmeier equation are obtained from measurements of bare substrates. 

It should be noted that here we consider only the in-plane conductivity and neglect 

any out-of-plane response from the 2D material. This is justified for graphene, as ab initio 

calculation performed by our collaborators (private communication with Dr. JinLuo Cheng 

at University of Toronto) has shown that its out-of-plane conductivity is much weaker than 

the in-plane component. 

Section 4.4 Experimental results of graphene conductivity 

We report here the measurements on the optical conductivity of mono- and bilayer 

CVD graphene.  The monolayer graphene is purchased from Bluestone Global Tech 

(Gratom-M-Cu); Bilayer CVD graphene is grown in-house by our collaborator [120]. 

Graphene layers are transferred onto CaF2 substrates, which are transparent from 

ultraviolet to mid-infrared frequencies. It is worth noting that, although our technique can 

in principle be applied to arbitrary substrates, the choice of transparent substrates has 

advantages. Because transparent substrates have no absorption at the wavelengths of 
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interest, Δ from the bare substrates is either 0 or π.  Any deviation from 0 or π can be 

unambiguously attributed to graphene, which aids the robustness of the optical 

conductivity extraction [110]. This is important because 2D materials usually have very 

small contribution to the measured quantities due to the atomic thickess. Using transparent 

substrates allows better extraction over a broad spectral range as long as the substrate 

maintains its transparency, while other contrast improvement methods in ellipsometry such 

as interference enhancement can only work in a narrow spectral range [113]. The substrates 

are wedged by 2º to avoid backside reflection; in this case because only one interface is 

present, the simple expression of Eq. (1) can be applied directly. To acquire data over a 

broader spectral range, we use two ellipsometers, Woollam M-2000 and Woollam IR-

VASE, for wavelengths of 0.23 to 1.64 µm and 1.8 to 7µm, respectively. The longest 

wavelength is limited by the choice of CaF2 substrates, which start to show some absorption 

at 8 µm. The angles of incidence used in the experiment are 47º, 57 º and 67 º. The spot 

size of M-2000 is about 3 mm by 5.5 mm at 57 degree. We mask the samples with scattering 

paper tissues (Kimwipes) for IR-VASE measurement because its spot size (8 mm by 20 

mm at 57 degree) is larger than the graphene sample area (~ 10 mm by 10 mm). Bare CaF2 

substrates are measured and fitted by the Sellmeier equation to obtain the refractive index 

of CaF2. 

 

Figure 4.3 The data and the fitting of the epllipsometry-based technique performed on monolayer 

graphene. (a) The raw data of Ψ measured by Woollam M-2000 ellipsometer (red solid lines) and the Ψ 

values obtained by fitting our model to the data (blue dash lines). (b) The raw data of Δ measured by Woollam 

M-2000 ellipsometer (red solid lines) and the Δ values obtained by fitting our model to the data (blue dash 

lines).   
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Figure 4.4 The measured and the theoretical optical conductivity graphene. (a) The extracted optical 

conductivity of monolayer CVD graphene. (b) The optical conductivity of monolayer graphene predicted by 

the non-interacting theory with a Fermi energy of 277 meV and a scattering rate (in units of energy) of 54 

meV. The optical conductivity is normalized to the universal conductivity. The circles and diamonds are the 

control points of the cubic splines. 

Figure 4.3 shows the raw data of Ψ  and Δ  acquired by Woollam M-2000 

ellipsometer. By fitting with the analytical model described in Section 4.3, we can obtain 

very good match between the data and the model, as demonstrated by the figure. This is an 

indication that our model describes the 2D material very well. Figure 4.4(a) shows the 

optical conductivity of the monolayer CVD graphene extracted from the fit. The quality of 

the fit can be quantified by the MSE defined by Eq. (2). The MSEs of the M-2000 and the 

IR-VASE measurements shown in Figure 4.4(a) are 0.88 and 4.65 respectively, indicating 

good fitting quality. As shown in Figure 4.4(a), we observe a value of the optical 

conductivity very close to σ0, the universal conductivity of graphene, around 1 µm. Also, 

there is a peak in the real part located at the wavelength of 270 nm (photon energy = 4.6 

eV), which is associated with the exciton-shifted van Hove singularity at M point (see 

Section 1.3). These results are consistent with previous reports [24,26,108,110]. Notably, 

we obtain both the real and imaginary parts of the optical conductivity, while most previous 

works measure only the real part. To understand the measured conductivity, we plot in the 

Figure 4.4(b) the theoretical conductivity predicted by a non-interacting linear response 

theory (see Section 1.3) for comparison [21-23]: 
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ℏ𝜔+𝑖ℏ𝛾
 .  

(3) 

In Eq. (3), the first two terms and the third term are contributed by the interband and the 

intraband transition, respectively. σ0 is the universal conductivity defined by e2 (4ℏ)⁄ ; 𝐸F 

is the Fermi energy relative to the Dirac point (positive regardless of p-doing or n-doping); 

γ is the intraband scattering rate. Figure 4.4(b) is plotted with a Fermi energy of 277 meV 

and a ℏγ  value of 54 meV, which provide the closest match to the measured optical 

conductivity. We plot only the infrared wavelengths, since the theory within the 

independent-particle picture does not work properly in the ultraviolet to visible range, 

where many-body corrections are required [26,27,110].  

It should be noted that although the theory reproduces the main features of the 

measured optical conductivity, some details are different. In particular, the measured 

conductivity shows a smeared feature around 2 μm compared to the theoretical curves. A 

possible explanation is the presence of a non-uniform distribution of the Fermi energy 

within the measuring spot size, which is supported by Figure 4.5, the measurements 

performed with 10 times smaller spot size by using a focusing accessory of the M-2000 

ellipsometer. In this figure, we perform the measurement at 5 different positions of the 

sample. The measured optical conductivity curves associated different positions overlap 

almost perfectly for wavelengths below 700 nm, but deviate in the long-wavelength side 

of the spectrum. This indicates that the Fermi energy measured at different positions are 

different, and there is a non-uniform distribution across the sample. Because the electrons 

are free to move within graphene, the Fermi levels at different positions must line up. 

Therefore, as represented by the inset of Figure 4.5, the inhomogeneity is actually a result 

of different potential energies at different positions. This can be due to a nonhomogeneous 

distribution of charged impurities or dopants. It is also possible to attribute part of the 

broadening around 2 μm in Figure 4.4(a) to the damping in the interband transition, which 

is not included in the theoretical conductivity described by Eq. (3).  
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Figure 4.5 The optical conductivity measured with a 10-times smaller spot size by using a focusing 

accessory. Different curves correspond to the results obtained at different positions in the graphene sample. 

There are artificial fluctuations because the instrument signal-to-noise ratio is lower when using the focusing 

accessory. The inset represents the inhomogeneity in potential energy. 

In Figure 4.6 we plot the extracted optical conductivity of mono- and bilayer CVD 

graphene versus photon energy. As expected for bilayer graphene, the real part of the 

conductivity approaches twice the universal conductivity for near-infrared photon energies. 

Notably, the M-point peak in the real conductivity of the bilayer graphene is at 4.4 eV, 

which is red-shifted from the 4.6 eV peak of monolayer graphene. The observed red shift 

of the exciton-shifted van Hove singularity is consistent with previous reported 

measurements and first-principle calculations for bilayer graphene [26,27]. In addition, the 

bilayer graphene shows a small peak at 0.4 eV in the real part of the conductivity, as 

indicated by the arrow in Figure 4.6 (b). This peak, associated with the interlayer coupling 

energy, has been observed in exfoliated bilayer graphene in the literature [26,121,122]. 

Compared with the reported exfoliated bilayer graphene results, the peak we observe in 

CVD bilayer graphene is less pronounced.  
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Figure 4.6 The extracted optical conductivity of mono- and bilayer CVD graphene versus photon 

energy. (a) The extracted optical conductivity of monolayer CVD graphene. (b) The extracted optical 

conductivity of bilayer CVD graphene. The optical conductivity is normalized to the universal conductivity. 

The arrow in part (b) indicates the peak at 0.4 eV associated with the interlayer coupling energy of bilayer 

graphene. 

The samples reported in Figure 4.4, Figure 4.5 and Figure 4.6 are unintentionally 

p-doped by the environment. Our technique is also applied to study how chemical doping 

modifies the optical conductivity. Chemical doping is performed by placing the sample in 

a container with nitric acid vapor for 15 minutes [28]. The sample is then washed to remove 

excess nitric acid on the graphene surface. Figure 3 shows the optical conductivity of 

monolayer graphene before and after the chemical doping by nitric acid vapor. According 

to the theoretical conductivity described by Eq. (3), one way to obtain the Fermi energy is 

by identifying the photon energy of the local minimum in the imaginary conductivity [66]. 

The nitric acid chemical doping therefore pushes the Fermi energy to 530 meV (p-doped 

relative to the Dirac point), as the imaginary-part local minimum occurring at the 

wavelength of 1.16 μm corresponds to a photon energy of 2𝐸F. The real part in the near-

infrared region is decreased due to Pauli blocking. On the other hand, the optical 

conductivity at wavelengths below 0.6 μm shows negligible change. Although it has been 

reported that doping can modify the position and the shape of the exciton-shifted van Hove 

singularity peak, our doping change is not as strong as the electrolyte gating used in the 

literature to see this effect clearly [123]. Similar results with another dopant called magic 

blue will also be reported in Chapter 5. 
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Figure 4.7 The extracted optical conductivity of monolayer CVD graphene before and after chemical 

doping by nitric acid vapor. The optical conductivity is normalized to the universal conductivity. The 

markers are the control points of the cubic splines. 

Section 4.5 Discussion 

 

Figure 4.8 The optical conductivity extracted from the same set of experimental data using different 

modeling approaches. The solid lines are obtained using the model developed in this work. The dash lines 

are obtained using the conventional bulk-layer model. 

In this chapter we have demonstrated a technique based on spectroscopic 

ellipsometry that measures the complex optical conductivity of 2D materials. In our 

technique, 2D materials are described by the optical conductivity, in contrast to the 

conventional approach that models the material phenomenologically with an effective 

refractive index and an effective thickness [110-115]. We emphasize that although the 

effective refractive index can be converted into optical conductivity, the results obtained 

in this way is not correct. This is because a 2D material has very different in-plane and out-
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of-plane responses, and therefore modeling it as an isotropic material with an effective 

refractive index is not appropriate. Although it is possible to model the layer with 

anisotropic refractive indexes and an effective thickness, the increase of the number of 

unknowns is not economic in fitting and can result in unstable fitting. Figure 4.8 shows the 

optical conductivity extracted from the same set of experimental data using different 

modeling approaches. The solid lines are obtained using the modeling developed in this 

work. The dash lines are obtained by modeling graphene conventionally as an isotropic 

layer with an unknown effective refractive index and a fixed thickness 𝑑 of 3.35 Å [110]. 

After extracting the effective refractive index 𝑛, it is converted to conductivity using 

σ = 𝜔𝑑𝜀0[𝜀2 + 𝑖(1 − 𝜀1)],          (4) 

where 𝜀1 + 𝑖𝜀2 is the relative permittivity, which equals 𝑛2. We can see from Figure 4.8 

that the conventional modeling gives correct real part but incorrect imaginary part of the 

optical conductivity. Therefore, our modeling approach should be used for truly 2D 

materials, especially when the imaginary part of the conductivity needs to be determined 

accurately.  
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Mid-infrared graphene hyperbolic metamaterials 

Section 5.1 Chapter introduction 

 Materials with hyperbolic dispersion 

Hyperbolic materials are anisotropic materials in which the permittivities 

associated with different polarization directions exhibit opposite signs [124-126]. Such 

anisotropic behavior results in an isofrequency surface in the shape of a hyperboloid, as 

plotted in Figure 5.1(d). In general, arbitrary optical waves can be expanded by plane waves 

(denoted by 𝑒𝑖𝐤∙𝐫). The points on an isofrequency surface represent the 𝐤 vectors of all 

plane waves allowed to propagate in the material at a given frequency. Figure 5.1 shows 

the isofrequency surfaces and the corresponding dispersion relations of air, isotropic 

materials, elliptical anisotropic materials and hyperbolic materials. We can see that 

hyperbolic materials support plane waves with extremely high k values (the so-called high-

k modes), and as a result of the large surface area of the isofrequency surface, hyperbolic 

materials exhibit an enhanced photonic density of states (PDOS). Many interesting 

applications have been enabled by hyperbolic materials. For example, the spontaneous 

emission rate of quantum emitters can be modified if they are brought close to a hyperbolic 

material [127], and similarly, the scattering cross section of small scatters near a hyperbolic 

material is enhanced [128]. The near-field radiative heat transfer associated with 

hyperbolic materials becomes super-Planckian [129]. Also, the propagating high-k modes 

supported by hyperbolic materials have been exploited to achieve sub-diffraction-limited 
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images using a hyperlens [130], and to create cavities with deep subwavelength dimensions 

[131].  

 

Figure 5.1 Isofrequency surfaces and dispersion relations for air (a), an isotropic material (b), an 

elliptical anisotropic material (c), and a hyperbolic material (d). 

There are natural materials such as bismuth, graphite and hexagonal boron nitride, 

which exhibit hyperbolic dispersion in specific spectral ranges [132-134]. In particular, we 

will report in Chapter 6 a photonic hypercrystal-based perfect absorber, in which we use 

hexagonal boron nitride as the hyperbolic material. Another way to obtain hyperbolic 

dispersion in materials is by making metamaterials, which will be discussed in the next 

section. 

 Hyperbolic metamaterials 

The advances of metamaterials and metasurfaces have enabled the creation of 

artificial materials with various desirable properties [11,12,135,136]. These artificial 

metamaterials consist of carefully engineered structures that are small enough to be 

homogenized into effective media. By designing the constituent structures, we are no 

longer restricted by the material properties given by nature, and can even create extreme 

properties such as negative refractive index, epsilon-near-zero or large nonlinearity [137-
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139]. Among artificially-structured materials, hyperbolic metamaterials (HMMs) are 

designed to attain effective media in which the permittivities in different directions have 

opposite signs. Therefore, HMMs exhibit the hyperbolic isofrequency surface plotted in 

Figure 5.1(d). Because HMMs are engineered materials, the hyperbolic dispersion can be 

designed for the particular wavelengths of interest, which opens up new applications 

beyond what natural hyperbolic materials are capable of. 

HMMs are most commonly realized with two categories of structures: metal-

dielectric multilayers [127,130,131] and metallic nanorod arrays [140]. The former 

structure can be fabricated layer by layer using vapor deposition, and the latter is often 

obtained by electrochemical deposition of a metal on porous anodic aluminum oxide. In 

both cases, metal is the essential element to provide the conducting electrons that make the 

extreme anisotropicity possible. Metals can also be replaced by doped semiconductors for 

realizing HMMs in the infrared range [141]. In this work, we explore another possibility 

— realizing HMMs with graphene-dielectric multilayers.  

 Motivation for graphene HMM 

While metal is the most common conducting constituent element for metamaterials, 

graphene provides another useful building block, i.e., a truly two-dimensional (2D) 

conducting sheet whose conductivity can be controlled by doping. In this work, we explore 

the realization of a particular HMM, in which the role of the metal in providing a 

conducting layer is taken over by graphene [29,106,107,142-144,145-147]. Graphene is a 

2D semimetal with a thickness of only one atom [1,2]. It has been shown that doped 

graphene is a good infrared plasmonic material in terms of material loss [59]. As a truly 

2D material that only conducts in the plane, graphene by nature has the anisotropicity 

required for HMMs. As the thinnest material imaginable, graphene also makes an ideal 

building block for multilayer structures, as it enables the minimum possible period and 

therefore the highest possible cutoff for the high k-modes [142,148], which has been 

limited in metal and semiconductor-based HMMs by the non-negligible thickness of those 

materials. The conductivity of graphene, unlike that of metals, can be effectively modulated 

by electrical gating (see Section 1.4.1 and Section 5.5). This unique advantage has been 

demonstrated in other graphene-based metamaterials [149], and can potentially be 
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exploited to realize a tunable HMM in which the PDOS can be controlled electronically on 

demand. In addition, graphene shows much richer optoelectronic behavior than metals, and 

the massless Dirac quasiparticles in graphene also give rise to very different carrier 

dynamics compared to other semiconductors. Various photodetection mechanisms, such as 

photothermoelectric, photovoltaic, bolometric, photo-gating, and photo-Dember effects, 

have been demonstrated with graphene (see Section 1.4.2) [44,45,48,49]. Graphene 

multilayer structures can therefore serve as a unique platform in optoelectronics, which 

incorporates the unusual photonic behavior of HMMs into graphene detectors or other 

optoelectronic devices.  

In this work we report the first experimental realization of a multilayer structure of 

alternating graphene and Al2O3 layers, a structure similar to the metal-dielectric multilayers 

commonly used in creating visible-wavelength HMMs. In fact, before our work there have 

been a large body of theoretical work on graphene-based HMM with similar structures 

[29,106,107,142-144,145-147]. The main contribution of our work is the development of 

practical design, experimental realization and sample characterization. We demonstrate 

that the fabricated metamaterial experiences an optical topological transition from elliptic 

to hyperbolic dispersion. The results of this work are published in Nature Communications 

in 2016 [29]. 
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Section 5.2 Effective-medium approximation 

 Theory 

 

Figure 5.2 Graphene hyperbolic metamaterial. (a) The schematic of the graphene hyperbolic metamaterial, 

which consists of graphene-dielectric multilayers. (b) A schematic representing the homogenization of the 

graphene-dielectric multilayers into an effective medium. 

The advances of metamaterials and metasurfaces are particularly enabled by the 

homogenization methods, which allow for intuitive understanding and easy prediction for 

complicated structures. Various homogenization methods have been developed to obtain 

the effective properties of complicated structures [150-152]. In the case of our graphene 

HMM, the homogenization is rather straightforward because of the simple layered 

structure. Figure 5.2 shows the structure of the graphene HMM, which consists of 

alternating dielectric and graphene layers. The graphene-dielectric multilayer structure can 

be homogenized and viewed as a metamaterial using the effective medium approximation 

(EMA), as represented by Figure 5.2(b). To derive the effective parameters, we start with 

the dispersion of the TM-polarized Bloch wave supported by this periodic structure (see 

APPENDIX C for the derivation), which is given by  

cos(𝐾𝑑) = cos(𝑘𝑑𝑑) − 𝑖
𝜎 𝑍0

2𝜀𝑑
(
𝑘𝑑

𝑘0
) sin(𝑘𝑑𝑑).    (1) 

𝐾 is the Bloch wave vector; 𝑘𝑑 = √𝜀𝑑𝑘0
2 − 𝑘𝑡

2; 𝑘0 = 2𝜋/𝜆 and 𝑘𝑡 is the transverse wave 

vector; 𝜀𝑑 is the permittivity of the dielectric layer; 𝑑 is the dielectric thickness; 𝜎 is the 

optical conductivity of graphene. 𝑍0  is the vacuum impedance. Here we have treated 



55 

 

graphene as an infinitely thin layer fully described by its in-plane sheet conductivity, which 

is appropriate for truly 2D materials like graphene. In the long-wavelength limit (𝐾𝑑 ≪ 1 

and 𝑘𝑑𝑑 ≪ 1), Eq. (1) can be simplified to 

𝑘𝑡
2

𝜀𝑒𝑓𝑓,⊥
+

𝐾2

𝜀𝑒𝑓𝑓,∥
= 𝑘0

2 ,      (2) 

with the effective out-of-plane and in-plane permittivities given by 

𝜀𝑒𝑓𝑓,⊥ = 𝜀𝑑,   

𝜀𝑒𝑓𝑓,∥ = 𝜀𝑑 + 𝑖
𝜎 𝑍0

2𝜋
(
𝜆

𝑑
).     (3) 

The long-wavelength approximation made here is especially accurate in our case because 

𝑑/𝜆 <  1/300 (𝑑~10 nm and 𝜆  > 3µm in our sample). Eq. (3) is derived for TM 

polarization. Similar homogenizing procedure can be repeated for the TE polarization, in 

which case both the effective in-plane and out-of-plane permittivities are given by 𝜀𝑑 +

𝑖𝜎 𝑍0(𝜆/𝑑)/(2𝜋) . As a result, the graphene-dielectric multilayers form a uniaxial 

anisotropic metamaterial. It is worth noting that Eq. (3) can also be derived quasi-statically 

by averaging the surface current in graphene and the transverse displacement current in the 

dielectric within a unit cell, which is done in APPENDIX D. 

Here we focus our discussion on the TM polarization because it exhibits the 

interesting anisotropicity that enables hyperbolic dispersion. As indicated by Eq. (3), the 

out-of-plane permittivity 𝜀𝑒𝑓𝑓,⊥  is the same as the constituent dielectric and is always 

positive. This is because graphene is a truly 2D material that only conducts in plane. On 

the other hand, the in-plane permittivity 𝜀𝑒𝑓𝑓,∥ can be negative if 

Im 𝜎 > 2𝜋(𝑑/𝜆)(𝜀𝑑/𝑍0).     (4) 

When this criterion is satisfied, the long-wavelength isofrequency surface described by Eq. 

(2) becomes a hyperboloid, and we obtain a HMM. Such an isofrequency surface allows 

the existence of propagating high-k modes, which can be traced back to coupled plasmon 

modes in the graphene-dielectric multilayer structure [107]. The criterion described by Eq. 

(4) determines the wavelength at which the optical topological transition between elliptical 
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and hyperbolic dispersions occurs. In addition, the real part of the optical conductivity 

should be as small as possible, since it contributes to the loss in the HMM. 

 Validity of effective-medium approximation 

In the previous section, EMA is derived for an infinite periodic system, but an 

actual metamaterial sample must have finite number of periods (5 periods are used in our 

sample). Therefore, it is important to examine the validity of EMA, especially the 

dependence on the number of periods in the multilayer structure. In addition, it is clear that 

the validity of EMA also depends on the wave vectors, because as 𝐾 and 𝑘𝑡 increase, the 

long-wavelength approximation from Eq. (1) to Eq. (2) eventually breaks down. Here we 

discuss the validity of EMA in the low-k and the high-k regimes separately. 

As will be discussed in Section 5.4, we characterize the metamaterial with an 

infrared ellipsometer. An ellipsometer probes the low-k modes of the metamaterial, as it 

measures the sample with free-space plane waves, and the transverse wave vector 𝑘𝑡 

associated with free-space plane waves is very small (𝑘𝑡𝑑 = 𝑘0sin𝜃𝑑 ≪ 1 , where 𝜃 is the 

angle of incidence).  Therefore, an ellipsometer is an appropriate tool to probe the effective 

permittivity of a metamaterial. This is because in the low-k regime, we can accurately take 

the long-wavelength limit to homogenize the metamaterial, as we did to obtain Eq. (2) from 

Eq. (1). 
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Figure 5.3 Calculation of the ellipsometric angles 𝚿  and 𝚫  for 1-period, 3-period and 5-period 

structures on a CaF2 substrate. (a), (b), and (c) correspond to 1-period, 3-period and 5-period structures, 

respectively. The calculation is performed for incident angles of 47º, 57 º and 67 º. For all structures, the solid 

lines, which are calculated with the exact transfer-matrix method, match very well with the dash lines, which 

are obtained with the EMA. The parameters used in the calculation are the same as the experimental 

conditions described in Figure 5.8. 
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To study the validity of the EMA in the low-k regime probed by an ellipsometer, 

we simulate the ellipsometric angles Ψ and Δ, the quantities an ellipsometer acquires, with 

two methods: the transfer-matrix method that calculates graphene-dielectric multilayer 

structure rigorously and the EMA that homogenizes the structure into an anisotropic layer. 

The results are shown in Figure 5.3, in which samples with 1-period, 3-period and 5-period 

structure on a CaF2 substrate are calculated. We find that in the low-k regime, EMA can 

reproduce the optical properties accurately even for one period of the graphene-dielectric 

unit cell. It is worth noting that the highly accurate match between the EMA and the 

rigorous calculation is remarkable, which is not often observed in other metamaterials. This 

can be attributed to the fact that the period of the graphene HMM is so small (𝑑/𝜆 < 1/300 

in our case) that the quasi-static limit is reached satisfactorily (see APPENDIX D). 

Furthermore, Figure 5.3 implies that the effective permittivities of a graphene HMM 

retrieved from a low-k measurement such as ellipsometry are independent of the number 

of layers. Similar result showing that low-k optical properties are insensitive to the number 

of periods has also been reported in the literature for HMMs made of metal-dielectric 

multilayers [153]. This is very different from what has been reported for fishnet negative-

index metamaterials [135,154], in which the coupling between layers can in some cases 

significantly alters the effective parameters, and therefore a sufficient number of layers 

must be chosen in order to reach the convergence of the effective optical properties. 
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Figure 5.4 Calculation of 𝐈𝐦 𝒓𝒑, the imaginary part of the Fresnel reflection coefficient, in the high-k 

regime. (a), (b), (c) and (d) correspond to 1-period, 2-period, 3-period and 5-period structures on a CaF2 

substrate, respectively. The blue and green lines are calculated by the transfer-matrix method and EMA 

respectively. The parameters used in the calculation are the same as the experimental conditions in Figure 

5.8. The wavelength is 7 µm. 

In spite of the high accuracy of the EMA in the low-k regime, it is still necessary 

to examine the EMA in the high-k regime. In fact, the high-k regime is where the real 

interest of HMM lies, as the enhanced PDOS and subwavelength imaging all rely on the 

existence of propagating high-k modes. In particular, we need to investigate how the 

number of periods influences the high-k optical properties. The existence of propagating 

high-k modes in HMM can be manifested by the nonzero Im 𝑟p, the imaginary part of the 

Fresnel reflection coefficients for p-light [106,148], which is directly connected to the 

Purcell factor. In Figure 5.4 we show the calculation of Im 𝑟p in the high-k regime as the 

function of the transverse k-vector 𝑘𝑡  for 1-period, 2-period, 3-period and 5-period 

structures. As shown by all panels in Figure 5.4, the EMA overestimates Im 𝑟p, and the 

correct value calculated by the transfer-matrix method experiences a cut-off for large 

𝑘𝑡/𝑘0 . This is because when 𝑘𝑡/𝑘0 becomes large enough, the long-wavelength 

assumption eventually breaks down. Comparing different panels in Figure 5.4, we see that 
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by increasing the number of layers, the results from the EMA become closer to the transfer-

matrix method calculations before the cut-off. In our experimental realization, we choose 

to make 5 periods, which can provide optical properties reasonably close to the effective 

medium up to 𝑘𝑡 ≈ 50𝑘0.  

Section 5.3 Design and fabrication of graphene HMM 

 Design 

As indicated by Eq. (3) and (4), graphene with a large positive Im 𝜎 and a small 

Re 𝜎 is desirable in realizing a HMM. Therefore, it is important to look at the optical 

conductivity of graphene in order to design the multilayer structure properly. While most 

previous theoretical work has concentrated on using high-mobility graphene, which is often 

obtained by mechanical exfoliation or epitaxial growth, we use chemical-vapor-deposited 

(CVD) graphene because it is the most realistic choice for practical fabrication of a 

multilayer structure [155]. Growth of large area CVD graphene is well-established, and it 

can be transferred onto arbitrary surfaces. In spite of its advantage in fabrication, CVD 

graphene often has a higher degree of disorder, which is manifested by its reduced mobility 

(usually on the order of thousands cm2 V−1 s−1). As a result of the lower crystal quality, the 

stronger carrier scattering in typical polycrystalline CVD graphene enhances the free-

carrier absorption at THz frequencies, which can be understood from the theoretical optical 

conductivity of graphene (see Section 1.3) [21-23] 

𝜎(𝜔) =
𝜎0

2
(tanh

ℏ𝜔+2𝐸F

4𝑘B𝑇
+ tanh

ℏ𝜔−2𝐸F

4𝑘B𝑇
) − 𝑖

𝜎0

2𝜋
log [

(ℏ𝜔+2𝐸F)
2

(ℏ𝜔−2𝐸F)2+(2𝑘B𝑇)2
] + 𝑖

4𝜎0

𝜋

𝐸F

ℏ𝜔+𝑖ℏ𝛾
 , (5) 

where 𝜎0  equals 𝑒2 (4ℏ)⁄ , 𝐸F  is the Fermi energy relative to the Dirac point (positive 

regardless of p-doping or n-doping), and 𝛾  is the intraband scattering rate. In this 

expression, the first two terms correspond to interband transitions, while the third term is 

the Drude-like intraband conductivity. Figure 5.5 shows the plot of the theoretical optical 

conductivity given by Eq. (5) with parameters typical for doped polycrystalline CVD 

graphene.  
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To realize a good HMM, we need graphene with a large positive imaginary 

conductivity to interact with light, but with a small real conductivity to minimize the 

material loss. As indicated by Figure 5.5, graphene is lossy at high frequencies when ℏ𝜔 >

2𝐸F  due to interband transitions. On the other hand, at low frequencies when ℏ𝜔 ≲ ℏ𝛾, 

graphene also exhibits a large loss due to the intraband free-carrier absorption enabled by 

scattering. Because CVD graphene typically has a ℏ𝛾 of tens of meV, it is a lossy material 

at THz frequencies [56]. As shown by Figure 5.5, however, there is a spectral range 

between the two lossy regions such that the imaginary part of the conductivity exceeds the 

real part. As this spectral range lies in the mid-infrared part of the spectrum, CVD 

graphene-based HMM operates better in the mid-infrared than the THz region. Also, Figure 

5.5 indicates that doping can improve the properties of graphene for realizing a HMM. A 

large 𝐸F can turn off the interband absorption by the Pauli blocking and increase the Im 𝜎 

required for achieving negative 𝜀eff,∥ . Furthermore, doping can also suppress the intraband 

scattering by screening charged impurities [56,156].  

 

 

Figure 5.5 The theoretical optical conductivity of graphene. It is plotted with 𝐸F = 350 meV and ℏ𝛾 = 40 

meV. These numbers correspond to heavily-doped CVD graphene. At the high-frequency end of the 

spectrum, graphene is lossy because of the interband absorption. At the low-frequency end, graphene is again 

lossy due to the intraband free-carrier absorption. There is a useful spectral range in between, where the 

imaginary part of the optical conductivity exceeds the real part. In this particular example, the useful 

wavelengths range from 2 to 30 μm in the mid-infrared. The inset shows another example of lightly-doped 

CVD graphene with 𝐸F = 150 meV and ℏ𝛾 = 40 meV. The useful wavelength range is smaller when the 

doping is lower. 
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Therefore, we design the graphene-dielectric multilayer structure shown in Figure 

5.2(a) such that it operates as a HMM in the mid-infrared range. The structure consists of 

5 periods of alternating CVD graphene and dielectric spacers. We choose Al2O3 as the 

material for the dielectric spacer because it has negligible loss at the mid-infrared 

wavelengths up to 8 µm, and depositing thin Al2O3 layers with such thickness is a well-

established process. Using Eq. (4), we design the dielectric thickness to be ~10 nm to create 

an optical topological transition in the mid-infrared range.  

 Fabrication 

The sample fabrication procedure is described as fellows. A CaF2 wedge is used as 

the substrate, which is wedged by 2° to avoid backside reflection for the following 

ellipsometry characterization. The CVD graphene is grown on copper foil (Graphenea Inc.) 

and transferred to the substrate using the standard poly(methyl methacrylate) (PMMA) 

transfer technique [155,157]. The copper foil is etched using an ammonium persulfate 

solution. The size of the CVD graphene we transfer is about 10 mm by 10 mm. After 

transferring each graphene layer, we dope the graphene chemically by soaking the sample 

in a 0.25 mM solution of Tris(4-bromophenyl)ammoniumyl hexachloroantimonate 

(“magic blue”) in dichloromethane for 10 minutes, and then rinse the sample with 

dichloromethane [158,159]. A sub-monolayer p-dopant is left on the graphene surface (see 

supplymentary materials of Ref. 29). The Al2O3 dielectric layer is deposited by atomic 

layer deposition (ALD) at 150 ºC using Trimethylaluminium as the Al precursor and H2O 

as the oxygen precursor. The number of cycles used in the ALD process is calibrated to 

grow ~10 nm of Al2O3 on graphene, with the thickness characterized by an ellipsometer 

(Woollam M-2000). The procedure is repeated to fabricate 5 periods of the graphene-Al2O3 

unit cell. We have also confirmed that the chemical doping with Tris(4-

bromophenyl)ammoniumyl hexachloroantimonate does not affect the Al2O3 layer and the 

substrate. We have found that although nitric acid can also p-dope graphene effectively 

[41,56], it is not a good dopant for making the multilayer structure because of the damage 

to the thin Al2O3 layer. We also characterize the graphene-dielectric multilayer structure 

with the Woollam M-2000 ellipsometer after depositing each Al2O3 layer and after 
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transferring each graphene layer (see APPENDIX E). With the acquired ellipsometry data, 

we extract an average Al2O3 thickness of 10.4 nm. 

 

Section 5.4 Sample characterization 

 Optical conductivity of monolayer graphene  

Because graphene is the key building block of the metamaterial, it is important to 

have an accurate measurement on the optical conductivity of the actual monolayer CVD 

graphene used to fabricate the multilayer sample. Although the theoretical optical 

conductivity given by Eq. (5) provides a good guideline for designing the graphene HMM, 

real CVD graphene layers can have imperfections or extrinsic properties that are not taken 

into account by Eq. (5). We therefore need to characterize actual graphene samples and 

examine the scope of validity of Eq. (5). In Chapter 4, we have reported in detail an 

ellipsometry-based technique we developed to measure the optical conductivity of truly 2D 

materials [41]. In this technique, the analysis used in conventional ellipsometry is modified 

to handle the infinitely thin 2D material whose properties are fully described by the 2D 

optical conductivity. As described in Section 5.3, we dope graphene chemically with 

“magic blue” in order to obtain more desirable optical conductivity. To characterize the 

optical conductivity with our ellipsometry technique, we prepare a sample with chemically-

doped monolayer CVD graphene on a wedged CaF2 substrate. For comparison, a sample 

with unintentionally-doped CVD graphene is also prepared and characterized. Notice that 

even without chemical treatment, unintentionally-doped CVD graphene is p-doped due to 

adsorbed gas molecules and residual ammonium persulfate from the transfer process 

[160,161].  

The measurement is performed with the same procedure described in Chapter 4. 

Two different ellipsometers to cover a broad spectral range: Woollam M-2000 and 

Woollam IR-VASE are used for the wavelengths from 230 nm to 1.64 µm and the 

wavelengths above 2 µm, respectively. The data are acquired at three angles of incidence: 

47 º, 57 º, and 67 º. The spot sizes of M-2000 and IR-VASE are 3 mm by 5.5 mm and 8 
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mm by 20 mm respectively when the incident angle is 57º. We mask the samples with 

scattering paper tissues (Kimwipes) for the IR-VASE measurement because the spot size 

is larger than the graphene area. Figure 5.6(a) shows the optical conductivities of both 

samples measured with our ellipsometry technique. The optical conductivities shown here 

are mathematically parameterized by cubic splines without assuming an a priori theoretical 

expression like Eq. (5). Consistent with Figure 5.5, in the mid-infrared range the 

chemically-doped graphene has a larger imaginary conductivity, which is necessary for 

creating the extreme anisotropicity in the metamaterial.  

 

Figure 5.6 The optical conductivity of CVD graphene measured by ellipsometry. (a) The real and 

imaginary part of the optical conductivity of the chemically-doped CVD graphene (blue and magenta curves) 

and the unintentionally-doped CVD graphene (black and green curves). These curves are mathematically 

expressed by cubic splines, and the markers denote the control points of the splines. The chemically-doped 

CVD graphene has a larger imaginary conductivity in the mid-infrared range. (b) The real and imaginary part 

of the optical conductivity of the chemically-doped CVD graphene. The blue and magenta curves are 

obtained by fitting with cubic splines, and the black dash lines are obtained by using the model given by Eq. 

(5). The model fitting is consistent with the spline fitting in the mid infrared.  

Although the spline-fitted conductivity of actual CVD graphene sample shown in 

Figure 5.6(a) is useful in many applications, a conductivity model based on a theoretical 

expression such as Eq. (5) provides more physical insight and requires fewer unknown 

parameters to perform the fit. The latter is important when we want to parameterize the 

homogenized metamaterial, which will be discussed in Section 5.4.2. Therefore, in Figure 
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5.6(b) we examine how well Eq. (5) works for the actual chemically-doped CVD graphene 

sample. We express the optical conductivity 𝜎(𝜔) by the model of Eq. (5) with 𝐸F and 𝛾 

being the only two unknown fitting parameters. The optical conductivity extracted in this 

way is shown by the dash lines in Figure 5.6(b). We also show in the same figure the spline-

fitted conductivity obtained from the same set of experimental data. It is apparent that the 

conductivity based on Eq. (5) overlaps very well with the spline-fitted conductivity 

throughout the mid-infrared range, assuring the validity of using Eq. (5) for the mid-

infrared metamaterials. We extract from the fit that 𝐸F = 460 meV and ℏ𝛾 = 23 meV. A 

mobility of ~2000 cm2V−1s−1 can be calculated from these numbers using the formula 𝜇 =

𝑒𝜋ℏ𝑉F
2/(ℏ𝛾 𝐸F), which can be derived from the relation between the DC conductivity and 

the mobility. Here 𝜇 is the mobility and 𝑉F is the Fermi velocity.  

In the mid-infrared range, the optical conductivity is mostly determined by the 

intraband transitions, which are described by the Drude-like term in Eq. (5). Our result is 

consistent with Ref. 56, which shows that the Drude model can successfully fit the 

measured absorption spectrum of CVD graphene over a broad range of infrared 

wavelengths. We do not apply Eq. (5) to the ultraviolet and visible wavelength range 

because the many-body correction has been shown to be important there [26,27]. There is 

some discrepancy between the model and spline fits in the near infrared (around 1.5 

microns, i.e. near the wavelength corresponding to the interband transitions close to the 

Fermi level). The origin of this discrepancy is not quantitatively understood, but may be 

related to spatial inhomogeneity in the Fermi energy (see Figure 4.5 of the previous 

chapter) or other disorder effects. Since the optical topological transition wavelength of 

our HMM is very far from this spectral region, and the fit is excellent over the entire mid-

infrared, the failure of the simple model in the near-infrared region does not affect the 

behavior of the material in the mid-infrared, which is the region of concern in this work. 

Eq. (5) thus provides an excellent description for the mid-infrared conductivity.  
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Figure 5.7 Optical image of monolayer CVD graphene transferred on a CaF2 substrate. The red and 

black arrows indicate the multilayer patch and the crack, respectively. 

Other imperfections that are typically present in transferred CVD graphene 

samples, such as the existence of small multilayer graphene patches and cracks, can also 

contribute to the deviations observed in Figure 5.6(b) [157]. In practice, CVD graphene 

obtained experimentally is not a perfectly continuous monolayer. Figure 5.7 shows an 

image of CVD graphene transferred to a CaF2 substrate taken in an optical microscope. 

Although most of the area is monolayer graphene, there are inevitably some multilayer 

patches (indicated by the red arrow) and some cracks (indicated by the black arrow) [157]. 

Therefore, instead of being perfectly monolayer, a real sample of large-area CVD graphene 

is a combination of predominantly monolayer with some zero layer and multilayers. 

 Effective permittivities of the graphene HMM 

The numerical simulation in Section 5.2.2 has shown that the graphene-dielectric 

multilayer structure can be treated accurately as a metamaterial with the effective 

permittivities given by Eq. (3). In this section we use infrared ellipsometry to measure the 

effective permittivities of the fabricated graphene-dielectric multilayer sample. As 

discussed also in Section 5.2.2, ellipsometry is appropriate for measuring the effective 

permittivity of a metamaterial since it probes the sample with free-space plane waves, and 

the transverse wave vector (𝑘0sin𝜃) associated with free-space plane waves is very small 

(𝑘0sin𝜃𝑑 ≪ 1 , where 𝜃 is the angle of incidence). We are therefore probing the low-k 

modes of the metamaterial, ensuring the validity of the long-wavelength approximation.  
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The ellipsometer measurement is performed with the same condition described in 

Section 5.4.1. The raw data obtained by the infrared ellipsometry, the ellipsometric angles 

Ψ and Δ of the graphene-dielectric multilayer sample, are shown in Figure 5.8(a-b). The 

effective permittivities can be extracted by fitting the acquired data with appropriate 

analytical model. As discussed in Section 4.2, correct modeling of the sample is the key in 

ellipsometry, which requires prior knowledge about the sample. A minimal number of 

unknown parameters should be used to maintain the robustness of the fit.  Since our 

simulation in Section 5.2.2 has demonstrated that the EMA is an accurate description for 

the multilayer structure, we can apply Eq. (3) in fitting the data. More precisely, we fit the 

experimental data to an analytical model that includes a layer of an anisotropic material on 

a CaF2 substrate, with the permittivities of the anisotropic material given by Eq. (3). In Eq. 

(3), we know everything except the optical conductivity of graphene 𝜎 , as we have 

measured the thickness 𝑑  independently after depositing each Al2O3 layer (see 

APPENDIX E), and we have measured the refractive index of the ALD-grown Al2O3 in 

the relevant spectral range independently with a separate sample with an Al2O3 film on a 

CaF2 wedge. We can further parameterize the optical conductivity 𝜎 of graphene using Eq. 

(5). As shown by Figure 5.6(b), the expression of Eq. (5) is a good description for the 

optical conductivity of actual CVD graphene in the mid-infrared range. Therefore, we can 

apply Eq. (5) and parameterize the unknown optical conductivity with only 𝐸F and 𝛾. As a 

result of the independent knowledge of the sample, only two unknowns, 𝐸F and 𝛾, are 

sufficient to fit the experimental data of the multilayer metamaterial.  



68 

 

 

Figure 5.8 Extraction of the effective permittivities of the graphene HMM, in which the graphene layers 

are chemically doped by magic blue. (a) and (b) The ellipsometric angles Ψ and Δ acquired from the 

graphene-dielectric multilayer structure. The measurement is performed at incident angles of 47º, 57 º and 

67 º. The blue dash lines show the fitting by homogenizing the multilayer structure into a metamaterial with 

the effective permittivities given by Eq. (3). (c) The extracted effective permittivities of the metamaterial, 

which exhibits an optical topological transition from elliptical to hyperbolic dispersion at 4.5 µm. (d) The 

extracted optical conductivity of the constituent CVD graphene in the metamaterial. The Al2O3 thickness in 

this sample is 10.4 nm, and there are 5 periods of the graphene-dielectric unit cell. 

 

The fitted results of the ellipsometric angles Ψ and Δ are plotted as the blue dash 

lines in Figure 5.8(a) and (b), which match the experimental data very well. We restrict the 

fitting wavelengths range to 3.5 µm ~ 8 µm, where the lower bound is limited by the 

requirement of intraband-only response because of the application of Eq. (5), and the upper 

bound is due to the limited transparent spectral range of Al2O3. We emphasize that, we are 

able to reproduce all six Ψ and Δ curves acquired at different incident angles with only two 

free parameters in the fitting, which is a good indication that the model correctly reflects 

the essential physics. The extracted 𝐸F is 365 meV, and the extracted ℏ𝛾 is 41 meV. The 
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extracted 𝐸F is lower than the value we typically obtain from chemically-doped monolayer 

CVD graphene (as shown in Section 5.4.1), because some dopants are lost in the ALD 

process due to the vacuum environment and the elevated temperature.  The obtained 

scattering rate ℏ𝛾 is higher than the value of graphene on CaF2 substrate shown in Figure 

5.6. This can be explained by the fact that the carrier scattering in graphene depends on the 

surrounding environment, from which we conclude that sandwiching graphene between 

Al2O3 increases the carrier scattering.   

Figure 5.8(c) shows the effective permittivities of the graphene metamaterial given 

by the extracted values of 𝐸F and 𝛾, which is the main result of this work. As the figure 

indicates, 𝜀eff,⊥ is always positive because it equals the permittivity of Al2O3. On the other 

hand, the real part of 𝜀eff,∥ changes from a positive value to a negative value at 4.5 μm, 

indicating an optical topological transition from an elliptical metamaterial to a hyperbolic 

metamaterial. This graphene metamaterial is therefore a transverse epsilon-near-zero 

metamaterial at the wavelength of 4.5 μm [143]. The imaginary part of 𝜀eff,∥ is several 

times smaller than the real part in most of the spectral range with hyperbolic dispersion, 

indicating that the loss of this HMM is reasonably low. In Figure 5.8(d), we plot the optical 

conductivity of the constituent graphene sheet of the metamaterial using the extracted 𝐸F 

and 𝛾.  
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Figure 5.9 Extraction of the effective permittivities of the graphene metamaterial, in which the CVD 

graphene is unintentionally doped. (a) and (b) The ellipsometric angles Ψ  and Δ  acquired from the 

graphene-dielectric multilayer structure, respectively. The measurement is performed at incident angles of 

47º, 57 º and 67 º. The blue dash lines show the fitting by homogenizing the multilayer structure into a 

metamaterial with the effective permittivities given by Eq. (3). (c) The extracted effective permittivities of 

the metamaterial, which exhibits a topological transition from elliptical to hyperbolic dispersion at 7.2 µm. 

(d) The extracted optical conductivity of the constituent CVD graphene in the metamaterial. The Al2O3 

thickness in this sample is 10.3 nm, and there are 5 periods of the graphene-dielectric unit cell. 

For comparison, we have also fabricated another graphene-dielectric multilayer 

sample with the same structure, except that the CVD graphene in this sample is not 

chemically doped. The unintentionally CVD graphene is still lightly p-doped due to the 

adsorbed gas molecules and residual ammonium persulfate. Figure 5.9(a) and (b) show the 

acquired ellipsometric angles Ψ and Δ of this sample. In fitting the data of this sample, we 

have found that we cannot obtain a satisfactory fit with the same procedure performed for 

Figure 5.8. This is because the optical conductivity of lightly-doped graphene is not purely 

contributed by the intraband response even at mid-infrared wavelengths, and therefore Eq. 

(5) cannot describe well an actual graphene sample when there is an inhomogeneity in the 
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Fermi energy. To account for the Fermi energy inhomogeneity, we assume the distribution 

in Fermi energy throughout the sample can be approximated by a Gaussian distribution, 

and fit the ellipsometric data with 3 free parameters: 𝐸FC, 𝑠 and 𝛾, where 𝐸FC and 𝑠 are the 

center and standard deviation of the Gaussian distribution that describes the inhomogeneity 

of Fermi energy. With these 3 free parameters, we can obtain a satisfactory fit, as shown 

in Figure 5.9(a) and (b). The extracted values are 𝐸FC=166 meV, 𝑠=47 meV and ℏ𝛾=44 

meV. The extracted effective permittivities of this metamaterial and the optical 

conductivity of the constituent graphene are plotted in Figure 5.9(c) and (d). 

As expected, the optical topological transition wavelength of this unintentionally-

doped metamaterial sample is red-shifted compared to the chemically-doped sample, 

demonstrating the tunability of the metamaterial by doping. This sample is hyperbolic for 

wavelengths longer than 7.2 µm. However, as shown by Figure 5.9(c), the imaginary part 

of 𝜀eff,∥ is larger than its real part in the hyperbolic range. In terms of the material loss of a 

HMM, the unintentionally-doped sample is clearly not as good as the chemically-doped 

sample reported in Figure 5.8. 

Section 5.5 Discussions 

Our characterization by the infrared ellipsometry demonstrates that the graphene-

dielectric multilayer structure indeed experiences an optical topological transition from an 

elliptical to a hyperbolic dispersion in the mid-infrared range, confirming the theoretical 

predictions of previous works [29,106,107,142-144,145-147] and representing the first 

experimental realization of graphene-based HMM. Our metamaterial sample has an optical 

topological transition at a wavelength of 4.5 µm and maintains good hyperbolic properties 

up to 8 µm. The upper bound of the wavelength range is limited by the absorption in Al2O3 

and CVD graphene. While the absorption in the dielectric layer can be overcome by 

replacing Al2O3 with other infrared transparent materials such as ZnSe, the absorption in 

CVD graphene is limited by the quality of graphene. Recently, there have been reports of 

growth of large-area CVD graphene with a quality of single-crystal graphene [7] and new 

transfer process for CVD graphene without degrading the mobility [8]. With higher quality 

CVD graphene, the free-carrier absorption resulted from scattering could potentially be 
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suppressed. The transition wavelength, as determined by Eq. (4), can be shifted by 

choosing the dielectric thickness or controlling the doping of graphene. The latter has been 

demonstrated by our two samples shown in Figure 5.8 and Figure 5.9, which have the same 

structure but different doping levels.  Shifting the transition wavelength farther into the 

infrared can be done by using lightly-doped graphene or thicker dielectric. On the other 

hand, blue shifting the transition wavelength is limited by the highest doping and the 

thinnest dielectric layers achievable in practice. While the structure reported in this work 

has only 5 periods, the procedure developed here can be repeated to scale up the graphene 

HMM. Some applications of HMMs do not require a large number of periods; for example, 

only a few periods is sufficient to produce a Purcell factor close to a semi-infinite structure, 

according to the theoretical calculations in Ref. 107. 

 

Figure 5.10 A potential structure to electrically gate the graphene-based metamaterial. Here 𝑛s  is the 

surface charge density. The voltage 𝑉g equals 𝑛s𝑑/𝜀, where 𝜀  is the DC permittivity of the dielectric. 

Graphene offers opportunities for realizaing active metamaterials because of the 

electrically tunability of its conductivity, as discussed in Section 1.4.1. In our current 

experimental realization, the doping of graphene is controlled by chemical doping. 

However, the graphene HMM would have a more significant impact if the control can be 

done by electrical gating. Electrical gating is commonly used in graphene-based field-

effect transistors (FETs), in which the carrier concentration of one graphene layer is 

controlled by the gate voltage. A similar idea can potentially be applied to graphene-based 

metamaterials with multiple graphene layers, as shown in Figure 5.10. In order to gate the 

metamaterial such that the carrier concentration of all graphene layers change together, 

different voltages need to be applied to each graphene layer. Application of a single voltage 

to a top contact would result in an inhomogeneous density distribution due to interlayer 
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screening. It can be calculated from electrostatics that the voltage profile shown in Figure 

5.10 can induce the same surface charge density 𝑛s  in all layers. Because the CVD 

graphene-based metamaterial studied in this work is fabricated by a layer-transfer method, 

each graphene layer could be accessed independently by patterning with photolithography. 

The challenge of realizing such electrically tunable graphene HMM is to obtain high 

quality dielectric layer that can withstand the applied voltage.  
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Metasurface perfect absorber based on the guided 

resonance of a photonic hypercrystal 

Section 6.1 Chapter introduction 

Absorbers are of great interest to technologies of detectors, sensors, solar cells, 

stealth, optical modulators, and thermal emitters. Thanks to recent progress in 

metamaterials, metasurfaces, and plasmonics, many new concepts have been introduced 

into the design of absorbers [162-167]. Here we report a new type of perfect absorbers 

based on the guided resonance of a photonic hypercrystal (PHC) [168-171]. We show that 

a PHC slab is able to confine light to a deep subwavelength thickness, and therefore can be 

treated as a metasurface [11,12]. By incorporating the PHC slab with a dielectric spacer 

and a back reflector, a Salisbury screen absorber is formed [172]. We show that critical 

coupling can be obtained in this absorber, which realizes an absorption close to unity [30]. 

As discussed in Section 5.1.1, hyperbolic materials have attracted a lot of attention 

because of the various applications associated with the propagating high-k modes and the 

enhanced photonic density of states [124-126]. As most of the interesting behaviors of 

hyperbolic materials reside in the propagating high-k modes, however, there is a large k-

vector mismatch between the propagating modes in the free space and in a hyperbolic 

material. This results in difficulties in accessing the high-k modes in hyperbolic materials 

with simple far-field optics. On the other hand, PHCs can bridge the k-vector mismatch 

and enable applications that are directly accessible from the far field. This can be performed 
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very efficiently via guided resonance [173-178]. A PHC is essentially a photonic crystal 

that includes a hyperbolic material as the constituent element [168]. It combines the unique 

material dispersion of a hyperbolic material with the band formation from the periodic 

structure. Because of the high-k modes supported in hyperbolic materials, the unit cell of 

the PHC can have deep subwavelength dimension and still form photonic band structure. 

Many interesting applications are enabled by PHCs, including creating Dirac dispersion 

[169], making better Veselago lenses [170], and enhancing the spontaneous emission from 

quantum dots [171].  

Guided resonance, originating from the resonant coupling to the leaky guided 

modes, has been exploited extensively in photonic crystals and dielectric gratings [173-

178]. Guided resonance provides a route to access efficiently the leaky confined modes 

from the free space. It has been applied to realize perfect absorbers [174], filters, and high 

reflectors [175]. It has also been used for engineering thermal emission [176] and 

improving light extraction from light-emitting diodes (LEDs) [177]. In this work, we 

extend the idea and exploit the guided resonance of a PHC slab. The use of PHC here is 

particularly attractive because hyperbolic materials are able to support high-k modes, and 

therefore light can be confined to a thickness much smaller than a wavelength. In fact, we 

will show that the thickness can be so small that the PHC slab can be treated as a 

metasurface. Similar deep subwavelength light confinement enabled by hyperbolic 

materials has been reported in the literature to create three-dimensional resonators with 

size as small as λ/86 [131,134]. 

In this work, we will show that the PHC slab serves as an angle-insensitive, 2D-

like resonator, as the field is tightly confined in the thickness direction while more extended 

in the lateral direction. It can therefore be treated as a metasurface. The PHC slab is 

especially suitable for combining with graphene to enhance the otherwise weak light-

graphene interaction. The combined system of a PHC slab and graphene creates an active 

metasurface that can be tuned by electrical gating [30,179]. In this work, we will show an 

example of such a combined system — a graphene-PHC optical modulator — in Section 

6.5. The PHC can also be used for enhancing the absorption by graphene for graphene-

based photodetectors.  
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Section 6.2 Guided resonance in a PHC slab 

 

Figure 6.1 The PHC-based perfect absorber and its equivalent Salisbury screen absorber. (a) The 

schematic of the PHC-based perfect absorber. The thickness of the h-BN slab (light blue) is 50 nm. The Si 

grating (light grey) has a period of 590 nm and a duty cycle of 0.68. The heights of the dielectric grating is 

130 nm (from the top of the grating to the Si/h-BN interface) and 10 nm (from the valley of the grating to the 

Si/h-BN interface). The thickness of the dielectric spacer (light grey) is 640 nm. The corners are rounded 

with a radius of 20 nm in the FEM simulation. (b) The equivalent Salisbury screen absorber, with the PHC 

slab treated as a metasurface. 

 

Figure 6.2 The real (a) and imaginary (b) parts of the anisotropic permittivities of h-BN measured by 

Dr. Joshua Caldwell at Naval Research Laboratory. 

The geometry of the PHC-based perfect absorber is shown in Figure 6.1(a), which 

consists of a PHC slab, a dielectric spacer, and a metallic back reflector. The PHC slab is 

formed by a slab of a hyperbolic material and a subwavelength dielectric grating on top. 

The period of the dielectric grating is chosen to be much larger than the metamaterial limit 

but much smaller than the free-space wavelength [168]. In this example, we choose the 

dielectric to be amorphous silicon (refractive index =3.74, lossless [180]) for both the 
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grating and the spacer. We choose the hyperbolic material to be hexagonal boron nitrite (h-

BN), whose permittivities are plotted in Figure 6.2. h-BN has a layered crystal structure 

similar to graphite, with the layers held together by the weak van der Waals force. As a 

results, it has very different in-plane and out-of-plane optical phonon frequencies, and 

becomes a natural type-I hyperbolic material at wavelengths between 12.1 and13.2 µm, 

and a type-II hyperbolic material between 6.2 and 7.4 µm [132,134,181,182]. The back 

reflector is made of Au. We design the PHC-based perfect absorber to operate at the 

wavelength near 12.6 µm. The period of the Si grating is 590 nm. The thicknesses of the 

h-BN slab and the spacer are 50 nm and 640 nm, respectively. Other detailed dimensions 

are listed in the caption of Figure 6.1(a).  

The PHC-based absorber is simulated by the full-wave finite-element method 

(FEM) with a commercial package (COMSOL 5.1). The simulation is further confirmed 

with the rigorous coupled-wave analysis (RCWA) [183]. The simulated absorption 

spectrum for the TM polarization is plotted in Figure 6.3, which clearly shows a total 

absorption of 99.97 % at 12.62 µm, and almost all the absorption is achieved within the 

very thin h-BN slab (thickness ~ λ/252). Only a small percentage is absorbed by Au. For 

comparison, we also simulate the same structure but with the Si grating removed, which 

exhibits weak and featureless absorption. This reveals the important role played by the 

periodicity in a PHC. 

 

Figure 6.3 Simulated absorption spectrum of the PHC-based perfect absorber plotted in Figure 6.1 (a). 

The simulation is performed under TM polarization and normal incidence. The total absorption is 99.97% at 

the wavelength of 12.62 µm. h-BN and Au are the only lossy materials in the simulation, and almost all the 

absorption is achieved by the very thin h-BN slab. For comparison, we also simulate the same structure but 

with the Si grating removed (green dash line). 
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The physical origin of the strong absorption can be attributed to the guided 

resonance of the PHC slab formed by the h-BN slab and the Si grating. Each peak in the 

absorption spectrum shown in Figure 6.3 is associated with a specific waveguide mode of 

the h-BN slab, and the presence of the grating perturbs the waveguide mode and turns it 

into a leaky guided mode. The dispersion relation 𝛽(𝜔) of the waveguide modes in a slab 

of a hyperbolic material in a symmetric cladding environment can be obtained by solving 

(see APPENDIX F and Ref. 184) 

𝛼2/𝑘

𝜀2/𝜀𝑥
= tan (𝑘ℎ/2),       (even modes)      (1) 

𝛼2/𝑘

𝜀2/𝜀𝑥
= −cot (𝑘ℎ/2),      (odd modes)       (2) 

where  𝛼2 = √𝛽2 − 𝜀2(𝜔/𝑐)2 and 𝑘 = √𝜀𝑥(𝜔/𝑐)2−(𝜀𝑥/𝜀𝑧)𝛽2.  𝜀2 is the permittivity of 

amorphous Si. 𝜀𝑥  and 𝜀𝑧  are the permittivities of h-BN in x- and z-directions. ℎ is the 

thickness of the h-BN slab. Notice that each mode has two branches, labeled as the 

backward and the forward branches [184]. The backward branch is tightly confined, and 

its group velocity and phase velocity have opposite signs, which is an important feature of 

a type-I hyperbolic waveguide [184].  

The main peak of Figure 6.3 is designed for the backward branch of the TM0 mode. 

This can be shown by the Figure 6.4. The analytic 𝐻y, 𝐸x and 𝐸z fields of the counter-

propagating TM0 waveguide modes of the backward branch are plotted in panels (a-c). 

Panels (d-f) show the FEM simulation of the 𝐻y, 𝐸x and 𝐸z fields of the PHC-based perfect 

absorber at resonance. By comparing Figure 6.4(d-f) with (a-c), it is clear that the guided 

resonance of the PHC slab originates from the TM0 waveguide mode in the h-BN slab. 

Other absorption peaks in Figure 6.3(a) are associated with higher-order waveguide modes. 

Field enhancement (electric field enhances ~21 times compared to the incident field) and 

deep subwavelength confinement are observed inside the h-BN slab at resonance. 
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Figure 6.4 Guided resonance of the PHC-based perfect absorber. (a) 𝐻y, (b) 𝐸x and (c) 𝐸z of the counter-

propagating TM0 waveguide modes (backward branch) in a waveguide of a 50nm-thick h-BN slab 

sandwiched by amorphous silicon at the wavelength of 12.62 µm. (d) 𝐻y, (e) 𝐸x and (f) 𝐸z of the PHC-based 

perfect absorber simulated using FEM at the wavelength of 12.62 µm. 𝐸x and 𝐸z are plotted with a quarter 

cycle time difference relative to 𝐻y. 

It is worthy emphasizing that the period of the PHC is deep subwavelength (~ λ/21), 

in marked contrast to other guided-resonance structures, which often have periods on the 

order of the wavelength. This is a unique feature of PHC [168], which can be traced back 

to the high-k modes supported by the hyperbolic material. It enables the angle-insensitive 

performance and the metasurface homogenization that will be discussed later. The resonant 

frequency of the PHC-based absorber can be controlled with the period of the 

subwavelength grating or the thickness of the h-BN slab. Figure 6.5(a) shows the 

absorption spectra of the PHC-based absorbers with different grating periods, 

demonstrating the tuning of the resonant frequency. Furthermore, we show in Figure 6.5(b) 

the absorption of the PHC-based absorber as a function of the angle of incidence. The 

absorption spectra with different angles of incidence are also plotted in Figure 6.9(b). 

Interestingly, the response of the PHC-based absorber is insensitive to the angle of 

incidence, which is advantageous for wide-angle applications. This is a surprising feature, 

as guide-resonance structures are usually angle-sensitive due to the requirement of in-plane 

momentum match [162].  In our case, however, because the hyperbolic waveguide mode 

has extremely high k-vectors, the requirement of in-plane momentum match is achieved 

almost entirely by the deep subwavelength periodicity of the grating, while the k-vector of 

the incident wave (which depends on angle) plays little role. 
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Figure 6.5 Period and angular dependence of the PHC-based perfect absorber. (a) Shift of the resonant 

frequency by varying the period of the subwavelength grating. All other dimensions are kept the same as 

Figure 6.1 (a). (b) Angular dependence of the total absorption of the PHC-based absorber. Wavelength is 

fixed at 12.62 µm in evaluating the absorption. 

Section 6.3 Extract the metasurface parameters of a resonant 

PHC slab 

 

Figure 6.6 A schematic representation of a metasurface excited with a TM incident wave. 

In this section, I will show that the PHC slab, formed by the Si grating and the h-

BN slab, can be homogenized and treated as a metasurface. This is because the PHC slab 

has deep subwavelength thickness (~ λ/252) and period (~ λ/21). Such a treatment provides 

intuitive understanding of the operating principle of the PHC-based absorber and enables 

straightforward design. Here I apply the method in Ref. 185 to extract the effective 

parameters of the metasurface from the simulation of the complex reflection and 

transmission coefficients of the PHC slab. As plotted in Figure 6.6, we consider a 

metasurface sandwiched between medium 1 and medium 2. This metasurface is treated as 

an infinitely thin layer that exhibits interesting interaction with light. From the symmetry 
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argument (the structure has mirror symmetry with respect to 𝑥𝑧 plane), the response of the 

structure can be separated into TM and TE modes and discussed independently [186]. Here 

we consider only the TM mode because h-BN exhibits hyperbolic dispersion only in this 

polarization. A metasurface can support effective electric and magnetic surface currents, 

𝐽s,x and 𝑀s,y, which are given by    

(
𝐽s,x
𝑀s,y

) = (
𝜎e 𝜒

𝜒′ 𝑍m
) (
𝐸x
𝐻y
),    (3) 

where 𝜎e  and 𝑍m  are the electric sheet conductivity and magnetic sheet impedance, 

respectively. 𝜒  and 𝜒′  are the magnetoelectric coupling terms. These four effective 

parameters (𝜎e, 𝑍m, 𝜒, and 𝜒′) describe the properties of the metasurface. To extract these 

parameters from simulation, we can use the boundary conditions at 𝑧 = 0: 

{
−𝐻𝑦

(1)
+ 𝐻𝑦

(2)
= 𝐽s,x = 𝜎e𝐸𝑥

(av)
+ 𝜒𝐻𝑦

(av)

−𝐸𝑥
(1)
+ 𝐸𝑥

(2)
= 𝑀s,y = 𝜒′𝐸𝑥

(av)
+ 𝑍m𝐻𝑦

(av)
 ,  (4) 

where 𝐸𝑥
(av)

=
1

2
(𝐸𝑥

(1)
+ 𝐸𝑥

(2)
), 𝐻𝑦

(av)
=

1

2
(𝐻𝑦

(1)
+ 𝐻𝑦

(2)
). The superscripts of (1) and (2) 

denote the medium in which the field is evaluated. At normal incidence, Eq. (4) can be 

formulated into an expression that connects 𝜎e, 𝑍m, 𝜒,and 𝜒′ to the S-parameters [185]. 

(

𝜎e𝑍0
𝜒

𝑍m/𝑍0
𝜒′

)

= 2

(

 
 
 
 
 
 

(−1 + 𝑆11)

𝑛1
−
𝑆21
𝑛2

1 + 𝑆11 + 𝑆21

𝑆12
𝑛1

+
(1 − 𝑆22)

𝑛2
1 + 𝑆12 + 𝑆22

0 0
0 0

0 0
0 0

1 + 𝑆11 + 𝑆21
(−1 + 𝑆11)

𝑛1
−
𝑆21
𝑛2

1 + 𝑆12 + 𝑆22
𝑆12
𝑛1

+
(1 − 𝑆22)

𝑛2 )

 
 
 
 
 
 

−1

 

× (

−1 − 𝑆11 + 𝑆21
1 − 𝑆12 + 𝑆22

(1 − 𝑆11)/𝑛1 − 𝑆21/𝑛2
−𝑆12/𝑛1 + (1 − 𝑆22)/𝑛2

).         (5) 
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The S-parameters are related to the Fresnel reflection and transmission coefficients by 

𝑆11 = −𝑟12        

𝑆22 = −𝑟21         

𝑆12 = (𝑛1/𝑛2)𝑡21       

𝑆21 = (𝑛2/𝑛1)𝑡12 .                     (6) 

Here are a few comments about the convention I use. In the convention of S-parameter 𝑆𝑖𝑗,  

𝑖 and 𝑗 label the receiving and exciting sides, respectively. On the other hand, another 

convention applies to 𝑟𝑖𝑗  and 𝑡𝑖𝑗 , which represent the reflection and transmission 

coefficients for waves sending from medium 𝑖 to medium 𝑗. The sign of 𝑟𝑖𝑗 is defined for 

the electric fields. Temporal dependence in the form of 𝑒−𝑖𝜔𝑡 is assumed.  

Full-wave FEM electromagnetic simulation is performed to obtain the reflection 

and transmission coefficients of the PHC slab (the simulation is performed without the 

back reflector). Using Eq. (5), we can treat the PHC slab as a metasurface and extract the 

effective parameters. The extracted 𝜎e, 𝑍m, 𝜒, and 𝜒′ are plotted in Figure 6.7. We note 

that 𝜒 = −𝜒′, which is a consequence of reciprocity. More importantly, it can been seen 

that the response of the metasurface is dominated by the electric sheet conductivity, since 

𝑍m/𝑍0, 𝜒 and 𝜒′ are all negligible compared to 𝜎e𝑍0, where 𝑍0 is the vacuum impedance. 

Therefore, the PHC slab is effectively an infinitely thin sheet with an electric sheet 

conductivity 𝜎e. We will show in the next section that this gives a quantitatively accurate 

description for the PHC slab.  
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Figure 6.7 Parameters for the equivalent metasurface of the PHC slab. (a) 𝜎e  (b) 𝜒 (c) 𝜒′(d) 𝑍m. Notice 

that (b) and (c) are scaled by 100 times, and (d) is scaled by 1000 times for clarity. We also perform a Lorenz 

fit to (a). 

The metasurface exhibits the resonant behavior of a Lorentz oscillator, which is 

shown by Figure 6.7(a). We fit the electric sheet conductivity 𝜎e to this expression: 

𝜎e(𝜔) =
𝜎𝑀 

−𝑖(𝜔−𝜔0)+𝛾
+ 𝑖𝑝 ,    (7) 

where 𝑖𝑝 is added to account for the constant phase shift due to an effective thickness. Eq. 

(7) produces a very good fit, from which we extract a quality factor 𝑄 = 𝜔0/(2 𝛾)=399. 

This value is very close to 𝜔(
d𝜀𝑧

′

𝑑𝜔
)/(2𝜀𝑧

′′)=390 for h-BN, where 𝜀𝑧
′  and 𝜀𝑧

′′ are the real and 

imaginary part of the permittivity of h-BN in z-direction; this is an estimated quality factor 

obtained simply by assuming the electric field is only in z-direction, entirely inside h-BN, 

and damped only by the material loss [187]. 
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Section 6.4 Critical coupling of the metasurface perfect 

absorber 

Because the PHC slab is effectively a metasurface, the absorber can be viewed as a 

Salisbury screen, as plotted in Figure 6.1(b), and the resonant metasurface provides the 

required electric sheet conductivity 𝜎e  for critical coupling. As mentioned in the last 

section, we treat the PHC slab as a metasurface with the electric sheet conductivity 𝜎e only, 

since the contributions from magnetic sheet impedance 𝑍m and magnetoelectric coupling 

terms 𝜒 and 𝜒′ are negligible. Therefore, interestingly enough, the PHC slab is treated 

mathematically the same way we did in Chapter 4 and 5 for graphene. The critical coupling 

condition for the effective Salisbury screen can be derived as follows [30]. The reflection 

coefficient of the Salisbury screen is given by 

𝑟 =
𝑟12+(1+𝑟12+𝑟21)𝑟23𝑒

𝑖2𝑘2𝑧𝑑

1−𝑟21𝑟23𝑒
𝑖2𝑘2𝑧𝑑

 ,       (8) 

where 𝑟23 is the Fresnel reflection coefficient of the Si/Au interface. 𝑘2𝑧 is the z component 

of wave vector in Si. 𝑑 is the spacer thickness. The critical coupling condition is satisfied 

when the numerator of Eq. (8) equals zero, i.e. 

𝑟12 + (1 + 𝑟12 + 𝑟21)𝑟23𝑒
𝑖2𝑘2𝑧𝑑 = 0 .   (9) 

 At normal incidence, we can write down simple analytical expressions for 𝑟12 and 𝑟21 

using the modified Fresnel equations for an interface with a sheet electric conductivity 𝜎e 

sandwiched between two media: (see APPENDIX B and Ref. 30 ). 

𝑟12 = (𝑛1 − 𝑛2 − 𝜎e𝑍0) (𝑛1 + 𝑛2 + 𝜎e𝑍0)⁄       

𝑟21 = (𝑛2 − 𝑛1 − 𝜎e𝑍0) (𝑛1 + 𝑛2 + 𝜎e𝑍0)⁄   ,        (10)               

where 𝑛1 and 𝑛2 are the refractive indexes for air and Si, respectively. By inserting Eq. 

(10) into Eq. (9), we can obtain the value of 𝜎e required for critical coupling.  

𝜎e𝑍0 = 𝑛1 − 𝑛2
1−𝑟23𝑒

𝑖2𝑘2𝑧𝑑

1+𝑟23𝑒
𝑖2𝑘2𝑧𝑑

         (11) 

Therefore, if we can design a metasurface to provide this electric sheet conductivity, we 

can achieve perfect absorption. This condition can be used to guide the design of the 



85 

 

appropriate PHC slab. We plot Eq. (11) as a function of the spacer thickness 𝑑, as shown 

in Figure 6.8. Since we cannot obtain arbitrary values for the real and imaginary parts of 

𝜎e  with the PHC slab, Figure 6.8 suggests that the most practical design for critical 

coupling is to choose a thickness 𝑑 not too far from 𝜆/(4𝑛2) = 844nm. With this choice, 

it is easier to design the PHC slab since the required Im 𝜎e is not too extreme. On the other 

hand, the required Re 𝜎e  is essentially independent of 𝑑 , according to Figure 6.8. 

Furthermore, because the required Im 𝜎e can be tuned by changing the spacer thickness 𝑑, 

as long as we can design a metasurface with sufficient Lorentz oscillator strength, we also 

always find a spacer thickness 𝑑 to achieve critical coupling.  

In Figure 6.8 we also mark the 𝜎e  value required for critical coupling when 

𝑑=640nm, which is the spacer thickness used in our design of the PHC-based perfect 

absorber (see the caption of Figure 6.1). In the inset, we mark the 𝜎e provided by the PHC 

slab, as extracted in Section 6.3. We can see that the PHC slab indeed provides appropriate 

electric sheet conductivity for critical coupling. 

 

Figure 6.8 The electric sheet conductivity 𝝈𝐞 required to achieve critical coupling as a function of the 

spacer thickness. It is plotted for  𝑛1 = 1 (air), 𝑛2 = 3.74 (amorphous Si) and 𝑛3 = 11.91 + 89.21 i (Au) 

at a wavelength of 12.62 µm. The markers indicate the 𝜎e value at the spacer thickness of 640 nm, the 

thickness used in our design shown by Figure 6.1(a). The inset shows the effective electric sheet conductivity 

𝜎e provided by the PHC slab (same as Figure 6.7 a), with the 𝜎e value at the operating wavelength (12.62 

µm) of our PHC-based absorber indicated by markers.   

We can further verify that that the equivalent Salisbury screen reproduces 

accurately the behaviors of the PHC-based absorber. In Figure 6.9(a) we use two different 

methods to calculate the absorption spectra of the PHC-based absorber for different spacer 
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thicknesses. The solid lines in this figure are obtained with the full-wave FEM simulation 

of the detailed geometry plotted in Figure 6.1(a). In the same figure, the cross markers are 

obtained by homogenizing the PHC slab into a metasurface and treating the absorber as a 

metasurface Salisbury screen, as shown by Figure 6.1(b). For the Salisbury screen, the 

absorption is calculated semi-analytically using Eq. (8) and Eq. (10) together with the 

extracted electric sheet conductivity 𝜎e plotted in Figure 6.7(a). It can be seen that the semi-

analytical calculation of the Salisbury screen reproduces excellently the full-wave 

simulation of the detailed geometry. Notice that in Figure 6.9(a) the critical coupling 

condition is satisfied when 𝑑 =640 nm and 𝜆 = 12.62µm, as well as when 𝑑 =840 nm and 

𝜆 = 12.595 µm.  

 

Figure 6.9 (a) The absorption spectra of the PHC-based absorber with different spacer thicknesses. (b) 

The absorption spectra of the PHC-based absorber at different incidence angles. The results obtained 

from both full-wave FEM simulation (geometry shown by Figure 6.1a) and semi-analytical calculation (with 

PHC homogenized as a metasurface, as shown in Figure 6.1b) are plotted for comparison. 

Another verification for the equivalent metasurface Salisbury screen is given by 

Figure 6.9(b). Recall that in Section 6.3 the effective surface conductivity 𝜎e is extracted 

from the simulation performed at normal incidence. Therefore, we still need to check if the 

𝜎e extracted at normal incidence also works for oblique incident angles. We plot in Figure 

6.9(b) the angular dependence of the absorption spectra, obtained by both the full-wave 

simulation of detailed geometry and the semi-analytical calculation of the equivalent 

Salisbury screen. It shows that the semi-analytical calculation reproduces the full-wave 

simulation very well, except that there is a slight deviation at very large angle, and the 

semi-analytical calculation also misses the peak occurring at the wavelength of 12.1 µm 

for oblique angles. At this wavelength, h-BN becomes an epsilon-near-zero (ENZ) 
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material, which can offer field enhancement to the z-component of the electric field [188]. 

The effective metasurface cannot capture this feature because of the lack of out-of-plane 

response. Nevertheless, this peak associated with ENZ is not relevant to the behaviors of 

the PHC since h-BN is no longer a hyperbolic material at this wavelength. 

To conclude this section, our analysis verifies our understanding of the mechanism 

of the PHC-based perfect absorber: It is a Salisbury screen in which the PHC slab works 

as a metasurface to provide the appropriate surface conductivity for critical coupling. This 

understanding is quantitatively accurate, and can be used as a guidance for designing the 

PHC-based perfect absorber  

Section 6.5 Applications 

 Graphene-PHC optical modulator 

The PHC-based perfect absorber can combine with an electrically tunable material 

such as graphene to make optical modulators, as plotted in Figure 6.10(a). The dimensions 

of the device structure of Figure 6.10(a) are the same as those in Figure 6.1(a) except that 

the spacer thickness is changed to 710 nm, since the presence of graphene changes the 

critical coupling condition. To gate graphene, the silicon spacer can be slightly doped to 

be part of the gate electrode [31], and the h-BN slab serves as the gate dielectric [189]. 

Doping can introduce some free-carrier absorption in the spacer; however, the doping 

concentration can be very low because we only need to gate one atomic layer of graphene.  

Alternatively, we can use intrinsic silicon as the spacer, which becomes part of the gate 

dielectric. Such a design would decrease the capacitance and therefore require a larger 

applied voltage. It is also possible to use two graphene layers to sandwich the h-BN slab; 

in this case the two graphene layers serve as the gate electrodes and the h-BN slab as the 

gate dielectric [32]. Here we present only the simulation results of the device structure 

plotted in Figure 6.10(a), which has one graphene layer. 

By incorporating the PHC slab with graphene, the effective metasurface becomes 

dynamically tunable. Because of the atomic thickness, graphene itself does not have 

enough interaction with light to modulate light effectively, and therefore graphene-based 
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modulators usually need to incorporate resonant structures such metallic metasurfaces [30], 

micro rings [32], or to pattern graphene into a plasmonic structure [33]. Similarly, our PHC 

slab serves as a resonant structure to enhance the otherwise weak light-graphene 

interaction. It should be noted that by nature the PHC slab can work together with graphene 

very well, because the electric field is tightly confined into a deep subwavelength thickness. 

It forms a very thin, almost 2D-like cavity that can interact efficiently with 2D materials. 

This device structure offers several advantages for optical modulation. One important 

advantage is that we can design for critical coupling, which minimizes the reflection when 

the modulator is in the OFF state and enables good modulation depth [30,33]. Another 

advantage is the high operation speed, as the high mobility of graphene has enabled 

modulators operating up to 30 GHz [30,32]. Also, in our case h-BN is particularly a good 

match for graphene, since they share very similar lattices such that h-BN can help maintain 

the good mobility of graphene [190]. Such a graphene-h-BN combined system has been 

studied in the literature [182,191]. 

 

Figure 6.10 The graphene-PHC optical modulator. (a) The device structure of the graphene-PHC optical 

modulator. (b) The reflection spectra of the optical modulator when graphene is gated to different Fermi 

energies. The dash line marks the operating wavelength at 12.55 µm. 𝐸F=100 meV and 400 meV correspond 

to the ON and OFF state of the optical modulator, respectively.  

Figure 6.10(b) shows the reflection spectra of the graphene-PHC optical modulator 

when graphene is gated to different Fermi energies. To model graphene in the FEM 

simulation, we assign a surface current at the boundary, with the amplitude proportional to 

the in-plane electric field. The highest Fermi energy simulated is 400 meV, which is a value 

often achieved experimentally with electrical gating. The optical conductivity of graphene 

is simply taken as the universal conductivity 𝜎0= 𝑒
2 (4ℏ)⁄  when graphene is gated to the 
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charge neutrality point (CNP). For other Fermi energies, the simulation is done with the 

optical conductivity of graphene given by the theoretical expression (see Section 1.3) [21-

23] 

𝜎(𝜔) =
𝜎0

2
(tanh

ℏ𝜔+2𝐸F

4𝑘B𝑇
+ tanh

ℏ𝜔−2𝐸F

4𝑘B𝑇
) − 𝑖

𝜎0

2𝜋
log [

(ℏ𝜔+2𝐸F)
2

(ℏ𝜔−2𝐸F)2+(2𝑘B𝑇)2
] + 𝑖

4𝜎0

𝜋

𝐸F

ℏ𝜔+𝑖ℏ𝛾
 , 

(12) 

where 𝐸F is the Fermi energy relative to the Dirac point, and 𝛾 is the intraband scattering 

rate. We choose ℏ𝛾  to be 20 meV, which is a reasonable value for chemical-vapor-

deposited (CVD) graphene [29]. Notice from Figure 6.10(b) that we have designed the 

modulator such that critical coupling is achieved when 𝐸F=400 meV, and in this case light 

is almost perfectly absorbed (absorption=99.98 %) at the wavelength of 12.55 µm. This 

optical modulator is designed to operate at a center wavelength of 12.55 µm, and its ON 

state and OFF state correspond to 𝐸F =100 meV and 400 meV, respectively. The 

modulation depth, defined by (1 − 𝑅OFF/𝑅ON), can achieve 99.96 %, where 𝑅OFF and 𝑅ON 

are the reflectivities of the OFF and ON state. This good modulation depth is made possible 

by the critical coupling design that minimizes 𝑅OFF. Another figure of merit for optical 

modulators is the insertion loss, which is defined by −10 log(𝑅ON) in the unit of dB. Our 

graphene-PHC optical modulator exhibits an insert loss of 3.2 dB. 

 Absorption enhancement for graphene-based 

photodetection 

The same device structure shown in Figure 6.10(a) can also be used to enhance the 

absorption in graphene, which can apply to graphene-based photodetectors and sensors to 

improve the responsivity. Since the field is confined and enhanced within a deep 

subwavelength thickness, the PHC slab forms an ultra-thin, 2D-like cavity that enhances 

the absorption in graphene. This is especially useful for those detection mechanisms that 

rely on absorption over the whole area (in contrast to the mechanisms relying on junctions), 

such as bolometric and photogating effects (see Section 1.4.2) [45,48]. In particular, we 

can also combine this PHC-based absorber with our double-layer graphene photodetector 

reported in Chapter 3. This can be done by replacing the single layer graphene in Figure 
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6.10(a) with a double-layer graphene heterostructure (two graphene layers sandwiching a 

tunneling barrier) [48]. In this case we can further increase the responsivity by utilizing 

phototransistor gain together with an enhanced absorption.  

The absorption enhancement is shown in Figure 6.11, where we plot the absorption 

by the graphene for the same device shown by Figure 6.10(a). It can be seen that, at the 

CNP, the monolayer graphene can absorb up to 39 % of the light, which is ~ 17 times 

enhancement compared to the 2.3% absorption for suspended graphene.  

 

Figure 6.11 The absorption by the graphene layer for the device plotted in Figure 6.10(a). 

Section 6.6 Discussions 

It is worth emphasizing that the PHC slab forms a special resonator with 2D-like 

nature. The field is tightly confined in the thickness direction (thickness=50 nm) while 

more extended in the lateral direction (period=590 nm). This is different from resonators 

based on localized surface plasmons, which are tightly confined in three dimensions, and 

also different from photonic crystal resonators, which do not have deep subwavelength 

confinement. We have also shown the angle insensitivity of the PHC, which is dramatically 

different from many resonators associated with extended modes [162]. As a result of this 

2D-like natre, the PHC is particularly suitable for incorporating with graphene to make 

optical modulators and better detectors, as discussed in Section 6.5.  

Regarding the restrictions of the current design of the PHC-based perfect absorber, 

because h-BN is used as the hyperbolic material in this work, the operating spectral range 

is limited to the small spectral window where h-BN exhibits the hyperbolic dispersion. 
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However, there are many other natural hyperbolic materials that cover entire spectrum from 

ultraviolet to far infrared [132]. Furthermore, the required hyperbolic dispersion can also 

be obtained with hyperbolic metamaterials (HMMs), which can be engineered for the 

desired spectral range [124-127]. In particular, the graphene HMM described in Chapter 5 

can also be used here for mid-infrared operation [41]. Another restriction of the current 

design is the polarization. It works only for TM polarization due to the use of the one-

dimensional grating structure. The current design can potentially be extended to make 

polarization-independent perfect absorbers by using 2D periodic structures such as disc or 

hole arrays.   

 

  



92 

 

 

  

 

Conclusion 

Section 7.1 Summary 

In this thesis, I have addressed several key frontiers of graphene research 

specifically for applications in optoelectronics and metamaterials. The first frontier, 

regarding the understanding of fundamental optical properties of graphene, is investigated 

in Chapter 2 and Chapter 4. In Chapter 2, I have conducted experimental studies on the 

nonlinear harmonic generation in graphene at THz frequencies. The fact that we observe 

no detectable THz harmonic generation reveals the fundamental role played by strong 

carrier-carrier scattering, which had been neglected by published theories of nonlinearity. 

In Chapter 4, I have developed an ellipsometry-based technique that allows for the reliable 

measurement of the optical conductivity of graphene and other 2D materials. This 

technique can have wide applications for the 2D material community; therefore I have 

worked with collaborators at Purdue University to develop a free software based on this 

technique. It is called Photonicvasefit, which is now available on nanohub.org and has been 

used by users around the world.  

Chapter 3 and Chapter 4 address the second frontier — the new opportunities in 

physics and applications enabled by fabricating complex graphene layered structures. In 

Chapter 3, we have developed a novel double-layer graphene photodetector, in which two 

graphene layers are separated by a tunneling barrier to allow photogating of the graphene 

channel. With the help of phototransistor gain, this photodetector is broadband and has a 

responsivity several orders higher than conventional graphene detectors. In Chapter 5, I 
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have fabricated a graphene-dielectric multilayer structure and shown with ellipsometry that 

the structure forms a metamaterial with hyperbolic dispersion in the mid-infrared range. 

This represents the first experimental realization of a graphene-based hyperbolic 

metamaterial.  

The third frontier — the opportunity arising from combining graphene with a 

metasurface — is addressed in Chapter 6. A novel metasurface realized with a photonic 

hypercrystal slab is proposed. I have shown by numerical simulation that this metasurface 

can be used to form a Salisbury screen perfect absorber. By combining this metasurface 

with graphene, the guided resonance in the photonic hypercrystal can enhance the 

otherwise weak light-graphene interaction. I have shown examples of optical modulators 

and better photodetectors that are enabled by such a combination. 

Section 7.2  Future directions 

I have demonstrated that graphene is a promising building block for optoelectronics 

and metamaterials with many examples in the thesis. One of the most useful properties of 

graphene is the fact that the optical conductivity is highly tunable by electrical gating, 

which was not fully explored in my work. For example, the graphene hyperbolic 

metamaterial reported in Chapter 5 can incorporate a gating structure (see Section 5.5) to 

create a metamaterial with highly tunable photonic density of state. However, creating such 

a three-dimensional tunable metamaterial is technologically non-trivial because of the need 

to control many layers of graphene simultaneously. On the other hand, it is much easier 

and more practical to make electrically tunable metasurfaces with graphene, as graphene 

and metasurfaces share the same reduced dimensionality compared to their bulk 

counterparts. In Chapter 6, we have proposed making tunable metasurfaces by combining 

graphene with a photonic hypercrystal slab. Although our numerical simulations have 

shown good tunability, future experimental demonstrations are still needed. In my opinion, 

the combination of graphene and metasurface is a promising research direction, not only 

because new functionalities can be created, but also because it is technologically practical. 

Another promising future direction is graphene plasmonics. So far it is limited by 

the quality of chemical-vapor-deposited (CVD) graphene, as the defect scattering results 



94 

 

in free-carrier absorption. However, with the rapid advance in growth and transfer of CVD 

graphene [7,8], it is likely that graphene plasmonics will achieve its potential in the near 

future. In particular, loss has been the most critical obstacle for plasmonics, which damps 

the collective oscillation and converts the energy into heat. High-quality graphene has been 

identified theoretically as an ideal plasmonic material with exceptionally low loss in the 

infrared to THz ranges [59]. More interestingly, it is possible to compensate for the loss in 

graphene by optical pumping, as population inversion can be established within ~130 fs 

after the pump pulse arrives [36]. In addition, because the carrier density can be tuned by 

electrical gating, graphene is a plasmonic material with tunability.  

As a member in the whole family of 2D materials, graphene can combine with other 

2D materials to make heterostructures. For example, heterostructure of graphene and MoS2 

has been exploited to make photodetectors [47]. This area is currently in the research stage. 

Basic phenomena such as charge transfer and heat transfer between different 2D materials 

are still under study. Nevertheless, with the diversity of the 2D materials, it is anticipated 

that 2D heterostructures and van der Waals crystals can bring new material properties and 

novel device concepts in the future.  
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Derivation of the optical conductivity of graphene 

Section A. 1 Universal interband conductivity 

When there is no Pauli blocking, it can be calculated from the Fermi’s golden rule 

that the interband conductivity of graphene σinter(𝜔) equals 𝜎0 = 𝑒2 (4ℏ)⁄  [24,192]. Here 

I follow the derivation of Ref. 192. When graphene interacts with light, the Hamiltonian 

perturbed by light can be obtained by replacing 𝐩 with 𝐩 + 𝑒𝐀. 

ℋ = 𝑣F𝝈 ∙ (𝐩 + 𝑒𝐀) = ℋ0 +ℋ′𝑒
𝑖𝜔𝑡,    (1) 

where 𝐀 = 𝐀𝟎𝑒
𝑖𝜔𝑡 = (𝑖𝐄𝟎/𝜔)𝑒

𝑖𝜔𝑡 . Without loss of generality, we assume the electric 

field is in x direction. ℋ0 = 𝑣F𝝈 ∙ 𝐩 is the unperturbed Dirac Hamiltonian. According to 

Eq. (1), we can write the interaction Hamiltonian as 

ℋ′ = 𝑖𝑒𝑣F𝜎𝑥
E0

𝜔
 ,      (2) 

where 𝜎𝑥 = (
0 1
1 0

). Next, we need to calculate the matrix element ⟨f|ℋ′|i⟩, where 

|i⟩ =
1

√2
(𝑒

−𝑖𝜃𝒒/2

−𝑒𝑖𝜃𝒒/2
) |𝒒⟩   ,      (3) 

|f⟩ =
1

√2
(𝑒

−𝑖𝜃𝒒′/2

𝑒𝑖𝜃𝒒′/2
) |𝒒′⟩         (4) 

are the initial and final states (see Section 1.2). By straightforward calculation, we can then 

obtain  
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|⟨f|ℋ′|i⟩|2 = 𝑒2𝑣F
2 |E0|

2

𝜔2
sin2𝜃𝒒𝛿𝒒𝒒′  .    (5) 

Notice that the sin2𝜃𝒒 factor in Eq. (5) indicates that an x-polarized electromagnetic field 

cannot induce interband transition for a state with 𝜃𝒒 = 0 [193]. From the Fermi’s golden 

rule, the transition rate is given by 

𝑤i→f =
2𝜋

ℏ
|⟨f|ℋ′|i⟩|2𝛿(𝐸f − 𝐸i − ℏ𝜔)  ,     (6) 

The power absorbed by graphene per unit area can be expressed in terms of the transition 

rate 

𝑃abs = 4ℏ𝜔∑ 𝑤i→fi,f  ,       (7) 

where we sum over all initial and final states. The factor of 4 is due to the spin and valley 

degeneracies. Inserting Eq. (5) and Eq. (6) into Eq. (7), we get 

𝑃abs = 4ℏ𝜔 
2𝜋

ℏ
𝑒2𝑣F

2 |E0|
2

𝜔2
∫

d2𝒒

(2𝜋)2
sin2𝜃𝒒𝛿(2ℏ𝑣F𝑞 − ℏ𝜔)    

=
𝑒2

2ℏ
|E0|

2  .                (8) 

On the other hand, we can express the power absorbed by graphene per unit area in terms 

of the optical conductivity. 

𝑃abs = 2 Re (J ∙ E0
∗) = 2 Re σinter |E0|

2,          (9) 

where J is the surface current induced by the electromagnetic field. Notice that in this 

convention, the physical electric field is E0𝑒
𝑖𝜔𝑡 + E0

∗𝑒−𝑖𝜔𝑡 = 2|E0|cos (𝜔𝑡 + 𝜙), where 

E0 = |E0|𝑒
𝑖𝜙. By comparing Eq. (8) and Eq. (9), we obtain the interband conductivity of 

graphene: 

σinter =
𝑒2

4ℏ
 ,         (10) 

which is the universal conductivity of graphene.  
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Section A. 2 Drudic intraband conductivity 

The easiest way to derive the intraband conductivity of graphene is by taking a 

semi-classical approach. Here we follow the derivation in Ref. 25. Consider doped 

graphene with a Fermi energy of 𝐸F such that 𝐸F ≫ 𝑘B𝑇. We start with the Boltzmann 

equation 

𝜕

𝜕𝑡
𝑓𝒌(𝑡) −

𝜕

ℏ𝜕𝒌
𝑓𝒌(𝑡) ∙ 𝑒𝑬(𝑡) = 0,    (11) 

where 𝑓𝒌(𝑡) is the momentum distribution function. The exact solution of Eq. (11) is 

given by   

𝑓𝒌(𝑡) = 𝐹0(𝒌 − 𝒌0(𝑡)),         (12) 

where 

 𝐹0(𝒌) = 1/{1 + exp[(𝑣Fℏ𝑘 − 𝐸F)/𝑘B𝑇]}     (13) 

is the Fermi-Dirac function, and 

𝒌0(𝑡) = −(𝑒/ℏ) ∫ 𝑬(𝑡′)𝑑𝑡′
𝑡

−∞
     (14) 

comes the semi-classical equation of motion. The Fermi velocity is denoted by 𝑣F. We 

can then calculate the surface current in graphene: 

𝒋(𝑡) = −
𝑔𝑒𝑣F

(2𝜋)2
∫𝑑2𝒌 

𝒌

𝑘
𝑓𝒌(𝑡),                 (15) 

where 𝑔 = 4  due to the spin and valley degeneracies. In the case that 𝑘0(𝑡) ≪ 𝑘F ≜

𝐸F/(𝑣Fℏ) and 𝑇 → 0, Eq. (15) can be approximated to  

𝒋(𝑡) ≅ −𝑒𝑛𝑣F
𝒌0(𝑡)

𝑘F
 ,     (16) 

where 𝑛 is the carrier density. We can now switch to the frequency domain by letting 

𝒋(𝑡) = 𝐉(𝜔)𝑒−𝑖𝜔𝑡, 𝒌0(𝑡) = 𝐤0(𝜔) 𝑒
−𝑖𝜔𝑡 and 𝑬(𝑡) = 𝐄(𝜔) 𝑒−𝑖𝜔𝑡. Eq. (14) can be written 

as 𝐤0(𝜔) = 𝑒𝐄/(𝑖ℏ𝜔). The surface current is then given by  

𝐣(𝜔) ≅ −
𝑒𝑛𝑣F𝑒𝐄(𝜔)

(𝑖𝑘Fℏ𝜔)
          

 =  𝑖
4𝜎0

𝜋

𝐸F

ℏ𝜔
𝐄(𝜔),               (17)      



101 

 

where 𝜎0 = 𝑒
2 (4ℏ)⁄  is the universal conductivity of graphene. We can further apply the 

relaxation-time approximation by replacing 𝜔  with  𝜔 + 𝑖𝛾 , where 𝛾  is the intraband 

scattering rate [59]. Therefore, we obtain the Drudic intraband conductivity of graphene 

σintra(𝜔) = 𝑖
4𝜎0

𝜋

𝐸F

ℏ𝜔+𝑖ℏ𝛾
 .      (18) 

 

  



102 

 

 

  

 

Transfer matrix of an interface with a sheet conductivity 

 

Figure A. 1 The schematic of an interface with a sheet conductivity σ sandsiched by two media.  

The transfer matrix method is very useful for calculating optical responses of 

layered media [194]. Here we extend the conventional transfer matrix to allow an interface 

to have a sheet conducitivity. Consider an interface with a sheet conductivity σ sandwiched 

by two media with permittivities of 1  and 2 , as shown by Error! Reference source not 

ound.. The sheet conductivity can come from either a graphene layer (as in Chapter 4 and 

5), or a metasurface (as in Chapter 6). The magnetic field and the electric field in TM 

polarization can be expressed as: 
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where 

2

2 2

1 1z tk k
c



 

   
 

 and 

2

2 2

2 2z tk k
c



 

   
 

. The boundary conditions require 

( ) ( )

( ) ( )

 = 

 = 

I II

x x

I II

y y sx x

E E

H H J E 
  ,      (20) 

where we allow discontinuity in the magnetic fields because of the presnsence of surface 

current. The superscripts indicate the medium in which the filed is evaluated. By 

rearrngeing the boundary conditions Eq. (20), we can obtain the transfer matrix that 

connects the fields across the interface for TM polarization: 

0 01 2 1 1 2 1

2 1 1 0 2 1 1 0

0 01 2 1 1 2 1

2 1 1 0 2 1 1 0

1 1
1

2
1 1

z z z z

z z

z z z z

z z

Z Zk k k k

k k k kC A

D Z Z Bk k k k

k k k k

  

   

  

   

 
    

       
        
 

  .   (21) 

We can further obtain the reflection coefficient for TM polarization using the derived 

transfer matrix Eq. (21). 

1 1 2 2

1 1 2 2

/ / /

/ / /

z z
p

z z

k k
r

k k

   

   

 


 
,     (22) 

which is a modified version of the Fresnel equation. Similarly, we can derive the transfer 

matrix and reflection coefficient for TE polarization. 

0 01 1
0 0

2 2 2 2

0 01 1
0 0

2 2 2 2

1 1
1

2
1 1

z z

z z z z

z z

z z z z

k kk k
Z Z

k k k kC A

D k k Bk k
Z Z

k k k k

 

 

 
    

       
        
 

 ,    (23) 

1 2 0

1 2 0

z z
s

z z

k k
r

k k





 


 
.      (24) 
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Derivation of the dispersion relation of the Bloch waves in 

graphene-dielectric multilayers 

 

Figure A. 2 The schematic of a periodic structure consisting of graphene-dielectric multilayers.  

Here we show the derivation of the dispersion relation of the TM Bloch waves in 

the graphene-dielectric multilayers. Consider an infinite periodic graphene-dielectric 

multilayers shown in Figure A. 2. The field at x = d 
 can be obtained from the field at 

x = 0
using the transfer matrix associated with progation in the dielectric and the transfer 

matrix associated with the interface: 

0 0

0 0

0 0

0 0

' 0

' 0

1
2 2

1
2 2

d

d

d d

d d

ik d

ik d

ik d ik dd d

d d

ik d ik dd d

d d

A Ce

B De

Z k Z k
e e

k k A

BZ k Z k
e e

k k

 

 

 

 



 

    
     

    

     
     

        
   
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,   (25) 
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where we have used Eq. (21), the transfer matrix we derived in APPENDIX B. 
dk  

represents the z-component of the wavevector in the dielectric. To find the Bloch wave, we 

need to solve this eigenvalue problem 

'
 

'

iKd
A A

e
B B

   
   

   
,       (26) 

where K  is the Bloch wave vector.  We therefore obtain the characteristic equation of the 

eigenvalue problem 

0 0

0 0

0 0

0 0

1
2 2

0

1
2 2

d d

d d

ik d ik diKdd d

d d

ik d ik d iKdd d

d d

Z k Z k
e e e

k k
Det

Z k Z k
e e e

k k

 

 

 

 

 

     
      
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      

.          (27) 

With some algebra, the characteristic equation can be written in this form 

     0
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cos cos sin
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 
,     (28) 

which gives the dispersion relation for TM Bloch wave. With the same procedure, we can 

also derive the dispersion relation for TE Bloch waves in the graphene-dielectric 

multilayers, which is given by  

     0 0cos cos sin
2

d d

d

Z k
Kd k d i k d

k

  
   

 
 .     (29) 
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Derivation of the effective permittivities of graphene-

dielectric multilayers using quasi-static approximation 

 

Figure A. 3 The schematic of the graphene-dielectric multilayers in the quasi-static approximation.  

Because the period of the graphene hyperbolic metamaterial is much smaller than 

the wavelength, we can use quasi-static approximation to derive the effective permittivities. 

As plotted in Figure A. 3, when the electric field 𝐸 is parallel to the interfaces, surface 

current 𝐽s is generated in graphene. Surface current 𝐽s is given by 

𝐽s = 𝜎𝐸 ,      (30) 

where 𝜎 is the optical conductivity of graphene. Because the surface current is related to 

surface polarization by 𝐽s =
𝑑𝑃s

𝑑𝑡
= −𝑖𝜔𝑃s, we can write  

𝑃s = 𝑖
𝜎𝐸

𝜔
 .       (31) 

On the other hand, the polarization in the dielectric induced by the electric field is given 

by 
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𝑃d = (𝜀d − 1)𝜀0𝐸 .           (32) 

Next, we can average the polarization over a unit cell with thickness of 𝑑: 

𝑃average = 𝑃d +
𝑃s

𝑑
        

= (𝜀d − 1 + 𝑖
𝜎

𝜔𝜀0𝑑
) 𝜀0𝐸       

= (𝜀eff − 1)𝜀0𝐸 ,           (33) 

where 𝜀eff  is the effective permittivity. Therefore, we obtain the effective permittivity 

when 𝐸 is parallel to graphene surface 

𝜀eff = 𝜀d + 𝑖
𝜎

𝜔𝜀0𝑑
 

 = 𝜀d + 𝑖
𝜎 𝑍0

2𝜋
(
𝜆

𝑑
),     (34) 

which is the same as Eq. (3) of Chapter 5. It is also clear that, because the out-of-plane 

response of graphene is neglegible, when the electric field 𝐸  is perpendicular to the 

graphene surface, the effective permittivity derived in the quasi-static approximation is 

simply 𝜀d. 

 

 

 

  



108 

 

 

  

 

Measure the dielectric thickness of the graphene-dielectric 

multilayer structure by ellipsometer 

The Al2O3 dielectric layers are deposited by the atomic layer deposition (ALD). 

Before fabricating our metamaterial sample, we have calibrated the recipe of ALD in order 

to deposit the desired 10-nm layers. However, we still need to characterize the Al2O3 

thickness of the sample we actually fabricated, as the deposition rate of ALD can depend 

on the surface conditions. To obtain the dielectric thickness, we measure the sample with 

M-2000 ellipsometer after each step in the fabrication and acquire the ellipsometric angles 

Ψ and Δ. More specifically, we have measured 10 different structures in the intermediate 

steps, including G/S, dG/S, GdG/S, dGdG/S, GdGdG/S, dGdGdG/S, GdGdGdG/S, 

dGdGdGdG/S, GdGdGdGdG/S and dGdGdGdGdG/S, where we denote the CaF2 

substrate, chemically-doped graphene, and Al2O3 dielectric layer with S, G, and d, 

respectively. After acquiring the entire set of data, we fit all data together with the same 

set of unknown free parameters: the conductivity of graphene, the refractive index and 

thickness of the dielectric. We assume all the graphene layers have the same conductivity, 

and all the dielectric layers have the same refractive index and thickness. The graphene 

conductivity is parameterized by cubic splines, and the refractive index of Al2O3 is 

parameterized by Cauchy’s equation.  

The fitting is performed within a wavelength range between 500 nm and 850 nm. 

This wavelength range is selected such that the graphene conductivity in this range is 

practically independent of the doping level. This is because the doping level of graphene 
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can vary during the fabrication steps, especially by the elevated temperature and low 

pressure in the ALD chamber. If the photon energies is significantly larger than 2𝐸F such 

that the Pauli blocking is not present (𝐸F  denotes the Fermi energy), the graphene 

conductivity is independent of doping in theory. This is also verified experimentally with 

our ellipsometry characterization of graphene with different doping levels, except that we 

have found the imaginary conductivity varies slightly at very short wavelengths, which is 

probably due to the sub-monolayer thickness of the “magic blue” dopant. The wavelength 

rage between 500 nm and 850 nm is a practical choice of using a constant conductivity for 

all graphene layers of the structures in the intermediate steps. 

Figure A. 4 shows the measured Ψ and Δ for all 10 different structures in the 

intermediate steps. The measurement is performed with 3 different incident angles: 47°, 

57°, and 67°. By fitting the data with the model described above, we extract an Al2O3 

thickness of 10.4 nm. 
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Figure A. 4 (a) 𝚿 at 47° (b) 𝚫 at 47° (c) 𝚿 at 57° (d) 𝚫 at 57° (e) 𝚿 at 67° (f) 𝚫 at 67° for all 10 different 

structures in the intermediate steps. The red solid lines are the data, and the blue dash lines are the fit. 
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Waveguide modes of a hyperbolic slab  

in a symmetric cladding environment 

 

Figure A. 5 The schematic of a hyperbolic slab sandwiched in a symmetric cladding environment. 

Consider a slab of a hyperbolic material sandwiched by another dielectric material, 

as shown in Figure A. 5. Here we are interested in the TM polarization because the 

hyperbolic dispersion only exists in this polarization. The magnetic field of an even mode 

can be written as 

𝐻𝑦 =

{
 
 

 
 𝑐𝑜𝑠(𝑘ℎ/2)𝑒−𝛼2(𝑧−ℎ/2)𝑒𝑖𝛽𝑥,      𝑧 >

ℎ

2

   𝑐𝑜𝑠(𝑘𝑧) 𝑒𝑖𝛽𝑥,                        
−ℎ

2
≤ 𝑧 ≤

ℎ

2

   𝑐𝑜𝑠(𝑘ℎ/2)𝑒𝛼2(𝑧+ℎ/2)𝑒𝑖𝛽𝑥,           𝑧 <
−ℎ

2

 ,    (35) 

where   𝛽2 − 𝛼2
2 = 𝜀2 (

𝜔

𝑐
)
2

 and  
𝑘2

𝜀𝑥
+
𝛽2

𝜀𝑧
=  (

𝜔

𝑐
)
2

.Using the curl equation of the 

Maxwell’s equations, we can obtain the electric field in the x-direction: 
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𝐸𝑥 =

{
 
 

 
 

𝑖𝛼2

𝜔𝜀0𝜀2
𝑐𝑜𝑠(𝑘ℎ/2)𝑒−𝛼2(𝑧−ℎ/2)𝑒𝑖𝛽𝑥,      𝑧 >

ℎ

2

  
𝑖𝑘

𝜔𝜀0𝜀𝑥
𝑠𝑖𝑛(𝑘𝑧) 𝑒𝑖𝛽𝑥,                        

−ℎ

2
≤ 𝑧 ≤

ℎ

2

  
−𝑖𝛼2

𝜔𝜀0𝜀2
𝑐𝑜𝑠(𝑘ℎ/2)𝑒𝛼2(𝑧+ℎ/2)𝑒𝑖𝛽𝑥,           𝑧 <

−ℎ

2

 ,  (36) 

The boundary condition requires the continuity of 𝐸𝑥 across the boundary at 𝑧 = ℎ/2, from 

which we can obtain the expression for the dispersion relation [184]. 

𝛼2/𝑘

𝜀2/𝜀𝑥
= tan (𝑘ℎ/2).       (37) 

With similar procedure, we can obtain the dispersion relation for odd modes, which is give 

by 

𝛼2/𝑘

𝜀2/𝜀𝑥
= −cot (𝑘ℎ/2).      (38) 
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