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We study a location-routing problem in the context of
capacitated vehicle routing. The input to the k -location
capacitated vehicle routing problem (k -LocVRP) consists
of a set of demand locations in a metric space and a fleet
of k identical vehicles, each of capacity Q. The objective
is to locate k depots, one for each vehicle, and compute
routes for the vehicles so that all demands are satis-
fied and the total cost is minimized. Our main result is
a constant-factor approximation algorithm for k -LocVRP.
In obtaining this result, we introduce a common gener-
alization of the k-median and minimum spanning tree
problems (called k median forest), which might be of
independent interest. We give a local-search based (3 +
ε)-approximation algorithm for k median forest, which
leads to a (12+ε)-approximation algorithm for k -LocVRP,
for any constant ε > 0. © 2016 Wiley Periodicals, Inc.
NETWORKS, Vol. 68(2), 94–103 2016
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1. INTRODUCTION

In typical facility location problems, one wishes to locate
centers and connect clients directly to centers at minimum
cost. Conversely, the goal in vehicle routing problems (VRPs)
is to compute routes for vehicles originating from a given
set of depots. Location routing problems represent an inte-
grated approach, where we wish to make combined decisions
on facility location and vehicle routing. This is a widely
researched area in operations research, see, e.g., surveys
[4, 5, 17, 18, 21, 22]. Most of these papers deal with either
exact methods or heuristics without any performance guar-
antees. In this article, we present an approximation algorithm

Received August 2013; accepted May 2016
Correspondence to: V. Nagarajan; e-mail: viswa@umich.edu
*A preliminary version appeared in the proceedings of the Workshop
on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX) 2011.
DOI 10.1002/net.21683
Published online 20 June 2016 in Wiley Online Library
(wileyonlinelibrary.com).
© 2016 Wiley Periodicals, Inc.

for a location routing problem in the context of capacitated
vehicle routing (CVRP).

CVRP is an extensively studied VRP [24] which involves
distributing units of an identical item to a set of demand loca-
tions. Formally, we are given a metric space (V, d) on vertices
V with distance function d : V × V → R+ that is symmetric
and satisfies triangle inequality. Each vertex u ∈ V demands
qu units of the item. We have available a fleet of k vehicles,
each having capacity Q and located at specified depots. The
goal is to distribute items using the k vehicles at minimum
total cost. There are two versions of CVRP depending on
whether or not the demand at a vertex may be satisfied over
multiple visits. We focus on the unsplit delivery version in
the paper, while noting that this also implies the result under
split-deliveries.

We consider the question “where should one locate the k
depots so that the resulting vehicle routing solution has min-
imum cost?” This is called k-location capacitated vehicle
routing (k-LocVRP). The k-LocVRP problem bears obvious
similarity to the well-known k median problem, where the
goal is to choose k centers to minimize the sum of distances
of each vertex to its closest center. In fact, k-median is a spe-
cial case of k-LocVRP when the vehicle capacity Q = 1. Not
surprisingly, our algorithm for k-LocVRP builds on approx-
imation algorithms for the k median problem. However,
k-LocVRP is more complex under general (finite) capacities
since it needs to handle the routing aspect as well.

In obtaining an algorithm for k-LocVRP, we introduce
a new location problem, k median forest, which might be
of independent interest. The input here consists of a met-
ric (V, d), vertex-weights {qu}u∈V , bound k, and parameter
ρ ∈ R+. The goal is to find a subset S ⊆ V with |S| = k
minimizing

∑
u∈V qu · d(u, S) + ρ · d( MST(V/S) ). Here,

d(u, S) = minw∈Sd(u, w) is the minimum distance between
u and a vertex in S, and d(MST(V/S)) is the length of the
minimum spanning tree in the graph obtained by contracting
S to a single vertex. As a potential application, consider a
telecommunication company that wants to locate k facilities
so as to maintain two types of connectivity to its clients: (i) a
low-cost cable that connects each client directly to its nearest
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facility, and (ii) a path consisting of high-cost cables that con-
nects each client to some facility. When the cost-per-length of
the high-cost cable is ρ times that of the low-cost cable, this
corresponds precisely to the k median forest problem (with
all vertex-weights qu = 1).

1.1. Standard Definitions

An algorithm for a minimization problem is said to have
approximation ratio α (also called an α-approximation algo-
rithm) if it runs in polynomial time and on every instance
of the problem it produces a solution having objective at
most α times the optimum; see the books [25, 26] for more
background on approximation algorithms.

Given a local search algorithm for a minimization prob-
lem, a locally optimal solution L is one where no solution in
the local neighborhood of L has smaller objective value than
L. The locality gap of such an algorithm is defined to be the
maximum over all problem instances I and locally optimal
solutions LI for I, of the ratio of LI ’s objective to the optimal
value of I, i.e.,

Locality gap = max
instance I

max
local opt LI

Objective(LI)

Optimum(I)
.

If the local search algorithm terminates in polynomial time,
its approximation ratio is upper bounded by the locality gap.

1.2. Our Results and Techniques

The main result is the following.

Theorem 1. There is a (12 + ε)-approximation algorithm
for k-LocVRP, for any constant ε > 0.

Our algorithm first reduces k-LocVRP to k median forest,
at the loss of an approximation factor of 4. This step is fairly
straightforward and makes use of known lower-bounds [12]
for the CVRP problem. We present this reduction in Section
2. Then, in Section 3 we prove the following result which
implies Theorem 1.

Theorem 2. There is a (3+ε)-approximation algorithm for
k median forest, for any constant ε > 0.

This is the technically most interesting part of the paper.
The algorithm is straightforward: perform local search using
multiswaps. It is well-known that (single swap) local search
is optimal for the minimum spanning tree problem. More-
over, Arya et al. [3] showed that t-swap local search achieves
exactly a (3 + 2

t )-approximation ratio for the k-median
objective (this proof was later simplified by Gupta and Tang-
wongsan [11]). Thus one can hope that local search performs
well for k median forest, which is a combination of both MST
and k-median objectives. However, the local moves used in
proving the quality of local optima are different for the MST
and k-median objectives. Our proof shows that we can simul-
taneously bound both MST and k-median objectives using a

common set of local moves. In fact, we prove that the local-
ity gap for k median forest under t-swaps is also (3 + 2

t ). To
bound the k-median part of the objective due to these swaps,
we use the result from [11]. The interesting part of the proof is
in bounding the change in the MST cost due to these swaps—
this makes use of nontrivial exchange properties of spanning
trees (that are easier to describe in a matroid context [23])
and additional properties of the potential swaps from [11].

We note that the uniformity of metrics in the k-median
and MST parts of the objective is crucial for the local search
algorithm to perform well. We show (in Appendix 2) that
the locality gap is unbounded for the more general “nonuni-
form” k median forest problem (where there are different
metrics for the k-median and MST parts). Still, we note that
one can obtain a constant-factor approximation algorithm
for nonuniform k median forest using a linear-programming
based approach from [16] for the matroid median problem.
We omit the description of this result here since it is not
directly related to the location-routing problem; the interested
reader is referred to [10].

1.3. Related Work

The basic capacitated VRP involves a single fixed depot.
There are two versions of CVRP: split delivery where the
demand of a vertex may be satisfied over multiple visits; and
unsplit delivery where the demand at a vertex must be satisfied
in a single visit (in this case, we also assume maxu∈V qu ≤ Q).
Observe that the optimal value under split-delivery is at most
that under unsplit-delivery. The best known approximation
guarantee for split-delivery CVRP is α + 1 [2, 12] and for
unsplit-delivery CVRP is α + 2 [1], where α denotes the
best approximation ratio for the Traveling Salesman Prob-
lem. We make use of the following known lower bounds for
CVRP with single depot r: the minimum TSP tour on all
demand locations, and 2

Q

∑
u∈V d(r, u) · qu. Constant factor

approximation algorithms are also known for the CVRP with
multiple (fixed) depots [19].

The k-median problem is a widely studied location prob-
lem and has many constant factor approximation algorithms.
Starting with the LP-rounding algorithm of [8], the primal-
dual approach was used in [15], and also local search [3].
A simpler analysis of the local search algorithm was given
in [11]; we make use of this in our proof for the k median
forest problem. For a long time, the (3 + ε)-approximation
algorithm via local search [3] was the best bound known for
k-median. Very recently, this bound has been improved to
2.675 + ε in [6, 20].

Recently [13] studied (among other problems) a facility-
location variant of CVRP: there are opening costs for depots
and the goal is to open a set of depots and find vehicle
routes so as to minimize the sum of opening and routing
costs. The relation between k-LocVRP and the problem in
[13] is similar to that between k-median and facility location.
In [13], the authors gave a 4.38-approximation algorithm for
facility-location CVRP. Following a similar approach one can
obtain a “bicriteria” approximation algorithm for k-LocVRP,
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where 2k depots are opened but the algorithm’s objective
is compared to the optimum using only k depots. However
more work is needed to obtain a true approximation, and
this is precisely where we make use of the k median forest
problem.

In independent work, Carnes and Shmoys [7] gave a 2-
approximation algorithm for the k-location routing problem,
which is the uncapacitated version of k-LocVRP. Their algo-
rithm is based on a primal-dual schema and Langrangian
relaxation. The facility location variant of this problem was
considered earlier by Goemans and Williamson [9], who
gave a 2-approximation algorithm as part of their general
framework for network design problems.

2. REDUCING k -LocVRP TO k MEDIAN FOREST

We show that the k-LocVRP problem can be reduced
to k median forest at the loss of a constant approximation
factor. This makes use of known lower bounds for CVRP
[12, 13, 19].

For any subset S ⊆ V , let Flow(S) := 2
Q

∑
u∈V qu ·

d(u, S), and let Tree(S) = d(MST(V/S)) be the length of the
minimum spanning tree in the metric obtained by contract-
ing S. The following theorem is implicit in previous work
[12, 13, 19]; this uses a natural MST splitting algorithm.

Theorem 3 (Harks et al. [13]). Given any instance of
CVRP on metric (V, d) with demands {qu}u∈V , vehicle
capacity Q and depots S ⊆ V,

• The optimal value of split-delivery CVRP is at least
max {Flow(S), Tree(S)}.

• There is a polynomial time algorithm that computes an unsplit-
delivery solution of length at most 2 · Flow(S) + 2 · Tree(S).

Based on this it is clear that, up to a factor of 4, the optimal
value of the CVRP instance given depot positions S equals
Flow(S) + Tree(S). The following lemma formalizes this
reduction.

Lemma 4. If there is a β-approximation algorithm for k
median forest then there is a 4β-approximation algorithm
for k-LocVRP.

Proof. Let Opt denote the optimal value of the k-
LocVRP instance. Using the lower bound in Theorem 3,

Opt ≥ min
S:|S|=k

max{Flow(S), Tree(S)}

≥ min
S:|S|=k

[ε · Flow(S) + (1 − ε) · Tree(S)],

where ε ∈ [0, 1] is any value; this will be fixed later. Consider
the instance of k median forest on metric (V, d), vertex weights
{qu}u∈V and parameter ρ = 1−ε

ε
· Q

2 . For any S ⊆ V the
objective is:

∑
u∈V

qu · d(u, S) + ρ · d(MST(V/S))

= Q

2
· Flow(S) + ρ · Tree(S)

= Q

2ε
· [ε · Flow(S) + (1 − ε) · Tree(S)].

Thus the optimal value of the k median forest instance is at
most Q

2ε
· Opt. Let Salg denote the solution found by the β-

approximation algorithm for k median forest. It follows that
|Salg| = k and:

ε · Flow(Salg) + (1 − ε) · Tree(Salg) ≤ β · Opt (1)

For the k-LocVRP instance, we locate the depots at Salg.
Using Theorem 3, the cost of the resulting vehicle routing
solution is at most 2 · Flow(Salg) + 2 · Tree(Salg) = 4 ·
[ε · Flow(Salg) + (1 − ε) · Tree(Salg)] where we set ε =
1/2. From Inequality (1) it follows that our algorithm is a
4β-approximation algorithm for k-LocVRP. ■

We note below that this reduction already gives us a
constant factor bicriteria approximation algorithm for k-
LocVRP. An algorithm for k-LocVRP is said to be an
(α, β)-bicriteria approximation (for values α, β ≥ 1) if, on
every problem instance it produces a solution using at most
β ·k depots with objective value at most α times the optimum
which uses at most k depots.

Let Smed denote an approximate solution to k-median on
metric (V, d) with vertex-weights {qu : u ∈ V}, which can
be obtained by directly using a k-median algorithm [3]. Let
Smst denote the optimal solution to minS:|S|≤k d(MST(V/S)),
which can be obtained using the greedy MST algorithm. We
output Sbi = Smed ∪ Smst as a solution to k-LocVRP, along
with the vehicle routes obtained from Theorem 3 applied to
Sbi. Note that |Sbi| ≤ 2k, so we open at most 2k depots.
Moreover, if S∗ denotes the location of depots in the optimal
solution to k-LocVRP then:

• Flow(Smed) ≤ (3 + δ) · Flow(S∗) since we used a (3 + δ)-
approximation algorithm for k-median [3], for any constant
δ > 0.

• Tree(Smst) ≤ Tree(S∗) since Smst is an optimal solution to the
MST part of the objective.

Clearly Flow(Sbi) ≤ Flow(Smed) and Tree(Sbi) ≤
Tree(Smst), so:

1

2
· Flow(Sbi) + 1

2
· Tree(Sbi)

≤ 3 + δ

2
· [Flow(S∗) + Tree(S∗)] ≤ (3 + δ) · Opt

Using Theorem 3 the cost of the CVRP solution with depots
Sbi is at most 4(3 + δ) ·Opt. So this gives a (12 + δ, 2) bicri-
teria approximation algorithm for k-LocVRP, where δ > 0 is
any fixed constant. We note that this approach combined with
algorithms for facility-location and Steiner tree immediately
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gives a constant factor approximation for the facility loca-
tion CVRP considered in [13]; however, this yields a worse
constant factor. For k-LocVRP this approach clearly does not
give any true approximation ratio, and to achieve this we give
an algorithm for k median forest.

3. THE k MEDIAN FOREST PROBLEM

The input to k median forest consists of a metric (V, d),
vertex-weights {qu}u∈V , bound k, and parameter ρ ∈ R+. The
goal is to find S ⊆ V with |S| = k minimizing:

�(S) =
∑
u∈V

qu · d(u, S) + ρ · d( MST(V/S) ),

where d(u, S) = minw∈Sd(u, w) and MST(V/S) is the mini-
mum spanning tree in the graph obtained by contracting S to
a single vertex.

Note that when ρ = 0, we recover the k-median problem.
And when ρ is very large, we obtain the k-tree problem where
the goal is to find a minimum cost forest consisting of k
trees that spans all the vertices.1 Observe that the k-tree prob-
lem can be solved optimally using the greedy algorithm for
minimum spanning tree and stopping when there are k com-
ponents. Although the k median forest objective is a linear
combination of the k-median and k-tree objectives, we note
(in Appendix 1) that approximate solutions to these three
problems can be very different from each other.

We analyze the natural t-swap local search for this prob-
lem, for any constant t. Starting at an arbitrary solution L ⊆ V
consisting of k centers, do the following until no improve-
ment is possible: if there exists D ⊆ L and A ⊆ V \ L
with |D| = |A| ≤ t and �((L \ D) ∪ A) < �(L) then set
L ← (L \ D) ∪ A. We prove that the locality gap of this pro-
cedure for k-median forest is at most 3 + 2

t . This is also tight
since a matching lower bound of 3+ 2

t is already known, even
in the special case of k-median [3]. Somewhat surprisingly, it
suffices to consider exactly the same set of swaps from [11]
(for k-median) to establish our result, although these swaps
did not take into account any MST contribution.

Running Time

Clearly, each local step can be performed in nO(t) time
where n = |V |. This is polynomial for fixed t. But the
number of iterations to reach a local optimum may be super-
polynomial. However this can be made polynomial by the
standard method of performing a local move only if the cost
� reduces by some 1 + 1

p(n)
factor where p(n) is some poly-

nomial in n (see, e.g., [3]). Under this modified local search,
any local optimum F ⊆ V satisfies the weaker condition:

�((F \ D) ∪ A) ≥
(

1 − 1

p(n)

)
· �(F),

∀D ⊆ F, A ⊆ V \ F, |D| = |A| ≤ t.

1 Equivalently, the k-tree problem involves choosing k centers S ⊆ V so as
to minimize d(MST(V/S)).

To reduce notation, we present the analysis below for the
original local search, i.e., no neighbor F \ D ∪ A of the local
optimum F has cost less than �(F). Exactly the same analysis
holds for the modified local search as well: the approximation
factor only increases by an additive o(1) term since the num-
ber of local inequalities used in the analysis will be bounded
by 2n � p(n).

Let F ⊆ V denote any local optimum solution (under
t-swaps) and F∗ ⊆ V the global optimum. Note that
|F| = |F∗| = k. Define map η : F∗ → F as η(w) =
argminv∈Fd(w, v) for all w ∈ F∗, i.e., for each optimum
center w ∈ F∗, η(w) is w’s closest center in F. For any
S ⊆ V , define Med(S) := ∑

u∈V qu · d(u, S), and let
Tree(S) = d(MST(V/S)) be the length of the minimum
spanning tree after contracting S to a single vertex; so �(S) =
Med(S) + ρ · Tree(S). For any D ⊆ F and A ⊆ V \ F with
|D| = |A| ≤ t we use F − D + A to denote (F \ D) ∪ A
and refer to the local move from F to F − D + A as a “(D,
A) swap.” We use the following swap construction from [11]
for the k-median problem. Below, for any integer h, we use
[h] := {1, 2, . . . , h}.
Theorem 5 (Gupta and Tangwongsan [11]). For any F,
F∗ ⊆ V with |F| = |F∗| = k, there are partitions {Fi}	i=1 of

F and
{
F∗

i

}	

i=1 of F∗ such that ∀i ∈ [	], |Fi| = |F∗
i |. Fur-

thermore, for each i ∈ [	], there is a unique ci ∈ Fi such that
η(w) = ci for all w ∈ F∗

i and η−1(v) = ∅ for all v ∈ Fi \{ci}.
Define set S of t-swaps with multipliers {α(s) : s ∈ S} as:

• For any i ∈ [	], if |Fi| ≤ t then swap (Fi, F∗
i ) ∈ S with

α(Fi, F∗
i ) = 1.

• For any i ∈ [	], if |Fi| > t then for each a ∈ F∗
i and b ∈ Fi\{ci}

swap (b, a) ∈ S with α(b, a) = 1
|Fi |−1 .

Then we have:

• ∑
(D,A)∈S α(D, A) · (Med(F − D + A) − Med(F)) ≤ (3 +

2/t) · Med(F∗) − Med(F).
• For each w ∈ F∗, the extent to which w is added∑

(D,A)∈S:w∈A α(D, A) = 1.
• For each v ∈ F, the extent to which v is dropped∑

(D,A)∈S:v∈D α(D, A) ≤ 1 + 1
t .

See Figure 1 for an example.
We use the same set S of swaps for the k median forest

problem and will show the following:
∑

(D,A)∈S
α(D, A) · (Tree(F − D + A) − Tree(F))

≤ (3 + 2/t) · Tree(F∗) − Tree(F) (2)

Multiplying this by ρ and adding it to the similar inequality
in Theorem 5 for Med (since both inequalities use exactly the
same set S of swaps with respective multipliers) we obtain:

∑
(D,A)∈S

α(D, A) · (�(F − D + A) − �(F))

≤ (3 + 2/t) · �(F∗) − �(F). (3)
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FIG. 1. The map η : F∗ → F and partitions of F∗ and F in the swaps of Theorem 5.

Finally by local optimality of F, the left-hand side above
is nonnegative, and we have:

Theorem 6. The t-swap local search algorithm for k
median forest achieves an approximation ratio of (3 + 2

t ).

As noted above, the modified local search for polynomial
running time has an approximation ratio of 3 + 2

t + o(1).
This uses the fact that the total extent of swaps used in (3) is∑

(D,A)∈S α(D, A) ≤ 2n.
It remains to prove (2), which we do in the rest of the

section. The main idea is to upper bound Tree(F − D + A)−
Tree(F) for each swap (D, A) ∈ S in terms of certain edges
from MST(V/F∗); this is formalized in Lemma 13. This will
make precise the connection between the swaps in Theorem
5 and the MST part of the objective �.

Before stating and proving the main lemma, we introduce
some useful constructs and properties. By construction of the
swaps S in Theorem 5, observe that:

Claim 7. For any swap (D, A) ∈ S and any f ∗ ∈ F∗ \ A we
have η(f ∗) ∈ F \ D.

Augmenting the Metric (V, d)

To work with Tree(S) for various subsets S ⊆ V , it is
convenient to use an augmented graph H which is the com-
plete graph on vertices V ∪ {r} where r is a new vertex. We
let E = ( V

2 ) denote the edges in the metric. Then graph
H has edges E ∪ {(r, v) : v ∈ V}. The edges {(r, v) : v ∈ V}
are called root-edges and edges E are true-edges. For any
subset S ⊆ V , note that Tree(S) corresponds to the spanning
tree in H containing root-edges {(r, v) : v ∈ S} and true-edges
MST(V/S). For ease of notation, when it is clear from con-
text, for subset S ⊆ V , we use S to also denote the set
{(r, v) : v ∈ S} of root-edges.

Let M denote the spanning tree of H consisting of edges
MST(V/F) ∪ {(r, v) : v ∈ F}. Similarly, M∗ is the spanning
tree MST(V/F∗)∪{(r, v) : v ∈ F∗}. Note that M and M∗ cor-
respond to Tree(F) and Tree(F∗), respectively. An important
step in proving (2) is to relate the edges of M and M∗ to the
swaps S from Theorem 5: this is what enables charging the
MST increases under different swaps in S to M∗ and M. This
is done via the following exchange property of spanning trees
(which holds more generally for any matroid), see Equation
(42.15) in Schrijver [23].

Theorem 8 (Schrijver [23]). Given two spanning trees T1

and T2 in a graph H and a partition {T1(i)}p
i=1 of the edges of

T1, there exists a partition {T2(i)}p
i=1 of edges of T2 such that

(T2 \ T2(i)) ∪ T1(i) is a spanning tree in H for each i ∈ [p].

Relating M, M∗, and S

We will apply Theorem 8 on trees M∗ and M and a partition
of M∗ derived from S. Throughout, M∗ and M represent the
corresponding edge-sets. Recall the partition F∗

0 := {
F∗

i

}	

i=1
of F∗ from Theorem 5; we refine F∗

0 by splitting parts of size
larger than t into singletons, and let F∗ denote the resulting
partition (see Fig. 2). The reason behind splitting the large
parts of

{
F∗

i

}	

i=1 is to ensure the following property (recall
the swaps S from Theorem 5).

Claim 9. For each swap (D, A) ∈ S, A ⊆ F∗ appears as a
part in F∗. Moreover, for each part A′ in F∗ there is some
swap (D′, A′) ∈ S.

Consider the partition P* of the spanning tree M∗ with
parts F∗ ∪ {e}e∈M∗\F∗ , i.e., each true edge lies in a singleton
part and the root edges form the partition F∗ defined above.
Let P denote the partition of spanning tree M obtained by
applying Theorem 8 with partition P* of M∗; note also that
there is a pairing between parts of P and P*. Let M ′ ⊆ M∩E
denote the true edges of M that are paired with true edges of
M∗; and M ′′ = (M ∩ E) \ M ′ are the remaining true edges of
M (which are paired with parts in F∗). See Figure 2 for an
example.

In the following analysis, we will bound the cost of M ′
and M ′′ separately.

Claim 10.
∑

e∈M ′ de ≤ ∑
h∈E∩M∗ dh.

Proof. Fix any e ∈ M ′. By the definition of M ′ it follows
that there is a true-edge h ∈ E ∩ M∗ such that part {h} in
P* is paired with part {e} in P . In particular, M − e + h is
a spanning tree in H. Note that the root edges in M − e + h
are exactly F, and so M − e + h is a spanning tree in the
original metric graph (V, E) when we contract vertices F. By
definition, M = MST(V/F) is the minimum spanning tree in
the metric graph (V, E) when we contract vertices F. Hence we
have d(M) − de + dh ≥ d(M), implying de ≤ dh. Summing
overall e ∈ M ′ and observing that each edge h ∈ E ∩ M∗ can
be paired with at most one e ∈ M ′, we obtain the claim. ■
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FIG. 2. The partitions used in local search proof (e.g., has k = 8 and t = 2).

By Claim 9 it follows that for each swap (D, A) ∈ S, A is
a part in F∗ (and so in P*). Let EA be the (possibly empty)
set of true-edges of M that are paired with the part A of P*.

Claim 11. {EA : (D, A) ∈ S} is a partition of M ′′.

Proof. Consider the partition P* of M given by The-
orem 8 applied to P*. By definition, M ′ ⊆ E ∩ M are
the true edges of M paired (by P and P*) with true edges
of M∗; and M ′′ = (E ∩ M) \ M ′ are paired with parts
from F∗ (which consist of root edges of M∗). For each part
π ∈ F∗ ⊆ P∗ let E(π) ⊆ M ′′ denote the M ′′-edges that
are paired with π . It follows that {E(π) : π ∈ F∗} parti-
tions M ′′. Using Claim 6 and the definition EAs, we have
{EA : (D, A) ∈ S} = {E(π) : π ∈ F∗}, which is a partition
of M ′′. ■

Components of E ∩ M

The true-edges of M induce a forest. Consider the con-
nected components in this forest: for each f ∈ F, let Cf ⊆ V
denote the vertices connected to f. Note that

{
Cf : f ∈ F

}
par-

titions V. Moreover, the edges in the components Cf partition
E ∩ M.

Components of E ∩ M∗

Now consider the forest induced by true edges of M∗ and
direct each edge toward an F∗-vertex (note that each tree in
this forest contains exactly one F∗-vertex). Observe that each
vertex v ∈ V\F∗ has exactly one out-edge σv, and F∗-vertices
have none.

For each f ∈ F, define T∗
f := {

σv : v ∈ Cf
}

the set of out-
edges incident from vertices of Cf (see Fig. 3). These sets will
be used to charge the increases Tree(F − D + A) − Tree(F)

for different swaps (D, A) ∈ S to (roughly) disjoint parts of

M∗. Since
{
Cf : f ∈ F

}
partitions V, it follows that

{
T∗

f

}
f ∈F

partitions E ∩ M∗, and:

Claim 12.
∑

f ∈F d(T∗
f ) = d(E ∩ M∗).

FIG. 3. The component Cf . Solid edges are true edges in M, dashed arrows
are the edges in T∗

f .

We are now ready to bound the increase in the Tree cost
under each swap of S.

Lemma 13. For each swap (D, A) ∈ S,

Tree(F − D + A) − Tree(F) ≤ 2 ·
∑
f ∈D

d(T∗
f ) − d(EA).

Proof. By Claim 6, A ⊆ F∗ is a part inP*. Recall that EA

denotes the true-edges of M paired with A; let FA denote the
root-edges of M paired with A. Then using Theorem 8 it fol-
lows that (M \(EA∪FA))∪A is a spanning tree in H; note that
A corresponds to a set of root-edges. Hence, the remaining
true-edges SA := (E∩M)\EA is a forest with each component
containing some center from (F \ FA) ∪ A. In other words,
SA connects each vertex in V to some vertex of (F \ FA) ∪ A.
For any f ∈ F ∪ A let C′

f denote vertices in the component

of SA containing f. Note that
{

C′
f : f ∈ (F \ FA) ∪ A

}
is a

refinement of the previously defined partition
{
Cf : f ∈ F

}
as SA ⊆ E ∩ M. Moreover, the edges in the components C′

f
partition SA.

Note that the length of edges in SA is Tree(F) − d(EA):
so if each component of SA already contains some vertex of
F − D + A, the lemma holds trivially (without the additional
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FIG. 4. Addition of edges to set N.

T∗
f terms). Otherwise, we will add a set of true edges of

cost at most 2
∑

f ∈D d(T∗
f ) so that each resulting component

contains some vertex of F − D + A: this would complete the
proof of the lemma.

For the proof, it turns out to be convenient to add edges
to SA in two phases. First, we add all the edges in ∪f ∈DT∗

f
to obtain the (true) edge set S′

A := SA∪f ∈DT∗
f . In the second

phase, we will add a set N of true edges so that S′
A∪N connects

each D-vertex to some vertex of F −D+A. Since SA already
connects all vertices to some vertex in (F \ FA)∪ A ⊆ F ∪ A,
it would follow that each connected component of S′

A ∪ N
contains some vertex of F − D + A, and therefore

Tree(F + A − D) ≤ d(S′
A) + d(N)

≤ Tree(F) − d(EA) +
∑
f ∈D

d(T∗
f ) + d(N).

To prove the lemma it now suffices to construct a true edge-
set N with d(N) ≤ ∑

f ∈D d(T∗
f ), such that S′

A ∪ N connects
each D-vertex to F−D+A. The existence of such an edge-set
N relies on the metric being the same for both k-median and
MST parts of the objective as well as some properties of the
set S of swaps (Claim 14).

Below, we use δ(V ′) to denote the edges of S′
A between V ′

and V \ V ′ for any V ′ ⊆ V . Note that by its definition, each
C′

f (for f ∈ F ∪ A) is connected in SA ⊆ S′
A. ■

Constructing N

Consider any minimal U ⊆ D such that δ(∪f ∈UC′
f ) = ∅.

If there is no such set U then it follows that each D-vertex is
connected in S′

A to some vertex of (V \∪f ∈DC′
f )∪g∈AC′

g, and
hence to some vertex of F − D + A: in this case it suffices
to set N = ∅. Now, suppose there is such a minimal set
U. By minimality and the fact that each C′

f is connected in
S′

A, it follows that ∪f ∈UC′
f is connected in S′

A. We need the
following claim (see also an example in Fig. 4).

Claim 14. There exists f ∗ ∈ F∗ ∩ (∪f ∈UC′
f ) and f ′ ∈ U

such that ∪f ∈UT∗
f contains a path between f ′ and f ∗.

Proof. Let any f ′ ∈ U. Consider the directed path P from
f ′ obtained by following out-edges σ until the first occurrence
of a vertex v that is either in F∗ or in V \ (∪f ∈UC′

f ). Since
F∗-vertices are the only ones with no out-edge σ , and the
set of all out-edges {σw : w ∈ V} = E ∩ M∗ is acyclic, there
must exist such a vertex v ∈ F∗ ∪ (V \ (∪f ∈UC′

f )).
We first claim that P ⊆ ∪f ∈UT∗

f . To see this, observe that
C′

f ⊆ Cf for all f ∈ D ⊇ U: recall that Cs (resp. C′ s) are the
connected components in E ∩M (resp. SA ⊆ E ∩M). So P ⊆{
σw : w ∈ ∪f ∈UC′

f

}
⊆ {

σw : w ∈ ∪f ∈UCf
} = ∪f ∈UT∗

f .

Suppose now (for a contradiction) that vertex v /∈ F∗. Then
v ∈ V \(∪f ∈UC′

f ), but this implies δ(∪f ∈UC′
f ) �= ∅ since path

P ⊆ ∪f ∈UT∗
f ⊆ S′

A leaves ∪f ∈UC′
f . So v ∈ F∗ ∩ (∪f ∈UC′

f )

and P ⊆ ∪f ∈UT∗
f is a path from f ′ to v. ■

Consider f ∗ and f ′ as given in Claim 14. If f ∗ ∈ A then the
component ∪f ∈UC′

f of S′
A is already connected to F −D +A.

Otherwise, by Claim 7 (using properties of the swaps S)
we have η(f ∗) ∈ F \ D, and we add edge (f ∗, η(f ∗)) to N
which connects component ∪f ∈UC′

f to η(f ∗) ∈ F − D ⊆
F − D + A. Now, d(f ∗, η(f ∗)) ≤ d(f ∗, f ′) ≤ ∑

f ∈U d(T∗
f );

the last inequality uses Claim 14 and the fact that the metric d
is the same for both k-median and MST parts of the objectives.
This is the only point in the proof where we use uniformity in
the metrics for the k-median and MST objectives.2 In either
case, U gets connected to F − D + A in S′

A ∪ N , and the cost
of N increases by at most

∑
f ∈U d(T∗

f ).
We apply the above argument to every minimal U ⊆ D

with δ(∪f ∈UC′
f ) = ∅. The increase in cost of N due to each

2 As the example in Appendix 2 shows, having the same metric is crucial for
a constant locality gap.
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such U is at most
∑

f ∈U d(T∗
f ). Since such minimal sets U

are disjoint, we have d(N) ≤ ∑
f ∈D d(T∗

f ). Clearly S′
A ∪ N

connects each D-vertex to F − D + A.
Using Lemma 13 for each (D, A) ∈ S weighted by

the coefficient α(D, A) from Theorem 5 and adding them
together, we obtain:

∑
(D,A)∈S

α(D, A) · [Tree(F − D + A) − Tree(F)]

≤ 2 ·
∑

(D,A)∈S
α(D, A) ·

∑
f ∈D

d(T∗
f )

−
∑

(D,A)∈S
α(D, A) · d(EA) (4)

= 2
∑
f ∈F

⎛
⎝ ∑

(D,A)∈S:f ∈D

α(D, A)

⎞
⎠ · d(T∗

f )

−
∑

e∈M ′′

⎛
⎝ ∑

(D,A)∈S:e∈EA

α(D, A)

⎞
⎠ · de (5)

≤ 2

(
1 + 1

t

) ∑
f ∈F

d(T∗
f ) −

∑
e∈M ′′

de (6)

= 2

(
1 + 1

t

)
· d(E ∩ M∗) − d(M ′′) (7)

Above (4) is by Lemma 13, (5) is by interchanging summa-
tions using the fact that EA ⊆ M ′′ (for all (D, A) ∈ S) from
Claim 11. The first term in (6) uses the property in Theorem
5 that each f ∈ F is dropped (i.e., f ∈ D) to a total extent at
most 1 + 1

t ; the second term uses

∑
(D,A)∈S:e∈EA

α(D, A) = 1 for each e ∈ M′′,

which follows by Claim 11 and the property in Theorem 5
that each f ∗ ∈ F∗ is added to a total extent of one in S. Finally
(7) is by Claim 12.

Adding the inequality 0 ≤ d(E∩M∗)−d(M ′) from Claim
10 yields:

∑
(D,A)∈S

α(D, A) · [Tree(F − D + A) − Tree(F)]

≤
(

3 + 2

t

)
· d(E ∩ M∗) − d(E ∩ M),

since M ′ and M ′′ partition the true edges E ∩ M. Thus we
obtain Inequality (2).

4. CONCLUSION

In this article, we obtained the first constant-factor approx-
imation algorithm for k-location CVRP, a basic location-
routing problem. Our algorithm used existing lower bounds
for CVRP to reduce to a new location problem, k median

forest, which generalizes the k-median and k-tree prob-
lems. Finally we obtained a local-search based (3 + ε)-
approximation algorithm for k median forest. Both the
k-location CVRP and k median forest problems generalize
k-median: so they are hard to approximate within a factor
of 1 + 2/e ≈ 1.736 [14]. Improving either the approxima-
tion ratio or the hardness result would be interesting. We
mention here two potential avenues for improving on our
approximation ratio:

• Given that both the k-median and k-tree problems admit
approximation ratios better than 3, is there a better than 3
approximation ratio for k median forest as well? A possible
first step in this direction is to combine the “Lagrangian multi-
plier preserving” algorithms for k-median [14] and k-tree [7],
which are currently based on different methods.

• The explicit reduction to k median forest loses a factor of 4
in the approximation ratio. Can we obtain an algorithm that
avoids such a reduction? This is likely to require a better lower
bound for the location-routing problem.

APPENDIX 1: EXAMPLE COMPARING k -MEDIAN,
k -TREE, AND k MEDIAN FOREST

Here, we give an example that shows that near-optimal
solutions to the k-median, k-tree, and k median forest prob-
lems can be very far from each other. This implies that any
approximation algorithm for k median forest must simulta-
neously take into account both the median and tree parts of
its objective.

The underlying metric consists of six vertices {u0, u1, u2}∪
{v0, v1, v2}, see Figure 5. Let 	 be a parameter that will
be set to be arbitrarily large. The distance between any
ui and vj (for all i, j ∈ {0, 1, 2}) is infinite; d(u0, u1) =
d(u0, u2) = 	3, d(u1, u2) = 	2; and d(v0, v1) = d(v0, v2) =
	4, d(v1, v2) = 	. The weights of vertices are q(u1) =
q(u2) = q(v1) = q(v2) = 	4 and q(u0) = q(v0) = 1. The
bound k = 4 and parameter ρ = 	2 for the k median forest
problem. Let Smed , Stree and Skmf denote the sets of solutions
that have objective values within an o(	) factor of the respec-
tive optimum for the k-median, k-tree, and k median forest
objectives. We claim that Smed , Stree, and Skmf are mutually
disjoint.

It can be checked directly that the optimal k-median value
is 	3 + 	4 ≤ 2 	4. Moreover, the only solution of value o(	5)

is {u1, u2, v1, v2}; so Smed consists of just this solution.
The optimal k-tree value is 	+	2 ≤ 2 	2. For any solution

F ∈ Stree (i.e., having value o(	3)), we must have u0, v0 ∈
F, |F ∩{u1, u2} | = 1 and |F ∩{v1, v2} | = 1. So Stree consists
of the 4 solutions:

{
u0, v0, ui, vj

}
where i, j ∈ {1, 2}.

For the k median forest objective, it can be seen that the
optimal value is ρ ·(	3+	)+	4 ·	+	3 = 2 (	5+	3); from the
solutions {u1, u2, v0, v1} and {u1, u2, v0, v2}. Moreover, any
other solution has value �(	6); so Skmf consists of the above
two solutions.

Clearly Smed , Stree and Skmf are disjoint.
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FIG. 5. Instance for which the values of near-optimal solutions to k-median, k-tree, and k median forest problems
are far apart for k = 4. We have vertex weights q(u1) = q(u2) = q(v1) = q(v2) = 	4 and q(u0) = q(v0) = 1.

APPENDIX 2: LARGE LOCALITY GAP FOR
NONUNIFORM k MEDIAN FOREST

Here, we consider the k median forest problem with two
distinct metrics for the k-median and MST parts. In this prob-
lem, there is a set of vertices V with weights {qu}u∈V , two
metrics d and c defined on V, and a bound k. The goal is to
find S ⊆ V with |S| = k minimizing

∑
u∈V

qu · d(u, S) + c( MST(V/S) ).

Here, c(MST(V/S)) is the length (under metric c) of the
minimum spanning tree in the graph obtained by contracting
S to a single vertex. We give an example below showing an
unbounded locality gap for this problem, which is in sharp
contrast to the k median forest problem under a single metric.

Lemma 15. The locality gap of nonuniform k median forest
with multiswaps is unbounded.

Proof. Fix values M � w � 1. Let V = {ui,j : i ∈
[k], j ∈ {1, 2}}, so |V | = 2k. Define vertex-weights as fol-
lows: q(uk,2) = 1 and all other vertices have weight w. The
metric d for the k-median part is:

d(x, y) =

⎧⎪⎨
⎪⎩

0 if either x = y or {x, y} = {
ui,2, ui+1,1

}
for some i ∈ [k − 1]

1 otherwise

The metric c for the MST part of the objective is:

c(x, y) =

⎧⎪⎨
⎪⎩

0 if either x = y or {x, y} = {
ui,1, ui,2

}
for some i ∈ [k]

M otherwise

See Figure 6 for an example. Observe that for any S ⊆ V
with |S| = k, we have c(MST(V/S)) < M if and only if |S ∩{
ui,1, ui,2

} | = 1 for all i ∈ [k]. So the nonuniform k median
forest objective is smaller than M only if |S ∩ {

ui,1, ui,2
} | =

1, ∀i ∈ [k].
We claim that the optimal value is at most one. Consider

the solution S∗ = {
ui,1

}k
i=1. It is clear that c(MST(V/S∗)) =

0. Moreover,
∑

u∈V q(u) ·d(u, S∗) = 1 with vertex uk,2 being
the only contributor.

FIG. 6. Metric c: Dashed edges have weight 0, all other edges have weight
M. Metric d: The solid edges have weight 0, all other edges have weight 1.

We now claim that the solution L = {
ui,2

}k
i=1 is

locally optimal under even (k − 1)-swaps. First, observe that
c(MST(V/L)) = 0 and

∑
u∈V q(u) · d(u, L) = w with ver-

tex u1,1 being the only contributor. So L has objective value
of w. Second, notice that every solution S obtained by some
(k − 1)-swap of L has either MST-objective of M or median-
objective of w. Thus L is a local optimum and the locality
gap is w � 1. ■

This example is similar to the locality gap shown in [16]
for the matroid median problem. It turns out that one can also
obtain a constant-factor approximation algorithm for nonuni-
form k median forest, along the lines of [16]; see [10] for
details.
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