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Learning in a Disruptive Customer Engagement Platform: An 
Empirical Analysis in the Banking Industry 

 
Abstract 

 
The shift in enterprise applications to disruptive mobile platforms calls for research to better understand the 
mechanisms and factors behind success in these new platforms. In this paper, we empirically study the 
learning dynamics of sales officers and factors associated with business value, measured as account-
opening efficiency in a tablet-based banking application at a large private bank in an emerging market. Our 
model allows us to study individual learning patterns, and our results show that although high performers 
in the traditional systems continue to maintain their edge in the new mobile platform, the gap between high 
and low performers is reduced significantly over time. Our results also reveal that customers’ awareness of 
the tablet banking service, their digital literacy, and external environmental factors such as mobile 
infrastructure and market maturity can affect sales officers’ account-opening performance in the tablet-
based system. 

Keywords: learning under disruption; learning curve; productivity; tablet banking; business value of IT 
 

 
1. Introduction 
Given emerging trends in technology such as ubiquitous connectivity, cloud computing, and the 

proliferation and adoption of mobile devices, there has been a significant shift in the delivery and interface 

of enterprise systems that connect firms with organizational stakeholders. The primary device for 

engagement with these systems has evolved from traditional desktop computers to a variety of mobile 

devices such as smartphones and tablets. For instance, as part of the IBM MobileFirst for iOS initiative, 

IBM has created over 100 iOS apps serving 65 professions across 14 industries.1 More recently, SAP 

announced a partnership with Apple to revolutionize the mobile work experience of enterprise customers 

by bringing SAP’s deep expertise in business software onto Apple’s mobile devices.2 This shift to mobility 

is apparent in business processes such as marketing, customer service, sales, field service, finance, 

procurement, supply chain, and human capital.3 However, this shift is deeper than mere devices. The 

embedded digital capabilities in these devices fundamentally alter the backend processes and the nature of 

engagement with the users of these applications. For instance, when engaging with customers, the activities 

in the process are shifting from simply recording transactions in texts and numbers on a desktop interface 

																																																													
1 “Apple and IBM partnership yields 100 iOS enterprise apps” CIO.com, Dec. 18, 2005. 
2 “Apple & SAP Partner to Revolutionize Work on iPhone & iPad”, apple.com/pr, May 5, 2016. 
3 In a 2015 survey of 300 North American firms, Frost & Sullivan found wide deployment of mobile apps for enterprise 
functions: mobile supply chain management (56%), mobile sales force automation (56%), mobile workforce 
management (49%), and mobile asset tracking (56%). For details, please see http://www.frost.com/sublib/display-
report.do?id=9ABE-00-25-00-00. 
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(Rivers and Dart 1999) to a richer co-creative engagement context that captures information in pictures, 

digital documents, and videos. 

The growth of tablet and smartphone-based applications and their rapid adoption by consumers 

certainly validates the value of these mobile engagements to customers and their promise to firms (Xu et 

al. 2016). However, transitioning to these mobile devices has not always been successful from the firm’s 

perspective. For instance, in early 2016, HSBC’s mobile banking platform stopped functioning, and 

customers were locked out of their accounts and unable to complete any transactions. In August 2015, the 

same organization failed to process 275,000 online payments (Finders 2016). These disruptions have 

resulted in disgruntled customers taking to social media to express their frustration. The challenges that 

firms face in delivering a seamless experience for their customers and other stakeholders through these 

mobile devices are multifold. First, employees of the organization need to adapt to new engagement models 

and often paperless processes. Second, the quality of the user experience in these systems depends in part 

on the technology and wireless infrastructure, factors that are often not under a firm’s control. Finally, in 

the case of applications that engage external customers, the readiness and awareness of customers 

significantly determines the eventual success of these systems. This complex ecosystem of factors requires 

a deeper understanding of the underlying determinants of success in both adoption and the eventual business 

value from the transition of enterprise applications to mobile devices. 

Prior research provides some general guidance regarding the underlying mechanisms behind 

technology adoption and the business value of new IT applications. Several papers in the literature on 

traditional technology acceptance have provided evidence showing that the successful adoption of a 

technology depends on its acceptance and usage broadly within the organization (Venkatesh et al. 2003, 

2000, 2008). In a research stream examining the business value of IT at the application level, researchers 

link the usage of specific applications to changes in respective business process metrics, such as cost, 

quality, and cycle time (Barua et al. 1995; Melville et al. 2004; Mukhopadhyay et al. 1995). However, most 

studies in this research stream assume the effective usage of these applications. As we have noted, the shift 

in enterprise applications to mobile devices such as tablets presents new challenges that are not specifically 

addressed in prior literature. 

The novelty of the interface and an altered back-end process in these applications require users to 

learn both the technology and the context of engagement with these devices. Thus, a better understanding 

of people’s learning patterns in these applications can help ensure the successful deployment of these 

applications. Furthermore, applications delivered on mobile devices depend on technology infrastructure, 

which is not under the control of the organization (e.g., mobile network, Internet, and electricity). The 

quality of these mobile networks can vary significantly and influence the effectiveness of these applications. 

In addition, the success of applications that engage external customers may depend on customer-related 
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factors such as their general awareness and proficiency with these devices as well as their overall digital 

literacy. In emerging markets, the uncertainty pertaining to some of these factors is especially higher 

resulting in increased complexity in the interplay between them. With “mobile-first” becoming a dominant 

paradigm, there is a need to improve our understanding of how human resource readiness, learning 

dynamics, customer readiness and extra-organizational factors are all associated with the usage and 

eventual business value from enterprise applications delivered on mobile platforms.   

We attempt to fill this research gap by empirically investigating the business value impact of this 

shift from the conventional model of opening new accounts in traditional branch locations to a mobile 

tablet-enabled process that allows customers to open new accounts in their preferred location (e.g., home, 

the workplace). Furthermore, we have chosen the emerging market of India as our study context. 

The process of offering banking services on mobile tablet devices is also referred to as the 

disruptive Tab Banking initiative. This process is considered disruptive because it overcomes challenges 

related to crowding and congestion in branch locations, fixed timing of branch offices, and the waiting and 

turnaround time for document verification. The engagement process with customers is transformed to a 

time and location of the customer’s choosing, and all documents and artifacts are fully digitized. In addition, 

the tablet allows salespeople to access additional information on the various products offered by the bank. 

As a result, the tablet becomes an active engagement platform for the customer and the sales officer to co-

create the account-opening process more effectively. We worked with a large bank in India to study the 

performance of the account-opening process before and after the deployment of a Tab Banking initiative. 

Our unique data set allows us to empirically study the impact of tablet banking technologies on the 

efficiency of account opening and to better understand the learning dynamics of the sales officers in this 

new context. 

Specifically, we attempt to answer the following research questions: (1) Does the tablet-enabled 

process significantly alter the efficiency of the account-opening process, measured as total turnaround time? 

(2) Is there a learning effect in process performance when firms migrate to a disruptive mobile platform? 

(3) How do these learning effects differ across individual characteristics of employees, such as their prior 

experience, their performance in the traditional system, and the recency of their experience with the 

traditional system? We also investigate the effect of customer factors, such as customer awareness and 

digital literacy, as well as mobile infrastructure factors to control for the differences across various customer 

locations. 

To address these research questions, we propose a hierarchical Bayesian model to simultaneously 

capture (1) how sales officer-related factors, customer-related factors and extra-organizational factors affect 

sales officers’ account-opening performance after the adoption of the tablet banking technology and (2) 

sales officers’ learning dynamics in the new tablet banking process. Our model allows the sales officers’ 
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starting-point performance levels and learning rates in the tablet-based system to be individual-specific and 

to depend on sales officer characteristics. We estimate the model using data on 994 randomly sampled sales 

officers’ account-opening records over a nine-month period, after the shift to the tablet banking system. We 

find that sales officers who performed relatively well in the traditional account-opening system are likely 

to have a head start after switching to the tablet banking technology; however, their learning rate is lower 

than those who did not do as well prior to the switch. As a result, although the high performers continue to 

maintain their edge in the new mobile platform, the gap between the high and low performers is reduced 

significantly. Our results also reveal that customers’ awareness of the tablet banking service and their digital 

literacy, in addition to the quality of the mobile infrastructure and market maturity, affect sales officer’s 

account-opening performance in the tablet-based system. 

Our findings provide several insights for managing a technology-enabled change in business 

processes. First, our results reveal heterogeneity in both the starting performance level and learning rates 

of newer versus longer-tenured employees. This has implications for hiring as well as personalizing the 

training of sales force and customer engagement teams in the midst of continuous technological changes. 

Second, our results show that when firms undertake major changes to customer engagement-linked process, 

it is important to build awareness about the new technology with customers. 

In what follows, we review the literature on both the business value of IT and learning curves in 

section 2. In section 3, we describe our research context, and in section 4 we develop our theory and 

propositions. In section 5, we present our research model, estimation, and results. We conclude with a 

discussion of our findings and highlight some key managerial implications. 

2. Literature Review 
The literature on the business value of IT has examined the impact of technology in organizations at the 

firm level (Barua et al. 1995; Brynjolfsson and Hitt 1996; Kriebel and Kauffman 1988), process level (Barua 

et al. 2004; Mukhopadhyay et al. 1995, 2002; Whitaker et al. 2007), and application level (Banker and 

Johnson 1995; Banker and Kauffman 1988; Barua and Lee 1997). Across all these levels, the technological 

interventions studied have focused on automating, informating, and transformating using desktop 

applications. The advent of mobile enterprise applications creates several new challenges that, to the best 

of our knowledge, have not been explored in the extant IS literature. 

First, in the context of customer-facing IT systems, the focus in the IS literature has been on the 

implementation (Kim and Mukhopadhyay 2011) and performance implications (Hsieh et al. 2012; Mithas 

et al. 2005; Zablah et al. 2012) of customer relationship management systems. In these studies, the 

customer-facing systems are salesperson-centric technologies on the “salesperson–customer interface 

technology continuum” (Ahearne and Rapp 2010). However, the advent of tablets and mobile technologies 
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is shifting the role of customer-facing technologies from mere sales force automation to allowing 

salespeople to engage customers in a co-creative experience. In the IS literature, research on the role of 

technology in personalized selling remains scarce (Ahearne et al., 2008). While the sales and marketing 

literature has recognized that selling is becoming increasingly personalized (Flaherty et al. 2012) and 

mediated through IT artifacts and other material devices (Geiger and Turley 2006; Senecal et al. 2007); in 

general, sales force automation technologies are still viewed as tools for providing timely information and 

automating tasks for the salesperson (Ahearne and Rapp 2010). 

 Second, many of the enterprise technological interventions studied in the IS literature have been 

desktop applications in inter- and intra-organizational contexts. To our knowledge, the IS literature has not 

empirically explored the performance of mobile enterprise platforms in the context of extra-organizational 

infrastructural factors such as mobile network quality, internet connectivity, and customer digital literacy. 

Third, the introduction of enterprise mobile platforms highlights the role of individual learning on 

performance in the presence of a disruptive technology. Some IS research has studied the influence of 

learning on individual performance (Fong Boh et al. 2007; Mukhopadhyay et al. 2011; Singh et al. 2011). 

The results of these studies indicate that individual productivity improves as people gain experience in 

performing the same task. However, these studies are in the context of intraorganizational IT systems. To 

our knowledge, the dynamics of individual learning and its influence on performance in the context of 

mobile platforms remains unexplored in IS literature. 

Finally, the shift of enterprise processes to mobile platforms can be viewed as a disruptive 

technology in the sense that organizational processes leave the firm’s four walls and are executed in real 

time at the moment of interaction with the customer. This shifts the role of IT from informating, automating, 

and transformating business processes that support the salesperson to enabling and facilitating salesperson–

customer co-creative interplay. Much of the IS literature looks at employee performance in times of 

stability, after a technology has been introduced, and the marketing literature has examined the determinants 

of salesperson performance (Brown and Peterson 1993; VandeWalle et al. 2001; Weitz et al. 1986). While 

these studies shed light on performance during times of stability, little is known about the dynamics of 

learning and performance when a new technology is introduced. 

In this paper, we explore the above-identified gaps by empirically studying these aspects in context 

of the banking industry. We investigate the impact of a shift from traditional to tablet-enabled personalized 

account opening (Tab Banking) on the performance of sales officers in a large private bank in an emerging 

market. Our study sheds light on variations in the learning dynamics of sales officers with different 

characteristics when transitioning from a paper-based process to a disruptive-mobile-co-creative-customer 

engagement platform. Second, we explore the role of extra-organizational technology infrastructure on the 

performance of employees using the mobile platform. Third, we study the role of customer factors, such as 
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their awareness of the new technology and their digital literacy, on the performance of employees using the 

mobile platform. Finally our study empirically highlights the increasing importance of technology in 

functions that were hitherto considered “soft skills heavy” and not amenable to technology.   

3. Research Context 

3.1.  The Traditional Account-Opening Process 

Our research context is the use of tablet devices in the personalized account-opening process for potential 

customers of one of India’s largest private banks, with over 52 million customers. The bank had total assets 

of USD 103 billion on March 31, 2015 and profit after tax of USD 1,788 million for the year ending March 

31, 2015. Its presence spans 17 countries, including India. The bank offers a wide range of banking products 

and financial services to corporate and retail customers through a variety of delivery channels and group 

companies such as corporate banking, business banking, insurance services, private equity, mutual funds, 

and personal banking. The bank currently has a network of 4,070 branches and 13,180 ATMs across India. 

Despite the extensive banking infrastructure of the Bank and several others, one in five unbanked 

adults in the world reside in India (Demirguc-Kunt et al. 2015). A survey by the World Bank on reasons 

for being unbanked reveals that apart from the unavailability of a branch, the unbanked are plagued with 

perceptions that keep them out of the formal financial system (Demirguc-Kunt et al. 2015). To overcome 

these perceptual barriers, the Bank engages in extensive outreach involving sales officers visiting 

customers’ residences in a door-to-door selling mode. Indeed, 30% of the Bank’s workforce is on the move, 

engaging with customers, explaining product propositions, and creating new relationships. 

As part of the account-opening process, sales officers engage potential customers at their 

residences. The conventional account-opening process involves the collection of a physically completed 

form along with documents that prove a customer’s identity. This is a regulatory requirement in India 

because there is no equivalent of a Social Security number to uniquely identify each citizen. This 

requirement is also known as the “Know Your Customer” (KYC) requirement. Documents that can fulfill 

the KYC requirement include a passport, a voter ID card, a driver’s license, an electricity or phone bill, 

among others. Once the sales officer submits these documents in the branch sales office, they are checked 

for accuracy and validity. These checks sometimes identify that the documents are invalid. This might be 

the result of expired documents or bills being more than a year old or belonging to an old address. In such 

situations, the sales officer has to revisit the customer to acquire a document that can serve as a valid form 

of identification. Incomplete forms can lead to multiple customer visits. These additional trips to the 

customer can significantly increase the time taken to open an account, causing significant customer 
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inconvenience. This physical movement of paper in the traditional paper-based account-opening process 

has been associated with delayed account opening and high rejection rates. 

To ameliorate such problems and improve customer convenience, the Bank launched a Tab 

Banking program in August 2012 in an effort to empower its employees by providing information and tools 

at their fingertips that would help create superior customer engagement. In 2010, 3G mobile bandwidth 

became available, significantly ameliorating the issue of slow connectivity over mobile networks. In 

addition, tablet devices began to evolve in sophistication and drop in price, becoming increasingly viable 

options for enterprise applications. All these factors hastened the scaling up of tablet-based banking for the 

Bank. 

3.2. The Tab Banking Account-Opening Process 

The device in Tab Banking is a high-end tablet with advanced processing capabilities, powerful audio and 

screen resolution, 3G network capabilities, and an efficient autofocus camera (5 MP) (see Figure 1). In 

addition, various customized applications are installed to provide a suite of quick go-to tools that help sales 

officers in many ways.	

	
Figure 1: Tab Banking Tablet 

 
 

The primary reason for introducing the tablet was to improve the account-opening process and 

enhance customer convenience. The tablet offers tools for capturing account-opening information, with 

built-in validations and controls for error-free and single-visit account opening. There is an online “Account 

Opening Form” utility that allows the sales officer to enter customer details along with the customer’s photo 

to minimize errors. In addition, all KYC documents and photographs are now captured through the tablet’s 

camera and uploaded along with customer details. As a result, the problems associated with paperwork, 

physical photographs, and multiple transfers of physical documents between the sales officer, the bank 
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branch, and regional processing centers are eliminated. Furthermore, the scanned KYC documents are 

checked for accuracy by automated image-processing software, which provides feedback to the sales officer 

while he or she is at the customer’s location. Any errors are caught immediately, and the sales officer has 

the opportunity to correct on the spot. This avoids the time-consuming, inefficient routine of multiple 

customer visits to resolve errors in the old paper-based system. That said, some chances for error remain. 

For example, the sales officer might make data entry errors when entering the account opening form online, 

or the photo taken of the customer may not have sufficient lighting, which might render it unfit as a valid 

photo ID. In such cases, the image-processing software will return an error in real time, allowing the sales 

officer to retake the picture. Furthermore, while waiting for the online validation of documents, the sales 

officer has the opportunity to cross-sell additional banking products to the customer. Figure 2 presents a 

schematic comparison of the old and new processes. 

Figure 2: Traditional and Tablet Account-Opening Process 

	
In addition to digitizing and streamlining the account-opening process, the tablet provides a host of 

additional functionality to facilitate customer engagement through the pre-sale, during-sale, and post-sale 

stages. With the tablet in hand, the sales officer can potentially carry out all assisted banking transactions 

(with the exception of cash). Indeed, with Tab Banking, the sales officer is, in effect, bringing the bank 

branch to the customer. An added indirect advantage of taking the branch to the customer is that there is no 

need for the customer to visit the branch to open an account. This reduces foot traffic in the bank branches, 

in turn reducing congestion and improving the customer experience in bank branches. In addition, tablet 
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banking relieves the pressure on the bank to open new physical branches. This is a significant benefit to the 

bank, as the process of getting approval to open new bank branches from India’s central bank (Reserve 

Bank of India) is laden with onerous regulations and long timelines. 

4. Theory & Research Model 

4.1.  Learning by Doing 

Performance gains owing to doing the same task repeatedly have been validated in a wide variety of settings, 

such as manufacturing (Alchian 1963; Argote and Epple 1990; Benkard 2001; Hatch and Mowery 1998), 

the food industry (Argote et al. 1990), and surgical procedures (Kelsey et al. 1984; Pisano et al. 2001; 

Reagans et al. 2005). There have been some studies in the IS literature as well that examine the influence 

of learning on individual performance (Fong Boh et al. 2007; Mukhopadhyay et al. 2011; Singh et al. 2011). 

The results from these studies indicate that individual productivity improves as individuals gain experience 

of performing the same task. 

As Figure 2 suggests, learning to use the tablet to open bank accounts requires the sales officer to 

adapt to the mobile platform and to the new business process. As the sales officer begins to open new 

accounts in the tablet-based system repeatedly, this repetition helps him or her to learn the menu navigation 

structure, identify features and capabilities that best serve the transactional needs, and learn to use the tools 

more effectively. This practice and repetition helps the sales officer navigate the process quickly, avoid 

potential mistakes, and convince the customer in a more seamless manner to complete all required steps in 

a single visit. 

As the sales officer’s account-opening experience using tablets increases, we expect his or her 
average turnaround time to be reduced. 

4.2.  Learning Under Disruption 

Although the organizational learning curve literature generally shows that learning from experience benefits 

organizational performance over time (Argote 2012; Dutton and Thomas 1984; Yelle 1979), other research 

suggests that knowledge accumulated from experience can sometimes create rigidities that disrupt learning 

and harm performance (Leonard-Barton 1992; Levitt and March 1988; March 1991; Tushman and 

Romanelli 1985). There are also some studies that examine the effect of experience on performance under 

disruptions due to employee turnover (Argote 2012) and knowledge obsolescence, which can occur when 

products and processes change (Leonard-Barton 1992). 

At the individual level, the Lewin-Schein theory of change (see Lewin 1947) offers a framework 

with which to assess the impact of change on performance. It consists of three phases: unfreezing, moving, 

and refreezing. In the first phase, a disruption is encountered, warranting the need to unlearn old routines 
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(Schein 1964), a heightened sense of interpersonal risk (Edmondson et al. 2001), and feelings of anxiety 

(Schein 1964) and uncertainty (Burkhardt and Brass 1990). These processes cause stress and take time 

away from the normal performance of activities. In the context of the shift to tablet banking, sales officers 

need to unlearn the traditional account-opening process they are used to and, at the same time, familiarize 

themselves with the new tablet banking process. As such, the unfreezing phase should be associated with 

an immediate performance drop. 

After the introduction of tablets, we expect that there will be an initial increase in the turnaround 
time to open accounts. 

In the moving phase, after the initial shock, the individual gradually shifts to a semistable state. 

Sales officers adapt to the change, develop alternative solutions, and choose a course of action (Zand and 

Sorensen 1975, p. 535)—they go through what can be called “cognitive redefinition” (Schein 1964). 

Following the initial disturbance caused by the change, a sales officer should begin taking proactive steps 

toward adaptation by “conceptualizing a problem, acquiring information about relevant forces, locating or 

developing alternative solutions, and choosing a course of action” (Zand and Sorensen 1975, p. 535). As 

the sales officer adapts, less time is spent struggling with new processes (Burkhardt and Brass 1990), 

performance gains are realized, and time allocation shifts from learning to producing. Thus, in the specific 

context of tablet banking, as the sales officer becomes familiar with the navigation and menu structure, he 

or she becomes comfortable with the digital platform available on the tablet. As the sales officer begins to 

learn new features available on the platform, the ability to leverage the capabilities uniquely available on 

this digital platform increases. Thus, after the initial drop, the sales officer’s performance should show 

evidence of an upward recovery trend. 

After an initial increase, we expect the turnaround time to decrease. 

In the final refreezing phase, performance stabilizes again, hopefully at a higher level than before 

the disruption. This stabilization might occur due to diminishing returns on learning after sufficient time 

has elapsed since the initiation of change. In addition, the sales officer might become more comfortable 

with postdisruption work when he or she has learned and formed new habits and routines that are 

“confirmed” as appropriate and effective for the new environment (Schein 1964; Zand and Sorensen 1975). 

In the specific context of tablet banking, as the sales officer learns the capabilities of the digital platform, 

he or she makes them a part of the routine of getting customers to open an account. However, with time, 

the repertoire of leveraged capabilities becomes well defined and any marginal increase in performance 

becomes more difficult. 

After a phase of decreasing turnaround times, we expect that it will level off and stabilize at a 
level lower than the pre-tablet turnaround time. 
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4.3. The Effect of Tenure and Recency of Experience Before Disruption on 
Learning 

Organizational routines have been regarded as the primary means through which organizations accomplish 

their work (Cyert et al. 1963; March and Simon 1958; Nelson and Winter 1982; Thompson 1967). While 

recognized as an essential aspect of organized work, organizational routines are also a well-known source 

of inertia (Freeman and Hannan 1983) and inflexibility (Gersick and Hackman 1990). 

In the banking context, the practice of opening accounts with customers is a set of routines enacted 

by the sales officer. Though these routines are not always standardized processes, they are likely to become 

an ingrained part of the sales officer’s repertoire of bank account opening. The introduction of the tablet 

requires the sales officer to unlearn old paper-based routines associated with account opening and learn 

new ones involving a new technology. The confidence a person has in his or her ability to handle a new 

technology (Compueau and Higgins 1995), as well as the affective reaction to using technology (Davis 

1989; Taylor and Todd 1995; Thompson, Higgins and Howard 1991), can exert an important influence on 

acceptance of a technology (Venkatesh et. al. 2003). When a sales officer has been in the organization for 

a long time, old routines are likely to become ingrained. Considering that the unfreezing phase involves a 

disconfirmation of beliefs, behavior, and past routines, the more ingrained those routines are, the more 

difficult it is to unlearn them and adopt routines built around a new technology. 

We expect that sales officers with a longer tenure with the bank before the introduction of tablet 
banking will start out with a longer turnaround time when opening accounts using tablets. 

Furthermore, and for the same reasons, sales officers with a longer tenure will take longer to unlearn 

their old routines and adapt to the new routine.  

We expect that sales officers with a longer tenure with the bank before the introduction of tablet 
banking will learn at a slower rate. 

Another way we define experience is by its recency. We contend that the same mechanisms 

discussed for the effect of length of experience are at play for the recency of experience. There is evidence 

that the availability of a routine in organizational (Levitt and March 1988) and individual (Ericsson 2006) 

memory is associated with the frequency of use of a routine as well as the recency of its use (Levitt and 

March 1988). Organizations have difficulty retrieving relatively old, unused knowledge or skills (Argote et 

al. 1990). However, recently used and frequently used routines are more easily evoked than those that have 

been used infrequently. 

Sales officers who have recently been using the traditional process at a higher frequency are more 

likely to persist with those routines even when presented with a technology-enabled process that offers 

additional capabilities. This recency of experience is likely to become a hindrance in learning in the new 
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digital platform and is likely to reduce their ability to leverage the capabilities of the new process fully to 

open accounts faster. 

We expect that sales officers who opened more accounts before the introduction of tablet banking 
will start out with a longer turnaround time to open accounts using tablets. 

Several researchers have also found evidence for the presence of organizational momentum that 

guides patterns of organizational variation (Boyd and Peter 1985) and makes exploration of alternatives 

difficult (Levitt and March 1988; Starbuck 1983; Wildavsky 1972). Thus, sales officers who opened more 

accounts right before the tablet banking platform was introduced are likely to have a greater mental barrier 

to learning the new digital platform-enabled process. This organizational momentum is likely to restrict 

sales officers from exploring the new technology, thus reducing their learning rate. 

We expect that sales officers who opened more accounts before the introduction of tablet banking 
will learn at a slower rate. 

4.4. The Effect of Expertise on Learning Under Disruption 

Reckwitz (2002, p. 249) defines a practice as a routinized form of behavior that consists of several 

interconnected elements. Building on this definition, Shove et al. (2012) identify three building blocks of 

practices: “competences” (people’s ways of engaging in practices through thinking, talking, and their 

embodied skills), “meanings” (their understanding of the world and their place within it, their emotions and 

motivations), and “materials” (things and their use, or the ways in which material objects are incorporated 

into these practices and, in turn, structure or shape them). 

In the context of tablet banking, even though the “material” aspect changes from analog to digital, 

the “competences” and “meanings” are likely to carry over from the traditional to the new process with the 

sales officer. Indeed, the sales literature has rigorously examined the elements of selling, such as gifting 

practices to solidify social ties and to create social obligations (Darr 2006), using finely tuned selling 

practices such as “nailing” the client by having them handling the object for sale (Darr and Pinch 2013), 

and on-the-ground segmentation activities of marketing and sales managers (Harrison and Kjellberg 2010). 

While it is possible to encode some of these practices into digital platforms, much of this remains tacit 

knowledge acquired over time (Geiger and Turley 2005). 

Thus, we expect that the tacit skills acquired by sales officers are transferable from the old process 

to the new tablet banking process. Even with the introduction of the tablet, sales officers are likely to 

complement the capabilities of the new technology platform with their earned competencies in the account-

opening process. 

We expect that sales officers who performed better in the traditional account-opening process 
will start out with a shorter turnaround time in opening accounts using tablets. 
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As Figure 2 reveals, tablet banking codifies some tacit aspects of selling such as ice-breaker videos, 

product demonstration videos, product simulations, and visually appealing and intuitive product 

comparisons. Thus, with time, sales officers who learn to use these features effectively are likely to make 

up for any lack in “the art of selling” partly by using technology. This is likely to benefit the sales officers 

who did not perform as well in the traditional process. 

On the contrary, high-performing sales officers may not be as incentivized to exploit the capabilities 

of the tablet because of a general tendency to draw from an existing repertoire of skills, especially if it has 

served them well in the past. Another reason individuals rely on prior behaviors to guide future behaviors 

is that moving away from the known to the unknown is considered risky and evokes fear (Von Krogh et al. 

2000). Thus, new behaviors are often avoided when possible and when past behaviors will “satisfice” 

(March and Simon 1958). Indeed, past routines have been found to be utilized even when more efficient 

and effective alternatives become available (Cohen and Bacdayan 1994). Thus, sales officers who have 

performed well in the traditional process may not invest as much effort to learn the new process on the 

tablet banking digital platform. 

We expect that sales officers who performed better in the traditional account-opening process 
will have a lower learning rate in the tablet banking process. 

4.5. The Effect of Mobile Infrastructure on Sales Officer Performance  

For mobile digital platforms, the mobile network is an essential enabling technology. In emerging markets 

such as India, the growth of the mobile network infrastructure has not kept pace with the meteoric rise in 

mobile phone adoption and use. As the density of mobile devices in a location increases, network congestion 

increases, leading to a drop in the quality of service (QoS) available to mobile devices in that location. This 

manifests as a reduction in the connection speed over mobile devices and, more distressingly, dropped calls. 

For example, a study by the Telecom Regulatory Authority of India (TRAI) found that in the April–June 

quarter of 2015, call drop rates stood at a staggering 24.59%.4 

Deteriorated QoS in the mobile network is likely to be associated with lower connection speeds 

available on the tablet, resulting in high latency. Poor connectivity, in turn, might lead to an increase in 

time taken to open accounts. In the context of tablet banking, the QoS is a function of not only the data 

transfer rate but also the bit error rate, which is important for providing high-quality image and video 

services. Thus, high mobile density might result in a deterioration in the functionality available on the tablet, 

which is likely to lead to a reduction in the perceived ease of use by the sales officer, limited adoption 

(Venkatesh 2003), and reduced learning and performance. 

																																																													
4 PTI, “Call drop rates at 25% in April-June: TRAI”, Times of India, November 25, 2015. 
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We expect that locations with higher mobile phone density will be associated with lower sales 
officer performance. 

4.6. The Effect of Customer Digital Literacy on Sales Officer Performance 

When individuals are exposed to a new technology, they may perceive it as complex and feel anxious 

(Taylor and Todd 1995). This is likely to influence the judgement of their ability to use a technology to 

accomplish particular jobs or tasks (Compueau and Higgins 1995). Customers who have low perceived 

self-efficacy are likely to be instruments of delay in the account-opening process. In addition, customers 

who are not adept at using the Internet are likely to be uncomfortable with sharing their personal 

information, as is required for opening a bank account. Thus, customers who have used digital and mobile 

technologies in the past are likely to work more effectively with sales officers using tablet banking to open 

accounts. 

We expect that locations with higher internet penetration will be associated with higher sales 
officer performance.  

4.7. The Effect of Customer Awareness of Service on Sales Officer Performance 

Forming trust or perceived credibility before service subscription has a significant impact on customer 

acceptance because customers generally stay away from a service provider they do not trust (Gefen and 

Silver 1999; Reichheld and Schefter 2000). Perceived credibility is “the belief that the promise of another 

can be relied upon even under unforeseen circumstances” (Suh and Han 2002). Distrust (low perceived 

credibility) of service providers makes consumers afraid to provide sensitive information such as financial 

details on the internet (Suh and Han 2002). 

A common practice in India for firms to establish credibility with customers is by using brand 

ambassadors in print and television advertising. Companies typically choose highly regarded sports or 

movie celebrities as brand ambassadors. These advertisements generate awareness of the product and help 

allay concerns about the quality and safety of a product. Thus, priming customers with awareness of a 

service is likely to make the job of convincing the customer to adopt the service much easier for the sales 

officer, which is likely to reduce latency in converting leads into customers. 

Because television advertising can only reach households that own a television, we expect that 
locations with higher television penetration will be associated with higher sales officer 
performance. 

4.8. The Effect of Market Saturation on Sales Officer Performance 

A 2014 World Bank study on financial inclusion across the world found that half the world’s adult 

population (2.5 billion people) is unbanked. Only 20% of the unbanked do not bank for lack of money. For 
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the rest, the reasons span from lack of trust to lack of documentation to the physical distance of banks to 

religious reasons (Demirguc-Kunt et al. 2015). Some of these barriers are easier to resolve than others. 

Locations that already have a high density of banking are likely to have people who are unbanked due to 

more deep-rooted reasons. As the market for banking becomes saturated, acquiring the next customer 

becomes increasingly difficult. The sales officer will likely need to exert more effort and skill in coming 

up with creative workarounds to resolve the roadblocks preventing an individual from opening an account, 

resulting in increased delays. 

We expect that locations with higher banking penetration will be associated with lower sales 
officer performance.  

We depict our research model in Figure 3. 

Figure 3: Research Model 

 
 

5. Data and Empirical Analysis 

5.1.  Data Summary 

As we mentioned previously, the data set used for the empirical analysis is drawn from the Bank’s tablet 

banking initiative. This initiative was launched in August 2012 and was rolled out all over India in stages. 

The data set we have is related to the wave of rollouts starting in September 2013, involving the cities of 

Agra, Amritsar, Bhopal, Coimbatore, Kota, Ludhiyana, Meerut, Patna, and Udaipur. The data were acquired 

following a visit to and discussions with managers at the bank headquarters in Mumbai, India. This ensured 
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that there was a clear understanding between the researchers and the bank employees who would be 

providing the data. 

This data set contains detailed information about the account-opening activities of 9945 randomly 

sampled branch sales officers from the cities involved in this wave of rollouts for a nine-month period since 

launch (September 2013 – May 2014). For each account opened using the tablet banking technology, we 

observe account type, location on the account profile, the sales officer who handled the account-opening 

process, the date and time when the process was initiated, and the account-opening total turnaround time 

(TAT). The TAT is defined as the time difference, in hours, between the account activation time (time when 

account is activated and customer can start doing banking transactions) and the case initiation time (time 

when the sales officer logs first interaction with the customer). These 994 sales officers opened 67,613 

accounts using the tablet banking technology during the time interval spanned by the data. Among all 

account types, household savings accounts (HSAs) and salary savings account (SSAs) are the most common 

in the data. Other less common account types include youngster accounts. SSAs are typically opened in 

batches for employees from the same company; therefore, we treat SSAs opened within an hour by the 

same sales officer as one record and use the average TAT across those accounts as the TAT in that record. 

The number of account-level records in our data is then 36,993, and among these records, 39.29% are HSAs 

and 14.76% are SSAs. For the 994 individuals in the sample, we observe their job tenure (in months) and 

academic degree. We also have their aggregate account-opening data in the old system, including the 

number of accounts opened using the traditional process (𝑁"#$%) and the average TAT of opening these 

accounts (𝐴𝑣𝑔𝑇𝐴𝑇"#$%), for three months prior to the launch of tablet banking initiative (June–August 

2013). We report the summary statistics of individual sales officer-level variables in Table 1. 

Table 1. Summary Statistics for Sales Office Specific Characteristics (n=994) 

Variables Mean Std. dev Min Max 
𝑇𝑒𝑛𝑢𝑟𝑒"  3.364 2.055 1 35 
𝑁"#$% 135.9 171.1 1 583 

𝐴𝑣𝑔𝑇𝐴𝑇"#$% 108.5 48.58 2.117 479.9 
𝐷𝑒𝑔𝑟𝑒𝑒"  Science & Technology (0.349) Other (0.651) 

The data on customer and environmental factors were collected based on the 2011 Indian census data. We 

use the percentage of households that have mobile phones in the location6
 where the account was opened 

to measure the mobile infrastructure 𝑃𝑒𝑟𝑐𝑀𝑝ℎ𝑜𝑛𝑒"6 . We use the percentage of households having bank 

accounts in the account-opening location to measure market saturation	 𝑃𝑒𝑟𝑐𝐵𝑎𝑛𝑘"6 . 

																																																													
5 We exclude individuals who opened fewer than three accounts using the tablet technology because there are too 
few data points to either examine their learning process or identify the individual-specific parameters. 
6 “Location” refers to the neighborhood in which the sales officer operates. 
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The launch of tablet banking by the Bank was accompanied by a very popular television 

commercial featuring Amitabh Bachchan, one of India’s top movie celebrities. Because this commercial 

was played on television, it reached only households that have a television. Thus, we measure customer 

awareness of the tablet banking service based on the percentage of households that have a television in the 

account-opening location 𝑃𝑒𝑟𝑐𝑇𝑉"6 . Finally, we use the percentage of households that have an Internet 

connected computer in the account-opening location (𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6) to measure customer digital literacy. 

Note that because many sales officers cover multiple locations, our environmental and customer 

variables can vary across accounts opened by the same individual sales officer. This allows us to identify 

the impact of these variables on TAT. The summary statistics of the environmental and customer variables 

appear in Table 2. 

Table 2. Summary Statistics for Location Characteristics 

Variables Mean Std. dev Min Max 
𝑃𝑒𝑟𝑐𝑀𝑝ℎ𝑜𝑛𝑒"6 0.617 0.057 0.305 0.701 
𝑃𝑒𝑟𝑐𝐵𝑎𝑛𝑘"6 0.635 0.053 0.374 0.878 
𝑃𝑒𝑟𝑐𝑇𝑉"6	 0.672 0.174 0.118 0.954 
𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6 0.056 0.026 0.005 0.242 

 
5.2.  Empirical Model 

The empirical model we use to test the propositions derived in the “Theory & Research Model” section is 

formulated as follows: 

𝑇𝐴𝑇"6 = 𝛼"𝑁"6
?@𝑒ABC@DEAFG@DEAHI@DEJ@D                                              (1) 

In this model, the unit of analysis is “an account opened using tablet banking technology by a sales officer.” 

In Equation (1), 𝑇𝐴𝑇"6 denotes the turnaround time of the 𝑘𝑡ℎ account opened by sales officer 𝑖 using the 

tablet banking technology. 𝑁"6 captures the stock of tablet banking experience sales officer 𝑖 has 

accumulated at the time when he or she opens the 𝑘𝑡ℎ account, which is measured by the cumulative number 

of accounts opened using the tablet technology. 𝛼" reflects individual 𝑖’s TAT performance on the first 

account he or she opened using the tablet technology (the “baseline efficiency”), and 𝛽" represents the 

learning rate. Note that we do not impose a negative sign in front of 𝛽", and therefore, a negative value of 

𝛽" indicates the presence of a learning effect in the case of individual 𝑖. 𝐶"6 represents the set of customer-

side variables associated with the focal account, including 𝑃𝑒𝑟𝑐𝑇𝑉"6 and 𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6, and 𝜑O is a vector of 

parameters, each element of which captures the effect of one variable in 𝐶"6 on TAT. Similarly, 𝐸"6 

represents the set of environmental variables associated with the focal account, including 𝑃𝑒𝑟𝑐𝑀𝑝ℎ𝑜𝑛𝑒"6 

and 𝑃𝑒𝑟𝑐𝐵𝑎𝑛𝑘"6, and 𝜑G  contains their corresponding parameters. We also include control variables 𝑋"6 

as two account type dummies for HSA and SSA, respectively, and each element in 𝜑I captures the 
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systematic difference in TAT between HAS or SSA and other account types. 𝜑O, 𝜑G , and 𝜑I	are all assumed 

to be common across individuals, which implies that the customer, environmental, and account-type 

variables affect the TAT of accounts opened by different sales officers in the same way. 𝜇"6 in the model 

represents unobserved random performance shock and is introduced exponentially into the model. We 

assume that 𝜇"6 for individual 𝑖 follows 𝑁(0, 𝜎J@
W ) and allow 𝜎J@

W  to be individual specific as well. 𝜎J@
W  reflects 

the stability of individual 𝑖’s performance. 

Taking natural logarithm of the Equation (1), we obtain the following expression: 

𝐿𝑛𝑇𝐴𝑇"6 = 𝛾" + 𝛽"𝐿𝑛𝑁"6 + 𝜑O𝐶"6 + 𝜑G𝐸"6 + 𝜑I𝑋"6 + 𝜇"6                            (2)    

where 𝛾" = ln	(𝛼").  

 
Accounting for Individual Heterogeneity in Learning 

We allow “baseline efficiency,” learning rate, and performance stability (𝛾" , 𝛽", and 𝜎J@
W ) to be individual-

specific and estimate the effect of observed sales officer-level characteristics on these parameters. To 

capture such relationships, we introduce observed time-invariant individual sales officer attributes into the 

model in a hierarchical fashion: 

                                                                    𝜽𝒊 = 𝜹`𝒁𝒊 + 𝜺𝜽𝒊                                                                    (3) 

In Equation (3), 𝜽𝒊 = [𝛾" , 𝛽" , ln	(𝜎J@
W )]7 is an n𝜃-element column vector with n𝜃 = 3. 𝒁𝒊 is an n𝑧-element 

column vector of individual-specific characteristics for individual 𝑖, including a first element that has the 

constant value 1. 𝜹 is a n𝑧 × n𝜃 matrix of parameters, which describes the relationship between the 

individual-specific variables and the set of individual-specific parameters 𝜽𝒊. Variables in 𝒁𝒊 include 

𝐿𝑛(𝑇𝑒𝑛𝑢𝑟𝑒"), 𝐿𝑛(𝑁"#$%), and 𝐿𝑛(𝐴𝑣𝑔𝑇𝐴𝑇"#$%), as well as a dummy variable indicating whether sales 

officer 𝑖 holds a bachelor or higher degree in science or technology (𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑇")8 as a control. Note that 

the log transformation is applied to all variables in Table 1 to reduce the skewness of those variables. In 

addition, because 𝛾"  represents the logarithm of the baseline TAT using the tablet banking technology, 

using the logarithm of the average TAT (𝐿𝑛(𝐴𝑣𝑔𝑇𝐴𝑇𝑖
𝑜𝑙𝑑)) in the traditional process to measure sales 

officers’ performance in the old system ensures the comparability of the performance in the old and the 

new systems. Each column in the 𝜹 matrix contains the parameters that describe the linear relationship 

																																																													
7	The variance of 𝜇"6 should be a positive value, while the logarithm of the variance can be any value between negative 
infinity and positive infinity. To facility the estimation, we assume the bound-free parameter ln 𝜎J@

W , instead of 𝜎J@
W  

itself, to be a linear combination of 𝒁𝒊.	
8 The underlying logic here is that sales officers with a technology or science degree may be more willing/ready to 
adopt new technologies. 
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between variables in 𝒁𝒊 and one element in 𝜽𝒊. For example, if we denote the first column of the 𝜹 matrix 

as 𝜹∙𝟏, then 𝛾" = 𝜹∙𝟏` 𝒁𝒊. A negative element in 𝜹∙𝟏`  indicates that the corresponding individual-level 

characteristic contributes negatively to 𝛾"; in other words, a larger value of this variable will lead to a “better 

(smaller)” baseline efficiency. Similarly, a negative element in 𝜹∙𝟐`  indicates that the corresponding 

individual-level characteristic negatively affects 𝛽" , or equivalently, the larger value this characteristic 

takes, the faster an individual can learn from their past tablet banking experience. 𝜺𝜽𝒊  captures the remaining 

variation in 𝜃"  that cannot be explained by 𝒁𝒊. 𝜺𝜽𝒊  is also an n𝜃-element vector and is assumed to follow 

𝑀𝑉𝑁(0, 𝛴op), where 𝛴op  is an n𝜃× n𝜃 variance-covariance matrix. 

5.3. Estimation and Results 

We use hierarchical Bayes Markov Chain Monte Carlo (MCMC) methods to estimate our empirical model. 

More specifically, we use the Gibbs sampler to recursively make draws from the full conditional 

distributions of sub-vectors of the parameter vector and use the Metropolis-Hastings algorithm to make 

draws for parameters for which the conditional distributions are not directly drawn. The full details of the 

likelihood, the full conditional distributions, and the sampling algorithm appear in the online appendix. 

Individual Learning Parameter Estimates 

We summarize the mean and standard deviation of the posterior means of the individual-level parameters 

in Table 3. In addition, we show histograms of the distribution of the posterior means of the individual-

level parameters in Figure 4. We can see from both the table and the histograms that most individuals have 

a positive 𝛾" . The average of the posterior means of individuals’ learning-rate parameter, 𝛽" , across 

individuals is negative, which suggests that the majority of sales officers indeed learn from their experience 

of opening an account using the tablet banking technology. This is consistent with our expectation that the 

TAT decreases as individuals’ experience with tablet banking increases. The standard deviation of the 

posterior means of 𝛽"  turns out to be quite large, which suggests significant variation among individual 

sales officers in terms of their learning rate. There is a fraction of sales officers whose efficiency does not 

improve as they accumulate more experience with tablet banking. In fact, 159 of the 994 individuals in our 

sample have a positive posterior mean for 𝛽" . The average of the posterior mean of 𝑙𝑜𝑔(𝜎𝜇𝑖
2 ) is negative as 

well, which suggests that most individuals’ performance is consistent. However, the standard deviation of 

the posterior means of 𝜎J@
W  across individuals is again large, indicating significant heterogeneity in 

individual sales officers’ performance stability. 
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Table 3. Individual-Level Parameter Estimates (𝜽𝒊) 

Parameter Mean Among Individuals Standard Deviation 
Among Individuals 

𝛾" 3.249 0.572 
𝛽" -0.093 0.098 

𝑙𝑜𝑔(𝜎𝜇𝑖
2 ) -0.433 0.348 

Notes: For each individual, the posterior distribution of each parameter has a mean 
and standard deviation. The mean and standard deviation reported here are the mean 
and standard deviation of the individual-level posterior means. 

 

Figure 4:  Histogram of Posterior Means of Individual-Specific Parameters 

 

 

Histogram of Posterior Means of 𝛾"	
 

Histogram of Posterior Means of 𝛽"	
 

 

Histogram of Posterior Means of 𝑙𝑜𝑔(𝜎𝜇𝑖
2 ) 

Estimation of the Effect of Customer and Environmental Variables: 𝝋𝒄 𝒂𝒏𝒅	𝝋𝑬  

In Table 4, we present the estimates of 𝜑 = {𝜑O, 𝜑G , 𝜑I}, which do not vary across individuals. The 

parameter estimates for all elements in 𝜑 are “significant” in the sense that the 95% credible intervals of 

their posterior distributions do not include zero. Both 𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6 and 𝑃𝑒𝑟𝑐𝑇𝑉"6 are negatively correlated 
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with the tablet banking TAT, indicating higher efficiency in the process. Because 𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6 is a proxy for 

customers’ digital literacy in the account location, this result supports our propositions that it may be easier 

for sales officers to work with technology-savvy and well-educated customers, and thus it takes less time 

to open an account for these customers. The negative effect of 𝑃𝑒𝑟𝑐𝑇𝑉"6 on TAT confirms our proposition 

that the account-opening process is more efficient when customers are more informed and aware of the 

tablet banking service. 

The mobile phone penetration rate (𝑃𝑒𝑟𝑐𝑀𝑝ℎ𝑜𝑛𝑒"6) and the banking rate (𝑃𝑒𝑟𝑐𝐵𝑎𝑛𝑘"6) of the 

account location both have a positive effect on 𝑇𝐴𝑇, which provide evidence for our proposition that mobile 

connection quality is positively associated with sales officers’ account-opening performance and that 

market saturation is negatively associated with sales officers’ account-opening performance. Locations with 

a higher mobile phone penetration are likely to have a worse connection quality due to the limited 

bandwidth of the current mobile infrastructure in India; this reduced connection quality can negatively 

affect sales officers’ productivity. Locations with high banking penetration have probably already tapped 

the bankable segment of the neighborhood. Thus, any new customers that are acquired in these locations 

are likely to be relatively less bankable due to reasons such as a lack of documentation, a lack of desire to 

bank, a lack of good credit history, and so forth. Acquiring new customers in locations with a high banking 

penetration rate is likely to be more difficult. On the contrary, locations with low banking penetration offer 

a relatively large pool of untapped and potentially bankable clients. 

Table 4. Pooled Parameter Estimates (𝜑) 

Parameter Mean Standard Deviation 
𝜑 − 𝑃𝑒𝑟𝑐𝑀𝑝ℎ𝑜𝑛𝑒"6  0.901** 0.070 
𝜑 − 𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6 -0.342** 0.075 
𝜑 − 𝑃𝑒𝑟𝑐𝐵𝑎𝑛𝑘"6  0.906** 0.052 
𝜑 − 𝑃𝑒𝑟𝑐𝑇𝑉"6 -0.122** 0.050 
𝜑 − 𝐻𝑆𝐴"6  0.334** 0.018 
𝜑 − 𝑆𝑆𝐴"6  0.129** 0.031 

Notes. Posterior mean and standard deviations are reported. 
*The 90% credible interval does not include zero.  

**The 95% credible interval does not include zero. 

We also find that HSA TAT is significantly larger than SSA TAT. This is likely due to standardized 

and streamlined process of opening SSAs with company employees. Accounts opened for individual 

customers are subject to the specific context of each customer, such as the particular combination of features 

desired in a bank account. In addition, many different scenarios might render a customer ineligible for 

opening an account and thus must be addressed. Addressing the idiosyncrasies of opening household 

accounts relative to the standardized process of opening salaried accounts likely explains the relatively 

larger TAT times for opening HSA accounts. 
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Estimation of the Effect of Individual-Specific Factors on Learning 

As we show in Figure 5, there is a negative correlation between 𝛾"  and 𝛽", indicating interesting learning 

dynamics where individuals with higher baseline efficiency tend to learn slower. We study this further with 

our estimation of the effect of observed sales officer characteristics on heterogeneity in individual learning 

dynamics (the 𝛿 parameter matrix), the results of which we summarize in Table 5. Each column in the table 

represents an individual-specific parameter, and each row corresponds to individual-specific characteristics 

(including the constant term). The value reported in the cell at the intersection of an individual-specific 

parameter and an individual characteristic represents the estimated effect of that individual characteristic 

on the individual-specific parameter.  

We find that 𝐿𝑛𝑇𝑒𝑛𝑢𝑟𝑒" and 𝐿𝑛𝑁"#$% both positively affect 𝛾". In other words, sales officers who 

have been with the bank for a longer period of time and those who recently opened a larger number of 

accounts using the traditional system start out with a larger TAT. These results are consistent with our 

propositions related to the effect of experience in the old system on the sales officers’ starting account-

opening performance in the new system. As we discussed previously, this may be due to the reason that 

tablet banking requires sales officers to unlearn the routines associated with the traditional process. In 

addition, the correlation between 𝐿𝑛𝐴𝑣𝑔𝑇𝐴𝑇"#$% and 𝛾"  is also positive and significant, which confirms our 

expectation that sales officers who have a lower average TAT (i.e., perform better) in the traditional process 

will also have a lower 𝛾" , a better baseline efficiency. The dummy variables for having a bachelor or higher 

degree in science or technology does not seem to affect 𝛾"  significantly, suggesting that sales officers with 

a bachelor or higher degree in science or technology do not perform significantly better or worse 

immediately after switching to tablet banking compared with those who hold a degree in arts or 

management.9,10 

Both 𝐿𝑛𝑁"#$% and 𝐿𝑛𝐴𝑣𝑔𝑇𝐴𝑇"#$%	negatively affect 𝛽", the learning rate, while sales officer tenure 

does not significantly affect the learning rate. The estimated negative effect of 𝐿𝑛𝐴𝑣𝑔𝑇𝐴𝑇"#$% on 𝛽" 

suggests that sales officers who performed well in the traditional process tend to have a larger 𝛽" , indicating 

a slower learning speed. This supports our proposition regarding the effect of expertise on learning under 

disruption. Better performers in the old system have a lower incentive to learn the new process. For sales 

																																																													
9 The baseline group also includes individuals who have a high school degree. However, these individuals only account 
for 1.81% of the sample. Therefore, the baseline group TAT is largely determined by the TATs of individuals who 
hold a bachelor or higher degree in arts or management.	
10 As a robustness check, we estimate an alternative model, in which we classify employees’ degree into arts, science, 
technology, and management, as well as high school. We create one dummy variable for each of the arts, science, 
technology, and management degrees, denoted as A, S, T, and M, respectively. The baseline category is high school. 
The estimation results of this alternative model are largely the same as the results of the main model presented here.  
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officers who did not perform as well in the traditional process because of some gaps in required selling 

skills, tablet banking might offer an opportunity to improve their performance. The negative relationship 

between 𝐿𝑛𝑁"#$% and 𝛽"  indicates that if an individual opened more accounts using the traditional system 

recently, he or she can learn faster, even though this person may start with a worse baseline efficiency. This 

contradicts our expectation that sales officers who opened more accounts before the introduction of tablet 

banking will learn at a slower rate. A discussion with the bank managers revealed that sales officers who 

have a more recent account experience, both in the traditional system or the tablet banking system, are more 

involved in this business function. Opening accounts is a significant component of their job responsibility. 

These sales officers are likely to be more incentivized to learn the new tablet-based system, which offsets 

a hindrance effect of their recent experience on their learning. It turns out that sales officers’ tenure with 

the bank does not significantly affect their learning rate, and the proposition that individuals with longer 

tenure tend to learn slower is not supported. 

Table 5. Individual-Level Heterogeneity Parameters (𝛿) 
Individual-Specific 

Characteristics 𝛾" 𝛽" 𝑙𝑜𝑔(𝜎J@
W ) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1.014**(0.254)  0.141 (0.080) -0.217 (0.172) 
𝐿𝑛𝑇𝑒𝑛𝑢𝑟𝑒" 0.094** (0.037) -0.005 (0.012)  0.162** (0.023) 

𝐿𝑛𝐴𝑣𝑔𝑇𝐴𝑇"#$% 0.435** (0.056) -0.040** (0.017) -0.033 (0.036) 
𝐿𝑛𝑁"#$% 0.051** (0.019) -0.019** (0.006) -0.092** (0.013) 

𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑇" 0.051 (0.050)  0.003 (0.016)  0.067* (0.035) 
Notes: The numbers within the parentheses are the posterior standard deviations.  
*The 90% credible interval does not include zero.  
**The 95% credible interval does not include zero. 

 
 

Figure 5:  Scatter Plot of 𝜸𝒊 and 𝜷𝒊 
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It is worthwhile to note that the different signs of the elements that correspond to 

𝐿𝑛𝑇𝑒𝑛𝑢𝑟𝑒",	𝐿𝑛𝑁"#$%, and 𝐿𝑛𝐴𝑣𝑔𝑇𝐴𝑇"#$% in the first column and second column of the 𝛿	matrix contribute 

to the negative correlation between 𝛾" and 𝛽" demonstrated in Figure 5. Another source of this negative 

correlation is the covariance between the first two elements in the 𝜺𝜽𝒊vector. The estimated covariance 

between these two elements is -0.060, which further adds to the negative correlation between 𝛾"  and 𝛽" . 

Estimation of the Business Value of Tablet Banking Technology 

After estimating the model, we can examine the overall effect of the adoption and usage of the tablet 

banking technology on sales officers’ account-opening performance. Figure 6 compares the TAT at 

different values of 𝑁"6 after the adoption of tablet banking with the TAT in the traditional process. The 

black and blue solid lines in the figure represent the median TAT for HSAs and SSAs opened within the 

last three months before the adoption of the tablet banking system, respectively. The black and blue dotted 

lines show the evolution of the median TAT for HSAs and SSAs in the tablet banking system across sales 

officers, as a function of 𝑁"6, the number of accounts a sales officer has opened using the tablet banking 

technology. The two dotted lines are simulated; we take the posterior means of all 994 sales officers’ 

individual-specific parameters, 𝜃" , and then form a hypothetical “average location,” whose 𝑃𝑒𝑟𝑐𝑀𝑝ℎ𝑜𝑛𝑒"6, 

𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6, 𝑃𝑒𝑟𝑐𝐵𝑎𝑛𝑘"6, and 𝑃𝑒𝑟𝑐𝑇𝑉"6 are set at the mean level reported in Table 2. We simulate each 

individual sales officer’s TAT for opening an HSA/SSA account in this “average location” at different 𝑁"6 

values and then report the median TAT across all 994 individuals in our sample.  

As Figure 6 shows, in both the HSA and the SSA cases, immediately after the switch from the 

traditional account-opening process to the tablet banking process, sales officers’ TAT increases – the 

starting point of the dotted lines, the TAT in the tablet banking system for HSAs/SSAs, is higher than the 

median HSA/SSA TAT in the traditional system. However, as sales officers accumulate more experience 

with the tablet banking system, their TAT in the tablet banking system drops significantly and converges 

to a much lower level. The fact that the TAT in the tablet banking system falls below the TAT in the 

traditional system is strong evidence of the positive effect of the adoption and usage of the tablet banking 

technology on sales officers’ productivity. These results are consistent with our expectation that there is an 

initial drop in sales officers’ performance immediately after the switch from the traditional account-opening 

process to the tablet banking process, as such a business process change may pose short-term challenges to 

employees; however, the majority of sales officers can learn from their experience with the new tablet 

banking technology and eventually achieve a performance improvement.  
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Figure 6: TAT Comparison (Tablet Banking Process vs. Traditional Process) 

 
Robustness Checks 

To ensure the robustness of our empirical results, we perform multiple robustness checks.  

First, in the data used to estimate the main model, we combine SSAs opened within one hour as a 

single record. To test whether our estimation results are sensitive to the choice of the period length used to 

group the SSAs, we combine the SSAs opened within one day as a single record and re-estimate our model. 

The estimation results are very similar to the results presented above.  

Second, in the main model, we classify sales officers’ degrees into science/technology degrees and 

non-science/-technology degrees. In an alternative model, we classify their degrees into arts, science, 

technology, management, and high school. We create one dummy variable for each of the arts, science, 

technology, and management degrees. The baseline category is then the high school degree. The estimation 

results of this alternative model are largely the same as those of the main model; moreover, none of the 

dummy variables for the degree categories are significantly correlated with sales officers’ baseline 

efficiency and learning speed. This again confirms that sales officers’ performance in the tablet banking 

system is not affected by the degree and background they have, which is somewhat counterintuitive because 

it is typically believed that individuals with a technology background will adapt faster and better to 

technology changes.  

Third, one may argue that the learning dynamics of sales officers who adopt the tablet banking 

technology early may be different from those who adopt the tablet banking technology late. To allow for 

this possibility, we introduce into the model two more individual-level dummy variables, “early” and “late,” 

with “early” equaling 1 if the focal individual switched to the tablet banking system before the first quartile 

of the observed adoption dates and “late” equaling 1 if the focal individual switched to the tablet banking 

system after the third quartile of the observed adoption dates. We summarize the estimation results of the 
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new model in Tables 6.1–6.3. As these tables show, the estimates of 𝜽𝒊	and 𝜑 in this alternative model are 

very similar to those in the main model. Interestingly, we find that early adopters typically have a worse 

starting point TAT but learn faster. The worse starting-point efficiency might be due to the immaturity of 

the system at the launch of tablet banking. Early adopters may experience more problems with the system, 

which hurts their starting-point performance. As problems or bugs in the new system are being fixed, the 

quality of the system itself improves over time, and the late adopters can start with a more mature and 

higher-quality system. However, early adopters are likely to be more receptive to new technology and thus 

are more motivated to learn. Therefore, their learning speed is higher.  

Table 6.1. Individual-Level Parameter Estimates (𝜽𝒊) 

Parameter Mean Among 
Individuals 

Standard 
Deviation Among 

Individuals 
𝛾" 3.260 0.583 
𝛽" -0.089 0.111 

𝑙𝑜𝑔(𝜎𝜇𝑖
2 ) -0.438 0.355 

Notes: For each individual, the posterior distribution of each parameter has a 
mean and standard deviation. The mean and standard deviation reported here 
are the mean and standard deviation of the individual-level parameter means. 

 
Table 6.2. Pooled Parameter Estimates (𝜑) 

Parameter Mean Standard Deviation 
𝜑 − 𝑃𝑒𝑟𝑐𝑀𝑝ℎ𝑜𝑛𝑒"6  0.855** 0.043 
𝜑 − 𝑃𝑒𝑟𝑐𝑁𝑒𝑡"6 -0.293** 0.051 
𝜑 − 𝑃𝑒𝑟𝑐𝐵𝑎𝑛𝑘"6  0.854** 0.087 
𝜑 − 𝑃𝑒𝑟𝑐𝑇𝑉"6 -0.091* 0.050 
𝜑 − 𝐻𝑆𝐴"6  0.341** 0.017 
𝜑 − 𝑆𝑆𝐴"6  0.177** 0.047 

Notes. Posterior mean and standard deviations are reported 
*The 90% credible interval does not include zero.  
**The 95% credible interval does not include zero. 

 

Table 6.3. Individual-Level Heterogeneity Parameters (𝛿) 
Individual-Specific 

Characteristics 𝛾" 𝛽" 𝑙𝑜𝑔(𝜎J@
W ) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1.391**(0.243)  0.059 (0.086) -0.119 (0.167) 
𝐿𝑛𝑡𝑒𝑛𝑢𝑟𝑒" 0.073** (0.031)  0.002 (0.011)  0.166** (0.022) 
𝐿𝑛𝑇𝐴𝑇"#$% 0.353** (0.054) -0.020*(0.012) -0.055 (0.036) 
𝐿𝑛𝑁"#$% -0.016 (0.017) -0.007 (0.005) -0.109** (0.014) 

𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑇" 0.032 (0.051)  0.006 (0.017)  0.070* (0.034) 
𝐸𝑎𝑟𝑙𝑦" 0.808** (0.060) -0.169** (0.019)  0.170 (0.036) 
𝐿𝑎𝑡𝑒" 0.032 (0.059) -0.001 (0.021) -0.024 (0.044) 

Notes: The numbers within the parentheses are the posterior standard deviations.  
*The 90% credible interval does not include zero.  
**The 95% credible interval does not include zero. 
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6. Managerial Implications 
The findings from our research have several managerial implications for firms to successfully manage the 

transition to disruptive mobile customer engagement platforms such as Tab Banking in an emerging-market 

context. First, our results indicate that firms should carefully manage the training of their employees in 

these new platforms. As evident in the posterior distributions of the parameters in our empirical model, our 

research findings highlight that the initial performance in the new platform and the rate of learning on these 

platforms vary across employees with different tenure and past performance in the traditional system. Thus, 

firms may need to customize their training programs to match the individual needs of their employees. In 

addition, firms may also need to manage initial expectations of performance on the new platform based on 

employees’ experience and performance in the old system. For example, if the pool of employees selected 

for the new system did not perform that efficiently in the old system, our results indicate that their initial 

performance in the new platform may be worse than the average, though they will catch up over time. This 

expectation needs to be managed within the firm, especially a few days after the initial platform has been 

launched. 

Second, our results illustrate the significance of environmental factors, such as the mobile phone 

penetration rate and banking penetration rate, in determining the efficiency of account opening in these new 

customer engagement platforms. A unique aspect of rolling out enterprise applications on mobile digital 

platforms such as tablets is that the firm does not manage the full technology stack on which the platform 

operates. For example, as our results indicate, the quality of the mobile network can be a significant 

determinant of performance. Thus, firms need to understand the nature of mobile phone penetration and 

carefully manage its impact. This need is further amplified in an emerging-market context such as India, 

where the variation in mobile network quality is particularly high. Our results also highlight the need for 

firms to understand and manage the impact of bank market penetration on the efficiency of the processes 

deployed on these platforms. As firms expand their reach to markets with high banking penetration, they 

need to prepare their employees to engage with customers from the bottom of the income pyramid who are 

not currently in the formal financial system and possibly first-time bankers. This may require new processes 

and methods to track customer identity for verification. 

Finally, our results highlight the importance of customer-related factors, such as customer 

awareness and digital literacy, in determining the performance efficiency on these new platforms. The 

nature of engagement with customers on these mobile platforms is co-creative and requires active 

participation from the customers. Customer awareness and digital literacy are two factors that may present 

unique challenges to firms in the emerging-market context, as variations across these factors can be 

significantly high. Our findings suggest that firms may need to tap various channels and media to better 
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inform and prepare their customers for engagement on these mobile platforms. In summary, our results 

highlight the need for managing both individual-level employee training and the impact of external factors 

to encourage successful adoption of these emerging mobile customer engagement platforms. 

7. Conclusions 
Disruptive mobile platforms are transforming customer engagement across industries. These platforms also 

have significant economic and social implications in the emerging-market context. For example, the 

relevance of physical bank branches comes under question when the general population is increasingly 

comfortable with the idea of mobile banking (Dermish et al. 2011). In the context of emerging markets such 

as India, given the policy and infrastructure constraints of physical branches, mobile platforms may be a 

faster path toward inclusive capitalism. These mobile platforms allow banks to reach their customers at a 

place and time of their choice instead of waiting for customers to show up at their crowded branches. In 

addition, interactions with the customers can de personalized and co-creative, thus rendering these 

platforms disruptive. 

To the best of our knowledge, this research is among the first attempts to understand the success 

factors in deriving business value from mobile customer engagement platforms. There are several 

limitations to our work that can be addressed in future research. Contextual data such as customer-specific 

factors, mobile infrastructure, and banking intensity in our study were available at an aggregate level rather 

than at the individual customer level. We observe this data at the geographical cluster level (several clusters 

make up a city) rather than at the individual customer level. Future studies could examine the impact of 

these factors and measure them with a finer granularity. In addition, although we observe individual sales 

officer performance over time in our research, we do not observe the nature of sales officer–customer 

interactions. This limits our ability to derive insights into how the co-creative interplay between the sales 

officer and the customer occurs on the digital platform. Finally, the business value focus of these platforms 

in our research is measured in the time it takes the sales officer to open an account. Future research could 

broaden the business value measures to include quality, in terms of errors or customer satisfaction and 

future engagement. 
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Online Appendix: Hierarchical Bayesian Estimation 

As discussed in the Data and Empirical Analysis Section, the parameters in our model can be divided into 

two groups: (1) parameters that vary across individual sales officers (individual-specific parameters, 𝜽") 

and (2) parameters that do not vary across individual sales officers (pooled parameters, 𝜑, 𝜹,	and 𝜮𝜺𝜽). We 

use MCMC methods to estimate parameters in our model. To be more specific, the Gibbs sampler is applied 

to recursively make draws from the following conditional distribution of the model parameters: 

{𝜽𝒊}|𝐿𝑛𝑇𝐴𝑇", 𝐿𝑛𝑁", 𝑿𝒊, 𝒁𝒊, 𝜹, 𝛗, 𝜮𝜺𝜽} 

𝜹 𝜽𝒊 , 𝒁, 𝜮𝜺𝜽 

𝜮𝜺𝜽 𝜽𝒊 , 𝒁, 𝜹 

𝛗 𝐿𝑛𝑇𝐴𝑇, 𝐿𝑛𝑁, 𝑿, 𝜽𝒊  

The additional notations 𝐿𝑛𝑇𝐴𝑇", 𝐿𝑛𝑁",	 and 𝑿𝒊 denote the stack of 𝐿𝑛𝑇𝐴𝑇"6, the stack of 𝐿𝑛𝑁"6, 

and the stack of 𝑿𝒊𝒌 of all accounts sales officer 𝑖 opened. The notations 𝐿𝑛𝑇𝐴𝑇, 𝐿𝑛𝑁,	 and 𝑿 without the 

𝑖 subscript denote the collection of 𝐿𝑛𝑇𝐴𝑇", 𝐿𝑛𝑁",	 and 𝑿𝒊 across all individual sales officers. Further, the 

posterior distributions of {𝜽𝒊} and	𝛗 do not belong to any conjugate family, and therefore, we use the 

Metropolis-Hasting method to generate new draws. Each iteration involves four steps. 

Step 1: Generate {𝜽𝒊}	  

The conditional distribution of {𝜽𝒊}	 is 

𝑓 {𝜽𝒊}	 𝐿𝑛𝑇𝐴𝑇", 𝐿𝑛𝑁", 𝑿𝒊, 𝒁𝒊, 𝜹, 𝛗, 𝜮𝜺𝜽 ∝ |𝜮𝜺𝜽|
��/W𝑒𝑥𝑝	[−1/2 𝜽" − 𝜹′𝒁𝒊 `𝜮𝜺𝜽

�� 𝜽" − 𝜹′𝒁𝒊 ]𝐿(𝐿𝑛𝑇𝐴𝑇") 

where 𝐿(𝐿𝑛𝑇𝐴𝑇") is the likelihood of observing the vector of 𝐿𝑛𝑇𝐴𝑇". Clearly, this posterior distribution 

does not have a closed form; therefore, we use the Metropolis-Hasting method to generate new draws with 

a random walk proposal density. The increment random variable is multivariate normally distributed with 

its variances adapted to obtain an acceptance rate of approximately 20% (Atchade, 2006). The probability 

that the proposed 𝜽𝒊 will be accepted is calculated using the following formula (𝜽"
��#� represents the 

proposed new 𝜽𝒊 in this current iteration. When accept=1, 𝜽"�E� = 𝜽"
��#�; otherwise,  𝜽"�E� = 𝜽"�.) 

𝑃𝑟 𝑎𝑐𝑐𝑒𝑝𝑡 = min	{1,
[𝑒𝑥𝑝	(−1/2 𝜽"

��#� − 𝜹`𝒁𝒊
`
𝜮𝜺𝜽
�� 𝜽"

��#� − 𝜹`𝒁𝒊 )]𝐿(𝐿𝑛𝑇𝐴𝑇"|𝜽"
��#�)

[𝑒𝑥𝑝	(−1/2 𝜽"� − 𝜹`𝒁𝒊
`
𝜮𝜺𝜽
�� 𝜽"� − 𝜹`𝒁𝒊 )]𝐿(𝐿𝑛𝑇𝐴𝑇"|𝜽"�)

} 
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Step 2: Generate 𝜹 

Define v𝜹 = vec(𝜹′) 

[v𝜹| 𝜽𝒊 , 𝒁, 𝜮𝜺𝜽]~𝑀𝑉𝑁(𝒖𝒏, 𝑽𝒏) 

where  

𝑽𝒏 = [(𝒁`𝒁 ⊗ 𝜮𝜺𝜽
��) + 𝑽𝟎�𝟏]��, 

𝒖𝒏 = 	𝑽𝒏[ 𝒁` ⊗ 𝜮�𝟏 𝑣𝑒𝑐 𝜽′ + 𝑽𝟎�𝟏𝒖𝟎], 

𝒁 = (𝒁𝟏` , 𝒁𝟐` , … , 𝒁𝑵` ) is an N×𝑛𝑧 matrix of covariates, and 

𝜽 = (𝜽�` , 𝜽W` , … , 𝜽�` ) is an N×𝑛𝜃 matrix which stacks 𝜽𝒊 . 

We define diffuse priors by setting: 

𝑢� = vector	of	 0`s 	with	length = 𝑛𝜃 ∙ 𝑛𝑧, and 𝑉� = 100𝐼ª«∙ª¬. 

Step 3: Generate 𝜮𝜺𝜽 

[𝜮𝜺𝜽| 𝜽𝒊 , 𝒁, 𝜹	]~𝐼𝑊(𝑓� + 𝑁, 𝐺��� + (𝜽" − 𝜹′𝒁𝒊)′�
"¯� (𝜽" − 𝜹′𝒁𝒊))  

where the prior hyper-parameter 𝑓� is set to 𝑛𝜃 + 5, and 𝐺�  is set to 𝐼ª«. 

Step 4: Generate 𝝋 

The conditional distribution of	𝝋	is  

𝑓(𝝋|𝐿𝑛𝑇𝐴𝑇, 𝐿𝑛𝑁, 𝑿, 𝜽𝒊 ) ∝ 𝛴𝝋𝟎
��W𝑒𝑥𝑝	[−1/2 𝝋 − 𝝋𝟎

`𝛴𝝋𝟎
�� 𝝋 − 𝝋𝟎 ]𝐿(𝐿𝑛𝑇𝐴𝑇) 

Similar to what we have done for {𝜽𝒊}, we use the Metropolis-Hasting methods to make draws for 𝝋. The 

probability of acceptance is 

Pr 𝑎𝑐𝑐𝑒𝑝𝑡 = min	{1,
[𝑒𝑥𝑝	(−1/2 𝝋��#� − 𝝋𝟎

`𝛴𝝋𝟎
�� 𝝋��#� − 𝝋𝟎 )]𝐿(𝐿𝑛𝑇𝐴𝑇|𝝋��#�)

[𝑒𝑥𝑝	(−1/2 𝝋� − 𝝋𝟎
`𝛴𝝋𝟎
�� 𝝋� − 𝝋𝟎 )]𝐿(𝐿𝑛𝑇𝐴𝑇|𝝋�)

} 

𝝋𝟎 is set to a 𝑛𝜑×1 vector of zeros and 𝛴𝝋𝟎 = 100𝐼ªA, where 𝑛𝜑 = dim	(𝝋). 

 

 


