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Abstract 
 

The bacterium Vibrio cholerae is the causative agent of cholera, a severe, 

acute diarrheal disease endemic throughout parts of the world. V. cholerae uses 

the type II secretion (T2S) system to transport the virulence factor cholera toxin to 

the extracellular milieu, which is primarily responsible for the disease’s hallmark 

massive, watery diarrhea. This widespread T2S system is structurally homologous 

to the type IV pilus (T4P) system. In this study, I use a suite of biochemical and 

genetic techniques to further elucidate the mechanism of the ATPase that powers 

T2S, EpsE, as well as the overall role of the T2S system in cell envelope stability. 

EpsE contains a unique metal-binding (CM) domain that coordinates zinc 

via a tetracysteine motif. The CM domain is conserved among homologous T4P 

ATPases that power pilus assembly, but not T4P retraction ATPases. In order to 

assess the contribution of the CM domain to T2S, we removed the domain or 

substituted combinations of cysteine residues in the tetracysteine motif. All of these 

mutations abrogate EpsE’s ability to support T2S and have a dominant negative 

effect on secretion in the presence of WT EpsE. Additionally, EpsE’s ATPase 

activity is abolished upon zinc depletion in vitro. However, swapping the residues 

between the two dicysteine motifs with those from the homologue XcpR from 

Pseudomonas aeruginosa, resulting in the substitution of 17 out of 29 residues, 

has no significant effect on EpsE. Thus, while zinc coordination is essential for 
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function, the CM domain may not play a species-specific role in EpsE and other 

T2S ATPases. 

The eps genes encoding proteins required for T2S are putatively essential 

in V. cholerae, and eps inactivation results in widespread cell envelope defects, in 

addition to loss of secretion. To investigate the possibility that suppressor 

mutations facilitate eps gene inactivation, we used high-throughput genome 

sequencing to identify secondary mutations in V. cholerae eps mutants. Two 

independently constructed eps mutants contain distinct inactivating mutations in 

the T2-secreted protease VesC that may protect the cell from unwanted proteolysis 

by mislocalized VesC, suggesting one mechanism by which V. cholerae creates 

permissive conditions for acquiring eps mutations.  
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Chapter 1: 
 

Introduction 
 

Vibrio cholerae Life Cycle 

Cholera is a severe, acute diarrheal disease that can cause dehydration 

and death within 24 hours (Wachsmuth et al., 1994; Harris et al., 2012). Although 

descriptions of the disease and its characteristic secretory diarrhea date back to 

the 5th century BCE, global spread of cholera endemics began in 1817 and 

continue presently (Harris et al., 2012). Cholera is caused by the Gram-negative 

bacterium Vibrio cholerae, which has been responsible for seven worldwide 

cholera pandemics in the last 200 years (Harris et al., 2012). There were 

approximately 2.9 million annual cases of cholera in 69 endemic countries, 

including 95,000 deaths a year, between 2008 and 2012. Roughly 60% of the 

worldwide cholera burden during that period was in sub-Saharan Africa. Although 

approximately 1/3 of the world’s countries are currently endemic and/or at risk for 

becoming cholera-endemic, this disease disproportionately affects developing 

nations (Ali et al., 2015).  

V. cholerae can be subdivided into serogroups based on the 

lipopolysaccharide (LPS) O-antigen, and the two serogroups responsible for most 

of the global cholera pandemics are classified as O1 or O139 (Faruque et al., 1998; 

Kaper et al., 1995). V. cholerae O1 strains are comprised of classical and El Tor 



   

2 
 

biotypes based on their phenotypes for hemolysis, bacteriophage sensitivity, and 

sensitivity to polymyxin B. These biotypes can be further divided into two 

serotypes: Ogawa and Inaba (Kaper et al., 1995; Harris et al., 2012). The current 

seventh global pandemic is caused by the V. cholerae O1 El Tor biotype, whereas 

the previous six pandemics were caused by the classical biotype. The seventh 

pandemic El Tor strain is more widespread than those from previous pandemics, 

due in large part to its increased hardiness and ability to cause asymptomatic 

cholera (Kaper et al., 1995; Felsenfeld, 1965).  

V. cholerae has a biphasic life cycle, as it is able to cause cholera upon 

infection of a human host, and is also able to survive and persist in the aquatic 

environment as a disease reservoir. These environmental bacteria are commonly 

found in brackish and estuarine water sources such as the Ganges River, either 

as planktonic cells, anchored to abiotic surfaces as biofilms, or attached to 

copepods or chironomid egg masses (Butler & Camilli, 2005; Broza, 2001; Halpern 

et al., 2003; Vezulli et al., 2010; Huq et al., 1984). V. cholerae is ingested from 

contaminated water sources, and colonization of the human small intestine and 

production of cholera toxin results in the profuse, watery diarrhea that 

characterizes cholera (Wachsmuth et al., 1994; Kaper et al., 1995). Bacteria are 

shed in a hyperinfectious state that facilitates rapid spread and transmission within 

and between households and populations, fueling local epidemics (Merrell et al., 

2002; Alam et al., 2005; Tamayo et al., 2010).  

Climate change and seasonal variations in weather patterns play key roles 

in cholera dynamics, and most cholera outbreaks occur during the monsoon 
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season and in the spring and fall (Huq et al., 1984; Pascual et al., 2000; Lobitz et 

al., 2000). These outbreaks are linked to additional factors, such as phytoplankton 

and zooplankton blooms, variations in salinity, and the presence of V. cholerae 

phage (Huq et al., 1984; Nelson et al., 2009). A recent cholera outbreak following 

an earthquake in Haiti in 2010 resulted from a combination of the likely introduction 

of V. cholerae from another part of the world, infrastructure disruption that reduced 

sanitation, and suitable environmental conditions for cholera spread (Talkington et 

al., 2011; Jutla et al., 2013). 

The most prevalent treatment of cholera is oral rehydration therapy, which 

includes replacement of water and electrolytes lost during diarrhea.  Antibiotics 

may be used in conjunction with oral rehydration, especially in severe cases, but 

the use of antibiotics also drives increasing antibiotic resistance among V. cholerae 

(Kaper et al., 1995; Sack et al., 2004). Vaccines such as Dukoral have been 

effective during field trials in developing countries, but there is debate on whether 

they are a cost-effective method of preventing epidemics and may require regular 

boosters (Clemans et al., 1986; Clemans et al.,1990; Sack et al., 2004; Harris et 

al., 2012). A simple yet effective preventative measure to control cholera 

epidemics involved sari filtration of water before drinking (Huq et al., 2010). Further 

investigation of V. cholerae virulence and environmental survival mechanisms may 

assist in the development of additional or alternative prevention methods and 

treatments for cholera. 
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Type II Secretion and Pathogenesis 

Gram-negative bacteria have evolved many distinct protein secretion 

pathways in order to transport proteins outside the cell.  Proteins secreted by these 

pathways may either be destined for the bacterial cell surface, be released to the 

extracellular milieu, or be injected directly into a host cell (Costa et al., 2015; 

Gerlach & Hensel, 2007).  

The type II secretion (T2S) system is a widespread exoprotein transport 

system possessed by a large number of human and plant pathogens (Table 1.1) 

(Sandkvist, 2001; Cianciotto, 2005). This multiprotein apparatus spans the entire 

cell envelope of Gram-negative bacteria and serves to translocate proteins in a 

folded conformation from the periplasmic space across the outer membrane. T2S-

secreted proteins play important roles in various aspects of bacterial life cycles, 

depending on the organism, which includes nutrient acquisition, host modification, 

and environmental and/or niche survival (Cianciotto, 2005). For example, 

Legionella pneumophila uses a T2S system for intracellular survival not only in 

macrophages but also in amoebae (Rossier et al., 2004; Söderberg et al., 2008). 

Inactivation of genes required for T2S results in a loss of colonization or other 

aspects of pathogenesis for many organisms tested (see Table 1.1 for a partial list) 

(Sikora et al., 2007; Söderberg et al., 2008; Johnson et al., 2016; Jyot et al., 2011; 

Rossier et al., 2004). 
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Table 1.1 Examples of bacterial pathogens using type II secretion systems 
for virulence 

 

aSandkvist et al., 1993; Overbye et al., 1993 
bBally et al., 1992; Lazdunski et al., 1990 
cPugsley et al., 1991 
dHoward & Buckley, 1985 
e Aragon et al., 2000; Aragon et al., 2001 
fLathem et al., 2002 
gAndro et al., 1984 
hJohnson et al., 2016; Harding et al., 2016 

 

Vibrio cholerae uses the T2S system for the secretion of cholera toxin and 

many additional proteins, several of which are known to contribute to pathogenesis 

in humans and/or environmental survival and persistence of the bacteria outside 

of the host (Sandkvist et al., 1997; Sandkvist, 2001; Cianciotto, 2005, Sikora, 2013; 

Kirn et al., 2005; Overbye et al., 1993; Connell et al., 1998; Davis et al., 2000; 

Sikora et al., 2011; Johnson et al., 2014). Over 20 V. cholerae T2S substrates have 

been identified, including the infamous cholera toxin, biofilm matrix proteins, chitin-
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binding and –degrading proteins, as well as several proteases and a lipase 

(Sandkvist et al., 1997; Sikora et al., 2011; Kirn et al., 2005; Connell et al., 1998).  

Cholera toxin is an 84 kDa canonical AB5 toxin which is primarily 

responsible for the severe diarrhea that characterizes cholera. The B subunits bind 

to GM1 ganglioside receptors on the small intestinal epithelium, allowing 

endocytosis of the toxin followed by retrograde transport of the A subunit, ADP 

ribosylation and activation of adenylate cyclase, leading to an increase in cAMP 

and chloride ion imbalance. This results in massive water release into the small 

intestine, the volume of which far exceeds the intestinal capacity, thus causing 

profuse, watery diarrhea containing chunks of intestinal mucus, known as rice-

water stool (Sack et al., 2004; Nelson et al., 2009). 

Three unique serine proteases were recently identified in the V. cholerae 

T2-secretome through proteomic analyses, called Ves (Vibrio extracellular 

protease) A, B, and C (Sikora et al., 2011). Each of these serine proteases may 

be involved in pathogenesis, as these proteins have been detected in the stool of 

human cholera patients and in some pathogenesis models (LaRocque et al., 2008; 

Hatzios et al., 2016). VesA may specifically play a role in cholera toxin activation, 

a necessary step during pathogenesis; however, a strain lacking all three serine 

proteases could still colonize infant mice as well as WT (Sikora et al., 2011). VesC 

has been shown to modify the villus structure and induce fluid accumulation in a 

rabbit ileal loop model (Syngkon et al., 2010). The structure and function of VesB 

has been recently investigated, which is a unique bacterial trypsin-like serine 

protease containing an N-terminal protease domain and a C-terminal Ig-fold. 
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Although the precise function is still unknown, this study suggested that VesB may 

be involved in nutrient acquisition by V. cholerae, which may be important during 

pathogenesis and/or environmental survival (Gadwal et al., 2014).  

In addition to contributing greatly to pathogenesis, several T2-secreted 

proteins are known to play key roles in V. cholerae environmental survival 

(reviewed in Sikora, 2013). V. cholerae secretes a chitin binding protein (GbpA) to 

attach to zooplankton and a chitinase (ChiA), which allows bacteria to utilize chitin 

as a nutrient source (Connell et al., 1998; Kirn et al., 2005). The V. cholerae T2S 

substrates HAP, RbmA, Bap1, and RbmC each have distinct and critical roles in 

biofilm matrix modification (Fong & Yildiz, 2007; Berk et al., 2012; Johnson et al., 

2014; Smith et al., 2015). Thus, the T2S system bridges both parts of the biphasic 

V. cholerae life cycle, contributing to both disease in a human host as well as 

persistence as a disease reservoir in the aquatic environment. 

 

Type II Secretion Mechanism 

Protein secretion via the T2S pathway involves two steps: first, proteins 

cross the inner membrane using the Sec or Tat machinery and enter the periplasm, 

where N-terminal signal sequences are removed and proteins fold; second, 

proteins transverse the outer membrane using the T2S system (Pugsley, 1993; 

Voulhoux et al., 2001). The T2S apparatus in V. cholerae is composed of 12 

proteins, called EpsC-EpsM (for extracellular protein secretion) and PilD. The 

epsC-M genes are located in a single operon in V. cholerae, similar to most other 

organisms containing T2S systems (Sandkvist, 2001). The pilD (also known as 



   

8 
 

vcpD or epsO) gene is located elsewhere in the genome, and is also required for 

the related type IV pilus (T4P) system (Marsh & Taylor, 1998; Fullner & Mekalanos, 

1999). The T2S apparatus proteins assemble into a multiprotein complex that 

spans from the cytoplasm to the outer membrane, and consists of several 

subassemblies: the outer membrane secretin, the periplasmic pseudopilus, the 

inner membrane platform, and the cytoplasmic ATPase. A model of the V. cholerae 

T2S apparatus is shown in Figure 1.1, the components of which are described in 

further detail below. Much of what is known about the T2S machinery has been 

derived from a combination of biochemical analyses, individual and protein 

complex crystal structures, as well as cryo-electron tomography of T2S and 

homologous T4P components (Johnson et al., 2006; Korotkov et al., 2012; Chang 

et al., 2016.) 
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Figure 1.1 Model of the V. cholerae type II secretion (T2S) apparatus.  This 

multiprotein complex spans the inner membrane (IM), periplasm, and the outer 

membrane (OM). The T2S apparatus is composed of the outer membrane secretin 

(EpsD), the inner membrane platform proteins (EpsC, F, L, and M), the major 

(EpsG) and minor pseudopilins (EpsH, I, J, and K), the inner membrane-

associated cytoplasmic ATPase (EpsE), and the prepilin peptidase (EpsO/PilD) 

that is shared with the T4P system.  

 

In the outer membrane, EpsD dodecamers form a pore through which 

exoproteins pass, known as a secretin. In addition to being required for T2S, EpsD 

is also the conduit through which the phage CTXφ is extruded (Davis et al., 2000; 

Chami et al., 2005; Reichow et al., 2010). EpsD and other homologous T2S 

secretins assemble into heat-stable, detergent-resistant multimeric rings (Bitter et 

al., 1998; Nouwen et al., 2000; Chami et al., 2005). The process of secretin outer 

membrane assembly is still not completely understood in T2S, and although many 



   

10 
 

organisms use a pilotin and/or a chaperone to promote assembly, these factors 

have not been implicated in EpsD assembly in V. cholerae (Shevchik et al., 1997; 

Condemine & Shevchik, 2000; Schoenhofen et al., 2005). EpsD contains a C-

terminal domain which is thought to anchor proteins in the outer membrane 

through conserved β-strands, and an N-terminal domain located in the periplasm 

which may interact with other components of the T2S apparatus including EpsC 

and/or T2-secreted substrates (Bitter et al., 1998; Bouley et al., 2001; Douet et al., 

2004; Korotkov et al., 2006; Korotkov et al., 2009). The structure of the EpsD 

secretin was recently determined using cryo-electron tomography, allowing a 

detailed model of the secretin to be illustrated, which consists of a cylindrical pore 

that looks like an inverted cup (Reichow et al., 2010). The secretin is gated, and it 

is possible that interactions between EpsD and secreted substrates results in a 

conformational change that opens the secretin channel (Shevchik et al., 1997; 

Sandkvist et al., 2001; Reichow et al., 2010). 

EpsC putatively connects the outer membrane secretin with the inner 

membrane platform, and has been shown to interact with the inner membrane 

proteins EpsL and EpsM as well as EpsD in the outer membrane (Possot et al., 

1999; Sauvonnet et al., 2000; Gérard-Vincent et al., 2002; Robert et al., 2002; Lee 

et al., 2004; Korotkov et al., 2006; Korotkov et al., 2011). The EpsC HR domain is 

largely responsible for determining interactions with EpsD, whereas the PDZ 

domain may determine substrate specificity and/or substrate targeting to the T2S 

system (Korotkov et al., 2011; Bouley et al., 2001; Korotkov et al., 2006; Pineau et 

al., 2014). 
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The T2S pseudopilins are named for their relatedness to the major pilin of 

the homologous T4P system. The T2S pseudopilus is composed of the major 

pseudopilin EpsG and the minor pseudopilins EpsH, I, J, and K. Together, they are 

thought to act as a biological piston that pushes proteins through the outer 

membrane secretin (Shevchik et al., 1997; Nunn et al., 1999). It is also possible 

that the pseudopilus more closely resembles an Archimedes’ screw, in which 

secreted proteins bind to pseudopilin components and pseudopilus extension 

drives rotation and protein passage through the secretin (Nunn et al., 1999; 

Campos et al., 2013). The pseudopilins are processed by the prepilin peptidase, 

PilD (Nunn & Lory, 1993; LaPointe & Taylor, 2000; Marsh & Taylor, 1998; Fullner 

& Mekalanos, 1999; Sandkvist et al., 1997). The structure of EpsG has been 

solved, as well as complexes between several pseudopilins (Yanez et al., 2008a; 

Yanez et al., 2008b; Korotkov & Hol, 2008; Korotkov et al., 2009). Structural 

information suggests that EpsK forms the tip of the pseudopilus, and biochemical 

data indicates that EpsI is likely the initiator of pseudopilus assembly (Durand et 

al., 2005; Korotkov et al., 2008; Douzi et al., 2009; Korotkov et al., 2012). Upon 

overexpression of EpsG homologues, the T2S pseudopilus has been visualized as 

a helical fiber on the surface in some organisms, highlighting the similarity between 

the T2S and T4P systems (Sauvonnet et al., 2000; Vignon et al., 2003; Durand et 

al., 2003; Köhler et al., 2004). 

The inner membrane platform consists of EpsC, EpsF, EpsM, and EpsL. 

EpsM and EpsL stabilize each other (Sandkvist et al., 1999). The structures of the 

periplasmic domains of EpsL and EpsM indicate that while the sequence identity 
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is low, these domains are structurally related (Abendroth et al., 2009a). EpsF, 

which contains three putative transmembrane domains and two cytoplasmic 

domains, is functionally less well-characterized than many other T2S components, 

although the structure of the N-terminal cytoplasmic domain has been solved, and 

the C-terminal cytoplasmic domain structure is putatively similar (Thomas et al., 

1997; Arts et al., 2007; Abendroth et al., 2009b). EpsF is stabilized in the presence 

of EpsM and EpsL (Arts et al., 2007). Evidence for interactions between EpsF, 

EpsL, EpsE, and EpsM have been demonstrated using co-immunoprecipitation 

and co-purification techniques (Py et al., 2001; Robert et al., 2005; Abendroth et 

al., 2009b). Many of the protein-protein interactions observed within the T2S 

complex have been confirmed with EpsE, EpsL and EpsF homologues of the T4P 

system (Bischof et al., 2016; Ayers et al., 2009; Georgiadou et al., 2012). 

EpsL is a bitopic inner membrane protein containing a large cytoplasmic 

domain and a short periplasmic domain, and has been shown to directly interact 

with EpsM and EpsE (Sandkvist et al., 1997; Sandkvist et al., 1999; Abendroth et 

al., 2005). Interactions between the cytoplasmic domain of EpsL and the N-

terminal domain of the cytoplasmic ATPase EpsE have been well established, as 

demonstrated both by mutational analyses and co-crystallization (Sandkvist et al., 

1995; Sandkvist et al., 1999; Abendroth et al., 2005). The cytoplasmic ATPase 

EpsE is associated with the inner membrane through these interactions with EpsL, 

and this protein will be described in more detail below (Sandkvist et al., 1995; 

Abendroth et al., 2005). 

 



   

13 
 

Type II Secretion is Powered by the AAA+ ATPase EpsE 

The ATPase EpsE is a molecular motor protein that provides the energy for 

T2S via ATP hydrolysis (Camberg & Sandkvist, 2005). AAA+ ATPases (ATPases 

associated with various cellular activities), such as EpsE, belong to a diverse group 

of ATP-hydrolyzing oligomeric enzymes that, while maintaining some structural 

and functional similarities, support a wide variety of cellular processes from protein 

unfolding to DNA replication (Hanson & Whiteheart, 2005). EpsE is a member of 

the type II/IV secretion ATPase family, which includes proteins that energize 

protein secretion, T4P biogenesis or function, and archaeal movement via the 

archaeallum, which more closely resembles a T4P than a bacterial flagellum 

(Planet et al., 2001; Ghosh & Albers, 2011; Albers & Jarrell, 2015). Type II/IV 

secretion ATPases contain an N-terminal domain (NTD) and a C-terminal domain 

(CTD) connected by a short flexible linker; within the CTD, Walker A and B motifs 

and Asp and His boxes collectively form the nucleotide-binding pocket (Planet et 

al., 2001; Robien et al., 2003; Satyshur et al., 2007; Chiang et al., 2008; Misic et 

al., 2010; Rose et al., 2011; Reindl et al., 2013). EpsE belongs to the subfamily of 

GspE/PilB ATPases that play a role in (pseudo)pilus assembly in the T2S, T4P, or 

archaeal flagellar systems (Planet et al., 2001). Nearly all GspE/PilB subfamily 

members contain a tetracysteine motif (CXXCX21-40CXXC) that coordinates zinc, 

whereas ATPases associated with pilus retraction, such as PilT and PilU, lack this 

motif (Whitchurch & Mattick, 1994; Planet et al., 2001; Robien et al., 2003; 

Camberg & Sandkvist, 2005; Satyshur et al., 2007; Misic et al., 2010). 
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Figure 1.2 Structure of truncated monomeric EpsE. The structure of EpsE was 

solved lacking the first 90 amino acids (Robien et al., 2003; PDB 1p9w). The 

structure is shown in ribbon representation, where the N2 domain is colored green, 

the CTD is shown in blue, and the CM domain is in red with zinc as a gray sphere. 

The nucleotide AMPPNP is shown in yellow. 

 

The structure of a truncated monomeric form of EpsE was solved lacking 

the first 90 amino acids of the NTD, known as the N1 domain, represented in Figure 

1.2 (Robien et al., 2003). Interactions between the N1 of EpsE and the cytoplasmic 

domain of EpsL are necessary for the association of EpsE with the inner 

membrane, and the structure of this complex has been visualized using X-ray 

crystallography (Sandkvist et al., 1995; Abendroth et al., 2005). Despite the 

observation of a small but highly active population of putative EpsE hexamers 

identified by gel filtration, it had been difficult to capture EpsE hexamers for 
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structural characterization for many years (Camberg & Sandkvist, 2005). However, 

hexameric models of EpsE were developed based on the structure of the known 

hexameric ATPases HP0525 and PilT (Robien et al., 2003; Patrick et al., 2011). 

Based on the latter model, several arginine residues comprising putative 

intersubunit interfaces were shown to be required for EpsE’s function, providing 

further evidence of EpsE’s hexamerization (Patrick et al., 2011). The crystal 

structure of hexameric EpsE was solved recently by fusing the assistant hexamer 

Hcp1 to the C-terminus of EpsE (Lu et al., 2013). Hcp1 readily forms hexamers in 

solution, and acts as an assistant hexamer to induce the oligomerization of EpsE 

(Mougous et al., 2006; Lu et al., 2013). The structures of two conformationally 

different EpsE hexamers were resolved, one with quasi-C6 symmetry and the 

other elongated with C2 symmetry, and these structures are shown in Figure 1.3 

(Lu et al., 2013). Similarly, Myxococcus xanthus PilB was recently purified as a 

hexamer using the Hcp assistant hexamer strategy, as PilB alone also forms 

monomers when expressed in E. coli for purification (Bischof et al., 2016). 
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Figure 1.3 Structure of hexameric EpsE-Hcp1. Structures of fusion constructs 

in which the assistant hexamer Hcp1 was fused to the C-terminus of N-terminally 

truncated EpsE lacking the first 90 residues, with 6- and 8-amino acid linkers (Lu 

et al., 2013, PDB codes 1kss and 1ksr, respectively). The structure of EpsE-6aa-

Hcp1 was solved with quasi-C6 symmetry (A, B), while the structure of EpsE-8aa-

Hcp1 was solved with C2 symmetry (C, D). The six EpsE subunits (A-F) are shown 

in ribbon representation and colored in magenta (A, D), green (B, E), and cyan (C, 

F) according to symmetry, while CM domains are shown in red and Hcp1 is colored 

orange throughout. A and C depict the structures from above, and B and D show 

the structures oriented from the side, with the EpsE N-terminus facing up. 

 

EpsE likely functions as a dynamic hexameric complex, wherein cycles of 

ATP binding and hydrolysis result in conformational changes within the hexamer 

and alterations in interactions between EpsE and other T2S proteins to power 

assembly of the pseudopilus and protein secretion across the outer membrane 
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(Satyshur et al., 2007; Misic et al., 2010; Yamagata & Tainer, 2007; Patrick et al., 

2011; Lu et al., 2013; Chang et al., 2016). As EpsE hydrolyzes ATP, energy may 

be transduced through the inner membrane protein EpsL to the major pseudopilin 

EpsG to power pseudopilus assembly (Gray et al., 2011). In the homologous T4P 

system, the EpsF homologue PilC has been shown to interact directly with the 

ATPase PilB that powers T4P assembly, and together with the EpsL homolog PilM 

may transfer the energy generated by ATP hydrolysis to power pilus extension 

(Takhar et al., 2013; Chang et al., 2016).  

 

Significance and Scope of this Study 

The overall goal of this research is to better understand the mechanism and 

the role of T2S in V. cholerae pathogenesis. One focus of my dissertation has been 

the mechanism of energy production for T2S by the motor protein EpsE. Chapter 

2 centers on the role of the unique C-terminal metal binding, or CM, domain of 

EpsE. This domain is conserved among pilus assembly ATPases, but not in pilus 

retraction ATPases or those involved in type IV secretion. My research shows that 

zinc is required for the function and activity of EpsE and plays an important role in 

protein stability.  Chapter 3 details a method for measuring the in vitro ATPase 

activity of purified proteins such as EpsE that was applied throughout my research 

and was further used to assess the importance of particular residues within the 

EpsE CM domain to the protein’s activity. 

In addition to studying the contribution of zinc to EpsE’s function, another 

focus of my dissertation research has been to characterize the overall role of T2S 
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in V. cholerae cell envelope biogenesis. Previous observations from our laboratory 

indicated that V. cholerae Eps inactivation causes widespread cell envelope 

defects, including outer membrane leakiness and induction of a pathway involved 

in the cell envelope stress response, which directly or indirectly exerts a negative 

impact on growth rate (Sandkvist et al., 1997; Sikora et al., 2007; Sikora et al., 

2009). Additionally, data from other groups suggest that the eps genes are 

essential in V. cholerae (Judson & Mekalanos, 2000; Cameron et al., 2008; Chao 

et al., 2013; Kamp et al., 2013). Since we and others have successfully constructed 

mutations in the eps genes, this suggests that perhaps the eps genes are only 

essential for V. cholerae under particular conditions. In Chapter 4, I address the 

mechanism behind these findings by using whole-genome sequencing and identify 

secondary mutations in eps mutants that may act as suppressor mutations to 

enable the construction of eps mutations.  

Altogether, my research contributes to a more detailed understanding of the 

mechanism of T2S and its importance in V. cholerae virulence and persistence. 

Advances in our knowledge on this topic can help inform the development of 

additional therapeutic strategies for cholera treatment. This information may 

extend to other bacterial diseases caused by pathogens using the T2S system for 

the transport of virulence factors. Furthermore, understanding the roles of 

particular domains in EpsE can inform further research not only on energy 

production for T2S, but also for other homologous systems, such as the T4P, 

competence, and archaeal flagellar systems.
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Chapter 2: 
 

Zinc Coordination is Essential for the Function 

and Activity of the Type II Secretion ATPase EpsE 
 

Notes:  

A modified version of this chapter is currently in press for publication: 

Rule, C.S., Patrick, M., Camberg, J.L., Maricic, N., Hol, W.G., Sandkvist, 

M. Microbiology Open. In press. 

 

Abstract 

The type II secretion system Eps in Vibrio cholerae promotes the 

extracellular transport of cholera toxin and several hydrolytic enzymes, and is a 

major virulence system in many Gram-negative pathogens that is structurally 

related to the type IV pilus system. The cytoplasmic ATPase EpsE provides the 

energy for exoprotein secretion through ATP hydrolysis. EpsE contains a unique 

metal-binding domain that coordinates zinc through a tetracysteine motif 

(CXXCX29CXXC), which is also present in type IV pilus assembly but not retraction 

ATPases. Deletion of the entire domain or substitution of any of the cysteine 

residues that coordinate zinc completely abrogates secretion in an EpsE-deficient 

strain and has a dominant negative effect on secretion in the presence of WT 

EpsE. Consistent with the in vivo data, chemical depletion of zinc from purified 
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EpsE hexamers results in loss of in vitro ATPase activity. In contrast, exchanging 

the residues between the two dicysteines with those from the homologous ATPase 

XcpR from Pseudomonas aeruginosa does not have a significant impact on EpsE. 

These results indicate that, although the individual residues in the metal binding 

domain are generally interchangeable, zinc coordination is essential for the activity 

and function of EpsE. 

 

Introduction 

The type II secretion (T2S) system mediates the extracellular transport of 

virulence factors, such as toxins and hydrolytic enzymes, in many Gram-negative 

pathogens (Sandkvist, 2001; Cianciotto, 2005; Korotkov et al., 2012). Vibrio 

cholerae uses the T2S system to secrete cholera toxin, which is largely responsible 

for the severe diarrhea that characterizes cholera, as well as at least 20 other 

proteins such as proteases, chitinases, lipases, and biofilm matrix proteins 

(Overbye et al., 1993; Connell et al., 1998; Davis et al., 2000; Sikora et al., 2011; 

Johnson et al., 2014). Type II-secreted proteins first cross the inner membrane 

using the Sec or Tat general export pathways, signal sequences are then removed, 

and these proteins are subsequently transported across the outer membrane via 

T2S (Pugsley, 1993; Voulhoux et al., 2001). Type II-secreted factors are important 

for nutrient acquisition and/or modulating the surroundings to benefit the bacteria 

in both the aquatic environment as well as in the human small intestine (Sandkvist, 

2001; Cianciotto, 2005; Sikora, 2013).  
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The T2S apparatus in V. cholerae spans both the inner and outer 

membranes and is composed of 12 Eps (extracellular protein secretion) proteins 

(denoted EpsC through EpsM) and PilD (Overbye et al., 1993; Sandkvist et al., 

1997; Marsh & Taylor, 1998; Fullner & Mekalanos, 1999). The cytoplasmic ATPase 

EpsE is associated with the inner membrane through interactions with the bitopic 

inner membrane protein EpsL (Sandkvist et al., 1995; Abendroth et al., 2005). 

EpsE acts as a molecular motor to provide the energy for exoprotein secretion 

through ATP hydrolysis (Camberg & Sandkvist, 2005). A recent study from our 

laboratory indicates that EpsL may provide a molecular link between EpsE and the 

major pseudopilin component EpsG. Protein-protein interactions between EpsG 

and EpsL were established through chemical crosslinking and co-

immunoprecipitation followed by immunoblotting for EpsG or EpsL. EpsG prepilin 

processing by PilD is required for this EpsL interaction, although no other T2S 

proteins are necessary. The results suggest that the energy produced during ATP 

hydrolysis by EpsE may be transduced through EpsL to the major pseudopilin 

EpsG to power pseudopilus assembly for T2S (Gray et al., 2011). 

EpsE belongs to a large family of type II/IV secretion ATPases, including 

those involved in protein secretion, type IV pilus (T4P) biogenesis, competence, 

and archaeal flagella (archaellum) assembly (Planet et al., 2001). Family members 

consist of two distinct domains: the N-terminal domain (NTD) and the C-terminal 

domain (CTD), which are connected by a short flexible linker (Robien et al., 2003; 

Satyshur et al., 2007; Misic et al., 2010; Rose et al., 2011; Reindl et al., 2013). The 

CTD contains the conserved ATP-binding motifs that collectively form the 
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nucleotide-binding pocket, including Walker A and B motifs and Asp and His boxes 

(Robien et al., 2003; Chiang et al., 2008). Within this family, EpsE and other T2S 

ATPases as well as ATPases required for T4P assembly form the subfamily of 

GspE/PilB ATPases, alternatively referred to as pilus assembly ATPases (Planet 

et al., 2001). Members of this subfamily contain a unique domain called the C-

terminal metal binding domain (CM) that coordinates zinc through a tetracysteine 

motif (CXXCX21-40CXXC) (Figure 2.1; Planet et al., 2001; Robien et al., 2003; 

Camberg & Sandkvist, 2005). The CM domain is notably absent among T4P 

retraction ATPases such as PilT and PilU (Robien et al., 2003; Satyshur et al., 

2007; Misic et al., 2010; Whitchurch & Mattick, 1994). The tetracysteine motif is 

conserved among all T2S ATPases except for Xylella fastidiosa XpsE and 

Xanthomonas campestris XpsE (Robien et al., 2003). The EpsE CM domain spans 

residues C397-C433 in EpsE, with the amino acids in between the two dicysteines 

forming a hairpin turn, or loop. The CM loop residues share low sequence 

homology (~30%) between homologous T2S ATPases (Robien et al., 2003; 

Camberg & Sandkvist, 2005). Structural analysis shows that the CM domain is 

located on the outside of the EpsE hexamer (Lu et al., 2013).  
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Figure 2.1 Structural comparison of type II/IV secretion ATPases. The 

structures of the V. cholerae T2S ATPase EpsE (left, PDB 1P9W), the P. 

aeruginosa type IV pilus retraction ATPase PilT (center, PDB 3JVV), and the H. 

pylori type IV secretion ATPase HP0525 (right, PDB 1G6O) are shown. N-terminal 

domains are colored green, C-terminal domains in cyan, and the CM domain in 

EpsE is displayed in red with zinc represented as a blue sphere. Nucleotide is 

shown in orange. 

 

Zinc-coordinating domains have been implicated in diverse roles such as 

stability, protein-protein interactions, and regulation of activity (Fekkes et al., 1999; 

Jakob et al., 2000; Salzer et al., 2014). The importance of cysteine residues to the 

CM domain of GspE/PilB ATPases has been previously suggested by other studies 

(Possot & Pugsley, 1997; Salzer et al., 2014). The T2S ATPase PulE from 

Klebsiella oxytoca contains a tetracysteine motif similar to EpsE, and loses the 

ability to support secretion of pullulanase when at least two adjacent cysteines are 

replaced with serines. However, the insolubility of native PulE and lack of protein 

purification techniques prevented study of PulE in vitro (Possot & Pugsley, 1997). 

Thermus thermophilus PilF is an ATPase involved in T4P biogenesis and DNA 

uptake, and was recently shown to require zinc for stability of PilF hexameric 
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complexes but not for ATPase activity in vitro. Additionally, cysteine residues were 

important for PilF’s role in piliation at high temperatures but not for transformation 

in vivo (Salzer et al., 2014).  

Understanding the function of EpsE and its individual domains is essential 

for elucidating the mechanism of T2S and its contribution to pathogenesis. In this 

study, we investigate the role of the tetracysteine motif and zinc in the EpsE CM 

domain, as EpsE is a well-characterized ATPase involved in the secretion of 

cholera toxin and many hydrolytic enzymes in V. cholerae, an important human 

pathogen and established model organism. We show that zinc coordination by the 

CM domain is required for the function of EpsE in T2S, but the CM residues between 

the two dicysteines are interchangeable with that of a homologue. Zinc 

coordination provides stability to the EpsE hexamer, as removal of zinc results in 

a loss of ATPase activity in vitro, an inability to support T2S in vivo, and an 

alteration in the protein’s conformation. 

 

Results 

The EpsE CM domain is required for Type II Secretion 

The CM domain is conserved among T2S and T4P assembly ATPases such 

as EpsE and PilB, while it is absent in homologous T4P retraction ATPases such 

as PilT and type IV secretion ATPases including HP0525 (Figure 2.1), suggesting 

that it may be required for a process unique to T2S and T4P assembly. In order to 

examine the importance of the CM domain in T2S, we designed mutations in EpsE 

that remove the entire CM domain and connect the residues at the point in the CTD 
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where the β-strands most closely converge based on structural superposition of 

EpsE and HP0525, which lacks the CM domain (Figure 2.1). We removed the entire 

domain including the four cysteines (EpsE ΔCM) or replaced it with a proline 

residue (EpsE ΔCMPro) in order to generate EpsE variants that resemble ATPases 

lacking the CM domain. Although wild-type (WT) EpsE can complement the loss of 

secretion of the serine protease VesB and lipase in an epsE::kan strain of V. 

cholerae, EpsE ΔCM and EpsE ΔCMPro are deficient in their ability to support 

secretion in this mutant (Figure 2.2A, B). While EpsE ΔCM and EpsE ΔCMPro are 

expressed, they are detected at slightly lower levels than WT EpsE, suggesting a 

small decrease in stability (Figure 2.2C). However, both EpsE ΔCM and EpsE 

ΔCMPro exhibit negative dominance, as over-expression of these EpsE variants 

prevents T2S in WT V. cholerae (Figure 2.3A). This dominant negative phenotype 

may be explained by competition between WT and mutant forms of EpsE for 

interaction with other components within the T2S complex, or by the formation of 

mixed EpsE oligomers with lower overall activity. Together, these results suggest 

that both deletion constructs are expressed in V. cholerae, and that the CM domain 

is necessary for EpsE’s function in T2S.  
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Figure 2.2 The EpsE CM 

domain is required for 

secretion. A. WT and 

epsE::kan strains of V. 

cholerae TRH7000 

containing empty vector (-) 

or pMMB plasmids 

encoding WT or mutant 

EpsE variants described on 

the x-axis were grown with 

200µg/ml carbenicillin and 

10µM IPTG. Culture 

supernatants were 

analyzed for VesB protease 

activity using a cleavable 

fluorogenic probe as 

described in Experimental 

Procedures. All EpsE 

variants showed statistical 

significance compared to 

WT EpsE (p<0.0001). B. 

The same overnight culture 

supernatants as in A were 

analyzed for lipase activity 

as described in 

Experimental Procedures. 

All EpsE variants showed 

statistical significance 

compared to WT EpsE 

(p<0.03) C. Expression of 

EpsE in WT V. cholerae 

TRH7000, followed by 

epsE::kan V. cholerae 

containing empty vector 

and epsE::kan V. cholerae 

expressing either WT EpsE, 

or variants of EpsE. Samples were analyzed by SDS-PAGE and immunoblotting 

for EpsE. The size of EpsE and EpsE ΔCM are indicated by black arrows, and EpsE 

dimers by a gray arrow.  
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Figure 2.3. EpsE ΔCM and cysteine mutants exert negative dominance. A. WT 

V. cholerae TRH7000 containing pMMB plasmids encoding WT or mutant EpsE 

variants described on the x-axis were grown with 200µg/ml carbenicillin and 

100µM IPTG. Samples were prepared and assayed for protease activity as in 

Figure 2.2. Assays were performed in triplicate and standard error is shown. All 

EpsE variants showed statistical significance compared to WT EpsE (p<0.0001). 

B. WT V. cholerae 3083 and isogenic ΔepsC containing pMMB plasmids (empty 

vector (-), WT EpsE, or EpsE C4xS) were grown with 200µg/ml carbenicillin and 

100µM IPTG. Cells (C) and supernatants (S) were analyzed by SDS-PAGE and 

immunoblotting for cholera toxin. 

 

We have previously reported that V. cholerae T2S mutants leak periplasmic 

content likely due to outer membrane damage (Sikora et al., 2007). Therefore, we 

also evaluated the ability of EpsE ΔCM and EpsE ΔCMPro to restore outer 

membrane integrity by determining their effect on non-specific extracellular release 

of periplasmic β-lactamase. We observed higher percentages of β-lactamase 

activity in the supernatant of epsE::kan strains containing empty vector or 

expressing the CM deletion variants of EpsE (35-45%) compared to WT V. cholerae 
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and the epsE::kan strain expressing WT EpsE (15-20%) further indicating that 

these EpsE variants are non-functional (Figure 2.4).  

 

 

Figure 2.4 Cysteines in EpsE are required for outer membrane stability in V. 
cholerae. Overnight culture supernatants and periplasmic extracts were isolated 
from WT V. cholerae as well as strains of V. cholerae epsE::kan containing empty 
vector or expressing WT and CM variants of EpsE. β-lactamase activity was 
measured as described in Experimental Procedures and expressed as the percent 
of total activity in the supernatant. Assays were performed in triplicate, and means 
and SEM are presented. 
 

Residues in the CM loop are interchangeable for EpsE’s function in vivo and in vitro 

After establishing the importance of the EpsE CM domain, we then 

investigated the role of the 29 amino acids in between the two dicysteines. In order 

to understand the contribution of these residues to EpsE’s function, we decided to 

swap the loop from EpsE with that of a homologue. This technique was selected 

over mutation of individual residues as it allowed us to simultaneously substitute 
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multiple residues and to evaluate whether the CM loop residues participate in 

species-specific protein-protein interactions (Sandkvist et al., 1995; Sandkvist et 

al., 2000). We compared the CM loop residues among several EpsE homologues 

and found that both the length of the loop and the specific residues vary 

significantly (Figure 2.5). The EpsE CM loop contains 29 amino acids, and in order 

to alter the specific residues of the CM loop without changing the length, we chose 

to genetically engineer a chimeric construct, EpsE-XcpR CM, wherein the 29 CM 

loop residues between the two dicysteines from EpsE were exchanged with those 

of XcpR from P. aeruginosa. The cysteines remain intact, but the exchanged 

region from EpsE differs from that of XcpR by 17 out of 29 residues, mostly in the 

central portion of the loop (Figure 2.5).  

 

 

Figure 2.5. Alignment of CM domains in T2S ATPase homologues. Clustal 
Omega alignment of CXXCX27-30CXXC motifs of T2S ATPase homologues. 
Asterisks below indicate residue conservation identity, and colons and periods 
indicate high and low levels of residue homology, respectively. 
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The EpsE-XcpR CM chimera was found to complement the loss of VesB and 

lipase secretion in the epsE::kan strain of V. cholerae (Figure 2.6A, B) and is 

expressed at nearly WT levels (Figure 2.6C). Although restoration of protease 

secretion was much more variable compared to WT EpsE, it was consistently more 

substantial than the CM deletion mutant phenotypes (Figure 2.2A, B). Consistent 

with its ability to complement the secretion defect in the epsE::kan mutant, the 

EpsE-XcpR CM chimera had no negative effect on VesB secretion when 

overexpressed in WT V. cholerae (Figure 2.6A). It is possible that either the 

presence of WT EpsE can overcome a slight defect in the interaction of the EpsE-

XcpR CM chimera with the T2S system or that this chimera causes a deficiency in 

oligomer formation or stability.    
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Figure 2.6 The EpsE-XcpR CM chimera partially complements the T2S defect 
in epsE::kan mutants of V. cholerae. A. V. cholerae TRH7000 WT, followed by 
epsE::kan strains containing empty vector (-) or pMMB encoding EpsE or EpsE-
XcpR CM were grown with 200µg/ml carbenicillin and 10µM IPTG. The last bar 
represents WT V. cholerae expressing EpsE-XcpR CM induced with 100µM IPTG 
to test for negative dominance. Culture supernatants were analyzed for VesB 
activity using a cleavable fluorogenic probe as described in Experimental 
Procedures. Assays were performed in triplicate and SEM is shown. No statistically 
significant difference between WT EpsE and EpsE-XcpR CM was detected using a 
T-test (p = 0.37). B. Overnight culture supernatants were assayed for lipase activity 
as in Figure 2.2B. No statistically significant difference between WT EpsE and 
EpsE-XcpR CM was detected using a T-test (P = 0.064). C. Expression of EpsE in 
WT V. cholerae TRH7000 (lane 1), followed by empty vector (lane 2), WT EpsE 
(lane 3), or EpsE-XcpR CM expressed in epsE::kan V. cholerae (lane 4) and 
induced with 10µM IPTG. Samples were analyzed by SDS-PAGE and 
immunoblotting for EpsE. 
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EpsE hexamers have a greatly increased ATPase activity over monomeric 

EpsE, suggesting that EpsE likely functions as a hexamer in vivo (Sandkvist & 

Camberg, 2005). The crystal structure of EpsE was first solved as a helical 

filament, but modeled as a hexamer based on the structure of H. pylori HP0525 

(Yeo et al., 2000; Robien et al., 2003). In a later study, a refined hexameric model 

was proposed based on P. aeruginosa PilT and tested by mutagenesis of residues 

predicted to participate in subunit-subunit interactions (Patrick et al., 2011). We 

recently constructed a fusion protein consisting of Hcp1, a hexameric protein from 

P. aeruginosa (Mougous et al., 2006), fused to the C-terminus of EpsE (Lu et al., 

2013). This resulted in a stable EpsE hexamer with increased ATPase activity that 

was amenable to purification, crystallization and structure determination. Similarly, 

the C-terminal Hcp1 fusion strategy has also been recently used to purify the 

hexameric form of the homologous T4P assembly ATPase PilB (Bischof et al., 

2016). To determine whether stabilization of the EpsE-XcpR CM chimera by the 

“assistant hexamer” Hcp1 can overcome a possible oligomerization defect, we 

fused Hcp1 to EpsE-XcpR CM and compared its ability to support secretion with 

EpsE-Hcp1 in the epsE::kan mutant. We found that the EpsE-XcpR CM–Hcp1 

chimera fusion with the loop swap is able to support T2S to the same extent as 

EpsE-Hcp1 (Figure 2.7), suggesting that most of the residues in the EpsE CM 

domain can be interchanged with those of a homologue without having a negative 

impact on EpsE’s ability to support T2S.  
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Figure 2.7 EpsE-Hcp1 and EpsE-XcpR CM–Hcp1 fusions support secretion in 
V. cholerae. A. WT and epsE::kan strains of V. cholerae TRH7000 containing 
empty vector (-), pMMB encoding EpsE, EpsE-Hcp1, or EpsE-XcpR CM–Hcp1 
were grown with 200µg/ml carbenicillin and 10µM IPTG. Supernatants were 
analyzed for VesB activity using a cleavable fluorogenic probe as described in 
Experimental Procedures. Assays were performed in triplicate and standard error 
is shown. B. Lipase assays were performed on overnight culture supernatants as 
in Figure 2.2B. Assays were performed in triplicate with standard errors displayed. 
 

 

In order to verify that the fusions are stable and do not break down into 

native EpsE, we analyzed cell extracts by SDS-PAGE and immunoblotting for 

EpsE and Hcp1 (Figure 2.8). The results show that both WT and chimeric EpsE-

Hcp1 fusions remain intact in vivo and migrate according to their predicted 

molecular weights similarly to EpsE-Hcp1-His6 purified by metal affinity and size-

exclusion chromatography from E. coli cell extracts (Figures 2.9, 2.10). Thus, the 

complementation of the T2S-defect in the epsE::kan mutant by EpsE-Hcp1 and 

EpsE-XcpR CM-Hcp1 is likely due to the intact fusions and not break-down 

products, indicating that the fusions are functional. In addition, these results show 

that the variability in complementation of T2S by the EpsE-XcpR CM chimera is 
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mitigated when the assistant hexamer Hcp1 is present, suggesting that there is no 

apparent species-specific role of the CM loop residues between the dicysteines.  

 

 

Figure 2.8 Detection of full-length EpsE-Hcp1 fusions in V. cholerae. 
Overnight cultures of V. cholerae TRH7000 WT or epsE::kan strains containing 
empty vector (-) or pMMB plasmids encoding EpsE, EpsE-Hcp1, or EpsE-XcpR 
CM–Hcp1 were grown with 200µg/ml carbenicillin and 10µM IPTG. Cell lysates 
were analyzed by SDS-PAGE and immunoblotting using α-EpsE antibodies (left) 
or α-Hcp1 antibodies (right). Molecular mass markers are indicated and the 
positions of EpsE and EpsE-Hcp1 fusion are shown with arrows. Purified EpsE-
Hcp1 protein was included as a positive control. 
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Figure 2.9 Purification of hexameric EpsE-Hcp1. A. EpsE-Hcp1 was purified by 
metal affinity chromatography and then subjected to gel filtration using a Superose 
6 column. Stars represent protein standards with sizes in kDa indicated above. B. 
Fractions containing protein peaks were analyzed via SDS-PAGE and proteins 
visualized with Coomassie staining. Fractions 16 and 17 were pooled. The size of 
EpsE-Hcp1 is indicated with an arrow. 
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Figure 2.10 Purification of hexameric EpsE-XcpRCM-Hcp1. A. EpsE-XcpRCM-
Hcp1 was purified by metal affinity chromatography and then subjected to gel 
filtration using a Superose 6 column. Stars represent protein standards with sizes 
in kDa indicated above. B. Fractions containing protein peaks were analyzed via 
SDS-PAGE and proteins visualized with Coomassie staining. Fractions 16 and 17 
were pooled. The size of EpsE-XcpRCM-Hcp1 is indicated with an arrow.  
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As expected, when we overexpressed and purified hexameric His6-tagged forms 

of EpsE-Hcp1 and EpsE-XcpR CM-Hcp1 from E. coli by metal affinity 

chromatography and gel filtration (Figures 2.9, 2.10) and determined their ability 

to hydrolyze ATP, there is no decrease in ATPase activity when the EpsE CM loop 

residues are exchanged with those of the homologue XcpR (Figure 2.11).  

 

 

Figure 2.11 The EpsE-XcpR CM–Hcp1 chimera fusion maintains in vitro 
ATPase activity. Purified EpsE-Hcp1 and EpsE-XcpR CM–Hcp1 fusions were 
assayed for in vitro ATPase activity as described in Experimental Procedures.    
 

 

Zinc binding to the CM domain is required for T2S and EpsE ATPase activity 

Given the importance of having an intact CM domain, and yet the relative 

flexibility in the requirement for precise CM loop residues for the function of EpsE, 

we next sought to understand the contribution of the dicysteines to EpsE and T2S. 

We constructed a series of EpsE CM cysteine to serine substitution mutants and 
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tested their ability to complement the loss of T2-secreted protease and lipase 

activities and restoration of outer membrane integrity in the epsE::kan mutant as 

described above. We analyzed single (C400S, C430S), double (C397SC400S, 

C430SC433S), triple (C400SC430SC433S), and quadruple 

(C397SC400SC430SC433S) cysteine to serine substitution mutants. Similarly to 

the CM domain deletion variants EpsE ΔCM and EpsE ΔCMPro, all EpsE CM 

cysteine mutants are unable to complement the T2S defects in the epsE::kan strain 

(Figures 2.2, 2.4). While expression of the C400S and C3xS variants results in 

what appear to be EpsE dimers, perhaps due to the exposure of single free 

cysteines, these bands are not detected in the double or quadruple cysteine 

mutants (Figure 2.2C). In order to test whether the cysteine mutant variants of 

EpsE are nonfunctional simply due to misfolding, we tested for negative 

dominance in vivo. All cysteine mutants exhibited negative dominance and 

inhibited the ability of WT EpsE to support protease secretion, suggesting that they 

are not completely misfolded and are able to interact with WT EpsE and/or other 

components of the T2S complex such as EpsL (Figure 2.3A). We also confirmed 

the negative dominant phenotype of the EpsE C4xS variant by analyzing cholera 

toxin secretion, and show that expression of EpsE C4xS inhibits the secretion of 

the cholera toxin B subunit in WT V. cholerae to approximately the same level as 

in a T2S mutant (Figure 2.3B). Collectively, these results indicate the importance 

of cysteines for EpsE’s function in T2S and suggest that all four cysteine residues 

are essential. 
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In order to analyze the metal content of the cysteine mutant proteins and 

the effect of these mutations on activity, we attempted to purify hexahistidine-

tagged proteins; however, these variant proteins were not amenable to purification, 

as they aggregated when overexpressed in E. coli. We were also unable to purify 

cysteine mutant variants of the EpsE-Hcp1 fusion (data not shown). This suggests 

that the folding and/or stability of the mutant proteins is severely compromised 

when any of the cysteine residues are exchanged for serines, and lends support 

to the notion that zinc binding to this domain may be crucial for the overall 

conformation/stability of EpsE. 

Because we were unable to analyze the effect of the cysteine-to-serine 

substitutions on purified proteins, we instead took a chemical approach to 

determine the contribution of zinc binding to the CM domain. We used p-

chloromercuribenzoic acid (PCMB) to release zinc and measured free zinc using 

the zinc-complexing agent 4-(2-pyridylazo)resorcinol (PAR). As these experiments 

required large amounts of purified proteins, we used the previously described 

hexameric N-terminally truncated ΔN1-EpsE-Hcp1 fusion (Lu et al., 2013), which 

can be purified in much greater quantities and has about 3-fold higher in vitro 

ATPase activity than the full-length fusion (Figures 2.12, 2.13B). This form of EpsE 

is unable to function in vivo because it lacks the first 90 NTD residues known to 

interact with EpsL, which are necessary for EpsE to support T2S (Sandkvist et al., 

1995; Sandkvist et al., 2000; Abendroth et al., 2005) (data not shown). Figure 

2.13A shows that increasing amounts of PCMB cause an increase in the amount 

of zinc released by ΔN1-EpsE-Hcp1 hexamers, which coordinate metal at a 1:1 
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ratio of zinc:EpsE, consistent with our previous findings with monomeric EpsE 

(Camberg & Sandkvist, 2005). Additionally, when the EpsE-Hcp1 fusion is pre-

treated with a 4-fold molar excess of PCMB for 10 minutes at room temperature, it 

has nearly abolished ATPase activity in vitro compared to untreated and mock-

treated controls (Figure 2.13B). Thus, zinc binding to the EpsE CM domain is 

necessary for in vitro ATPase activity. 
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Figure 2.12 Purification of hexameric ΔN1-EpsE-Hcp1. A. ΔN1-EpsE-Hcp1 
was purified by metal affinity chromatography and then subjected to gel filtration 
using a Superose 6 column. Stars represent protein standards with sizes in kDa 
indicated above. B. Fractions containing protein peaks were analyzed via SDS-
PAGE and proteins visualized with Coomassie staining. Fraction 17 was used for 
further analyses. The size of ΔN1-EpsE-Hcp1 is indicated with an arrow.  
 

 



   

42 
 

 

Figure 2.13 Removal of zinc results in a loss of in vitro ATPase activity and 
changes the migration pattern of ΔN1-EpsE-Hcp1. A. Zinc release titration 
curve. Increasing amounts of p-chloromercuribenzoic acid (PCMB) result in 
increased zinc release. B. Treatment of ΔN1-EpsE-Hcp1 protein abolishes in vitro 
ATPase activity. Proteins were either untreated or treated with a 4-fold molar 
excess of PCMB or mock-treated for 10 minutes at room temperature and assayed 
for ATPase activity as described in Experimental Procedures. C. Purified ΔN1-
EpsE-Hcp1 was untreated or incubated with a 4-fold molar excess of PCMB or 
mock-treated for 10 minutes at room temperature. Samples were then analyzed 
using native-PAGE and stained with Coomassie.  
 

 

Zinc stabilizes the conformation of EpsE 

Based on the aggregation of EpsE CM cysteine mutants when 

overexpressed in E. coli and the loss of ΔN1-EpsE-Hcp1’s in vitro ATPase activity 

upon zinc release, we hypothesized that zinc contributes to the overall protein 

conformation of hexameric EpsE. In order to test this, we analyzed purified protein 

migration profiles using native polyacrylamide gel electrophoresis. Purified ΔN1-

EpsE-Hcp1 protein was either untreated or incubated with a 4-fold molar excess 



   

43 
 

of PCMB or mock-treated for 10 minutes at room temperature. As seen in Figure 

2.13C, zinc removal results in a change in the native migration pattern of the ΔN1-

EpsE-Hcp1 hexamer, indicating that conformational changes occur following zinc 

release. 

 

Discussion 

This study demonstrates that the EpsE CM domain is required for type II 

secretion in V. cholerae. Although many of the loop residues that form the elbow 

of the CM domain in between the dicysteines are interchangeable, the tetracysteine 

motif (CXXCX29CXXC) must be intact in order for EpsE to function as the molecular 

motor for T2S. Substitution of any of the cysteine residues resulted in EpsE 

variants that are unable to support secretion. These EpsE variants are produced 

in V. cholerae; however, none of them were amenable to purification due to 

aggregation when overexpressed in E. coli. It is possible that these variant proteins 

are misfolded when they are overproduced in isolation from the rest of the T2S 

complex. However, the negative dominance by the EpsE cysteine mutants when 

expressed in WT V. cholerae demonstrates that they are still able to interact with 

other components of the T2S complex and/or WT EpsE, suggesting that they retain 

some native properties and are not completely misfolded. For several of our 

experiments, we utilized a form of EpsE fused to the assistant hexamer Hcp1, as 

this construct forms hexamers in the absence of other Eps proteins, has high 

ATPase activity in vitro (Figures 2.9, 2.10, 2.11) (Lu et al., 2013) and is functional 

in vivo (Figure 2.7). When zinc was chemically removed from purified ΔN1-EpsE-

Hcp1 fusion protein using PCMB, we observed a loss of ATPase activity and a 
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change in the migration pattern using native-PAGE (Figure 2.13). Collectively, 

these data indicate that zinc binding to the CM domain is necessary to support 

hexameric complex stability. 

We have previously characterized many aspects of the function and activity 

of EpsE. Among others, we have shown that while monomeric EpsE is capable of 

hydrolyzing ATP, hexamerization results in greatly increased ATPase activity 

(Camberg & Sandkvist, 2005; Camberg et al., 2007; Patrick et al., 2011; Lu et al., 

2013). The role of zinc was first examined using purified GST-tagged EpsE that 

primarily yields monomers with low ATPase activity and only a small fraction of 

highly active hexamers (Camberg & Sandkvist, 2005). Titration of this purified 

material with p-hydroxymercuriphenylsulfonic acid (PMPS) in the presence of PAR 

revealed that EpsE binds 1 mol of zinc per mol of EpsE, which corresponds with 

our results in the present study showing that equimolar amounts of zinc are 

released by ΔN1-hexameric EpsE-Hcp1 using PCMB. When purified EpsE was 

treated with a four-fold molar excess of PMPS, there was only a 50% decrease in 

EpsE’s ATPase activity, suggesting that zinc does not significantly contribute to 

the stability of monomeric EpsE (Camberg & Sandkvist, 2005). In contrast, our 

current study shows that there is a nearly complete reduction in ATPase activity of 

EpsE hexamers. As the ability to hydrolyze ATP is sensitive to the conformational 

state of EpsE, the removal of zinc has a greater impact on the ATPase activity of 

the hexamer than the monomer.  

  Previous studies examining the tetracysteine motifs of similar Type II/IV 

secretion ATPases have also indicated the importance of this motif, although some 
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key differences also exist between those reports and the current study. Possot and 

Pugsley (1997) showed that secretion of the T2S substrate pullulanase was 

decreased upon substitution of single or double cysteine to serine substitutions to 

the ATPase PulE, and was abrogated following a triple cysteine to serine 

substitution. The two different single cysteine substitutions also exhibited varying 

amounts of negative dominance, with C391S exhibiting 31% dominance and 

C419S only 3% (Possot & Pugsley, 1997). We have found that even removing a 

single cysteine abolishes the ability of EpsE to support T2S, and all variants display 

very similar levels of negative dominance. Unlike WT PulE, which cannot be 

purified due to the aggregation of the protein when produced in the absence of 

other T2S components, WT EpsE is soluble and readily amenable to purification. 

This allowed us to determine the difference in protein solubility upon substituting 

cysteine residues, which showed that all cysteines are required for EpsE solubility 

when overexpressed in E. coli.  

An investigation of the tetracysteine motif in T. thermophilus PilF by Salzer 

et al (2014) showed these cysteines are required in order to support piliation at 

high temperatures. PilF requires at least three cysteine residues to coordinate zinc, 

and may be able to use H2O to substitute for the fourth cysteine. These authors 

used cysteine to alanine substitutions, whereas we chose to substitute cysteines 

with serines in order to maintain more closely-related amino acid side chains. At 

lower growth temperatures, however, cysteine substitutions do not affect PilF 

function, suggesting that zinc binding is not essential for pilus assembly, but rather 

provides the protein stability necessary for proper function at elevated 
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temperatures. Our data indicates that EpsE’s stability is also compromised when 

zinc is removed; however, EpsE is non-functional upon replacement of even one 

of its cysteines. Additionally, zinc is not necessary for PilF ATPase activity, 

whereas our data show that zinc is required for ATPase activity of EpsE. PilF 

requires neither ATP nor zinc-coordinating cysteine residues for hexameric 

complex assembly and hexamerization does not appear to be a prerequisite for 

ATP hydrolysis, perhaps due to its extended N-terminus, which the authors 

suggest may provide additional stability compared to homologues lacking these 

additional residues. As this study focused on an extremophile, our results are more 

likely to be widely applicable to other mesophilic organisms, including important 

pathogens that express T2S and/or T4P systems. 

Zinc frequently plays an important role in protein conformation and 

stabilization, with zinc-coordinating domains most commonly supporting overall or 

domain-specific protein folding and/or stability or participating in interactions with 

DNA, RNA, or proteins (Krishna et al., 2003; Maret & Li, 2009). Zinc may stabilize 

a particular conformation that is important for activity, such as a redox sensor, or 

to position a domain for protein-protein interactions. For example, the chaperone 

Hsp33 acts as a molecular “redox switch,” by remaining inactive in its zinc-

coordinating reduced state and becoming activated upon cellular oxidation, 

resulting in disulfide bonding and dimerization (Jakob et al., 1999; Jakob et al., 

2000; Graumann et al., 2001). SecA, on the other hand, contains a zinc-binding 

domain that stabilizes the position of basic residues involved in SecB interactions. 

(Fekkes et al., 1999; Zhou & Xu, 2003). Similarly, the ATP-dependent chaperone 
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ClpX interacts with the cofactor SspB2 via a hydrophobic patch of residues located 

in a zinc-binding domain (Thibault et al., 2006). 

The work presented here demonstrates that the zinc-coordinating CM 

domain is necessary for the activity and function of EpsE, the motor protein that 

energizes T2S. One lingering question is whether the EpsE CM domain shares any 

functions found in similar zinc-coordinating domains, such as Hsp33 and SecA. 

We have not ruled out the possibility that zinc binding to the CM domain may offer 

a means for bacteria to modulate energy production for T2S in addition to, or as a 

consequence of, providing protein stability. EpsE is unlikely to act as a redox 

switch similar to Hsp33, as removal of zinc causes a conformational change 

resulting in a complete loss of activity. It is feasible that the CM domain is necessary 

for correctly positioning residues involved in protein-protein interactions in a similar 

manner to SecA and ClpX; however, if the loop residues participate in protein-

protein interactions, this interaction is largely insensitive to the amino acid 

substitutions in the EpsE-XcpR CM loop chimera (Figure 2.5). Potentially, 

modulation of the CM domain through CM zinc coordination/abrogation or protein-

protein interaction could affect EpsE activity by altering the positioning of important 

residues in the β-strands that enter and exit the CM domain (Figures 2.1, 2.14). 

Structural analysis indicates that R441 in the strand leaving the CM domain 

contacts the adenyl and ribose moieties of the nucleotide (Figure 2.14B) (Robien 

et al., 2003). On the opposite strand, entering the CM domain, R394 contacts a 

leucine residue in a neighboring subunit in 2 out of the 6 subunits in the elongated 

hexameric structure of ΔN1-EpsE-8aa-Hcp1 (Figure 2.14) (Lu et al., 2013). 
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Changes in the contacts between subunits in the EpsE hexamer might prevent the 

adoption of important transient conformations that are essential for the functioning 

of EpsE in T2S. Repositioning of R394 and R441 in Zn-depleted EpsE variants 

could explain the loss of ATPase activity in vitro and/or T2S function in vivo.  

 

 

 

 

 

 

 

 

 

 

 

 

 



   

49 
 

 

 

Figure 2.14 Close-up view of residues at the base of the CM domain and 
potential interactions with adjacent subunits or nucleotide. A. View along the 
twofold axis of the V. cholerae ΔN1-EpsE-8aa-Hcp1 hexamer with C2 symmetry 
(Lu et al., 2013) (PDB code 4KSR).  The three independent chains are related by 
a twofold axis and are displayed as green (chains A, A’), cyan (B, B’), and magenta 
(C, C’) with CM domains colored red. Arg 394 residues from each subunit are 
displayed as red spheres, and Leu 349 residues are displayed as spheres 
according to the color of the corresponding subunit. B. Arg 394 from chain C is 
shown in proximity to Leu 349 of chain A’. The proximity of Arg 441 to AMPPNP is 
also shown, with an alpha-helix from the EpsE C-terminal domain in purple. 
Distances between possible contacts are indicated by dotted lines and labeled. 
Zinc is superimposed from the structure of monomeric EpsE (Robien et al., 2003) 
(PDB code 1P9W) and is displayed as a blue sphere. 
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The T2S system shares many structural similarities not only to the closely 

related T4P system, but also to the archaeal flagellar system (archaellum) and 

competence systems of Gram-positive bacteria (Korotkov et al., 2012). The 

assembly ATPases supporting each of these systems share many structural 

features, including CM domains; therefore, results of this study should inform 

further research not only on T2S, but also among many different molecular motor 

systems across bacterial and archaeal domains (Planet et al., 2001; Robien et al., 

2003; Korotkov et al., 2012). Knowledge about EpsE structure and function 

relationships may also provide insight into mechanisms of the antagonistic 

functions of the T4P assembly and retraction ATPases.  

 

Experimental Procedures 

Bacterial Strains and Growth Conditions 

Vibrio cholerae TRH7000 (El Tor, thy HgR (ctxA-ctxB)), V. cholerae 3083 (El 

Tor, serotype Ogawa), and Escherichia coli BL21(DE3) were used in this study. V. 

cholerae strains were grown at 37°C in LB broth supplemented with 100 mg/ml 

thymine for TRH7000. Those strains containing plasmids were grown in the 

presence of 200 µg/ml carbenicillin and induced with isopropyl-D-

thiogalactopyranoside (IPTG) as described in the figure legends. 

 

Cloning and Expression 

The EpsE CM domain deletion mutants were constructed using PCR with 

the following primers: ΔCM: 5’-TAAGGTGCGCACCAAGCGCTGAG-3’ and 5’-
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TACCGTGGCCGAACCGGTAT-3’; ΔCMPro: 5’-

CCATACCGTGGCCGAACCGGTAT-3’.  The EpsE ΔCM construct is missing 

residues 396-437, while ΔCMPro replaces those residues with a proline. The epsE 

fragments containing mutations were cloned into pMMB384 (wild-type epsE in 

pMMB67EH) (Sandkvist et al., 1995) by exchange of an MfeI/BamHI fragment to 

create the pMMB EpsE variant plasmids. The pMMB plasmids were then 

introduced to epsE::kan and wild type (WT) V. cholerae strains through 

conjugation. 

The pMMBepsE-xcpR CM chimera plasmid was constructed by first 

amplifying the beginning of epsE and creating a 3’ region of overlap with the 

beginning of the xcpR CM domain (5'-

GAGGGATCCTGAGCAGATGGAAGCCAAGCAATGACCGAA-3' (BamHI) and 5'-

GCGCGGTAGGGCTCCTTGCAATCTGGGCATAAGG-3'.) The xcpR CM fragment 

was amplified from pMMB-xcpR (Turner, 1993) using the primers 5'-

CCTTATGCCCAGATTGCAAGGAGCCCTACCGCGC-3' and 5'-

TGGTTACATTTAGGGCAGCCGCGGGCGCGATGCA-3'. The downstream part 

of epsE was then amplified with a 5’ overlap of the end of the xcpR CM domain 

using the primers 5'-TGCATCGCGCCCGCGGCTGCCCTAAATGTAACCA-3' and 

5'-CTCCTGCAGCAAACGCGGCCATTAGGACTCCTTAGTC-3' (PstI). The three 

amplified fragments were used as a template for the amplification of the entire 

region using the first and last primers listed (to yield the epsE-xcpR CM PCR 

product) and cloned into pMMB67EH using the BamHI and PstI restriction sites 

and introduced into to epsE::kan and WT V. cholerae strains through conjugation. 
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The protein purification expression vector pET21(d)epsE(2-503)-xcpRCM-epsL(1-

253)-his6 was constructed by exchange of a NotI/BsmI fragment containing the CM 

domain from the epsE-xcpR CM PCR product. 

The full-length EpsE-Hcp1 fusion is encoded by the expression vector 

pET21(d)epsE(1-503)-8aa-hcp1-his6, and the truncated ΔN1-EpsE-Hcp1 fusion 

from pET21(d)epsE(100-503)-8aa-hcp1-his6. pET21(d)epsE(100-503)-xcpRCM-

8aa-hcp1-his6 was created by the exchange of a NotI/BsmI fragment from 

pET21(d)epsE(2-503)-xcpRCM-epsL(1-253)-his6. The pMMBepsE-hcp1 and 

epsE-xcpRCM-hcp1 constructs were made by PCR amplification of the region of 

interest from pET21(d)epsE(100-503)-8aa-hcp1-his6 or pET21(d)epsE(100-503)-

xcpRCM-8aa-hcp1-his6, respectively, using the primers 5'-

GAGGGATCCGAAGGAGATATACATGGACTTCTTC-3' (BamHI) and 5'-

GAGCTGCAGATATCAGGCCTGCACGTTCTG-3' (PstI) and cloning into 

pMMB67EH using the BamHI and PstI restriction sites. The plasmids were 

conjugated into epsE::kan and WT V. cholerae as before. 

EpsE point mutations were constructed using the QuikChange Site-

Directed Mutagenesis kit (Stratagene) as directed. The following primers were 

used to construct the cysteine mutations: C400S (5’-

CCTTATGCCCAGATTCCAAAGAGCCTTACGAGGC-3’ and 5’-

GCCTCGTAAGGCTCTTTGGAATCTGGGCATAAGG-3’), C430S (5’-

CGTGCAACGGGCTCCCCTAAATGTAACC-3’ and 5’-

GGTTACATTTAGGGGAGCCCGTTGCACG-3’), C397SC400S (5’-

GGTGCGCACCTTATCCCCAGATTCCAAAGAGCCTTAC-3’ and 5’-
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GTAAGGCTCTTTGGAATCTGGGGATAAGGTGCGCACC-3’), C430SC433S (5’-

CGTGCAACGGGCTCCCCTAAATCTAACCACAAAGG-3’ and 5’-

CCTTTGTGGTTAGATTTAGGGGAGCCCGTTGCACG-3’). 

epsEC400SC430SC433S (C3xS) was constructed using site-directed 

mutagenesis with epsEC430SC433S template DNA and the primers for C400S 

listed above, and epsEC397SC400SC430SC433S (C4xS) was made similarly 

using epsEC397SC400S as a template and the primers for C430SC433S. Regions 

containing mutations were cloned into pMMB384 by exchange of an MfeI/BamHI 

fragment to create the individual pMMB EpsE variant plasmids. Plasmids were 

then introduced to epsE::kan and WT V. cholerae strains through conjugation. 

 

Protease and Lipase Secretion Assays 

Measurements of extracellular protease activity were performed as 

described (Sikora et al., 2007). Briefly, the fluorogenic probe, N-tert-butoxy-

carbonyl-Gln-Ala-Arg-7-amido-4-methylcoumarin (Sigma-Aldrich) was added to 

overnight culture supernatants and 10-minute kinetic protease activity was 

measured using fluorescence at excitation and emission wavelengths 385 nm and 

440 nm, respectively.  

Lipase activity was quantified as described previously by incubating V. 

cholerae overnight culture supernatants with 4-nitrophenyl myristate and 

measuring 4-nitrophenol release as the change in absorbance at 415 nm over a 

30-minute period (Johnson et al., 2015). All assays were performed in triplicate, 
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normalized to the density of the culture at 600 nm, and mean and SEM are 

displayed. 

 

SDS-PAGE and Immunoblotting 

Cell lysates were boiled in SDS sample buffer and analyzed by SDS-PAGE 

using 4-12% Bis-Tris gels (NuPAGE, Invitrogen) and MES or MOPS running 

buffer. Proteins were transferred to nitrocellulose membranes (Protran, GE 

Healthcare) using NuPage transfer buffer (Invitrogen) and probed with either 

1:10,000 α-EpsE antibodies or 1:5000 α-cholera toxin antibodies followed by 

1:20,000 horseradish peroxidase-conjugated goat α-rabbit immunoglobulin G 

(BioRad) or 1:1,000 α-Hcp1 antibodies followed by 1:10,000 goat α-rabbit IgG-

HRP. Blots were developed using Ecl2 (Pierce) and imaged using a Typhoon FLA 

9500 (GE Healthcare). 

 

Protein Purification 

Constructs for purification were introduced into pET21(d)epsE(100-503)-

8aa-hcp1-his6 (ΔN1-EpsE-Hcp1) (Lu et al., 2013) or pET21(d)epsE(1-503)-8aa-

hcp1-his6 (full-EpsE-Hcp1) and expressed in E. coli BL21(DE3) under IPTG-

inducing conditions. Proteins were purified using metal affinity chromatography on 

cobalt resin (Talon, Clontech). Subsequently, size-exclusion chromatography was 

performed using a Superose 6 column (GE Healthcare) as described (Robien et 

al., 2003; Lu et al., 2013) and compared to known protein standards. Gel filtration 
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fractions containing protein peaks were analyzed using SDS-PAGE and visualized 

by staining the gel with Gel Code Blue (Thermo Scientific). 

 

ATPase Activity Assays 

Purified EpsE-Hcp1 and ΔN1-EpsE-Hcp1 fusion proteins were assayed for 

in vitro ATPase activity according to Lu et al., 2013 using BIOMOL Green reagent 

(Enzo Life Sciences) to detect free Pi. 

 

PAR/PCMB Assay 

Zinc release was measured using a modified PAR/PCMB assay (Camberg 

& Sandkvist, 2005; Ilbert et al., 2007). Briefly, zinc was removed from ΔN1-EpsE-

Hcp1 purified protein using a titration of p-chloromercuribenzoic acid (PCMB; 

Sigma) in the presence of the zinc-complexing agent 4-(2-pyridylazo)resorcinol 

(PAR; Sigma). Zinc release was measured at 500 nm and compared to a ZnCl2 

standard curve. Assays were performed in duplicate and SEM is shown. 

 

Native-PAGE 

Proteins were treated with a 4-fold molar excess of PCMB or mock-treated 

for 10 minutes at room temperature and analyzed on a 4-20% Tris-Glycine native 

gel (NuPAGE, Invitrogen) with Tris-Glycine running buffer at 125V for 5 hours on 

ice. Proteins were visualized by staining the gel with Gel Code Blue (Thermo 

Scientific). 
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β-Lactamase activity assay  

Periplasmic contents were isolated by incubating cells from overnight 

cultures with 2,000 U/ml polymyxin B sulfate in PBS on ice for 30 minutes, 

centrifuging at 8,000 rpm for 10 minutes, and isolating the supernatant (periplasmic 

extract) from spheroplasts. β-Lactamase activity was measured in overnight 

culture supernatants and periplasmic extracts as previously described with some 

modifications (Sikora et al., 2007). Nitrocefin (EMD Chemicals) was added to 

supernatants and periplasmic extracts in PBS buffer and the absorbance at 482 

nm was measured over the course of 5 minutes at 37 °C.
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Chapter 3: 

 

Measuring In Vitro ATPase Activity for Enzymatic 

Characterization 
 

Notes:  

A modified version of this chapter is currently in press for publication. 

Rule, C.S., Patrick, M., Sandkvist, M. Journal of Visualized Experiments. 

In press. 

 

Abstract 

Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical 

role in a diverse array of cellular functions. These dynamic proteins can generate 

energy for mechanical work, such as protein trafficking and degradation, solute 

transport, and cellular movements. The protocol described here is a basic assay 

for measuring the in vitro activity of purified ATPases for functional 

characterization. Proteins hydrolyze ATP in a reaction that results in inorganic 

phosphate release, and the amount of phosphate liberated is then quantitated 

using a colorimetric assay. This highly adaptable protocol can be adjusted to 

measure ATPase activity in kinetic or endpoint assays. A representative protocol 

is provided here based on the activity and requirements of EpsE, the AAA+ 

ATPase involved in type II secretion in the bacterium Vibrio cholerae. The amount 
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of purified protein needed to measure activity, length of the assay and the timing 

and number of sampling intervals, buffer and salt composition, temperature, co-

factors, stimulants (if any), etc. may vary from those described here, and thus 

some optimization may be necessary. This protocol provides a basic framework 

for characterizing ATPases and can be performed quickly and easily adjusted as 

necessary. 

 

Introduction 

ATPases are integral enzymes in many processes across all kingdoms of 

life. ATPases act as molecular motors that use the energy of ATP hydrolysis to 

power such diverse reactions as protein trafficking, unfolding, and assembly; 

replication and transcription; cellular metabolism; muscle movement; cell motility; 

and ion pumping (Hanson & Whiteheart, 2005; Baker & Sauer, 2012; Maxson & 

Grinstein, 2014). Some ATPases are transmembrane proteins involved in 

transporting solutes across membranes, others are cytoplasmic and may be 

associated with a biological membrane such as the plasma membrane or those of 

organelles. 

AAA+ ATPases (ATPases associated with various cellular activities) make 

up a large group of ATPases that share some sequence and structural 

conservation. These proteins contain conserved nucleotide binding motifs such as 

Walker-A and -B boxes and form oligomers (generally hexamers) in their active 

state (Hanson & Whiteheart, 2005). Large conformational changes in these 

proteins upon nucleotide binding have been characterized among diverse 
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members of the AAA+ family. EpsE is a AAA+ ATPase and member of the bacterial 

Type II/IV secretion subfamily of NTPases (Planet et al., 2001; Robien et al., 2003; 

Camberg & Sandkvist, 2005). EpsE powers type II secretion (T2S) in Vibrio 

cholerae, the causative agent of cholera. The T2S system is responsible for the 

secretion of a wide variety of proteins, such as the virulence factor cholera toxin 

that causes profuse watery diarrhea when V. cholerae colonizes the human small 

intestine (Sandkvist, 2001).  

Techniques for quantitating in vitro ATPase activity are varied, but 

commonly measure phosphate release using colorimetric, fluorescent, or 

radioactive substrates (Brune et al., 1994; Carter & Karl, 1982; Henkel et al., 1988; 

Harder et al., 1994). We describe a basic method for determining in vitro ATPase 

activity of purified proteins using a colorimetric assay based on a commercially 

available malachite green-containing substrate that measures liberated inorganic 

phosphate (Pi). At low pH, malachite green molybdate forms a complex with Pi and 

the level of complex formation can be measured at 650 nm. This simple and 

sensitive assay may be used to functionally characterize new ATPases and to 

evaluate the roles of potential activators or inhibitors, to determine the importance 

of domains and/or specific residues, or to assess the effect of particular treatments 

on enzymatic activity.  

 

Protocol  

1. Perform ATP hydrolysis reaction with purified protein  

1.1) Prepare stocks of all the necessary reagents for incubation with purified 
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protein.  

1.1.1) Prepare 5x HEPES/NaCl/glycerol (HNG) buffer containing 100mM HEPES 

pH 8.5, 65 mM NaCl, and 5% glycerol (or other assay buffer as appropriate). 

1.1.2) Prepare 100 mM MgCl2 (or other metal, if ATPase is metal-dependent) in 

water.  

1.1.3) Prepare fresh 100 mM ATP in 200mM Tris Base (do not adjust pH further) 

using high purity ATP. Aliquot and store the ATP stock at -20°C for no longer than 

a few weeks, as ATP will break down over time, and refrain from freezing and 

thawing the ATP stock. 

1.1.4) Premix MgCl2 and ATP at a 1:1 ratio just before setting up the ATP 

hydrolysis reaction. 

1.2) Prepare and label 1.5ml tubes for collecting samples at regular intervals 

throughout the reaction. Prepare tubes to collect samples at time 0 and at time 15, 

30, 45, and 60 minutes.  

NOTE: As an alternative, collect samples only at time 0 and the endpoint.  

1.2.1) Add 245 µl 1X HNG buffer to each tube in order to dilute samples collected 

from the ATP hydrolysis reactions 1:50. 

1.3) Prepare a bath of dry ice and ethanol for quickly freezing samples to stop the 

reaction. In a rubber ice bucket or other safe (non-plastic) container, add several 

pieces of dry ice and carefully pour enough 70-100% ethanol to cover the dry ice. 

1.4) Dilute purified protein in 1X HNG buffer, as appropriate (typically 5-10µM), 

and keep on ice. 

1.5) Set up the ATP hydrolysis reactions. 
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1.5.1) In separate 0.5ml tubes for each sample, add the following reagents (in 

order): H2O (up to a final volume of 30 µl), 6 µl 5x HNG or other buffer, 3 µl 100mM 

MgCl2-ATP mixture, and 0.25-5 µM protein.  

1.5.2) Include a buffer-only negative control condition in which no protein is added. 

1.6) Remove 5µl from the reaction at time 0, dilute 1:50 in the prepared 1.5ml tube 

containing 245µl HNG buffer, and immediately freeze the sample in the dry 

ice/ethanol bath. 

1.7) Incubate reactions at 37°C to allow ATP hydrolysis to occur for 1 hour. At each 

interval (15, 30, 45, and 60 minutes), remove 5 µl aliquots from the reaction and 

add to labeled sample tubes containing HNG buffer as in step 1.6. 

1.8) At the end of the ATP hydrolysis reaction, move diluted samples to a -80°C 

freezer for storage. To ensure all samples are completely frozen, wait at least 10 

minutes before proceeding. 

 

2. Incubate samples containing free Pi with detection reagent 

2.1) Thaw diluted samples containing ATP hydrolysis reaction aliquots at each time 

point (obtained from steps 1.6 and 1.7) at room temperature. 

2.2) Set up a 96-well plate containing samples and phosphate standards. 

2.2.1) In a 0.5 ml tube, dilute the phosphate standard (provided with Pi detection 

reagent) from 800 µM to 40 µM by adding 5.5 µl of the 800 µM standard to 104.5 

µl HNG buffer. Mix well, and add 100 µl of this 40 µM Pi standard to well A1 of a 

96-well plate. 

2.2.2) Add 50 µl HNG buffer to wells B1-H1 for 1:1 serial dilutions of the Pi 
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standard. 

2.2.3) Remove 50 µl of 40 µM Pi from well A1 and add to 50 µl assay buffer in well 

A2, mix, and remove 50 µl from well A2 and add to well A3, continuing dilutions 

through well G1. Discard 50 µl from well G1 after mixing to ensure each well has 

the same volume. Well H1 should contain only buffer to create a Pi standard from 

40-0 µM. 

NOTE: If an additional factor (such as an inhibitor) has been added to the 

samples, create a standard curve containing that factor to control for 

changes in phosphate release or absorbance under those conditions. 

2.2.4) Add 50 µl of each sample in duplicate to the plate. Add samples from the 

same time point in columns vertically (sample 1 time 0 = A2, A3; sample 2 time 0 

= B2, B3) and different time points horizontally. This allows for up to 8 samples 

and 5 time points per plate. 

2.3) Use a sterile pipet to remove enough malachite green/molybdate Pi detection 

reagent to add 100 µl to each of the wells containing samples and standards 

(reagent needed (ml) = 0.1 x number of samples and standards) and add to a dish 

for easy pipetting using a multichannel pipet. Do not pour the detection reagent 

directly into the dish, as Pi contamination is likely to occur. 

2.4) Using a multichannel pipet, add 100µl of the Pi detection reagent to each well 

and mix by carefully pipetting up and down a consistent number of times without 

introducing bubbles, preferably in order from the last time points to the first time 

points. 

2.5) Incubate the plate for 25 minutes at room temperature, or according to the 
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manufacturer’s directions. 

 

3. Quantitate results using a microplate reader 

3.1) Read the absorbance of the samples at 650 nm using an absorbance 

microplate reader. 

3.2) Make a Pi standard curve. Using a graphing software, graph the absorbance 

values for the Pi standard samples versus concentration in order to find an 

equation used to solve for the amount of phosphate in each sample. 

3.3) Calculate the ATPase activity for each sample by calibrating with the 

phosphate standard.  Phosphate released = (OD650 – Y intercept)/slope. 

3.3.1) Average the total Pi from duplicates of each sample. Subtract the buffer-

only control’s absorbance reading from this number. Multiply this by the dilution 

factor (50 in our example).  

3.3.2) Determine the nmol Pi released per µmol protein. Graphing these values for 

each time point in a kinetic assay should yield linear fits of at least R=0.99 (Fig. 1); 

If not, the assay may be adjusted with more or less protein or a longer or shorter 

incubation time.  

3.4) Represent the results as nmol Pi/µmol protein/min (Fig. 2, 3), or as nmol Pi/µg 

protein/min if desired. 

 

Representative Results 

The in vitro activity of the T2S ATPase EpsE can be stimulated by 

copurification of EpsE with the cytoplasmic domain of EpsL (EpsE-cytoEpsL) and 



   

64 
 

addition of the acidic phospholipid cardiolipin (Camberg et al., 2007). It is also 

possible to determine the role of particular EpsE residues in ATP hydrolysis by 

comparing activity of wild type (WT) to variant forms of the protein using this assay. 

Here, the effect of substituting two lysine residues in the EpsE zinc-binding domain 

is measured by comparing ATPase activity of purified WT EpsE-cytoEpsL to the 

EpsE K417AK419A-cytoEpsL variant. In Figure 3.1, phosphate release proceeds 

linearly over the course of a 1h kinetic assay, a requirement for accurate 

quantification of kinetic ATPase activity. Figure 3.2 shows data from the same 

purified protein samples as Figure 3.1 that were assayed three times in duplicate 

and quantitated in terms of the mean rate of phosphate release. These data show 

that K417 and K419 appear to be important for EpsE ATPase activity. However, 

comparison of unstimulated (no cardiolipin) ATPase activity rates (Figure 3.3) 

shows that K417 and K419 do not contribute to EpsE’s basal activity but rather to 

the ability of the protein to be stimulated by cardiolipin. The positively-charged 

lysines in the EpsE zinc-binding domain may directly interact with the negatively-

charged phospholipids, thus contributing to the phospholipid-mediated stimulation 

of EpsE ATPase activity. 
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Figure 3.1 Phosphate is released linearly in a kinetic ATPase assay. One-hour 

kinetic cardiolipin-stimulated ATPase assay comparing phosphate release of 

0.5µM WT EpsE-cytoEpsL to EpsE K417AK419A-cytoEpsL with bovine serum 

albumin (BSA) assayed as a negative control. Data [amount of released phosphate 

(y-axis) versus time (x-axis)] were plotted and subjected to linear regression 

analysis. The slope represents the rate of ATP hydrolysis. A representative graph 

with linear regression equations for the three proteins is shown. 
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Figure 3.2 Double lysine mutations in the EpsE zinc-binding domain reduce 

stimulated ATPase activity. Results of the 1-hour kinetic cardiolipin-stimulated 

ATPase assay with the same proteins and conditions as in Figure 3.1. Assays were 

performed three separate times in technical duplicate and the rate of ATP 

hydrolysis was calculated as nmol phosphate generated per minute per µM protein 

using linear regression equations. The mean results with standard error are 

displayed. 
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Figure 3.3 Double lysine mutations in the EpsE zinc-binding domain do not 

interfere with unstimulated ATPase activity. Overnight (16h) endpoint 

unstimulated (no cardiolipin) ATPase assay comparing the activity of 5µM WT 

EpsE-cytoEpsL to EpsE K417AK419A-cytoEpsL with BSA as a negative control. 

Assays were performed three separate times in technical duplicate and mean 

results with standard error are shown. The basal level of unstimulated EpsE 

ATPase activity assayed over a 16h period is ~1000-fold lower than 1h kinetic 

cardiolipin-stimulated activity. 

 

Discussion 

This is a general protocol for measuring in vitro ATPase activity of purified 

proteins for biochemical characterization. This method is easily optimized; for 

example, adjusting the amount of protein, buffer and salt compositions, 

temperature, and varying the assay length and intervals (including increasing the 

total number of intervals) can improve activity quantitation. Commercially available 

malachite green-based reagents are highly sensitive, and can detect small 

amounts of free phosphate (~50pmol in 100µL). Because of this assay’s sensitivity, 
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it is crucial to use disposable plastic ware, ultrapure water, buffers, and reagents 

devoid of contaminating phosphate. After purifying proteins, size exclusion or ion 

exchange chromatography is recommended to improve protein purity and remove 

contaminants. 

For proteins displaying weak in vitro ATPase activity, stimulants may be 

added to the reaction to enhance enzymatic activity. Many factors that stimulate 

ATPase activity have been characterized. For example, cardiolipin and other 

membrane phospholipids, client proteins of chaperones such as Hsp90, and other 

proteins involved in supporting particular conformations or environments in which 

ATPases function (McLaughlin et al., 2002; Shiue et al., 2006; Ghosh et al., 2011). 

Our laboratory first characterized EpsE by purifying monomers with weak ATPase 

activity compared to homologous ATPases (Camberg & Sandkvist, 2005). We later 

discovered that when EpsE was copurified with the cytoplasmic domain of EpsL, 

a transmembrane protein and binding partner of EpsE in the T2S system, addition 

of acidic phospholipids such as cardiolipin to the reaction mixture greatly increased 

the ATPase activity of EpsE (Camberg et al., 2007). This likely mimics the 

conditions EpsE experiences at the cytoplasmic membrane that may promote 

oligomerization.  

Many techniques have been used to quantify in vitro ATPase activity of 

purified proteins. Radioactive γ-32P has been frequently and successfully 

implemented to quantify ATP hydrolysis (Shiue et al., 2006; Savvides et al., 2003), 

however, safety is a concern and requires approval for the laboratory use of 

radioactivity. While highly sensitive, the short half-life of γ-32P is also a 
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disadvantage. Other commercial phosphate detection methods are available, such 

as those that rely on the formation of a fluorescent product. Some of these methods 

are also very sensitive, but frequently require the addition of other enzymes to the 

reaction, resulting in reagents that are less stable over time. Additionally, kits are 

available that detect ADP released during ATP hydrolysis using a stable 

luminescence-based reagent, but these may be less ideal for ATPases with low 

levels of activity (Sanghera et al., 2009). 

The assay described here consists of only one phosphate release 

measurement step, is highly sensitive, and can typically be performed within a few 

hours. It is also possible to prepare a malachite green-containing substrate to avoid 

purchasing a kit from a commercial vendor (Camberg & Sandkvist, 2005). One 

consideration before undertaking this assay is that the step between adding the 

phosphate detection reagent and taking absorbance readings is relatively time-

sensitive and must be between 20-30 minutes. This basic protocol can be used to 

determine the role of stimulants (as described), antagonists, subunits, domains, 

and specific residues in ATPase activity (Ghosh et al., 2011; Savvides et al., 2003; 

Sherman et al., 2014; Zhang et al., 2015). This assay can also be extended to 

measure the activity of phosphatases or other enzymes that release phosphate 

during catalysis. Additionally, this method can be applied to high-throughput 

screening for ATPase inhibitors (Rowlands et al., 2004). 
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Chapter 4: 
 

Suppressor Mutations in VesC Facilitate Genetic 

Inactivation of Type II Secretion in Vibrio cholerae 
 

Abstract 

The Type II Secretion (T2S) system is a conserved bacterial protein 

transport pathway responsible for the secretion of a range of virulence factors by 

many pathogens including Vibrio cholerae, the causative agent of cholera. We 

previously observed that disruption of the eps genes encoding T2S apparatus 

components in V. cholerae results in loss of secretion and several changes in cell 

envelope function, such as loss of outer membrane proteins, extracellular leakage 

of periplasmic contents, and upregulation of the RpoE extra-cytoplasmic stress 

response pathway resulting in growth defects. Several high-throughput genomic 

analyses have listed the eps genes among V. cholerae essential genes, although 

we and others have successfully constructed inactivating eps mutations. To 

investigate whether suppressor mutations facilitate the construction of eps 

mutants, we sequenced the genomes of three independently constructed V. 

cholerae T2S mutants with deletions in the epsG, epsL and epsM genes and 

identified at least two secondary mutations in each. Interestingly, two of the three 

eps mutants contain distinct mutations in the gene coding for the T2-secreted 

substrate VesC that abolish its activity. One of these mutants also carries a 
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mutation in a lipopolysaccharide (LPS) biosynthesis gene, while the other contains 

a mutation in a gene that may encode a periplasmic protein or a T2-secreted 

substrate. One possible mechanism by which V. cholerae eps mutagenesis is 

accomplished is through selection for VesC-inactivating mutations, which may 

contribute to cell envelope integrity, thus establishing permissive conditions for the 

disruption of the Eps system. 

 

Introduction 

Vibrio cholerae is a Gram-negative bacterial pathogen and the causative 

agent of the disease cholera. Upon colonization of the human small intestine, V. 

cholerae infection causes profuse diarrhea, which can lead to rapid dehydration 

without oral rehydration therapy (Sack et al., 2004; Harris et al., 2012). One of the 

major V. cholerae virulence factors is cholera toxin, a secreted AB5 toxin that 

causes chloride ion imbalances in intestinal epithelial cells, resulting in the 

massive, watery, mucoid diarrhea that characterizes cholera, known as rice-water 

stool (Kaper et al., 1995). Cholera toxin is secreted to the extracellular milieu by 

the type II secretion (T2S) system, a widespread protein secretion pathway found 

in a variety of human and plant pathogens (Sandkvist et al., 1997; Sandkvist, 2001; 

Cianciotto, 2005).  

The V. cholerae T2S apparatus is composed of 12 Eps (extracellular protein 

secretion) proteins, EpsC through M and PilD, which collectively span the entire 

cell envelope (Overbye et al., 1993; Sandkvist et al., 1997; Marsh & Taylor, 1998; 

Fullner & Mekalanos, 1999). Type II secreted proteins first cross the inner 
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membrane using the Sec or Tat machinery, and then transit the outer membrane 

via the T2S apparatus (Pugsley, 1993; Voulhoux et al., 2001). The T2S system in 

V. cholerae is responsible for the secretion of cholera toxin and many hydrolytic 

enzymes, which contribute to both pathogenesis in the human host and survival of 

the bacteria in the aquatic environment as a disease reservoir (Sandkvist, 2001; 

Sikora, 2013; Kirn et al., 2005; Overbye et al., 1993; Connell et al., 1998; Davis et 

al., 2000; Sikora et al., 2011; Johnson et al., 2014).  

At least 20 substrates of the T2S system have been identified in V. cholerae 

to date, including cholera toxin, biofilm matrix proteins, chitin-binding and –

degrading proteins, lipases, hemagglutinin/protease (HAP), and other proteases 

(Sikora et al., 2011; Kirn et al., 2005; Connell et al., 1998, Overbye et al., 1993; 

Davis et al., 2000). Three homologous serine proteases, VesA, VesB, and VesC, 

were identified in the V. cholerae secretome, and VesA was shown to be involved 

with processing of cholera toxin (Sikora et al., 2011). Recent characterization of 

VesB revealed a trypsin-like serine protease with an N-terminal protease domain 

and a C-terminal Ig-fold followed by a Gly-Gly-CTERM extension (Gadwal et al., 

2014). These three proteases may play a role in pathogenesis, since VesB can be 

detected in the stool of cholera patients, VesA and VesB were identified in the 

cecal fluid of infected rabbits, and injection of purified VesC caused fluid 

accumulation and damage in a rabbit ileal loop model of infection (LaRocque et 

al., 2008; Hatzios et al., 2016; Syngkon et al., 2010). However, a ΔvesABC strain 

was still able to robustly colonize the infant mouse intestine (Sikora et al., 2011). 
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Inactivation of the T2S system in V. cholerae results in a reduced growth 

rate in rich media as well as cell envelope perturbations including loss of 

membrane integrity, reduced levels of outer membrane proteins including OmpS, 

OmpT, OmpU, OmpV, and OmpW, and induction of RpoE, an alternative sigma 

factor that regulates the extracytoplasmic stress response (Sandkvist et al., 1997; 

Sikora et al., 2007; Sikora et al., 2009). Similar growth defects have also been 

reported for pilD mutants of V. cholerae, which lack the prepilin peptidase shared 

by the T2S and one of the type IV pilus systems (Fullner & Mekalanos, 1999). 

Additional reports of analogous phenotypes among T2S mutants have been 

observed in Aeromonas hydrophila, Vibrio vulnificus, and Vibrio sp. strain 60 (Jiang 

& Howard, 1992; Howard et al., 1993; Hwang et al., 2011; Ichige et al., 1988). 

Legionella pneumophila T2S mutants grow more slowly at low temperatures, 

although the growth defect may be partially restored by a secreted factor, since 

plating T2S mutants next to WT L. pneumophila stimulated growth (Söderberg et 

al., 2004). In most organisms in which the T2S system has been genetically 

inactivated, however, neither outer membrane alterations nor reduced growth 

phenotypes have been reported (Baldi et al., 2012; Ball et al., 2002; Johnson et 

al., 2016).  

Several high-throughput genomic analyses have indicated that the T2S 

genes are essential in V. cholerae (Judson & Mekalanos, 2000; Cameron et al., 

2008; Chao et al., 2013; Kamp et al., 2013). Using a positive approach to identify 

genes required for V. cholerae strain N16961 growth in rich media, Judson and 

Mekalanos (2000) categorized epsD and epsG as essential (Judson & Mekalanos, 
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2000). Several eps genes and pilD were also identified as putatively essential V. 

cholerae genes by both Cameron et al and Kamp et al, as transposon insertions 

in these genes were not identified during genome-saturating transposon screens, 

presumably because bacteria containing transposon insertions in these genes 

cannot be recovered (Cameron et al., 2008; Kamp et al., 2013). However, 

transposon insertions in eps genes were reported in a recent Tn-seq screen (Fu 

et al., 2013). Chao et al (2013) categorized V. cholerae genes as essential, domain 

essential (containing both essential and non-essential coding regions), or sick. All 

of the genes required for T2S fell into one of these three categories except epsI, 

which had too few insertions (≤7) to accurately categorize (Chao et al., 2013). 

Combined with the observations that eps mutations result in outer membrane 

perturbations and reduced growth rates in rich media, these studies strongly 

indicate that the V. cholerae T2S genes are essential and that mutations in these 

genes can only be isolated under particular conditions (Sandkvist et al., 1997; 

Sikora et al., 2007; Sikora et al., 2009; Fullner and Mekalanos, 1999; Judson & 

Mekalanos, 2000; Cameron et al., 2008; Chao et al., 2013; Kamp et al., 2013; Fu 

et al., 2013). 

Recently, the rpoE gene has been characterized as an essential gene in V. 

cholerae. Because of the ability to generate insertional rpoE mutations in V. 

cholerae, initial studies did not imply the gene’s essentiality; however, these 

mutants displayed a range of different phenotypes and no rpoE deletion mutations 

could be constructed in V. cholerae (Davis & Waldor, 2009). Davis & Waldor (2009) 

used genome sequencing techniques to determine that V. cholerae rpoE insertion 
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mutants contained additional mutations, many of which reduced the production of 

OmpU. Their results indicated that rpoE mutations in V. cholerae may only be 

constructed after accumulation of additional mutations that suppress the rpoE 

mutant phenotype (Davis & Waldor, 2009). Whole-genome sequencing analysis 

has also been utilized to identify and characterize suppressor mutations of relA 

deletion mutants in B. subtilis and gacA deletion mutations in V. fischeri (Srivatsan 

et al., 2008; Foxall et al., 2015). 

Similarly, we hypothesized that V. cholerae T2S mutants contain secondary 

mutations that may help alleviate loss of membrane integrity and cell envelope 

stress. Using high-throughput genome sequencing, we identified additional 

mutations in three different T2S mutants. We found that two out of the three 

sequenced T2S mutants acquired distinct mutations in the same gene, suggesting 

a selective pressure to alleviate the cell envelope stress induced by T2S mutations.  

 

Results 

Inactivation of the type II secretion system in Vibrio cholerae reduces growth rates  

We have previously reported that a V. cholerae Δeps strain lacking all eps 

genes exhibits a growth rate reduction in rich media compared to the isogenic WT 

strain, suggesting that loss of T2S results in a slower growth phenotype (Sikora et 

al., 2007). Interestingly, strains containing inactivating mutations in different eps 

genes show some variation in growth rate, although T2S mutants exhibit consistent 

reductions compared to T2S-competent WT isolates (Figure 4.1A). Although 

inactivation of any of the eps genes abolishes T2S (Figure 4.1B), the slight 
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differences in growth phenotypes of different V. cholerae eps mutants is consistent 

with the possibility that each mutant has acquired distinct suppressor mutations 

(Figure 4.1A; Sikora et al., 2007). Thus, comparing the growth rate of V. cholerae 

lacking T2S to isogenic WT strains may be complicated by the accumulation of 

different secondary mutations that may mask growth phenotypes among T2S 

mutants.  
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Figure 4.1 Vibrio cholerae eps mutants display reduced growth rates. A. 
Stationary phase cultures of V. cholerae were back-diluted to an OD600 of 0.05 and 
inoculated into microtiter plates in duplicate. OD600 was measured using a 
Bioscreen Growth Curve Analyzer every 15 minutes for 20 hours. Experiments 
were repeated in triplicate and means are displayed. B. Complementation of eps 
genes in Vibrio cholerae T2S mutants restores extracellular protease activity. 
Protease activity was measured in overnight culture supernatants using a 
fluorogenic probe as described in Experimental Procedures. Experiments were 
performed in triplicate with means and SEM shown. 
 



   

78 
 

In order to investigate directly whether T2S gene expression affects growth 

in V. cholerae, we took advantage of a previously constructed strain in which the 

native eps promoter was replaced with an arabinose-inducible promoter 

(PBAD::eps) (Sikora et al., 2007). Using this inducible construct, we analyzed 

differences between V. cholerae TRH7000 PBAD::eps and the isogenic WT strain 

in the presence or absence of arabinose. As shown in Figure 4.2A, V. cholerae 

PBAD::eps exhibits a growth defect when cultured in the absence of arabinose, 

which is partially restored in the presence of 0.01% arabinose. To investigate 

whether inactivation of T2S affects in vitro survival of V. cholerae, we grew 

overnight cultures of WT and PBAD::eps in the presence of arabinose, washed the 

cells, and plated serial dilutions of each strain on agar plates with and without 

arabinose. No major differences in colony forming units (cfu) counts were observed 

between the plates with and without arabinose, though the PBAD::eps strain showed 

a marked reduction in colony size on agar plates lacking arabinose (Table 4.1, 

Figure 4.2B). This suggests that inactivation of eps genes negatively impacts 

growth, which may only be essential in V. cholerae under particular conditions. 

However, leaky expression from the arabinose-inducible promoter may not render 

the T2S system completely inactive, and some T2S complexes may be present in 

these cells due to overnight growth in arabinose-containing media prior to plating.  
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Figure 4.2 Interfering with V. cholerae eps gene expression results in growth 
defects and a small colony morphology. A. Overnight stationary phase cultures 
of V. cholerae PBAD::eps and the isogenic WT strain were back-diluted 1:100 into 
media containing thymine or thymine + 0.01% arabinose and added to the wells of 
microtiter plates in duplicate. OD600 was measured using a Bioscreen Growth 
Curve Analyzer every 15 minutes for 20 hours. Experiments were repeated in 
triplicate and means are displayed.  B. TRH7000 PBAD::eps and the isogenic WT 
were streaked onto plates containing thymine and thymine + 0.01% arabinose from 
frozen stocks to compare colony morphology. 
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Table 4.1 Interfering with V. cholerae eps gene expression does not impact 
in vitro survival  

 

 

 

Identification of secondary mutations in V. cholerae T2S mutants 

We hypothesized that, similar to rpoE, the eps genes may be inactivated 

only under particular conditions, and that the process of constructing eps mutations 

selects for secondary mutations that suppress some of the phenotypes observed 

in these mutants, such as growth defects and outer membrane leakiness. Thus, 

we sought to identify additional mutations among V. cholerae T2S mutants using 

high-throughput genome sequencing. Using Illumina Hi-Seq technology, we 

sequenced the genomes of the V. cholerae El Tor strain TRH7000, a ctxAB::HgR 

derivative of N16961, and the isogenic ΔepsG, ΔepsL, and ΔepsM mutants (Figure 

4.3). In order to identify genetic variants [including single nucleotide 

polymorphisms (SNPs) and structural variants (SVs)] between the T2S mutants 

and WT V. cholerae, we used reference-guided alignment using SeqMan software 

(Lasergene) with the sequenced strain N16961 as a template. We then subtracted 

any variants found between TRH7000 WT and N16961 in order to establish a list 

of differences between the WT strain and each sequenced T2S mutant, ΔepsG, 

ΔepsL, and ΔepsM. We went on to confirm the presence of secondary mutations 

in the ΔepsG and ΔepsL strains by PCR amplification of genomic DNA followed by 
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Sanger sequencing. The secondary mutations in the ΔepsM strain were confirmed 

only by bioinformatic analysis, with calls limited to variants present in >75% of 

reads and not located in regions of low read density (Table 4.2). 

 

 

Figure 4.3 Overview of the workflow for identifying secondary mutations. 
Paired-end libraries were prepared from genomic DNA isolated from TRH7000 eps 
mutants and the isogenic WT strain, and sequencing was performed using an 
Illumina HiSeq 2000 instrument (depicted). Data analysis was performed using 
SeqMan NGen and SeqMan Pro software (Lasergene). 
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Table 4.2 Secondary mutations identified in V. cholerae eps mutants 

 

 

Using high-throughput sequencing, two secondary mutations were 

identified in two of the V. cholerae T2S mutants, ΔepsG and ΔepsL, and five 

additional mutations were identified in the ΔepsM mutant, as tabulated in Table 

4.2. Interestingly, the ΔepsG and ΔepsL mutants have acquired distinct mutations 

in the vesC gene (VC1649), which encodes a T2-secreted protease (Syngkon et 

al., 2010; Sikora et al., 2011). The ΔepsG mutant contains a 7-bp insertion (frame-

shift mutation) at position 1467 (residue 491) of vesC resulting in a premature stop 

codon at amino acid (aa) 492 of this 548-aa protein (491fs). The ΔepsL mutant 

harbors a point mutation altering residue 279 from a glutamine to a proline 
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(Q279P). In both ΔepsG and ΔepsL mutants, one additional gene contains a 

mutation besides vesC, and these are unique between the two strains. Specifically, 

the ΔepsG mutant contains a mutation in rfbV (VC0259), a gene required for LPS 

biogenesis (Fallarino et al., 1997), and the ΔepsL strain contains a mutation in a 

hypothetical gene located on the second chromosome (VCA0254). The ΔepsM 

mutant contains five secondary mutations in metabolic genes, a hypothetical gene, 

a gene (rpsA) encoding a ribosomal protein, and one located in a noncoding region 

of the genome (Table 4.2). We chose to follow up with the secondary mutations in 

the ΔepsG and ΔepsL strains for further characterization because they both 

contained independent mutations in the same gene, indicating one possible 

conserved mechanism for suppressor mutations that may facilitate inactivation of 

the T2S genes in V. cholerae. 

 

Secondary mutations in vesC abolish protease activity 

The identification of secondary mutations in the vesC gene among T2S 

mutants was particularly intriguing, as VesC is one of three homologous serine 

proteases, along with VesA and VesB, which have been identified as part of the V. 

cholerae T2 secretome (Sikora et al., 2011). We routinely measure serine protease 

activity towards the substrate N-tert-butoxy-carbonyl-Gln-Ala-Arg-7-amido-4-

methylcoumarin as a readout for T2S in our laboratory, to which VesA, B, and C 

all contribute to various degrees (Sandkvist et al., 1997; Camberg et al., 2007; 

Sikora et al., 2007; Sikora et al., 2011). While VesC in culture supernatants from 

WT V. cholerae contributes to only 10-20% of the overall protease activity, 
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overexpression of vesC in the triple protease mutant, ΔvesABC, of V. cholerae 

N16961 results in high and reproducible activity (Sikora et al., 2011). We thus used 

this protease assay as a way of measuring VesC’s activity in order to understand 

the mechanism by which vesC mutations may contribute to suppression of eps 

mutant phenotypes. 

In order to test whether the secondary mutations in vesC harbored by 

ΔepsG and ΔepsL mutants inactivate VesC, we cloned and expressed these 

genes in the ΔvesABC mutant. The protease activity in the culture supernatants 

was determined and compared to supernatants from ΔvesABC expressing genes 

for either WT VesC or a catalytically inactive version, VesC S225A. Neither VesC 

Q279P nor VesC 491fs were able to restore extracellular protease activity in the 

ΔvesABC mutant, indicating that these secondary mutations abolish VesC activity 

(Figure 4.4). Alternatively, the mutations may cause misfolding and/or degradation 

of VesC. 
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Figure 4.4 Suppressor mutations inactivate VesC. Protease activity was 
measured in log phase culture supernatants of N16961 WT containing an empty 
vector as well as the isogenic ΔvesABC strain containing empty vector or plasmids 
that code for WT VesC, VesC-Q279P, VVesC-491fs, or VesC-S225A.  
 

 

To confirm that the lack of protease activity in the culture supernatants of 

the ΔepsG and ΔepsL mutants is due to loss of protease secretion and not simply 

a consequence of the secondary mutations in vesC, we set up two experiments. 

First, we verified that extracellular protease activity (primarily contributed by VesB) 

was restored following complementation by plasmid-encoded EpsG and EpsL, 

respectively. In agreement with previously published results, complementation of 

the ΔepsG and ΔepsL mutants resulted in extracellular protease activity similar to 

that of WT supernatants (Figure 4.1B; Gray et al., 2011). Second, WT vesC was 

overexpressed in WT TRH7000 and the isogenic ΔepsG and ΔepsL mutants. 
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Overexpression of vesC results in an increase in protease activity in WT TRH7000 

supernatant, but not in the culture supernatants of the ΔepsG and ΔepsL mutants 

(Figure 4.5). These results are consistent with previously published proteomic 

analyses indicating that VesC is a T2S substrate (Sikora et al., 2011).  

 

 

Figure 4.5 VesC expression increases extracellular protease activity in WT 
but not eps mutants. Protease activity was measured in culture supernatants 
from TRH7000 WT, ΔepsG, and ΔepsL mutants and the same strains 
overexpressing the vesC gene from a plasmid. 
 

 

T2S mutants display altered LPS profiles 

Manning and colleagues have previously shown that RfbV supports the 

synthesis of LPS O-antigen, as insertional inactivation of rfbV results in loss of the 

O-antigen lipid A core with an simultaneous increase in the lipid A core as 

visualized by SDS-PAGE and silver staining (Fallarino et al., 1997). Since one of 

the secondary mutations we identified in the ΔepsG mutant is located in rfbV, we 
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characterized the LPS profile of this strain by subjecting cells and culture 

supernatants to proteinase K treatment followed by SDS-PAGE and silver staining. 

We analyzed both cell and supernatant fractions, as OMVs released by V. cholerae 

contain large amounts of LPS (Kondo et al., 1993; Chatterjee & Das, 1967; 

Beveridge, 1999; Kulp & Kuehn, 2010). As shown in Figure 4.6, LPS assembly is 

defective in the ΔepsG mutant; the intact O-antigen lipid A core is absent and a 

faster-migrating lipid A core is accumulating. However, neither expression of EpsG 

nor RfbV could restore the production of intact LPS (Figure 4.6). Although EpsG 

complementation can restore T2S, this result suggests that some aspects of the 

outer membrane damage that accompanies construction of eps mutations is 

irreversible. 
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Figure 4.6 LPS biogenesis defects in ΔepsG cannot be complemented. Cells 
(left) and supernatants (right) from overnight cultures of TRH7000 WT and the 
ΔepsG mutant containing empty vector, ΔepsG pEpsG, and ΔepsG pRfbV were 
treated with proteinase K and analyzed using SDS-PAGE and silver staining. Fully 
assembled LPS is designated with a black arrow, and faster-migrating lipid A core 
with a gray arrow.  
 

 

Discussion 

This study provides a possible mechanism to parse between previous 

reports that the T2S (eps) genes are likely essential in V. cholerae, which has 

previously been suggested in several genome-wide mutational analyses of V. 

cholerae (Judson & Mekalanos, 2000; Cameron et al., 2008; Chao et al., 2013; 

Kamp et al., 2013) and the fact that we and others have successfully constructed 

mutations in each of the genes required for T2S. Because we have observed slight 

growth variations between different mutants (Figure 4.1) and occasional larger 

colony variants in our T2S mutant populations after streaking from frozen stocks 
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(Figure 4.2B), we hypothesized that V. cholerae T2S mutants have acquired 

secondary mutations that suppress some of the cell envelope defects we have 

characterized and allow for the construction of T2S mutations (Sikora et al., 2007). 

Indeed, we confirmed the presence of at least two secondary mutations in each of 

the three V. cholerae T2S mutants we sequenced. Two of the three eps mutants 

acquired distinct mutations in the same gene, VC1649, which encodes the T2-

secreted serine protease VesC. These mutations both inactivate VesC, although 

one is a point mutation in the middle of the protein and the other causes a 

frameshift near the C-terminus (Table 4.2). Alternatively, the mutations may affect 

folding and/or promote degradation of VesC. This suggests that one method by 

which eps mutations can be generated in V. cholerae is to inactivate one of its 

secreted substrates, which may otherwise accumulate in the periplasm and cause 

damage to its cell envelope. The two sequenced V. cholerae T2S mutants with 

vesC mutations, ΔepsG and ΔepsL, also had one additional unique mutation in an 

LPS biosynthesis gene and a hypothetical gene, respectively. It is therefore 

feasible that multiple mutations must be acquired by V. cholerae in order to create 

conditions under which Eps inactivation is possible. 

Over 20 proteins are secreted by the T2S system, yet we identified 

secondary mutations in the same gene, vesC, in two of the three sequenced eps 

mutants. Perhaps sequencing of additional eps mutants will reveal secondary 

mutations in genes encoding different T2S substrates, but the observation of two 

distinct mutations in the vesC gene is indicative of a conserved mechanism for 

putative eps mutant suppression. One feasible model of this mechanism is that 



   

90 
 

VesC-inactivating mutations in T2S mutants decrease proteolysis in the cell 

envelope that contributes to the outer membrane leakiness and growth defects, 

creating a permissive condition for acquisition of mutations in eps genes. VesC 

accumulation in the periplasm may lead to nonspecific proteolysis in the cell 

envelope, leading to membrane damage and leakiness as well as RpoE induction 

(Sikora et al., 2007). Alternatively, the sheer amount of VesC and other T2S 

substrates that accumulate upon T2S inactivation may lead to cell envelope stress. 

The identified mutations in VesC may thus result in misfolding and protein 

degradation that alleviates some cellular stress. In fact, proteomic analysis of the 

V. cholerae T2S secretome showed that VesC is the most abundant T2S substrate 

when grown in LB at 37°C (Sikora et al., 2011; Johnson et al., unpublished).  

To better understand how the Q279P and 491fs mutations might affect 

VesC, we aligned the amino acid sequence of VesC with the homologues VesB, 

whose structure has been determined, and VesA (Figure 4.7). Both VesC and 

VesB consist of an N-terminal protease domain and a C-terminal non-protease 

domain, while VesA lacks the non-protease domain (Gadwal et al., 2014; Figure 

4.7). The VesC non-protease domain consists of an Ig-fold domain, similar to 

VesB, and an additional ~130 residue extension of unknown function. The 

frameshift mutation in the ΔepsG mutant introduces an early stop codon that 

results in removal of the C-terminal 56 residues, truncating the protein prior to the 

Gly-Gly-CTERM domain (Gadwal et al., 2014; Figure 4.7, red arrow). Although the 

role of the Gly-Gly-CTERM domain is still unknown, the region’s conservation 

suggests an important function (Haft & Varghese, 2011; Gadwal et al., 2014). 
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Additionally, we have observed that truncation of the last 30 residues of VesB 

results in an unstable protein with reduced activity (Gadwal et al., in review). The 

vesC point mutation identified in the ΔepsL mutant results in a Q279P substitution 

at the junction between the protease and non-protease domains (Figure 4.7; red 

box). Structural analysis indicates that the analogous glutamine residue in VesB 

likely forms part of an interface with residues in the protease domain (Gadwal et 

al., 2014). Since the side chain of proline is markedly different from that of 

glutamine, the Q279P mutation may modify this putative interaction and prevent 

activation or proper folding of VesC. Attempts to produce secreted VesB without 

its non-protease domain have been unsuccessful, supporting the suggestion that 

the non-protease domain plays an important role in protein stabilization and/or 

activation in VesB and possibly also VesC (Gadwal et al., 2014). 
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Figure 4.7 Alignment of VesC, VesB, and VesA. The signal peptides are 
highlighted in red, with the activation site in green and the catalytic triad residues 
in yellow. The non-protease domains of VesC and VesB are colored gray, blue, 
and pink with the membrane-spanning helix in blue and the basic tail in pink. 
Asterisks indicate sequence identity, and colons and periods indicate high and low 
levels of residue homology, respectively. The locations of the secondary mutations 
are labeled as such: Q279 is boxed in red, and the position of the 491fs is marked 
with a red arrow. 
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Another intriguing finding from sequencing the three V. cholerae T2S 

mutant genomes was a secondary mutation in the LPS biogenesis gene rfbV in 

the ΔepsG mutant. Our previous observations that a number of outer membrane 

proteins are diminished and the RpoE stress response system is induced suggest 

that LPS synthesis and/or transport may also be affected in V. cholerae eps 

mutants (Sikora et al., 2007). Since we have observed a lack of assembled LPS in 

the ΔepsG mutant, we reasoned that perhaps complementation of EpsG and/or 

RfbV would restore LPS biosynthesis. However, LPS was not assembled in either 

condition, suggesting that restoration of LPS assembly may require 

complementation with both EpsG and RfbV (Figure 4.6).  

In addition to a vesC mutation, the ΔepsL mutant also contained a mutation 

in a hypothetical gene, VCA0254. Although the function of this gene is unknown, 

it encodes a protein with a putative signal sequence. It is therefore possible that 

this is a periplasmic protein or another yet to be identified T2S substrate; if so, this 

suggests that additional substrates besides VesC may contribute to cell envelope 

damage when the Eps system is inactivated. Five secondary mutations were also 

identified in the ΔepsM mutant, located in metabolic genes required for chitin and 

gluconate utilization, hypothetical, and ribosomal protein genes and a non-coding 

region (Table 4.2). Interestingly, the ΔepsM mutant was constructed differently 

from the ΔepsG and ΔepsL mutants, using a λ Red recombination-based system 

for genetic inactivation for the former rather than a suicide vector/sucrose 

selection-based approach for the latter. While further research is necessary to 

understand the contribution of the secondary mutations in the ΔepsM mutant, this 
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finding indicates that there may be multiple mechanisms for suppression of cell 

envelope defects caused by T2S gene inactivation in V. cholerae. 

As most organisms containing T2S systems do not exhibit the same cell 

envelope defects upon T2S gene inactivation, the subset of T2S substrates may 

play an important role in this process. Specifically, this may be a phenomenon 

unique to organisms that contain particular T2S substrates that cause damage to 

the cell envelope when they accumulate in the periplasm. Although many bacteria 

use the T2S system to support secretion of proteases, VesC is one of three unique 

trypsin-like serine proteases found only in V. cholerae, other Vibrio species, and 

related Aeromonas species and may have increased nonspecific activity inside the 

cell compared to other T2-secreted proteases. Therefore, we speculate that 

perhaps the T2S genes are not essential per se, but rather that the phenotype 

observed with T2S mutants of V. cholerae, V. vulnificus, Vibrio sp. strain 60, and 

Aeromonas hydrophila is due to damage caused by particular T2S substrates 

when they accumulate in the wrong location. Additional investigation into the 

relationship between organisms exhibiting T2S inactivation-associated envelope 

defects and their corresponding suites of T2S substrates may reveal a conserved 

mechanism for suppression of T2S-associated phenotypes in these organisms. 

 

Experimental Procedures 

Bacterial Strains and Growth Conditions 

Vibrio cholerae N16961 (El Tor), TRH7000 (thy HgR (ctxA-ctxB)) and 

mutants thereof were grown at 37°C in LB broth, which was supplemented with 
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100 mg/ml thymine for TRH7000 strains and 0.01% arabinose for the pBAD::eps 

strain. Plasmid-containing strains were grown in the presence of 200 µg/ml 

carbenicillin and gene expression was induced with 10 µM isopropyl-D-

thiogalactopyranoside (IPTG) for epsG, epsL, epsM, and rfbV or 50 µM IPTG for 

vesC expression. 

 

Cloning 

TRH7000 pBAD::eps, ΔepsL, and ΔepsG strains were constructed 

previously (Sikora et al., 2007; Gray et al., 2011). TRH7000 ΔepsM was 

constructed by amplifying regions upstream and downstream of the epsM gene 

and introducing an internal kanamycin resistance cassette from pKD4 using the 

following primers: 5’ caagtcttcttggctgcggt 3’ (forward primer for upstream 

fragment), 5’ CGAAGCAGCTCCAGCCTACACttctccttacttgggcttcacc 3’ (reverse 

primer for upstream fragment), 5’ 

CTAAGGAGGATATTCATATGgcgtggaggctgatatga 3’ (forward primer for 

downstream fragment), and 5’ ccgacacgacagtaccaagctgc 3’ (reverse primer for 

downstream fragment). PCR products from the upstream and downstream regions 

were used as a template for another PCR using the first and last primers, which 

was used for chromosomal replacement as described (Datsenko & Wanner, 2000). 

Plasmids containing either WT or T2S mutant variants of genes identified 

from whole-genome sequencing were constructed by amplifying the gene of 

interest from TRH7000 chromosomes and cloning into pMMB67EH. The primers 

used to amplify vesC (VC1649) are as follows: 5' 
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GAGGAGCTCtgggagttatcagaggtatc 3' (Fwd) and 5' 

GAGGCATGCtggctatcgatagaTCAGAC 3' (Rev). To amplify rfbV (VC0259), the 

primers 5’ gaggagctcGTGGAAGGCACTAGC (Fwd) and 5’ 

gaggtcgacCCGTATGTCATTGCAAG 3’ (Rev) were used. pMMB-VesC S225A 

was constructed from pMMB-VesC WT using PCR mutagenesis, with overlapping 

primers containing the point mutation: 5' 

CGCTTGTTCTGGTGACgcCGGTGGCCCTATCTTTTTTG 3' (Fwd) and 5' 

CAAAAAAGATAGGGCCACCGgcGTCACCAGAACAAGCG 3' (Rev). To 

introduce the S225A mutation, the VesC Fwd primer and VesC S225A Rev primer 

and the VesC S225A Fwd primer and the VesC Rev primer were used to amplify 

each half of the VesC gene and introduce the mutation, and these products were 

then used as the template for a third PCR with the VesC Fwd and Rev primers. All 

cloning was confirmed using Sanger sequencing of PCR products and plasmids. 

 

Growth Curve Analysis 

Comparisons of growth rates were performed using a Bioscreen Growth 

Curve Analyzer (Growth Curves USA). Overnight stationary phase cultures of V. 

cholerae were back-diluted as described in figure legends and inoculated into 

microtiter Bioscreen plates in duplicate wells per sample. OD600 was measured at 

15 minute intervals for 20 hours. Experiments were repeated in triplicate and 

means are displayed. 
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Genome sequencing and analysis 

Genomic DNA was isolated from V. cholerae using Wizard Genomic DNA 

Purification kits (Promega). Genomic DNA library preparation and sequencing 

were performed by the University of Michigan DNA Sequencing Core using 

Illumina HiSeq 2000. Paired-end libraries were constructed and sequencing was 

performed with a read-length of 100x100. Analysis was conducted using SeqMan 

software (Lasergene) for SNP and structural variant calling. Using SeqMan NGen, 

the TRH7000 WT sequence was aligned to the N16961 published reference 

sequence to serve as a template for analysis of T2S mutant sequences. Variants 

were called using SeqMan Pro software (Lasergene) and visualization and 

coverage analysis was performed simultaneously. Genome sequences of T2S 

mutants were compared to N16961 using SeqMan NGen reference-guided 

alignment and variant calls that were also found when comparing TRH7000 WT to 

N16961 were subtracted from these calls. Read depth for the variant calls was as 

follows: VC0259 = 244, VC1649 = 213 (ΔepsG); VC1649 = 226, VCA0254 = 314 

(ΔepsL); VC0286 = 129, VC0613 = 114, VC1718 = 65, VC1915 = 82, noncoding 

= 54 (ΔepsM). Variants from the ΔepsG and ΔepsL mutants were verified using 

PCR and Sanger sequencing. 

 

Protease Secretion Assay 

Extracellular protease activity was measured and quantitated as described 

previously (Sikora et al., 2007). Briefly, overnight cultures supernatants were 

separated from cells, and the fluorogenic probe, N-tert-butoxy-carbonyl-Gln-Ala-
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Arg-7-amido-4-methylcoumarin (Sigma-Aldrich) was added to the supernatants. 

Over the course of 10 minutes, protease activity was measured every minute using 

fluorescence at excitation and emission wavelengths 385 and 440, respectively. 

Assays were performed at least in triplicate and values were normalized to the 

density of the culture (OD600nm). Mean and SEM are displayed. 

 

SDS-PAGE and Silver Staining 

LPS assembly was analyzed by SDS-PAGE and silver staining as in 

Fallarino et al., 1997. Overnight culture cells and supernatants were boiled in SDS 

sample buffer, cooled to room temperature, and treated with 60 µg/ml Proteinase-

K for 30 minutes on ice. Samples were loaded onto 4-12% Bis-Tris gels (NuPAGE, 

Invitrogen) by matching the culture densities via OD600 and run with MES buffer for 

40 minutes at 200V. Silver staining was performed according to the manufacturer’s 

directions (SilverQuest, Invitrogen). 
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Chapter 5: 

 

Discussion 
 

The goal of my dissertation research is to better understand the molecular 

mechanism by which the ATPase EpsE drives T2S as well as the overall role of 

the T2S system in the V. cholerae cell envelope barrier function. Conclusions, 

implications, and future directions of my research will be discussed. This chapter 

is broken down by structural and then functional analyses of the T2S system in V. 

cholerae. 

 

Zinc Coordination is Critical for the Function of EpsE 

The research presented in Chapter 2 shows that zinc coordination by the 

EpsE CM domain is necessary for T2S in V. cholerae, as removal of the entire CM 

domain or substitutions of cysteine residues in the tetracysteine motif 

(CXXCX29CXXC) abolish the ability of EpsE to complement T2S in the epsE::kan 

mutant. None of the cysteine mutant variants of EpsE could be purified due to 

aggregation when overexpressed in E. coli, indicating that zinc binding may play a 

key role in protein folding and/or stability, at least when EpsE is produced in the 

absence of other components of the T2S machinery.  As CM deletions and cysteine 

mutants exhibit negative dominance when over-expressed in WT V. cholerae, they 
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are not completely misfolded and some native properties of the EpsE mutants are 

likely preserved. Chemical removal of zinc from EpsE hexamers results in a loss 

of activity and changes in the migration pattern when analyzed by native PAGE, 

indicating a possible structural alteration. Exchanging the 29 CM loop residues 

between the two dicysteines with those of the homologue XcpR has no effect on 

the function or activity of EpsE. Collectively, we conclude that zinc coordination by 

EpsE CM is required for EpsE’s stability and function in T2S, but that many of the 

loop residues in the CM domain do not serve species-specific purposes and can 

be functionally interchanged with those from a homologue. 

In addition to providing protein stability, it is feasible that the CM domain may 

provide a means for bacteria to support pseudopilus assembly, a process that is 

believed to drive T2S. This could be a process unique to T2S and T4P assembly 

ATPases, which may explain why zinc-coordinating domains are absent in 

homologues involved in T4P retraction and competence. EpsE is unlikely to act as 

a redox switch similar to Hsp33, as cellular reduction and oxidation is an 

improbable mechanism for regulation of secretion because removal of zinc by 

PCMB (chapter 2) causes a conformational change resulting in reduced ATPase 

activity. It is plausible that the CM domain is necessary for correctly positioning 

residues involved in protein-protein interactions in a manner similar to SecA and 

ClpX, although our EpsE-XcpR CM data indicate that species-specific protein-

protein interactions likely do not occur via the residues at the bottom of the EpsE 

CM loop. However, several residues in the CM loop were not exchanged in this 

construct, especially those positioned closer to the dicysteines (Figure 5.1). Two 
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areas of conservation are visible within the CM loop, and these residues may 

mediate interactions between the CM domain and other T2S components and/or 

the rest of the CTD (Figure 5.2).  

 

 

Figure 5.1 EpsE CM residues exchanged in the EpsE-XcpR CM chimera 
construct. A. The NTD and CTD of monomeric EpsE (PDB 1p9w) are shown in 
green ribbon structure, with nucleotide shown in yellow. The CM domain is shown 
in ribbon and stick representation, with residues maintained in the chimera shown 
in magenta, and the exchanged residues colored purple. Several residues at the 
bottom of the CM loop were not resolved in the crystal structure, but have also been 
exchanged in this construct. B. Alignment of the CM domain residues in EpsE and 
EpsE-XcpR CM. Bolded residues are those that differ between EpsE and XcpR 
loop regions and are either shown in purple in A or not resolved in the structure. 
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Figure 5.2 Regional CM loop residue conservation between EpsE and XcpR. 
The structure of monomeric EpsE (PDB 1p9w) is shown in spacefill representation 
with the NTD and CTD in green. The tetracysteine motif of the CM domain is 
colored red. EpsE residues in the CM loop exchanged in the EpsE-XcpR CM 
chimera are shown in purple. Residues conserved between EpsE and the EpsE-
XcpR CM chimera are colored pink and orange to indicate sequence identity and 
similarity, respectively. A Clustal2 alignment of the CM loop region between the two 
dicysteines is shown below, with stars representing sequence identity and colons 
and periods indicating high and low levels of sequence conservation, respectively. 
 

Furthermore, several residues from the NTD are in close proximity to the 

CM domain (Figure 5.3). In particular, R155, G159, and D158 from the NTD may 

contact N434 and H435 from the CM domain, and although the former three 

residues are well-conserved throughout the broader class of type II/IV family of 

ATPases, the latter two are only present among EpsE/PilB subfamily members, 
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the so-called assembly ATPases that possess the CM domain (Robien et al., 2003) 

(Figure 5.3). Many studies have demonstrated large conformational shifts of the 

NTD relative to the CTD during ATP binding and hydrolysis in homologous 

ATPases, including PilT and HP0525 (Satyshur et al., 2007; Yamagata & Tainer, 

2007; Misic et al., 2010). The finding that EpsE hexamers can adopt at least two 

different conformations (Lu et al., 2013) suggests that EpsE also undergoes similar 

conformational shifts. Extrapolating from these studies, it is possible that residues 

such as D158 in the EpsE NTD may be brought closer to the CM domain during 

cycles of catalysis (Figure 5.3). With several residues in close proximity to the NTD 

and CTD, the CM domain may play a key role in interdomain interactions. 

 

 

Figure 5.3 Potential interactions between residues in the EpsE NTD and CM. 
The structure of monomeric EpsE (PDB 1p9w) is used to model potential NTD-CM 

interdomain interactions. The NTD is represented in green ribbon structure with 
residues of interest shown in sticks. The CM domain is displayed as red sticks with 
zinc as a gray sphere. Distances between residues are indicated with blue dotted 
lines and labeled. Putative NTD shifts relative to the CTD and CM domains may 
also alter the position of D158, shifting it closer to the CM domain (blue arrow). 
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One potential model for the role of the CM domain in the function of EpsE is 

described in Chapter 2. We discussed the possibility that modulation of the CM 

domain may affect activity by positioning important residues in the β-strands that 

enter and exit the CM loop. For example, structural analysis indicates that two 

amino acids located at the base of the CM domain may be affected by changes in 

the conformation of the CM domain. On one strand, R441 contacts the adenyl and 

ribose moieties of the nucleotide, and on the opposite strand, R394 contacts a 

leucine residue of a neighboring EpsE subunit in the hexamer (Figure 2.10). We 

have previously shown that EpsE oligomers have increased ATPase activity 

(Camberg, 2005; Camberg, 2007; Patrick, 2011). Thus, conformational changes 

of EpsE due to CM zinc coordination or abrogation, or alternatively, protein-protein 

interactions involving the CM domain, may impact the positioning of key residues 

involved in ATP hydrolysis and/or subunit-subunit interactions within the hexamer.  

Much of the information we have gained regarding the dynamics of the type 

II/IV ATPases has come from studies of the T4P retraction ATPase PilT, and 

although there are major similarities between PilT and EpsE, some key differences 

also exist. In the T4P system, two ATPases associate with the complex to extend 

and retract the pilus, PilB and PilT, respectively. The extension and retraction 

mechanisms of the T2S pseudopilus are still not completely understood, as only 

one ATPase is associated with the T2S system. T4P retraction ATPases such as 

PilT lack two structural components conserved among T2S/T4P assembly 

ATPases: 1) an extended N-terminal domain, known as N1, which targets these 

ATPases to the membrane (Sandkvist et al., 2000; Abendroth et al., 2005) and 2) 
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the CM domain (Robien et al., 2003). My dissertation research furthers our 

understanding of the significance behind the presence of the zinc-coordinating CM 

domain in T2S/T4P assembly ATPases to better understand not only the 

mechanism of energy production for T2S, but also the driving forces behind T4P 

extension and retraction dynamics.  

A recent comprehensive model of the T4P system was constructed using 

cryo-EM and crystal structures of combinations of T4P proteins and their T2S and 

archaeal flagellar homologues (Chang et al. 2016). In this model, while bound to 

the EpsL homologue PilM, the EpsE homologue PilB transfers energy generated 

from ATP hydrolysis to power the rotation of the EpsF homologue PilC, which acts 

as a molecular glove to scoop pilin subunits from the inner membrane and add 

them to the growing pilus. Chang and colleagues (2016) posit that PilB and the 

retraction ATPase PilT are associated with the M. xanthus T4P complex in the 

same mutually exclusive manner; however, the nanometer resolution did not 

permit differentiation between PilB- and PilT-bound T4P complexes. Takhar et al 

(2013) showed that PilB interacts with the N-terminal cytoplasmic domain of PilC 

(PilCN) and suggested that the C-terminal cytoplasmic domain of PilC interacts with 

PilT (PilCC). The T4P model proposes that PilB and PilT both form “bowl-like” 

shapes but with PilB having an extended NTD, thus allowing for PilB-PilCN and 

PilT-PilCC interactions (Chang et al. 2016). However, It is important to note that 

the structure of PilB has yet to be solved, so to create this model they used the V. 

cholerae NTD of EpsE (that interacts with the cytoplasmic domain of EpsL) and 

Archaeoglobus fulgidus AfGspE, which lacks the CM domain, to create a composite 
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PilB structure (Chang et al. 2016; Abendroth et al., 2005; Yamagata & Tainer, 

2007). Thus, any potential role of the CM domain in T4P assembly ATPases cannot 

be gleaned from this model, and further experiments are necessary to examine 

whether zinc coordination affects potential EpsE-EpsF interactions. 

However, we can speculate that PilB may be the “default” ATPase 

associated with the T4P system, and that PilT only associates under particular 

conditions. For example, conformational changes incurred by these dynamic 

ATPases during cycles of catalysis may favor the incorporation of one ATPase 

over the other. Perhaps PilB and EpsE possess zinc-binding CM domains and/or 

extended NTDs for stabilization, or to induce conformational changes that alter 

interactions with other T2S/T4P complex members. The dynamics of T4P and T2S 

(pseudo)pilus assembly are still not well understood, and it will be very informative 

to elucidate the roles of the N1 and CM domains possessed by T2S and T4P 

assembly ATPases but not retraction ATPases. 

Although the presence of the CM domain is conserved among T2S 

ATPases, the tetracysteine motif that characterizes this domain is conspicuously 

absent in two T2S ATPases, X. fastidiosa and X. campestris XpsE (Planet et al., 

2001; Robien et al., 2003). Particularly interesting is the corresponding lack of 

tetracysteine motifs in the PilD/XpsO pre(pseudo)pilin peptidases in these 

organisms, which are shared between the T2S and T4P systems (Hu et al., 1995). 

PilD homologues in most other organisms containing T2S and/or T4P systems 

contain a conserved tetracysteine motif that has been demonstrated to be 

necessary for methylase activity, but may not be absolutely required for PilD-
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mediated N-terminal processing of pilins and pseudopilins (Strom et al., 1993; 

LaPointe & Taylor, 2000; Aly et al., 2013). It seems that X. fastidosa and X. 

campestris may have evolved different mechanisms to support protein stability for 

XpsE and XpsO. It is interesting to note that X. campestris XpsE contains an 

extended N-terminal domain that may also contribute to protein stability and result 

in XpsE-XpsL interactions that differ from those between EpsE and EpsL (Chen et 

al., 2005). Since PilB in X. fastidosa and X. campestris contain a tetracysteine 

motif, it is tempting to speculate that the shared absence of this motif in XpsE and 

XpsO is related and may reveal a novel interaction between T2S ATPases and 

prepilin peptidases. Much remains to be determined about the mechanisms that 

allow for proper folding, protein-protein interactions, and overall stability and 

function of EpsE and PilD and their homologues either in the presence or absence 

of zinc coordination. 

 

Model 

A working model of the role of the EpsE CM domain is presented in Figure 

5.4. During cycles of ATP binding and hydrolysis, the position of residues such as 

R441 and R394 at the base of the CM domain relative to bound ATP and to other 

domains and/or subunits of the hexamer may be altered. Alternatively or in 

addition, contacts between residues from the CM domain and the CTD and/or NTD 

may be modulated during this dynamic process. The positioning of key CM residues 

may also be affected by interactions between EpsE and other T2S complex 

proteins such as EpsF, PilD, or T2S substrates, although these possibilities are 
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not represented in Figure 5.4. Changes in the position of R394 may support a 

conformation of EpsE that facilitates hexamerization and/or protein-protein 

interactions that favor pseudopilus extension. It is possible that R441-ATP 

interactions may dictate whether ATP binding and/or hydrolysis occurs, and the 

energy generated by this process is likely transduced by EpsE-EpsF-EpsG and/or 

EpsE-EpsL-EpsG interactions to power pseudopilus assembly (Gray et al., 2011). 

 

 

Figure 5.4 Model of possible interdomain interactions during cycles of ATP 
binding and hydrolysis. Representations are based on the hexameric structures 
of ΔN1-EpsE-6aa-Hcp1 and ΔN1-EpsE-8aa-Hcp1 (PDB 1kss and 1ksr, 
respectively). Subunits are colored according to structural symmetry as in Figure 
1.3, with CTDs colored in a darker shade than their corresponding NTDs and all 
CM domains shown in red. In the asymmetric hexamer model at right, the CM 
domains from two subunits (blue) are positioned closer to NTDs and CTDs from 
neighboring subunits. Model is not to scale. See the text for details.  
 

 

Future Directions 

 In order to examine the roles of R394 and R441 at the base of the CM 

domain, we have begun to mutate these residues and assess the effects of 

mutations on in vivo complementation of EpsE. Additionally, we are in the process 

of purifying these proteins and measuring ATPase activity of both EpsE-cytoEpsL 
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and EpsE-Hcp1 hexamers. Preliminary data indicate that EpsE with R441A and 

R441D mutations is unable to complement the loss of VesB secretion in an 

epsE::kan strain of V. cholerae (Patrick, 2011). These variants were also co-

purified as EpsE-cytoEpsL complexes and demonstrated a concordant loss of in 

vitro ATPase activity (Patrick, 2011). We have yet to analyze the effect of R441 

mutations in EpsE hexamers in vivo and in vitro, or to construct R394 mutations in 

EpsE, although we expect R441A/D mutations to have similar effects on the 

function and activity of EpsE-Hcp1. 

 We also plan to investigate possible protein-protein interactions between 

the EpsE CM domain and EpsF, EpsL, and PilD. Although an EpsE-PilD interaction 

is purely speculative at this point, we previously noted a correlation between 

organisms lacking the tetracysteine motif in T2S ATPases and prepilin peptidases, 

and it has been demonstrated that zinc binding is necessary for PilD’s function (Aly 

et al., 2013). We aim to use co-immunoprecipitation to investigate potential EpsE-

EpsF and/or EpsE-PilD interactions. 

 Potential interdomain interactions between the CM domain and the NTD and 

CTD of EpsE will also be investigated through mutational analyses based on 

structural information. For example, mutating the residues highlighted in Figure 5.3 

(R155, D158, G159, N434, H435) may provide information on specific interactions 

between the CM and NTD. It would be beneficial to mutate some of the conserved 

residues highlighted in Figures 5.1 and 5.2 that may participate in CM-CTD, -EpsF, 

and/or -PilD contacts as well. Because EpsE is a dynamic hexameric protein, we 

may not be able to ascertain all of the possible interdomain interactions using only 
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our current structural information. Alternatively, we can construct CM loop 

truncations of various lengths to narrow down regions of this domain that could 

potentially participate in CM interdomain or protein-protein interactions. 

 Despite observing complementation and activity of the EpsE-XcpR CM 

chimera, we cannot definitively conclude that the EpsE CM loop residues are 

unnecessary for the function or activity of T2S ATPases, since several residues 

are maintained in this loop swap. Mutagenesis of conserved loop residues 

highlighted in Figures 5.1 and 5.2 may generate tools to help elucidate whether 

this loop is directly involved in protein-protein interactions. To that end, we can also 

examine species specificity by testing whether the EpsE-XcpR CM chimera and 

other CM mutants can complement T2S in epsE::kan V. cholerae and a P. 

aeruginosa ΔxcpR mutant (Lory, unpublished). The results from these experiments 

will help us understand the role of the loop residues between the two dicysteines 

in the EpsE CM domain. 
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Characterization of Secondary Mutations Acquired by Vibrio cholerae T2S Mutants  

 In Chapter 4, I identify and characterize potential suppressor mutations in 

V. cholerae eps mutants and show that two out of three sequenced strains 

acquired secondary mutations in the vesC gene, which encodes a T2-secreted 

protease. Since other studies have proposed that the eps genes are essential in 

V. cholerae, and we have previously described extensive cell envelope stability 

defects among V. cholerae T2S mutants, this knowledge has advanced our 

understanding of the mechanism behind these findings and provided insight into 

the potential role of the T2S system in the V. cholerae cell envelope barrier function 

(Judson & Mekalanos, 2000; Cameron et al., 2008; Chao et al., 2013; Kamp et al., 

2013; Sandkvist et al., 1997; Sikora et al., 2007). My research suggests that the 

process of isolating V. cholerae eps mutations selects for secondary mutations that 

enable the disruption of these putatively essential genes. 

Sequencing V. cholerae eps mutant genomes provided us with a high-

throughput method for identifying possible suppressor mutations for further 

characterization. Since both the ΔepsG and ΔepsL mutants contain distinct 

mutations in vesC, this indicates one potential conserved mechanism for 

acquisition of suppressor mutations that may support eps gene inactivation. 

However, not all sequenced strains contain this mutation, and it is not known 

whether any other V. cholerae T2S mutants harbor vesC mutations. No vesC 

mutations have been identified in the ΔepsM mutant, which acquired 4 secondary 

mutations in a range of genes including those encoding metabolic and ribosomal 

proteins, and has one additional mutation in a non-coding region of the genome. It 
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is important to note that the ΔepsG and ΔepsL mutants were constructed using 

sucrose-based selection for allelic exchange using a suicide vector approach 

(Donnenberg & Kaper, 1991; Sikora et al., 2007), whereas the ΔepsM mutant was 

constructed using a single-step λ red recombination-based method (Datsenko & 

Wanner, 2000). These differences in selection may account for the variation in 

secondary mutations acquired by each V. cholerae eps mutant. In addition, the 

type of antibiotics used for selection may have an effect. It is also not known 

whether the particular eps gene that is inactivated influences the secondary 

mutations that are acquired. 

Since vesC is not the only gene containing a secondary mutation in the 

ΔepsG and ΔepsL mutants, it may be that combinations of mutations are required 

to facilitate eps gene inactivation. We do not yet understand the significance of the 

5 mutations in the ΔepsM strain, nor do we know the function of the VCA0254 gene 

which was mutated in the ΔepsL mutant. The relationship between the eps genes 

and rfbV is also not completely clear; however, inactivating rfbV, which is required 

for LPS assembly (Fallarino et al., 1997), may relieve some of the stress 

associated with the compromised cell envelope. These observations collectively 

suggest that there may be several factors that influence the acquisition of 

secondary mutations among V. cholerae T2S mutants and perhaps multiple ways 

to facilitate inactivation of the putatively essential eps genes.  

The cell envelope defects of V. cholerae eps mutants are likely interrelated, 

although it is not completely clear how the acquisition of putative eps suppressor 

mutations plays a role in these phenotypes. LPS transport across the cell envelope 
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is accomplished by the LPS transport (Lpt) proteins LptA through G and MsbA 

(Silhavy et al., 2010, Okuda et al., 2016). Mislocalization of LPS or defects in LPS 

assembly lead to reductions in outer membrane barrier function (Ruiz & Silhavy, 

2009). The outer membrane β-barrel protein LptD is regulated by the RpoE stress 

response pathway (Dartigalongue et al., 2001). RpoE acts as a sensor of envelope 

damage, including defects in OMP and LPS biogenesis (Alba & Gross, 2004). 

Interestingly, the eps genes are themselves regulated by RpoE (Ding et al., 2004; 

Zielke et al., 2014). Thus, accumulation of T2S substrates in the periplasm may 

cause cell envelope stress and trigger induction of RpoE, degradation of outer 

membrane proteins and LPS transport downregulation, collectively compromising 

the outer membrane barrier function. V. cholerae eps mutants may therefore 

acquire secondary mutations to mitigate some of the cell envelope stress resulting 

from these changes, by inactivating and/or degrading some of the T2S substrates. 

Alternatively or in addition, altering other cell envelope biogenesis pathways may 

mitigate some of the extracytoplasmic stress incurred by Eps inactivation. 

 

Model 

 Our working model for this section is depicted in Figure 5.5. Under wild-type 

conditions, V. cholerae secretes VesC through the T2S system, and the protease 

is auto-activated once outside of the cell (left). However, when the T2S system is 

inactivated, VesC accumulates in the periplasm (right). Here, VesC may cause 

damage to the cell envelope through nonspecific proteolysis or by the sheer 

amount of protein accumulation in the periplasm, leading to RpoE activation and 
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degradation of outer membrane proteins including OmpS, OmpT, OmpU, OmpV, 

and OmpW (Sikora et al., 2007; Sandkvist et al., 1997). The process of 

constructing T2S gene disruptions may select for random mutations that inactivate 

VesC (A) and/or target the VesC protease for degradation (B) to alleviate some of 

the cell envelope stress incurred upon inactivation of the T2S system. 

 

 

Figure 5.5 Working model of the mechanism by which secondary mutations 
in vesC may suppress eps mutant cell envelope phenotypes. Wild-type V. 
cholerae secretes VesC via the T2S system, which auto-activates extracellularly 
(left). Upon inactivation of the T2S system, VesC secretion is blocked and the 
protease accumulates in the periplasm (right). VesC may damage the cell 
envelope through nonspecific proteolysis or by massive protein accumulation, 
resulting in outer membrane protein perturbation and RpoE pathway induction. 
During the process of genetic inactivation of the T2S system, we may select for 
mutations that inactivate VesC (A) and/or target VesC for degradation (B) to 
prevent irreparable cell envelope damage in the absence of T2S. 
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Future Directions 

 Sequencing additional V. cholerae eps mutant genomes should provide 

further information on the mechanism of secondary mutation acquisition by T2S 

mutants. It would be particularly informative to sequence the genome of the 

PBAD::eps strain, which was constructed in the presence of arabinose and thus may 

not have been subjected to suppressor-inducing conditions during its isolation. It 

would be interesting to sequence the PBAD::eps strain grown with arabinose 

alongside the same strain passaged in the absence of arabinose. This might allow 

for the direct identification of secondary mutations acquired during the process of 

T2S gene inactivation in V. cholerae. However, it is possible that the PBAD promoter 

is not completely turned off or that multiple experiments may yield different results, 

especially if there are multiple routes by which V. cholerae eps mutant suppression 

may occur, as our limited study suggests. 

 In order to investigate the conservation of vesC mutations among different 

V. cholerae T2S mutants, we aim to PCR-amplify and sequence the vesC genes 

from a variety of eps mutants from our laboratory collection. This will include 

additional T2S mutants from TRH7000, as well as those that have been 

constructed in N16961, 3083 and classical strains such as O395 and 569B, which 

are of different biotypes and have different LPS profiles (Hankins et al., 2012) and 

eps transposon-insertion mutants. The identification of additional vesC mutations 

among other T2S mutants would support our working model. It is possible, 

however, that the method of eps mutant construction and selection will influence 

the particular secondary mutations acquired by each strain.  
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 One lingering question is whether it is easier to construct an eps mutation 

in a ΔvesC background. If so, this would support our model that vesC mutations 

suppress inactivation of eps mutations that would otherwise be lethal to V. 

cholerae. Attempts to distinguish this phenotype quantitatively have yielded mixed 

results, however. We have confirmed that both WT and ΔvesC are equally likely 

to undergo the initial homologous recombination event wherein a suicide vector 

containing a kanamycin-disrupted eps gene recombines with the chromosome. It 

is the second recombination step using sucrose selection to resolve the suicide 

vector sequence that is presumably the point at which selective pressure for the 

acquisition of secondary mutations occurs. We hypothesized that a ΔvesC mutant 

would be more likely to undergo this second recombination event. We performed 

this experiment twice so far, and in one instance we observed higher 

recombination frequencies in WT and in a subsequent experiment we found the 

opposite. Because the second crossover is a random occurrence, it is possible that 

we would need to perform the sucrose selection step multiple times with multiple 

cultures to accurately quantify the probability of this event. Thus, it is difficult to say 

with certainty that vesC mutations facilitate inactivation of the eps genes. It is also 

feasible that a ΔvesC ΔVCA0254 or a ΔvesC ΔrfbV background would be required 

for suppression. 

 Our working model is that secondary mutations in vesC among eps mutants 

either inactivate VesC or target it for degradation, but so far we cannot discriminate 

between the two possibilities. In order to do so, we will analyze culture 

supernatants and cells of a V. cholerae ΔvesC mutant overexpressing WT VesC 



   

117 
 

as well as the Q279P and 491fs variants by SDS-PAGE and immunoblotting once 

we have successfully developed VesC antiserum. If the variants of VesC can be 

detected in culture supernatants, the protease is likely inactivated by these 

mutations. The absence of VesC variants in the supernatant and cells would 

suggest that these mutations instead result in degradation of the protein.  

 Recently, our lab has noted that LPS assembly is diminished in two recently 

isolated eps mutants, and complementation of T2S corrects the assembly defect 

(Johnson et al., unpublished). In contrast, LPS assembly is not restored in the 

ΔepsG mutant expressing plasmid-encoded epsG (chapter 4). This is likely due to 

the mutation in rfbV, which supports O-antigen-lipid A core assembly, and 

complementation of the LPS assembly/transport defect may require both epsG and 

rfbV (Fallarino et al., 1997). Experiments are currently underway to probe the 

effects of rfbV overexpression on growth in V. cholerae to further understand the 

relationship between the cell envelope phenotypes of T2S mutants and secondary 

mutations acquired by these mutants. 

 Although some studies have suggested a role for the Ves proteases in 

pathogenesis, the precise functions of VesA, B, and C are still unknown (LaRocque 

et al., 2008; Syngkon et al., 2010; Hatzios et al., 2016). Recent characterization of 

the function of VesB from our laboratory hints at a role in nutrient acquisition 

(Gadwal et al., 2014). The Ves proteases may primarily mediate environmental 

survival of V. cholerae, supported by the observation that homologues of these 

proteins are only found among marine bacterial genera such as Vibrio, 

Aeromonas, and Shewanella. It is interesting to note that observations of cell 
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envelope defects have been limited to T2S mutants of Vibrio and Aeromonas 

species, which supports our assertion that this phenotype is related to the 

particular T2S substrates secreted by different organisms.  

 The function of the VCA0254 gene, which contained a secondary mutation 

in the ΔepsL mutant, is unknown. Interestingly, the predicted protein contains a 

putative signal peptide, suggesting that it may be a periplasmic protein or an as-

yet unidentified T2S substrate. Domain homology analysis using BLAST reveals 

that a putative glycoside hydrolase domain (PFAM GH129) is also present. It is 

tempting to speculate that mutations are acquired in VCA0254 in a manner similar 

to that of vesC, wherein mutations that inactivate and/or degrade this protein 

alleviate cell envelope stress. We plan to construct a ΔVCA0254 mutant and 

VCA0254 overexpression constructs to investigate this possibility. 

  

Conclusions 

 Collectively, my research provides additional mechanistic details of the T2S 

system. We have learned that zinc plays a critical role in the activity and function 

of EpsE, and that the CM domain is required for T2S and likely supports protein 

stability. We have also assembled a working model of how secondary mutations 

in a T2S substrate may provide suppression of cell envelope stability defects upon 

inactivation of the putatively essential eps genes in V. cholerae. Thus, my 

dissertation encompasses insights we have gained from structural and functional 

analyses of the T2S system in V. cholerae. 
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