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Abstract

It is known"thaton average people adapt their choice of memory strategy to the
subjectiveutility.of interaction. What is not known is whether individahbices are
boundedtly optimal Two experiments are reportétat testhe hypothesithat
individtal'decisions about the distributionremembering between internal and
external resourcesreboundedy optimalwhere optimality is defined relative to
experiencexcognitive constraingd rewardThe theory makegredictionsthat are
tested against the data, not fitted td’le experiments use a-gboice/choice utility
learning paradigm where the-ghoice phase is used to elicit a profile of each
participant’s performance across the strategy space and the choice phaséois used
test predicted choices within this spatlkey show thathe majority ofindividuals
select strategies thateboundetly optimal Further, ndividual differences in what
people choose to dare successfully predicted by the analyBiso issuesare
discussed: (1) the performance of the minority of participants who did not find
boundetly optimal adaptationsand (2) the possibility that individuadsiticipate what,
withpractice; will becomabounded optimattrategy rather than what is boundéd

optimal during training

Keywords: Bounded optimayi, adaptation, bounded rationality, constraints, utility

maximisation

It is known that peoplehoose strategies thadaptively distribute memory and
planning between internal and external resources according to the cost/benefit
structure of the task gmonment (Payne, Howes Reader, 2001; Gray, Sims, Fu,
Schoellesy2006; Marewski & Schooler, 2011). For example, it is ktieatlower
action'eestsvhen solvinghe 8puzzle decreased the amount of planning by
participant§O’Hara and Payne, 1998)his can leado longer solution paths and less
learning in terms of transfer to other solution paBisilarly, it is knownthat people
makestrategicuse of computer help systembkenthe costs of accessing such

systems arw butotherwise prefestraegies that rely on imperfect memdfyray
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and Fu, 2004)Gray et al. refer to people as preferring imperfect information in the
head over perfect information in the world. Many others have demonstrated, or argued
for, the adaptive nature of how people tlsexternal task environmer@rgmby,
Howesé& Salvucci, 2007Cary& Carlson, 2001; Charmaia Howes, 2003; Duggan
& Payne;2001; Edwards, 1965; Gigerenzer & Selten, 2001; Gigerenzer, Todd & the
ABC Group, 1999; Gray, Sims, Fu & Schoelles, 2006; Kirsh & Maglio, 1994; Payne,
Bettman & Johnson, 1993; Payne, Duggan & Neth, 2007; Payne, Rich&dson
Howesy 2001; Schonpflug, 1986; Smith, Lewis, Howes, Chu, & Green, 2008; Tseng
& Howes, 2008; Walsh & Anderson, 2009

The proposal that people distribute mematgatively contrasts to the idea
that people routinely offload cognitive processing (Hollan, Hutclinsirsch, 2000.
A weak version of the offloading hypothesghat people simply make use of the
environmentto perform cognitive functions. The stronger version is that people favor
the use of the environment over the use of internal psychological resources. Ballard,
Hayhoe, Pook, and Rao (1997), for example, argued that peoplenisienal
memorystratégy to copy arrangements of color blocks on a computer display.
Participants.in an experimental study tended to make frequent visual cheaks of th
target pattersrather than attempting to encode the pattern in memory. The idea that
people faver offloading was rejected 8yJ. Payne et al. (2001) in fawadra view of
people as adaptive decision makersW. Payne, Bettman & Johnson, 1993). The
idea that people make use of the environment was not disputa@dther Payne et al.
(2001) questioned the idea that peapiaimizethe use of internal cogniiv
resources, or that they are cognitiviglyy. According to Payne et al. (2001), people
choose to trade offloading with cognitive procesgjiivgnthe cost/benefit structure
of the task. According to Gray et al. (200&fferences in temporal cost of just a few
hundreds.of milliseconds are enough to shift the allocation of s®tnomrelying
on the envirenmertb more memory intensivarategies

TFhespurpose of the current article ige¢st whetheanindividual’'s selection of
strategies foshorttermremembering can be explainedomsindedy optimal
rememberingBehaviour is bounddgoptimalif it can be predicted with a theary
which subjectiveutility is maximisedgiventhe bounds imposed by individual
information processing capacities and their experience (Howes, keMesa, 2009;
Howes, Lewis & Singh, 2014jowes, Vera, Lewis & McCurdy, 200&gwis, Howes
& Singh, 2014: Lewis, Vera & Howes, 2004). The hypothesis moves beyond previous
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work on adaptation to consider the cost/benefit structure of the taskreneinbin
two respects. Thart, is in the assumption that people do not merely adapt the
distribution of memory but that they catsofind boundedly optimal adaptatiornghe
secondlis in the gsumption that the bounds are not only those of the task
environment but that they are also due to an individual's own partradaurce
limits and experience.

The particular resource limits that we focusithis articleare memory
limits. We are inteested in the extent to which peopleboundedly optimal given
experience,of their own performance on a simple sieontrememberindgask.
Previous work, concerninghat people choose to rememb&as been conducted by
Ballards'Hayhoe and Pelz (1995) and by Gray et al. (2006), amongst others.
Following Ballard et al. (1995), Gray et al. (2006) used a Blocks World task to study
the choices that people make about what to remember. The participant’s task was to
reproduce patterns of coloured squares (blodkible in a Target window, in a
Workspace window. There might, for example, be 8 blocks, each of a different color,
positioned.randomly in a 4 x 4 grid. Gray et al. manipulated a lockout period, a period
of 0 to 3000milliseconds before the target pattern became available after the
participantmoved the mouse over it. On average blocks encoded in memory per visit
to the Target window increased from just over 2 to just under 3 blocks as the lockout
period increased, demonstrating adaptation to external costs. The studies reported
below use a variant @ray et al.’"sask toshow that choice about how much to

encode is not only adaptive but that it is also boundedly optimal.

Bounded:Optimality

The motivations for this paper come from the bounded optinfedityework
proposed in Howes, Lewis and McCurdy (2DMHowes, Lewis and Vera (2009),
Payne and Howes (2013) and Lewis, Howes and Singh (20bé)term bounded
optimality’ was first used to refer talgorithms that maximize utility given a set of
assumponsrabout problems and constraints in machine reasoning problems (Horvitz,
1988)=According to Russell and Subramanian (1995), page 575: “an agent is
boundedly optimal if its program is a solution to the constrained optimization problem
presented by its architecture and the task environment.” We assume here that
individual, embodied, human minds correspond to the kinds of boundedly optimal

machines defined by Russell and Subramanian (1995) although we do not, for the
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moment, make the distinctions between the different types of bounded optimality
articulated by these authors. Unlike, Russell and Subramanian (1995) our goal is not
to develop the formal basis of Artificial Intelligendmut rather to test bounded

optimality as a hypothesis about human behaviour. The key element that Russell and
Subramanian (1995) bring is that rational behavisuisefully defined as the
deployment of optimal programnelative to constraints that include the cognitive
architectureand experiencf_ewis, Howes& Singh, 2014). In contrast, other
approaches, more strongly influenced by economics, have tended to defineitational
relative to the task environment (Anderson & Schooler, 1991) and/or in terms of
sound principles of inference (Oaksfd&dChater, 2007), though see Schooler and
Anderson/(1997) for a discussion of the relationship between rational analysis and
processig bounds.

Bounded optimality is also influenced by key concepts in Reinforcement
Learning (RL: Sutto& Barto, 1998 Dayan& Daw, 2008). Most importantly,
Reinforcement Learning makes a commitment to the idea that learning what to do
next concerns learning tonaximise numerical reward signals through interaction with
the environment. RL suggests extending Cognitive Science’s traditional focus on
goakdirectedbehaviour to a more explicit consideration of the utility of costs and
benefits ofdnteraction. Rather than merely describing goal sRtedemands that the
value of states are considered with the aimmakimising the utility obehaviour to
the ageh Our interest, therefore, is not with RL methods as hypotheses about the
nature of human learning (e.®ayan& Daw, 2008), nor with RL methods means
of calculating optimal solutions (Chater, 2008) rather with the formal definition
of the RL problem as bounded utilityaximisation. By implication, the problem of
how to'distribute memory is the problem of howrtaximise reward signals through
interaction. with the environment.

Inthe-followingsection, we report a number of examples of evidence for
boundedly-optimal behaviouhfter thatwe contrast the optirmation assumption
requiredby bounded optimalityvith the explicit rejection of optimality found in
Bounded'RationalityGigerenze& Selten 2001; Simon, 1992).

Evidence foBounded Optimality 8enResponse Variance

There is no empirical work to our knowledge that directly tests whether people

are able tehoose shortermmemory strategies that arseundedly optimal
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However, there iselevant evidence in a range of perceptuator tasks. While these
tasks do not demand that participants adapt what they choose to remember they do
demand that people adapt movement strategies. A brief review is useful rereebec
it will support a clearer articulation of the hypothesis. In particular, it will help us
develop-attheory of how the selection of remembering strategies is bounded by
variation in how an individual performs a task, where variation is an inevitable
consequence of internal congtits.

For exampleMeyer, Abrams, Kornblum, Wrigtgnd Smith (1988), showed
how a stochastic optimizesubmovement modelnexplain simple movementh
the modelmovements are described asogtimalcompromise between the durations
of primary‘andsecondary submovemergsen noise on the control of movement
caused by limitations of internal information processing and muscular control
processesThe secondary movement acts to correwhiended, but inevitable,
variancen the primary movementOptimization is therefore bounded by intetgal
generatediariation in performance.

In.an.empiricainvestigation of Signal Detection TheoBxvets, Tanner and
Birdsall (1961)testedthe hypothesis that people selabioundedly optimatriterion
Participanswere shown to selectiterion levelsfor the tradeoff between correct
detection.and false alarnthat maximigdutility. Theoptimization was achieved
accounting for noisgenerated by the perceptual sysiarthe signal level of targets
and distraairs. As with Meyer et al. (1988people ardoundedly optimal in the
sense that they generate strategies that are optimal given bounds impesedtion
in human information processimgechanisms.

TrommershauseMaloney and Landy(2003) demonstrated that the
assumption that participanigere abldo maximise financial gain in a task where they
used,a'finger to point at a reward region and avoid a penalty region could be used to
predictitargetingAs with the previous examplesarticipants in this study learned to
adjust where they pointed to their own particular profilenotor system noise.
Participants who exhibited greater variation in the spread of where they pointed
needed to adjust more in order to avoid the penalty region. Further studies have
supported the idea that people learn boundedly oppoiating strategiegiven
variation in performance (Malon&y Mamassian, 2009; Trommersh&user, Maloney
& Landy,2003; Trommershauser, Malon&ylandy,2008).
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Bounded optimalitys alsoevident in more complex situatiotisat require
two responseand requirg¢hose responsés be ordereqHowes, Lewisk Vera,
2009). By assuming that people were boundedly opiimalseries of Psychological
Refractory Period (PRP) experimertowes et al. demonstrated that the interval
betweentwo responses could be precisely predicted for individual participants.
Critically, the analysis defined optimality relative to the variance in the daratio
each of'the two responses. In ordemtaximise the utility of performance the model
set theginteresponse interval to a duration that was long enough to minimize the
potential. for.response reversals without incurring a penalty for an excestay in
the timing of the second response. The shéninterresponse interval the greater
the probability of a reversal error because of the variation in the duration of both
responses. In other words, while participants cannot precisely predict them ofati
one particular responsihey can adjust pfarmance to the response distributions.
Howes et al.’s analysis of tiRRPdata showed that participants had mbdendedly
optimaladjustments to the duration between the two responses given individual

characteristics of the response distributions.

Bounded optimality¥/ersusbounded ationality

Bounded optimality shares much in common with boundéadrality.
Bounded-ationalityis a framework for understanding behavithat starts withhe
observatiorthat people have limited time and limited capacif&ison 1997).These
bounds:impese limits on thetent to which people approximate the classical
normative rationality that is, in contrast, insensitive to the reality of computation in
the world:Bounded rationality also makes a commitment to theeovation that
behaviour often reflects adaptation to the structure of the environment (Gigeegnzer
al. 1999; Oaksford and Chater, 1994; Simon, 1997 these respest there is no
difference betweehounded optimality and boundeationality.

WhereBounded optimality and boundeaktionality differ is in the explicit
rejecton of-optimality criteria that is evident in thiefinitions of boundedationality
provided,by Simon (199@&nd Gigerenzer and Selten (200%While in earlier work
Simon pursued the idea that satisficing, a Bounded Rational heuristic method, was
optimal for certain tasks (Kadane & Simon, 1977; Simon, 1955; Simon & Kadane,
1975), the predominant position articulated in his work was that the envirorsment

too complex and computational resouraestoo limited for optimization to play a
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role inexplaining human behaviour (Simon, 1993igerenzer, Todd and the ABC
Research Group (1998)nbracd this view of boundedationality. Gigerenzer et al.

work with the premise that much of human decision making and reasoning can be
modelled with heuristics that “do not compute probabilities or utilities”. For
Gigerenzer-et al. the notion that people might optimize under constraints is a
“demon”, a Creature with unlimited capagithat is rejected along with the

“Unbounded Rationality demon” (pages 10-11; Gigerenzer et al., 1999). From
Gigerenzer'gperspective optimization under constraints is paradoxical in that it seeks
to explain limited information processing by assuming tiv@tmind has essentially
“unlimited time and knowledge”.

Bounded rationality and bounded optimality also differ sharply in pra¢tare.
example, Simon’s contributions to understanding stesrtr memory, longterm
associative memory, and problem representations (e.g., see the compilations in
Simon, 1979, 1989) were made without benefit of an explicit consideration of the
effects ofthe utility functions that human participants might have adopted in the
experimental situationgn contrast, bounded optimality requires consideration of
utility functions (Howes, Lewis and Vera, 2009; Lewis, Howes and Singh, 2014).

However, our contentiohere is that in a wideange of tasks than previously
thought,optimization algorithms can be usefully used to predict human behaviour.
This'is forthreereasons. The first reason is the substantial recent literature, some of
which is reviewed above showing that optimization can play a useful role in
psychological theorisingThe extensive rep&on of moreor-less similar taskgpr
example, gives opportunity, both in terms of time and knowledge, for optimal
adaptation to occur on perceptual-motor tasks (see above) it may also do so on more
complex, higher level decision making tasks, that involve constraints imposed by
memory.The'second reason is that these tasks, including many tasks used in
experimental psychology, are what Savage (1954) called|'srodt’ tasks and it is
thereforespossible for the researcher to ascertain and solve the decision paaklém f
by the partiCipants.

Thethird reason is that, in contrast to optimization under constraints, the cost
of optimization is paid by the analysipt by the participant. Bounded optimality does
not assume that the mind is unlimited, rather it asserts that the analyst can usefully
make use of optimization to test theories of the bounds (Lewis, Howes & Singh,
2014). This assumption is what Oaksford and Chater (1994) called ‘methodological
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optimality’. A key benefit is that a prediction derived through optimization has a
privileged status as an explanationvidry people behave as they do because it allows
a causal link to be established between bounds and behaviour (Hahr8a#4,
Lewis & Vera, 2009; Payne & Howes, 2013).

Bounded optimality and probabyitmatching

In"contrast tahe evidencgeprovided above, in favour of bounded optimality
given response variance there are many studies that show that people probability
match(Mulkan, 2002). Probability matching occurs when the frequency with which a
choice'is made is proportional to the probability that the choice maximizes subjective
utility. Probability matching is often taken as evidence against the idea that people can
be explained as performance optimisés. a review of the probability matching
literature see Vulkan (2000). While some studies have questibaedsertion that
people probability match (e.g. Shanks et al., 2002), probabiktchingphenomena
have been offereldy othersas evidence that people do not maxinsabjective
utility .

It,is.arguable whether people should probability matcerihey first
experience a choice task. Indeedlibendedly optimastrategy for earlytages of
learninggiven choices with uncertain outcons be extremely diffult to
ascertain. In general, the solution to these problems, depending on the assumptions,
involves a period of exploration followed by convergence to the policy that exploits
the highest rates of rewa(8utton& Barto, 1998; Gittins, 1989)n this paper we are
interested in thbounded optimalityf the strategies on which people converge after a
period of exploration. In the studies, reported below we not only test whether
participants are boundedly optimal but also whether they probability match.kWe as

which.of these two theories is better able to explain the data

Overview

If,individualsare boundedly optimal then theghouldseek strategies thate
optimal given subjetive utility and bounds on ghbrt-term remembering Each
individual should not offload and shouldnhmake a minimal use of memorjhey
should not exhibit any bias in the use of memory away frdmat is measurably

boundedly optimal for that individual’hey should not continue to probability match
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in cases where the prediction of maximized utility deviates from the padiofi
probability matching

In what follows we report two experiments. In each experimeatticipants
are asked to make choices thawve implications for the remembering strategies that
can be ‘deployedvhile performinga laboratory version of an everyday task. The
choices concern how many items to hold in memory when copying messages from a
calendarto an email systetructurally, the task is similar to that deployed by Gray
et al. (2006) which involved copying colosquaresout, in contrast, to Gray et al. it
uses a nahoice/choice paradigm so as to measure the utility of a range of different
memory. loads for each participaiterefore, unlike for Gray et al. is possible to
draw conclusions about thedficiency of a participans choice of memory load he
paradigm is‘described further in the next section.

Experiment 1

Experiment 1 was designed to testethernndividuals used boundedly
optimaldistribution of memory in a laboratory version ahamorytask.The task
involved copying appointments from a simulated ‘email’ application to a simulated
‘calendar’.applicationTrials of the experiment were organised intwoachoicephase
and achoicephase. This design is a novel variant on the choicetpe paradigm
employed-by:Siegler and Lemaire (199R)ano-choice/choice paradigm participants
are first told which strategy to practicen@choice phase) and then asked to choose
their preferred strategy (a choice phase). Siegler and Lemaire (h@®duiced the
choiceho-cheaiceparadigm, with the choice phase first, so as to address weaknesses
with choiee'studies of adaptation. With thealwicephase they were interestid
obtaining unbiased estimates of the performance characteristics of atsatiegies,
and in particular in recording the speed and accuracy of each strategy.

We reversed Siegler and Lemairél®97)choice/nechoice order so that the
no-choicephase could act as a training phassuring that all participants were
equally exposed to every strategy. This providedormancelata that could be used
to inform.andevaluate strategy selection during the choice phase

The purpose of the nchoice phase was elicit a performance profile of a
subset of thenemory strategieavailable to participants. The space of strategies for
the ematcopying task encompassvariation along a number of dimensions,

including number of items to encode, encoding method, and rehearsal method.
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However, rather than explicitly elaborate a large space of strategies valmug
these dimensions and instructing participants on the rstcucture of each strategy
within this spacewe presented participants witls@quene of trials that varied in the
number of items that the participant was asked to remember. We sisedl space of
possibldistilengths(3, 4, 5, 6, 7, 8, and 9) and instrucpedticipantdo attempt to
remembethe corresponding numbersrmdmesFor example, a participant might be
asked to remember 5 names and copy these toalendar’.In addition, the
incremental presentation of the list of appointments further restricted¢bding
strategy., Theskst lengthsand instructionghereby encouraged participants to adopt
a strategy that involved the encoding of a certain number of appointimenésnory
The participantsperformance on eadist lengthprovides us with a measure of how
utility varies along this singjéut important, dimensn of the space of strategies.

In order to test for bounded optimality it was important to provide an explicit
and measurable utility regime for the participaifitee goal for the participants was
copy a set.aumber of items as fast a time as pobk. Utility for participants was
therefore defined in terms of the time taken to copy all of the items. The fagtal th
items were copiedhen the sooner the participants would be paid and could leave the
laboratorys=mportantly, we operatioredd errors in terms of time. For example, in
one condition, only correctly copied items counted towards the total number of items
copied.Incorrect copiesfor examplerecalling the wrong item, resulted in wasted
time and a lower rewards we describe later, participants were instructed to
correctlycopyn appointments as quickly as possible. Further, they were instructed
that their choice of number of appointments to be presented/copied should be made to
achieve this endlhere was a tradeff between selecting strategies that appeared
faster,.in.the’absence of errors, and the increased risk of errors.

Forthe purpose of the analysis, as reported in the results, we defined utility in
terms ofithefrate at which items were copi&ahte refers tothe number oftems
copied.per seconiVe use rate as a measure of performance becaissevary as
the participant progresses through the experimental trials. If particgants
boundedly optimal then they should make remembering choices that maximize the
rate atwhich items are copied.
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Method

Participants

Forty native English speaking students from the University of Manchester

participated in the study. They received £5 ($@9compensation for their time.

Materials

Follewing Gray et al. (2006), the task involves copying information from one
computer.application window to another. However, our task involved copying
appointment information, where Gray et al.’s (2006) participants cagi@anation
about a spatial arrangement of colour blocks. A program was written in Microsoft
Visual Basic 6 that simulated the email and calendar functions from Microsoft
Outlooks=This program ran on an ordinary personal computer with a keyboard and
mouse;

To mimic the experience of receiving emall visual elements of the orial
Outlook interface were reproduced. In addition, a single large button was included in
the Inbox. The caption for this button was “Click for timeslots”. Clicking on this
button caused a message to be displayed in the box to the right of the button. This
messageawas of the form “09:00: Appointment with NAME”, where NAME was
replaced with the name, in capitals, of the person at that appoirttmenEach click
of this button increased the time displayed by one hour and changed the name
presented. Only one name and appointment was visible at &hiendisplay is
illustratedsehematicallyin the left panel of Figure 1).

Onceall appointments had been displayed, a button in the bottom left hand
corner of the screen labelled “Calendar” was enabled. Cli¢kisgdputton changed
the interface"into a modified version of the calendar function from Ou(lihaogtrated
schematically in the right panel of Figure There were nine different boxes into
which users could enter text. These boxes correspondedappbatment times,
thus the uppermost box was labelled 9.00, the second 10.00 and so on down to the
bottam box labelled 17.00. Participants entered text into a box by clicking on it and
typing using the keyboard. Pressing “Tab” cycled down through the boxes. Beneath
these appointments there was a button labelled “Finished”. All other buttons, menus

and features of both the Email and Calendar interfaces were disabled. Exetlydi
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participant clicked a button or entered text via the keyboard the program recodded a
time-stamped the event.

A stimulus set of eight male and eight female first names (e.g. ROSE) was
constructed. All of these to-blemembered names were deemed familiar to native
English'speakers and were four letters long. Each name begandifférent first

letter.

Designrand*Procedure

Participants were divided into two groups of equal size. The cost of making an
error (the payoff) was manipulated across the two groups; therefore, theey wer
labelled.‘Low Error Cost” and High Error Cost”.In the Low Error Cost condition
each incarrectly copied appointment was counted as an error. In the High Etror Cos
condition all'of the appointments in a trial were counted as errors if one or more of
them was copied incorrectlyhe experiment was divided into two phasheNo-
choicephase followedby the Choice phase. Each phase was completed when
participants had correctly copied a specified total number of appointments into the
calendar.

All.participants were instructed that they were required to epppintments
from the email application into the calendar. They were told that within eachgeessa
there were-two pieces of information: the name of the person to be met and the time
of the appointment. However, they were also informed that the firstrappmit was
always-at=09:00 anall appointments were always one hour apart and in sequence,
therefare, only the names and the order they were presented in needed to be
remembered.

Appointments were presented in trials. On each paticipants were
requred to view between 3 and 9 appointments before the calendar function was
enabled and appointments could be copied across. The number of appointments that
participants were required to read before copying across was an indepenidéid var
during theNo-choice phase and a dependent variable during the Choice phase.

Blocks of seven trials were presented consecutively duringadkshoice
phase. Each trial within a block contained a different number of appointments to be
copied. Therefore, each of the selishlengthsranging from 3 appointments up to 9
appointments was represented once within each block. The order of trial presentati

within each block was determined randomly. The order varied across blocks and
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across participants. For every appointment, on every trial, the program randomly
selected a name from the stimulus set of sixteen names. The only constraint on this
process was that no name was allocated to more than one appointment on the same
trial.

Afterscompleting a practice trial containing 3 appointments, all participants
were asked to copy 200 appointments into the calendar as quickly as possible. It was
emphasized that making errors was only problematic insofar as it slowed down the
overallitime taken and that their aim should be to fingsuackly as possibleather
than finish with as few errors as possible.

At the start of each trial a screen appeared indicating the total number of
appointmentsemainingand the number of appointments that would be presented on
that particular trial. Wan participants clicked a button labelled “OK” this screen was
replaced with the email interface. Participants were presented with each of the
appointment names in turn and then required to copy the names in uppercase letters
into the.appropriate slots within the calendar. After copying they weréofesdit the
text as muehras desired and when satisfied should click the button labelled “Finished”
The praogram then provided feedback about the number of appointments correctly
copied and highlighted in red any slots incorrectly completed. Any erroneous
spellings,lowercase lettersr spaces left within a calendar slot when the “Finished”
button was clicked, caused the item to be scored as an error. When the error feedback
was provided another button was dedlthat participants clicked to begin the next
trial. Participants could not go back to correct errors, they could only progress to the
next trial.

In the High Error Cost group, a single error on any of the appointments meant
that all*of the appointments from that trial were classed as emdrao points were
awarded Thus, if there were 8 appointments presented during a High Error Cost trial,
and errors'were made when copythgf themthen the overall total tbe-copied
would havesremained the same. In the Low Error Cost group all appointments
correctlycopied reduced the overall total to be copiéds, if there were 8
appointments presented during a trial and errors were made when copying 3 of them
then the overall total tbe-copied would have been reduced bynsthe analysis
below,we refer to the reduction in the total number of iterAsggopied on a trial as

the points achieved on the trial.
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After 200 appointmentsdd been correctly copied the Nochoice phase
participants received the instructions for the Choice phase. This phase waglidentic
the No-choicephase except that participants were allowed to select the number of
appointments that were presentedeach trial. This choice was implemented at the
start of each'trial by clicking on one of seven buttons labelled 3, 4, 5, 6, 7, 8 or 9,
respectivelyFor the choice phaseagicipants were instructed to correctly copy a
further100 appointments as quickly as possible and that their choice of number of
appointments to be presented/copied should be made to achieve this end.

The importance of the fact that participants hadowectly copy 100
appointments during the choice phasworth restatinglf a paticipant failed to
correctly copy items then their target of items remaining to be copied was not
reduced.”As a consequence, unlike in many experiments, errors were not merely
counted by the experimenter, but rather they had real consequences for ta&d¢ime

by the participant.

Results

Averagdist.lengthselected

Figure 2is a plot of the mean rate at which items were coagainstist
length-(humber of items) for both the nbeice and the choice data. The mean rate at
which items were copied was calculated according to the following procé&dure.
every trialwe recorded the trial duration, the seleldredth(3, 4,5, 6, 7, 8 or 9
items),/and the number of appointmetdsrectly copiedThe trial duration was
defined as‘the interval between the end of the previous trial and the end of the current
trial. This duration therefore included the time cost of moving from one trial to the
next. For each participant and eddt length (numbeof appointments)the rate R
for a trial was then calculated by dividing the number of appointments dopibe
amount of time taken for the triale then calculated an average rate for each
participant-and eadist length

In.the low cost conditiorg single point was awarded for each successfully
copied item For example, a participant who attempted to copy 5 items and made 1
error would get 4 points. In the high cost condition, a single point was awarded for

each successfully copied iteomless there were any errors in which case no points
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were awardedrFor the same example, attempting to copy 5 items and making 1 error
would result in no pointdVe defined an error as a failure to copy an item correctly.

As we have said, an important property & thte is that error costs are
reflected inthemeasure because when participants made errors it cost them time (by
an amount-eontingent on the condition). We refer tdishéength(number of
appointments held in memorg¥sociated with the highest ratiecopies as the
boundédly optimalist length We assume that thmundedly optimastrategy
involved the selection of the boundedly optirnst length

Participants did not all complete the same number of trials because while they
were required to copy00 appointmentduring the choice phase, they were free to
choose’how many to copy on each trial.

In"Figure 2it can be seen that for the Low Error Cost condition the rigtan
lengthselected was 5.05D=.67; Mode = 4.935D = .69) and for the High Error
Cost condition the mean selection was 58D € .78; Mode = 4.985D = .80). There
was no statistically significant difference between the conditions for daasmor
modes {s<.1). The absence of a difference in the chqhbase list lengts
disappainting but, conversely, it can be seen in Figihatthe mean participant
choice in"both conditions is predicted by theammice phase rates.

Figure 2gives the illusion that the rate for each leigthwas a point value
when'in fact they were distributioriBhis is made clear iRigure 3which shows the
frequency distribution of rate for ealist lengthacross all participants in both cost
conditions and across both choice, ancchoice phase®f the experiment.

Qualitatively, the figure suggests that some choice discriminations are relaasy.
It is easy to see thatliat lengthof 9 is worse than bst lengthof 4. Other
discriminations, e.g. between 4 and 5 are relatively difficult because of tHapower

the raté distributions

Correlation between the boundedly optirhisil lengthand the selectelist length

In Figure 2there appears to be a correspondence between the strategy with the
highestirate in the no-choice phase and the chosen strategy in bdittonenin
order to test this hypothesis furthee first defined the mean boundedly optintiat

lengthB,, for each participant p, as
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B, = arg 13,?%{ Ry

Wheres is one of the set of possillist lengthsS and the rate of reward for a
list length Ry is defined above. Bis therefore defined as thist lengths that
maximisedsthe rate R for participant p.

We paooled participants from both conditions and found a significant
correlation"between thaoundedly optimalist lengthand thdist lengththat
participantsractually selected38) = .35,p = 0.027 Participants for whom it was
predicted that they would take on largjst lengthsdid so, suggesting that the
boundedly optimalist lengthpredictedl2.25% of the variation between participants.
This finding_offers initial support for bounded optimality. Given the assumiin
theboundedly optimastrategyinvolves the selection of tHist lengththat allows
each participant tsmaximie their ownutility, then we know that the boundedly
optimalstrategypredicted by the theoiig correlatedvith the list lengthactually

selected by participants

Probability matching

Before analysing the extent to which people weended optimalwe first
wanted. to.reject the possibility that participants probability matcheelidea was
that rather thamsing a strategy involvinglest lengththat yieldedthe maximum
utility, participants selectedllist lengthin proportionto the probability thathe
strategy'yielédthe maximum utility, that is the highesate of copiege.g. see
Shanks‘et-al., 2002Valsh& Anderson, 2009). We took thist lengththat each
participant selected most frequendiyring the choice phasealled thehighest
frequencyist length and plottedhe probability selectedgainst the probability that it
was thdist lengththat maximised utilitylf the participants were probability
matching then wexpected-igure 4to showa straight lineghrough 0,0 and 1,1.
However there was naignificantcorrelation betweethe logt transformed
probability selected and probability optimal38) = 061,p =.707).
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Frequency of Utility Maximisation

We tested whethehe highest frequendist lengthselected by participants
was selected'more frequenthan was predicted by probéty matching. We first
found thelistlengththat was selected most frequently by each participant. We then
found the.probability that thigst lengthwasboundedly optimalor that individual.
Recall that eachst lengthhas a distribution of raté&igure 3 and so the probability
that alist'lengthis boundedly optimais simply the probability that a sample of that
list length’srate is greater than a sample of any olisetength’srate The datdor
bothlistlengthand probabilitywvere positiely skewed and we therefore used a
permutationdestA permutation test, with 1000 resamplegontrasting probability
selected and, probabilitpaximum utility, was significanp < .001. The mean
probability'boundedly optimal was 0.49 and the mean pilityatf selection of the
most frequenlist lengthwas 0.80Participants were significantly more likely to select
their highestfrequencylist lengththan was predicted by probability matching
(reflected’in the fact that most of the dat&igure 4areabove the probability

matehing.line).

Comparing boundedly optimal to suboptimal choice

Weswere interested in comparing the predictions obthendedly optimalist
lengthtolist lengthsthat implied the encoding of fewer items in memory and to list
lengths that involved encoding more items in memory eéemined the means all
list lengthswith fewer items (optimal, optimal, etc.) and found thaiptimal,
predicted as many selections, or more, than all others that had fewer items. The
corresponding result was found faptimal,;. For this reason we focused these
analyses owptimal; andoptimal.; (if optimal; performs worse than the boundedly
optimal listdlengththenoptimal, will also perform worse). Theptimal, list length
offerstastest othe offloading hypothesis; this is the hypothesis that people routinely
offload to the environment. Contrasting the maxinutitity list length(max)to
optimal, andoptimal;; offers a test of the precision of the predictions. Figusesb
bar graph contrasting the average percentage of trials on which each of bounded

optimal optimal;, andoptimal;; list lengthspredicted participant performand@n
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averageboundedly optimal predicted 55%= 32) of participant selections,
whereaptimal; and optimal; predicted 8%3%D= 12) and 17%3D= 24)
respectively.

A permutation test was used with 10,000 resamples to contrast the proportion
of predicted-selections in the choice phase for eatle three list lengths (bounded
optimal, optimalk, and optimal;). The permutation test was used because the
distributions foroptimal, andoptimal.; were skewed. Thieoundedly optimal theory
was a better predictor of selections tlogtimal; (p < .001), and a better predictor of
selectionshanoptimal.; (p < .001).Optimal; andoptimal.; were equally poor
predicors. All other strategies, for exampgtimal,, optimals, predicted even

fewer séelections.

Individwal-differences

We wanted to investigate individual differen@&soss trialsFor each
participant and each trial, we computed the probaliiidy a random use of any one
list lengthwould be better, that is deliver a higher rate of copies, than a random use of
any of.the,othelist lengtts. The distribution of rates for ealt$t lengthwas set to the
empirical distribution of rates for each list len@in values ovetrials 1 tok-1. The
computation-of the probability was achieved using 1000 Monte Carlo trials for each
list lengthon each trial of the experiment.

Forexample, consider a scenario in which there werelishlgngthsof 3 and
4. If participant 1 had experienced rakes= (0.4, 0.3, 0.4, 0.7pr list length3 and
rates ofRy=7(0.2, 0.4, 0.6, 0.6, 0.5¢r list length4 thenprobabilitieswere calculated
by samjing n pairs with replacementith one elememf each paifrom Rzand R
and then counting the frequency that $henplefor 3 was greater than the sampled
rate for 4. For example, if the sample generfitaah R; was 07 andfrom R, was 02
thenthe frequency thdist length3 was better thalist length4 would be incremented
by 1. Once.calculatedfor each individual participant on each trilis frequency was
divideduby the total number of sampled pairss0 as t@enerate the probability that
each list lengthwould generate a higher rate. In the analysis of the results presented
below, rather than in this illustrative example, samples were taken from all 7 list
lengtts and the probabilities were calculated for datHengthrelative to allother

list lengtls.
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The advantage of probaltylibest over rate (used previously$,that it is
sensitive to the uncertainty in the rate associated with each strategy, as tegriegen
the empirical distribution function®robability besis a measuref the likelihood
that a strategy isoundedly optimal for the individual participant. One strategy, for
exampleusing dist lengthof 6-appointmentsmay be associated with a higher mean
rate than a strategy using @ppointmentsist lengthbut may also have much higher
variation, or the two strategies may have such high variation that they aravelffect
indistinguishablethe probabilitybest measuris sensitive to the distribution of
rewards.for.each strategy.

We plotted the probability that utility was maxirnei$ with eacHist length In
Figure Beach panel represents the likelihood that déiathkengthmaximised utility
given a particular participant's tri-trial experience through the experiment.

Participants 8, 5, 4, 12, 13, and 1dre/selected to represent the diversity of
performance. In each pangie no-choic@hase igo the left of the vertical bar and
the choice phass to the right. Circles represent the seledtgtdength Eachlist
lengthis.represented with a differecblour.We analysed all participants irrespective
of condition.

Participants 4, 12, 13, and 1Eidure § are presented because each selected
theboundedly optimalist lengthon the majority of trials. In addition, eaohthese
participanthose a differentst lengthfrom the others and thegtire therefore
illustratessome of the individual differences in performance. For participaalist,
lengthof 7 allowed them tanaximise utilityand the participant selectedist length
of 7. Far participant 1dist length4 wasboundedly optimaand the participant
selectedist length4. For participant 13ist length5 wasboundedly optimal and the
participant selected thist lengthon the majority of trials. For participant 1t
length6 . was theboundedly optimal and was alscselected. In addition, for
participant=14, whildist length6 was not the boundedly optimal at the beginning of
the choieesphase, practice improved its performance to the extent that it became the
boundelly optimal list length

Participant 5Figure § was selected because there was no bleandedly
optimal list length All strategies have probabilities below about 0.4 and three of the
strategies (4, 5 and 6) have probabilities in a narrow range between 0.2 and 0.4. On

some trials the participant selected list ler@#nd on somkst length5, but these
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strategies anltist length4 are indistinguishable (it is not clear that there is a distinct
boundedly optimalist length.

Participant 8[tigure § was selected because the&haviouiillustrates choice
phase performance that is not predicted by the theory. For this participant doylthe
of the*choice phase, the probability thst length4 is the boundedly optimést
lengthis about 0.5 and the probability of all of the others is below 0.2. Despite the
discrimination between thgrobabilities the participant has selectetis lengththat
is unlikely toallow them to maximise utilitylist length6) on the majority of choice
phase trials.

Plots.of the probabilityhat eacHist lengthmaximised utility for each

participant are provided in Supplementary A.

Regression of selection against trial

We analysedvhether participants were more likely to select the optimal list
lengthwith trial. We estimatedhe fixed effect of trial on whetheor not, bounded
optimality-predicted list lengthelection A repeated measures logistic regression
computed probability boundedly optinfal the selectetist lengthagainst trial and
revealeda significan positive slope (p < 0.001). Participants were more likely to
select thbeundedly optimalist lengthas trialprogressedrigure 7displays a plot of

the fit for each participant.

Discussion

The results offesupport for the bounded optimality hypothesis.

(1) As predicted, there was a positive correlation between the
boundedly optimal list length and the selected list length;
individuals who were predicted, on the basis of their measured
performance across the strategy space, to choose a higtkergvor
memory load didin fact, do so. While the magnitude of the errors
points to variation, there is indication that strategy choice is
sensitive to individual performance.

(2) As predictedndividualswere more likely to select tHist length

with the maximum utility than list lengsithat involved encoding
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more or fewer items in memo(geeFigure 5. Further,a repeated
measures logistic regression showed thatigipants were
significantly more likely to select tHeoundedly optimalist length
with prectice
Despite theositiveevidence a substantial portion of the data could not be
accounted for as boundedly optimal choice of list lerfgtin.example, 8 participants
becameless likely to select the boundedly optimal strategy as trials peagtideyg
exhibit@ negative slope in the regression reportédgare 3. Four otheparticipants
persistently.selectedligt lengththat was not bounded optimal. (They exhibit a flat
regression slope iRigure 3. We return to thisesultin the General Dis@sion.In
addition; the:manipulation of the external reward signal failed to generdferarcte
in eitherthe predictelist lengthor in thelist lengthselected by participants. These

problems ar@ddressed in the design of Experiment 2.

Experiment2

While Experiment 1 offered some support for the hypothesis that individuals
would.cheose to use bounded optimalisy lengths, there was no effect of the
manipulation;of payoff function on the strategies selected by participantefdiee
in Experiment 2, rather than manipulate the cost of an error, we manipulated the
number of points awarded for a successful copy such that, in one condition, there was

a greatemineentive to copy lardest lengtts (more details are given below).
Method

Participants

Twenty native Englistspeaking students from the University of Manchester
participatediin the study. They received £5 ($@9compensation for their time.

Design and.Procedure

The goalfor the participant was to score a set total of points by copying
appointments into the appropriate slots in the calendar. As in the “Low Error Cost”
condition ofExperiment 1a score for a trial was computed from the nundfer
correctly copied appointments made when copying other appointments. Zero points

were awardedbr errors.
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The key manipulation was the relationship between the number of
appointments copied on a single trial and the number of points received for that trial.
This was a between participant manipulation across two groups of equal size. In the
“Linear” group participants received a single point for each appointment correctly
copied. Thetotal number of appointments to be copied in the Choice phase was
doubled from Experiment 1, meaning participants had to score 200 points in both the
No-choiceand the @oice phases. In all other respetie Linear condition was the
same as the Low Error Cost condition from Experiment 1.

In.the “Exponential” groupthe number of points received for a trial increased
exponentially according to the number of appointmeateectly copied. Specifically,
for copying 1 appointment participants received 1 point and the total trial points for
each additional correctly copied appointment were 2, 3, 4, 7, 11, 17, 27 and 42. The
target number of points in both thi-choiceand the Choice phases was set at 310
points. This humber was derived from the mean data from the Low Error Cost
condition in Experiment 1. Assuming participants made the same number of errors on
the same.trialghen during thé&lo-choice phase participants wdubke the same
number,of trials to reach 310 points in the Exponential condition as it took to reach
200 points'in‘'the Linear condition. This kept the amount of practice prior to the
Choice phase approximately equivalent across both groups. Of course, these points
totalsdid not necessarily result in both groups completing the same number of trials
during the Choice phase — indeed the purpose of our manipulation is to produce a
difference between the two groups.

At the start of the experiment all partiaifts were given a table and graphic
that outlined the relationshipetween appointments copied and points scdnadl,
was specific to their condition. It was emphasittegdarticipants that they should aim
to score.the target points total as quickly assible All other aspects of the method

were the'same as in Experiment 1.

Results

Wnless stated otherwise, all measwescomputed and analysed in the same
way as for Experiment, Bxcept that hereate refers to the number of points acquired
per second rather than the number of items.

Latertrials on which fewer than 10 participants contributed were excluded.

The following analysegherefore use data fronthe no-choice phase athls 1 to 39
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of thechoice phase. No other data was excluded from the analysesmean number
of trialscompletedn the no-choice phase did not differ between the Exponential
condition M =41.10,SD= 16.40) and the Linear conditioM|[= 46.60,SD = 6.36,
t(18)< 1].

Aveaagelist lengthSelected

The meanrist lengththat participants selected was larger in the Exponential
condition M = 6.99,SD = 1.32) than in the Linear conditioM[=5.07,SD=.78;
t(18) = 3.98p = .001,d = 1.33] supporting the hypothesis that people can adapt
remembering strategiés the objective points-basadtility function specified in the
instructions The average of each participant’s madelengthproduced the same
significant difference [Exponentidi] = 7.20,SD= 1.62; LinearM = 4.90,SD= .99;
t(18) = 3.83p=.002,d = 1.31. This relationship is illustrated irigure 8 where the

rate at which items were copied is plotted against the list length

Correlation between the boundedly optirtist length and theelectedist length

Aswith Experiment 1we pooledarticipants fronboth conditionandfound
a significant.correlation between theundedly optimalist lengthand thdist length
that participants actually select&(18) = .77,p < .001. The RMSE was 1.34 and the
boundediy-optimal list length explained 59.29% of the variaRadicipants for
whom it was predicted that they wouddlect largelist lengtls did so, suggesting that
boundedly-oeptimal choiceredicted a substantial partthe variation between
participans. While the correlation does not tell us whether participants were biased, it
does tell'tis that participants who were measurably able to copyliatdengths did
SO.

Probabhility matching

As with Experiment 1, for &h participant and each trial, we computed the
probability that a random use of any disé length and therefore strategy, would be
better;.that isvould deliver a higher rate, than a randssfectionof any of the other
list lengths. The computation was achieved using 1000 Monte Carlo trials fofigtach
lengthon each trial of the experiment. Edidt lengthwas represented by the

empirical distribution function formed from the values of its rate ovals 1 tok-1.
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Figure 9is a plot ofeach participans most frequently selectdidt length It
provides a representation of the extent to which probability of selegtisrpredicted
by the probability that the selection wasunded optimallf, on average, participants
used probability matchindpenprobability selected should match probability bounded
optimal Theline of best fit should pass through 0,0 and\WHile there was a
correlation [(18) = .62,p = .003], gpermutatiortest revealed that participamere
significantly more lkely toselect thenmost frequent choice than predicted by
probability matchingp < .001.

Individual differences

Inspection of the individual plots, of probability boundedly optimal versus
trial, revealed a similar pattern of individual variation as tieerved in Experiment
1. First, 12 of the 20 participants (5 in the Exponential condition, 7 in the Linear
condition)selected thboundedly optimalist lengthon the majority of trials2
participants selected between a set of strategies all of which could have been the
boundedly optimal, but which were essentially indistinguishable, and 6 participants
systematically selectedliat lengththat was not the predictéidt length Of thislast
groups4-participants selected larger strategies thaooiineded optimal, and 2
selected smaller strategies thmedicted by bounded optimaligll within +- 2 of the
bounded-optimal Plots of thdikelihood that eachist lengthmaximised utiliy for
each participant are providadSupplementary B.

Wewvisually inspected the response data file whalé&ey-presses and mouse
clicks were recorded. This log showed that for 49%ials in the Exponential
condition;*during the recall phag®rticipants did not initially enter the complete
names in each box. Instead, they selected each response box in turn and only entered
the first letter,of a name in each box. Once a letter had been entered in each box they
then returned and entered tiemaining letterof the name. This strategy wWiass
frequently observed in the Linear conditidiY% of trials) where participants entered
the complete'name in a box and rarely returned to a box subsequibiglgtrategy
offereduless benefit for the Linear condition as there was less rewarccimately
remembering larghkst lengtrs. The meadist lengthselected wakarger for the first
letter strategyNl = 6.65,SD = 1.70)than the complete name stratdtyy=5.46,SD=
1.01,t(23) = 2.10p < .05,d = .80].
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Comparing boundedly optimal to suboptimal choice

We compare themaximum utilitylist lengthto alist lengththat involved one
fewer items in memorgoptimal;) and alist lengththat involved encoding one more
item (optimal,). Figure 10is a baplot of the percentage of trials on which each of
the threesstrategiebgunded optimalpptimal,; andoptimal,) predicted a
participant’s selection.

Permutation tests weresed to contrast the proportion of predicted selections
in the ehoice phase for ealt$t length (Thedistributions foroptimal; andoptimal,;
were pasitively skewedllheboundedly optimastrategywas a better predictor of
selections thaoptimal; (p = .003), and a better predictor of selections thatimal.;

(p = .004) fNeithepptimal;, noroptimal,;, was a better predictor than the other. On
averagésoundedly optimapredictedd6% (SD= 33) of participant selections,
whereasoptimal; andoptimal,; predictedl2% (SD= 13) and 1% (SD=17),
respectively. We used a repeated measures logistic regression to test edther
theory = bounded optimadptimal;, andoptimal,; - predicted more, or fewer,
participant.selections with tridlVe found no effect of trial on whether optimal
predicted the choice= 0.1285. We did find an effect of trial on whetlgtimal,
predictedthe choice = 0.006. There was also an effect of trial on whetipgimal.,
predicted.the choice = 0.0391. Both optiml_; andoptimal,; become significantly
worse at predicting the participasichoice.

Discussion

In Experiment 2, half of the participantsceived exponentially increasing
rewards forthoselist lengtls, and therefore those strategies, that requinec
memory The othekhalf received linedy increasing rewardAs predicted, individuals
in the exponential conditioselected significantly largéist lengths than individuals
who received linearly increasing rewards, demonsigahat participants can apl
choiceof memory strategto utility. Evidence that participants not only adapted, but
were alsdaeundedly optimalvas also presenthe boundedly optimdilst lengthwas
a signifieantly better predictor than either optimal optimal,; supporting thedea
that participants wereoundetly optimal However,it was also the case that many

participants failed to select tipeedictedist length
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General Discussion

Two experiments used the no-chdawice paradignto testthe hypothesis
thatindividualscan makéoundedly optimathoiceswhen remembering items for
short periods of timelheno-choicephase of the experimental paradigm allowed us
to empirically.measure performance on a range of strategiethaneby calculate
theboundedy optimalstrategyfor each individual. The choice phase allowed us to
test theprediction that people would not only adapt but that they would dy so
choosing dist length and therefore a strategy, timaaximized utility. The findings
(Experiment,2)areconsistent withprevious findings (Gray et al., 2006) that people
are able.to adapt their use of memany averaggeople choose to remember a
different number of items depending on the payoff regime. In addition, both
Experiment 1l and 2offered evidence that adaptatiarfehe majority of participants
werebounded optimalin both experimentshe boundedly optimastrategy offered
significantly better predictionsf average performandbanstrategiesvith fewer
items, ar more itens, thantheboundedly optimastrategy- suggesting that the
hypothesighat people minimize the use of mem@Ballard, Hayhoe, Pook, & Rao,
1997;HollanpHutchins & Kirsch, 2000)s inconsistent with the evidence and further
supportingsthe hypothesis that people are adaptive to costs and b&asfits, (et al.,
2001; Gray et al., 2006). Further, in Experimen¢dressioranalysisndicated that
with praetieesparticipantsecamesignificantly more likely to select tHeoundedly
optimalstrategyas they experienced more trialzorrelations between optimal and
selectedfor each individual suggest that in both experinteatsajority of
participants adapted to their own individpaiformance characteristics. The
individual differencedetween these participants were therefore not merely described
but predictedby the bounded optimality analysis.

The validity of these findings is contingent on the effectiveness of the no-
choice/cheiceutility learning paradign{Siegler& Lemaire, 1997; Wals&

Andersen, 2009)vhich allowed us to determine the utility of strategies other than that
chosen by the participantgalidity was also contingent on the fakatparticipants
wereasked tanaximise an explicit utility functionErrors wereperationalizedn

terms of time. To the extent that the results skrtbwhich participants werbounded

optimal they did so given a paradigm in which utility, and therefore optimality,
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involved a quantifiablepeed/accuracy traadf. People can, it appears, adjustat
they choose to remembewrer short time periods so asn@aximise utility given
speed/accuracgonstraints, at least, they did so in the reported studies.
The Value for the Current Work

Experiments 1 and 2 go beyond previous work (e.g. Payne et al. 2001; Gray et
al., 2006) inthreeimportant respects. First, the experiments add support for the idea
that thé ' majority opeople cannot only, adapt their use of memory but in addition
they @an adapt to just the right exte@in the whole, if a participant could achieve
their highest rate with a list length of say 5 then this is the list length that they used
when given.a choice. No previous experiments requiring people to rememtzer item
for short'time periods has demonstrated that behaviour is substantially consigtent wi
a theorythat demands boundedly optimal adaptation. Seconédsthtsshow that
these participantsiaximized the rate at which items were copied by choosing an
individually appropriatdist length The correlations between boundedly optimal list
length and chosen list length in both experiments show that participants who copied
items at.a-higher rate with a particular list length chose that list length during the
choice ‘phase of the experiment.

Third, the results show that some participantethid choose doundedly
optimal listdlength The fact that the experience of some of these individuals led to no
clearboundedly optimalist lengthsuggests one explanation, but other participants
failed to choose what the analysis shows was a clear bounded opiivieLgiiscuss,
below,the implications of this apparent form of ‘suboptimaliyid its relationship to
the findings ofFu and Gray (2004).

Future Work

Explaining behaviour that was not bounded optimal

There were 13 (out of 60) participants in the two studies who persistently
selectedudist length and therefore a strateghat was not bounded optimédy
exampleparticipant 8 irFigure 6 Visual inspection of taprobability boundedly
optimalfor eachlist length as presented Rigure § suggests that given the evidence
available to these participanteey should not have been unsure about which was

best yet they persistently failed to select this list lentftthere was a clear
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boundedly optimastrategythen exploration of suboptimbst lengths should have
been unnecessary. These participants did not all select a larg#rselect a smaller
list length although 10 of the 13 participants selectedtddngththat was larger,
usualy by 1 more memory item, than that associated withhthendedly optimal
strategy:

Oneexplanatiorfor thebehaviour of these 13 participaigghattheywere
somehow less able than others to determine the reldtiig of differentlist lengtts,
in other wordsit is plausible that they simply failed to appreciate the correct utility
ranking.Just as some participants were less able to remember items, so some may
have been less able to determine the relativieyudl remembering more or fewer
items If'this’is the case then it is possible that these participanboareledly
optimal given their utility discrimination capacity. However, further studies are
required to test this hypothesis.

Another possiblexplanationis that participants believed that practising-sub
optimal.strategies would make the strategijgsmal. Many of the participants who
did eventually achieve laoundedly optimatemembering strateggid so by
practising'dist lengththat was initially sukpptimal. Practice both improved the
perfarmance of the strategy and reduced uncertainty about its perforfRance.
example, separticipant 4 irFigure 6 Again, further evidence is required.

Lastly, it is possible that people exhibit stable suboptimalities&Faray,
2004). Evidence reported by Fand Gray (2004)who studiedusers of computer
applications suggests that the preferred, less efficient procedures, have two
characteristics: (i) the preferred procedure is well practised and aeployed for a
variety of task environments, and (ii) the preferred procedure has a structgedba
stepby-step feedback on progress, or in other words, it is more interactive. According
to FuandGray (2004) thesparticipantsare suboptimal becausigey are biased to use
more interactive and general procedures. This bias towards proceduresethat ar
globally-efficient leads people to exhibit stable local suboptimalities. Howeagne
and Howes (2013) point out thaany conclusion of suboptimalitis relative to a
particular‘theory of utility, and local suboptimalities may well be globally optimal.
The challenge is to find a theory of utility, context (global or local), and mechanis
that explains the observed behaviddne aspect of such an appebavould involve a
systematic exploration the implications of different theories of subjectiverdewa

(Singh, Lewis, Barto & Sorg, 2010; Janssen & Gray, 20W@)mately suboptimal
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adaptation tomemory must be explained. The character of the explanatign,

anticipatewill have the form: people were not adapting to X but to Y." (p. 76)

Explaining exploration

When, people learn a new task, over repeated trials, they engage in both
exploratery-and.exploitative behavisu They must sometimes choose striatem
order to exploit knowledge about likely rewards and they must sometimes choose
strategies in‘order to explore what the rewards are for each strataggn(®1cClure
& Yu, 2007; Suttor& Barto, 1998). Indeed, exploration is one benefit of probability
matching. Feor the most part, the studies reported in the camesi¢ focused on how
people‘explait the knowledge that they have gained darimgchoice phase, which
might be described asforced exmration of the strategy spaddore specifically,
the focus'was on how, during the choice phase, people exploit the knowledge that
they have gained on previous trials.

While our analysis focused on exploitation, it is evident that participants may
have egaged in some exploratory behavioatr least at thbeginning of the choice
phase:Regression analystf the Experiment 1 data showsdt participants were
significantlyless likely to select theoundedly optimal strategy at the beginning of
the choice-phase than toward the drutther,analyses suggestéuat probability
matching did not do well at explaining how exploration/exploitation was managed
(Figures 3sand 8 A fuller analysis othe observed exploratory behavianight test
an optimal dataelection theory of which strategies people choose to explore
(Oaksford& Chater, 1994, 2003; OaksfokdWakefield, 2003; Nelson, 2005, 2008;
Lelis & Howes,201]). For example, it might be the case that on earlier choice trials,
when the performance of dastrategy is still relatively unclear, that participants
choose a strategy so aswaximise gain in information, rather than toaximise
immediate reward. One possibility is thperticipants in our experiments
operationalized the value of informationterms of the extent that it facilitated
discrimination between the alternative memory stratediasther possibility is that
theyoperationalizd value as the expected gain in choice utility obtained by a likely
choice reversalassuming that when not deliberately exploring they would exploit the

boundedly optimathoice) See Lelis and Howes (2011) for a discussion.
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Discriminating between these theories in the utility learning paradigm that we
have investigated above is beyond the scope of the cartietd, but the no-
choice/choice paradigm may be useful in the future. The key strength of thegpara
— that it exposes the distribution of the reward for each strategy in thggispeece —

should allew a-priori prediction of the information gain freach choice.
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Figure 'L, Experiment 1. The experimental apparatuse@ch trial participantaere

first presented with the ‘email display’. They clicked the ‘click for time slotgton

until all appointments had been shown. The ‘calendar’ button then became available
and pressing it caused the display to change to ‘datatisplay’. They then entered

thenames that they could remember into the time slots and pressed ‘finished’.

Figure2.Experiment 1: Mean rate at which items were copied for kstdengthin
the noehoice phase and for the averdigelengthchosen in the choice phagaror

bars are th85% confidence interval for the mean chokstength

Figure BrExperiment 1: The frequency distributions of the rate at which items could
be copiedwwith eaclist length Data is for all participants in both conditioms:40)

and forboth no-choice and choice phases.
Figure 4.Experiment 1: Probability selected versus probability bounded optimal for

each participard most frequently uselst length. Probability matching predicts a
straight line regressiatmrough 0,0 and 1,1 — which is not supported by these data.
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Figure 5.Experiment 1Percentage of predicted choice phase selections for the
bounded optimalpptimal,, optimal,;, and the selected stratedyror bars are the

95% confidence intervdbr eachstrategy.

Figure'6:Experiment 1. Six panels that give illustrative exammieindividual
performance across trials. The probability that a strategy was the bouptatedl o
strategy is plotted against tri@ee the text for a description of how this probability
was calculated). Each strategy is represented by a different color. The selected
strategy.is represented by a circle. Participant 8 (top left) failedddHe bounded
optimal strategy. Participant 5 (top right) did not exhibit a distinahided optimal
strategy: Participant 4 (middle left) initially practiced a strategy lower than the
optimal (strategy 6) before persisterglecting the bounded optimal strategy
(strategy 7)Participant 12 (middle right) persistently selected the bouogdguhal
strategy (strategy 4) but also explored a higher memory strategydgttate
Participant 13 (bottom left) persistently selected the bounded optimal strategy
(strategy.5)Participant 14 (bottom right) practicasgtratey that became the

bounded aptimal.

Figure 7.Experiment 1Plots ofrepeated measur&sgistic regressiosiof probability
optimalselection (yaxis)against trialx-axis) for each individual participarach
plot indicates the probability that a participant selected the optimal list lesitth

trial. (NoO axis labels are provided because of the number of plots.)

Figure 8 Experiment 2Mean rate at which items were copied for elsstiengthin
the noehoice phase and for the averdigelengthchosen in the choice phageror

bars are.the 95% confidence interval for the mean cHizséength

Figure Q:Experiment 2. Probability selected versus probability bounded optimal for
each participants most frequently used strategy. Probability matchingtpred
straight line,regression through 0,0 and 1,1. While there is a significant tiorrela
[r(18) = .62p =.003 ], probability bounded optimal and probability selected are
significantly different [V = 20,p < .001 ].
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Figure 10.Experiment 2: Percentage of choice phase selections predicted by the
bounded optimalpptimal,;, optimal; and the selected strategy against trial (choice

phase only). Error bars are the 95% confidence interval for each strategy.
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