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Summary

Reducedmechanistic target of rapamycin (mTORIignalling extend lifespan in yeast,
nematodesfruit flies and mice highlighting a physiological pathway thatould modulate
agingin evolutionarily divergent organismshis signalling system is also hypothesised to
play a central role in lifespan extension via dietary restrictgyncollating data from48
available published studiescamininglifespanwith reduced mTOR signallingve show that
reduced mTOR signallingrovides similaincreass in mediariifespanacross speciesyith
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genetic  mMTOR manipulations consistently providing greater -ektension than
pharmacological treatment with rapamycin. In contrast to the consistenclyanges in
median lifespanhowever, he demographic causes for légtension arehighly species
specific. Reduced mTOR signalling extends lifespam@matodedy strongly reducing the
degree torwhich mortality rates increase with éaggng rate) By contrast, lifeextension in
mice andyeastoccurs largely by pushing back the onset of aging, but not altering the shape
of the mortality curveonce aging startdmportantly, in mice,the altered pattern of mortality
induced byreduced mTOR signalling differentto that induced by dietary restrictiomhich
reduces the rate of agingffects of mTORsignalling were also sexlependent, but only
within mice, and not within flies, thus again speapscific.An alleviation of agessociated
mortality is"not a shared feature of reduced mTOR signalling across model orgamgms,

does not replicate the established-egjated survival benefits of dietary restriction.

| ntroduction

Rapamycin analoselyrelatedanaloguesre considered the most promising treatments for
aging and ageelated diseasavailable for translation to humaridohnsonet al. 2013).
Rapamycinexertsits effects by inhibiting signalling of the mechanistic target of rapamycin
(mTOR)spathway. Although mTOR is present in two distinct complexes, rapamycin
preferentally inhibits mMTOR complex 1 (mMTORCZIptanfelet al. 2009) with directgenetic
redudions @f MTORC1 activation also extending lifesp@ng.Jiaet al. 2004 Kapahiet al.

2004 Kaeberleinet al. 2005 Lamming et al. 2012). The physiological effects ofeduced
MTORCL1 “activation, particularly the decline in cellular growth and elevated organismal
survival, are expected to be a consequence of downstream inhibitory effests/eral
MTORCT substrates, particularthe ribosomal S&inase (S6K), which has been most
intensively studiedGems & Partridge 20)3 S6K controls protein translah, and can
feedback to influence other pathwdisked to nutritional status, such as insulin signalling
and adenosine_monophosphate protein kinase (AMB&)manet al. 2009). Becreased S6K
activation. ishypothesisedo be a major cause of lifespartension through genetically or
pharmacologically reduced mTORC1 activatififiansenet al. 2007 Gems & Partridge
2013 Johnsoret al. 2013).

Pharmacological treatment with rapamycin, genetic impairments of the IBI@Bmplex,
and reduced S6K activation aak expeced to extend lifespan by operating through the same
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pathway Indeed, separate manipulations of each of tkesgponents havbeen showrto
extend lifespann the fourmost popular animal models agingresearch Sacchromyces
cerevisiae (yeast),Caenorhabditis elegans (nematodes)Drosophila melanogaster (flies), and

Mus musculus (mice) (Johnsonet al. 2013). Although seemingly universal across species,
there are"several factors that might influence the degree of lifespan extension within and
between species: In both mice and fliemanipulations of mMTOR signalling have been
reported as sedependent, preferentially improving female lifespan over that of males
(Bjedov etgal. 201Q Miller et al. 2014).In flies, one study reported that rapamycin can
decrease lifespan at high concentratighsirrison et al. 2010) while in mice lifespan
extension ‘has_been positively associated with rapamycin concenfdiitar et al. 2014)
Different manipulation types (e.g. rapamycgenetic manipulations of mTORC1 or S6K)
may alsohave physiologicagffectsthat influencesurvivaloutside of his simplified pathway,
leading to possible differences in the degree of lifespan extensxampls include the
possible inhibitory effects of rapamycin anTORC2 (Lamming et al. 2012), and the
additional regulatory effects of MTORCL1 signalling dranslation initiation factors in
addition to S6K.(Johnscet al. 2013)

Although manipulations of the mTOR complex can extend median lifedpame, isrelatively

little understandingf the demographic pathways through whibfs life-extension occurs
Longer Jdifespans of animals with reduced mTOR signalling, compared to control animals,
could occurbecause oVariousalterationsof agespecificmortality rate.For a manipulation

to slow aging, in a demographic sense, it is expected to reduce the rate at whiditymorta
increass inga“pepulation over timéGood & Tatar 2001 Mair et al. 2003 Simonset al.

2013). Thisuis usually assessed biting Gompertz (nt)= a + exppt) ) models(Figure 1)

which separad Parameterb, the “aging rate”of the population (the rate of increase in
mortality with"age, andparametei, which describeghe vulnerability to dying at a similar
level of somaticdamage (Simonst al. 2013 Kirkwood 2015. Individual studies in mice
have suggested that changes in eithehede parameters coyddtentiallybe responsible for
lifespan extensiemith rapamycin(Miller et al. 2011 Fok et al. 2014) although limitations

in sample._size in each case have hampered the ability to draw firm conclusions about the

cohort under study.

To understand theonsistency and demographic causedife§pan extension via reduced
MTOR signalling we collated data from previous lifespan experirmarinductedn mice,

flies, yeast anchemdodes comprising data from ove30,000 individualsand164 different
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control{reatment comparison§Ve analysed this dataset using mamalysisfor both life
extension —measured at median lifespan of the contriiRsg) — and the resulting
demographic trajectorin terms of changes in mortality over different periods of. [Bg

using such a largscale approach,we were able to statistically test whether lifespan
extensions with=particular genetic manipulations mimics the mortality effects observed with
pharmacological treatment with rapamycin, and even whether reduced mTOR rgignalli
mimics the changes in mort&fi that occur withdietary restriction. We weralso able test
whether lifepan extension is similar across speeiesd thus whether changes in mortality

in shorterived,and simplerorganisms predict changes in londgjged and more complex
organisms -and/whether different types of manipulation provide similar survival benefits to

males andifemales.
Results
Reduced mTOR signalling consistently extends lifespan

Treatment'with'rapamycin, genetic manipulation of components of the B@TO&mMplex or
deletion ofthe mMTORC1 substrat&6K together generatnoverall lifesparextendng effect,
whenthesecollated datareanalysed using metanalysis (HRso = -0.55, -0.66:-0.44 95%ClI
Figure 2A Tables S1& S2). Mice, flies,nematodesnd yeast show a similar level of lifespan
extensionin response to reduced mTOR signallif@u (df=3)= 3.78 p = 0.3, TableS2).
Genetic manipulatiolf the mTORC1 complex, orS&K, (manipulation of these two targets
have similar effects on lifespap = -0.08+0.09(s.e), p = @7) generates a stronger increase

in median Jdifespanp = -0.25 £0.09s.e) p = 0.@6) than pharmacological treatment with
rapamycin(kigure 2\; Table ). This greater lifeextension with genetic manipulations
might ke the result of several factors. One possibility is tapamycinmight have effects
outside "ofreducing mTORC1 signallingthat have some counteractingdetrimental on
survival, reducing thdife-extension of rapamycitreated animals to below that obsetve
with genetic manipulationsThe weaker inhibitory effects of rapamycin on mTORC2
signallingare of particular note, since reduced activity of this complex can sometimes reduce
lifespan(Soukaset al. 2009 Lamminget al. 2014) and has been linked to the generation of
insulin resistance in rapamycin treated nmiicemminget al. 2012).

Smaller lifeextension with rapamycin compared to genetic manipulations might also be a
consequence of administration of suboptimal rapamycin concentration @seiserlein

2014) since the degree of lifespantension can vary with concentration. The effeats
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different concentrations of rapamycin have only been investigatagimgle study in mice
(Miller et al. 2014) with the majority of other studies using a dietary treatment regime at a
concentration of 14ppnfsee supplementary datarhis precludes ametaanalysis of a
concentration effect within mice. It,ifowever, notabl¢éhat the lifespan extension achieved
at the highestreoncentratiast rapamycinemployed in micgMiller et al. 2014)is at least
similar, if potslightly greater than the averageeffect achieved throughhe variousgenetic
manipulatiors of the TOR pathwayn mice (model comparing mouse lifespan at the highest
rapamycingconcentratiol® mouse lifespan with genetic manipulat@nTOR or S6K p = -
0.38%£0.21s.e) p.= 0.07) The limited data available ifies (only two studies have examined
lifespan at_ different rapamycin concentrations) also suggests previous treatment
concentrations may be suboptimal for maximising lifespan extension, althoulgis icase

the relationship between treatment concentration and lifespan extension ivendgati
0.025+0.011s.e) p = 0.018) highlighting that rapamycin at high dosesy be toxicto this
speciegHarrisonet al. 2010).

I mpacts on"demogr aphic mortality are species-specific

To understand_how mTORelated pharmacological and genetic manipulations influémee
demographyof®mortality, we calculatedhe Gompertz parameter®r each experimental
replicateusing=maximum likelihoodPromislowet al. 1999 Simonset al. 2013) Given the
incongruity in concentratiorof rapamycinwe selected within each studye concentration
that achievedthe greatestlife extension (based on HE. Additionally, in one case
(Lamming et al. 2012 some manipulations oflifferent components of the mT@QR
complexdid notappear toreduce mTOR1 signalling, thereforewe also excluded those
specific comparisons. We took this approach becauseveve interested in hownTOR
signalling regulates the demography of mortglitgther thann estimaing an overall effect
across all available effect sizes.

Gompertz is a simple but effieve model(Pletcher 1999Simonset al. 2013 Kirkwood
2015)to separate the twmain demographic parameters of mortalitydéclinein b, the age
dependent factois expected if a treatment redudbe rate of agingrather than protecting
against factors that reduce agdgpendenmortality across the life courda: vulnerability,
also known as: frailty, initial mortality rateln a strongcontrast tothe effects of mTOR
signallingon median lifespangchanges in botdemographiparameters arargely consistent

across different manipulation typbat differ between specig§igures B,C & 3; Tables S2
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& S3). In nematodedifespan extension is associated with a strong reduction in pardmeter
(Figure B), the rate ofiging without effects on parametar(Figure 3). In mice flies and
yeast lifespan extension is more closely associated with a reduction in paran{€igure
3A), reducing thevulnerability to mortality across the life cours@he overall predicted

survival and'mortality trajectories for each species are provided in FgOr&D.
Female lifespan.extension is consistently greater in mice but not flies

It has been reported that reduced mTOR signalteng havea stronger lifespan impact on
females than malesn bothmice and fliestreated with the drug rapamyc({Bjedov et al.
201Q Miller. et al. 2014) andn SE&K and mTORC1 componekhockout mice(Selmanet al.
2009 Lamminget al. 2012). t hasalso been notedn mice,that the activity of the mTORC1
complex can differ between sexéBrake et al. 2013 Baar et al. 2016) and that any
concomitant reductions imTORC2 signalling with rapamycin treatmertan have greater
detrimental effects on malédsamminget al. 2014).We tested whether there is a consistent
sexbiasin‘lifespanextension with reduced mTOR signalliagd found that theex biasin
lifespan response is speci@spendent (Tabl&3 Figure A). Only in mice, but not in flies,
does reduced. MTOR signallingcreaselifespan to a greater extent in females than males
(Figure "A)"lt"has been suggested that the-sp&cific response to rapamycin in mice is a
consequence.of differences in metabolism of this drug in males and feiMales et al.
2014). However, here isno evidencefor a differing effect of sex in those studies that
manipulated mTOR signalling through pharmacological (raman) or genetic means
mice (Table S3). This resultfurther highlightsthat there are biological differences between
the sexesunrelated to drug metabolism, and potentially unrelated to rapamycin’s effects on

MTORC2 thatdetermindifespan responses teducednTOR signalling
Lifespan‘extension by reduced mTOR signalling and DR are distinct

Reduced mTOR: signalling @edictedto play a central role in lifespan extension via dietary
restriction (BR)<(Kennedy et al. 2007 Kaeberlein 201 However, epistasis studies in
different species have produced mixed res{Hizpahiet al. 2004 Kaeberleinet al. 2005
Bjedov et al»201Q Ching et al. 2010) and in mice rapamycin treatment and DR generate
distinct changes iphysiology(see discussion for examplegyhen comparing our results on

the demographic pathways of lifespan extension with reduced mTOR signalling to a recent
study examininghe demographipathway to lifeextension in rodents viaR (Simonset al.

2013) we noticed a surprisingly prominent difference: lifespan extension via reduc@& m
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signalling occurs predominately through a reduction in pararagtehile lifespan extension
via DR in rodents — althougtariablein its demographic responsklérry 2005; and figure 4
— occurs predominately through a reduction in paranhbe8monset al. 2013).Biologically,
reduced mTOR signallingppears tancrease resilienc® agingrelatedmortality, while DR

reduces th@ereasan mortality rate that occuras animalgrow older.

To quantitativelytest whether DR and reduced mTOR signalling affect mouse lifespan via
differential=alteration of gompertz parameterg @ombined mouse lifespan data from the
current metaanalysis with a previous megaalysis on DRSimonset al. 2013). There was

no statistical differencdetweenthe change in parametarunderDR andthat inducedwith
reduced mTOR signalling in mid®w (df =1) =1.73 p= 0.19; Figure 4 Table S}, despite

an apparenstronger effect orm when mTOR is manipulated (estimates from separate
models: DRm=@B1, -0.34:0.9695%CIl, mTOR:-0.42, -0.77:-0.0805%C)). The lack of a
statistical differencés probably attributable tthe substantial variation in the effect DR on

this paramete(Simonset al. 2013; this heterogeneity isnly partly explained by differences

in response betweatrairs (seeTable S4. By contrast, onyDR consistently reduces the rate
of aging (estimates from separate models: D&29, -0.39:-0.185%Cl, mTOR:-0.016, -
0.10:0.07 95%Cl), with mice showing a significantly different response in tAgng
parameter depending on whether they receive a treatmenethates mTOR signalling or
whetherthey are dietary restrict@y (df = 1) =8.43 p = 0.@4). Thus, at least with regards
to the way these to treatments influeraggeerelated mousemortality, the effects of these
treatmentsare distinct. This demographic perspective provides additional insight over
conventionalmeasures such as the effect on median lifespan, for which the two treatments do
not significantly differ (Qu(df = 1) = 1.19, p = 0.28, Figure).4Notably, hardly any
heterogeneities among studies were observed in both aging paramatetb,with reduced
mTOR signalling(less thark9% for both) whereas for DRmuchof thevariation seemed to

be due to'amongtudy differencegl’;y = 69.% andl’y = 63.4%; Table S1) This result
suggestghat reduced mTOR exsrimuch more stabland reliabldife-extending effects in
mice than DR.

Discussion

The mTORCL1 signalling complex fghly responsive to nutrientandconsequenthDR is
expected taoeducethe activity of this complexJohnsoret al. 2013). $hce reduced mTOR

signallingitself exterds lifespanmanipulation of this pathwalyas been seen as an attractive

This article is protected by copyright. All rights reserved



219 DR mimic (Longo et al. 2015). While both do extend lifespan, we show here that reduced
220 mTOR signalling does not mimic the agdated survival benefits of DR, adding to a
221  growing picture of distinctiveness of these twe-pan extending interventions. This is not
222  to say that reduced mTOR signalling is not importarthe DRresponse- it might still be

223 indispensablefor DRnediated lifespan extensiom mice and play an important role in the
224  improvemeént of mouse survival. Howeveur resultandicatethatthe differential effects of
225 these two treatments @ertain aspects of physiolog@ipr examplejnsulin sensitivity(Fok et

226  al. 2013),fat deposition(Fok et al. 2013),xenobiotic metabolisnfMiller et al. 2014) fatty

227  acid oxidation(Yu et al. 2015) and mitochondrial biology¢k et al. 2014 Karunadharmat

228 al. 2015)arelikely influencing at leastome of thdactorsthatinfluence mouse deatkijther

229 their probability of occurrence or ageonset, generating these distinct mortality patterns that

230 we observe.

231 Epistasis studies in miagaay further help todetermine whethebR provides aging benefits
232 outside of mMTOR signallingalthough an epistatic interaction for lifespan does not
233  necessarily indicate that one pathway plays a causal role in generating the survival benefits of
234  the other, particularly if the phenotypes of the twoadels (e.g. DR and mTOR manipulation)
235 are dissimilar(Hekimi et al. 2001). DR-mTOR epistasistudies,in other organismshave
236  additionally'preduced mixed result$n yeastand worms DR failed to extend lifespan of
237  either mTOR or S6K mutan{&aeberleinet al. 2005), butm fliesrapamycin treatmerns still

238  able to extendhe lifespan ofDR individuals (Bjedowet al. 2010).Rapamycin treatment in
239 flies also seems to block thegativeeffectsthat essentisamino acid supplementation has on
240 DR-mediated™lifeextension(Emran et al. 2014). While these discrepanciasight partly
241  occur becauses ofthe use of different DR regime, which can have different gene
242  dependenciedreer & Brunet 2008 it hintsthatthe importance omTOR in DR-mediated

243  lifespan extension might vary different organisms

244  The comparison of mortality effects ofducedmTOR signallingacross model organisms
245  highlights thatzwhile generatirgpnsistenthanges iraveragdifespan impacts on mortality
246  demographi@arametersliffer betweerspeciesin mice, yeastand (although nosignificant)
247 in flies, mTOR,signallingreducedvulnerability to agedependent mortalitya. In contrast,
248 reduced mTOR signallingn nematodegeneragsa strong reduction in the rate of agibhglt
249 is notable that thepsciesexamined heralo not always show extendéifespan through
250 alteration in thee specific Gompertzparametes. In flies, geneti¢ dietary and temperature

251  manipulationsall seem to have treatment spec#itects onGompertz mortality(Pletcher

This article is protected by copyright. All rights reserved



252
253
254
255
256
257
258
259
260
261
262
263
264
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

1999) highlighting that changes in lifespaan occur through alteration in eith@ompertz
parameterIn nematodesdifferent longlived mutans show wideranging changes iboth
Gompertz parametefgdohnsoret al. 2001).Recent large scale demographic experiments in
C. elegans have shown that manipulations of temperature, oxidative stress, diet, heat shock
responserand-the insulin/lI&Fpathway all affect the scaling of the survival curve, analogous
to vulnerability in the Gompert¢Stroustrupet al. 2016). Stroustrugt al. suggest that this
scaling patternis therefore invariant across lifespaending manipulations, but the results
presentedshersuggest that mMTOR manipulatiactuallyhas a very contrasting demographic
effectin this specieswarranting furtherdirect experimental comparisotin mice, DR can
influence agingrate while many genetic aging models show a chamgmérability to age
related death@d) (de Magalhdest al. 2005). We therefore conclude that these species
specific responses to reduced mTOR signalling are a consequence of undedigggal
differencesbetween these model organisinsthe way reduced mTOR signallirajfects
mortality and associated physiological pathways at different periods of life.

The specific'change that is observedha demography of mortalifgrovidesa fundamental
insight into how a particular treatment influences the probability of death, ho#m a
immediate point in timeat future time points after theeatment is discontinuear if only
started late™in, life A reduction in the rate of aging, asseloved with reduced mTOR
signalling”inC elegans, is expected to be linked to permanent alterations iraageciated
damage and dysfunctiqdacobsoret al. 2010) such thatiscontinuingthe treatment would

still leave ‘an_individual with improved survival prospe(tair et al. 2003). By contrast,
changes te™vulnerabilitya] are predicted to be reversible, in that current mortality is
dependentien,the current dietary or drug regimthout any carryover effectas shown for

DR in flies (Mair et al. 2003).1t is notable that the degree of lifespan extensiorDRain

mice is'strongly dependent on the age at which treatment starts, consistent with an effect on
aging rate(Simos et al. 2013). Rapamycin treatmerdeems to extend lifespan to a similar
degree irrespective of whether treatment starts early in life or at raddi@Miller et al.

2011; Table Sh.consistent with the effect dhe vulnerability to mortalitywe report here

This difference in the aggependence of these two treatments further supports the argument
that these two manipulations have distinct impacts on mouse mortalitharzology of
aging. Treatments that reduce agéependent mortalitin humans and micare predictedo

be able to provide the full survival benefits to an individual regardless of whére#tment

starts(Vaupelet al. 2003 Simonset al. 2013).If rapamycintreatment in humans hasnilar
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stableimpacts on physiology and mortaligs it has shown here in mic¢he health and
survival benefits accrued from treatments starting late in lifestithype substantial.

The metaanalytical approach we use here, allowing comparison of lifespan extension and
changes in mortaly rates through genetic, dietary and pharmacological treatnpeatsdes

a comparativéechnique to help adjudicatiee consistency (and distingness) of treatments

that might'slow.aging across speci€lse consistency in lifespan extension, in a dgraphic
sense, viasgenetic manipulations of mTOR signalling and pharmacological eén¢adrth
rapamycins within species, matches the view that these treatments operate through the same
physiological/moleculapathway.However, the different responses across species highlights
that effects on agspecific mortality are dependent on the biological system, insights that
remainedhidden in single smaller sample gizstudieson one organism. Ufther focussed
empirical studiesvill help to confirm thesedifferential impacts omeathexperimentally For
example, sinee’rapamycin treatment influenced the rate of agimgnratodesput age
independent mortality in yeastxperiments where rapamycin treatment is started or stopped
part way through life (as oolucted byMair et al. (2003)and Merryet al. (2008) for DR in

fruit flies and rats respective)ywill reveal whethethesedifferences inGompertz parameters

of mortality do translate to permanent/transient impacts on mortaligson an interspecies
scale. Such™experiments will also heli confirm whether the observed differences in
mortalitysparameters reflect underling differences in how reduced mTORIsigretfects
somatic damage and dysfunction linked to aging and vulnerability to death.

Experimental procedures
Sear ch pratocol

The search_protoecol was based on that used in previousanatgses of lifespan extension
(Hector etwalye20L2Nakagawa et al.,, 20)12Studies were inclding on model species
consideredwtos'be wilthpe — without additional genetic manipulation or particular
susceptibility'to diseaseand where gene expression was manipulated across all tissues. We
included all*genetic manipulations that inhibited the activity of the mTDBomplex or
downstream S6K. The supplementary dataset shows the specific manipulation used in each

study.

Data extraction and analysis
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316 Raw individual survival data was used whenever possible. When unavailabldjtynowda

317 measured frorsurvival curvesGompertz models were then fitted using maximum likelihood

318 estimation(Pletcher 1999 and estimates of sampling variances were obtained either from
319 the confidence intervals around the parameters fitted on the individual level data, or estimated
320 through simulation (Simoret al. 2013) To assess overall effects on lifespan a hazard ratio at
321  median lifespan was calculated using the number of individuals died and at risk in both
322  experimental groups, for which sampling variances are kridlakagaweet al. 2012) Meta

323 analyses were run on these hazard ratios at median lifespaneanaztird ratio of the two

324  Gompertz parameters with treatment group (reduced TOR signalling) over tred goouip-

325 negative hazard ratio estimates indicate improved survival. Mixed effectsansd{ses were

326 conductedrusing the package ‘metaf@¥iechtbauer 2010in R (Team 200% Stud/ was

327 included asrandom term and because in some cases a control group was used as comparison
328 to multiple treatment groups we modelled such data dependence using a covaatnce m

329 Heterogeneity in metanalyses was assessed by a multilevel versiolf @flakagawa &

330 Santos 2012 We tested for publication and reporting bias (see supplementary materia
331 using ranktests'of sample size against effect size and did notalefesignificantiasapart

332 from one casélable S6) however, it was one out of 30 tests ain within the expected

333  Type | error ratd0.05).This result suggests that our metsalytic outcomes and conclusions

334 are likely to_be robust. Supplementary experimental procedures online provide additional

335 information.
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Figure legends

Figure 1. Schematic overview of the resulting survival (a) and mortality trajectories (b)
when the Gompertz parametergvulnerability) andb (aging rate) are varied independently.
Compared_to a control condition (solid lines) a similar lifespan extension asuegk at
median lifespan either through a change solely(short dash) ob (long dash) is drawn.

Figure 2. Forest-plots of effect size for the logarithm of the hazard ratio (In(HR)) for changes

in medianwlifespan and mortality parameters with reducedORTsignalling Data is
synthesised from 155 different conttatatment comparisons (see supplementary data file)
Bars show the“effect size with 95% confidence intervals for treatment changes in median
lifespan @), vulnerability to agingB) and rate of agingd). Within each plot the estimated
overall effect sizes using metmalysis are shown across all effect sizes, separating
pharmacologieal (rapamycin) and genetic manipulations of mTORC1 and S6K ismgnall

and separated per sex where applicable r&iveffects are reported across species, included
species in addition to study as a random term. Overall estimates of these categories (see
legend) and_their 95% confidence intervals are provided, with data from allespeci

combined,dn"addition to resalfor each individual species.

Figure 3. Bubble plotsshowing the raw data of the Gompertz parameters per species with the
control plotted against reducedl OR signalling A & B). Bubblearea reflects differences in
sample sizewofithe experimental graigircles represent males, squares represent females).
Below theudiagonal (shaded blue) indicates a reduction of mortality risk via this parameter.
Predicted_everall survivalC) and mortality trajectorie$D) are provided in the right two
columns. These peesent the metanalytic mean of both Gompertz parameters of the
controls (yellow lines) adjusted for the meataalysed hazard ratio of this parameter under
reduced TOR signalling (blue lines). Dashed lines indicate females. Within fireseand
yeast,extension in lifespan via reduced TOR signalling is a result of a demographic change in

the Gompertz parameter a (i.e. frailty, vulnerability to aging, intercept), whereas in

This article is protected by copyright. All rights reserved



381 nematodeshis is the result of a change in Gompertz parameter b (i.e. aginghettope of
382  mortality).

383  Figure 4. Overall effects of reduced TOR signalling (open dots) noedian lifespan,

384 vulnerability @) and aging ratebj in mice versus those parameters urdBr Effects and

385 95% confidence intervals represent effects from separateanalgses. The life extension

386 from DR results/from a change in ageing rate, versus a change in vulnerability under reduced
387 mMTOR signalling (see text).
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