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Abstract: Global species extinction rates are orders of magnitude above the background rate 31 

documented in the fossil record. However, recent data syntheses have found mixed evidence for 32 

patterns of net species loss at local spatial scales. For example, two recent data meta-analyses 33 

have found that species richness is decreasing in some locations and is increasing in others.  34 

When these trends are combined, these papers argued there has been no net change in species 35 

richness, and suggested this pattern is globally representative of biodiversity change at local 36 

scales. Here we re-analyze results of these data syntheses and outline why this conclusion is 37 

unfounded. First, we show the datasets collated for these syntheses are spatially biased and not 38 

representative of the spatial distribution of species richness or the distribution of many primary 39 

drivers of biodiversity change.  This casts doubt that their results are representative of global 40 

patterns. Second, we argue that detecting the trend in local species richness is very difficult with 41 

short time series and can lead to biased estimates of change. Re-analyses of the data detected a 42 

signal of study duration on biodiversity change, indicating net biodiversity loss is most apparent 43 

in studies of longer duration. Third, estimates of species richness change can be biased if species 44 

gains during post-disturbance recovery are included without also including species losses that 45 

occurred during the disturbance. Net species gains or losses should be assessed with respect to 46 

common baselines or reference communities. Ultimately, we need a globally coordinated effort 47 

to monitor biodiversity so that we can estimate and attribute human impacts as causes of 48 

biodiversity change. A combination of technologies will be needed to produce regularly updated 49 

global datasets of local biodiversity change to guide future policy.  At this time the conclusion 50 

that there is no net change in local species richness is not the consensus state of knowledge. 51 

Keywords: Anthropocene, biodiversity monitoring, species richness, meta-analysis, extinction, 52 

invasion, time series, baselines 53 

INTRODUCTION 54 

Humans are affecting the abundance and distribution of species across the planet, and these 55 

impacts are projected to increase in the 21st century (Pereira et al. 2010, Pimm et al. 2014). As 56 

much as 50% of the Earth’s ice-free land surface has been transformed into agriculture and urban 57 

land cover (Ellis and Ramankutty 2008), one third of all forest has been cleared and most of the 58 

rest is fragmented (Haddad et al. 2015), the ocean is heavily impacted (Halpern et al. 2008), and 59 

virtually all land has been affected by pollution and climate change.  Since 1600, an estimated 60 

906 known species have gone extinct globally (IUCN 2015).  While this represents a small 61 
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fraction of the world’s eight or more million species of eukaryotes (Mora et al. 2011), the rate of 62 

extinction (>900 species in ca. 400 years) is 100-1000 times the historical rate in the fossil record 63 

(Pimm et al. 2014, Ceballos et al. 2015).  Moreover, more than 20,000 species are now 64 

threatened with extinction - a number that has doubled since 2000 (IUCN 2015). Uncertainty 65 

exists about the rate of global extinction due to incomplete sampling and identification of most 66 

of the remaining biodiversity on Earth (Regnier et al. 2015), the time lag between human impacts 67 

and extinction (Gilbert and Levine 2013, Essl et al. 2015a), and the extent to which extinctions 68 

might be offset by speciation (Thomas 2013).  Even so, consensus has emerged that Earth is in 69 

the midst of an exceptional global extinction event that is unprecedented in the history of human 70 

life (Pereira et al. 2010, Pimm et al. 2014, Ceballos et al. 2015, Regnier et al. 2015.) 71 

Despite the consensus that we are losing species at the global scale, there is an emerging 72 

and important debate about how biodiversity is changing at any particular location on the planet 73 

where the spatial grain is typically less <1 km2. Many previous studies of biodiversity change 74 

have used spatial grains much larger than 1 km2

Alongside evidence of local biodiversity loss, however, a number of papers have shown 89 

that human impacts can also increase diversity at sub-global scales (Stohlgren et al. 1999, Sax et 90 

al., 2002, McKinney 2008, Ellis et al. 2012, Elahi et al. 2015). The success of some species in 91 

human-dominated landscapes (Aronson et al. 2014), increases in local diversity due to 92 

. The prevailing view is that human activities are 75 

increasing rates of local extinction (Davies et al. 2006), and that the cumulative effect of 76 

increased local extinction rates is responsible for global trends. Indirect inferences about global 77 

trends in biodiversity at local scales are derived from estimates of change based on relationships 78 

between suitable habitat area and endemic diversity (e.g. Jetz et al. 2007). These estimates 79 

predict that endemic species richness will decline as a power function of habitat area and 80 

fragmentation (e.g. Hanski et al. 2013), or shifts in suitable climate niche (Burrows et al. 2014). 81 

Direct evidence for local biodiversity loss comes from syntheses of site-based studies where 82 

variation in species richness is explained by a gradient of human impact (e.g., urbanization, 83 

pollution, and agricultural expansion), while controlling for endemic levels of variation. This 84 

method shows that these human drivers can reduce species richness at local scales (Pautasso 85 

2007, McKinney 2008, Aronson et al. 2014, Newbold et al. 2015). An alternative approach 86 

avoids a space for time substitution and estimates the temporal trends in species richness across 87 

gradients of human impact and spatial scales (e.g., Harrison et al. 2015).  88 A
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disturbance (DeVictor and Robert 2009), and the spread of exotic species (e.g., Bruno et al. 93 

2004) are all examples. When these additions match or outpace the rate of local species 94 

extinctions, then diversity in any particular location can stay the same (Byrnes et al. 2007), 95 

increase (Sax et al. 2002, Elahi et al. 2015), or show high rates of species turnover (Dornelas et 96 

al. 2014).  97 

While there is growing recognition that human activities may either increase or decrease 98 

local biodiversity, the data have generally been insufficient to quantify long-term trends in 99 

biodiversity change at local scales throughout the world, and to reconcile them with global 100 

estimates of species loss. To address this data gap, several recent studies have collated datasets 101 

that provide direct estimates of biodiversity change through time at local scales (e.g., Vellend et 102 

al. 2013, Hudson et al. 2014, Dornelas et al. 2014, Elahi et al. 2015, Newbold et al. 2015). 103 

Among these, two data syntheses have reached the conclusion that there is no evidence for 104 

systematic declines in species richness at local scales and claimed that their conclusions are 105 

globally representative of what is happening to species richness at local spatial scales (Vellend et 106 

al. 2013, Dornelas et al. 2014). Here we challenge the conclusions of these two syntheses on 107 

three grounds: (1) we present new analyses showing the datasets assembled for these syntheses 108 

exhibit extreme spatial bias, and are not globally representative of species richness or human 109 

impacts on ecosystems that influence biodiversity; (2) we re-analyze these data and detect a 110 

signal of study duration on biodiversity change, indicating net biodiversity loss is most apparent 111 

in studies of longer duration. Ancillary simulations show that trends estimated with short time 112 

series can be biased and lack statistical power to detect a trend; (3) we show why a lack of 113 

appropriate historical baselines or spatial references precludes these studies from accurately 114 

characterizing species richness change due to humans.  After laying out our critique, we reflect 115 

on some lessons learned from these syntheses, and describe new challenges in accurately 116 

quantifying changes in biodiversity on this planet. 117 

 118 

THREE ESSENTIAL CONSIDERATIONS IN ASSESSMENTS OF LOCAL BIODIVERSITY 119 

CHANGE 120 

The synthesis completed by Vellend et al. (2013) focused on patterns of biodiversity change in 121 

terrestrial vascular plants, and claimed to be “a systematic global meta-analysis of plant species 122 

diversity change over time in >16,000 plots from all major vegetation types, including areas 123 
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under profound and direct human influence.”  Data used for this synthesis came from 346 124 

existing studies that had monitored >16,000 non-experimental, ‘local-scale’ vegetation plots for 125 

anywhere between 5 and 261 years. Vellend et al. (2013) summarized these time-series by 126 

calculating log response ratios (LRR) that quantified the proportional change in plant species 127 

richness from the initial to final year of the study, and divided LRR by the number of decades to 128 

arrive at a proportional rate of species loss.  The synthesis completed by Dornelas et al. (2014) 129 

collated data from scientific papers and publicly available databases that: (1) had time-series of > 130 

3 years, (2) used consistent sampling methodology, and (3) reported abundance estimates for all 131 

species in samples.  Their final dataset was comprised of 100 time-series representing 35,613 132 

species of mammals, birds, fishes, invertebrates, and plants measured at sites and along marine 133 

transects including 430,324 latitude and longitude coordinates.  Although the synthesis claimed 134 

to cover marine, freshwater, and terrestrial systems, the vast majority of data points included in 135 

Dornelas et al. (2014) were from marine systems, primarily from cruises that had monitored 136 

plankton, or from seabird, fish, and cetacean monitoring programs.  In this section we raise three 137 

criticisms of these two data syntheses that call into questions their primary conclusions about 138 

local change in species richness.  139 

 140 

1. Existing time-series of biodiversity are a spatially biased representation of Earth’s diversity, 141 

and the anthropogenic drivers that cause diversity change.  142 

The datasets collated by Vellend et al. (2013) and Dornelas et al. (2014) included a large 143 

number of observations taken from many locations around the globe over multiple decades.  144 

However, as is true for most syntheses of existing data, they represented an opportunistic 145 

collection of studies that were designed for a wide variety of purposes.  The choice of which 146 

studies to include in these syntheses was not guided by a geographically explicit sampling design.  147 

The authors assembled any and all time-series they could find that matched their search criteria 148 

in which someone, somewhere, had repeated measures of species richness at the same site for 149 

any purpose. The key question in this case is whether the data collated for these syntheses are 150 

sufficiently representative of the global distribution of species richness or human impacts on 151 

ecosystems such that they are broadly representative of what is happening locally to species 152 

richness around the globe. 153 
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To assess how well the Vellend et al. (2013) and Dornelas et al. (2014) syntheses capture 154 

a globally representative sample of species richness and human impacts on ecosystems, we 155 

quantified spatial bias in these datasets.  We began by locating existing maps of species richness 156 

and human impacts on ecosystems that represent the most spatially resolved information 157 

available at a global scale (see Fig. 1, and Table S1 in Supplemental Material).  For marine 158 

biodiversity, we used the United Nations Environmental Programme World Conservation 159 

Monitoring Centre’s map of global marine biodiversity (Tittensor et al. 2010).  For terrestrial 160 

plant biodiversity, we used the global map of vascular plant species richness published by Kreft 161 

and Jetz (2007, their Fig. 3d).  For human impacts on the oceans, we used the Halpern et al. 162 

(2008) global map of human impacts on marine ecosystems, which tallies the number of 163 

anthropogenic stressors being imposed on oceans as a metric of cumulative impact.  For human 164 

impacts on land, we used the Hansen Forest Cover Change dataset, which has utilized Landsat 165 

images since 2000 to quantify the extent and conversion of forested habitats globally (Hansen et 166 

al. 2013).  In addition to forest cover change, we compared the Vellend et al. (2013) dataset to 167 

the HYDE 3.1 database (Goldewijk et al. 2010) that quantifies conversion of Earth’s land surface 168 

to agricultural or pastoral habitat, and a map of the Human Global Influence Index (Goldewijk et 169 

al. 2010) that quantifies human built infrastructure like cities and roads.  It is important to be 170 

clear that none of these maps of human impact on the world’s terrestrial or marine environments 171 

were specifically designed to quantify impacts on biodiversity per se.  As such, conclusions 172 

drawn from these maps are only as good as the assumption that they accurately portray human 173 

impacts on biodiversity.  Nevertheless, we use these maps because they are presently some of the 174 

most comprehensive, and spatially-resolved approximations of human stressors being imposed 175 

on the world’s ecosystems. 176 

For each of the terrestrial and marine maps used in our analysis (see Fig. 1), we randomly 177 

sampled N locations across the globe, where N was equal to the number of sites that were 178 

collated for use in the Vellend et al. (2013) synthesis (or 10,000 points for the Dornelas et al. 179 

(2014) synthesis: see Supplemental Material for justification).  For each random sample of N 180 

locations, we quantified the amount of spatial bias in those locations using Hellinger’s distance d 181 

(Schmill et al. 2014, supplemental material).  As N becomes increasingly large and approaches 182 

the sampling of every location L (a pixel on a map), there is no spatial bias in a sample and d 183 

becomes zero because the map has been exhaustively sampled.  However, because N is always 184 
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less than L, even a random sampling of N points will have some spatial bias associated with that 185 

sample.  By performing this random sampling effort 1000 times for each map, we generated 186 

expected distributions that represent the amount of spatial bias one would expect to occur for a 187 

sample composed of N studies, but where those studies were chosen in an unbiased manner, with 188 

regard to species richness or human impact across space (further details of the analyses are given 189 

in Supplemental Material).  Any random, spatially representative sample of Earth’s diversity, or 190 

of human impacts on Earth’s ecosystems, should fall within these expected distributions (Fig. 1).   191 

The studies collated for both the Vellend et al. (2013) and Dornelas et al. (2014) 192 

syntheses fell well outside the distributions generated from representative sampling, with values 193 

of Hellinger’s d that were indicative of extreme spatial biases (Fig. 1).  The collection of studies 194 

collated by Vellend et al. (2013) was eight standard deviations outside the mean of a spatially 195 

representative sample of terrestrial vascular plant richness, and 12 standard deviations from the 196 

mean of a representative sample of forest cover change.  Comparison of the Vellend et al. (2013) 197 

dataset to global maps of land converted to cropland/pasture habitat, or converted to human 198 

infrastructure similarly revealed biases ranging from 18 to 27 standard deviations from a 199 

representative sample (see Supplemental Material, Fig. S1).  The causes of these spatial biases 200 

are obvious from looking at a kernel density map showing the geographic concentration of 201 

studies included in the Vellend et al. (2013) synthesis (Fig. 2a).  The vast majority of studies 202 

included in the Vellend et al. (2013) synthesis were performed in the United States and the 203 

European Union – a set of developed countries that have historically had stronger than average 204 

financial support for biological and environmental science programs.  Given the predominance 205 

of data from these two regions of the globe, temperate forests, temperate grasslands, and 206 

Mediterranean forests and woodlands were over-represented by as much as e1.60 = 5 times their 207 

proportional area of Earth’s terrestrial land surface relative to all other terrestrial vegetated 208 

habitats (Fig. 2b).  In contrast, tropical biomes that harbor the greatest terrestrial biodiversity, but 209 

where monitoring programs are rare, were under-represented by as much as e-2.46

Studies collated for the Vellend et al. (2013) synthesis also under-represented areas of the 213 

planet that have been most heavily impacted by humans through forest clear-cutting (Fig. 2c).  214 

The ‘loss’ category from the Hansen forest cover change map was under-represented by e

 = 0.09 times 210 

their proportional area of Earth’s terrestrial land surface (Fig. 2b).  Boreal forests, deserts, and 211 

tundra were also under-represented. 212 

-0.47 = 215 
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0.6 times of the areal representation on Earth, of which, 32% occurs in the tropics where Vellend 216 

et al. (2013) had little data.  In contrast, the Vellend et al. (2013) synthesis over-represented areas 217 

where forests are now recovering after logging or natural disaster by e0.52 

The potential implications of these spatial biases for estimating changes in biodiversity 224 

are made more obvious by taking a closer look at a particular case study.  The inset in Fig. 2a 225 

shows the location of Dalby Söderskog National Park in Sweden, which represents a 0.36 226 

km

=1.7 times the areal 218 

coverage of these habitats (Fig. 2C, gain), and over-represented the loss-and-gain category that 219 

generally describes areas of high-intensity, short-cycle forestry (Hansen et al. 2013).  This latter 220 

category (loss + gain), which is common in the southeastern United States, represents only 221 

0.14% of the total land area on the planet; yet the number of pixels in this category within the 222 

Vellend et al. (2013) dataset was 3.7 times greater than a representative sample.   223 

2 

 The data collated for the Dornelas et al. (2014) synthesis were even more spatially biased, 237 

lying 41 standard deviations outside the mean of a spatially representative sample of marine 238 

species richness, and 32 standard deviations from the mean of a representative sample of human 239 

impacts on the world’s oceans.  Although the Dornelas et al. (2014) synthesis was based on 240 

samples taken at >430,000 latitude-longitude coordinates, a kernel density map of geographic 241 

locations shows that the vast majority of sampling sites stemmed from cruises in the Northern 242 

Atlantic ocean along the coasts of the United States and Europe and, to a lesser extent, from 243 

cruises departing from Australia to study the Antarctic shelf (Fig. 2d).  As a result, the North 244 

Atlantic was over-represented in the dataset by e

forest fragment in a landscape where nearly all of the historical forest has been converted to 227 

agricultural or urban cover.  The time-series included in the Vellend et al. synthesis was from a 228 

study that had documented a loss of ~3 species in this forest fragment over a period of 69 years. 229 

Vellend et al. (2013) explicitly excluded from their study any sites with direct land-use 230 

conversion such as clear-cutting and conversion to urban and agricultural habitat, arguing that in 231 

such cases "any effect of a change in the number of species on ecosystem function will be 232 

negligible compared with the effects of other changes…[on ecosystem function]" (Vellend et al. 233 

2013). However, failure to consider diversity change in the majority of a landscape where most 234 

of the habitat has been destroyed invalidates one of the main conclusions of this synthesis: that 235 

plant biodiversity is not generally declining at local spatial scales.  236 

-1.55 = 4.7 times (Fig. 2e).  In contrast, there was 245 

little representation of data from the North or South Pacific, the Indian Ocean, or the Arctic 246 
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Ocean, all of which were represented by 50% less than they should have been given their 247 

proportional surface area of the planet.  Thus, the Dornelas et al. (2014) dataset was only 248 

representative of one of the world’s major oceans, and had almost no data from those areas that 249 

rank among the most diverse marine habitats on Earth (e.g., the Indo-Pacific and Indian oceans).  250 

The Dornelas et al. (2014) dataset did, however, over-represent marine habitats where Halpern et 251 

al. (2008) suggest the cumulative number of anthropogenic stressors is the highest.  This 252 

representation is perhaps not unexpected given the preponderance of sampling sites along the 253 

coastal U.S. and Europe where human impacts on marine ecosystems are most well documented. 254 

The lack of a decline in richness despite heavy representation from impacted areas is interesting 255 

and unexpected. Potential reasons for local increases include species invasions, recovery from 256 

historical overfishing, indirect effects of overfishing on lower trophic levels, or climate warming. 257 

Thus a more in depth investigation of these individual drivers, rather than just a cumulative 258 

impact score, is warranted. 259 

Our analyses show that the datasets collated and analyzed by Vellend et al. (2013) and 260 

Dornelas et al. (2014) are not spatially representative of species diversity or human impacts on 261 

land or in the oceans.  The extreme spatial bias of these datasets means that the inferences 262 

Vellend et al. (2013) and Dornelas et al. (2014) made from their data to the rest of the globe are 263 

unfounded (EPA 2002).  Their conclusions are limited to a select subset of well-studied locations 264 

on the planet, namely the U.S., Europe and, to a lesser extent, the Antarctic shelf.  Furthermore, 265 

for both data syntheses, the authors assembled data that under represent areas of the planet that 266 

are undergoing major land use transitions (e.g., current deforestation, conversion to agricultural 267 

or urban habitats, loss of coral reefs). Finally, for the Vellend et al. (2013) synthesis, terrestrial 268 

habitats that are in recovery from past deforestation or managed for timber harvest followed by 269 

succession are highly over-represented.  This suggests their conclusions may be more 270 

representative of the accrual of species in successional or recovering ecosystems, than of the loss 271 

species resulting from human impacts on the original system. 272 

2. Estimates of biodiversity change are systematically biased when syntheses are based on 273 

datasets composed primarily of short time series.  274 

Vellend et al. (2013) and Dornelas et al. (2014) found no average trend in local biodiversity 275 

when time series were pooled from many geographical regions, ecosystem types and taxonomic 276 

groups. However, short time series have low power to detect a trend and can produce biased 277 
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estimates of the trend itself if the time series are nonlinear and non-stationary (Bence 1995, 278 

Peters et al. 2008, Mengersen et al. 2013). In Supporting Information, we show through 279 

simulation that LRR (used by Vellend et al. 2013) and regression (used by Dornelas et al. 2014) 280 

on short time series inadequately estimate a known trend of declining richness (Fig. S2 and S3). 281 

Crucially, we show that meta-analytic datasets dominated by short time-series have potential to 282 

bias conclusions, and longer duration time series provide the most reliable estimates of the 283 

known underlying temporal trend in biodiversity.  These results lead us to re-analyze the data of 284 

both Vellend et al. and Dornelas et al. to look at how their conclusions may have been influenced 285 

by the duration of the studies they collated. 286 

Re-analysis of the effect of duration  287 

Vellend et al. (2013) and Dornelas et al. (2014) considered the importance of study duration in 288 

their analyses, but both concluded that study duration had no effect on mean local biodiversity 289 

change, even though the datasets contained few time series greater than 50-years. Vellend et al. 290 

(2013) calculated a rate of biodiversity change by dividing the effect size by duration (Effect 291 

Size = ln(SRt2/SRt1)/duration). Including duration in the denominator, rather than as a covariate 292 

of the log ratio can reduce the power to detect an effect. To re-evaluate the possibility that longer 293 

duration time series are more likely to reveal trends in species diversity, we reanalyzed data in 294 

Vellend et al. (2013) and Dornelas et al. (2014) with linear mixed models using study duration as 295 

a predictor of local biodiversity change.  Biodiversity change was measured as the log ratio of 296 

species richness at the end versus beginning of each data set (Effect Size = ln(SRt2/SRt1)), 297 

consistent with Vellend et al (2013) because only first and last estimates are available. We used 298 

duration (number of years of the study) so that our estimates of the duration coefficient would be 299 

directly comparable to the results of the models in Vellend et al. (2013) and Dornelas et al. 300 

(2014). Evaluation of residuals and leverage suggested no need to log transform duration. For the 301 

Vellend et al. data a linear mixed model with a random effect of duration (slope) and intercept 302 

revealed a negative relation between biodiversity change and time series duration (Fig. 3a; slope 303 

= -0.004 se = 0.002, P = 0.04) with 4% species loss observed after 10 years, and an average 17% 304 

loss after 50 years. Analysis of the Dornelas et al (2014) data using log ratios (rather than fitting 305 

a linear regression, as done originally) reveals a stronger negative relationship between 306 

biodiversity change and study duration (Fig. 3b; slope = -0.01 se = 0.005, P = 0.01, reflecting, on 307 

average, a decline of 10% after 10 years and 40% loss after 50 years. In our re-analysis, this 308 
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relationship is sensitive to the inclusion of its longest datasets, potentially reflecting a drawback 309 

of using the log-ratio approach to detect change.  The net effect of incorporating study duration 310 

into an analysis of richness change in these data sets suggests that species richness may, on 311 

average, be declining, with 4-10% loss after 10 years and 18-40% loss after 50 years.  312 

Why should longer time series suggest systematic diversity loss while shorter studies do not? 313 

In addition to the statistical issues outlined above, one potential biological reason that species 314 

loss may only be detected in multi-decade time-series is that local extinctions can be delayed and 315 

occur very slowly especially in remnant ecosystems experiencing the legacies of direct and 316 

indirect human impacts (Essl et al. 2015b; Haddad et al. 2015). Because of extinction lags, short 317 

duration surveys are unlikely to reveal a signal of loss against a background of local colonization 318 

and extinction events, if the survey occurred before the extinction debts have been realized. In 319 

fact, empirical analyses of extinction debts have shown that they may take more than a century to 320 

detect (e.g., Dullinger et al. 2013, Gilbert and Levine 2013, Essl et al. 2015b). We suggest, 321 

therefore, that study duration should be an important feature of study design for the estimation of 322 

local biodiversity loss in future meta-analyses. More data, especially longer time series, are 323 

required to reveal trends that are hidden because they occur slowly or because there is a time lag 324 

years after their causes (Magnuson 1990). 325 

 326 

3. Estimates of biodiversity change can be biased if species gains during post-disturbance 327 

recovery are included without also including species losses that occurred during the disturbance. 328 

Net species change should be assessed with respect to a historical baseline or spatial reference 329 

communities. 330 

Recent meta-analyses have inconsistent results partly because changes in biodiversity have been 331 

defined and measured against different baselines. In earlier studies finding that anthropogenic 332 

disturbances tend to decrease local biodiversity (Benayas et al. 2009; Jones & Schmitz 2009; 333 

Murphy & Romanuk 2013), changes in biodiversity were measured against a common baseline: 334 

levels of local biodiversity observed in intact ecosystems, with minimal human disturbance. In 335 

contrast, recent meta-analyses of time series (Vellend et al. 2013; Dornelas et al. 2014, Elahi et al 336 

2015) have measured changes in biodiversity against levels of local biodiversity observed at 337 

earlier points in time, when ecosystems might have been more or less disturbed by people than 338 

during recent observations. These two approaches will yield not only quantitatively different 339 
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results, but also qualitatively different results; net species losses measured against a mostly 340 

undisturbed baseline can appear as species gains when measured against a highly disturbed 341 

baseline. Consider the case where a disturbance causes biodiversity loss, and then relaxation of 342 

this disturbance results in recovery of biodiversity, as observed in hundreds of previous studies 343 

(Fig. 4; Benayas et al. 2009, Jones & Schmitz 2009). The former approach, which uses remnant 344 

ecosystems as a spatial reference site (Fig 4b), would only conclude the recovery to result in net 345 

species gains if there are more species gains during recovery than there were species losses 346 

during the disturbance. In contrast, the latter approach (Fig 4c) would see all species gains that 347 

occurred during recovery as net species gains if the time series started after the disturbance 348 

occurred.  349 

The syntheses by Vellend et al. (2013) mixed studies where biodiversity was recovering from 350 

a recent disturbance (e.g., recovery of diversity on Mount St. Helens after a volcanic eruption) 351 

with longer time series documenting how biodiversity changes in response to a human 352 

perturbation. For example, Vellend et al. (2013) combined studies of the immediate response of 353 

biodiversity to disturbance by fire, grazing, and other forms of disturbance, with studies of long-354 

term biodiversity recovery from disturbance by the same factors. We re-analyzed the responses 355 

to disturbance in Vellend et al. (2013) to assess this effect (Fig. 5). With all studies included 356 

(those focused on both impacts and recovery), results were consistent with the original paper 357 

showing no net change in local richness (± 95% CI, t = 0.19, P = 0.85). However, when we 358 

eliminated categories of ‘post-disturbance’, ‘post-fire’, and ‘cessation of grazing’, the 359 

distribution of effect sizes was significantly negative (t = -2.15, P = 0.03) with a 95% confidence 360 

interval of e-0.12 to e-0.005 (1-11% species loss), and comparable in magnitude to other meta-361 

analyses of local diversity change focused on impact (Newbold et al. 2015). It is noteworthy that 362 

species richness was also dependent on the duration of the driver impact, with richness declining 363 

by an additional 5% decade-1 (t = -3.19, P < 0.01). Dornelas et al. (2014) only had a few 364 

terrestrial studies in their dataset, but for these, they reported a significant increase in terrestrial 365 

plant diversity over time. However, monotonic increases in plant diversity were obtained from a 366 

single study, where plant species richness is in succession after deforestation (Isbell et al. 2015). 367 

Dornelas et al. (2014) did not provide information on which marine time series were taken from 368 

sites where biodiversity was recovering from recent disturbance.  Re-analysis of this question in 369 

the future would be valuable. 370 
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 371 

DISCUSSION 372 

Vellend et al. (2013) and Dornelas et al. (2014) find evidence that local diversity is showing 373 

increasing and decreasing trends through time at many sites around the world. In this paper we 374 

have critiqued the conclusion that globally there is no net loss of local species richness. We have 375 

argued that this claim is unfounded for at least three reasons.  First, both syntheses were based on 376 

collations of studies that exhibit substantial spatial bias in their geographic locations, and are 377 

representative of neither patterns of biodiversity variation across the planet, nor of variation in 378 

degrees of human impact on ecosystems. Second, the datasets used in both syntheses are 379 

composed of predominantly short time series that are inadequate for reliably estimating changes 380 

in biodiversity through time (see point three below). Our re-analyses of these datasets showed 381 

that longer monitoring programs are more likely to find species loss, which is consistent with our 382 

understanding that biodiversity loss can unfold over decades (Tilman et al. 1994, Essl et al. 383 

2015a). Third, data syntheses that mix data from communities that are responding to disturbance 384 

with those recovering from a disturbance require adequate baselines, and, ideally, reference sites, 385 

to make robust conclusions about net biodiversity change due to humans. Neither synthesis 386 

considered appropriate baselines or reference sites for diversity change.  We echo recent calls for 387 

greater care when conducting meta-analysis (Whittaker 2010). Biodiversity data are relatively 388 

easy to acquire from the literature but conclusions from meta-analyses are only as sound as the 389 

comparisons that are made. Our analyses suggest that neither synthesis provides sufficiently 390 

reliable information to establish globally how much local biodiversity has changed through time 391 

in the context of human activities.  392 

Aside from our own criticisms of Vellend et al. (2013) and Dornelas et al. (2014), we have 393 

pointed out that their conclusions of no net loss of species richness at local scales lie at odds with 394 

conclusions reached by other recent data syntheses.  Newbold et al. (2015) quantified changes in 395 

biodiversity in 380 datasets that allowed an impacted habitat to be explicitly compared with a 396 

spatial reference that served as a control.  These authors found that on average 76% of species 397 

have been lost in the worst affected terrestrial habitats on Earth, and an average 14% have been 398 

lost across all habitats for which data are available.  Murphy and Romanuk (2013) performed an 399 

independent meta-analysis that compared species richness in 327 heavily disturbed to less 400 

disturbed habitats and found that human-mediated disturbances have reduced native species 401 
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richness by an average 18%.  Pautasso (2007) found the correlation between human population 402 

size and plant and animal species richness varied between -0.90 and +0.90, with an average 403 

correlation near zero (+0.08).  However, Pautasso (2007) went on to show that the correlation 404 

was systematically negative for local scales (study grains < 1-km, and study extents < 10 000 405 

km2

Despite these conflicting results and past criticisms (

), consistent with human-induced losses of biodiversity at local scales.  While these other 406 

data syntheses have their own limitations (e.g. use generic measures of impact, ignore climate 407 

change, count native species only), they present a very different picture of how biodiversity is 408 

changing at the local scale than did Vellend et al. (2013) or Dornelas et al. (2014).   409 

Cardinale 2014, Isbell et al. 2015), 410 

McGill et al. (2015) recently claimed:  “There is considerable empirical evidence that continental 411 

biodiversity at regional or local scales is also holding steady or increasing … recent analyses that 412 

collectively assembled published data from hundreds of biodiversity inventory studies found that 413 

local diversity is, on average, constant.” This statement does not reflect the balance of evidence 414 

on local biodiversity change in the Anthropocene, and is one side of a debate that not only has 415 

yet to be resolved, but which has the potential to influence the support of policy-makers for 416 

conservation, strategies used by managers to preserve or restore biodiversity, and the priorities 417 

set by funding agencies and journals.  Because the conservation stakes of this debate are high, we 418 

would like to highlight three lessons that we have taken from recent attempts to quantify 419 

biodiversity change.  420 

A Caution – One important lesson from the controversy surrounding recent syntheses and how 421 

the finding of no net change has been interpreted is that care must be taken to uphold the long-422 

held scientific value of not extending conclusions beyond what can be robustly supported by data. 423 

At this time, the balance of data and scientific understanding of biodiversity change in recent 424 

decades do not support a conclusion of no net change in biodiversity. We are concerned that the 425 

reported conclusions to that effect could be misconstrued in the context of conservation policies 426 

when, as we argue here, the evidence is not sufficiently convincing to generate a majority view 427 

among experts in the field.  428 

 A striking example of overextending conclusions from meta-analysis is apparent in 429 

Vellend et al. (2013), who framed their paper as a critique of biodiversity and ecosystem 430 

functioning research. Their finding of no net change in local diversity was used to argue that “the 431 

clear lack of any general tendency for plant biodiversity to decline at small scales in nature 432 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

directly contradicts the key assumption linking experimental results to ecosystem function as a 433 

motivation for biodiversity conservation in nature” (Vellend et al. 2013). This argument is 434 

illogical, however, because it confuses variables and spatial scales. Vellend et al. (2013) pooled 435 

studies of changing species richness (variable Y) across a disparate set of sites and taxonomic 436 

groups that underwent gains and losses in local biodiversity due to opposing processes (variables 437 

X i

Unequivocal inference about the cause of biodiversity changes requires experiments that 447 

control the degree of human impact (e.g. Haddad et al. 2015). The meta-analyses of Vellend et al. 448 

(2013) and Dornelas et al. (2014) did not include data from controlled experiments. Whole-449 

ecosystem manipulations with Before-After Control-Impact (BACI) analyses and their 450 

extensions (Underwood 1994) are designed to deal with the difficulties of detecting change and 451 

attributing the cause of change when short time-series are obtained from unreplicated systems. 452 

Rather than ignore experimental evidence, it should be an essential part of meta-analytic 453 

approaches to defining the expectations for the sign and magnitude of local biodiversity change.  454 

); decreases in biodiversity following perturbations (e.g. fires, grazing, volcanic eruption) and 438 

increases in biodiversity as communities were recovering from perturbations. First, finding no 439 

average change over these times series is not evidence that local biodiversity change does not 440 

affect a third local variable (Z)—ecosystem functioning—which was not measured or included in 441 

their dataset. Second, it is not the global average of these changes that matter for many 442 

ecosystem properties, which are driven by the species present in the local communities. BEF 443 

experiments control levels of species richness because they change locally for many reasons 444 

(Wardle et al. 2011) – as is clear from the distribution of response ratios in the Vellend et al. 445 

(2013) dataset.  446 

Studies quantifying biodiversity change must consider alternate explanations and 455 

acknowledge the limitations of analyses and datasets (e.g., spatial biases, statistical power) as 456 

they pertain to the conclusions drawn. This critical scientific exchange can be difficult to 457 

accomplish, particularly in general science journals where space is limited. Even so, the potential 458 

legacies of scientific conclusions for public beliefs and conservation-related political decisions 459 

impart an additional pressure on researchers’ presentation of their findings (Mouquet et al. 2015), 460 

particularly for controversial topics where data are incomplete, debate is ongoing, and the 461 

balance of evidence is not yet clear. 462 

 463 
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A Need - Second, our re-analysis of the Vellend et al. (2013) and Dornelas et al. (2014) syntheses 464 

suggests that, even though we have an abundance of time-series data, this collection of datasets 465 

is inadequate to robustly support inferences about temporal changes in global biodiversity.  To a 466 

large extent, existing global monitoring of biodiversity change is not coordinated and does not 467 

track and monitor biodiversity in a manner that is representative of where biodiversity is located 468 

on the planet. Long-term and spatially extensive monitoring exists for certain species groups 469 

(e.g. birds and butterflies) in wealthy countries. But, in many cases these monitoring programs 470 

were not designed to evaluate human impacts on local biodiversity change.  The data used in 471 

recent meta-analyses were collected for a number of reasons by biologists surveying coastlines, 472 

forests or grasslands, and often in systems recovering from natural or human disturbances. We 473 

also lack regularly updated spatial data of cumulative impacts of humans on ecosystems 474 

Biodiversity is a fundamental property of the planet’s ecosystems and should be 475 

systematically monitored. To do this, monitoring programs need to be spatially and temporally 476 

representative across the globe (Scholes et al. 2008).  The first step towards this goal would be to 477 

complete a formal ‘gap analysis’, which would probably identify what most of us already 478 

recognize, and which we present here – we need monitoring programs that extend beyond the 479 

borders of the U.S. and Europe, and that capture biomes that are strongly underrepresented in 480 

current biodiversity datasets, such as the tropics, boreal forests, the tundra, and deserts on land, 481 

the ocean benthos, and the Indian Ocean and Indo-Pacific Oceans, which harbor large fractions 482 

of marine diversity.  After formalizing the gaps and needs, the second step will be for 483 

international organizations like IPBES (http://www.ipbes.net/) to urge the development of better 484 

biodiversity monitoring programs.  New initiatives like GEO BON (Scholes et al. 485 

2008, http://geobon.org/) are taking the first important steps towards establishing a group of 486 

biodiversity observation networks around the globe, but the funding needed to organize and 487 

sustain efforts in poor and developing countries is chronically lacking.  Technological 488 

innovations may complement research networks by allowing individual experts or citizen 489 

scientists to track and monitor biodiversity from any given location using their cell phones (e.g., 490 

Goldsmith 2015).  Ultimately, these efforts may produce a lot of data with high taxonomic 491 

resolution for some species groups, but it will likely have limits in spatial, temporal and 492 

taxonomic resolution and scale.  Therefore, new technologies that can monitor additional aspects 493 

of biodiversity with high spatial and temporal resolution will be important tools for truly 494 
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representative monitoring of biodiversity (Asner et al. 2015, Pimm et al. 2015).  If we progress to 495 

a set of monitoring programs with good spatial, temporal, and taxonomic resolution, and 496 

coordinated data collection, then we will be in a position to improve analyses of local 497 

biodiversity change (e.g. Azaele et al. 2015). 498 

A Challenge - Lastly, the Vellend et al. (2013) and Dornelas et al. (2014) data syntheses point to 499 

a challenge we must meet if we are to accurately quantify diversity change on the planet.  Many 500 

landscapes are mosaics of habitats that have been subjected to both direct and indirect human 501 

influences. Farm fields or urban areas have experienced direct human influence where much 502 

plant and animal life have been destroyed and replaced with lower diversity land cover.  While 503 

such areas can harbor populations of functionally important species (Wolters et al. 2000), the 504 

direct effects that people have on local biodiversity through habitat destruction or conversion are 505 

typically negative.  In contrast, adjacent habitat fragments have not been destroyed, and represent 506 

areas where humans may increase species richness (e.g., species introductions) or decrease 507 

richness (e.g., fragmentation, pollution; see Haddad et al. 2015) and alter community 508 

composition (Wardle et al. 2011). Future efforts to quantify changes in local biodiversity must 509 

simultaneously account for the direct effects that people have on biodiversity through habitat 510 

destruction, or conversion, and the indirect effects (both positive and negative) humans have on 511 

remaining or recovering habitats. Only by simultaneously considering both the direct and 512 

indirect causes of biodiversity change on a landscape will we be able to provide accurate 513 

estimates of local biodiversity change.  514 
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 695 

SUPPORTING INFORMATION 696 

Appendix S1: Detailed methods and additional results are given for the analyses on the spatial 697 

representation of the datasets and the findings of the simulations analyzing time series duration.FIGURE 698 

LEGENDS 699 

Figure 1.  Spatial bias of the Vellend et al. (2013) and Dornelas et al. (2014) data syntheses.  On 700 

the left are the maps (with sources) used to represent the global distributions of terrestrial 701 

vascular plant richness, human impacts on forest cover (pixels classified as loss, gain or loss and 702 

gain in forest cover by Hansen et al. 2014; see Fig. S1 for other human impacts on terrestrial 703 

ecosystems) marine species richness, and human impacts on the oceans.  On the x-axis 704 

Hellinger’s distance d quantifies the amount of spatial basis in any collection of sampling sites 705 

relative to the global map. The box plots in the middle of the figure show the distribution of d-706 

values for 1000 random collections of samples where the number of samples in that collection 707 
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equals the number of study sites used in the Vellend et al. (terrestrial) or Dornelas et al. (marine) 708 

syntheses.  Any randomly sampled, spatially representative sample of Earth’s diversity, or of 709 

human impacts on Earth’s ecosystems, should fall within the expected distributions given by the 710 

box plots. Hellinger distances showing actual spatial bias of terrestrial systems for studies 711 

collated by Vellend et al. and Dornelas et al. are shown with green and blue stars, respectively. 712 

Figure 2. Sources of spatial bias in the Vellend et al. (A-C) and Dornelas et al. (D-E) data 713 

syntheses.  Panels A and D show kernel density maps illustrating the primary clusters of study 714 

locations used in the Vellend et al. terrestrial (A), and Dornelas et al. marine (D) syntheses.  The 715 

y-axis in panels B, C, E, and F all show the log ratio representing the number of observed sites 716 

included in the synthesis relative to the number of sites that would be expected to occur in a 717 

random sample from an area that is proportional to the area of (B) different Olsen biomes on the 718 

land surface of the planet, (C) categories of land-use change in the Hansen Forest Cover Change 719 

map, (E) the world’s major oceanic systems, and (F) categories representing increasing numbers 720 

of anthropogenic stressors from the Halpern et al. (2008) map of human impacts on oceans.  Any 721 

log ratio y > 0 indicates that the category on the x-axis is represented ey more in the data 722 

synthesis than it should be based on a random and proportional sampling effort.  Any log ratio y 723 

< 0 indicates that the category on the x-axis is represented e-y

Figure 3. Plotting effect size ln(SR

 less than it should be based on a 724 

random, proportional sampling effort.  1 = Tropical & Subtropical Moist Broadleaf Forests, 2 = 725 

Tropical & Subtropical Dry Broadleaf Forests, 4 = Temperate Broadleaf & Mixed Forests, 5 = 726 

Temperate Coniferous Forests, 6 = Boreal Forests, 7 = Tropical & Subtropical Grasslands & 727 

Savannas & Shrublands, 8 = Temperate Grasslands & Savannas & Shrublands, 9 = Flooded 728 

Grasslands & Savannas, 10 = Montane Grasslands & Shrublands, 11 = Tundra, 12 = 729 

Mediterranean Forests & Woodlands & Scrub, 13 = Deserts & Xeric Shrublands. 730 

t2/SRt1

Figure 4. Effects of reference state on estimates of species loss. A) Two hypothetical time series 734 

of species richness for a disturbed and reference (undisturbed) site. B) Comparison of disturbed 735 

with reference site using LRR, ln(SR

) as a function of duration reveals a significant negative 731 

relationship for a) Vellend et al. (2013) and b) Dornelas et al. (2014) datasets. See main text for 732 

statistical effects of duration. 733 

disturbed/SRreference) at each time point in the series. The LRR 736 

is consistently negative because the disturbed site always maintains fewer species than the 737 

reference site. C) Comparison of the final point at the disturbed site with all previous time points 738 
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at the disturbed site using LRR, ln(SRfinal/SRt0

Figure 5. Re-analysis of the data from Vellend et al. The original dataset included two types of 741 

studies - those showing how local richness is affected by some driver (impact) and those focused 742 

on how richness recovers following effects of a driver (recovery). We re-analyzed effect sizes in 743 

the Vellend et al. dataset (the LRR of mean richness in final vs. initial surveys) using a mixed 744 

model ANOVA with ‘STUDY’ included as a random effect and observations weighted by square 745 

root of sample size (as the authors did). The effect sizes are calculated using both types of studies 746 

and with studies assessing direct impact only.  747 

), for t-1, t-2, … t-25. The series of LRR values is 739 

positive for most of the comparisons with the past, capturing recovery of species richness.  740 
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