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Abstract 48	
 49	
Accurate wind-wave simulations are vital for evaluating the impact of waves on coastal 50	
dynamics, especially when wave observations are sparse. It has been demonstrated that 51	
structured-grid models have the ability to capture the wave dynamics of large-scale 52	
offshore domains, and the recent emergence of unstructured meshes provides an 53	
opportunity to better simulate shallow-water waves by resolving the complex geometry 54	
along islands and coastlines. For this study, wind waves in Lake Michigan were 55	
simulated using the unstructured-grid version of Simulating WAves Nearshore (un-56	
SWAN) model with various types of wind forcing, and the model was calibrated using 57	
in-situ wave observations. Sensitivity experiments were conducted to investigate the key 58	
factors that impact wave growth and dissipation processes. In particular, we considered 59	
(1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) 60	
alternative formulations and coefficients for depth-induced breaking, and (4) various 61	
mesh types. We find that un-SWAN driven by Global Environmental Multiscale (GEM) 62	
wind data reproduces significant wave heights reasonably well using previously proposed 63	
formulations for wind input, recalibrated whitecapping parameters, and alternative 64	
formulations for depth-induced breaking. The results indicate that using GEM wind field 65	
data as input captures large waves in the mid-lake most accurately, while using the 66	
Natural Neighbor Method wind field reproduces shallow-water waves more accurately. 67	
Wind input affects the simulated wave evolution across the whole lake, whereas 68	
whitecapping primarily affects wave dynamics in deep water. In shallow water, the 69	
process of depth-induced breaking is dominant and highly dependent upon breaker 70	
indices and mesh types.  71	
  72	
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Depth-induced breaking 74	
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1. Introduction 94	
 95	
Lake Michigan (Fig. 1a), the third largest lake in the Great Lakes system by surface area 96	
(58,000 km2) and second largest by volume (4,900 km3), has experienced severe 97	
windstorms over the past 20 years (Jensen et al., 2012). These extreme events present 98	
coastal hazards such as high waves and rip currents at recreational beaches, especially 99	
along the lake’s southeastern coast. Furthermore, a number of lake processes driven by 100	
extreme winds and waves, such as sediment resuspension and plume dynamics, can also 101	
be significantly affected by these storms, which can impact the regional ecosystem, as 102	
occurred with the 1998 and 1999 spring blooms. Although wave observations are 103	
routinely recorded by the National Oceanic and Atmospheric Administration’s National 104	
Data Buoy Center (NOAA-NDBC), gaps in data for the mid-lake (deep-water) and some 105	
coastal (shallow-water) stations still exist under severe storm conditions. Therefore, 106	
accurate wind-wave simulation is fundamental to the understanding of complex coastal 107	
dynamics in Lake Michigan (Lou et al., 2000; Schwab et al., 2000; Chen et al., 2004; 108	
Jensen et al., 2012).  109	
 110	
Given the limitations, especially in shallow water, in available wave buoy data, a third-111	
generation wind-wave model known as Simulating WAves Nearshore (SWAN, Booij et 112	
al., 1999) has been widely used for both hindcasting surface gravity waves (Rogers et al., 113	
2003) and forecasting future conditions (Rogers et al., 2007). Using the spectral action 114	
balance equation for wave energy (Gelci and Cazalé, 1953), SWAN simulates the 115	
growth, propagation, and decay of waves, taking into account current- and depth-induced 116	
refraction and frequency shifts, wind input, whitecapping dissipation, bottom friction, 117	
depth-induced wave breaking, and nonlinear wave–wave interactions (Booij et al., 1999). 118	
Whitecapping is widely regarded to be the principle mechanism for wave dissipation in 119	
deep water, and therefore many semi-empirical formulations for this process have been 120	
developed and calibrated (e.g., Rogers et al., 2003, 2012; van der Westhuysen et al., 121	
2007). Rogers et al. (2003) calibrated the free parameters for the wave steepness-related 122	
whitecapping formulation of Komen et al. (1984). Specifically, Rogers et al. (2003) 123	
increased the weighting of the relative wave number to shift the dissipation toward higher 124	
frequencies, and made simultaneous adjustment to the dissipation rate to match the 125	
limiting spectrum of Pierson and Moskowitz (1964). This modification greatly reduced 126	
the error in the estimation of wave frequency at mid-lake stations (NDBC 45002 and 127	
45007, see Fig. 2a). However, the interpolated spatial wind field used as input for the 128	
model was based only on mid-lake stations, which may bias the estimation of complex 129	
wind conditions near coasts (Jensen et al., 2012; Alves et al., 2014).  130	
 131	
In order to quantify simulation error resulting from inaccuracy in the wind field data, 132	
Jensen et al. (2012) hindcasted seven Lake Michigan storms from 1989 to 2009 using the 133	
WAve Model (WAM) Cycle 4 with two sources of wind field data. These data were 134	
derived from the NOAA National Centers for Environmental Prediction’s (NOAA-135	
NCEP) Climate Forecast System Reanalysis (CFSR) wind field, and from the Great 136	
Lakes Environmental Research Laboratory’s (GLERL) observation-based Natural 137	
Neighbor Method (NNM) wind field. Jensen et al. (2012) compared their simulation 138	
results with observations from buoys in the mid-lake and one station near the western 139	
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shore (station 45010, where water depth is 19.6 m, see Fig 2a). They reported that the 140	
spatial structures of the wind and wave fields were similar, but the model driven by the 141	
spatially coherent CFSR wind data outperformed the model using the NNM wind data for 142	
the estimation of storm waves (defined as the mean value of significant wave height 143	
(SWH) plus two times the variance) at mid-lake. Alves et al. (2014) confirmed, based on 144	
distinct responses to alternative wind fields (e.g., NCEP’s North American Mesoscale 145	
Model (NAM), and the National Digital Forecast Database) using WAVEWATCH III 146	
(WW3, Tolman, 2002), that model accuracy is strongly dependent upon the selection of 147	
wind field sources, and that model performance can be further improved by applying 148	
more advanced parameterization for deep-water wave physics (i.e., wind input and 149	
whitecapping terms). However, they used a 2.5-km-resolution curvilinear structured grid 150	
over the entire Great Lakes system without specific focus on shallow-water regions 151	
where the complex and steep bathymetry would likely be better resolved with flexible 152	
unstructured meshes (Zijlema, 2010). Although a 200-m-resolution structured-grid 153	
shallow-water model (STeady-state spectral WAVE, known as STWAVE, see Massey et 154	
al., 2011) for the southwestern shore of Lake Michigan and Green Bay was applied by 155	
Jensen et al. (2012), its assumption of stationarity may limit its accuracy. Moreover, the 156	
one-way nesting process from unstructured mesh to structured grid (Jensen et al., 2012) 157	
may introduce both physical and numerical errors (Zijlema, 2010). Because of the 158	
difficulty of adjusting mesh size and orientation to accommodate highly irregular coasts 159	
and island shorelines, models that use unstructured meshes typically outperform those 160	
that use structured grids in computational accuracy and efficiency (Zijlema, 2010). 161	
 162	
For their Gulf of Mexico study domain, Kerr et al. (2013) concluded that wave statistics 163	
were insensitive to grid resolution (i.e., a moderate-resolution mesh vs. a high-resolution 164	
mesh) in deep-water (water depths greater than 3000 m) and shelf regions (water depths 165	
between 50 and 200 m), but were sensitive to grid resolution at coastal stations. Aside 166	
from the effect of grid resolution, shallow-water wave dynamics assessment is also 167	
significantly affected by the description of depth-induced breaking. Van der Westhuysen 168	
(2010) applied various models of wave breaking (Battjes and Janssen, 1978, hereafter 169	
BJ78; Thornton and Guza, 1983, hereafter TG83) to three shallow lakes in the 170	
Netherlands with typical water depths of less than 5 m, and improved the models’ 171	
accuracy by optimizing the breaker index. Even though Lake Michigan is a relatively 172	
deep lake, with an average water depth of about 85 m, appropriate parameterization of 173	
depth-induced breaking is nonetheless expected to improve the accuracy of wave 174	
simulations for its shallow-water regions (Van der Westhuysen, 2010; Salmon et al., 175	
2015). In addition, the variation in monthly lake levels in the Great Lakes system 176	
reported by Sellinger et al. (2007) and Gronewold and Stow (2014) may be an important 177	
factor for depth-induced breaking. This possibility has not previously been explored. 178	
Finally, Rogers et al. (2007) demonstrated that shallow-water wave processes such as 179	
depth-induced refraction can introduce error if complex bathymetry is poorly resolved. 180	
Dietrich et al. (2013) further developed a range of Courant–Friedriches–Lewy (CFL) 181	
limiters for the directional turning rate of the spectral propagation velocities of waves, 182	
and succeeded in stabilizing wave simulation for Hurricane Hugo (1989) off the coast of 183	
South Carolina. To avoid excessive restriction to wave propagation, Dietrich et al. (2013) 184	
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suggested using a CFL value that is as large as possible, but within the range of 0.25–0.5. 185	
Therefore, a CFL value of 0.5 is adopted for the simulation herein. 186	
 187	
For this study, we configured an unstructured-grid version of SWAN (un-SWAN, 188	
Zijlema, 2010) for Lake Michigan over the ice-free period (April–November) for the 189	
years 2002–2012, and verified the model’s skill with a hindcast of Superstorm Sandy 190	
(2012). This study addresses three main questions: (1) How well can un-SWAN simulate 191	
surface gravity waves, particularly for extreme wind events? (2) How do the SWH and 192	
energy dissipation fields (i.e., whitecapping and depth-induced breaking) respond to wind 193	
input during Superstorm Sandy (2012)? (3) How does model performance differ when 194	
alternative sources of wind field data, different descriptions of deep- and shallow-water 195	
wave physics, and various mesh types are applied?  196	
 197	
This study is organized as follows: The methodology is introduced in Section 2, which 198	
includes description of the study domain, mesh types, models, datasets, skill metrics, and 199	
wind and wave climates of Lake Michigan. Section 3 presents wave simulation results for 200	
the default and recalibrated models. Model sensitivity experiments addressing the 201	
aforementioned question (3) are reported, and differences are explained in Section 4. 202	
Discussion and conclusions are given in Sections 5 and 6, respectively. 203	

 204	
2. Methodology 205	
 206	
2.1. Study domain and mesh types 207	
 208	
From north to south, the major body of Lake Michigan comprises the Chippewa Basin, 209	
the Mid-Lake Plateau, and the South Chippewa Basin (Fig. 1b). Its two largest bays 210	
(Green Bay and Grand Traverse Bay) and two major islands (Beaver Island and North 211	
Manitou Island) are located in the northern part of the lake. Ambient flows into the lake 212	
(e.g., from the Grand River, MI, and the channel that connects Lakes Michigan and 213	
Huron) are not considered for this study; it is assumed that their effects on the lake’s 214	
wave dynamics are insignificant. Various computational mesh types, including 215	
orthogonal curvilinear (OC) structured grids, and medium- and high-resolution (MR and 216	
HR) unstructured meshes are applied (Figs. 2b–d). The OC grid cells are evenly 217	
distributed (1.8 × 1.8 km resolution) over the entire computational domain with a total 218	
number of 52,975 cells (163 × 325). The spatial structure of the OC grid is similar to that 219	
applied by Alves et al. (2014), but is somewhat higher in horizontal resolution. The MR 220	
unstructured mesh consists of 5,256 nodes and 9,581 elements. The HR version has a 221	
similar mesh structure, but contains 20,108 nodes and 38,324 elements. The mesh size of 222	
the MR version benefits from a capacity for local mesh refinement; it decreases to 340 m 223	
in the shallow-water region (water depth below 50 m), whereas it increases to 440–7600 224	
m over the major body of the lake (water depth over 50 m). The lake bathymetry is 225	
resolved more finely by the HR version, of which the mesh size is about half of that for 226	
the MR version. Details about the domain size and mesh distribution over the lake are 227	
given in Table 1. 228	
  229	
2.2. Model description 230	
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 231	
The un-SWAN model is based on the spectral action balance equation for wave energy 232	
(Gelci and Cazalé, 1953; Booij et al., 1999; Zijlema, 2010; SWAN Group, 2012a, 233	
2012b): 234	
 235	

, , , ,              (1) 236	

 237	
where σ is the intrinsic frequency,  is the wave direction taken counterclockwise from 238	
the geographical east, N denotes the wave action spectral density, t is time, and  is the 239	
wave group velocity in space , , , 	 . From the right side of Eq. (1),  is 240	
expressed as follows: 241	
 242	

, , , .            (2) 243	
 244	
These six terms for wave energy sources and sinks represent wave growth by wind input, 245	
nonlinear wave energy transfer through three-wave and four-wave interactions, wave 246	
decay due to whitecapping and bottom friction, and depth-induced wave breaking, 247	
respectively. 248	
 249	
The wind input term in the wave model consists of two parts: 250	
 251	

, 	 ,                                                                          (3) 252	
 253	
where term A represents the initial linear growth stage of wind waves. The following 254	
exponential growth term 	 ,  is one or more orders of magnitude larger than the 255	
linear term because of the positive feedback of wave energy. The default formulation for 256	
the exponential wind-wave growth process is based on the work of Snyder et al. (1981), 257	
and given by Komen et al. (1984) as follows: 258	
 259	

max 0, 0.25 28 ∗ 1 	 .                                                        (4) 260	

 261	
An alternative formulation by Janssen (1991) adopts the quasi-linear wind-wave theory: 262	
 263	

∗ 0, cos	 	 .                        (5) 264	

 265	
Yan (1987) proposed an empirical fit equation based on experimental datasets: 266	
 267	

∗ ∗                      (6) 268	

 269	
in which  and  refer to the density of air and water respectively; ∗	 	  are the 270	
wind friction velocity and wave phase speed respectively,  and  are the mean wave 271	
and mean wind direction respectively, and  is the Miles constant. The coefficients 272	
defined by Yan (1987) were refitted by van der Westhuysen et al. (2007) such that 273	
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4.0 10 , 5.52 10 , 5.2 10 , 	 3.02 10 .  The key 274	
variable ∗ is calculated from the wind speed at 10 m elevation (U10), and the wind drag 275	
coefficient Cd by the following formulation by Wu (1982): 276	
 277	
∗                                                                                                                   (7) 278	

 279	

10
1.2875					 7.5	 /

0.8 0.065 			 7.5	 /
.                              280	

(8) 281	
 282	
Powell et al. (2003) suggested that the wind drag coefficient  should be capped when 283	
U10 is greater than about 33 m/s. We adopt the recommendation of the SWAN manual 284	
(SWAN Group, 2012a, 2012b) by setting an upper limit of 2.5 10  for a 285	
maximum of 26	m/s. 286	
 287	
The whitecapping dissipation term in Eq. (2) is based on the pulse-driven model of 288	
Hasselmann (1974), as modified by Komen et al. (1984) and Janssen (1992): 289	
 290	

, , Γ , .                                    (9) 291	

 292	
The steepness parameter Γ is defined as: 293	
 294	
Γ 1                                   (10) 295	

 296	
where  and  are the mean wave frequency and mean wave number respectively,  is 297	
the wave number, and  and  are tunable parameters that represent the whitecapping 298	
dissipation rate and weighting coefficient of the relative wave number, respectively. The 299	
superscript  denotes the power of the ratio of the overall wave steepness  to that of 300	
Pierson and Moskowitz (1964)’s spectrum √3.02 10 . 301	
 302	
The default depth-induced breaking formulation is derived from the BJ78 model, which 303	
assumes that the maximum possible wave height  for a given local water depth d is 304	
limited by a breaker index , expressed as 	 . The alternative TG83 305	
model introduces a weighting function with a scaling coefficient / , 306	
where , /  is the ratio of the maximum possible root-mean-square of wave 307	
height to local water depth. The default breaker indices for the BJ78 and TG83 models 308	
are 0.73 and 0.42, respectively. 309	
 310	
On the basis of the governing Eq. (1), the un-SWAN model is discretized with a first-311	
order, backward-space, backward-time scheme, and a hybrid central or upwind scheme in 312	
wave spectral space. This implicit geographical propagation scheme avoids the strict CFL 313	
limitation on time step, but a CFL limiter of 0.5 in the directional space of waves is 314	
nonetheless used to prevent excessive depth-induced refraction in regions with under-315	
resolved bathymetry. The equation is integrated using a finite difference method. In this 316	
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study, the wave directions are evenly distributed into 36 bins with a constant bandwidth 317	
of 10°, and frequencies are discretized over 32 bins with an increasing logarithmic scale 318	
over the range of 0.0512–1 Hz. The computational time interval is set to 5 min. For 319	
detailed descriptions of discretization skill and the numerical scheme, readers are referred 320	
to Booij et al. (1999) and Zijlema (2010).  321	
 322	
2.3. Model input and observational data 323	
 324	
The wave model was applied using three different sources of wind field data adjusted to 325	
10 m elevation: (a) the GLERL’s NNM-based (Schwab and Morton, 1984) hourly, 2-km 326	
horizontal resolution forcing, derived from lake buoy- (at mid-lake and several nearshore 327	
stations) and coastal land site-based data (Lang and Leshkevich, 2014); (b) the Canadian 328	
Meteorological Centre’s three-hourly, 10-km resolution wind field from the Global 329	
Environmental Multiscale (GEM) Model, which assimilates both in situ and remotely 330	
sensed data (Côté et al., 1998); and (c) the reanalysis dataset from the NOAA-NCEP 331	
Climate Forecast System Version 2 (CFSv2) with hourly, 0.205° (longitudinal) and ~ 332	
0.204° (latitudinal) resolution, which assimilates surface, upper balloon, aircraft, and 333	
satellite observations (Saha et al., 2014). Gridded bathymetry data obtained from the 334	
NOAA National Geophysical Data Center (NGDC), with a resolution of 6 arc-sec 335	
(approximately 185 m in longitude and 133 m in latitude), are interpolated to 336	
computational cells. The lake bathymetry is steep near the shallow coast, islands, and 337	
bays (e.g., Green Bay), and mild in the Chippewa Basin and the South Chippewa Basin 338	
(Figs. 1b and 2a). Monthly lake level anomaly values are derived from the NOAA’s 339	
Great Lakes Water Level Dashboard (GLWLD) surface water elevation records. The 340	
NOAA-NDBC provides access to observational wind and wave buoy data from all over 341	
the lake that are managed by various national and regional organizations (Fig. 2a and 342	
Table 2).  343	
 344	
2.4. Skill metrics 345	
 346	
Taylor diagrams (Taylor, 2001) were used to evaluate model skill based on the 347	
correlation coefficient (CC), normalized standard deviation (NSTD), and root-mean-348	
square deviation (RMSD). In addition, the scatter index (SI) and relative bias (RB) were 349	
also included in the scatterplots for model-to-data comparisons. These expressions are 350	
given as follows: 351	
 352	

∑ ̅ ̅
             (11) 353	

 354	
∑ ̅

∑ ̅
                                  (12) 355	

 356	

∑
/

            (13) 357	
 358	
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∑

∑
              (14) 359	

 360	
∑

∑
                         (15) 361	

 362	
where  ̅and ̅ are the mean values of the datasets  and  respectively, in a sample of 363	
size N, and  and  are the corresponding standard deviations. In this study,  denotes 364	
the observed wind speed, SWH, or peak wave period (PWP) at time n, and  is the 365	
corresponding value from model input or output. 366	
 367	
2.5. Wind and wave climates of Lake Michigan 368	
 369	
The hourly data for wind speed and SWH at mid-lake stations were averaged to monthly 370	
values for the ice-free period of the years 2002–2012. The spatial variability of wind and 371	
wave climates was further investigated with the addition of recently-deployed coastal 372	
buoy stations in 2011 and 2012.  373	
 374	
Figure 3a presents the rose diagrams for hourly wind speeds and SWHs at buoys located 375	
in the northern mid-lake area (45002), southern mid-lake area (45007), and near the mid-376	
eastern (45029) and southeastern shores (45026). Figure 3b shows additional wind roses 377	
for hourly wind speed along the southwestern (FSTI2), mid-western (45013), 378	
northwestern (0Y2W3), and northeastern shores (45024), and in Little Traverse Bay 379	
(45022) and Green Bay (45014). These data indicate that wind directions at mid-lake 380	
stations follow primarily along the lake’s longitudinal axis. However, at the shallow 381	
eastern coastal stations 45026 and 45029, multidirectional coastal winds show clear 382	
dominance of an onshore component from the lake’s interior. Steered by these westerly 383	
and northwesterly local winds, the shallow-water waves propagate toward the eastern 384	
coast of the lake. In contrast, winds at northeastern/northwestern and mid-western coastal 385	
stations show signatures of alongshore and offshore directions respectively (Fig. 3b). 386	
Near the extremely shallow southwestern coast, wind conditions are complex, and no 387	
single prevailing wind direction is observed. It should be noted that the winds over Little 388	
Traverse Bay and Green Bay are predominately parallel to the major axes of the 389	
respective bays. The intensity of wind over the lake is most often mild (5–10 m/s), 390	
followed in frequency by weak (0–5 m/s), high (10–15 m/s), and strong values (15–20 391	
m/s). Across all stations, small (0 < SWH  2 m) and medium (2 m < SWH  4 m) 392	
waves account for a large proportion of the observed SWH, although large (4 m < SWH 393	

 6 m) and moderately high waves (SWH > 6 m) are present at mid-lake stations. These 394	
fully-developed extreme wave conditions are likely induced by the strong winds with 395	
long fetch distances (400–500 km) that follow along the lake’s longitudinal axis.   396	
 397	
Figure 4 shows histograms of monthly-averaged SWH and wind speed at various deep- 398	
(northern and southern mid-lake), intermediate- (Little Traverse Bay) and shallow-water 399	
stations (Green Bay, and the western and eastern coasts). An interesting phenomenon is 400	
that the monthly-averaged SWHs in the lake are larger in the late fall (i.e., October and 401	
November), while the monthly-averaged wind speeds during these two months have 402	
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similar speeds to those of the late spring (i.e., April and May). Because SWH is highly 403	
sensitive to the intensity of wind speed (i.e., it is proportional to the square of wind speed, 404	
see Benetazzo et al., 2013), the monthly-averaged SWH value may be enhanced 405	
significantly by several extreme wind events. However, these event-dominated gusts 406	
generally last only a few hours, which may limit their contribution to the monthly-407	
averaged wind speed. Therefore, this phenomenon may be explained by the observation 408	
that extreme wave conditions occurred more frequently in the late fall than in the spring 409	
in the mid-lake area in the years 2002–2012 (i.e., a total of eleven events in the late fall 410	
and six in the spring, see Tables 3–4 and 3–5 in Jensen et al., 2012). Spatially, the 411	
monthly-averaged SWHs of the deep-water regions are higher than those in the 412	
intermediate- and shallow-water regions. This difference emerges because the elongated 413	
wind fetch over the spacious mid-lake region can generate fully-developed deep-water 414	
waves, while the coastal winds are significantly impeded by the irregular coastline, and 415	
the waves are affected by strong depth-induced breaking in the shallow-water regions. It 416	
is noted that the monthly-averaged SWHs near the eastern coast are larger than those near 417	
the western coast, presumably because of the long-term averaged westerly wind 418	
conditions over Lake Michigan that enhance the fetch toward the eastern coast (Beletsky 419	
and Schwab, 2008). 420	
 421	
3. Wave simulations 422	
 423	
3.1. Long-term wave simulation with the default model  424	

 425	
We first consider a long-term Lake Michigan wave simulation from April to November 426	
in the years 2002–2012 using the MR un-SWAN model with the default physics settings 427	
of version 40.91 (SWAN Group, 2012a, 2012b). The default model is driven by the 428	
GLERL’s observation-based NNM winds, as applied operationally by NOAA in the 429	
Great Lakes Operational Forecast System (GLOFS). The wind input and whitecapping 430	
terms are based on the work of Snyder et al. (1981) and Komen et al. (1984), with the 431	
default dissipation rate of 2.36 10  and the relative wave number weighting 432	
coefficient of 0 . The formulation of Hasselmann et al. (1973), with a constant 433	
coefficient of 0.067 m2s-3, is applied for bottom friction dissipation. Depth-induced 434	
breaking is incorporated through the BJ78 model, with a default breaker index of 435	

0.73. In addition, the directional wave speed is limited, with a CFL number of 0.5 436	
to restrain spurious refractions over regions where the bathymetry is under-resolved 437	
(Dietrich et al., 2013). Details of the physical parameterization of the default model (Case 438	
1a) can be found in Table 3. 439	
 440	
Model to data comparisons for wind speed and SWH are shown in Figs. 5a and b, 441	
respectively. On average, slight underestimations (negative RB) of the wind speeds in 442	
NNM data are noted across all stations except for a very shallow northwestern shore 443	
station (0Y2W3). With this wind forcing, SWHs produced with the un-SWAN model are 444	
underestimated for most stations, although they are overestimated in Green Bay (45014), 445	
and along the mid-western (45013) and southwestern shores (45018, 45016, and 45015). 446	
Because wind forcing is the primary driving agent of the wave dynamics of an enclosed 447	
lake, underestimation of wave height can be partially attributed to the underprediction of 448	
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wind speed. However, the degrees of underprediction for wave heights at stations 45002 449	
and 45007 (-4.4% and -6.2%) are significantly larger than for wind speed (-0.3% and -450	
1.4%), which suggests that the deviation may originate from deficiencies in the treatment 451	
of deep-water wave physics (i.e., the parameterization of whitecapping dissipation, see 452	
Rogers et al., 2003).  453	
 454	
Overall, the scores for the RB, SI, and CC for wind speeds and SWHs for the mid-lake 455	
area are superior to those for the extreme shallow-water stations in Green Bay and along 456	
the northwestern and southwestern coasts, where the interactions of waves with 457	
bathymetry are highly dynamic. Consequently, the largest NSTD of SWH is found at the 458	
shallowest southwestern shore station (NSTD = 1.68). The large SI and RMSD scores for 459	
SWH from the station in Green Bay (SI = 1.026 and RMSD = 0.39 m) are largely 460	
attributable to significant underestimation of outliers in wave height (3 m < SWH < 5 m) 461	
at that location. The third trend apparent in the model results is that the SWHs along the 462	
western shores (45013, 45015, 45016, and 45018) and in Green Bay are overestimated 463	
(i.e., positive RB) despite slight underestimation of wind speed (i.e., negative RB). This 464	
negative correlation is likely because of inaccurate estimation of shallow-water wave 465	
processes in the default model, such as the omission of monthly lake level variations, and 466	
deficiencies in the description of depth-induced refraction and breaking.  467	
 468	
To improve these results, additional experiments using un-SWAN with alternative wind 469	
field sources and different formulations and parameterizations for deep- and shallow-470	
water wave physics are discussed below. 471	
 472	
3.2. Improved performance with the recalibrated model 473	
 474	
In this section, we examine the skill of a recalibrated MR un-SWAN model for which the 475	
input sources and wave physics have been optimized, as will be discussed in the 476	
following sections (see model input and settings of Case 2c in Table 3). Figures 6a and b 477	
show scatterplots of simulated SWHs and PWPs from Cases 1a (the default version) and 478	
2c (the recalibrated MR un-SWAN model) versus observations over April–November 479	
2012 at 13 NDBC stations. Large waves are identified at the eastern shore buoys (45029 480	
and 45026) and northern mid-lake buoy (45002), and moderately high waves are 481	
identified at the southern mid-lake buoy (45007) caused by enhanced wind intensity and 482	
fetch distance under storm conditions (e.g., the dominant northerly winds of Superstorm 483	
Sandy, 2012). Overall, both model configurations demonstrate reasonable skill in 484	
reproducing wave heights across all stations except for some large outliers in Green Bay 485	
(45014) and along the northwestern shore (0Y2W3 and C58W3). The recalibrated un-486	
SWAN model slightly overestimates SWHs at buoys in the mid-lake area (45002 and 487	
45007), and along the southwestern (45018 and 45016), mid-western (45013) and north-488	
of-mid-eastern shores (45161), whereas it underestimates SWHs in Little Traverse Bay 489	
(45022), Green Bay (45014), and near the southeastern (45026), south-of-mid-eastern 490	
(45029), northeastern (45024), and northwestern shores (0Y2W3 and C58W3). 491	
Compared with the default model, the recalibrated model improves not only the 492	
simulation of extreme wave height at buoys in mid-lake, but also the overall statistical 493	
accuracy (RB and SI) for SWH along the shallow eastern (45026, 45029, 45024) and 494	
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southwestern shores, and in Little Traverse Bay. Additionally, the RB and SI scores for 495	
PWP are significantly reduced in the recalibrated model at all NDBC buoy stations 496	
except for Green Bay (Fig. 6b). It should be noted that a large portion of low-frequency 497	
(i.e., higher PWP) waves are underpredicted at buoy stations 45024 and 45022. This 498	
possibly because the wind sea estimated in the model causes unphysical swell dissipation 499	
that was not observed in the buoy data (Rogers et al., 2003), which is beyond the scope of 500	
this study.  501	
 502	
Taylor diagrams (Fig. 7) confirm quantitatively that both models perform well 503	
statistically (RMSD, NSTD, and CC) for wave simulations across all stations, except for 504	
SWH in Green Bay (45014) and near the northwestern coast, and for PWP near the 505	
southwestern coast. The recalibrated version yields superior scores for the NSTD of both 506	
SWH and PWP for most buoy stations compared to scores from the default model. In the 507	
next section, the verification of the recalibrated un-SWAN model is examined by 508	
hindcasting the dynamic responses of the spatiotemporal wave field to Superstorm Sandy 509	
(2012). 510	
 511	
3.3. Hindcasting case: Superstorm Sandy (2012)  512	
 513	
The wind speeds and directions from the GEM and NNM fields, along with their 514	
resulting SWHs and PWPs from the un-SWAN model, are compared with observed 515	
results of the Superstorm Sandy event from October 29 to November 1, 2012 (Fig. 8). 516	
Both GEM and NNM winds agree well with observational wind data across all stations, 517	
but the NNM wind field shows superior performance at the shallow-water station 45013. 518	
Consequently, the un-SWAN model using the NNM winds expresses superior skill in 519	
reproducing SWH at the shallow-water station, whereas the model driven by the GEM 520	
model winds reproduces mid-lake extreme waves more accurately. In particular, the 521	
northerly wind-induced extreme SWH at the southern mid-lake buoy 45007 is captured 522	
nearly perfectly by the model that uses the GEM winds, possibly because it better 523	
estimates the wind field along the lake’s longitudinal axis between the mid-lake buoys. It 524	
should be noted, however, that the SWH at the shallow-water station 45013 is 525	
consistently overestimated. Additional numerical experiments (not described here) 526	
indicate that the SWH variations that result from using different formulations for depth-527	
induced breaking (BJ78; Nelson, 1987; Ruessink et al., 2003) and bottom friction 528	
dissipation (Collins, 1972; Madsen et al., 1988), and from coupling with the ADvanced 529	
CIRCulation Model (ADCIRC, see Dietrich et al., 2011) are not as significant as those 530	
that result from using alternative wind fields (e.g., the GEM and NNM winds). Van der 531	
Westhuysen (2010) demonstrated that wind direction plays a key role in determining 532	
shallow-water wave growth (e.g., sloping bed surf zone or finite water depth conditions), 533	
and therefore further impacts the intensity of depth-induced breaking. Alves et al. (2014) 534	
reported that a wave model with improved physical parameterization designed to address 535	
short-fetch (offshore winds) wave growth could potentially provide more accurate storm 536	
wave simulation for the Great Lakes. Another possible explanation for remaining 537	
overprediction of SWH is insufficient treatment of the air-flow separation effect, which 538	
could reduce wave growth intensity via wind input (Donelan et al., 2006). Relative to the 539	
consistent SWH overestimation at the western shore station 45013, the intermittent 540	
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underestimations at the northwestern shore stations 0Y2W3 and C58W3 were probably 541	
caused by the lack of consideration for wind gustiness (Cavaleri, 2009), which could 542	
significantly enhance wind intensity on a short time scale (Powell et al., 2003). The gusts, 543	
which typically reach peak speed for only 5 or 8 seconds, are rarely recorded by NDBC 544	
buoys because of power outages and anemometer failures that occur under extreme winds 545	
(Powell et al., 2003). Therefore, further improvement could be made through maintaining 546	
more continuous wind gustiness records and incorporating them into the wind-wave 547	
model. Compared to the sensitivity of SWH predictions, the PWP predictions at mid-lake 548	
buoys and near the shallow-water station 45013 are reproduced satisfactorily by both 549	
models regardless of the type of wind field used. 550	
 551	
Figure 9 maps the spatial distribution of water depth, maximum total energy dissipation, 552	
whitecapping, and depth-induced wave breaking based on the un-SWAN model driven by 553	
the GEM wind data during the northerly winds that dominated Superstorm Sandy (2012). 554	
The total wave energy dissipation is appreciable near the southeastern coast and eastern 555	
portion of the South Chippewa Basin, but insignificant in the Chippewa Basin and near 556	
other coasts. Figures 9c and d illustrate that the energy dissipation in deep-water regions 557	
is dominated by whitecapping with dissipation reaching approximately 10–15 W/m2. The 558	
spatial similarity between the regions for maximum whitecapping dissipation and SWH 559	
(not shown here) indicates that the wind-induced extreme waves in the mid-lake region 560	
are primarily dissipated through steepness-related whitecapping. However, the intensity 561	
of deep-water whitecapping dissipation declines gradually as waves propagate toward 562	
shallower zones (20 m < water depth  40 m), and energy dissipation is eventually 563	
dominated by depth-induced breaking in nearshore regions (10 m < water depth  20 m). 564	
Even though shallow-water wave breaking only occurs over a narrow strip along the 565	
southeastern shore of the lake, the maximum dissipation intensity therein reaches as high 566	
as 36.5 W/m2.  567	
 568	
4. Model sensitivity 569	
 570	
To individually address the above factors that have improved model accuracy, sensitivity 571	
analyses over the ice-free period of the year 2011 were conducted. In particular, we 572	
included alternative sources for wind fields (GEM, CFSv2, and NNM), various 573	
combinations of wind input and whitecapping formulations (e.g., Komen et al., 1984; 574	
recalibrated Rogers et al., 2003; van der Westhuysen et al., 2007), different settings for 575	
depth-induced breaking (e.g., the BJ78 and TG83 models), and additional mesh types (the 576	
OC structured grid, and the MR and HR unstructured meshes). The SWH and PWP 577	
estimated from each model are compared with in-situ wave observations from buoys in 578	
the mid-lake area (45002 and 45007), Little Traverse Bay (45022), and along the 579	
southwestern (45018) and southeastern shores (45026). 580	
 581	
4.1. Sensitivity to alternative sources of wind fields 582	
 583	
Three sources of wind field data, namely the fields of the atmospheric models GEM and 584	
CFSv2, and observation-based NNM fields, were used to drive the MR un-SWAN wave 585	
model. The default deep-water wave growth formulation of Snyder et al. (1981) and 586	
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Komen et al. (1984) (WAM Cycle 3, henceforth denoted WAM3) was applied to these 587	
three simulations. The comparisons of various wind fields with NDBC buoy data are 588	
shown in Fig. 10a. Note that buoy winds at station 45018 are missing and were replaced 589	
with winds from the adjacent station FSTI2. Figure 10b shows the scatterplots for SWH 590	
produced with un-SWAN model using the three different wind fields. The wind speeds 591	
determined from either atmospheric model scatter around the line of perfect agreement, 592	
whereas the observation-based NNM winds yield superior statistical scores for the RB, 593	
SI, CC, and RMSD for all buoy stations. At the northern and southern mid-lake buoys, 594	
the RB scores for the CFSv2 winds are 11.2% and 9.1%, which are reduced to less than 595	
3.2% and 1% with the GEM and NNM winds, respectively. As a direct result of the 596	
overestimation of wind speeds, SWHs are slightly overestimated, e.g., by 3.8% at station 597	
45002 and 8.9% at station 45007 using the GEM data, and this effect is enhanced to over 598	
20.7% when the relatively stronger CFSv2 winds are used. Relative to the SWH 599	
overpredictions driven by atmospheric model winds, SWH is consistently underestimated 600	
when the observation-based NNM winds are used, e.g., by -16.1% at station 45002 and -601	
12% at station 45007; this bias is especially notable for extreme values. Overall, SWHs at 602	
mid-lake buoys determined from the GEM fields outperform the NNM-based predictions 603	
by providing more favorable values for the SI, NSTD, and RMSD. For the intermediate-604	
water stations 45022 and 45026, none of the three wind fields consistently produce strong 605	
scores for the SI, NSTD, and RMSD. At the shallow-water station 45018 (with a water 606	
depth less than 5 m), all three simulations show a consistently overestimated SWH with 607	
large RB scores, especially for wave heights in the range of 0.5–1 m. 608	
 609	
To further investigate the SWH variation created by different wind models, Fig. 11 610	
presents the spatial distributions of maximum wind speeds and corresponding wave fields 611	
using the GEM, CFSv2, and NNM wind fields. During a northerly clipper storm 612	
(September 29–30, 2011), both the GEM and CFSv2 winds show a smoothly increasing 613	
trend of wind intensity southward along the lake’s longitudinal axis (20–24 m/s), whereas 614	
the NNM wind field is characterized by several small lobes of local wind speed maxima 615	
(24–32 m/s) distributed around the lake’s perimeter. These spatial differences are caused 616	
by the assimilation of wind data in the atmospheric models from multiple observational 617	
sites across the entire lake (Côté et al., 1998; Saha et al., 2014), whereas the observational 618	
data-based wind field is heavily dependent upon the limited buoys at mid-lake and near 619	
the coast, as well as the meteorological stations at coastal land sites (Lang and 620	
Leshkevich, 2014).  621	
 622	
Similar to the spatial patterns of atmospherically modeled wind fields, the wind-induced 623	
waves increase in intensity along the lake’s major axis, but to a greater degree, 624	
presumably because of the nonlinear dependence of SWH on wind speed and the 625	
enhanced wind fetch distance in the downwind direction (Fig. 11). In addition, the 626	
weaker GEM winds (relative to the CFSv2 winds) and the spatial incoherence of the 627	
NNM wind field are reflected in the associated wave field. In particular, wave heights 628	
driven by the atmospheric models exceed 6 m in the South Chippewa Basin, while they 629	
are less than 5 m near the adjacent southeastern coast when derived from the 630	
observational data-based winds. Because the interpolation distance of the NNM wind 631	
field is 30 km (Beletsky and Schwab, 2001), significant underestimations of wave height 632	
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at the southern mid-lake buoy 45007 (see also Fig. 10b) tend to originate from both 633	
reduced wind intensity and shorter fetch distance along the lake’s longitudinal axis. 634	
Another possible explanation is that the frequent variations in wind direction recorded at 635	
land–lake boundary sites may be transmitted into the lake’s interior through the 636	
smoothing interpolation process of the NNM, which would further impede wave growth 637	
in that model. In contrast, the spatially coherent GEM and CFSv2 wind fields would 638	
facilitate the full development of larger wind waves.   639	
 640	
Previous studies indicated that improvements to wave simulations could be achieved 641	
through the use of higher quality wind fields. For example, Jensen et al. (2012) reported 642	
that deep-water waves were more accurately captured by the WW3 model using the 643	
spatially coherent CFSR wind data, whereas the shallow-water waves were better 644	
reproduced by adopting the locally-optimized NNM winds from GLERL. Alves et al. 645	
(2014) confirmed that using the spatially coherent NAM wind field with the WW3 model 646	
outperformed using the NNM wind field with the same model for simulating deep-water 647	
waves under storm conditions. Accordingly, a more accurate wind field can be 648	
constructed with appropriate blending of atmospherically modeled and observational 649	
wind data (He et al., 2004), or with increased spatial coverage by lake buoys that collect 650	
data for the construction of observational data-based NNM wind fields (Schwab and 651	
Morton, 1984). Based on the greater spatial coherence of the GEM wind field and higher 652	
predictive skill of the un-SWAN model for reproducing mid-lake extreme waves, these 653	
methods are adopted to explore other factors that may further improve the simulation. 654	
 655	
4.2. Sensitivity to wave physics formulations 656	
 657	
To investigate the contribution of the representation of wave physics to the model 658	
inaccuracies described above, this section explores alternative formulations for both 659	
deep- and shallow-water source terms. 660	
 661	
4.2.1. Comparison of wind input and whitecapping formulations 662	
 663	
Sensitivity experiments for deep-water wave physics were conducted using three 664	
different combinations of wind input and whitecapping dissipation terms (Cases 1a–1c in 665	
Table 3). Case 1a represents the default Komen et al. (1984) expression with a dissipation 666	
rate of 2.36 10 , and weighting of the relative wave number at 0. Case 1b 667	
replaces the default wind input formula of Snyder et al. (1981) with that of Janssen 668	
(1991), which is implemented with WAM Cycle 4 (WAM4), and adjusts the tuning 669	
parameters to 3.0 10  and 0.3. This tuning strategy, similar to the original 670	
settings of Rogers et al. (2003), has the effect of shifting the wave dissipation toward 671	
higher frequencies, and also matches the spectrum defined by Pierson and Moskowitz 672	
(1964). Case 1c considers a saturation-based whitecapping dissipation approach (Van der 673	
Westhuysen et al., 2007, hereafter referred to as WF07) with a recalibrated threshold 674	
level 1.75 10  and dissipation rate of 5.0 10 .  675	
 676	
Figures 12a–c show the scatterplots for SWH, PWP, and SWH above the 99.5th percentile 677	
produced with the un-SWAN model versus observational data from various NDBC buoys 678	
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using the above described deep-water wave physics settings. Overall, the NSTD score for 679	
SWH in Case 1b slightly outperforms Case 1a except for at the extreme shallow station 680	
45018. The scores for the RB, SI, CC, NSTD, and RMSD for PWP at mid-lake buoys are 681	
significantly improved from Case 1a to Case 1b. This observation confirms the finding of 682	
Rogers et al. (2003) that increasing the weighting on the relative wave number improves 683	
the representation of whitecapping dissipation and PWP in wave frequency spectra. 684	
Under extreme conditions (i.e., SWH above the 99.5th percentile), Case 1b is found to 685	
have stronger values for the RB, SI, CC, and RMSD at both mid-lake stations. In 686	
particular, the RBs increased from -0.25 to -0.176 at buoy 45002 and from -0.109 to 687	
0.042 at buoy 45007. An explanation for this improvement is that the wind input 688	
formulation of Janssen (1991) produces faster wave growth (i.e., quadratic dependence 689	
on u*/c) than that of Snyder et al. (1981) (i.e., linear dependence on u*/c) under strong 690	
wind forcing (i.e., u*/c > 0.1), see details in Eqs. (4) and (5). However, this change 691	
becomes insignificant at shallower water-depth stations where wave processes such as 692	
depth-induced breaking become a key factor affecting wave dynamics.  693	
 694	
Overall, the un-SWAN model with the WF07 expression yields comparable accuracy for 695	
SWH at mid-lake to that in the default model, but it reveals advantages by producing 696	
stronger RB, SI, NSTD, and RMSD scores at the extreme shallow-water station 45018. 697	
Under extreme wave conditions, the adoption of the WF07 formulation improves the 698	
accuracy of SWH values for the southern mid-lake buoy. However, the degree of 699	
improvement is not as great as that achieved using the recalibrated Rogers et al. (2003) 700	
formulation. On average, all cases tend to provide results more consistent with the 701	
observational data for SWH and PWP at intermediate- and deep-water buoys than for 702	
shallow-water stations. Donelan et al. (2006) postulated that conventional wind input 703	
formulations (e.g., Komen et al., 1984; Yan, 1987; Janssen, 1991) used for wave 704	
generation ignored the effect of air-sea flow separation, which may result in inaccurate 705	
estimation of momentum transfer in a young wave field, e.g., short-fetch wave growth 706	
near the shallow coast. Additionally, wind speeds and directions at land–lake interface 707	
stations (e.g., FSTI2, 45026, and 45022) are highly complex and unpredictable because 708	
of abrupt transitions of the atmospheric boundary layer.   709	
 710	
Although models with Cases 1b and 1c settings show comparable levels of predictive 711	
skill, the deep-water wave physics represented by Case 1b is adopted for further study 712	
because of its superior ability for extreme wave simulation. 713	
 714	
4.2.2. Parameterization of the depth-induced breaking term 715	
 716	
After the deep-water source terms above have been selected, sensitivity studies turn to 717	
shallow-water wave physics, especially for the depth-induced breaking term (Cases 2a–718	
2c in Table 3). Case 2a incorporates monthly lake level anomalies, Case 2b decreases the 719	
default breaker index  to 0.3, and Case 2c uses the alternative TG83 model with a 720	
default breaker index of 0.42.  721	
 722	
Figure 13 shows the SWH scatterplots for Cases 2a–2c versus observational data taken 723	
near the shallow southwestern (45018) and southeastern coasts (45026). As expected, the 724	
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modifications to the depth-induced breaking term only influence the wave dynamics in 725	
shallow water (deep-water stations are not shown here), particularly at the shallowest-726	
water station 45018. At this station, when monthly lake level variability is applied (Case 727	
2a) to the model with constant water depth (Case 1b in Fig. 12a), the RB, SI, NSTD, and 728	
RMSD scores are reduced slightly from 0.37 to 0.34, 0.58 to 0.55, 1.46 to 1.42, and 0.19 729	
m to 0.18 m, respectively. However, these values are further reduced greatly (e.g., the RB 730	
is decreased by about two thirds, and the SI, NSTD, and RMSD decrease by about half) 731	
by reducing the breaker index  in Case 2b, presumably because of increased breaking 732	
intensity at the maximal individual wave height for a given water depth. It is noteworthy 733	
that in Case 2c, not only is the RB of Case 2a for station 45018 reduced by about half, but 734	
that high skill level is also maintained for station 45026. Therefore, the Case 2c settings 735	
are adopted for depth-induced breaking in the proposed model; its sensitivity to various 736	
mesh types is examined in the following section.  737	
 738	
4.3. Sensitivity to mesh types 739	
  740	
Figure 14 shows the scatterplots for SWH with the application of alternative mesh types, 741	
specifically the OC structured mesh (top panel), and the MR (middle panel, same as that 742	
applied above) and HR unstructured meshes (bottom panel). At mid-lake, all three 743	
configurations yield comparable accuracy for SWH, as expected. This consistency also 744	
holds true for the intermediate-water stations 45022 and 45026 where water depth is 745	
greater than about 20 m, which suggests that both the OC structured grid and the MR 746	
unstructured meshes can resolve offshore waves accurately. However, a clear difference 747	
can be detected at the shallow-water station 45018 (water depth = 3.9 m) where the 748	
model with the MR unstructured mesh outperforms the OC grid by reducing the scores of 749	
RB, SI/RMSD, and NSTD by about two thirds, half, and quarter, respectively. 750	
 751	
To assess these spatial differences, Fig. 15 presents the spatial distributions of water 752	
depth, maximum wind speeds and SWHs from the MR un-SWAN model, OC SWAN 753	
minus HR un-SWAN, and MR minus HR un-SWAN. During a clipper storm, the 754	
northerly winds (U10 = 8–24 m/s) increase along the lake’s longitudinal axis and turn 755	
northwesterly in an anticlockwise direction, which produces extreme waves with SWHs 756	
over 6 m in the South Chippewa Basin. Spatially, the relative differences in SWHs from 757	
the application of various mesh resolutions (i.e., MR and HR) are less than 10% in the 758	
South Chippewa Basin, 20% in most shallow-water regions, and 30% scattered in the 759	
shallow part of Green Bay and near the northern coast. By replacing the HR unstructured 760	
mesh with the OC structured grid, however, these variations spread, with relative 761	
differences of 20–60% spreading widely across the lake, reaching as high as 80% 762	
adjacent to the shallow northern coast and around North Manitou Island (note that 763	
different scales are used in Figs. 15c and d). This phenomenon is presumably because of 764	
different degrees of resolution for shallow-water wave processes with these different 765	
configurations of mesh type. Although strong waves prevail in the South Chippewa 766	
Basin, the variability in prediction of SWH among the three mesh types is insignificant 767	
because the smooth bathymetry in that region has already been resolved adequately with 768	
each mesh type.  769	
 770	
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The above findings enable us to confirm that the un-SWAN model with the MR 771	
unstructured mesh is able to reproduce wave heights as accurately as the HR version, but 772	
significantly outperforms the OC version for nearshore waves (water depth < 20 m). In 773	
addition, we find that the simulation of the MR un-SWAN is the most efficient version; it 774	
requires approximately one half and one fifth the computational time of the OC SWAN 775	
and HR un-SWAN, respectively (Table 4).  776	
 777	
5. Discussion 778	
 779	
In this study, we have demonstrated that wind forcing, deep- (i.e., wind input and 780	
whitecapping) and shallow-water wave physics (i.e., depth-induced breaking) play 781	
significant and distinct roles in the wave dynamics of deep-, intermediate-, and shallow-782	
water regions. This finding is consistent with the conclusions drawn by Huang et al. 783	
(2013) who investigated the dynamic responses of wave energy dissipation to Hurricane 784	
Ike (2008) over different regions of the Gulf of Mexico. Huang et al. (2013) made 785	
meaningful improvements to wave simulation under hurricane conditions (in which wind 786	
speed reaches 43–49 m/s) by adopting different bulk formulae (e.g., Large and Pond, 787	
1981; Wu, 1982; Oey et al., 2006) and/or setting cutoff values (e.g., 2.5, or wind 788	
speed U10 = 26.2 m/s) for the wind drag coefficient in the un-SWAN model. However, 789	
the maximum U10 in Lake Michigan (23.6 m/s in 2011 and 21.0 m/s in 2012) is below the 790	
cutoff limit suggested by Huang et al. (2013). Therefore, the improvements made in this 791	
study to storm wave simulation for mid-lake buoys were achieved by selecting different 792	
sources of wind fields for model input and alternative settings for the formulations of 793	
wind input and whitecapping. For example, using the spatially coherent GEM winds led 794	
directly to higher accuracy in the reproduction of mid-lake extreme waves, whereas the 795	
un-SWAN model driven by the locally-optimized (i.e., point-to-point comparison with 796	
NDBC buoy stations), observation-based NNM winds resulted in superior reproduction 797	
of shallow-water waves. Moreover, van der Westhuysen et al. (2007) noted that the wind 798	
input term becomes nonlinear for strongly forced waves ∗/ 0.1 . Accordingly, a 799	
quadratic dependence (e.g., Janssen, 1991) of the wind-induced growth rate on the wind 800	
forcing parameter ∗/ ) is more realistic than a formulation based on a linear 801	
relationship (e.g., Snyder et al., 1981; Komen et al., 1984). To comply with the “closure 802	
mechanism” of wave action spectral energy, the tunable parameters for the whitecapping 803	
term (i.e.,  and ) used by Rogers et al. (2003) were also slightly recalibrated herein.  804	
 805	
Because of the relatively smaller geographic scale of this area, with a regional-scale O 806	
(100 km) domain, and because of its weaker wind conditions (U10 is usually less than 20 807	
m/s), the intensity of wave energy dissipation from whitecapping (e.g., 15 W/m2 808	
maximum) in Lake Michigan is lower than that in the Gulf of Mexico (e.g., 20 W/m2 809	
maximum; Huang et al., 2013). However, the energy dissipation transitional zone (20 m 810	
< water depth < 40 m) that converts from whitecapping to depth-induced breaking was 811	
found to be similar in both domains. Consequently, the wave statistics for shallow-water 812	
stations were insensitive to modification by the whitecapping term, but strongly 813	
dependent upon the treatment of the depth-induced breaking term. By considering 814	
monthly lake level variations and decreasing the breaker index  of the default BJ78 815	
model, or by using an alternative TG83 model, the RB scores for the shallowest-water 816	
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station 45018 were reduced from 0.37 to 0.34, 0.12, and 0.19, respectively. However, a 817	
slight decrease in the statistical accuracy of SWH was detected for the southeastern shore 818	
station 45026. Because of the complexity of wind–wave–bathymetry interactions, distinct 819	
wave growth conditions between the southwestern (45018) and southeastern (45026) 820	
locations may require different treatments for the breaker index (Van der Westhuysen, 821	
2010). Under the conditions of finite water depth (with offshore winds near the 822	
southeastern coast) and sloping surf (with onshore winds near the southwestern coast), 823	
the responding statistical scores (i.e., the RB and SI) indicate an optimal minimum and a 824	
constantly increasing trend when the breaker index of the BJ78 model is decreased. The 825	
breaker indices for the BJ78 and TG83 models were rescaled to different values (826	
0.3	and 0.42) for the depth-induced breaking term because they adopt different 827	
assumptions of the probability density function for breaking waves (Van der Westhuysen, 828	
2010; Salmon et al., 2015). 829	
 830	
One of our key findings is that the wind data used as model input (GEM, CFSv2, and 831	
NNM) show better agreement with the NDBC buoy data at mid-lake than along the lake’s 832	
shoreline, most likely because the wind speeds at the land–lake interface are highly 833	
dynamic and complex, with abrupt transitions of the atmospheric boundary layer 834	
(Schwab and Morton, 1984) and/or the short-fetch, limited wave growth conditions 835	
(Breugem and Holthuijsen, 2007). In addition, the traditional wind input formulation 836	
adopted in the current third-generation wave model may overestimate the transfer of 837	
momentum in a young wind-wave field, which would limit the level of model 838	
improvement for this region (Donelan et al., 2006; van der Westhuysen et al., 2007). 839	
Alves et al. (2014) indicated that a wave model (e.g., GLERL or WW3) with improved 840	
physical parameterization for short-fetch wave growth could potentially yield superior 841	
storm wave simulation for the Great Lakes system. Based on these considerations, a 842	
thorough analysis and revisitation of energy transfer and wind–wave–bathymetry 843	
interactions in Lake Michigan would likely be a worthwhile future endeavor.  844	
 845	
It must be emphasized that wave–current interactions (WCI) may have significant 846	
impacts on wave dynamics through a variety of processes (e.g., alteration of wave age 847	
and energy dissipation by the presence of current, or depth- and current-induced wave 848	
frequency shifting and refraction). However, the noticeable influence of these effects is 849	
largely confined to extremely shallow regions where current intensity and water depth 850	
variation are appreciable, as in tidal inlet areas (Van der Westhuysen, 2012; Van der 851	
Westhuysen et al., 2012; Dodet et al., 2013). In a large, semi-enclosed or enclosed basin, 852	
this effect might be neglected because of relatively weaker current conditions and the 853	
absence of tidal modulation on water depth (e.g., wetting and drying processes). 854	
Benetazzo et al. (2013) showed that the SWH variation caused by the following/opposite 855	
currents in the Adriatic Sea (a semi-enclosed basin) was 0.1 m and 0.6 m during the weak 856	
Sirocco and strong Bora events, respectively. In Lake Michigan, storm waves are affected 857	
to some degree by WCI, but it is of secondary importance compared to the variations that 858	
result from using alternative wind field sources and different formulations to describe 859	
deep- and shallow-water wave physics (not shown here). Moreover, changes to the 860	
statistical indices (i.e., the RB, SI, CC, NSTD, and RMSD) for SWH and PWP values 861	
caused by the WCI effect over a long-term (eight months) wave simulation are 862	
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insignificant (Figs. 16a–b). Furthermore, the WCI-coupled model only achieves a slightly 863	
faster computational speed than the wave-only model at the cost of six times the 864	
computational cores (Table 4); therefore, the recalibrated wave-only model was selected 865	
to apply in this study. We do suggest, however, that it may be of interest in the future to 866	
explore the effects of WCI under storm conditions for shallower lakes (e.g., Lake Erie 867	
where the average water depth is 19 m), particularly during periods of high storm surges 868	
and intense currents.	869	
 870	
6. Conclusions 871	
 872	
This study investigated factors that lead to the improvement of a third-generation spectral 873	
wind-wave SWAN model for Lake Michigan. We compared observational data for 874	
SWHs and PWPs from the NDBC buoys to values produced through models using 875	
various sources for wind fields, alternative settings for deep- and shallow-water wave 876	
physics, and different mesh types. The main conclusions are: 877	
 878	

(1) The GEM atmospheric model yields a spatially coherent wind field (i.e., 879	
smooth gradient of wind intensity) over the lake, whereas the observation-880	
based NNM wind field agrees strongly with the NDBC buoy-recorded data. 881	
Consequently, the un-SWAN model driven by the GEM wind data captures 882	
extreme waves in the mid-lake region more accurately, while the model that 883	
uses the NNM wind data reproduces the SWHs along the lake’s shoreline more 884	
accurately. 885	

 886	
(2) Whitecapping dissipation is dominant in deep water (water depth > 40 m), 887	

whereas depth-induced breaking is the primary dissipation mechanism in the 888	
nearshore regions (10 m < water depth  20 m). Based on the GEM wind data, 889	
the un-SWAN model with the wind input formulation of Janssen (1991) and 890	
the recalibrated whitecapping formulation of Rogers et al. (2003) provided the 891	
best agreement with buoy observations at mid-lake and intermediate-water 892	
stations, especially for extreme wave heights. In the extreme shallow-water 893	
region, model improvement is achieved by reducing the breaker index  or 894	
adopting the TG83 model for depth-induced breaking. 895	

 896	
(3) Mesh types (specifically the OC SWAN and MR un-SWAN meshes) clearly 897	

affect the modeling of wave dynamics in nearshore regions characterized by 898	
complex bathymetry and irregular geometry. The MR un-SWAN model not 899	
only captures the wave processes from deep to shallow waters as accurately as 900	
the HR version, but it also greatly outperforms the OC SWAN model for 901	
nearshore waves. The model with the MR unstructured mesh configuration was 902	
found to be the most accurate and computationally efficient choice for Lake 903	
Michigan wave simulation. 904	

 905	
 906	
 907	
 908	
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Fig. 2. Bathymetry and computational meshes for Lake Michigan: (a) Bathymetry and 1093	
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Fig. 3a. Rose diagrams for wind (left column) and SWH (right column) directions for the 1097	

northern mid-lake (45002), southern mid-lake (45007), and near mid-eastern (45029) and 1098	
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Fig. 3b. Rose diagrams for wind directions at locations near the southwestern (FSTI2), 1100	

mid-western (45013), northwestern (0Y2W3; left panels), and northeastern coasts 1101	
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Fig. 4. Monthly-averaged (a) SWH and (b) wind speed of NDBC in-situ buoys in the 1103	

northern (45002) and southern mid-lake areas (45007), in Green Bay (45014) and Little 1104	

Traverse Bay (45022), and near the western (45013 and 0Y2W3) and eastern coasts 1105	

(45024, 45026, 45029, and 45161).  1106	

Fig. 5a Scatterplots of wind speeds determined by the NNM (U10,NNM) versus observed 1107	

values (U10,obs) at various NDBC buoys. Note that because no wind data are available 1108	

from NDBC stations 45015, 45016, and 45018, the observed winds from the adjacent 1109	

FSTI2 station are used. 1110	

Fig. 5b. Scatterplots of SWH (Hsig,NNM) values from the un-SWAN model with NNM 1111	

winds versus observed values (Hsig,obs) taken at various NDBC buoys.  1112	
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Fig. 6a. Scatterplots of SWHs from the un-SWAN model with the default (Hsig,dft) and 1113	

recalibrated settings (Hsig,rec) versus SWH observational data (Hsig,obs) taken at various 1114	

NDBC buoys in 2012.  1115	

Fig. 6b. Same as Fig. 6a except for that SWH (Hsig) is replaced by PWP (Tpeak).  1116	

Fig. 7. Taylor diagrams summarizing the CC, NSTD, and RMSD values for un-SWAN 1117	

model estimations with default (green) and recalibrated settings (red) compared with 1118	

NDBC in-situ observations for (a) SWH and (b) PWP. 1119	

Fig. 8 Time series of (a) wind speed and (b) wind direction taken from the GEM and 1120	

NNM fields, and (c) SWH, (d) PWP, and (e) MWD determined through the un-SWAN 1121	

models driven by these two fields compared with observations taken at various NDBC 1122	

buoys during Superstorm Sandy (2012). Note: Cartesian conventions are adopted here for 1123	
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Fig. 9. Spatial distributions of (a) water depth and maximum (b) total energy dissipation, 1125	

(c) whitecapping dissipation, and (d) depth-induced wave breaking during Superstorm 1126	

Sandy (2012). 1127	

Fig. 10a. Scatterplots of wind speeds from the GEM (U10,GEM; top), CFSv2 (U10,CFSv2; 1128	

middle), and NNM (U10,NNM; bottom) wind fields versus observed wind speed values 1129	

(U10,obs) taken at various NDBC buoys. Note: because no wind data are available at 1130	

station 45018, the observed winds from the adjacent FSTI2 station are used. 1131	

Fig. 10b. Scatterplots of modeled SWH values from the un-SWAN model with default 1132	

deep-water wave growth formulation (Komen et al., 1984) driven by the GEM 1133	

(Hsig,GEM+WAM3; top panel), CFSv2 (Hsig,CFSv2+WAM3; middle panel), and NNM wind fields 1134	

(Hsig,NNM+WAM3; bottom panel) versus observations of SWH (Hsig,obs) from various NDBC 1135	

buoys. 1136	

Fig. 11. Spatial distributions of the maximum wind speeds determined with the (a) GEM, 1137	

(b) CFSv2, and (c) NNM wind fields, and corresponding SWHs (d–f), during a 2011 1138	

clipper storm. Note that black crosses denote the locations of mid-lake buoys 45002 and 1139	

45007, and that black circles cover the adjacent interpolation smoothing distance (30 km) 1140	

for the NNM. 1141	

Fig. 12a. Scatterplots of modeled SWHs from the un-SWAN model with various wind 1142	

input and whitecapping settings versus observed SWH values (Hsig,obs) taken at various 1143	
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NDBC buoys. The top, middle, and bottom panels are Hsig,C1a, Hsig,C1b, and Hsig,C1c for the 1144	

Case 1a (Komen et al., 1984), Case 1b (recalibrated Rogers et al., 2003), and Case 1c 1145	

(van der Westhuysen et al., 2007) formulations for deep-water wave physics, 1146	

respectively. 1147	

Fig. 12b. Same as Fig. 12a except for that SWH (Hsig) is replaced with PWP (Tpeak). 1148	

Fig. 12c. Same as Fig. 12a except for that the SWH values (Hsig) are replaced with 1149	

extreme values (above the 99.5th percentile) from the mid-lake buoys 45002 and 45007.  1150	

Fig. 13. Scatterplots of modeled SWHs from the un-SWAN model with various depth-1151	

induced breaking settings versus observed SWH values (Hsig,obs) taken at the shallow-1152	

water buoys 45018 and 45022. The top, middle, and bottom panels are Hsig,C2a, Hsig,C2b, 1153	

and Hsig,C2c from Case 2a (the BJ78 model with default 0.3), Case 2b (the BJ78 1154	

model with a decreased 0.3), and Case 2c (the TG83 model with default 1155	

0.42) for estimating shallow-water wave physics, respectively. 1156	

Fig. 14. Scatterplots of modeled SWHs, (Hsig,OC, Hsig,MR, and Hsig,HR) from the wave 1157	

model using orthogonal curvilinear (top panel), medium- (middle panel), and high-1158	

resolution (bottom panel) meshes, respectively, versus observed SWH values (Hsig,obs) 1159	

taken at various NDBC buoys.  1160	

Fig. 15. Spatial distributions of the maximum (a) wind speed and (b) SWH, and the 1161	

differences in percentages of SWHs from (c) the MR un-SWAN results minus the HR un-1162	

SWAN results, and (d) the OC SWAN results minus the HR un-SWAN results, during a 1163	

clipper storm in 2011. Note the difference in scale between panels (c) and (d). 1164	

Fig. 16a. Scatterplots of modeled SWHs from the recalibrated wave-only (Hsig,rec; first 1165	

and third rows) and wave–current interactions (WCI) coupled models (Hsig,rec+WCI; second 1166	

and fourth rows) versus observed SWH values (Hsig,obs) taken at various NDBC buoys in 1167	

2012. 1168	

Fig. 16b. Scatterplots of modeled PWPs from the recalibrated wave-only (Tpeak,rec; first 1169	

and third rows) and wave–current interactions (WCI) coupled models (Tpeak,rec+WCI; 1170	

second and fourth rows) versus observed PWP values (Tpeak,obs) taken at various NDBC 1171	

buoys in 2012. 1172	
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 1175	

Table 1 Model meshes and geometric information for Lake Michigan. 1176	

 1177	
Model mesh type 

 
Model information 

Orthogonal 
Curvilinear 

(OC) SWAN 

Medium-
resolution (MR) 

un-SWAN 

High-resolution 
(HR) un-SWAN 

Elements/Cells 52,975 9,581 38,324 
Nodes 52,975

(163 × 325)
5,256 20,108 

Grid Resolution (water 
depth  20 m)  

 
 
 

1.8 × 1.8 km 
 

0.34–4.4 km 0.21–2.2 km 

Grid Resolution (20 m < 
water depth  50 m)  

0.34–7.1 km 0.22–3.6 km 

Grid Resolution (water 
depth > 50 m)  

0.44–7.6 km 0.22–3.8 km 

Average Water Depth 85 m
Lake Width 259 km
Lake Length 493 km

 1178	
Table 2 Locations and water depths for the NDBC buoys of Lake Michigan. 1179	
 1180	

 
 

Station 

 
 

Data source 

Data 
availability 

years Longitude 
(°)

 Latitude 
 (°)

 
 

Water depth 
(m) 

1 45002 NDBC 2002–2012 -86.411 45.344 175.3 
2 45014 Univ. W-M 2012 -87.760 44.800 13 
3 0Y2W3 USCG 2012 -87.313 44.794 5.4 
4 C58W3 USCG 2012 -87.563 44.146 5.9 
5 45013 Univ. W-M 2012 -87.850 43.100 20 
6 45018/ 

FSTI2 
Chicago Park 

District 
 

2011–2012 -87.637 41.968
 

3.9 
7 

45016 
Chicago Park 

District 
2011–2012

-87.573 41.783
4.8 

8 
45015 

Chicago Park 
District 

2011–2012
-87.527 41.714

3.5 

9 45026 Limno Tech 2011–2012 -86.617 41.983 20.7 
10 45007 NDBC 2002–2012 -87.026 42.674 160 
11 45029 Limno Tech 2012 -86.272 42.900 27 
12 45161 GLERL 2012 -86.361 43.178 25 
13 45024 UM CILER 2012 -86.559 43.977 30.3 
14 45022 MTU 2011–2012 -85.088 45.403 49.1 
 1181	
 1182	
 1183	
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 1184	
Table 3 MR un-SWAN model cases with different wind field sources, settings for wind 1185	
input and whitecapping dissipation, and depth-induced breaking terms. 1186	
 1187	

Case Wind 
field 

source 

Wind 
input 

Whitecapping 
dissipation 

Depth-induced 
breaking 

formulation

Spatial 
lake level 

Case1a 
(default) 

NNM Snyder 
et al. 

(1981) 

Komen et al. (1984)
2.36

10  0 

Battjes and 
Janssen (1978) 

0.73 

Constant 

Case1b GEM Janssen 
(1991) 

Readjusted Rogers 
et al. (2003) 

3.0 10  
0.3 

Battjes and 
Janssen (1978) 

0.73 

Constant 

Case 1c GEM Refitted 
Yan 

(1987) 

Van der Westhuysen 
et al. (2007) 

5.0 10  
1.75 10  

Battjes and 
Janssen (1978) 

0.73 

Constant 

Case 2a GEM Janssen 
(1991) 

Readjusted Rogers 
et al. (2003) 

3.0 10  
0.3

Battjes and 
Janssen (1978) 

0.73 

Monthly 
variable 

Case 2b GEM Janssen 
(1991) 

Readjusted Rogers 
et al. (2003) 

3.0 10  
0.3 

Battjes and 
Janssen (1978) 

0.3 

Monthly 
variable 

 

Case 2c 
(recali-
brated) 

GEM Janssen 
(1991) 

Readjusted Rogers 
et al. (2003) 

3.0 10  
0.3 

Thornton and 
Guza (1983) 

0.42 

Monthly 
variable 

 1188	
Table 4 Computational speed of wave models with different mesh types for Lake 1189	
Michigan wave simulations of the year 2011. 1190	
 1191	

Model type HPCC 
System 

Core 
number

Computational 
time  (min/day)

OC SWAN  
TACC/ 

UT Stampede

16 6 
MR un-SWAN 16 3 
HR un-SWAN 16 15 
MR un-SWAN 

with WCI 
CISL 

Yellowstone 
96 2.5 
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 1192	
Fig. 1. Maps of (a) the Great Lakes system and (b) Lake Michigan. Note that the red solid 1193	
line in panel (a) marks the Canada–U.S.A. border. 1194	
 1195	
 1196	
 1197	
 1198	
 1199	
 1200	
 1201	
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 1202	
Fig. 2. Bathymetry and computational meshes for Lake Michigan: (a) Bathymetry and 1203	
NDBC buoy stations, (b) orthogonal curvilinear grid, (c) unstructured triangular mesh 1204	
with medium resolution, and (d) with high resolution. The black lines represent the coast 1205	
and island outlines.   1206	
 1207	
 1208	
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 1209	
Fig. 3a. Rose diagrams for wind (left column) and SWH (right column) directions for the 1210	
northern mid-lake (45002), southern mid-lake (45007), and near mid-eastern (45029) and 1211	
southeastern (45026) coasts, from the top panels to the bottom. 1212	
 1213	
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 1214	
Fig. 3b. Rose diagrams for wind directions at locations near the southwestern (FSTI2), 1215	
mid-western (45013), northwestern (0Y2W3; left panels), and northeastern coasts 1216	
(45024), and in Little Traverse Bay (45022) and Green Bay (45014; right panels).  1217	
 1218	
 1219	
 1220	
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 1221	
Fig. 4. Monthly-averaged (a) SWH and (b) wind speed of NDBC in-situ buoys in the 1222	
northern (45002) and southern mid-lake areas (45007), in Green Bay (45014) and Little 1223	
Traverse Bay (45022), and near the western (45013 and 0Y2W3) and eastern coasts 1224	
(45024, 45026, 45029, and 45161).  1225	
 1226	
 1227	
 1228	
 1229	
 1230	
 1231	
 1232	
 1233	
 1234	
 1235	
 1236	
 1237	
 1238	
 1239	
 1240	
 1241	
 1242	
 1243	
 1244	
 1245	
 1246	
 1247	
 1248	
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 1249	
Fig. 5a. Scatterplots of wind speeds determined by the NNM (U10,NNM) versus observed 1250	
values (U10,obs) at various NDBC buoys. Note that because no wind data are available 1251	
from NDBC stations 45015, 45016, and 45018, the observed winds from the adjacent 1252	
FSTI2 station are used. 1253	
 1254	

 1255	
Fig. 5b. Scatterplots of SWH (Hsig,NNM) values from the un-SWAN model with NNM 1256	
winds versus observed values (Hsig,obs) taken at various NDBC buoys.  1257	
 1258	
 1259	
 1260	
 1261	
 1262	
 1263	
 1264	
 1265	
 1266	
 1267	
 1268	
 1269	
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 1270	
Fig. 6a. Scatterplots of SWHs from the un-SWAN model with the default (Hsig,dft) and 1271	
recalibrated settings (Hsig,rec) versus SWH observational data (Hsig,obs) taken at various 1272	
NDBC buoys in 2012.  1273	
 1274	
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 1275	
Fig. 6b. Same as Fig. 6a except for that SWH (Hsig) is replaced by PWP (Tpeak).  1276	
 1277	
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 1278	
Fig. 7. Taylor diagrams summarizing the CC, NSTD, and RMSD values for un-SWAN 1279	
model estimations with default (green) and recalibrated settings (red) compared with 1280	
NDBC in-situ observations for (a) SWH and (b) PWP.  1281	
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 1282	

 1283	
Fig. 8 Time series of (a) wind speed and (b) wind direction taken from the GEM and 1284	
NNM fields, and (c) SWH, (d) PWP, and (e) MWD determined through the un-SWAN 1285	
models driven by these two fields compared with observations taken at various NDBC 1286	
buoys during Superstorm Sandy (2012). Note: Cartesian conventions are adopted here for 1287	
wind direction.  1288	
  1289	
 1290	
 1291	
 1292	
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  1293	
Fig. 9. Spatial distributions of (a) water depth and maximum (b) total energy dissipation, 1294	
(c) whitecapping dissipation, and (d) depth-induced wave breaking during Superstorm 1295	
Sandy (2012). 1296	
 1297	
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 1298	
Fig. 10a. Scatterplots of wind speeds from the GEM (U10,GEM; top), CFSv2 (U10,CFSv2; 1299	
middle), and NNM (U10,NNM; bottom) wind fields versus observed wind speed values 1300	
(U10,obs) taken at various NDBC buoys. Note: because no wind data are available at 1301	
station 45018, the observed winds from the adjacent FSTI2 station are used. 1302	
 1303	

 1304	
Fig. 10b. Scatterplots of modeled SWH values from the un-SWAN model with default 1305	
deep-water wave growth formulation (Komen et al., 1984) driven by the GEM 1306	
(Hsig,GEM+WAM3; top panel), CFSv2 (Hsig,CFSv2+WAM3; middle panel), and NNM wind fields 1307	
(Hsig,NNM+WAM3; bottom panel) versus observations of SWH (Hsig,obs) from various NDBC 1308	
buoys. 1309	
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 1310	
Fig. 11. Spatial distributions of the maximum wind speeds determined with the (a) GEM, 1311	
(b) CFSv2, and (c) NNM wind fields, and corresponding SWHs (d–f), during a 2011 1312	
clipper storm. Note that black crosses denote the locations of mid-lake buoys 45002 and 1313	
45007, and that black circles cover the adjacent interpolation smoothing distance (30 km) 1314	
for the NNM. 1315	
 1316	
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 1317	
Fig. 12a. Scatterplots of modeled SWHs from the un-SWAN model with various wind 1318	
input and whitecapping settings versus observed SWH values (Hsig,obs) taken at various 1319	
NDBC buoys. The top, middle, and bottom panels are Hsig,C1a, Hsig,C1b, and Hsig,C1c for the 1320	
Case 1a (Komen et al., 1984), Case 1b (recalibrated Rogers et al., 2003), and Case 1c 1321	
(van der Westhuysen et al., 2007) formulations for deep-water wave physics, 1322	
respectively. 1323	
 1324	

 1325	
Fig. 12b. Same as Fig. 12a except for that SWH (Hsig) is replaced with PWP (Tpeak). 1326	
 1327	
 1328	



 

45 
 

 1329	
Fig. 12c. Same as Fig. 12a except for that the SWH values (Hsig) are replaced with 1330	
extreme values (above the 99.5th percentile) from the mid-lake buoys 45002 and 45007.  1331	
 1332	
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 1333	
Fig. 13. Scatterplots of modeled SWHs from the un-SWAN model with various depth-1334	
induced breaking settings versus observed SWH values (Hsig,obs) taken at the shallow-1335	
water buoys 45018 and 45022. The top, middle, and bottom panels are Hsig,C2a, Hsig,C2b, 1336	
and Hsig,C2c from Case 2a (the BJ78 model with default 0.3), Case 2b (the BJ78 1337	
model with a decreased 0.3), and Case 2c (the TG83 model with default 1338	
0.42) for estimating shallow-water wave physics, respectively. 1339	
 1340	
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 1341	
Fig. 14. Scatterplots of modeled SWHs (Hsig,OC, Hsig,MR, and Hsig,HR) from the wave model 1342	
using orthogonal curvilinear (top panel), medium- (middle panel), and high-resolution 1343	
(bottom panel) meshes, respectively, versus observed SWH values (Hsig,obs) taken at 1344	
various NDBC buoys.  1345	
 1346	
 1347	
 1348	
 1349	
 1350	
 1351	
 1352	
 1353	
 1354	
 1355	
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 1356	
Fig. 15. Spatial distributions of the maximum (a) wind speed and (b) SWH, and the 1357	
differences in percentages of SWHs from (c) the MR un-SWAN results minus the HR un-1358	
SWAN results, and (d) the OC SWAN results minus the HR un-SWAN results, during a 1359	
clipper storm in 2011. Note the difference in scale between panels (c) and (d). 1360	
 1361	
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 1362	
Fig. 16a. Scatterplots of modeled SWHs from the recalibrated wave-only (Hsig,rec; first 1363	
and third rows) and wave–current interactions (WCI) coupled models (Hsig,rec+WCI; second 1364	
and fourth rows) versus observed SWH values (Hsig,obs) taken at various NDBC buoys in 1365	
2012. 1366	
 1367	
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 1368	
Fig. 16b. Scatterplots of modeled PWPs from the recalibrated wave-only (Tpeak,rec; first 1369	
and third rows) and wave–current interactions (WCI) coupled models (Tpeak,rec+WCI; 1370	
second and fourth rows) versus observed PWP values (Tpeak,obs) taken at various NDBC 1371	
buoys in 2012. 1372	
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