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Summary

Reduced mechanistic target of rapamycin (mTOR) signalling

extends lifespan in yeast, nematodes, fruit flies and mice, high-

lighting a physiological pathway that could modulate aging in

evolutionarily divergent organisms. This signalling system is also

hypothesized to play a central role in lifespanextension via dietary

restriction. By collating data from 48 available published studies

examining lifespan with reduced mTOR signalling, we show that

reduced mTOR signalling provides similar increases in median

lifespan across species, with genetic mTOR manipulations consis-

tently providing greater life extension than pharmacological

treatment with rapamycin. In contrast to the consistency in

changes in median lifespan, however, the demographic causes

for life extension are highly species specific. Reduced mTOR

signalling extends lifespan in nematodes by strongly reducing

the degree towhichmortality rates increasewith age (aging rate).

By contrast, life extension in mice and yeast occurs largely by

pushing back the onset of aging, but not altering the shape of the

mortality curve once aging starts. Importantly, in mice, the altered

pattern of mortality induced by reduced mTOR signalling is

different to that induced by dietary restriction, which reduces the

rate of aging. Effects of mTOR signallingwere also sex dependent,

but only within mice, and not within flies, thus again species

specific. An alleviation of age-associated mortality is not a shared

feature of reduced mTOR signalling across model organisms and

does not replicate the established age-related survival benefits of

dietary restriction.
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tion; mortality; rapamycin; senescence.

Introduction

Rapamycin and closely related analogues are considered the most

promising treatments for aging and age-related disease available for

translation to humans (Johnson et al., 2013). Rapamycin exerts its

effects by inhibiting signalling of the mechanistic target of rapamycin

(mTOR) pathway. Although mTOR is present in two distinct complexes,

rapamycin preferentially inhibits mTOR complex 1 (mTORC1) (Stanfel

et al., 2009), with direct genetic reductions of mTORC1 activation also

extending lifespan (e.g. Jia et al., 2004; Kapahi et al., 2004; Kaeberlein

et al., 2005; Lamming et al., 2012). The physiological effects of reduced

mTORC1 activation, particularly the decline in cellular growth and

elevated organismal survival, are expected to be a consequence of

downstream inhibitory effects on several mTORC1 substrates, particu-

larly the ribosomal S6 kinase (S6K), which has been most intensively

studied (Gems & Partridge, 2013). S6K controls protein translation and

can feedback to influence other pathways linked to nutritional status,

such as insulin signalling and adenosine monophosphate protein kinase

(AMPK) (Selman et al., 2009). Decreased S6K activation is hypothesized

to be a major cause of lifespan extension through genetically or

pharmacologically reduced mTORC1 activation (Hansen et al., 2007;

Gems & Partridge, 2013; Johnson et al., 2013).

Pharmacological treatment with rapamycin, genetic impairments of

the mTORC1 complex and reduced S6K activation are all expected to

extend lifespan by operating through the same pathway. Indeed,

separate manipulations of each of these components have been shown

to extend lifespan in the four most popular model organisms in aging

research: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans

(nematodes), Drosophila melanogaster (flies) and Mus musculus (mice)

(Johnson et al., 2013). Although seemingly universal across species,

there are several factors that might influence the degree of lifespan

extension within and between species. In both mice and flies, manip-

ulations of mTOR signalling have been reported as sex dependent,

preferentially improving female lifespan over that of males (Bjedov et al.,

2010; Miller et al., 2014). In flies, one study reported that rapamycin can

decrease lifespan at high concentrations (Harrison et al., 2010), while in

mice, lifespan extension has been positively associated with rapamycin

concentration (Miller et al., 2014). Different manipulation types (e.g.

rapamycin, genetic manipulations of mTORC1 or S6K) may also have

physiological effects that influence survival outside of this simplified

pathway, leading to possible differences in the degree of lifespan

extension: examples include the possible inhibitory effects of rapamycin

on mTORC2 (Lamming et al., 2012), and the additional regulatory

effects of mTORC1 signalling on translation initiation factors in addition

to S6K (Johnson et al., 2013).

Although manipulations of the mTOR complex can extend median

lifespan, there is relatively little understanding of the demographic

pathways through which this life extension occurs. Longer lifespans of

animals with reduced mTOR signalling, compared to control animals,

could occur because of various alterations of age-specific mortality rate.

For a manipulation to slow aging, in a demographic sense, it is expected

to reduce the rate at which mortality increases in a population over time

(Good & Tatar, 2001; Mair et al., 2003; Simons et al., 2013). This is

usually assessed by fitting Gompertz (m(t) = a + exp(bt)) models (Fig. 1),

which separate parameter b, the ‘aging rate’ of the population (the rate

of increase in mortality with age), and parameter a, which describes the

vulnerability to dying at a similar level of somatic damage (Simons et al.,

2013; Kirkwood, 2015). Individual studies in mice have suggested that
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changes in either of these parameters could potentially be responsible

for lifespan extension with rapamycin (Miller et al., 2011; Fok et al.,

2014), although limitations in sample size in each case have hampered

the ability to draw firm conclusions about the cohort under study.

To understand the consistency and demographic causes of lifespan

extension via reduced mTOR signalling, we collated data from previous

lifespan experiments conducted in mice, flies, yeast and nematodes,

comprising data from over 30 000 individuals, and 164 different control-

treatment comparisons. We analysed this data set using meta-analysis

for both life extension – measured at median lifespan of the controls

(HR50) – and the resulting demographic trajectory in terms of changes in

mortality over different periods of life. Using such a large-scale

approach, we were able to statistically test whether lifespan extension

with particular genetic manipulations mimics the mortality effects

observed with pharmacological treatment with rapamycin, and even

whether reduced mTOR signalling mimics the changes in mortality that

occur with dietary restriction. We were also able test whether lifespan

extension is similar across species – and thus whether changes in

mortality in shorter-lived and simpler organisms predict changes in

longer-lived and more complex organisms – and whether different types

of manipulation provide similar survival benefits to males and females.

Results

Reduced mTOR signalling consistently extends lifespan

Treatment with rapamycin, genetic manipulation of components of the

mTORC1 complex or deletion of the mTORC1 substrate S6K together

generate an overall lifespan-extending effect, when these collated data

are analysed using meta-analysis (HR50 = �0.55, �0.66: �0.44 95% CI;

Fig. 2A; Tables S1 and S2).Mice, flies, nematodes and yeast showa similar

level of lifespan extension in response to reducedmTOR signalling (QM(df=

3) = 3.78, P = 0.29, Table S2). Genetic manipulation of the mTORC1

complex, or S6K (manipulation of these two targets has similar effects on

lifespan, b = �0.08 � 0.09 (SE), P = 0.37), generates a stronger increase

in median lifespan (b = �0.25 � 0.09 (SE), P = 0.006) than pharmaco-

logical treatment with rapamycin (Fig. 2A; Table S2). This greater life

extension with genetic manipulations might be the result of several

factors. One possibility is that rapamycin might have effects outside of

reducing mTORC1 signalling that have some counteracting detrimental

effect on survival, reducing the life extensionof rapamycin-treated animals

to below that observedwith genetic manipulations. Theweaker inhibitory

effects of rapamycin on mTORC2 signalling are of particular note, as

reduced activity of this complex can sometimes reduce lifespan (Soukas

et al., 2009; Lamming et al., 2014) and has been linked to the generation

of insulin resistance in rapamycin-treated mice (Lamming et al., 2012).

Smaller life extension with rapamycin compared to genetic manipu-

lations might also be a consequence of administration of suboptimal

rapamycin concentration doses (Kaeberlein, 2014), as the degree of

lifespan extension can vary with concentration. The effects of different

concentrations of rapamycin have only been investigated in a single

study in mice (Miller et al., 2014), with the majority of other studies

using a dietary treatment regime at a concentration of 14 ppm

(Supplementary Data S1). This precludes a meta-analysis of a concen-

tration effect within mice. It is, however, notable that the lifespan

extension achieved at the highest concentration of rapamycin employed

in mice (Miller et al., 2014) is at least similar, if not slightly greater, than

the average effect achieved through the various genetic manipulations

of the TOR pathway in mice (model comparing mouse lifespan at the

highest rapamycin concentration to mouse lifespan with genetic

manipulation of TOR or S6K: b = �0.38 � 0.21 (SE), P = 0.07). The

limited data available in flies (only two studies have examined lifespan at

different rapamycin concentrations) also suggest previous treatment

concentrations may be suboptimal for maximizing lifespan extension,

although in this case, the relationship between treatment concentration

and lifespan extension is negative (b = 0.025 � 0.011 (SE), P = 0.018),

highlighting that rapamycin at high doses may be toxic to this species

(Harrison et al., 2010).

Impacts on demographic mortality are species specific

To understand how mTOR-related pharmacological and genetic manip-

ulations influence the demography of mortality, we calculated the

Gompertz parameters for each experimental replicate using maximum

likelihood (Promislow & Pletcher, 1999; Simons et al., 2013). Given the

incongruity in concentration of rapamycin, we selected within each

study the concentration that achieved the greatest life extension (based

on HR50). Additionally, in one case (Lamming et al., 2012), some

manipulations of different components of the mTORC1 complex did not

appear to reduce mTORC1 signalling; therefore, we also excluded those

specific comparisons. We took this approach because we were

interested in how mTOR signalling regulates the demography of

mortality, rather than in estimating an overall effect across all available

effect sizes.

Gompertz is a simple but effective model (Pletcher, 1999; Simons

et al., 2013; Kirkwood, 2015) to separate the two main demographic

parameters of mortality. A decline in b, the age-dependent factor, is

expected if a treatment reduces the rate of aging, rather than protecting
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Fig. 1 Schematic overview of the resulting

survival (A) and mortality trajectories (B)

when the Gompertz parameters a

(vulnerability) and b (aging rate) are varied

independently. Compared to a control

condition (solid lines), a similar lifespan

extension as measured at median lifespan

through a change solely in either a (short

dash) or b (long dash) is drawn.
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against factors that reduce age-dependent mortality across the life

course (a: vulnerability, also known as: frailty, initial mortality rate). In a

strong contrast to the effects of mTOR signalling on median lifespan,

changes in both demographic parameters are largely consistent across

different manipulation types but differ between species (Figs 2B,C and

3; Table S2). In nematodes, lifespan extension is associated with a strong

reduction in parameter b (Fig. 3B), the rate of aging, without effects on

parameter a (Fig. 3A). In mice, flies and yeast, lifespan extension is more

closely associated with a reduction in parameter a (Fig. 3A), reducing the

vulnerability to mortality across the life course. The overall predicted

survival and mortality trajectories for each species are provided in

Fig. 3C,D.

Female lifespan extension is consistently greater in mice but

not flies

It has been reported that reduced mTOR signalling can have a stronger

lifespan impact on females than males, in both mice and flies treated

with the drug rapamycin (Bjedov et al., 2010; Miller et al., 2014) and in

S6K and mTORC1 component knockout mice (Selman et al., 2009;

Lamming et al., 2012). It has also been noted, in mice, that the activity

of the mTORC1 complex can differ between sexes (Drake et al., 2013;

Baar et al., 2016) and that any concomitant reductions in mTORC2

signalling with rapamycin treatment can have greater detrimental effects

on males (Lamming et al., 2014). We tested whether there is a

consistent sex bias in lifespan extension with reduced mTOR signalling

and found that the sex bias in lifespan response is species dependent

(Table S3, Fig. 2A). Only in mice, but not in flies, does reduced mTOR

signalling increase lifespan to a greater extent in females than males

(Fig. 2A). It has been suggested that the sex-specific response to

rapamycin in mice is a consequence of differences in metabolism of this

drug in males and females (Miller et al., 2014). However, there is no

evidence for a differing effect of sex in those studies that manipulated

mTOR signalling through pharmacological (rapamycin) or genetic means

in mice (Table S3). This result further highlights that there are biological

differences between the sexes unrelated to drug metabolism, and

potentially unrelated to rapamycin’s effects on mTORC2, that determine

lifespan responses to reduced mTOR signalling.

Lifespan extension by reduced mTOR signalling and DR are

distinct

Reduced mTOR signalling is predicted to play a central role in lifespan

extension via dietary restriction (DR) (Kennedy et al., 2007; Kaeberlein,

2014). However, epistasis studies in different species have produced

mixed results (Kapahi et al., 2004; Kaeberlein et al., 2005; Bjedov et al.,

2010; Ching et al., 2010), and in mice, rapamycin treatment and DR

generate distinct changes in physiology (see discussion for examples).

When comparing our results on the demographic pathways of lifespan

extension with reduced mTOR signalling to a recent study examining the

demographic pathway to life extension in rodents via DR (Simons et al.,

2013), we noticed a surprisingly prominent difference: lifespan extension

−0.4 −0.2 0.0 0.2−2.0 −1.0 0.0−1.0 −0.5 0.0

Median lifespanOverall

Per species:

Overall effect

Male
Female

Rapamycin
Genetic

Estimate from meta-analysis (log hazard ratio, 95% confidence intervals)

Vulnerability (a) Aging rate (b)A B C

Fig. 2 Forest plots of effect size for the logarithm of the hazard ratio (ln(HR)) for changes in median lifespan and mortality parameters with reduced mTOR signalling. Data

are synthesized from 155 different control-treatment comparisons (see supplementary data file). Bars show the effect size with 95% confidence intervals for treatment

changes in median lifespan (A), vulnerability to aging (B) and rate of aging (C). Within each plot, the estimated overall effect sizes using meta-analysis are shown

across all effect sizes, separating pharmacological (rapamycin) and genetic manipulations of mTORC1 and S6K signalling, and separated per sex where applicable.

Overall effects are reported across species, included species in addition to study as a random term. Overall estimates of these categories (see legend) and their 95%

confidence intervals are provided, with data from all species combined, in addition to results for each individual species.
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via reduced mTOR signalling occurs predominately through a reduction

in parameter a, while lifespan extension via DR in rodents – although

variable in its demographic response (Merry, 2005; and Fig. 4) – occurs

predominately by reducing parameter b (Simons et al., 2013). Biolog-

ically, reduced mTOR signalling appears to increase resilience to aging-

related mortality, while DR reduces the increase in mortality rate that

occurs as animals grow older.

To quantitatively test whether DR and reduced mTOR signalling affect

mouse lifespan via differential alteration of Gompertz parameters, we

combined mouse lifespan data from the current meta-analysis with a

previous meta-analysis on DR (Simons et al., 2013). There was no

statistical difference between the change in parameter a under DR and

that induced with reduced mTOR signalling in mice (QM(df = 1) = 1.73,

P = 0.19; Fig. 4), despite an apparent stronger effect on a when mTOR

is manipulated (estimates from separate models: DR: 0.31, �0.34:0.96

95% CI, mTOR: �0.42, �0.77: �0.06 95% CI). The lack of a statistical

difference is probably attributable to the substantial variation in the

effect of DR on this parameter (Simons et al., 2013); this heterogeneity is

only partly explained by differences in response between strains

(Table S4). By contrast, only DR consistently reduces the rate of aging

(estimates from separate models: DR: �0.29, �0.39: �0.18 95% CI,

mTOR: �0.016, �0.10 : 0.07 95% CI), with mice showing a significantly
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mortality risk via this parameter. Predicted overall survival (C) and mortality trajectories (D) are provided in the right two columns. These represent the meta-analytic mean of

both Gompertz parameters of the controls (yellow lines) adjusted for the meta-analysed hazard ratio of this parameter under reduced TOR signalling (blue lines). Dashed

lines indicate females. Within mice, flies and yeast, extension in lifespan via reduced TOR signalling is a result of a demographic change in the Gompertz parameter a
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different response in this aging parameter depending on whether they

receive a treatment that reduces mTOR signalling or whether they are

dietary restricted (QM(df = 1) = 8.43, P = 0.004). Thus, at least with

regard to the way these to treatments influence age-related mouse

mortality, the effects of these treatments are distinct. This demographic

perspective provides additional insight over conventional measures such

as the effect on median lifespan, for which the two treatments do not

significantly differ (QM(df = 1) = 1.19, P = 0.28, Fig. 4). Notably, hardly,

any heterogeneities among studies were observed in both aging

parameters, a and b with reduced mTOR signalling (< 29% for both),

whereas for DR, much of the variation seemed to be due to among-

study differences (I2[a] = 69.4% and I2[b] = 63.4%; Table S1). This result

suggests that reduced mTOR signalling exerts much more stable and

reliable life-extending effects in mice than DR.

Discussion

The mTORC1 signalling complex is highly responsive to nutrients, and

consequently DR is expected to reduce the activity of this complex

(Johnson et al., 2013). As reduced mTOR signalling itself extends

lifespan, manipulation of this pathway has been seen as an attractive DR

mimic (Longo et al., 2015). While both do extend lifespan, we show

here that reduced mTOR signalling does not mimic the age-related

survival benefits of DR, adding to a growing picture of distinctiveness of

these two lifespan-extending interventions. This is not to say that

reduced mTOR signalling is not important in the DR response – it might

still be indispensable for DR-mediated lifespan extension in mice and play

an important role in the improvement of mouse survival. However, our

results indicate that the differential effects of these two treatments on

certain aspects of physiology (for example, insulin sensitivity (Fok et al.,

2013), fat deposition (Fok et al., 2013), xenobiotic metabolism (Miller

et al., 2014), fatty acid oxidation (Yu et al., 2015) and mitochondrial

biology (Fok et al., 2014; Karunadharma et al., 2015)) are likely

influencing at least some of the factors that influence mouse death,

either their probability of occurrence or age at onset, generating these

distinct mortality patterns that we observe.

Epistasis studies in mice may further help to determine whether DR

provides aging benefits outside of mTOR signalling, although an epistatic

interaction for lifespan does not necessarily indicate that one pathway

plays a causal role in generating the survival benefits of the other,

particularly if the phenotypes of the two models (e.g. DR and mTOR

manipulation) are dissimilar (Hekimi et al., 2001). DR–mTOR epistasis

studies, in other organisms, have additionally produced mixed results. In

yeast and worms, DR failed to extend lifespan of either mTOR or S6K

mutants (Kaeberlein et al., 2005), but in flies, rapamycin treatment was

still able to extend the lifespan of DR individuals (Bjedov et al., 2010).

Rapamycin treatment in flies also seems to block the negative effects that

essential amino acid supplementation has on DR-mediated life extension

(Emran et al., 2014).While these discrepanciesmight partly occur because

of the use of different DR regimes, which can have different gene

dependencies (Greer&Brunet, 2009), it hints that the importanceofmTOR

in DR-mediated lifespan extension might vary in different organisms.

The comparison of mortality effects of reduced mTOR signalling across

model organisms highlights that, while generating consistent changes in

average lifespan, impacts on mortality demographic parameters differ

between species. In mice, yeast and (although non-significant) flies,

mTOR signalling reduced vulnerability to age-dependent mortality, a. In

contrast, reduced mTOR signalling in nematodes generates a strong

reduction in the rate of aging, b. It is notable that the species examined

here do not always show extended lifespan through alteration in these

specific Gompertz parameters. In flies, genetic, dietary and temperature

manipulations all seem to have treatment-specific effects on Gompertz

mortality (Pletcher, 1999), highlighting that changes in lifespan can occur

through alteration in either Gompertz parameter. In nematodes,

different long-lived mutants show wide-ranging changes in both

Gompertz parameters (Johnson et al., 2001). Recent large-scale demo-

graphic experiments in C. elegans have shown that manipulations of

temperature, oxidative stress, diet, heat shock response and the insulin/

IGF-1 pathway all affect the scaling of the survival curve, analogous to

vulnerability (a) in the Gompertz (Stroustrup et al., 2016). Stroustrup

et al. suggest that this scaling pattern is therefore invariant across

lifespan-extending manipulations, but the results presented here suggest

that mTOR manipulation actually has a very contrasting demographic

effect in this species, warranting further direct experimental comparison.

In mice, DR can influence aging rate while many genetic aging models

show a change in vulnerability to age-related death (a) (de Magalh~aes

et al., 2005). We therefore conclude that these species-specific

responses to reduced mTOR signalling are a consequence of underlying

biological differences between these model organisms in the way

reduced mTOR signalling affects mortality and associated physiological

pathways at different periods of life.

The specific change that is observed in the demography of mortality

provides a fundamental insight into how a particular treatment influences

the probability of death, both at an immediate point in time, at future

time points after the treatment is discontinued, or if only started late in

life. A reduction in the rate of aging, as observed with reduced mTOR

signalling in C. elegans, is expected to be linked to permanent alterations

in age-associated damage and dysfunction (Jacobson et al., 2010), such

that discontinuing the treatment would still leave an individual with

improved survival prospects (Mair et al., 2003). By contrast, changes to

vulnerability (a) are predicted to be reversible, in that current mortality is

dependent on the current dietary or drug regime, without any carryover

effects, as shown for DR in flies (Mair et al., 2003). It is notable that the

degree of lifespan extension via DR in mice is strongly dependent on the

age at which treatment starts, consistent with an effect on aging rate

(Simons et al., 2013). Rapamycin treatment seems to extend lifespan to a

similar degree irrespective of whether treatment starts early in life or at

middle age (Miller et al., 2011; Table S5), consistent with the effect on

the vulnerability to mortality we report here. This difference in the age

−1.0 −0.5 0.0 0.5 1.0

b

a

TOR

Dietary 
restriction

Log hazard ratio

HR50

Fig. 4 Overall effects of reduced TOR signalling (open dots) on median lifespan,

vulnerability (a) and aging rate (b) in mice vs. those parameters under DR. Effects

and 95% confidence intervals represent effects from separate meta-analyses. The

life extension from DR results from a change in ageing rate, vs. a change in

vulnerability under reduced mTOR signalling (see text).
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dependence of these two treatments further supports the argument that

these two manipulations have distinct impacts on mouse mortality and

the biology of aging. Treatments that reduce age-independent mortality

in humans and mice are predicted to be able to provide the full survival

benefits to an individual regardless of when the treatment starts (Vaupel

et al., 2003; Simons et al., 2013). If rapamycin treatment in humans has

similar stable impacts on physiology and mortality as it has shown here in

mice, the health and survival benefits accrued from treatments starting

late in life may still be substantial.

The meta-analytical approach we use here, allowing comparison of

lifespan extension and changes in mortality rates through genetic, dietary

and pharmacological treatments, provides a comparative technique to

help adjudicate the consistency (and distinctiveness) of treatments that

might slow aging across species. The consistency in lifespan extension, in

a demographic sense, via genetic manipulations of mTOR signalling and

pharmacological treatment with rapamycin, within species, matches the

view that these treatments operate through the same physiological/

molecular pathway. However, the different responses across species

highlight that effects on age-specific mortality are dependent on the

biological system, insights that remained hidden in single smaller sample-

sized studies on one model organism. Further focussed empirical studies

will help to confirm these differential impacts on death experimentally.

For example, as rapamycin treatment influenced the rate of aging in

nematodes, but age-independent mortality in yeast, experiments where

rapamycin treatment is started or stopped part way through life (as

conducted by Mair et al. (2003) and Merry et al. (2008) for DR in fruit flies

and rats, respectively), will reveal whether these differences in Gompertz

parameters of mortality do translate to permanent/transient impacts on

mortality rates on an interspecies scale. Such experiments will also help to

confirm whether the observed differences in mortality parameters reflect

underling differences in how reduced mTOR signalling effects somatic

damage and dysfunction linked to aging and vulnerability to death.

Experimental procedures

Search protocol

The search protocol was based on that used in previous meta-analyses of

lifespan extension (Hector et al., 2012; Nakagawa et al., 2012). Studies

were including on model species considered to be wild-type – without

additional genetic manipulation or particular susceptibility to disease –

and where gene expression was manipulated across all tissues. We

included all genetic manipulations that inhibited the activity of the

mTORC1 complex or downstream S6K. The Supplementary Data S1

shows the specific manipulation used in each study.

Data extraction and analysis

Raw individual survival data were used whenever possible. When

unavailable, mortality was measured from survival curves. Gompertz

models were then fitted using maximum likelihood estimation (Pletcher,

1999), and estimates of sampling variances were obtained either from

the confidence intervals around the parameters fitted on the individual

level data, or estimated through simulation (Simons et al., 2013). To

assess overall effects on lifespan, a hazard ratio at median lifespan was

calculated using the number of individuals died and at risk in both

experimental groups, for which sampling variances are known (Naka-

gawa et al., 2012). Meta-analyses were run on these hazard ratios at

median lifespan and the hazard ratio of the two Gompertz parameters

with treatment group (reduced TOR signalling) over the control group –

negative hazard ratio estimates indicate improved survival. Mixed effects

meta-analyses were conducted using the package ‘metafor’ (Viecht-

bauer, 2010) in R (R Core Team, 2015). Study was included as random

term and because in some cases a control group was used as comparison

to multiple treatment groups we modelled such data dependence using

a covariance matrix. Heterogeneity in meta-analyses was assessed by a

multilevel version of I2 (Nakagawa & Santos, 2012). We tested for

publication and reporting bias (see supporting information) using rank

tests of sample size against effect size and did not detect any significant

bias apart from two cases (Table S6); these cases were two of 30 tests

and at the expected Type I error rate (0.05). This result suggests that our

meta-analytic outcomes and conclusions are likely to be robust.

Supplementary Data S2 online provide additional information.
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