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Abstract Global speciesextinction rates are orders of magnitude above the background rate
documented in the fossil record. However, recent data syntheses have found mixed evidence for
patterns ofnet species losat localspatialscales.For example, two recent dataetaanalyses

have found thaspecies richness decreasingn some locations and iscreasing in others
When these.trends are combin#dtgse paperargued there has been no net changspeties
richness and_suggested thigattern isglobaly representativeof biodiversity changeat local
scales Here"were-analyzeresults of these data synthesend outline whythis conclusionis
unfoundedFirst, we show the datasets collated for these syntheses are spatially biased and
represerdtive of the spatial disthution of species richnessr the distribution of many primary
drivers of biadiversitychange This casts doubt thatheir resultsare representative ajiobal
patterns Secongwe argue thatletecing the trendin local species richness very difficult with

short time serieand can lead to biased estimates of chaRganalyses of the data detected a
signal of study duration on biodiversity change, indicating net biodiversitydmssstapparent

in studies of longer duratioithird, estimates o$pecies richnesshange can be biased if species
gains during=postlisturbance recovery are included without also including species losses that
occurred during the disturbance. Net species gains or losses should be assessed with respect to
common-baselireor reference communitietlitimately, weneed aglobally coordinated effort

to moniter~biodiversityso that we carestimateand attributehuman impactsas causes of
biodiversity change. Aombination of technologies will be neededtoduceregularly updated
global datasetof local biodiversity chargto guide futurepolicy. At this timethe conclusion
thatthere is'naet changén local species richneds not the consensus state of knowledge.
Keywords Anthropocene, biodiversity monitoring, species richness, -areddysis, extinction,
invasion time series, baselines

INTRODUCTION

Humans areaffecting the abundance and distribution of species across the planet, and these
impacts are_projected to increase in th& @dntury (Perga et al. 2010Pimm et al. 2014). As
much as 50% of thearth’s icefree land surface has been transformed into agriculture and urban
land cover(Ellis and Ramankutty 2008), one third of all forest has been cleared and most of the
rest is fragmente(Haddad et al. 2015}he ocean is heavily impact@dalpern etal. 2008), and
virtually all land has been affected by pollution and climate change. Since 1600, areelstima
906 knownspecies have gone extinct globally (IJUCN 2P1 While this represents small
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fraction of the world’sightor more million speciesf@ukaryotegMora et al. 2011), the rate of
extinction (>900 species in ca. 400 years) is 1000 times the historical rate in the fossil record
(Pimm et al. 2014 Ceballos et al. 2015). Moreover, more than 20,000 species are now
threatened with extinicin - a numbethat has doubled since 2000UCN 2015. Uncertainty
exists about.the rate of global extinctidne toincomplete sampling andentification of most
of theremainingbiodiversity onEarth Regnier et al. 20)5the time lag between humanpacts
and extinction(Gilbert and Levine 2013Essl et al. 201&), and theextentto which extinctiors
might be offset'by speciatiqfThomas 2013). Even so, consenBasemerged that Earth is in
the midst of an exceptional global extinction evatis unprecedented in the history of human
life (Pereira etal. 201®imm et al. 2014, Ceballos et al. 2015, Regnier et al. 2015.)

Despite the consensus that we are losing species at the global scale, thermésgamg
and important debate abouivi biodiversityis changingat any particular location on the planet
where the spatial grain is typically less <1%iany previous studies of biodiversity change
have used.spatial grains much larger th&mi The prevailing viewis that human activities are
increasingsrates of local extinction (Davies et al. 2006), and that the cumulative effect of
increased local extinction rates is responsiblegfobal trendsindirectinferences about global
trends in“biodiversity at local sea are derived from estimates of change based on relationships
between_suitable habitat area and endemic dive(sity. Jetz et al 2007) These estimates
predict that endemic species richness will decline as a power function of habitat area and
fragmentéion (e.g. Hanski et al. 2013), or shifts in suitable climate niche (Burrows et dl). 201
Direct evidence, for localbiodiversity losscomesfrom syntheses of sileased studiesvhere
variation insspecies richness is explained by a gradient of humaact (e.g., urbanization,
pollution, land agricultural expansiprwhile controlling for endemic levels of variatiomhis
method showdhat thesehumandrivers can reduce species richness at local scales (Pautasso
2007, McKinney 2008Aronson et al. 2014Newbold et al. 2015)An alternative approach
avoids a space for time substitutiandestimats the temporal trends in species richness across
gradientsof-human impacand spatial scaleg.Q., Harrison et al. 2015

Alongsideevidence of local biodiversity loshpwever,a number of papersave shown
thathuman impacts caalsoincrease diversity atub-globalscales $tohlgren et al. 199%axet
al., 2002,McKinney 2008 Ellis et al. 2012Elahi et al 2015). The success ofosne speciesn
humandominated landscapefAronson et al. 2014)increases in local diversitglue to
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disturbance(DeVictor and Robert 2009pnd thespread of exotic specigg.g., Bruno et al
2004) are all examplesWhen these additions match outpace the rate of locapecies
extinctions, then diversity in any particular location cday the same (Byrnes et al. 2007)
increase (Sax et al. 200Blahi et al 2015), or show highates ofspecies turnovefDornelas et
al. 2014).

While,there is growing recognition that human activitiesy either increase or decrease
local biadiversity, the datehave generally beemsufficient to quantify longterm trends in
biodiversity“change at local scales throughout the world, and to rezdheinwith global
estimates of species loss. To address this gigiaseveral recent studies has@lated datasets
thatprovidedirect estimates of biodiversity chantpough timeat local scales (e.gvellend et
al. 2013, Hudson et al. 2014, Doragkt al. 2014 Elahi et al 2015 Newbold et al. 2015
Among these, two data syntlesshave reached the conclusion that there is no evidence for
systematic_declines ispecies richness at local scales ataimedthat their conclusions are
globally representative of what is happeningpecies richness at local spatial scales (Vellend et
al. 2013, Pornelas et al. 2014). Here we challenge the conclusions of these twoesyothes
three grounds{l) we present new analyses shiogvthe datasets assemblieat these syntheses
exhibit extreme spatial bias, and are not globally representatigpeaies richnessr human
impacts_on“ecosystems that influence biodivergi®y we reanalyze thse dataand detect a
signal of study duration on biodiversity change, indicating net biodiversity loss is mostrappa
in studies of longer durationcillary simulations show that trends estimated with short time
series cansbeswbiasehd lack statistical power to detect a tre(®) we show why a lack of
appropriateshistical baselines or spatiakferencesprecludes thesstudiesfrom accurately
characterizingspecies richnesshangedue to humans After laying out our critique, we reflect
on some Jlessons learndtbm these synthesesnd describenew challengesn accuately

quantifying.changes in biodiversity on this planet.

THREE_ESSENTIAL CONfDERATIONS IN ASSESSIENTS OF LOCAL BIODNVERSITY
CHANGE

The synthesis completed by Vellend et al. (2013) focused on patterns of biodiversig ahna
terrestrial vascular plants, and claimed td'dsystematic global metanalysis of plant species

diversity change over time in >16,000 plots from all major vegetation types, including areas
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under profound and direct human influenceData used for this synthesis came from 346
existing studies that had monitored >16,000-agperimental, ‘locakcale’ vegetation plots for
anywhere between 5 and 261 years. Velleh al. (2013) summarized these tinseries by
calculating logresponseaatios (LRR) that quantified the proportional change in plant species
richness fromythe initial to final year of the study, and dividB® by the number of decades to
arrive at a\prportional rate of species loss. The synthesis completed by Dornelas et al. (2014)
collated"data‘from scientific papers and publicly available databases that: (1) hadrieseof >

3 yeas, (2) used consistent sampling methodology, and (3) reportedaineestimates for all
species in samples. Their final dataset waprisedof 100 timeseries representing 35,613
species ofsmammals, birds, fishes, invertebrates, and plants meassited ahd alongharine
transects including 430,324 latitude and longitude coordinates. Although the synthesesl clai

to covermarine) freshwater, and terrestrial systems st majority of datgointsincluded in
Dornelas et al. (2014) were from marine systems, primarily from cruises thahdratbred
plankton, or from seabird, fish, asdtaceamonitoring programsin this section we raise three
criticisms ofgthese two data syntheses that call into questions their primary conclusions about

local changensspecies richness

1. Existing-tine-series of biodiversity are a spatially biased representation of Earth’s diversity,
and the anthropogenic drivers that cause diversity change.

The datasets collated by Vellend et al. (2013) and Dornelas et al. (2014) included a large
number ofsobservations taken from many locations around the globe over multiple decades.
However, “as=iS true for most syntheses of existing da&y represented ra opportunistic
collection(of studies that were designed for a wide variety of purposes. The cherbelof
studies to.nclude in these syntheses was not guidedjeygraphically explicisampling design.

The authars,assembled any and all tseeesthey could findthat matched their search criteria

in which someanesomewherghad repeated measures of species richness at the same site for
any purposeThe key questionn this c&eis whether the data collated for these syntheses are
sufficiently“repesentative of the global distribution of species richness or human impacts on
ecosystemsuchthat they are broadly representative of what is happeoically to species

richness around the globe.
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To assess how well the Vellend et al. (2013) and Dormlak (2014) syntheses capture
a globally representative sample of species richness and human impacts on ecosystems, we
guantified spatial bias in teedatasets. We began by locating existing maps of species richness
and human impacts on ecosystems trggiresent the most spatially resolved information
available at.a.global scale (see Fig. 1, and T&hlen Supplemental Mteria). For marine
biodiversity, we used the United Nations Environmental Programme World Comservat
Monitoring“Centre’smap ofglobal marine biodiversity (Tittensor et al. 2010). For terrestrial
plant biodiversity, we used the global map of vascular plant species richness putjistreft
and JetZ2007, their Fig. 3d. For human impacts on the oceans, we used the Halpern et al.
(2008) globalsmap of human impacts on marine ecosystems, which tallies the number of
anthropogenicrstressors being imposed on oceans as a metric of cumulative Fopdaiman
impacts on land, we used the Hansen Forest Cover Change dataset, which has utilizgd Lands
images since 2000 to quantify the extent and conversion ofddrlabitats globally (Hansen et
al. 2013)..In addition to forest cover change, we compared the Vellend et al. (2@ke) tat
the HYDEBulrdatabag&oldewijk et al. 2010)hat quantifies conversion of Earth’s land surface
to agriculturakoempastorahabitat, and a map of the Human Global Influence Index (Goldewijk et
al. 2010)that_quantifies human built infrastructure like cities and roads. It is important to be
clear that.none of these maps of human impact on the world’s terrestriatioe e@vironments
were specifically designed to quantify impacts on biodivenséy se As such, conclusions
drawn from_these maps are only as good as the assumption that they accuratgiyhporam
impacts opnsbiodiversity. Nevertheless, we use these maps because they are presentliheome of
most comprehensive, and spatialysolved aproximations of human stressors being imposed
on the world’s ecosystesn

For each, of the terrestriahdmarine maps used in our analysis (see Fig. 1), we randomly
sampledN,_locationsacross the globe, whei¢ was equal to the number eftesthat were
collated for use in the Vellend et §2013) synthesi (or 10,000 points for the Dornelas et al.
(2014) synthesis:see Supplemental Mterial for justification). For each random sample Nf
locations, we quantified the amount of spatial bias in those locations using H&dliigeanced
(Schmill et al. 2014, supplemental material)As N becomesncreasingly large and approaches
the sampling of every locatidn (a pixelon a map, there is no spatial bias in a sample dnd
becomes zero because the map has been exhaustively sampled. However Noecalvsays
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less tharl, even a random sampling Nfpoints will have some spatial bias associated with that
sample. By performing this random sampling effort 1000 times foh e@ap, we generated
expected distributions that represent the amount of spatial bias one would texpexir for a
sample composed of studies, but where those studies were chosen in an unbiased naatimer,
regard tospecies richness buman impact@oss space (further details of the analyses are given
in Sypplemental Miteria). Any random,spatially representative sample of Earth’s diversity, or
of human impacts on Earth’s ecosystems, should fall within these expectdaltiesis (Fig. 1).

The'studies collated for both the Vellend et al. (2013) and Dornelas et al. (2014)
syntheses fell well outside the distributions generated from representatipérgy, with values
of Hellinger'sdithat were indicative of extreme spatial biases (Fig.The collection of studies
collated by=Vellend et al. (2013) wagght standard deviations outside the mean of a spatially
representative sample of terrestrial vascular plant richness, and 12 standard deviations from the
mean of a representative sampleaest cover change. Comparison of the Vellend et al. (2013)
dataset to.global maps of land converted to cropland/pasture habitat, or convertecamo hum
infrastructure=similarly revealed biases ranging from 18 to 27 standard deviations from a
representatiesample (se8upplemental Mterial Fig. S1). The causes of these spatial biases
are obvious_from looking at a kernel density map showing the geographic concentration of
studies _ineluded in the Vellend et &013) synthesis (Fig. &. The vast majont of studies
included in the Vellend et a(2013) synthesis were performed in the United States thed
European Unionr- a set ofdeveloped countries that have historically had stronger than average
financial support for biological and environmental science programs. Given the pradoai
of data fromsthese two regions of the globe, temperate forests, temperate grasslands, and
Mediterrafiean forests and woodlands were -oepresented by as much e$° = 5 timestheir
proportional area of Earth’s tertaal land surfacerelative to all other terrestrial vegetated
habitaty(Fig..2). In contrast, tropical biomes thadrbor the greatest terrestrial biodivershiyt
where monitoring programs are rare, were wdpresented by as much @5 = 0.09times
their proportional area of Earth’s terrestrial land surface (Fj. Boreal forests, deserts, and
tundra wereralso undeepresented.

Studies collated for the Vellend et @013)synthesis also undeepresented areas of the
planet that have been most heavily impacted by humans through forestuttewy (Fig. ).

The ‘loss’ category from the Hansen forest cover change map wasrepdesented by’ =
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0.6timesof the areal representation on Earth, of which, 32% occurs in the tropios igléeend

et al.(2013)had little data. In contrast, the Vellend et(2013) synthesis ovaepresented areas
where forests are now recovering after logging or natural disastét°by1.7 timesthe areal
coverage of these habitats (Fig. 2C, gain), and-mesented the lossidgain category that
generally describes areas of higlensity, shorcycle forestry (Hansen et al. 2013). This latter
category (loss/+ gain), mich is common in the southeastern United States, represents only
0.14% of the total land area on the planet; yetrilmaber of pixels in this category withthe
Vellend etal(2013)lataset was 3times greater than a representative sample.

The potetial implications of these spatial biases for estimating changes in biodiversity
are made nare obvious by taking a cldsek ata particular case studyThe inset in Fig. &
shows thewlocation of Dalby Soéderskdgtional Park in Sweden, which represeat$).36
km?forest fragment in a landscape where nearly all of the historical forest has been converted to
agricultural or urbarover The timeseries included in the Vellend et al. synthesis was from a
study that*had documented a loss of ~3 species in this forest fragment over a periodao$.69 ye
Vellend et=aln(2013) explicitly excluded from their study any sites with direct lusd
conversion'such as cleauntting and conversion to urban and agricultural habitat, arguing that in
such cases, 'any effect of a change in the number of species on ecosystem function will be
negligibleseompared with the effects of other changles .ecosystem functioh|Vellend et al.

2013). However, failure to consider diversity change in the majority of a landscape mwbst
of the habitat has been destroyed invalidates one of the mailugsions of this synthesishat
plant biodiversity is not gendhadeclining at local spatial scales.

Thedata collated for the Dornelas et @014)synthesis were even more spatially biased,
lying 41 standard deviations outside the mean of a spatially representative samyaenef
species richness, and 32 starttideviations from the mean of a representative sample of human
impacts on,the world’s oceans. Although the Dornelas gR@l4) synthesis was based on
samples taken/at >430,000 latiteldagitude coordinates, a kernel density map of geographic
locations_shews that the vast majority of sampling sites stemmed from cruises in the Northern
Atlantic ocean, along the coasts of the United States and Europe and, to a lesser extent, from
cruises departing from Australia to study the Antarctic shelf (Fiy. ZAs a result, the North
Atlantic was overrepresented in the datasetd¥’> = 4.7 times(Fig. 28). In contrast, there was
little representation of data from the North or South Pacific, the Indian Ocean, Ardie
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Ocean, all of which were represented by 50% less than they should have beerhgiven t
proportional surface area of the planet. Thus, Elornelas et al(2014) datasetwas only
representative of one of the world’s major oceans, and had almost no dathdssareas that
rank among the most diverse marine habitats on Earth tfeegndePacific and Indiaroceank
The Dornelas.et a(2014)dataset did, however, ovegpresent marine habitats where Halpern et
al. (2008),suggest the cumulative number of anthropogenic stressors is the highest. This
representations’ perhaps not unexpected given the preponderance of sampling siteshalong
coastal U'S"and Europe where human impacts on marine ecosystems are most well dacumented
The lack of a decline in richness despite heavy representation from impacteid arssaesting
and unexpected?otentialreasons for local increases inadugspeciesinvasions, recovery from
historical overfishing, indirect effects of overfishing on lower trophic levels, or climate warming
Thus a more in depth investigation of these individual drivers, rather than justuatuen
impact score, Is warranted.

Our.analyses show that the datasets collated and analyzed by Vellend et al. (2013) and
Dornelas etvaly(2014) are not spatially representative of species diversity an impacts on
land or in“thefoceans. The extreme spatial bias of these datasets means itifatethees
Vellend et-al(2013)and Dornelas et af2014)made from their data to the rest of the globe are
unfoundedEPA 2002) Their conclusions are limited to a select subset ofstatlied locations
on the planet, namely the U.S., Eueagnd, to a lesser extent, the Antarctic shElirthermore,
for both data syntheses, the authassembled data that under represeats of the planet that
are undergoing, major land use transitions (ewyrentdeforestation, conversion to agriculilir
or urban habitats, loss of coral reefsally, for the Vellend et al(2013) synthesis, terrestrial
habitats that are in recovery from past deforestation or managed for timbestifalowed by
succession arehighly overtepresented. This suggests their conclusions may be more
representative of the accrual of species in successioned¢@rering ecosystemthan of the loss

species resulting from human impacts on the original system

2. Estimaes of biodiversity chage are systematicallypbiasedwhen syntheses are based on

datasets compaesed primarily gtiort time series.

Vellend et al. (2013) an®ornelas et al(2014) found no average trend in local biodiversity
whentime series were poolddom manygeographicategions, ecosystem types and taxonomic
groups.However, short time seriehave low power to detect a trend arah produce biased
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estimates of the trend itself if the time series rmoalinear andnon-sstationary(Bence 1995

Peters et al. 2008Mengersenet al. 2013 In Supporting Information we show through
simulation thalLRR (used by Vellend et al. 2013and regressiofused by Dornelas et al. 2014)

on short time series inadequateltimate a known trenof declining richnesg¢Fig.  and ).
Crucially, weshowthat metaanalyticdatasets dominated by short thseries have potential to

bias conclusions, antbnger duration time series provide the most reliable estimates of the
known underlying tempordtend in biodiversity. These results leaus to reanalyze the data of

both Vellend"etal. and Dornelas et al. to look at how their conclusions may have been influenced

by the duration of the studies they collated.

Reanalysis of the effect of duration

Vellend et al. (2013) and Dornelas et al. (2014) considered the importance of study duration in
their analyses, but both concluded that study duration had no effect on mean local bigdiversit
change evenrthough the datasets contained few time sgrgader than 5@ears Vellend et al.
(2013) calculated a rate of biodiversity change by dividing the effect size by duratiorct(Effe
Size = In(SRt2/SRtl)/duration). Including duration in the denominator, rather than as a covariate
of the log ratb can reduce the power to detect an eff€otre-evalate thepossibilitythat longer
durationtimesseriesare more likely taeveal trendsn species diversity, we reanalyzed data in
Vellendret.al(2013) and Dornelas et al. (20d#th linear mixed models using study duration as

a predictor of local biodersity change Biodiversity change waseasured as the log ratio of
species richnesat the end versus beginning eAchdata set (Effect Size = In(S$#SRy)),
consistent with Vellend et al (2013) because only first and last estimates are aviabted
duration (number of years of the study) so that our estimates of the duration auteffmitd be
directly comparable to the results of the models in Vellend g28lL3) and Dornelas et al.
(2014).Evaluation of residuals and leverage suggested no néeglttansform durationk-or the
Vellend et"al"data a linear mixed model with a random effect of dur@iope)and intercept
revealed a'negative relation between biodiversity change and time series durati@a; (flmpe
=-0.004:se = 0.002, P = 0.04) with 4% species loss observed after 10 yearsaaechgel 7%

loss after 50 years. Analysis of the Dornelas et al (2014) data using lograti@sthanfitting

a linear regression, adone originally reveals a stronger negative relatisimp between
biodiversity change and study duration (R3fg; slope =0.01 se = 0.005, P = 0.01, reflecting, on
average, a decline of 10% after 10 years and 40% loss after 50 Ipeats. reanalysis, liis
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309 relationship is sensitive to the inclusion of its longest datasets, potentially reflecting a drawback
310 of using the logratio approach taetect changeThe net effect of incorporating study duration

311 into an analysis of richness change in these datassgtgestshat species richnessay, on

312 averagebedeclining, with 410% loss after 10 years and-48% loss after 50 years.

313 Why should, longetime series suggeslystematic diversity losshile shorter studies do ridt

314 In addition,tothe statistical issues outlinegbove one potential biological reasothat species

315 loss may only'be detected in mediécade timeseriess that localextinctionscanbe delayed and

316 occur veryslowly especially in remnant ecosystems experiencing the legatidgect and

317 indirecthuman impact$Essl et al. 2015b; Haddad et al. 2DEecause of extinction lagshort

318 duration surveys are unlikely to reveal a signal of loss against a background of locaatmoni

319 and extinctionrevents, if the survey occurred before the extinction kabtsbeenealized In

320 fact, empirical analyses of extinction debts have shown that they may take more than a century to
321 detect (e.g.Dullinger et al. 2013Gilbert and Levine 2013Essl| et al. 201%. We suggest,

322 therefore, that studguration shoulde an important feature of study design for the estimation of
323 local biodiversity lossn future metaanalysesMore data, especially longer time series, are
324  required to'reveal trends that are hidden because they occur slowly or libeagise a timdag

325 yearsaftertheir causes (Magnuson 1990).

326

327 3. Estimates of biodiversity change can be biased if species gains durindigbodiance

328 recovery aresincluded without also including species losses that occurredydhe disturbance.

329 Net specieshangeshould be assessed with respeca toistorical baseline ospatial reference

330 communies

331 Recent metanalysedave inconsistenesultspartly because changes in biodiversity have been
332 defined and.measured against different baselimesarlier studies inding that anthropogenic

333 disturbances“tend to decrease local biodiversity (Benayas et al. 2009; Jones & Sc@®itz 20
334  Murphy & Romanuk 2013 changes in biodiversity were measured against a common baseline:
335 levels ofdocal biodiversity observed in intact ecosystems, with minimal muhséurbanceln

336 contrast, recent metnalyses of time serie¥é€llend et al. 2013; Dornelas et al. 2014, Elahi et al
337 2015 have measured changes in biodiversity against levels of local biodiversity observed at
338 earlier points in time, when ecosystems might have been more or less disturbed by people than
339 during recent observations. Theseotapproaches will yield not only quantitatively different
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340 results, but also qualitatively different resultset species lossemeasured against a mostly

341 undisturbed baseline caappear as species gaimbien measured against a highly disturbed
342  baseline Consider the case where a disturbance causes biodiversity loss, and theiomedfxat
343 this disturbance results in recovery of biodiversity, as observed in hundredviotiprstudies

344  (Fig. 4; Benayas et al. 2009ones & Schmitz 2009). The former apprgaghich uses remnant

345 ecosystems as'a spatial reference(siig 4b), would onlyconcludethe recovery to result in net

346  species“gains“if there are more species gains during recovery than there were species losses
347  during the“disturbance. In contrast, the latter appr¢gich4c) would seeall species gains that

348 occurred during recovery as netespes gains if the time series started after the disturbance
349  occurred.

350 The syntheses by Vellend et @2013)mixed studies where biodiversity was recovering from
351 a recent disturbance (e.gecovery of diversity on Mount St. Helens after a volcanic enpt

352 with longer_time series documenting how biodiversity changes in response to a human
353  perturbation. For example, Vellend et @013)combined studies of the immediate response of
354  biodiversitystordisturbance by fire, grazing, and other forms of disturbance, wiiesstf long

355 term biodiversity recovery from disturbance by the same fadldesreanalyzed the responses

356 to disturbance in Vellend et gR013)to assess this effect (Fig. 5). With all studies included
357 (those foeused on both impacts andoreery), results were consistent with the original paper
358 showing no net change in local richness (+ 95% CI, t = 0.19, P = 0.85). However, when we
359 eliminated, categories of ‘podisturbance’, ‘posfire’, and ‘cessation of grazing’, the

360 distributionsof'effet sizes was significantly negative (¢215, P = 0.03) with a 95% confidence

-0.12 ;0.005
e

361 interval of to € (1-11% species losspand comparable in magnitude to other meta
362 analyses of local diversity change focused on impact (Newbold et al.. 20&5)oteworthy that

363 species richness was also dependent on the duration of the driver impact,hmigssideclining

364 by an additional 5% decadgt = -3.19, P < 0.01)Dornelas et al. (2014pnly had a few

365 terrestrial studies in their da&t but for thesetheyreported a significant increase in terrestrial
366 plant diversity over timeHowever, monotonic increases in plant diversity were obtained from a
367  single study; where plant species richniess succession after deforestation (Isbell et al. 2015).
368 Dorndas et al. (2014) did not provide information on whinhrine time series were taken from
369 sites where biodiversity was recowey from recent disturbanceRe-analysi®f this question in

370 the future would be valuable.
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DISCUSSION
Vellend et al.(2013 andDornelas et al(2014 find evidence that local diversity is showing
increasing and.decreasing trends through time at many sites around thdrwnisl paper we
have critiquedhe conclusiorthat globally there iso net loss of local species richnea& have
arguedhat thisclaim isunfoundedor at least three reasangirst, both syntheses were based on
collatiors ef studies that exhibisubstantialspatial bias in their geographic locations, and are
representative, of neither patternsbiddiversty variation acrosshe planet, nor o¥ariation in
degrees ofhumanimpact on ecosystems. Second, the datasets used in both syntheses are
composed of predominantly short time series that are inadequate for reliably estimating changes
in biodiversitythrough time(see point three below). Our-amalyses of these datasets showed
that longer monitoring programs are more likely to find species loss, whichssterm with our
understanding=~that biodiversity losan unfold over decadegTilman et al. 1994, Essl et al.
2015a) Thirdydata syntheses that mix data from communities that are responding to disturbanc
with those recovering from a disturbance require adequate basaligsgeally, reference sites,
to make robust conclusions abaugt biodivesity changedue to humans. Neither synthesis
consideed appropriate baselines or referemtesfor diversitychange We echo recent calls for
greaterpcare,when conducting matzalysis (Whittaker 2010). Biodiversity data are relatively
easy to acquirérom the literature but conclusions from metsalyses are only as sound as the
comparisons=that are made. Our analyses suggest dltaermsynthesis providesufficiently
reliable informatiorto establiskglobally how muchlocal biodiversity has changed through time
in the context of human activities

Aside from our own criticisms of Vellend et al. (2013) and Dornelas et al. (2014), we have
pointed out.that their conclusions of no net loss of species richness at local scales lie at odds with
conclusiongeached by other recent data syntheses. Newbold et al. (2015) quantified changes in
biodiversity“in“380 datasets that allowed an impacted habitat to be explicitly mampah a
spatial reference that served as a @ntThese authors found that aveage 76% of species
have been lostin theorst affectederrestrialhabitats on Earth, and an average 14% have been
lost across all habitats for which data are available. Murphy and Romanuk (20b8npdran
independent metanalysis that compared spes richness in 327 heavily disturbed to less
disturbed habitats and found that hurmaediated disturbances have reducedive species
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402 richness by an average 18%autasso (2007) found the correlation between human population
403 size and plant and animal species richness varied bet@e®h and +0.90, with an average
404 correlation near zero (+0.08). However, Pautasso (2007) went on to show that trei@orrel
405 was systematically negative for local scales (study graingm,land study extents < 10 000
406  km?), consisent with humarinducedlosses of biodiversity at local scale¥Vhile these other
407 data syntheses have their own limitatigasy. use generic measures of impagptore climate

408 changecount native species onlythey present a very different picture of how biodiversity is
409 changing at'thédcal scaleghan did Vellend et al. (2013) or Dornelas et al. (2014).

410 Despite these conflicting resulésd pastcriticisms (Cardinale 2014Isbell et al. 201h

411  McGill et ak (2015)recentlyclaimed “There is considerable empirical evidence that continental
412  biodiversitysatregional or local scalssalso holding steady or increasing ... recent analyses that
413  collectively assembled published data from hundreds of biodiversity inventorysstodiel that

414 local diversity IS, on average, constanktis statement does not reflect the balance of evidence
415 onlocal biediversity change in the Anthropocerand isone side of a debate that not only has
416 yet to be gesolved, but which h#se potential to influence the support of polioyakers for

417  conservationstrategies used hyanagerdo presere orrestoe biodiversity, and the priorities
418 set by funding agencies and journaBecausehe conservation stakes of this debate are high, we
419 would like=to highlight three lessons that we have taken from recent attéonppsantify

420  biodiversity change

421 A Caution=0neimportantlesson from the controversy surrounding recent syntheses and how
422 the finding of ne net change has been interpreted is that care must be taken to uphold the long
423  held scientific value of not extending conclusions beyond what can be robustly supported by data.
424 At this time, the balanceof data and scientific understanding of biodiversity change in recent
425 decades.do.not/support a conclusion of no net change in biodivé/sitsre concerned that the

426  reported conclusions to that effect could be misconstrued in the context of cborgueéicies

427  when, as we"argue here, the evidence is not sufficiently convincing to generate a majority view
428 among experts in the field.

429 A striking example ofoverextending conclusions from metaalysisis apparent in

430 Vellend et al. (2013)who framed their paper as a critique biodiversity and ecosystem

431 functioning researchrhar finding of no net change in local diversity was used to argue that “

432  clear lack of any general tendency for plant biedswty to decline at small scales in nature
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directly contradicts the key assumption linking experimental resalecosystem function as a
motivation for biodiversity conservation in natur@/ellend et al. 2013). This argument is
illogical, however, beasse it confuses variables and spatial scales. Vellend et al. (2013) pooled
studies of changing species richness (variabl@cfpssa disparate set dfites and taxonomic
groupsthat underwengains and losses in local biodiversity due to opposing pracess@ables

X); decreases/In biodiversity following perturbations (e.g. fires, grazing, woleauption) and
increases”in“biodiversity ammmunitieswere recovering from perturbatiarisirst, finding no
averagechangeover these times series is not evidence libzdl biodiversity changaloes not
affect a third locaVariable(Z)—ecosystem functionirgwhich was not measured or included in
their datasetSecond, it is not the global average of these changes that matter for many
ecosystem=properties, which are driven by the species present in the local comnRiBKies.
experiments cantrol levels of species richness bectngsechange locally for many reasons
(Wardle et al. 2011} as is cleafrom the distribution of response ratimsthe Vellend et al.
(2013) dataset.

Unequivoeal inference about the cause of biodiversity changes requires experiments that
control the'degree of human impact (e.g. Haddad et al. ZDli®)netaanalyss of Vellend et al.
(2013) and,Dornelast al. (2014) did not include data from controlled experiments. Whole
ecosystem*manipulations with BefeMter Controtimpact (BACI) analyses and their
extensions (Underwood 1994) are designed to deal with the difficulties ofidgtelsange and
attributing the cause of change when short t®ees are obtained from unreplicated systems.
Rather than™ignore experimental evidence, it should be an essential part ednalgti
approaches:tordefining the expectations for the sign and magnitude of local biodiversig. cha

Studies quantifying biodiversity change must consider alternate explanations and
acknowledge the limitations of anaggsand datasets (e.gpatial biases, statistical power) as
they pertain,to, the conclusions drawn. This aitiscientific exchange can be difficult to
accomplish, particularly in general science journals where space is limited. Even so, the potential
legacies ofgseientific conclusiof@r public beliefs and conservatiwalated political decisions
impart an addional pressure on researchers’ presentation of their findMgaquet et al. 2015)
particularly for controversial topics where data are incomplete, debatmgoing, andhe

balance of evidence is not yet clear
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464 A Need- Secondpur reanalysis othe Vellend et al. (2013) and Dornelas et al. (2014) syntheses
465  suggestshat, even though we have an abundance of-sienees data, this collection of datasets
466 is inadequate to robustly support inferences about temgloaaiges in global biodiversitylo a

467 large extentexisting global monitoring of biodiversity change et coordinatedand does not
468 track and menitor biodiversity in a manner that is representative of where biogiveteitated

469 on the planet.<Lonterm and spatially extensive monitggirexists for certain species groups
470 (e.g. birds"andbutterflies) in wealthy countries. But, in many cases thes@nngngrograms

471 were not déesignhed to evaluate human impacts on local biodiversity changedat@lised in

472  recent metanalyses wereolleded for a number of reasor®y biologistssurveyingcoastlines

473  foress or grasslang andoftenin systemsecovemg from natural orhumandisturbancesWe

474  also lack regularly updated spatial data of cumulative impacts of humans on ecosystems

475 Biodiversity is a fundamentalproperty of the planés ecosystemsand should be
476  systematicallymonitored.To do this monitoring programs need to Bpatially and temporally
477  representativacross the globéScholes et al. 2008). The first step towards this goal would be to
478  complete agformal ‘gap analysis’, which would probaldgntify what most of us already
479  recognize and=which we present herewe need monitoring prograntkat extend beyond the
480 borders ofithe U.S. and Eurqpend that capture biomes that ateongly underrepresented in
481 current biediversity datasets, sua$ the tropics, boreal forests, the tun@rddeserton land

482 theocean benthos, and the Indian Ocean and-Raiofic Oceans, whiclharbor large fractios

483 of marinediversity. After formalizing the gaps and needs, the second step will be for

484  international"erganizations like IPBESBtip://www.ipbes.ne}/to urgethe development of better

485  biodiversitymsmonitoring programs. New initiatives like GEO BOf$choles et al.
486 2008, http://geocbon.org/are taking the first important steps towards establishiggoap of

487  biodiversity observation networks around the globe, but the funding needed to organize and
488 sustain efforts, in poor and developing countries is chronically lacking. ndkeghcal

489 innovationsmay complement research networks by allowing individual expertsizan cit

490 scientists @track and monitor biodiversity from any given location using their cell ph@nes

491 Goldsmith®2015). Ultimately, these efforts may produce a lot of data with high taxonomic
492  resolution for some species groups, but it vikely have limitsin spatia] temporal and

493  taxonomicresolution and scale. Thereforew technologiethat can monitoadditionalaspects

494  of biodiversity with high spatial and temporal resolutiovill be important tools for truly
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representative monitoring of biodivers{#sner et & 2015, Pimmet al.2015). If we progres®
a setof monitoring programs with goodpatial, temporal, andaxonomic resolution, and
coordinated data collection, theme will be in a positionto improve analyses ofocal

biodiversity chang (e.g.Azaeleet al. 2015).

A Challenge Lastly, the Vellend et al. (2013) and Dornelas et al. (2014) data syntheses point to
a challengeswe'must meet if we are to accurately quantify diversity change oarteée pMany
landscapesre mosaics of habitats that have been subjected to both direct and itdinegn
influences. Farm fields ourban areahave experienced direct human influence where much
plant and‘animal life have been destroyed and replaced with lower diversity land ¢divide.

such area$ can harbpopulations of functionally important species (Wolters et al. 200@),
direct effects that people have loical biodiversity through habitat desction or conversion are
typically negative. In contrashddjacentabitat fagmentdave not been destroyed, and represent
areas whereshumans maycrease specieschness (e.g., species intiuctions) ordecrease
richness «(ewgw fragmentatiorpollution, see Haddad et al. 201%nd alter community
composition(Wardle et al. 2011)Future efforts to quantify changes in local biodiversity must
simultaneously account for the direct effects that people have on biodivérsibgh habitat
destructionomeonversionand the indirect effectéoth positive andhegdive) humans have on
remaining.0k fecovering habitats. Only by simultaneously considering both the direct and
indirect causes of biodiversity change on a landscapewellbe able toprovide accurate

estimatessofilecal biodiversity change.
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696  SUPPORTINGINFORMATION

697  Appendix SkDetailed methods and additional results are given for the analysies spatial

698 representation of the datasatsl the findings of the simulations analyzing time series durBt®bRE

699 LEGENDS

700 Figure L==Spatial bias of the Vellend et al. (2013) and Dornelas et al. (2014) data syntheses. On
701 the left ‘are the maps (with sources) used to represent the global tmtsbaf terrestrial

702  vascular plant richness, human impacts on forest dpwezls classified as loss, gain or loss and
703 gain in forest.eover by Hansen et al. 208de Fig. S1 for other human impacts on terrestrial
704  ecosystems)marine species richness, ahdman impacts on the oceans. On thaxis

705 Hellinger's distancey quantifies the amount of spatial basis in any collection of sampling sites
706 relative to the global map. The box plots in the middle of the figure show the distribut@bn of

707  values for 100Gandom collections of samples where the number of samples in that collection
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equals the number of stydites used in the Vellend et al. (terrestrial) or Danel al. (marine)
syntheses. Any randomly sampled, spatially representative sample of Earth’s diversity, or of
human impacts on Earth’s ecosystems, should fall within the expected distribgiven by the
box plots. Hellinger distanseshowing actual spatial bias of terrestrial systems for studies

collated by Vellend et al. and Dornelas et a. sttown with green and blue stars, respectively.

Figure 2.-Sources of spatial bias in the Vellend et alCjAand Dornelas et al. {B) data
syntheses: Panels A and D show kernel density maps illustrating the primary clusters of study
locations used.in the Vellend &t terrestrial (A), and Dornedeet al. marine (D) syntheses. The
y-axis in panels B, C, E, and F all show the log ratio representing the number of obsesved site
included in the synthesis relative to the number of sites that would betekpgecoccur in a
random sampl&om an aredhat is proportional to the area of (B) different Olsen biomes on the
land surface of/the planet, (C) categories of {asé change in the Hansen Forest Cover Change
map, (E) thesworld’s major oceanic systems, and (F) categories reprgsanteasing numbers

of anthropogenic stressors from the Halpern et al. (2008) map of human impacts on ocgans. A
log ratio y > 0, indicates that the category on thaxis s represented’emore in the data
synthesis than should be based on a random and proportional sampling effort. Any log ratio y
< 0 indicatéssthat the category on thaxis is represented’dess than it should be based on a
randomy propertional sampling effort. 1 = Tropical & Subtropical Moist BesddForests, 2 =
Tropical & Subtropical Dry Broadleaf Forests, 4 = Temperate Broadleaf & Mixed Forests, 5 =
TemperaterConiferous Forests, 6 = Boreal Forests, 7 = Tropical & Subtropical Grasslands &
Savannas & Shrublands, 8 = Temperate Grasslands & Sav&n8asublands, 9 = Flooded
Grasslands & Savannas, 10 = Montane Grasslands & Shrublands, 11 = Tundra, 12 =
Mediterranean Forests & Woodlands & Scrub, 13 = Deserts & Xeric Shrublands.

Figure 3.Plotting effect sizer(SR,/SR) as a function of duration reveals a significant negative
relationship*fora) Vellendet al.(2013)and b) Dornelast al.(2014)datasetsSee main text for
statistical effects of duration

Figure 4:«Effects of referencstateon estimates of species logg. Two hypothetical time series

of species richness for a disturbed and reference (undisturbed) stentparison of disturbed

with reference site usingRR, IN(SRyisturbed SRreferencd at each time point in the seri@helLRR

is consistently negative because the disturbed site always maintaies sigeciesthan the
reference siteC) Comparison of the final point at the disturbed site with all previous time points
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at the disturbed site usindRR, IN(SRina/SRy), for t-1, t-2, ... £25. The series of LRR values is
positive formostof the comparisons with the past, capturing recowéspecies richness

Figure 5.Re-analysis of the data frovellend et al.The original dataset includgttwo types of
studies- those showing how local richnessaf$ectedby some driveri(npac) and those focused
on how richness recovers following effectsaodiriver (ecovery. We reanalyzed effect sizes in
the Vellend et'al=dataset (th&R of mean richness in final vs. initial surveys) using a mixed
model ANOVA with ‘STUDY” included as a random effect and observations weightequayes
root of sample.size (as the authors didje effect sizes arealculated using both types of studies

and with studis’assessing direct impact only.
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