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Abstract 

The cognitive neuroscience of language relies largely on controlled experiments that are different 

from the everyday situations in which we use language. This review describes an approach that 

studies specific aspects of sentence comprehension in the brain using data collected while 

participants perform an everyday task, such as listening a story. The approach uses “neuro-

computational” models that are based on linguistic and psycholinguistic theories. These models 

quantify how a specific computation, such as identifying a syntactic constituent, might be carried 

out by a neural circuit word-by-word. Model predictions are tested for their statistical fit with 

measured brain data. The paper discusses three applications of this approach: (i) to probe the 

location and timing of linguistic processing in the brain without requiring unnatural tasks and 

stimuli, (ii) to test theoretical hypotheses by comparing the fits of different models to naturalistic 

data, and (iii) to study neural mechanisms for language processing in populations that are poorly 

served by traditional methods.  
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1 Language comprehension inside and outside of the lab 

Research in the cognitive neuroscience of language has mapped many of the relevant brain 

regions and has begun to reveal the dynamic interplay between these regions that underlies 

language comprehension and production (for reviews, see Friederici & Gierhan, 2013; Hagoort 

& Indefrey, 2014; see Kemmerer, 2014 for a textbook introduction). There is growing interest in 

whether these results extend beyond constrained laboratory settings to natural, everyday, uses of 

language like listening to a story or having a face-to-face conversation (see the papers collected 

in Willems, 2015). The stimuli and tasks used in these new efforts are “naturalistic” in that they 

are drawn from how language is used outside of the laboratory, but are constrained by the 

equipment needed to record brain signals. This review describes an approach to studying the 

neural bases of specific sub-processes of sentence processing during naturalistic comprehension.  

 The majority of work using naturalistic stimuli has addressed language processing at a 

coarse-grained level. Studies have outlined a range of brain regions that are engaged during 

natural reading (Yarkoni et al., 2008; Speer et al., 2009; Xu et al., 2005; Wehbe et al., 2014), 

listening (Brennan et al. 2012; Whitney et al., 2009; Lerner, 2014), and audio-visual processing 

(Wilson et al., 2008; Skipper et al., 2009). Extensions of this work have identified neural signals 

associated with higher-order processes that are shared across speech rates (Lerner et al., 2014) 

and across production and comprehension (Stephens et al., 2010; Silbert et al., 2014). Other 

work using naturalistic stimulation has focused on aspects of discourse comprehension (Whitney 

et al, 2009; Egidi & Caramazza, 2013; Kurby & Zacks, 2013). These efforts have proved fruitful 

in building bridges between cognitive neuroscience and humanistic studies including the study of 

literature (Willems, 2013), poetics (Jacobs, 2015), and cinema (Hasson et al., 2008). In contrast, 
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there have been relatively few studies of more fine-grained linguistic processes at the sentence 

level and below.  

Research at or below the sentence level has relied largely on controlled experiments that 

use minimal pairs of stimuli or tasks to isolate relevant neural signals. The primary experimental 

logic is that of subtraction. This research has been undoubtedly successful, but faces two 

limitations. Firstly, the subtraction approach necessarily requires linguistic stimuli and tasks that 

are rather different from everyday language. Secondly, the great majority of these studies are 

framed in terms of qualitative processing models that limit their generalizability.  

Most sentence-level experiments present participants with a series of carefully 

constructed sentences, phrases, or words with little or no context. To encourage attention, 

participants may be asked to render a judgment about the sensicality, acceptability, or some other 

linguistic property of a stimulus. Such meta-linguistic judgments require processing other than 

that used in everyday settings, which often requires one to just interpret the input. However, 

there has been little discussion of how meta-linguistic processes relate to everyday 

comprehension.  

The stimuli that are used in sentence-level experiments also often deviate from everyday 

language. For example, a common technique to isolate aspects of syntactic parsing uses stimuli 

that do or do not violate expectations about syntactic structure (e.g. Neville et al., 1991; Hagoort 

et al., 1993 and many others; see Gouvea et al., 2010 for discussion). Stimuli that violate 

expectations are taken to elicit more syntactic processing with debate over what kinds of 

operations are involved (e.g. Kim & Osterhout, 2005; Chow et al., 2013). These studies do not 

make explicit how the processing of ungrammatical sentences might relate to naturalistic 

comprehension. Are ungrammatical utterances recognized as such and corrected to some 
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grammatical form? Or, might ungrammatical components be ignored or backgrounded, as when 

listening to false starts in a natural utterance? The latter is an implicit assumption associated with 

another common experimental design which compares well-formed sentences with lists of 

unstructured words (e.g. Mazoyer et al., 1993; Stowe et al., 1998; Humphries et al., 2006). In 

these experiments, it is assumed that sentence-level operations, broadly construed, are evoked by 

full sentences but not by (ungrammatical) lists of words. As with artificial meta-linguistic tasks, 

studies do not make explicit how the processing of isolated or unusual sentences relate to 

everyday comprehension. 

With some recent and notable exceptions (Gibson et al., 2013; Brouwer, 2014), 

experimental manipulations are typically framed in terms of qualitative distinctions. For 

example, a condition does, or does not, require “syntactic reanalysis,” or is more or less 

“semantically demanding.” Processing models based on these studies are similarly qualitative; 

they might distinguish the function of brain regions in terms of “linear” vs. “hierarchical 

processing” or “syntactic” vs. “semantic combinatorics” (Bornkessel-Scheslewsky et al., 2015; 

Friederici & Gierhan 2013). Qualitative descriptions like these are valuable, but they amplify the 

challenges posed by unnatural stimuli and tasks as they do not allow for robust generalization 

from controlled experiments to naturalistic contexts. This is because such models do not indicate 

with sufficient rigor how target processes will be engaged beyond the narrow domain of the 

stimuli and task that constitute a specific experiment.  

In sum, predominant neurolinguistic approaches to sentence- and word-level processing 

deviate from everyday language use and typically lack rigorous processing models that are 

necessary to extend conclusions drawn from controlled experiments to more natural settings. 

While everyday language can be studied in qualitative terms (e.g. Lerner et al., 2014; Egidi & 
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Caramazza 2013), naturalistic data at the sentence level and below demand the use of rigorously 

specified theoretical models. To adequately take advantage of the rich data offered by everyday 

language, theories must be specified with enough detail to broadly cover most, or all, of the 

words found in a naturalistic corpus.  

The next section introduces an approach that addresses these limitations by using 

computationally precise and broad coverage cognitive models of naturalistic processing. These 

“neuro-computational” models allow fine-grained aspects of sentence comprehension to be 

studied with naturalistic neural data. Properties of linguistic representations are mapped to neural 

signals by specifying the algorithm by which those representations are used in real time by the 

brain. By making such a mapping explicit, this approach addresses a chief barrier to integrating 

(psycho)linguistic theories with neuroscientific data (for discussion, see Poeppel, 2012; Poeppel 

& Embick, 2005; Embick & Poeppel, 2015). 

Algorithmic theories of how linguistic knowledge is deployed in real time have been 

developed within computational psycholinguistics. Computational psycholinguistic models offer 

quantitative estimates of how specific syntactic, semantic, or other processes are engaged word-

by-word. For example, a model might specify the syntactic parse states that unfold incrementally 

during comprehension (Hale, 2014). Actual brain signals that are recorded while participants 

encounter stimuli within the domain of the computational model provide the relevant data. 

Models are then put to the test by comparing the estimated sequence of cognitive states with the 

measured brain signals.  

Neuro-computational models can be tested against data collected with many techniques 

used in cognitive neuroscience. Each technique has its own strengths and weaknesses. For 

example, data collected with functional magnetic resonance imaging (fMRI) reflect changes in 
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blood oxygenation in response to neuronal activity. While fMRI has high millimeter-level spatial 

resolution, it has a low temporal resolution. This is because blood oxygenation changes slowly, 

on the order of several seconds, compared to the speed of language. Data collected with 

electroencephalography (EEG), similar to the related technique of magnetoencephalography 

(MEG), reflect neuroelectric activity as it happens millisecond-by-millisecond. These techniques 

do so at the cost of poor (EEG) to moderate (MEG) spatial resolution. As detailed in the next 

section, adjustments necessary to query different data types are incorporated into the models. 

The neuro-computational model approach adds to the neurolinguistic toolbox. It 

augments traditional experimental methods by facilitating the analysis of data collected during 

naturalistic processing. By addressing fine-grained aspects of processing at and below the 

sentence level, neuro-computational models complement other approaches that use naturalistic 

neural data to study language processing at a coarse grain (e.g. Lerner et al., 2014). Section 2 

provides a formal description of the approach, and Sections 3–5 highlight several applications. 

2 Analyzing naturalistic neural data using neuro-computational models  

A neuro-computational model operates over linguistic input, such as sequences of words, and 

returns mental states. Aspects of these mental states are quantified in order to link them to 

measured brain signals. Running the model generates sequences of estimated brain signals. To 

evaluate the model, the sequence of estimated brain signals is compared with actual measured 

brain signals. For instance, the number of syntactic nodes in the mental state might be taken to 

vary proportionally with fMRI signals as a way to study constituent structure processing.  

The model can be understood as a set of functions. A parser PG,A,O consists of a grammar 

G that defines well-formed representations, an algorithm A that specifies how the grammar is 

applied word-by-word, and an oracle O that reconciles indeterminacies, for instance by choosing 
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to evaluate the most common grammatically licensed representation of all that are possible for a 

given sub-string. Applied to a sequence of words w1, w2, w3… PG,A,O yields a sequence of mental 

states m1, m2, m3… For syntax, these might be partial tree structures. While the term “parsing” 

commonly refers to syntactic processing, the present usage is not intended to be limited in this 

way. Other examples include identifying whether a sequence of phonemes is phonotactically 

well-formed or computing the implicatures that are triggered by a sequence of utterances. In all 

cases, the parameters G, A, and O jointly characterize a sequence of mental states that connect 

the linguistic input and desired output. A complexity metric C quantifies this sequence of mental 

states in some way. For example, C may count the number of tree nodes, open dependencies, or 

the change in probability mass between states. These values serve as estimators for brain states. 

Lastly, estimated brain states are aligned with measured brain signals with a response function R 

which stands in for whatever mediates between the actual physiological state of the brain and the 

signal that is measured with a technique such as fMRI, EEG, or MEG. For instance, R might be 

the Hemodynamic Response Function (HRF) used in fMRI research to account for the delay 

between neuroelectric activity and measured changes in blood oxygenation. The composition of 

C with R constitutes a linking hypothesis in the sense of Embick & Poeppel (2015): together 

these functions connect the properties of a theoretical mental state with an observable brain 

signal. The connection between these components is shown on the left-hand side of the 

schematic in (1). 

The right-hand side of (1) shows the data against which the models are evaluated. The 

function H stands for the human brain’s response to a sequence of words to yield a sequence of 

internal brain states b1, b2, b3… The term Measure is a function that returns an observable signal 

for a particular brain state. This term stands in for all of the choices involved in the measurement 
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and analysis of functional brain data, examples of which are given in the sections that follow. 

The final line of the schematic in (1) represents a statistical test of equivalence, such as linear 

regression, between the output of the model and the measured brain data.  

(1)  

 

Figure 1 provides a concrete illustration of the model-based approach. This example 

comes from an fMRI experiment about syntactic processing by Brennan et al. (in press), which is 

discussed in Section 4, below. Step 1 shows a sequence of mental states defined by a particular 

parser, and Step 2 shows how the complexity metric and response function together quantify 

these mental states to create an estimated brain signal. In this example, the estimate is for a brain 

signal associated with computing syntactic expectations. Steps 3 and 4 on the right-hand side 

illustrate the measured fMRI data against which the model is evaluated.  
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Figure 1 An illustration of the model-based approach. The top of the figure shows a segment of 
a naturalistic audiobook stimulus. Word boundaries are indicated in blue. (1) The parser defines 
word-by-word mental states that reflect syntactic constituency and expectations for upcoming 
words, shown in the grey probability distributions. Here, the grammar G is set to a context-free 
phrase structure grammar, the algorithm A is set to top-down enumeration and the oracle O is 
set to resolve temporary ambiguities to the structures that are ultimately correct. (2) These 
mental states are quantified to derive processing predictions by applying the surprisal 
complexity metric, C, shown in green. This quantity reflects the conditional probability of each 
word in the stimulus and is higher when words are unexpected. A response function R aligns 
word-by-word complexity values with fMRI-measured brain signals. The overlapping grey 
traces show the result of convolving each word’s surprisal with the hemodynamic response 
function. The sum of these, shown in blue, is an estimate of the time-course of fMRI signals that 
reflect syntactic expectation. (3) The data for this illustration come from recordings made while 
participants passively listened to the audiobook. (4) The measured signal from a particular region 
of interest is extracted (red trace) and correlated against the estimated signal (blue trace) to test 
how well the estimated fMRI signal aligns with the recorded fMRI signal.  
 

 The model-based approach that is illustrated in Figure 1 describes a multi-dimensional 

hypothesis space. The space is defined by the Model parameters <G,A,O,R,C> on the left-hand 

side, and Measure on the right-hand, or Data, side of the schematic in (1). Research in the 
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neuroscience of sentence comprehension, whether naturalistic or not, aims to identify which 

points in this space best match the actual operations of the mind and brain. It is not typically 

feasible to explore all hypotheses at once. Rather, studies focus on a limited sub-space. Most 

studies in the literature fall into one of two categories which are schematized in (2). A neurally 

focused “N-study” tests hypotheses about the location, timing, or other brain-based property of 

some linguistic process. It does so by varying the brain signal being tested, represented by the 

Measure parameter(s), while keeping the model side of the equation constant. For instance, a 

single parsing model might be tested against brain data collected with fMRI from across many 

different brain regions. Alternatively, a linguistically focused “L-study” tests linguistic or 

psycholinguistic theories by comparing different parameterizations of the Model side against 

one, or just a few, settings for Measure. For example, different parsers could be tested against 

fMRI data from a single region of interest.  

(2)  

 

Of course, it is also conceivable to evaluate hypotheses on both sides of the equation 

simultaneously. While such an approach has not been pursued in neurolinguistics, there are 

potential examples elsewhere in the neurosciences. Kumar & Penney (2014) develop a method 

for estimating “Neuronal Response Functions,” or mappings from stimuli to neuronal events 

(equivalent to the PG,A,O and C functions in the present framework), across a large number of 

brain regions using Bayesian model comparison, and they demonstrate its application to studying 
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basic auditory processing. The sections below illustrate the model-based approach with both N- 

and L-type studies and with several different cognitive neuroscience techniques.   

3 The location and timing of naturalistic linguistic processing in the brain  

This section establishes the model-based approach as valid for isolating specific aspects of 

sentence processing during naturalistic comprehension. Syntactic parsing is a sensible starting 

point for applying neuro-computational models to naturalistic data. It is a well-studied domain 

within computational psycholinguistics which offers numerous models (see Hale, 2014 for an 

introduction). In addition, naturalistic stimuli are a focus of current debates (see Section 4). 

Other levels of linguistic processing and representation may be studied with the same framework 

but present some challenges. At lexical and sub-lexical levels, the ubiquity of context effects 

(see, for example, DeLong et al., 2005 on lexical prediction and Dikker et al., 2010 on pre-

lexical prediction) means that sentence- and higher-level context must be modeled in addition to 

lexical-level factors for naturalistic data. At semantic and pragmatic levels, computational 

models of incremental interpretation are currently less well developed than equivalent 

incremental syntactic models. Given these considerations, syntactic processing is well suited to 

begin an investigation of naturalistic comprehension. 

A first step is to verify that the model-based approach can successfully target specific 

components of the brain’s sentence processing network. Brennan et al. (2012) test whether 

specific aspects of syntactic processing can be localized in the brain during naturalistic listening 

using fMRI. To provide a brief background, the inferior frontal lobe of the left hemisphere 

(“Broca’s Area”) has long been associated with various sentence-level processes with debate 

about what specific computations are carried out in this region (see Rogalsky & Hickok 2010 for 

a critical overview). Other research implicates the anterior portion of the left temporal lobe in 
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processing simple sentences, but not isolated words (see Pylkkänen, 2016 for discussion). These 

findings have been difficult to reconcile as they rely on different sets of stimuli and tasks.  

The cognitive process that Brennan et al. focus on is the identification of phrase structure, 

or basic sentence composition. They use a single model of syntactic parsing to test different 

hypotheses about where this process occurs in the brain; this is an N-study. The parsing model 

constructs a syntactic tree word-by-word according to a broad-coverage context-free phrase-

structure grammar (Marcus et al., 1993). This grammar is paired with an algorithm that 

enumerates nodes from the bottom up, after identifying each child of a given node, and a 

“perfect” oracle that enumerates only the correct tree. Word-by-word parse states are converted 

to brain state estimates by counting the number of new nodes created upon encountering each 

word. These node counts, time-aligned with the offset of each word in the auditory stimulus, are 

matched to the fMRI signal via a response function which takes into account hemodynamic lag 

and the fMRI sampling rate. 

In the notation introduced in Section 2, above, Brennan et al. (2012) evaluate a set of 

propositions that rely on a single model with the parameters G = Context-free phrase-structure 

grammar, A = Bottom-up enumeration, O = Perfect, C = Node count, and R = Hemodynamic 

Response Function. The propositions differ in the settings for Measure: whole-brain fMRI 

scanning is used to test for any regions that showed sensitivity to their model of basic sentence 

composition. The first row of Table 1 summarizes the parameter values for this study. 

Activity from the left anterior temporal lobe significantly correlates with model estimates 

for basic sentence composition. Activity from the left inferior frontal gyrus shows no correlation, 

and no other region shows a positive correlation with basic sentence composition. The observed 

correlation with the left anterior temporal lobe aligns well with the many studies that show a 
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systematic response in this same brain area for simple sentences and phrases but not for lists of 

words (see Pylkkänen, 2016 and studies cited therein). In light of this alignment, the result serves 

as a “proof of concept” that the model-based approach can isolate specific sub-processes of 

cognition during naturalistic language processing. 

Similar work by Willems et al. (2015; see also Bachrach, 2008) tests for brain regions 

involved in another aspect of sentence comprehension: making linguistic predictions. This is 

another N-study as the model parameters were fixed to just a few values while neural measures 

from the whole brain were tested. Prediction has long been recognized as central to the speed and 

rapidity with which complex linguistic utterances are understood (see e.g. Federmeier, 2007; 

Van Petten & Luka 2012; Hagoort & Indefrey, 2014 for reviews from a neurolinguistic 

perspective). Most relevant neurolinguistic research comes from electrophysiological studies in 

which different kinds of predictions are violated. Willems et al. map the spatial localization of 

brain regions that are sensitive to predictions and use naturalistic stimuli to avoid complications 

posed by unnatural stimuli that sharply violate expectations. 

Willems et al. use a Markov Model, a sequence-based grammar, to compute the 

conditional probability of each word’s part-of-speech given just the two immediately preceding 

words. They use two complexity metrics to quantify these conditional probabilities in terms of 

expectation: (1) the degree to which a word is unexpected given the context, or its lexical 

surprisal (Hale, 2001), and (2) the degree to which a word decreases uncertainty about the 

overall sentence, or entropy reduction (Hale, 2006; See Hale, forthcoming, for an introduction to 

these metrics). By considering all possible outcomes of a given context (“full parallelism”), the 

metrics in this study can be computed without specifying a parser algorithm or oracle. They test 

these two models against whole-brain fMRI data while participants listen to three narratives (see 
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Table 1, row 2). Entropy reduction, reflecting predictive strength, correlates with brain activity in 

fronto-parietal regions including the right inferior frontal gyrus, the left ventral pre-motor cortex, 

the left supplementary motor area, and the left inferior parietal lobule. Surprisal, reflecting 

unexpectedness, correlates with activity from temporal regions bilaterally, including the left 

inferior temporal regions, left and right posterior superior temporal gyrus, and the right anterior 

temporal pole. They also report effects in the right inferior frontal gyrus, right amygdala, and 

right brain stem. These spatially distributed results are consistent with models in which linguistic 

predictions propagate from the top down through multiple levels of representation (e.g. Dikker & 

Pylkkänen 2013; Molinaro et al., 2013).  

Henderson et al. (in press) extend the results of Willems et al. to reading by recording 

fMRI data while participants read narratives (Table 1, row 4). They query the data with a 

computational model that estimates syntactic surprisal based on a context-free grammar (Roark 

et al., 2009); this phrase-structure model contrasts with the sequence-based Markov model used 

by Willems et al., above. Henderson et al. report that structurally unexpected words lead to 

greater activation in the left inferior frontal gyrus and left anterior temporal lobe. Considered 

together, the results of Willems et al., Brennan et al. and Henderson et al. show that neuro-

computational models with different parameter settings, such as node count or surprisal-based 

complexity metrics, can successfully target distinct sub-processes of sentence comprehension 

during both naturalistic listening and reading.  

The studies discussed above each target one or two specific aspects of sentence 

comprehension in isolation. One advantage of the model-based approach is that sufficiently 

complex neuro-computational models allow multiple sub-processes to be studied simultaneously. 

Wehbe et al. (2014) illustrate this possibility by combining fMRI data from story-reading with a 
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multi-faceted model which simultaneously addresses aspects of lexical semantics, syntactic 

features like subject and object, and discourse-level features like character reference.1 Features at 

each level comprise the grammar of the model, which is combined with an ad hoc algorithm to 

link features with specific words; a perfect oracle ensures that only the correct feature is 

associated with each word. The parser states are quantified in terms of the presence or absence of 

features at a given time-point (see Table 1, row 5). In addition, rather than using linear regression 

to evaluate their model against brain data (see the final line of the schematic in (1)) they use a 

statistical classifier to iteratively test whether a particular brain region carries information about 

some feature of the stimulus. Whereas the studies described above assume that higher values for 

some complexity metric map linearly to numerically higher neural measurements, the classifier 

approach used by Wehbe et al. makes no such assumption. Their results reveal a highly 

articulated map in which the large-scale network traditionally associated with reading is divided 

into sub-regions specific to lexical semantic, syntactic, and discourse-level features. While too 

detailed for this brief review, Wehbe et al.’s model permits this network to be even further sub-

divided in terms of specific reading processes at each level.  

The studies discussed thus far rely on fMRI, which provides high-resolution spatial 

pictures of brain activity but is limited by the sluggish hemodynamic response. A natural speech 

rate of two to four words per second means that processing associated with many words is 

blurred together. Electrophysiologial tools like EEG and MEG measure brain activity 

millisecond-by-millisecond. Brennan & Pylkkänen (2012) outline the temporal characteristics of 

naturalistic sentence processing, broadly construed, by testing for brain activity that is unique to 

reading stories, compared to lists of words. They use a single-trial analysis in which the data 

                                                 
1 See also Yarkoni et al. (2008) for an early example of naturalistic reading that is focused on 
lexical processes.  
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from a time-span following each word is correlated against word-by-word estimates from a 

model (cf. Hauk et al., 2006). They find broad activation across the temporal and frontal lobes in 

both hemispheres for story reading which emerges between 0.25 and 0.5 s after word onset. To 

tease out basic sentence composition from this broad spatio-temporal network, Brennan & 

Pylkkänen (submitted) construct a simple context-free grammar and combine this with a 

predictive left-corner parsing algorithm (Hale, 2011), perfect oracle, and a node count 

complexity metric (see Table 1, row 7). Estimates are correlated with MEG signals collected for 

each word across the time-span consistent with the general “story comprehension” response 

described above. Significant correlations between the node count values and brain activity 

emerge in the left anterior temporal lobe between 0.35 and 0.5 s after word onset. This result is 

consistent with the fMRI study by Brennan et al. (2012) and shows that the model-based 

approach can resolve the rapid temporal dynamics of fine-grained linguistic processes in 

naturalistic data.  

This section reviewed several studies that use a model-based approach to query 

hemodynamic and electrophysiological brain activity during naturalistic stimulation. Alignment 

between the results described here and those from more traditional methods validate the 

approach and show, among other things, that the anterior temporal lobe plays an important role 

in basic sentence composition during naturalistic comprehension. 

 

4 Testing theoretical hypotheses by comparing models against naturalistic data  

In addition to uncovering the neural signatures of naturalistic comprehension, the model-based 

approach is well suited to addressing questions about mental representations and computations 

that are specific to everyday processing. By using models that differ in parameter settings for the 
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grammar or other factors, alternative cognitive theories may be evaluated against naturalistic 

neural data. This section describes one such application. 

Psycholinguists have debated whether abstract hierarchical syntactic representations play 

a role in everyday online comprehension. The hierarchical representations posited in syntactic 

theories have been developed based on offline data such as acceptability judgments and cross-

linguistic comparisons. While much evidence suggests that such detailed syntactic 

representations do guide syntactic processing in carefully controlled experiments (see Lewis & 

Phillips, 2015 for a review), existing naturalistic data present a more mixed picture. Based on 

interpretation errors where aspects of syntactic structure are ignored, some have argued that 

surface-based “good enough” syntactic processing may suffice in many circumstances (Sanford 

& Sturt, 2002; Ferriera, 2002; Ferreira & Patson 2007). In support of this view, Frank & Bod 

(2011) found that eye-movements from naturalistic reading are sensitive to simple word-to-word 

dependencies, such as can be computed from a Markov Model, but not to hierarchical 

dependencies such as can be computed from a context-free grammar (but cf. Fossum & Levy 

2012). Similar results have been found for ERP components sensitive to linguistic expectations 

(Frank et al., 2015), although this study relied on single-sentence experimental materials, and not 

narrative stimuli. Prior studies have not tested for abstract hierarchical representations using 

naturalistic neural data. 

 To probe the nature of the syntactic representations that underlie fMRI-measured brain 

responses during story comprehension, Brennan et al. (in press) test many models against just a 

few brain measures collected while participants listen to a chapter from a children’s story. 

Models vary in terms of grammar, algorithm, and complexity metric. Brennan et al. test three 

grammars with different levels of syntactic detail: sequence-based Markov models that use only 
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word-to-word dependencies, a context-free hierarchical grammar that incorporates hierarchical 

structure but not abstractions like syntactic movement (Marcus et al., 1993), and a minimalist 

grammar that allows for syntactic movement and derives X-bar trees with empty categories 

(Stabler, 1997, Sportiche et al., 2013). They also test several complexity metrics: surprisal, and 

node count via either a bottom-up or a predictive top-down algorithm. The model space thus 

spans a range of syntactic processing hypotheses, from simple surface-based accounts to abstract 

proposals from Generative Syntax (see Table 1, row 8; Figure 1 provides an illustration based on 

one of the models used in this study).  

 Models are tested using regression against fMRI data from six brain regions that have 

been previously implicated in sentence-level processing: left and right anterior temporal lobes, 

left inferior frontal gyrus, left posterior temporal lobe, left inferior parietal lobe and left pre-

motor cortex. Surprisal from the non-hierarchical Markov models correlates with frontal and 

temporal brain regions and surprisal from a context free grammar, which is hierarchical, 

significantly improves the statistical fit of a regression model in all regions but the left inferior 

frontal gyrus. In contrast, node counts from minimalist grammars further improve the statistical 

fits in only the left anterior and posterior temporal lobes after controlling for effects of the non-

hierarchical and context-free models. This result suggests that the left temporal lobe is involved 

in constructing abstract hierarchical representations during everyday language comprehension 

 The limited temporal resolution of fMRI leaves open whether abstract hierarchical 

representations are recruited rapidly during incremental processing, or whether they play a role 

only during later processing stages. Brennan et al. (2016, in prep) address this question using 

EEG. Participants passively listen to the same story stimulus during EEG recording. Prior work 

has found that stimuli which deviate from an expected word category elicit two Event-Related 
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Potential (ERP) components: an early left anterior negativity (ELAN) between 0.1 and 0.3 s after 

stimulus onset and a late positivity over central electrodes beginning around 0.6 s (e.g. Friederici 

et al., 1993). Using the same models as described above and focusing just on part-of-speech 

surprisal, which quantifies syntactic expectations along the same lines as previous studies, 

Brennan et al. find that estimates from the hierarchical context-free grammar significantly 

improve model fit against late centrally-distributed signals (0.5 - 0.7 s), compared with a baseline 

model that includes word-to-word dependencies, lexical properties such as word frequency, and 

acoustic control predictors (see Table 1, row 9). These preliminary findings suggest that indices 

of syntactic expectations may reflect the rapid computation of hierarchical dependencies during 

naturalistic comprehension. 

 In sum, sets of neuro-computational models can be compared using data collected during 

naturalistic comprehension. Varying whether the models are based on hierarchical or non-

hierarchical grammars yields different word-by-word estimates for brain activity. Results suggest 

that hierarchical representations play a role online during naturalistic comprehension.  
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Table 1 Comparison of parameter values for the model-based studies referenced in Sections 3 

and 4. Some complexity metrics do not require fully specified models; underspecified parameters 

are indicated with “–“. The parameters are described in Section 2.  

 

5 Neural mechanisms for language processing in populations that are poorly served by 

artificial tasks  

A final example of potential applications for the model-based approach comes from the study of 

language disorders. Combining naturalistic neural data with a model-based approach opens the 

door to new methods for studying language processing in populations that have difficulty 

performing standard laboratory tasks. Models can pinpoint specific cognitive processes that are 

implicated in neural disorders, and naturalistic methods are easy to use with almost any 

participant. This section describes initial steps in this direction with ongoing research on Autism 

Spectrum Disorder (ASD). 

 Individuals with ASD show moderate to severe social deficits in addition to a wide range 

of well-documented language production deficits (see Groen et al., 2008; Kelley, 2011 for 

reviews). However, a clear understanding of language comprehension in ASD remains elusive in 

large part because comorbid social deficits lead to problems with behavioral task compliance 

(Tager-Flusberg & Coronna, 2007).  

Passively collected neural signals offer a way to overcome this challenge. MEG and EEG 

data collected from task-free subtraction experiments that compare, for instance, brain responses 

to frequent or infrequent speech sounds (Roberts et al., 2011), or to plausible or implausible 

sentences (Pijnacker et al., 2010), have revealed intriguing neural differences between 

individuals with ASD and typically developing children. These effects might implicate 
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difficulties with linguistic predictions; however behavioral studies of linguistic prediction which 

rely on constrained experimental tasks show conflicting results (Brock et al., 2008). Just as 

comorbid deficits impact task compliance in behavioral experiments, they may also have ill-

understood effects on processing the unusual and unfamiliar stimuli used in controlled 

experiments. Data collected during passive naturalistic processing offer an appealing alternative. 

To this end, our group has begun to collect MEG data from children with and without ASD while 

they perform passive naturalistic tasks. 

For example, in one experiment participants listen passively to a children’s story. The 

computational models described in Section 4, above, can be used to probe for activity that is 

associated with syntactic predictions for this narrative. Figure 2 shows a preliminary set of 

results from these data in which expectation, quantified in terms of surprisal from three-word 

part-of-speech sequences (trigrams), is correlated word-by-word with whole-head neuromagnetic 

signals.2 Panel A shows the effect of surprisal across all participants: there is a significant 

correlation between expectations and right temporal activity around 200 ms after word onset. 

The same pattern of activity is seen for both typically developing (TD, N = 13) children and for 

those with ASD (N = 14), as shown in Panel (B) (statistically, there is a main effect for surprisal 

but no interaction with participant group). In other words, the online neural response to 

sequence-based expectations appears to be similar between the two groups.  

                                                 
2 Twelve minutes of story-listening data were collected with 148 magnetometers in a quiet 
magnetically shielded room. Data were epoched from -0.3 - 1 s around the onset of each word 
and then cleaned of artifacts with visual inspection and Independent Component Analysis. For 
each participant, regression weights were estimated for trigram surprisal along with covariates 
of word length and word frequency across all sensors and time-points. For group analysis, 
regression weights were converted from magnetic flux to the planar magnetic gradient and were 
statistically compared across all participants and between-groups using a non-parametric cluster 
test (Maris & Oostenveld, 2007). 
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These preliminary data are presented here not to support a particular conclusion about 

language processing in ASD, but rather to illustrate a methodological point. Pairing the models 

of syntactic prediction described in Section 4 with passively-collected naturalistic brain data 

grants researchers a new tool to test whether and how neural differences in ASD impact 

prediction and other aspects of comprehension during sentence processing.  
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Figure 2 Preliminary analysis of neural signals reflecting syntactic expectations during 
naturalistic listening in children with and without ASD. (A) Statistical maps for a group-level 
effect of trigram surprisal on MEG sensor signals. Each panel shows an average over 100 ms; 
asterisks indicate right temporal sensors that show a significant effect from 120 – 290 ms (p < 
0.01, corrected for multiple comparisons). (B) The effect for trigram surprisal by group within 
the same time-window shows statistically indistinguishable right temporal activation patterns for 
typically developing (left; N = 13) children and those with ASD (right; N = 14).  

6 Conclusions 

Naturalistic stimuli and tasks are necessary to identify the brain mechanisms that underlie 

everyday language processing. The model-based approach allows specific sub-processes to be 

studied using naturalistic data. Models can be tested across many different neural measurements 

(e.g. Brennan et al., 2012; Willems et al., 2015), or different models can be evaluated against 

highly circumscribed brain data (e.g. Brennan et al., in press). While this review has focused on 

results pertaining to basic sentence composition, the framework can be applied much more 

broadly; indeed, multiple levels of processing can be probed simultaneously (Wehbe et al., 

2014). Fine-grained cognitive resolution is made possible by appealing to rigorous neuro-

computational models. These models serve as a bridge between the representations and 

computations of linguistic theory and the data furnished by the tools of cognitive neuroscience.   
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Figure Captions 

Figure 1: An illustration of the model-based approach. The top of the figure shows a segment of 

a naturalistic audiobook stimulus. Word boundaries are indicated in blue. (1) The parser 

defines word-by-word mental states that reflect syntactic constituency and expectations 

for upcoming words, shown in the gray probability distributions. Here, the grammar G is 

set to a context-free phrase structure grammar, the algorithm A is set to top-down 

enumeration, and the oracle O is set to resolve temporary ambiguities to the structures 

that are ultimately correct. (2) These mental states are quantified to derive processing 

predictions by applying the surprisal complexity metric, C, shown in green. This quantity 

reflects the conditional probability of each word in the stimulus and is higher when words 

are unexpected. A response function R aligns word-by-word complexity values with 

fMRI-measured brain signals. The overlapping gray traces show the result of convolving 

each word’s surprisal with the hemodynamic response function. The sum of these, shown 

in blue, is an estimate of the time-course of fMRI signals that reflect syntactic 

expectation. (3) The data for this illustration come from recordings while participants 

passively listened to the audiobook. (4) The measured signal from a particular region of 

interest is extracted (red trace) and correlated against the estimated signal (blue trace) to 

test how well the estimated fMRI signal aligns with the recorded fMRI signal.  

 

Figure 2: Preliminary analysis of neural signals reflecting syntactic expectations during 

naturalistic listening in children with and without ASD. (A) Statistical maps for a group-

level effect of trigram surprisal on MEG sensor signals. Each panel shows an average 

over 100 ms; asterisks indicate right temporal sensors that show a significant effect from 
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120 – 290 ms (p < 0.01, corrected for multiple comparisons). (B) The effect for trigram 

surprisal by group within the same time-window shows statistically indistinguishable 

right temporal activation patterns for typically developing (left; N = 13) children and 

those with ASD (right; N = 14).   
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Example (1): 

model  data 
PG,A,O(w1, w2, w3, . . . )  H(w1, w2, w3, . . . ) 

↓  ↓ 
parser interprets  human listens 

↓  ↓ 
m1, m2, m3 . . .  m1, m2, m3 . . . 

   
R◦ C(m1, m2, m3 . . . ) ≟ Measure(b1, b3, b3 . . .) 
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Example (2): 
 

N-Study L-Study 
model ≟ data model ≟ data 

  Measure1 <G1, A, O, C, R>   
<G, A, O, C, R>  Measure2 <G2, A, O, C, R>  Measure 

  Measure3 <G3, A, O, C, R>   
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Table 1: 
 
  Parser Linking Hypothesis Measure 
  G A O C R  
1. Brennan et al., 

2012 
Context-free Bottom-up Perfect Node count Hemodynamic 

response 
Whole-brain fMRI 

2. Willems et al., 
2015 

Trigram – – Surprisal, Entropy 
reduction 

Hemodynamic 
response 

Whole-brain fMRI 

3. Bachrach, 2008 Context-free Top-down Perfect Node count, 
Surprisal 

Hemodynamic 
response 

Whole-brain fMRI 

4. Henderson et 
al., In press 

Context-free – – Surprisal Hemodynamic 
response 

Whole-brain fMRI 

5. Wehbe et al., 
2014 

Lexical, 
syntactic, & 
Discourse 
features 

ad hoc Perfect Presence/Absence Hemodynamic 
response 

Whole-brain fMRI 
classification 

6. Yarkoni et al., 
2008 

Context-free ad hoc Perfect Identity Hemodynamic 
response 

Whole-brain fMRI 

7. Brennan & 
Pylkkänen, 
Submitted 

Bi-/tri-gram, 
Context-free, 
Minimalist 

Left-corner Perfect Node count Identity MEG source-
localized regions 
of interest 

8. Brennan et al., 
In press 

Trigram, 
Context-free 

Bottom-up, 
Top-down 

Perfect Node count, 
Surprisal 

Hemodynamic 
response 

fMRI regions of 
interest 

9. Brennan et al., 
2016; In prep. 

 – – Surprisal Identity EEG 
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