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Abstract3

We present the first observation of a flux rope at Saturn’s dayside magnetopause. This4

is an important result because it shows that the Saturnian magnetopause is conducive5

to multiple x-line reconnection and flux rope generation. Minimum variance analysis6

shows the magnetic signature is consistent with a flux rope. The magnetic observations7

were well-fitted to a constant-α force-free flux rope model. The radius and magnetic8

flux content of the rope is estimated to be 4600-8300 km and 0.2-0.8 MWb, respectively.9

Cassini also observed five travelling compression regions (remote signatures of flux ropes),10

in the adjacent magnetosphere. The magnetic flux content is compared to other estimates11

of flux opening via reconnection at Saturn.12
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1. Introduction

Flux transfer events (FTEs) are twisted flux tubes first observed at Earth’s magne-13

topause by the ISEE 1 and 2 spacecraft [Russell and Elphic, 1978, 1979]. FTEs consist14

of a flux rope (FR), which have been postulated to form as a result of simultaneous mag-15

netic reconnection occurring at multiple x-lines [Fu and Lee, 1985] sandwiched between16

compressed draped interplanetary magnetic field (shown in Figure 1a) and the dayside17

magnetospheric field [Zhang et al., 2012; Zhong et al., 2013]. Other flux-rope-generation18

mechanisms include a change in the reconnection rate at a single x-line [Southwood et al.,19

1988; Scholer , 1988], and bursts of reconnection at a spatially narrow site that produce20

two ‘elbow-shaped’ FTEs [Russell and Walker , 1985].21

The twisting of a flux tube leads to a bipolar signature observed in the direction normal22

to the axis of the flux rope (the basic observational signature) in the magnetic field23

measurements. This is detected alongside an increase in magnetic field strength in the24

axial direction at the centre of the flux rope (due to its structure, shown Figure 1b).25

If the spacecraft does not cross through the FTE, but passes near the edges, then only26

magnetic flux draped about the FTE is observed (shaded red in Figure 1a). This signature27

is termed a travelling compression region or TCR [Zhang et al., 2008; Slavin et al., 2012].28

The observation of FTEs is common at the terrestrial planets and they have been studied29

at the magnetopause at Earth [e.g. Russell and Elphic, 1978; Fear et al., 2005, 2008; Owen30

et al., 2008; Varsani et al., 2014], Mercury [e.g. Russell and Walker , 1985; Slavin et al.,31

2009, 2010; Imber et al., 2014] and Jupiter [Walker and Russell , 1985; Huddleston et al.,32

1997]. They have also been observed in the ionospheres of Venus and Mars [Elphic et al.,33
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1980; Vignes et al., 2004], and downstream of Mars’ large crustal anomalies [Brain et al.,34

2010].35

The role of reconnection in driving the magnetosphere, and the extent to which it36

opens and closes magnetic flux at Saturn is a controversial topic. Theory indicates that37

the occurrence and rate of reconnection is determined by the magnetic shear between the38

two magnetic fields and the plasma β (the thermal to magnetic pressure ratio) [Quest and39

Coroniti , 1981; Swisdak et al., 2003, 2010]. The relatively low plasma β of ∼1, typical of40

the Earth’s magnetosheath, results in reconnection occurring at shear angles of∼90◦−270◦
41

[Trenchi et al., 2008], with the highest reconnection rates observed with anti-parallel fields42

[Burton et al., 1975; Mozer and Retinò, 2007]. Large differences in plasma β across the43

magnetopause tend to occur during high Alfvénic Mach number (MA) conditions in the44

solar wind, which produce high-β magnetosheaths [e.g. Slavin et al., 1984; Gershman45

et al., 2013]. In comparison, lower MA in the solar wind at Mercury greatly reduces the46

β in the magnetosheath. For low-β conditions, reconnection is possible for very low shear47

angles [Slavin et al., 2009, 2014; DiBraccio et al., 2013].48

At Saturn, Masters et al. [2012] investigated Cassini magnetopause crossings, and found49

that for the majority of the observations, the conditions at the magnetopause were not50

conducive to reconnection. This is supported by the lack of any dayside FTE observations51

to date after over 11 years of Cassini orbiting Saturn. Evidence for FTEs at Jupiter have52

been reported [Russell , 1995; Huddleston et al., 1997] but not at Saturn where a statistical53

search for FTEs found none [Lai et al., 2012]. The low-latitude boundary layer between54

the magnetopause and the magnetosphere at Saturn has been observed not to vary in55
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thickness for different interplanetary magnetic field (IMF) orientations [Masters et al.,56

2011a, b], unlike at Earth where it is found to be thinner when the IMF is anti-parallel57

to the magnetospheric field (due to the erosion of the open magnetic field lines) [e.g.58

Šafránková et al., 2007]. The magnetopause position at Saturn was not found to depend59

upon the IMF direction [Lai et al., 2012], unlike at Earth and Jupiter [Aubry et al., 1970;60

Kivelson and Southwood , 2003].61

However, this is not to say that reconnection does not occur at all at Saturn, but it62

is not as common as at Earth, is not triggered under the same conditions, and that its63

effect on the dynamics of the Saturnian magnetosphere may not necessarily be analogous64

to the terrestrial system. Modeling of the possible areas where reconnection can occur65

has shown that reconnection is favoured in regions away from the subsolar point and at66

higher latitudes with a range of local times [Desroche et al., 2013]. This is supported by67

independent global MHD simulations [Fukazawa et al., 2007].68

Although no FTE signatures have been reported at Saturn, there is observational ev-69

idence for reconnection. Entry of magnetosheath plasma into Saturn’s magnetospheric70

cusp via ‘bursty’ or ‘pulsed’ reconnection has been observed [Jasinski et al., 2014; Arridge71

et al., 2016]. In situ observations of heated electrons near the dawnside magnetopause72

suggest the occurrence of reconnection [McAndrews et al., 2008]. Poleward moving bi-73

furcations in the aurora are evidence for magnetopause reconnection [e.g. Radioti et al.,74

2011, 2013]. Bursts of magnetospheric electrons on reconnected field lines in the magne-75

tosheath coincident with auroral reconnection signatures have also been reported [Badman76

et al., 2013]. Similarly, Fuselier et al. [2014] presented 18 events where magnetospheric77
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electrons present in the magnetosheath show evidence for reconnection and the associated78

magnetic shear angles were estimated to be >104◦.79

No comprehensive search was undertaken to find FTEs in this report. Here we inves-80

tigate a single dayside magnetopause crossing on February 2nd 2007 at Saturn by the81

Cassini spacecraft. This crossing contains evidence that an FTE-type flux rope was ob-82

served in a region of newly opened flux tubes adjacent to the magnetopause. First, we83

present a brief summary of the instrumentation used, and Cassini’s trajectory. Secondly,84

we present an overview of the observations, including minimum variance analysis of the85

data and a comparison to a flux rope model. Finally, we discuss the implications of these86

new observations for Saturn’s magnetosphere.87

2. Instrumentation

In situ electron and proton observations are presented from the Low-Energy-88

Magnetospheric-Measurement-System (LEMMS) [Krimigis et al., 2004], and the Elec-89

tron and Ion-Mass Spectrometers (ELS and IMS respectively) from the Cassini-Plasma-90

Spectrometer (CAPS) [Young et al., 2004].91

The Magnetometer (MAG) data are presented in the Kronographic-Radial-Theta-Phi92

(KRTP) coordinate system (spherical polar coordinates) which is spacecraft-centered for93

the magnetic field and planet-centered for the position of the spacecraft [Dougherty et al.,94

2004]. The radial (RRR) vector is directed in the planet-spacecraft direction, the azimuthal95

vector (φφφ) is positive in the direction of Saturn’s rotation, and θθθ completes the right-hand96

set (θθθ=RRR×φφφ) and is in the colatitudinal direction, positive southwards. For readers who97

are used to a cartesian coordinate system, due to the location of the spacecraft during this98
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interval being close to the subsolar point, the KRTP vectors at low-latitudes are directed99

similarly to a Solar-Magnetospheric system, with RRR approximately in the XXX (i.e. planet-100

Sun) direction, θθθ approximately in the -ZZZ direction (i.e. southwards) and φφφ approximately101

in the duskward direction (i.e. YYY ).102

3. Observations

3.1. Spacecraft Trajectory

The highly inclined trajectory of Cassini (Figure 2), shows it passed over the southern103

pole on the dawnward side of the planet, crossed near the subsolar point of the bow shock,104

followed by passing over the northern pole on the duskward side. The average location105

of the magnetopause at the subsolar position has a bimodal distribution at ∼22 RS and106

∼27 RS [Achilleos et al., 2008]. Therefore the magnetopause crossing at ∼17.3 RS during107

this interval shows that Saturn’s magnetosphere was significantly compressed. This is108

supported by results from a solar wind propagation model [Zieger and Hansen, 2008]109

which forecast the arrival of a significant increase in the dynamic pressure at this time110

(see the online supporting material, ‘OSM’), which compressed the magnetosphere.111

Earlier in the trajectory (and on the same day as the event we present) whilst in the high-112

latitude magnetosphere, Cassini encountered the cusp where magnetosheath plasma was113

observed [Arridge et al., 2016]. During our event, Cassini was travelling in an equatorward114

direction, and was located at a radial distance of ∼17.3 RS from the planet, a latitude of115

∼-24◦ and a local time of 12:50.116
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3.2. Overview

At 23:22−23:33 UT Cassini was located in the magnetosphere where the magnetic field117

was strongly dipolar (i.e. predominantly in the Bθ direction; Figure 1d). Whilst in118

the magnetosphere, five TCRs were observed (shaded red). TCRs are observed when the119

spacecraft passes near, but does not penetrate a flux rope. Instead, a region of compressed120

magnetic field lines is observed which drapes around the flux rope (Figure 1a). Hence a121

TCR is a two-dimensional compression wave which passes over the spacecraft. They are122

observed via rotations in the magnetic field in a single plane, coincident with an increase123

in magnitude (Figure 1f) [e.g. Zhang et al., 2010; Slavin et al., 2012]. The first two TCRs124

had bipolar signatures in the radial direction, whilst all had increases in the colatitudinal125

direction and in magnitude.126

An overview of the observations is shown in Figure 3. Whilst in the magnetosphere,127

energetic electrons, ∼102 to 104 eV, were observed (panels a-c), and the electron number128

density was low (d). At ∼23:33 UT Cassini entered a boundary layer. The drop in129

observed ion counts (Figure 3e, 23:33−23:42 UT) just after the vertical blue line occurred130

because the IMS field-of-view (FOV) moved out of the peak ion flow direction. At ∼23:44131

UT, Cassini entered the magnetosheath where electrons with lower energies, ∼10 to 103
132

eV and the highest electron number densities, ∼1.5 cm−3 (both characteristic of the133

magnetosheath), were observed. The electron number density was approximately an order134

of magnitude higher than the statistical average ion number density in the magnetosheath135

[Sergis et al., 2013], consistent with the interpretation that the magnetosphere was being136

compressed by an increase in the solar wind dynamic pressure. There was a very large137
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decrease in magnetic field magnitude including a rotation across the boundary. At ∼23:53138

UT, Cassini crossed the bow shock and entered the solar wind.139

The region between the magnetosphere and magnetosheath is interpreted to be a region140

of open flux (grey shading in Figure 3) which had just undergone reconnection (with an141

embedded FTE-type flux rope). This is supported by the following observations. Firstly,142

the magnetic field magnitude decreased from ∼7 nT (in the magnetosphere) to ∼4 nT;143

also the magnetic field direction was observed to rotate from a magnetospheric dipolar144

configuration (positive θθθ) to an oppositely orientated direction, including an increase (and145

a rotation) in the azimuthal direction, φφφ. Therefore the spacecraft was no longer traversing146

closed field lines as the field was no longer in a direction consistent with the magneto-147

spheric magnetic field. Secondly, the plasma instruments observed magnetosheath-like148

plasma throughout, as well as magnetospheric plasma present in the first half of the open149

region. This shows that the spacecraft observed a mixed plasma population from both150

adjacent regions. The magnetosheath-like plasma (higher in energy due to energisation151

from reconnection and lower in density than the adjacent magnetsheath) is similar to152

plasma observed in Saturn’s cusp [Jasinski et al., 2014; Arridge et al., 2016] which is also153

located on open field lines. At the beginning of this open region at ∼23:34 UT an increase154

in the magnetic field magnitude was observed including a bipolar signature in the radial155

direction which we have identified to be an FTE (blue line). A comparison of the electron156

energy-distributions between the different regions can be seen in the OSM.157
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3.3. Minimum Variance Analysis

Minimum variance analysis (MVA) was performed on the FTE-type flux rope and the158

boundary crossing between the open region and magnetosphere, to further characterise159

these events and understand their magnetic structure. MVA can be used to determine the160

orientation of the flux rope axis by transforming the magnetic field data into a new orthog-161

onal coordinate system with unit vectors in the maximum, minimum and intermediate162

variance directions [Sonnerup and Cahill , 1967]. This method has been used extensively at163

various planetary magnetospheres to analyse magnetic structures [e.g. Huddleston et al.,164

1997; Eastwood et al., 2002; Knetter et al., 2004; Steed et al., 2011; Jackman et al., 2014;165

Slavin et al., 2014]. If the spacecraft passed near the center of the FTE, then the magnetic166

field in the minimum direction will be small (or approach zero) throughout the flux rope167

observation. If the flux rope is force-free then the intermediate vector corresponds to the168

axis [e.g. Xiao et al., 2004] of the FTE (Figure 1b).169

MVA from the boundary crossing between the magnetosphere and the open region at170

23:32:09−23:33:03 UT resulted in a minimum variance direction (in KRTP) of (0.98, -171

0.13, -0.14), predominantly in the radial direction. This is very similar to the normal172

direction calculated from the Kanani et al. [2010] magnetopause model of (0.98, 0.18,173

-0.09), showing that the boundary is similarly aligned to the magnetopause.174

The FTE observation in the magnetopause normal (LMN) coordinate system can be175

seen in the OSM. Figure 4 shows the MVA results for the FTE with a model flux rope176

shown in blue (discussed below). The calculated eigenvector (xxx) for each direction is shown177

in KRTP coordinates, as well as its corresponding eigenvalue (λ). The eigenvalue ratios178
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were greater than four and so the vectors were well determined [Sonnerup and Cahill ,179

1967; Collier and Lepping , 1996]. The flux rope had a very strong bipolar signature in180

the maximum direction, which is the basic flux rope signature. Bmin ∼2 nT, is not zero,181

so the spacecraft did not pass through the centre of the flux rope, but it did penetrate182

deeply into the structure. The minimum variance vector (predominantly in the radial and183

latitudinal directions) shows the direction the spacecraft passed through the flux rope (in184

its rest frame). In reality, the spacecraft speed is negligible (∼7 km/s) in comparison to185

the flux rope (hundreds of km/s) and is considered stationary, so the flux rope passed186

over the spacecraft in a planetward and southward direction, consistent with a multiple187

reconnection x-line located equatorward of Cassini. This motion of the FTE-type flux188

rope is supported by the angular distribution of the ions which showed bulk flow to be in189

a similar direction.190

3.4. Flux Rope Modeling

The flux rope was compared to a force-free flux rope model first put forward by191

Lundquist [1950] and developed by Lepping et al. [1990, 1995]. In a force-free magnetic192

field, the current density J is parallel to the magnetic field B (i.e. J×B=0). Therefore:193

∇×B = J = αB (1)

where α is a constant proportionality factor and determined to be 2.405 so that the194

magnetic field is purely axial and tangential at the centre and the edge of the flux rope,195

respectively (Figure 1b). Taking the curl of both sides gives:196
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∇2B = −α2B (2)

The solution in cylindrical coordinates to Equation 2 was shown to be a function of the197

Bessel functions of the first kind [Lundquist , 1950]:198

BA = B0J0

(
αr

RFR

)
BT = HB0J1

(
αr

RFR

)
BR = 0 (3)

where H is the helicity of the structure and is equal to ±1. B0 is the magnetic field magni-199

tude at the centre of the rope. r/RFR is the impact factor to flux rope radius (RFR) ratio200

and represents the distance of closest approach to the centre of the FTE. J0, and J1 are201

the zeroth and first-order Bessel functions. B0 and r/RFR are unknowns, and estimated202

in this process. The MVA intermediate vector was used to form the axial direction of203

the FTE-type flux rope. The maximum and minimum directions formed the tangential204

direction of the flux rope, whereby the minimum eigenvector formed the trajectory direc-205

tion through the FTE. The model was fit using a least-squares minimisation algorithm206

for r/RFR in MVA coordinates. The value of B0 was scaled accordingly after this process207

(see Slavin et al. [2003] for more details).208

The value of the best-fit impact factor was ∼0.3 RFR, with a B0 of ∼7 nT. Figure 4c-e209

shows a comparison of the flux rope model (in blue) to the data. Bmin was very well210

modeled throughout the FTE, whilst most of Bint was well modeled at the centre. The211

bipolar signature of Bmax was also found to match the observations.212

The magnetic flux content (Φ) of the FTE-type flux rope was calculated using:213
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Φ =
2π

α
B0R

2
FRJ1(α) (4)

To calculate flux rope radius, the transit time and velocity of the flux rope passing214

through the spacecraft (calculated from the CAPS-IMS ion observations) were used. The215

restricted FOV of IMS is not amenable to the standard moment integration techniques216

[e.g. Thomsen et al., 2010; Wilson et al., 2008] as they require the instrument to see217

the peak flow to calculate the flow velocity. However, the peak flux can be constrained218

to anodes 5, 6 and 7 of IMS. Ion distributions can be well modeled as the sum of two219

co-moving proton distributions with different temperatures, a hot and cold distribution,220

with temperatures of 1 keV and 100 eV, respectively [Richardson, 1987]. The model221

distribution consisted of the sum of two drifting-Maxwellians (one each for the hot and222

cold proton distributions) and were fitted with non-linear least squares. From the model,223

the peak flow was found to be located 0-20◦ outside the FOV of IMS (flowing southward).224

The resulting ion flow speeds were calculated to be 473±9 to 540±6 km/s, where the225

uncertainty in each measurement comes from the uncertainties from the non-linear fit and226

the range originates in the assumed angle between the sensors and the ion flow direction.227

Using the lower and upper estimates of the velocity (mentioned above) the size of228

the FTE is approximated to be ∼6500 and ∼7400 km (∼0.1 RS). However, there are229

errors associated with the force-free-fitting technique including the assumption of a force-230

free cylindrically-shaped structure. In reality, non-negligible plasma gradients will be231

present in any FTE, and FTEs will not be completely cyclindrical. This will make the232

assumptions not completely valid, because flux ropes are usually observed whilst in the233
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process of evolving to become near-force-free [Kivelson et al., 1993; Zhang et al., 2010].234

Errors associated with the selection of the FTE time duration will have the biggest effect235

on the calculated size of the flux rope and Φ, whilst the uncertainty on the impact factor236

is an order of magnitude smaller. The start-stop times were chosen to coincide with the237

peaks in the bipolar signature, but an increase or decrease of three seconds would result in238

a flux rope radius value to lie between ∼4600 and ∼8300 km, and a magnetic flux content239

between ∼0.2 and ∼0.8 MWb.240

4. Discussion and Conclusions

We have presented the first detection of an FTE-type flux rope at Saturn’s dayside241

magnetopause. The Cassini spacecraft passed from the magnetosphere, where it observed242

four TCRs and then passed into an open flux region where energised magnetosheath243

plasma was observed as well as the FTE-type flux rope. The observation of TCRs in the244

magnetosphere, and the flux rope in the open region all support the interpretation that245

Cassini passed from the magnetosphere onto newly reconnected open magnetic field lines,246

which are adjacent to the magnetopause and therefore would map at higher latitudes to247

the cusp. Cassini then crossed into the magnetosheath, where the plasma increased in248

density, before finally traversing the bow shock and into the solar wind.249

An estimation of the plasma β yielded values of ∼1, ∼5 and ∼19 for the magnetosphere,250

the open region and the magnetosheath, respectively. These calculations were made by251

adding the plasma pressures from the MIMI and CAPS instruments [Sergis et al., 2009;252

Thomsen et al., 2010], for the entire open region and magnetosheath, and for nine minutes253

within the magnetosphere (23:20−23:29). The difference in β between the magnetosphere254
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and the open region is quite low in comparison to some magnetopause crossings at Saturn255

analysed by Masters et al. [2012].256

However the β in the observed magnetosheath (adjacent to the open region) is quite257

high. The assumption that the conditions that formed the open region were similar to the258

observed magnetosheath, would require a high magnetic shear for magnetic reconnection.259

Either the magnetic shear that prompted reconnection was very high or the β-dependence260

models [Swisdak et al., 2010; Masters et al., 2012] do not provide a complete picture of261

the conditions required for reconnection onset. However, we do know reconnection had262

occurred and formed the observed FTE and open region, and further analysis of the263

reconnection conditions are beyond the scope of this paper.264

MVA was performed on the flux rope magnetic field measurements. The axis of the265

FTE (i.e. the intermediate variance direction) was found to be predominantly in the266

azimuthal direction (i.e. east-west), and it was found to be moving southward. Both of267

these characteristics are consistent with the high-shear, multiple x-line model for FTE268

generation [Lee and Fu, 1985; Raeder , 2006], which is well supported by observations at269

Earth [e.g. Fear et al., 2008].270

A force-free cylindrical constant-α flux rope model was fit to the FTE magnetic field271

measurements. The result shows that Cassini’s closest approach to the flux rope core was272

∼0.3 RFR, and the core field strength was ∼7 nT. Using the observed ion flow velocities,273

the flux content of the FTE was estimated to be between ∼0.2 and ∼0.8 MWb. Terrestrial274

FTEs have been observed to contain similar amounts of magnetic flux, e.g., 0.3 MWb [Lui275

et al., 2008] and 0.4 MWb [Zhang et al., 2008].276
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Assuming the five observed TCRs in this event are attributed to FTEs, would give an277

FTE occurrence of ∼2 minutes (six FTEs are observed in nine minutes), which is less278

than the ∼8 minutes and more than the ∼8 seconds observed at Earth and Mercury279

respectively [Rijnbeek et al., 1984; Slavin et al., 2012]. Six FTEs in 9 minutes, would280

result in a reconnection voltage of ∼2-9 kV (attributed solely to FTE generation).281

In a comprehensive auroral study, Badman et al. [2013] estimated reconnection voltages282

of ∼30-200 kV, whilst McAndrews et al. [2008] reported ∼48 kV and Jackman et al.283

[2004] estimated voltages of ∼10-400 kV . Modeling of the reconnection voltage at Saturn284

revealed an average of ∼40 kV, with an upper estimate of ∼100 kV [Masters , 2015]. The285

event presented here is during a magnetospheric compression, and the upper value from286

Masters [2015] and Badman et al. [2013] are more likely for our interval. Therefore it could287

conceivably be estimated (assuming six FTEs are generated every nine minutes, and the288

associated resulting reconnection voltage is ∼2-9 kV) that FTEs at Saturn contribute ∼1-289

9% to the opening of flux during solar wind compressions. However our observations are290

local to Cassini, and these estimates could be conservative because more FTEs might be291

generated elsewhere along Saturn’s huge magnetopause, that are not sampled on Cassini’s292

trajectory. Although this is the first reported event, this FTE may not be representative293

of FTEs at Saturn and a statistical survey will provide a better understanding of the294

variability in flux opened in FTEs.295

It is not possible from this study to determine whether the flux rope reconnection voltage296

is the same during quiescent solar wind conditions. It is more than likely that FTE-type297

flux rope generation is negligible at Saturn when the overall dayside reconnection rate298
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is very low, with fewer multiple x-lines occurring during less stressed magnetospheric299

conditions. This would explain the general lack of FTE observations to date. However300

we have shown that there are events at the Saturnian magnetopause where reconnection301

occurs in an Earth-like manner and an FTE can be formed. A re-examination of the302

magnetopause crossings should be undertaken to search for flux rope signatures in the303

data.304
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Figure 1. Illustrations of: a) a cross section of a flux rope showing the TCR region

(shaded red), and b) a three-dimensional representation of the layers of a flux rope, where

the outer flux is perpendicular to the core axial field. The core axial field is pointed in

the right-to-left direction here, which is the intermediate variance direction from MVA,

whilst the tangential direction is in the minimum-maximum plane. Panels c-f) show the

MAG data for the TCRs (‘T’; red-shading) and the FTE (‘F’; blue-shading).

Figure 2. The trajectory of the Cassini spacecraft between January 29th and Febru-

ary 10th 2007. The blue arrow shows the start of the interval and the direction of the

trajectory. The red arrow marks the FTE location. The large dots represent the start

of the day in UT. The smaller dots mark three hour intervals. Left: the X-Z plane (as

‘viewed’ from dusk) in the Kronocentric-Solar-Magnetospheric (KSM) coordinate system

(Sun to the right), with the Khurana et al. [2006] magnetospheric field-line model (grey).

The top and bottom right panels show the trajectory in the X-Y (‘looking down onto the

equatorial plane’, with the equatorial plane inclined towards the observer on the dayside)

and Y-Z (view from the Sun) KSM planes, respectively. The dotted lines show a model

magnetopause location using a solar wind dynamic pressure of 0.12 nPa [Kanani et al.,

2010].
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Figure 3. Observations from February 2nd 2007. Vertical black lines separate the

different regions. The centers of the TCRs (‘T’) and FTE-type flux rope (‘F’) are marked

by the red and blue lines respectively. Top-to-bottom are in situ observations: panels a-b)

high-energy electrons and protons, respectively (LEMMS); c) omnidirectional low-energy

electron flux (ELS), with background and photoelectron flux removed; d) the calculated

electron number density (ELS); e) ions from IMS; f-i) the three components (in KRTP) and

magnitude of the magnetic field (MAG).“SW” stands for the solar wind, and “M’sheath”

for the magnetosheath. The ‘Open’ region is shaded in grey. “DEF” and “DNF” stand

for differential energy and number flux, respectively.

Figure 4. MVA results for the FTE observed at 23:33:55−23:34:21 UT. MVA hodograms

are shown in (a-b). The ‘s’ and ‘e’ represent the ‘start’ and ‘end’ of the data. Panels (c-

e), show the magnetic field measurements in MVA coordinates, and the eigenvalue and

eigenvector values in KRTP coordinates (R, θθθ, φφφ). Panels (c-e) show the flux rope model

(blue), for comparison with the observations (black).
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