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ABSTRACT 

This dissertation provides a systematic methodology for analyzing and solving the 

temperature and aging uncertainties in Li-ion battery modeling and states estimation in 

the electric vehicle applications. This topic is motivated by the needs of enhancing the 

performance and adaptability of battery management systems. In particular, temperature 

and aging are the most crucial factors that influence battery performance, modeling, and 

control. 

First, the basic theoretical knowledge of Li-ion battery modeling and State of Charge 

(SoC) estimation are introduced. The thesis presents an equivalent circuit battery model 

based SoC estimation using Adaptive Extended Kalman Filter (AEKF) algorithm to solve 

the initial SoC problem and provide good estimation result. 

Second, the thesis focuses on the understanding of the temperature-dependent 

performance of Li-ion battery. The temperature influence is investigated through 

Electrochemical Impedance Spectroscopy (EIS) tests to enhance the theoretical basis 

understanding and to derive model compensation functions for better model adaptability 

at different temperatures. 

Third, the battery aging mechanisms are revisited first and then a series of aging 

tests are conducted to understand the degradation path of Lithium-ion battery. Moreover, 

the incremental capacity analysis (ICA) based State of Health (SoH) estimation method 



xiv 

are applied to track battery aging level and develop the bias correction modeling method 

for aged battery. 

In the final phase, the study of parallel-connected battery packs is presented. The 

inconsistency problem due to different battery aging levels and its influence to 

parallel-connected packs are discussed. Based on simulation and experimental test results, 

it shows that the current difference in parallel connected cells is increased significantly at 

low SoC, despite the battery aging levels and the number of cells in parallel. 

In total, this dissertation utilizes physics-based battery modeling and states 

estimation method to optimize battery management under temperature and aging 

uncertainties in electric vehicle applications. The unique contributions include developing 

analytical compensation functions to improve equivalent circuit battery model 

adaptability under temperature uncertainty and developing ICA based SoH estimation and 

battery modeling method to overcome aging uncertainty. 
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CHAPTER 1 

Introduction 

1.1 Background 

The air pollution, global climate change and heavy demand on petroleum are major 

environmental issues caused by traditional internal combustion engine (ICE) based 

vehicles [45]. According to the 2013 annual energy report from the US Department of 

Energy (DoE), depicted in Fig. 1.1, the transportation consumes approximately one-third 

of the total energy in the US while gasoline-powered ICE vehicles occupy a considerable 

proportion in the transportation area [45]. 

38%

25%
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9% 7%

US Energy Source Structure

Petroleum Natural Gas

Coal Nuclear Renewal

40%

28%

21%

4%
7%

Electricity Transportation

Industrial Commerical Residential

US Energy Consumption Structure

 

Figure 1.1 US energy source and consumption structures, 2013 [46] 

Because of the inherent limitation in the traditional ICE vehicles, there are mainly 

two inevitable shortcomings which cause these environment issues mentioned above. 

First, the main energy sources of ICE vehicles are non-renewable fossil fuel, such as 
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gasoline, diesel, or nature gas. The fossil fuel combustions not only cause a huge amount 

of greenhouse gas emission but also result in serious air pollution due to impurities in the 

fossil fuel. Second, the operation efficiency of ICEs is poor due to the thermodynamic 

theoretical limitation. There are enormous difficulties to improve the efficiency while 

keeping the engine size small under current technology. As shown in Fig. 1.2, the highest 

efficiency ICE in the world, Wärtsilä-Sulzer RTA96-C diesel engine, only has a peak 

efficiency of 57% [47]. The efficiency of a typical vehicle used gasoline engine is lower 

than 40% [45]. To overcome these shortcomings, the electric drive system based vehicles 

(EVs) are considered as a feasible solution. 
4

7
0
m

m

Wärtsilä-Sulzer RTA96-C

Diesel Engine

Max Efficiency ηmax=51%

Remy HVH410-075-DOM

Electric Motor

Max Efficiency ηmax=95%
 

Figure 1.2 The highest efficiency ICE in the world (left) and a typical permanent magnet 

synchronous motor (PMSM) for EV application (right) 

Invented by Serbian-American inventor Nikola Tesla in 1888, and as the core of 

electric drive system, the electric motor not only has superior performance in power 
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density and torque but also can maintain high efficiency in wide operation range, as 

shown in Fig. 1. 2. Thus, the transmission design of its associated electric drive system 

can be simplified and result in better reliability. Based on the operation principle of 

electric motors, electricity is the main energy form of EVs. Unlike fossil fuels, electric 

energy could be collected from multiple ways, including renewable sources such as solar 

power, wind power or hydropower [45]. 

Battery Electric 

Vehicle (BEV)

Plug-in Hybrid Electric 

Vehicle (PHEV)

Hybrid Electric 
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Fuel Cell Electric 
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Motor Motor Motor MotorICE ICE

Gas Fuel
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Hydrogen

 

Figure 1.3 Comparison of various EVs and representative vehicles [50-52] 

In general, EVs can be divided into four categories: pure battery electric vehicle 

(BEV), plug-in hybrid electric vehicle (PHEV) or extended-range electric vehicle 

(EREV), hybrid electric vehicle (HEV) and fuel cell electric vehicle (FCEV). As shown 

in Fig. 1.3, the battery is the major part in all types of EVs. A battery is a transducer that 

converts chemical energy into electrical energy and vice versa. In EV applications, the 
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battery has two major functions: Provide the electric energy to drive vehicles, and recycle 

the regenerative energy from vehicle braking. For HEVs, the ICE is used as the main 

power source, and the electric motor is used as the assist power to improve vehicle fuel 

efficiency. Typically, the battery in HEVs is used as an energy buffer, which cannot be 

charged from external power source. PHEVs/EREVs are developed on the basis of HEVs. 

They are equipped with high power electric motors which are capable of driving the 

vehicle alone, and high capacity battery which can be charged from external power 

sources, such as a household AC source or a high power DC charging station. FCEVs use 

hydrogen as the fuel to generate electric energy for electric motors. The function of the 

battery equipped in FCEVs is similar to HEVs’. For BEVs and PHEVs, the equipped 

batteries should be able to store a significant amount of energy, so that the mileage 

requirement of EVs/PHEVs can be satisfied. 

There are mainly three types of batteries used in vehicles: Lead-acid battery, 

Nickel-metal hydride (NiMH) battery, and Li-ion battery. Lead-acid battery was invented 

in 1859 as the first rechargeable battery used in vehicles [51]. Advantages of the 

Lead-acid battery include low cost, high reliability, and anti-abuse ability. It has been well 

developed and widely used in vehicles as the engine-start power source. However, the 

energy density, power density, and lifetime of the Lead-acid battery are relatively low. 

Besides, the Lead-acid battery is composed of lead element and sulfuric acid electrolyte, 

which are toxic and harmful to the environment and human. NiMH battery has 

advantages of high power density and environmental friendly. It has been widely used in 
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HEVs, such as Toyota Prius and Honda Insight. The drawbacks of NiMH battery include 

low energy density, high self-discharge rate, and memory effect, which limit its 

application in BEVs and PHEVs. 

Table 1.1 Comparison of Lead-acid, NiMH and Li-ion batteries 

Items Lead-acid battery NiMH battery Li-ion battery 

Voltage (V) 2.0 1.2 3.3~3.7 

Energy density (Wh/kg) 35~40 60~80 100~200+ 

Specific energy (Wh/L) 60~80 180~200 300~400+ 

Life time (cycles) 300~500 500~1000+ 800~1500+ 

Self-discharge rate 

(%/month) 

5~10% 10~30% <3% 

Memory effect No Yes No 

Anti-abuse Excellent Good Fair 

Environment friendly Toxic Yes Yes 

Cost Low Medium High 

 

From the comparison of three batteries shown in Table 1.1, at present, Li-ion battery 

is considered as the most suitable solution for energy storage in EVs. Compared with 

other batteries, Li-ion battery is the only battery meets to Freedom CAR goal set by the 

United States Council for Automotive Research (USABC) [52], as shown in Fig. 1.4. 

Advantages of Li-ion battery include high voltage, high energy density, long life, no 

memory effect and low self-discharge rate. 



6 
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Figure 1.4 Status of Li-ion battery compared to the energy storage goals set up by 

FreedomCAR 

1.2 Overview of Li-ion battery and its application in EVs 

Lithium element has low density and the lowest potential to the standard hydrogen 

electrode. Its theoretical specific capacity is as high as 3861mAh/g [54-55]. Therefore, 

lithium based battery has been considered as an excellent energy storage solution for 

decades. In 1958, William Sidney Harris proposed the idea of a battery system based on 

lithium metal and a non-aqueous electrolyte in his Ph.D. thesis [53]. Based on his idea, 

several lithium metal batteries are developed, such as Li-SO2 battery and Li-MnO2 battery. 

However, during the charging process, the active lithium deposit on the surface of 
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electrodes to form the lithium dendrite, which may penetrate the separator and cause the 

short circuit. To solve this problem, the key is to avoid the deposition of lithium. Lithium 

intercalation compounds are selected as the electrode so that Lithium ions can quickly 

migrate into the electrode and prevent the deposition. Therefore, the Li-ion battery is also 

called Rocking Chair Battery to describe the behavior of ion transportation. 

Tabs

Positive Current 

Collector

Separator

Positive Electrode

Negative Current

Collector

Negative Electrode

Icell

Icell

 

Figure 1.5 Structure of Laminated Li-ion Battery 

In the 1980s, Goodenough research group discovered that LiCoO2 can be used as the 

positive electrode in Li-ion battery. Later on, the first commercial Li-ion battery was 

produced by Sony Company in 1991 [51]. This Li-ion battery consists of carbon 

graphite-based negative electrode, LiCoO2-based positive electrode, and LiFP6-based 
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electrolyte. The electrolyte acts as a good ionic conductor that provides a transport 

medium for Li-ions to travel from electrodes. For example, during the charging process, 

Li-ions de-insert from LiCoO2 solid particles, and travel through the electrolyte solution 

to intercalate into LiC6. Electrons are forced to follow an opposite path through an 

external circuit to form the current. The battery potential is determined by the difference 

between the chemical potential of the lithium in the anode and cathode, ∆𝐺 = −𝐸𝐹. The 

reactions in electrodes can be described as: 

𝐿𝑖𝐶𝑜𝑂2 ↔ 𝐿𝑖𝑥𝐶𝑜𝑂2 + 𝑥𝐿𝑖
+ + 𝑥𝑒− 

𝐶6 + 𝑥𝐿𝑖
+ + 𝑥𝑒− ↔ 𝐿𝑖𝑥𝐶6 

LiCoO2 contains layered compounds with an anion close-packed lattice. Because of 

that, LiCoO2 based Li-ion battery has an inherent advantage in energy stored per unit of 

volume. However, in the actual use, the specify energy of LiCoO2 battery only reaches 

half of the ideal specify energy (270mAh/g). In 1999, Cho improved the specify energy to 

170mAh/g by coating a metal oxide on the surface of LiCoO2 particles [55]. Although 

LiCoO2 battery has the advantage of superior energy density, the price of Cobalt is very 

high. Researchers and battery manufacturers develop the Cobalt based electrode with 

Nickel, Manganese and Aluminum doping to reduce the use of Cobalt. Typically, this 

kind of battery is called ternary Li-ion battery. Usually, the prefixed name is determined 

by the name of element doping. For example, if the positive electrode is composed of 

Nickel, Cobalt, and Manganese, we call this battery NCM Li-ion battery. The mass 

fraction of Cobalt in ternary Li-ion battery is around 20%; the entire cost is significantly 
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reduced. Other than LiCo2, Goodenough research group also discovered that spinel 

lithium manganese oxide (LiMn2O4/LMO) and olivine lithium iron phosphate 

(LiFePO4/LFP) can be used as the positive electrode in 1983 and 1996. These two 

materials have advantages of low cost, long life, and non-toxic, which draws lots of 

attention in both academic and industry area [56-57]. 

Ni-Co-Al Lithium

Ni-Co-Mn-Lithium

Spinel Lithium 
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Spinel Lithium 

Titanate

Lithium Iron 

Phosphate

Energy density

Power 

density

Safety

Charge/discharge ability

Life

Cost

 

Figure 1.6 Comparison of different Li-ion batteries 

For EV applications, the LMO, LFP, and Ternary Li-ion battery are widely used. For 

example, Nissan Leaf, Mitsubishi i-MiEV, Chevrolet Volt, Ford Focus EV, Hyundai 

Sonata Hybrid and others are equipped with the LMO based Li-ion battery [58-61]. The 

luxury EV Tesla Model S is equipped with 8142 NCA Li-ion battery cells [62]. The LFP 

battery has the lowest price and advantages in safety and lifetime. The Honda Accord 
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PHEV, Chevrolet Spark EV, Fisker Karma and BYD EVs are equipped with the LPF 

battery [63]. 

The high energy density of Li-ion battery is a two-edged sword. It causes the poor 

anti-abuse ability of Li-ion battery. Improper operations such as overcharge, 

over-discharge, overcurrent or operation at high/low environmental temperatures could 

significantly harm the Li-ion battery lifetime, even cause fire or explosion. Moreover, 

unlike other electronic devices equipped with Li-ion battery, such as laptop and cell 

phone, the operation environment of EV is very harsh. Therefore, a battery management 

system (BMS) is needed in EVs to manage the Li-ion battery properly and ensure the 

safety and reliable operation. 
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Figure 1.7 Main functions of battery management system 

As shown in Fig. 1.7, the specific functions of a BMS include monitoring the voltage, 

current, temperature of each cell in the battery pack, and estimate battery states such as 
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the SoC, SoH. Additionally, BMS also controls the balancing circuit and the battery 

charger: 

1. Voltage monitoring: Prevent overvoltage and under voltage. 

2. Current monitoring: Control the maximum current and prevent short circuit. 

3. Temperature monitoring: Prevent overheat and high-temperature gradient. 

4. States estimation: Estimate the SoC, SoH based on the voltage, current and 

temperature information; send the estimation results to vehicle controller (ECU) and 

driver. 

5. Balancing control: Control the balancing circuit and charger to minimize the 

inconsistency of individual cells based on the SoC estimation result and current. 

From the functions listed above, the core task of a BMS is to estimate the internal 

states of the battery such as SoC and SoH. Due to the difficulty in direct measurement, 

the states estimation is based on the battery model and control algorithms in the BMS 

software, which is considered as one of the key technologies of EVs. In practice, 

incorrect SoC estimation usually results in high SoC variation of Li-ion battery, which 

may decrease vehicle lifetime and energy efficiency. Moreover, incorrect SoC also 

influences the drivers’ decision on the vehicle acceleration and mileage performance. 

Incorrect SoH not only causes trouble in vehicle maintenance but also produce negative 

impacts on SoC estimation. Hence, reliable and accurate battery models are desired for 

estimation and control functionalities in the BMS. 
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1.3 Temperature and aging influence on Li-ion battery 

As a complex electrochemical system, the performance of Li-ion battery can be 

influenced by multiple factors such as environmental temperature, driving pattern, and 

aging effect. Among these factors, temperature and aging effect are the two most crucial 

factors. With various levels of aging or temperatures, a fixed Li-ion battery model and 

states estimation algorithm may not be able to predict the behavior and provide 

estimation result correctly. 
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Figure 1.8 Li-ion battery capacity degradation as cycles increase 

As the EV mileage increasing, the battery performance gradually declines. 

Consequently, the performance of EVs is also influenced. The main causes of the poor 

performance are the reduced capacity and the increased internal resistance of the aged 
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battery. A typical cycle life curve of Li-ion battery is plotted in Fig. 1.8. The capacity of 

Li-ion battery decreases as cycles increase. On the one hand, the EV available range is 

shortened due to the capacity loss. On the other hand, the increased internal resistance not 

only limits the peak power for acceleration and regenerative braking but also generates 

extra heat to accelerate the aging process. 
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Figure 1.9 Nissan Leaf EV available range at various temperatures 

The other factor affecting Li-ion battery is the environmental temperature. At low 

temperature, the performance of battery decreases significantly, which causes the 

available range reduction in EVs. As shown in Fig. 1.9, collected from 7,375 individual 

trips of Nissan Leaf EV national wide in the United States, the statistic result indicates 

that the available range is reduced up to 30% at low temperatures. 
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Therefore, to realize accurate battery states estimation and improve the performance 

of EVs, it is necessary to understand the temperature and aging uncertainties to Li-ion 

battery modeling and the techniques of overcoming these uncertainties. 

1.4 Literatures Review 

A number of researchers from various research areas have developed a wide variety 

of Li-ion battery models and states estimation algorithms at varying degrees of 

complexity. The influence of battery aging and temperature is also a popular research 

topic in academia. Some studies have been conducted to investigate these two problems. 

The Li-ion battery models in most literature can be mainly divided into three 

categories: the electrochemical models, the black box models, and the equivalent circuit 

models. The electrochemical models mainly focus on modeling the internal chemical 

reactions in the Li-ion battery. These models not only present battery’s external 

performance but also express the variation of internal parameters such as electrolyte 

concentration and electric current density on surface quality. The porous electrode model 

and analytical method proposed by J. S. Newman [64] are widely used in electrochemical 

models [65-67]. C. Y. Wang [68] proposed a computational battery dynamics (CBD) 

based multi-scale battery model to predict EVs and HEVs performance. A one-dimension 

isothermal electrochemical model for multiple battery types is developed by [69] M. 

Doyle. V. R. Subramanian [70] built a mathematical battery model considering the 

galvanostatic boundary conditions. 
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The black box modeling method can model a system when its internal structures are 

unknown or unclear. The black box model only cares the external behavior of a system. 

The black box based battery models are essentially a set of linear or nonlinear functions 

that are used to describe the battery behaviors. J. P. Wang built nonlinear black box 

battery models based on support vector machine (SVM) [75] and stochastic fuzzy neural 

network [76]. 

The equivalent circuit models use electric elements such as resistors, capacitors and 

voltage sources to describe the battery behaviors. State-space equations of these models 

can be easily derived so that they are suitable for simulation and control in the BMS 

applications. Min Chen [73] proposed an electrical battery model which can predict the 

I-V performance. G. L. Plett proposes a series of equivalent circuit models [74]. In his 

studies, the combined model with hysteresis and self-correction has the best performance. 

G. L. Plett mentioned the dual-Kalman filter method to implement SoC and SoH 

estimation simultaneously in [74]. One observer is used to estimate the SoC and the other 

is to renew the model parameters and estimate the SoH. From the point view of system 

identification, this method does not consider the stability problem and lack of theory 

proof. 

P. Bentley [82] used a similar method, the joint extended Kalman filter, to estimate 

the SoH of the Lead-acid battery. They use the capacitor in the equivalent circuit model 

from ADVISOR software as the pattern of battery capacity. The capacitance and other 

states formed an extended states vector. Then the extended Kalman filter is used to 
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estimate those states. There is a similar problem in this method with [76], the lack of 

stability. The system identification results during operation may change dramatically so 

that the simultaneous estimation of both parameters and state variables can be 

questionable. 

C. Weng [75] studied the SoH through investigating changes in the open circuit 

voltage (OCV) curves. They applied the incremental capacity analysis (ICA) and support 

vector regression (SVR) algorithm to extract this OCV change signature for onboard SoH 

monitoring. However, this method requires high resolution and high sampling rate as well 

as data post-processing, which is hard to realize in practice. 

Hussein, A.A [76] used an artificial neural network (ANN) based approach to 

estimate the capacity fade in batteries for EVs. W. He [77] used Dempster-Shafer and 

Bayesian Monte Carlo theory to build a battery capacity estimation model. The problem 

of these kinds of approaches is that they usually require a large scale of training data from 

experimental tests, and did not consider the theory basic of battery aging mechanism. 

Yan Ji et al. [78] proposed a combined experimental and modeling approach to build 

an electrochemical-thermal coupled model. The proposed model is applied and validated 

by testing 2.2Ah 18650 cylindrical cells at low temperatures (−20°C). 

Noboru Sato [79] carried out the thermodynamics experiment for the lithium-ion 

battery for EVs and confirmed that the thermal generation factors can be decomposed 

into three elements: reaction heat value Qr, polarization heat value Qp, and Joule heat 

value QJ. 
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Jaeshin Yi et al. [80] built the two-dimensional mathematical model for the Li-ion 

battery discharge behavior at low temperature. They also calculated the heat generation 

from chemical reactions and Ohmic resistance to predict the temperature variations of the 

Li-ion battery as a function of the discharge time. 

S.S. Zhang et al. [81] evaluated the low-temperature performance of 18650 Li-ion 

batteries through EIS test and cycling test. They found the delithiated graphite and 

lithiated cathode have a very high charge-transfer resistance Rct when the battery is being 

charged. Therefore, the Li-ion battery in the discharged state suffers a higher polarization. 

In summary, the aging and temperature problems in battery models and states 

estimations are not well considered in the most of literature. Other researchers focus on 

the two problems are usually theoretical based and did not consider the practicability for 

EV applications. 

1.5 Dissertation Organization 

The remainder of this dissertation is organized as follows. Next four chapters have a 

logical progression, but they may be read independently. The first of these, Chapter 2 

introduces the basic knowledge about Li-ion battery modeling and focus on the 

equivalent circuit model and associated parameter identification. The last part of this 

chapter presents the model based SoC estimation with AEKF method. In Chapter 3, we 

focus on the understanding of the temperature-dependent performance of Li-ion battery 

through EIS experimental tests and theoretical analysis. The temperature influence to 



18 

equivalent circuit modeling is discussed and the model compensation functions are 

derived from experimental data. In Chapter 4, the battery aging mechanisms are revisited 

firstly, and then a series of aging tests are conducted to understand the Li-ion battery 

degradation path. In the latter part of this chapter, the incremental capacity analysis is 

applied to experimental data for SoH estimation. A bias correction modeling method is 

developed for the aged battery. Study of parallel-connected battery packs is presented in 

Chapter 5. First, the inconsistency problem in battery cells with different aging level and 

its influence to parallel-connected packs are discussed. Then, based on analysis and 

experimental data, the parallel connected battery pack model are developed to simulate 

the current distribution in parallel connected cells. Finally, Chapter 6 is the conclusion 

and future work. 
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CHAPTER 2 

Li-ion Battery Modeling and States-of-Charge Estimation 

2.1 Background 

As mentioned in chapter 1, it is not practical to directly measure the battery states, i.e. 

the SoC and SoH, by using sensors. These states are usually estimated through 

model-based estimation algorithm in a BMS. Therefore, battery models are considered as 

the core of estimation algorithm. Previous researchers propose various battery models. In 

general, these battery models can be divided into two categories: principle-based models 

and behavior based models. 

Principle based models, also known as the electrochemical models, are based on the 

electrochemical principles which reflect the chemical and thermal process in the Li-ion 

battery. The research of microcosmic behavior plays a major role in the process of 

building electrochemical models. Compared with behavior models, the electrochemical 

models contain lots of Partial Differential Equations (PDEs), non-linear equations and 

more parameters. Thus, the electrochemical models require higher computational costs 

and large memory storage space. Researchers have put efforts of numerical simplification 

and model order reduction to reduce the high complexity of the electrochemical model 

[33]. The typical mathematical model of the positive electrode in a Li-ion battery can be 

expressed in Table. 2.1. 
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Table 2.1 Mathematical model of the positive electrode of Li-ion battery 

Mathematical model of positive electrode 

Solid 

phase 

PDE 

equation 

∂

∂x
(𝐷𝑠,3

𝑒𝑓𝑓 ∂

∂x
𝜑𝑠,3
𝑒𝑓𝑓
(x, t)) = 𝑗𝑠,3(𝑥, 𝑡) 

Boundary 

condition 

∂

∂x
𝜑𝑠,3(𝑥, 𝑡) =

𝐽

𝜎𝑠,3
𝑒𝑓𝑓

, x = 0,
∂

∂x
𝜑𝑠,3(𝑥, 𝑡) = 0, x = L𝑐 

Liquid 

phase 

PDE 

equation 
𝑗𝑠,3(x, t) =

∂

∂x
𝐾𝑒,3
𝐷,𝑒𝑓𝑓

[
𝜕 ln 𝐶𝑒,3(𝑥, 𝑡)

𝜕𝑥
]

+
𝜕𝑦

𝜕𝑥
𝐾𝑒,3
𝐷,𝑒𝑓𝑓

(𝑥, 𝑡)
𝜕𝜑𝑒,3(𝑥, 𝑡)

𝜕𝑥
 

Boundary 

condition 

∂

∂x
𝜑𝑒,3(𝑥, 𝑡) = 0, 𝑥 = 0,

𝜕

𝜕𝑥
𝜑𝑒,3(𝑥, 𝑡) =

𝐽

𝐾𝑠,3
𝑒𝑓𝑓

, 𝑥 = 𝐿𝑐 

 

where 𝜑𝑠,3, 𝜑𝑒,3 are potential in solid and liquid phase, 𝜎𝑠,3 is the conductivity of solid 

phase, D𝑠,3
𝑒𝑓𝑓

 is the diffusion coefficient, 𝐽(𝑥, 𝑡) is the current density in x position, K is 

conductivity of liquid solution. 

Behaviors based models refer to that, on the basis of a massive scale of experimental 

and statistical data, build the battery models through various methods of data mining and 

numerical simulation. Typical behavior based models include resistance model [34~35], 

equivalent circuit model, fuzzy logic model, artificial neuron network (ANN) model and 

so on. This kind of models has a simple structure and ease of use in the BMS. However, it 

needs numerous of training data to build the model. Some static nonlinear model, such as 

the ANN model, suffers from the poor performance and weak robustness due to limited 

training data set in practice. Researchers have also put lots of effort to combine the 
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electrochemical model and behavior model together to develop battery models with both 

advantages from electrochemical model and behavior model. 

Nevertheless, the purpose of building Li-ion battery models are to help the 

application of Li-ion battery. For the large-scale systems, such as EVs, there are some 

prerequisites in the Li-ion battery models. The one with the highest priority is the 

requirement of stability and reliability. Due to the safety concern, the battery models used 

in practical EV applications must be very robust and stable. The existence of nonlinear 

equations and uncertain parameters cause the stability of electrochemical battery model 

cannot be effectively ensured. Therefore, the behavior-based models are adopted to carry 

out tasks such as battery pack optimal design, SoC estimation, system level simulation, 

battery cells balancing, and protection [36~39]. 

2.2 Li-ion Battery Equivalent Circuit Models 

The typical voltage response of Li-ion battery is shown in Fig. 2.1. In the initial stage, 

the battery terminal voltage remains a constant voltage OCV0, which is determined by the 

initial SoC. Once the battery is being discharged, the terminal voltage drops instantly due 

to the internal resistance Ro. During the discharge, the cumulative effect of OCV drop and 

polarization keeps the terminal voltage decreasing. Once the discharge current is removed, 

the terminal voltage increases instantly and then slowly returns to a new voltage OCV1 

through depolarization process. The voltage response during the charging process is 

similar to discharging. 
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Among all behavior battery models, the lumped equivalent circuit models have 

simple structures with fewer parameters. This kind of model idealizes the battery as the 

combination of a voltage source in series with a resistor and other dynamic elements such 

as capacitors. With simple structures, the model accuracy is usually insufficient. By 

modifying the model structure and adding additional compensation functions, the 

accuracy can be improved. 
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Figure 2.1 Voltage response of Li-ion battery 

Six typical equivalent circuit battery models from the literatures are illustrated in Fig. 

2.2. Three models in the first row are based on [40], as following: simple model, zero 

state hysteresis model, one state hysteresis with second order low pass filter (LPF) model. 
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Models in the second row are RC networks based lumped equivalent circuit models: one 

order RC model, two orders RC model, one order RC model with one state hysteresis. 

These models can be regard as a model subset which contains most lumped 

equivalent circuit models in the literatures. SoC, charge/discharge current, and hysteresis 

effects are all considered in these models. Discrete form dynamic equations and 

mathematical descriptions of each model are presented as follow: 
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Figure 2.2 Six typical equivalent circuit models 

Simple model: 

𝑉𝑡(𝑛) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑛)) − 𝐼(𝑛)𝑅𝑜      (2.1) 

𝑂𝐶𝑉(𝑆𝑜𝐶(𝑛)) = 𝐾0 −
𝐾1

𝑆𝑜𝐶(𝑛)
− 𝐾2𝑆𝑜𝐶(𝑛) + 𝐾3 ln(𝑆𝑜𝐶(𝑛)) + 𝐾4 ln(1 − 𝑆𝑜𝐶(𝑛))(2.2) 
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where n is the discrete step; Vt(n) stands for terminal voltage of battery; OCV(SoC(n)) 

stands for the OCV as a function of SoC; I(n) stands for input current, where positive is 

for discharge and negative is for charge; Ro stands for internal resistance; K0, K1, K2, K3, 

K4 are parameters used to describe the correspondence between OCV and SoC. In some 

cases, lookup tables are used to describe the OCV-SoC function for better accuracy. 

Zero state hysteresis model: 

𝑉𝑡(𝑛) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑛)) − 𝐼(𝑛)𝑅𝑜 − 𝑠(𝑛)𝑀     (2.3) 

𝑠(𝑛) = {
1, 𝐼(𝑛) > 𝜀

−1, 𝐼(𝑛) < −𝜀
𝑠(𝑛 − 1)

      (2.4) 

where M is a constant used to describe the hysteresis effect; ε is a small positive constant 

for dead band. 

One-state hysteresis with second order LPF model: 

𝑉𝑡(𝑛) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑛)) − 𝐼(𝑛)𝑅𝑜 + 𝑕(𝑛) + 𝑔1𝑓1(𝑛) + 𝑔2𝑓2(𝑛)  (2.5) 

[

𝑓1(𝑛 + 1)

𝑓2(𝑛 + 1)

𝑕(𝑛 + 1)
] = [

𝛼1 0 0
0 𝛼2 0

0 0 𝑒−|𝑘𝐼(𝑛)∆𝑡|
] [

𝑓1(𝑛)

𝑓2(𝑛)

𝑕(𝑛)
] + [

1 0
1 0
0 1 − 𝑒−|𝑘𝐼(𝑛)∆𝑡|

] *
𝐼(𝑛)
𝐻
+ (2.6) 

where h stands for the hysteresis voltage; H is the maximum hysteresis voltage; k is the 

fading factor; f1 and f2 stand for the states of LPF; a1 and a2 are the diagonal elements of 
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filter states transfer matrix; g1 and g2 are the element of filter output transfer matrix; ∆t is 

the sampling interval. 

One-order RC circuit model: 

𝑉𝑡(𝑛) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑛)) − 𝐼(𝑛)𝑅𝑜 − 𝑈1(𝑛)     (2.7) 

𝑈1(𝑛 + 1) = 𝑒
(−

∆𝑡

𝜏1
)
𝑈1(𝑛) + 𝑅1 (1 − 𝑒

(−
∆𝑡

𝜏1
)
) 𝐼(𝑛)     (2.8) 

𝜏1 = 𝑅1𝐶1 

Two-orders RC circuit model: 

𝑉𝑡(𝑛) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑛)) − 𝐼(𝑛)𝑅𝑜 − 𝑈1(𝑛) − 𝑈2(𝑛)   (2.9) 

𝑈1(𝑛 + 1) = 𝑒
(−

∆𝑡

𝜏1
)
𝑈1(𝑛) + 𝑅1 (1 − 𝑒

(−
∆𝑡

𝜏1
)
) 𝐼(𝑛)    (2.10) 

𝑈2(𝑛 + 1) = 𝑒
(−

∆𝑡

𝜏2
)
𝑈2(𝑛) + 𝑅2 (1 − 𝑒

(−
∆𝑡

𝜏2
)
) 𝐼(𝑛)    (2.11) 

𝜏1 = 𝑅1𝐶1        (2.12) 

𝜏2 = 𝑅2𝐶2        (2.13) 

where U1 ,U2, τ1, and τ2 are the voltage and time constant of RC networks, respectively. 

One-order RC circuit with one state hysteresis model: 
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𝑉𝑡(𝑛) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑛)) − 𝐼(𝑛)𝑅𝑜 − 𝑈1(𝑛) − 𝑈2(𝑛)   (2.14) 

𝑈1(𝑛 + 1) = 𝑒
(−

∆𝑡

𝜏1
)
𝑈1(𝑛) + 𝑅1 (1 − 𝑒

(−
∆𝑡

𝜏1
)
) 𝐼(𝑛)    (2.15) 

𝑕(𝑛 + 1) = 𝑒−|𝑘𝐼(𝑛)∆𝑡|𝑕(𝑛) + [1 − 𝑒−|𝑘𝐼(𝑛)∆𝑡|]𝐻   (2.16) 

2.3 Model Parameters Identification 

To apply models into simulation and states estimation, all unknown parameters in the 

model must be identified separately from training data. Because these models involve 

nonlinear functions and discrete states, common parameters identification approaches 

used for linear systems such as least squares method [41] and subspace identification 

method [42] are not easily applicable. Genetic Algorithm (GA) is used for parameters 

identification to balance the performance of accuracy and computation time. GA 

algorithm provides a global optimal solution with superior effective on multi-targets and 

provides excellent convergence speed. 

Select the two orders RC model as an example and set the current I and voltage Vt as 

the input/output, its transfer function can be written as: 

𝑉𝑡(𝑠) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑠)) − 𝐼(𝑠) (𝑅𝑜 +
𝑅1

1+𝑅1𝐶1𝑠
+

𝑅2

1+𝑅2𝐶2𝑠
)   (2.17) 

This recurrence equation can be rewritten to an autoregressive model and the target 

vector is built as shown below: 

𝜑𝑛(𝑘) = [1 𝑉𝑡(𝑘) . . . 𝑉𝑡(𝑘 − 𝑛) 𝐼(𝑘) … 𝐼(𝑘 − 𝑛) ]  (2.18) 



27 

𝜃𝑛(𝑘) = [(1 − ∑ 𝐶𝑖
𝑛
𝑖=1 )𝑂𝐶𝑉(𝑘) 𝐶1 … 𝐶2𝑛+1]

𝑇   (2.19) 

The goal of parameters identification is to minimize the error between measured data 

and model output. The cost function to be minimized is the sum of squared errors at the 

sample points: 

𝑚𝑖𝑛{Γ(𝜁𝑗
𝑔
)}, Γ(𝜁𝑗

𝑔
) =

1

𝑁
∑ (𝑉𝑡,𝑘 − 𝑉̂𝑡,𝑘 (𝜁𝑗

𝑔̂
))

2
𝑁
𝑘=1    (2.20) 

where Γ(𝜁𝑗
𝑔
) is the mean-squared error between the measured voltage and predicted 

voltage of the current individual j of population g. 𝜁𝑗
𝑔

 is the estimated parameter of the 

current individual j of population g. 𝜁 represents the optimized parameter and 

𝜁 = [𝑅𝑜 𝑅1 𝑅2 𝐶1 𝐶2]. 𝑉̂𝑡,𝑘 denotes the estimation value of 𝑉𝑡 at index k. N is 

the length of measured data. The maximum generations is set to be 100 in this 

optimization process. 

Fig 2.3 shows an example of two-order RC model fitting result. The data is collected 

from the depolarization process of an NCM Li-ion battery cell after 10A discharge at 

SoC=60%. The top part plots the model output and measured data together. The bottom 

part plots the estimation error. The goodness of fit and identified parameters is shown in 

Table 2.2. 
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Figure 2.3 Fitting and measured data of two-order RC battery model (Top). Estimation 

error (Bottom) 

Table 2.2 Goodness of fit and identified parameters 

Goodness of fit Identified parameters 

SSE 5.819∙10
-5

 OCV 3.683V 

R-square 0.9979 U1 0.015.54mV 

Adjusted R-square 0.9979 T1 0.01627 

RMSE 1.801∙10
-4

 U2 9.265mV 

  T2 0.001833 

 

2.4 State-Of-Charge Estimation via AEKF method 
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As we discussed in Chapter 1.3, providing accurate SoC estimation result to the 

vehicle controllers and drivers is the most important function of a BMS. Incorrect or 

inaccurate SoC estimation may cause SoC variation, lower the vehicle efficiency and 

reduce lifetime. In general, the SoC of Li-ion battery is defined as the ratio of current 

capacity to nominal capacity at a certain current rate. The nominal capacity is given by 

the battery manufacturer and represents the maximum amount of charge can be stored. 

Ampere-hour counting is the most widely used method based on the material 

conservation during charge or discharge reactions. This approach simply integrates 

current with time to calculate the SoC. The discrete form of SoC calculation can be 

written as: 

𝑆𝑜𝐶(𝑛 + 1) = 𝑆𝑜𝐶(𝑛) +
𝑖(𝑛)∙∆𝑡

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
      (2.21) 

where i is the current flow into or out from the Li-ion battery. ∆t is the sampling period. 

SoC(n+1) at the time n+1 is determined by the previous SoC(n) at time n and the product 

of sampling period ∆t and current i(n) at time n. There are three obvious disadvantages in 

this method. First, it is difficult to determine the SoC(0) in the initial stage. Inaccurate 

initial SoC(0) could cause future estimation error. Second, in practice, the measurement 

accuracy of current sensor is influenced by several issues, including environmental 

electromagnetic noise, temperature, limited bandwidth and others. Moreover, these 

current sensor errors will accumulate due to the integration operation and then cause 
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higher estimation error in the further. Third, as mentioned in Chapter 1, rather than a 

constant, the nominal Li-ion capacity changes with current rate, aging and temperature. 

To solve the initial state estimation problem, one may use the OCV-SoC lookup table 

to calibrate the initial SoC(0). Originally from the application of lead-acid battery [43], 

the approximately linear relationship between SoC and OCV can be given as: 

𝑂𝐶𝑉(𝑆𝑜𝐶) = 𝑎0 + 𝑎1 ∙ 𝑆𝑜𝐶       (2.22) 

where a0 is the battery cutoff voltage and a1 is the fitting parameter to fit the maximum 

voltage when SoC equals 100%.  

 However, the approximately linear relation of OCV and SoC cannot be simply 

applied to Li-ion battery. For Li-ion battery not in the equilibrium state or LFP battery 

with flat OCV-SoC curve, this calibration method is not reliable. Furthermore, the 

OCV-SOC relationship is also nonlinear with hysteresis and can be influenced by 

temperature. 
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Figure 2.4 OCV-SoC curves of five Li-ion batteries 

Fig. 2.4 shows the OCV-SoC plots of five different Li-ion batteries used in this study. 

Notice that these OCV-SoC plots are obtained through continuous low current charging 

(1/20 C). Thus, the OCV at the end (0%) and beginning (100%) of SoC should be ignored. 

Although both Electrovaya and EIG, A&S and Valence batteries have the same 

NCM/LFP positive electrode, their OCV-SoC plots are slightly different. That is because 

even with same electrode material, manufacturers may have different battery design, such 
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as the different doping ratio of the Nickel, Cobalt, Manganese, and Aluminum elements 

in the positive electrode. We may see that a flat voltage plateau exists in the LFP battery 

OCV-SoC curves at around 3.3V. Compared with NCM battery (2.5V/3V to 4.05V/4.15V) 

and LMO battery (2.5V to 4.2V), LFP battery also has a narrow voltage range (2.5V to 

3.6V). For typical voltage sensor with ±5mV error, the sensor error will cause up to 35% 

SoC calibration error. 

Researchers proposed several state observers and battery model based SoC 

estimation methods to improve the performance of SoC estimation function. Plett uses the 

extended Kalman filter (EKF) to estimate SoC adaptively based on a simplified model 

[38]. Xu uses the proportion-integration (PI) observer with one order RC circuit model to 

estimate the SoC [3]. He also compares the performance of SoC estimation by using 

different observers including Luenberger Observer, Sliding Mode, PI observer and 

Kalman filter based observer. However, this kind of observer based methods strongly 

depends on the model and the predetermined parameters. To improve the model accuracy 

is a more efficient way compared to using some advanced algorithms. 
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Figure 2.5 Model observer based Li-ion battery states estimation 
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For a given linear time-invariant system, its state space equation and discrete form 

can be described as: 

{
𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

        (2.23) 

{
𝑥(𝑛 + 1) = 𝐴𝑥(𝑛) + 𝐵𝑢(𝑛)
𝑦(𝑛) = 𝐶𝑥(𝑛) + 𝐷𝑢(𝑛)

       (2.24) 

where x is the state variable; u is system input; y is the system out; A, B, C, D are the 

system matrices. Based on the second equation, system output y is the combination of 

states variable x and system input u. Therefore, if the system input u, output y, system 

matrices C and D are known, the state variable x can be derived. This non-measurable 

state variable x can be either used for feedback control or just for observation purpose. 

Ideally, we may build the identical model of an actual system and send the same input u 

as the real system does to calculate the estimated state variable 𝑥̂. This method is called 

the open loop observer or open loop estimator. However, the open loop observer method 

is not feasible in practice. If the initial state of variable 𝑥̂(0) is incorrect, the further 

estimation will be also incorrect. Besides, the noise contained in the measured input will 

cause further error in the estimation. To solve this problem, we add a feedback loop to the 

system, use the difference between estimated system output y and actual system output y 

to correct the estimated state variable x. The observer system can be rewritten as: 

{
𝑥̇̂ = 𝐴̂𝑥̂ + 𝐵̂𝑢 + 𝐺(𝑦 − 𝑦̂)

𝑦̂ = 𝐶̂𝑥̂ + 𝐷̂𝑢
      (2.25) 
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{
𝑥̂(𝑛 + 1) = 𝐴̂𝑥̂(𝑛) + 𝐵̂𝑢(𝑛) + 𝐺(𝑦(𝑛) − 𝑦̂(𝑛))

𝑦̂(𝑛) = 𝐶̂𝑥̂(𝑛) + 𝐷̂𝑢(𝑛)
    (2.26) 

where G is the observer matrix. The G can be either Luenberger observer, sliding-mode 

observer, Kalman filter, or any other controller or algorithm. The goal of such an observer 

system is to force the calculated output y to converge to the measured output and 

eventually force the estimated states variable 𝑥̂ converge to the true value. 

In the case of Li-ion battery SoC estimation, input u is the current i in the battery. 

Output y is the battery terminal voltage. State variable vector x is the internal states in 

selected battery model. Notice that the Li-ion battery model contains nonlinear item such 

as the OCV-SoC function. Thus, the state space equation of Li-ion battery model is in 

nonlinear form. Select one order RC network model as the example; the following 

discrete state space equations can be obtained: 

{
 
 

 
 
[
𝑆𝑜𝐶(𝑛 + 1)
𝑈1(𝑛 + 1)

] = [
1 0

0 𝑒
(
−∆𝑡

𝑅1𝐶1
)] ∙ [

𝑆𝑜𝐶(𝑛 + 1)

𝑈1(𝑛 + 1)
] + [

−∆𝑡

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑅1 − 𝑅1𝑒
(
−∆𝑡

𝑅1𝐶1
)
] ∙ 𝐼(𝑛)

𝑉𝑡(𝑛) = *
𝑂𝐶𝑉(… ) 0

0 −1
+ ∙ [

𝑆𝑜𝐶(𝑛)

𝑈1(𝑛)
] + [−𝑅𝑜] ∙ 𝐼(𝑛)

 (2.27) 

For the selection of observer, Kalman filter has the unique advantage of optimal 

converge speed and anti-noise ability, especially in harsh environments. Moreover, the 

Kalman filter is a discrete algorithm in nature, which is easy to implement in the BMS. 

For nonlinear systems, the nonlinear version of the Kalman filter called adaptive 

extended Kalman filter (AEKF) should be used. AEKF uses the first item of the Taylor 

Series expansions of system matrix to linearize model at each sampling period. AEKF 
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algorithm can improve the prediction precision by adaptively updating the noise 

covariance. The time-series based calculation process is shown in Table 2.2. 

Table 2.3 Calculation process of AEKF algorithm 

Nonlinear state-space model  

Transition: 𝑿𝑘+1 = 𝑓(𝑿𝑘 , 𝒖𝑘) + 𝜔𝑘 (1) 

Measurement: 𝒀𝑘+1 = 𝑕(𝑿𝑘 , 𝒖𝑘) + 𝜐𝑘 (2) 

Step I: Initialization  

For k=0, set: 𝑿̂0
+ = 𝐸[𝑋0]𝑷0

+ = 𝐸 *(𝑋0 − 𝑿̂0
+)(𝑋0 − 𝑿̂0

+)
𝑇
+ (3) 

Step II: Computation: For k=1, 2, …, compute  

State estimate time update 𝑿̂𝑘
− = 𝑓(𝑿̂𝑘−1

+ , 𝒖𝑘) (4) 

Error Innovation: 𝒆𝑘 = 𝒀𝑘 − 𝑔(𝑿̂𝑘
−, 𝒖𝑘) (5) 

Adaptive law-covariance matching:  

𝑯𝑘 =
1

𝑀
∑ 𝒆𝑘𝒆𝑘

𝑇 ,∙ 𝑹𝑘
𝑘

𝑖=𝑘−𝑀+1
= 𝑯𝑘 − 𝑪𝑘𝑷𝑘

−𝑪𝑘
𝑇 

(6) 

Error covariance time update: 𝑷𝑘
− = 𝑨𝑘𝑷𝑘−1𝑨𝑘

𝑇 + 𝑸𝑘 (7) 

Kalman gain matrix: 𝑲𝑘 = 𝑷𝑘
−𝑪𝑘

𝑇(𝑪𝑘𝑷𝑘
−𝑪𝑘

𝑇 + 𝑹𝑘)
−1 (8) 

State estimate measurement update: 𝑿̂𝑘
+ = 𝑿̂𝑘

− +𝑲𝑘𝒆𝑘 (9) 

Noise and error covariance measurement update:  

𝑸𝑘 = 𝑲𝑘𝑯𝑘𝑲𝑘
𝑇𝑷𝑘

+ = (𝑰 − 𝑲𝑘𝑪𝑘)𝑷𝑘
− (10) 

where, 𝑨𝑘 =
𝜕𝑓(𝑿𝑘,𝒖𝑘)

𝜕𝑿
|
𝑿=𝑿̂𝑘

−
, 𝑪𝑘 =

𝜕𝑕(𝑿𝑘,𝒖𝑘)

𝜕𝑿
|
𝑿=𝑿̂𝑘

−
 (11) 
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where Xk is the system state vector at the kth sampling time, which represents the total 

effect of system inputs uk on the present system operation. ωk describes the process noise 

and υk is the measurement noise which does not affect the system state, but can be 

reflected in the system output estimates Yk. And ωk is assumed to be Gaussian white 

noise with zero mean and covariance Qk; υk is assumed to be Gaussian white noise with 

zero mean and covariance Rk. f(Xk, Uk) and h(Xk, Uk) are the state transition and 

measurement functions, respectively. 

Select the one order RC circuit model as the example, the complete flow chart of 

SoC estimation based on AEKF and experimental verification are shown in Fig. 2.6 and 

Fig. 2.7. The discharge and charge current are loaded on the Li-ion battery cell and the 

one order RC model built in MATLAB/Simulink simultaneously. Terminal voltage error 

between the estimation and the experimental data is reduced by adaptively updating the 

AEKF observer gain. Then the observer with the updated gain is used to compensate for 

the state estimation error. The estimation of SoC is then fed back to update the parameters 

of the battery model for the next SoC estimation. 
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Figure 2.6 Implementation flowchart of the AEKF algorithm 
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Figure 2.7 AEKF SoC estimation with one RC circuit model 
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Figure 2.8 AEKF SoC estimation results 
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Figure 2.9 SoC estimation error 
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The SoC estimation results and their estimation errors are plotted in Fig. 2.8 and Fig. 

2.9. Two wrong initial SoC(0) are set to be 98% and 60% in purpose to evaluate the 

robustness performance. From these two figures, the SoC estimation can trace the true 

trajectory accurately and quickly especially with a larger initial SoC error. Furthermore, 

the SoC estimation can converge to the reference SoC trajectory with several sampling 

intervals. For different large initial SoC errors, the SoC estimation can converge to the 

true value after several sampling intervals. That is because the proposed approach can 

precisely estimate the voltage and adjust timely the Kalman gain according to the error 

between the measured and estimated terminal voltage. The error SoC brings bigger 

terminal voltage errors, which will in turn cause a large Kalman gain matrix and then 

compensate the SoC estimation in an efficient closed loop feedback. 

2.5 Summary 

In this chapter, we introduce the basic knowledge of Li-ion battery modeling first and 

then focus on the lumped equivalent circuit modeling method. The associated parameters 

identification method is also introduced. A second order RC equivalent circuit model is 

selected to demonstrate the modeling procedure. Finally, we apply the one order RC 

circuit model with AEKF algorithm to implement the SoC estimation. The result shows if 

battery model is accurate, the closed-loop AEKF SoC estimation method can solve the 

initial SoC value problem and provide good estimation results. 
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CHAPTER 3 

Temperature Uncertainty in Li-ion Battery Performance and Modeling 

3.1 Background 

Temperature is one of the crucial factors that affect the performance of Li-ion battery. 

As discussed in chapter 1, the available mileage of an EV highly depends on the 

environmental temperature. At low temperature, the mileage decrease significantly [1-4]. 

Similar to any ICE vehicles, EVs have to be able to operate in various harsh 

environments, including the low-temperature environment. Besides, unlike ICE vehicles 

which can be refueled in minutes at gas stations, EVs need several hours to charge the 

battery while suffering the low temperature, as demonstrated in Fig 3.1. 

 

Figure 3.1 Tesla Model S EV (left) and Nissan Leaf EV (right) at public charging stations 

under low-temperature environment 

Compared to the battery aging, which is considered as a long-term process, the 

influence of temperature is a transient process that cannot be neglected. The initial 
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motivation of this temperature study is from the observation of battery aging tests. Fig. 

3.2 plots capacity-time curves of 29 cycles during aging tests (EIG NCM Li-ion battery, 

1C charge/discharge; detail will be discussed in Chapter 4.3). It clearly shows that the 

measured capacity varies periodically in a certain pattern. The recorded environmental 

temperature during the tests, i.e. the laboratory temperature, is plotted in Fig. 3.2 bottom 

part. We can tell from the plot that the laboratory temperature changes regularly every 24 

hours. That is because the air conditioner system automatically turns on/off at 6:00 AM 

and 18:30 PM every day. 
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Figure 3.2 Charge/discharge capacity curves in the aging test. 

By using statistic tools to analyze these temperature and capacity data, it turns out 

there is an approximately linear correlation between the capacity and temperature, as 
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shown in Fig. 3.3. Although the maximum temperature variation is only 4 °C, the 

capacity variation is up to 0.2 Ah/1%. We may infer that the capacity variation will be 

larger in a realistic environment. 
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Figure 3.3 Approximate linear correlation between temperature and capacity, derived 

from the data in Fig. 3.2 

This chapter focuses on the temperature influence on Li-ion batteries and associated 

modeling techniques. A series of experimental tests, including electrochemical and 

electrical tests, are designed to investigate the temperature influence and build the 

equivalent circuit model. The heat generation mechanism of Li-ion battery and its relation 

with SoH is also discussed. 
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3.2 Temperature Dependent Electrochemical Impedance Spectroscopy Test and 

Theoretical Analysis 

Electrochemical Impedance Spectroscopy (EIS) is an effective electrochemical test 

tool to analyze the kinetic process of battery [5~6]. The operating principle of EIS is 

illustrated in Fig. 3.4. A set of sinusoidal current is generated from the EIS equipment and 

injected into Li-ion battery. Voltage response of the battery is recorded to calculate the 

battery impedance. The typical frequency range of the EIS test is from mHz to kHz, 

which associates with different time-scale reaction stages in the battery. 
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Figure 3.4 Operating principle of EIS equipment (electrochemical workstation, Ivium 

n-stat, 5A/10V, 0~300kHz) and voltage data in the EIS test. 
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Figure 3.5 Impedance of Li-ion battery in Nyquist form (Bottom) and associated 

equivalent circuit electrochemical model (Top). 

Fig. 3.5 plots a typical EIS test result of an NCM Li-ion battery cell and its 

equivalent electrical circuit electrochemical model. Notice that in this figure, the 

imaginary axis is reversed for convenient. The equivalent electrical circuit 

electrochemical model is usually used to interpret the EIS result and describe the 

electrochemical reactions. Several factors that determine Li-ion battery performance, 

including electrode conductivity, charge-transfer rate, diffusion rate and others, can be 



47 

expressed by the parameters in the equivalent circuits [45-46]. Some special elements 

such as constant phase element (CPE) and Warburg impedance are used in the equivalent 

circuit: 

𝑍𝐶𝑃𝐸 =
1

𝑇(𝑗∙2𝜋𝑓)𝑃
        (3.1) 

The CPE is defined by two values: CPE-T and CPE-P. If CPE-P equals 1, then the 

CPE is identical to a capacitor. When a CPE is placed in parallel to a resistor, a 

Cole-Element is produced to present the charge transfer process. If CPE-P equals 0.5, a 

45-degree line is produced on the Complex-Plane graph. In this study, a CPE with CPE-P 

value of 0.5 is used to produce the Infinite Length Warburg element. Double layer 

capacitance Cdl and coating capacitance are usually modeled by using the CPE. An 

electrical double layer exists at the electrode/electrolyte interface. This double layer is 

formed as ions from the solution approaching the electrode surface. Charges in the 

electrode are separated from the charges of these ions. The separation is of the order of 

angstroms. The value of the double layer capacitance depends on many variables 

including electrode potential, temperature, ionic concentrations, types of ions, oxide 

layers, electrode roughness, impurity adsorption. 

A Warburg element occurs when charge carrier diffuses through a material. In 

electrochemical systems, diffusion of ionic species at the interface is common. The 

Warburg impedance is developed to model this phenomenon. Several expressions, based 

on different assumptions, are used to describe diffusion impedance. Under the assumption 

of semi-infinite diffusion layer, the impedance is: 
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𝑍𝑊 =
1

𝑌0√𝑗∙2𝜋𝑓
        (3.2) 

where Y0 is the diffusion admittance. A Warburg impedance is characterized by having 

identical real and imaginary contributions, resulting in a phase angle of 45 degree, as 

shown in the right part of Fig. 3.5. 

Based on the test frequency, EIS are divided into three parts to express the different 

processes in the Li-ion battery: high-frequency part, medium frequency part, and 

low-frequency part. For the high frequency and medium frequency parts of EIS, the 

semicircle represents the charge transfer process in Li-ion battery. The radius of the 

semicircle is determined by the Ohmic resistance Rs, double layer Cdl and charge transfer 

resistance Rct in the equivalent circuit. Due to the dispersion effect and other non-ideal 

characteristics of Li-ion battery, capacitor element cannot be present the Cdl. Instead, a 

CPE is used in the circuit. 

The low frequency (10m~1 Hz) part in the EIS represents the material diffusion 

process in Li-ion battery. It is represented by a slope of approximately 45 degrees in the 

plot. Typically, Warburg impedance Zw is used to describe this part. The ion concentration 

(~1 mole/L) and diffusion coefficient (D~10
-5

 cm2/s) in solvent (ethylene carbonate, EC) 

is much higher than in intercalation compound (~10
-2

 mole/L, D~10
-10

 cm2/s). Thus, it is 

considered that Zw only represents the lithium ion solid diffusion process in the active 

material. 
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Figure 3.6 EIS test result at different temperatures. AESC LMO battery, SoC=50%. 

A series of EIS tests are carried out on AESC LMO battery at different temperatures 

and SoCs. EIS dispersions are measured and recorded in the temperature range from 

25°C to -20°C. The test frequency is from 1k Hz to 10 mHz with five mV AC signal. The 

LMO battery EIS test result at 50% SoC is plotted in Fig 3.6, with an additional 

temperature dimension. Significant EIS difference appears when temperature changes, 

especially in subzero temperatures. The radius of the semicircle exponentially increases 

when temperature decreases. At lower temperatures, the semicircle shifts to the right side, 

which means the internal resistance/Ohmic resistance is increased. It can be explained as 

follows: Materials that compose the Li-ion battery, such as electrode, electrolyte, and 
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separator, have the semiconductor feature and follow the Ohm’s law and Arrhenius type 

relation: 

𝑅 =
𝑙

𝑆∙𝜎
         (3.3) 

𝜎𝑇 = 𝜎𝑜𝑒
(
−𝐸𝑎
𝑘𝐵𝑇

)
         (3.4) 

where σ is the conductivity of material, l is the thickness of material, σo is the 

pre-exponential factor, Ea is the activation energy/potential, kB is the Boltzmann constant, 

and T is the temperature. Substitute eq. (3.3) into (3.4), we can get: 

𝑅 =
𝑙𝑇

𝑆𝜎0
𝑒
(
𝐸𝑎
𝑘𝐵𝑇

)
        (3.5) 

Write the Logarithm form of both sides of the eq. (3.5): 

ln 𝑅 = ln
𝑙

𝑆𝜎0
+
𝐸𝑎−𝑘𝐵

𝑘𝐵𝑇
+ 1        (3.6) 

Eq (3.6) clearly shows that lnR is in linear with T-1 when the potential Ea is stable. 

For the charge transfer resistance Rct which determines the radius of the semicircle, it is 

also temperature dependent. The formula derived from [5] shows that ln Rct and T-1 is 

also in linear relationship: 

ln 𝑅𝑐𝑡 = ln
𝑅

𝑛𝑒
2𝐹2𝑐𝑚𝑎𝑥𝐴𝑓(𝑀𝐿𝑖+)

(1−𝛼)
(1−𝑆𝑜𝐶)(1−𝛼)𝑆𝑜𝐶𝛼

+
∆𝐺−𝑅

𝑅𝑇
+ 1   (3.7) 

where ne is the number of transferred electrons, cmax is the maximum concentration of 

lithium ion in intercalation electrode, Af is the variable related to forward reaction rate, α 

represents the symmetry factor for the reaction, MLi+ is the concentration of Li-ion in the 

electrolyte. 
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The EIS tests results at 5% SoC, 50% SoC and 100% SoC are shown in in Fig. 3.7. 

Radiuses of the semicircles in these plots are increased at low temperatures. However, for 

slopes which represent the material diffusion process, the gradients remain the same at 

different temperatures. It means that the temperature influence on the material diffusion 

rate is relatively small. Therefore, the charge transfer rate is the primary factor that limits 

the battery performance at low temperatures [7]. 

Table 3.1 Identified EIS equivalent circuit parameters at SoC=5%, 50%, 100%. 

Temperature -20 -10 -5 0 10 

SoC=5% 

RS 1.67∙10
-3

 1.83∙10
-3

 1.99∙10
-3

 2.19∙10
-3

 ∙10
-3

 

Cdl, T 20 18.55 17.8 16.58 12.93 

Cdl, P 0.79 0.70 0.65 0.63 0.6014 

Rct 9.33∙10
-4

 2.22∙10
-3

 3.91∙10
-3

 6.64∙10
-3

 2.46∙10
-2

 

Zw, T 3159 2675 2415 1839 1611 

SoC=50% 

RS 2.02∙10
-3

 2.23∙10
-3

 2.41∙10
-3

 2.67∙10
-3

 3.05∙10
-3

 

Cdl, T 14.9 12.22 11.96 12.21 12.22 

Cdl, P 0.87 0.77 0.72 0.68 0.64 

Rct 6.48∙10
-4

 1.63∙10
-3

 2.76∙10
-3

 4.86∙10
-3

 1.74∙10
-2

 

Zw, T 4777 3721 3315 3042 3013 

SoC=100% 

RS 1.91∙10
-3

 2.06∙10
-3

 2.19∙10
-3

 2.42∙10
-3

 3.17∙10
-3

 

Cdl, T 18.7 13.9 12.8 12.76 12.15 

Cdl, P 0.81 0.76 0.72 0.67 0.61 

Rct 6.80∙10
-4

 1.56∙10
-3

 2.60∙10
-3

 4.48∙10
-3

 1.60∙10
-2

 

Zw, T 2531 1844 1498 1194 813.2 
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Figure 3.7 EIS test results at different SoCs and temperatures 

The equivalent circuit parameters identification results are listed in Table 3.1. The 

goodness of fitting results is fair. For RS Rct, Cdl T, Cdl P, and Zw T, the fitting errors are 
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within 2%, 1.8%, 13%, 6.1% and 7.2%, respectively. At SoC=100%, 50% and 5%, the 

Ohmic resistance Rs and charge transfer resistance Rct as functions of temperature are 

shown in Fig. 3.8. As expected, these two functions can be fitted by approximately 

quadratic functions. The growth of Rs is within 200% in the range from 20°C to -20°C. 

The charge transfer resistance Rct exponentially increases. Rct increases to 2600% at -20° 

C compare to 20° C. 
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Figure 3.8 Ohmic resistance Rs and charge transfer resistance Rct vs. temperatures at 

different SoCs 

In conclusion, EIS test results show that both Ohmic resistance and charge transfer 

resistance increase at low temperatures. Moreover, the charge transfer kinetics is the 

major factor that limits battery performance at low temperatures. Severe polarizations 
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cause the battery voltage reaches the cutoff voltage earlier at low temperatures and results 

in capacities losses. 

3.3 Temperature Consideration in the Equivalent Circuit Modeling of Li-ion Battery 

Since the temperature dependent battery performance have been discussed and 

explained through EIS test and electrochemical principle in the last section, in this section, 

a series of temperature tests are carried out to review the consideration in equivalent 

circuit modeling of Li-ion battery for further BMS application. Temperature 

compensation functions for equivalent circuit modeling will be given in the analytical 

form. 

Open Circuit Voltage 

Open Circuit Voltage (OCV) is the internal potential of Li-ion battery, which can be 

obtained by measuring the terminal voltage at the no-load condition and chemical 

equilibrium state. Typically, it takes tens of hours to relax the battery completely after 

charging or discharging, depending on the battery chemistry type and SoC. For LFP 

battery, the relaxation time is up to 40 hours. OCV is also considered as the equilibrium 

potential of the Li-ion battery. According to thermodynamics and electrochemical 

principle, OCV has the correlation with its temperature. According to the second law of 

thermodynamics, the potential of a battery is in proportion to Gibbs free energy, while the 

Gibbs free energy is related to temperature, entropy and enthalpy: 
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∆𝐺 = 𝑛𝑒𝐹𝐸         (3.8) 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆        (3.9) 

where G is the Gibbs free energy, E is the potential, H is the enthalpy, T is the temperature, 

S is the entropy. Substitute (3.8) into (3.9): 

𝐸 =
∆𝐻−𝑇∆𝑆

𝑛𝑒𝐹
          (3.10) 

Eq (3.10) shows that the potential or the OCV of a battery is temperature dependent. 

However, it is hard to give the quantitative descriptions of the OCV-temperature 

influence due to various non-ideal effects such lattice defects and complicated chemical 

characteristics in an actual battery. Therefore, a series of tests are conducted to explore 

how temperature influences the OCV in practical situations. 

First, the battery is discharged to the desired SoC through low current (1/6 C, 5 A) 

and rest 10 hours to ensure its equilibrium state. Then the battery is placed in the 

temperature chamber, and the environmental temperature is controlled. Meanwhile, the 

battery terminal voltage is recorded continuously. The temperature ranges from 20°C to 

-20°C with 5°C intervals. Measured OCV and temperature data at different SoCs are 

plotted in Fig. 3.9. The dotted lines in the plots are the fitted voltage response assuming 

that temperatures are not controlled. Notice that there is slight voltage changing in the 

fitted data because of the battery is still getting the equilibrium state. These voltage 

changes are relatively small and can be negligible. 
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Figure 3.9 OCV~temperature tests at SoC=100%, 66%, 33%, and 5% 
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Figure 3.10 Bias voltage of OCV-Temperature 

Test results show that the temperature influence to OCV is highly SoC-dependent 

and nonlinear. At high SoCs, OCVs decrease as temperatures decrease, as shown in Fig. 

3.9 upper part. On the contrary, at low SoCs, OCVs increase as temperatures decrease, as 

shown in Fig. 3.9 lower part. Fig. 3.10 plots the overall map of OCV variation, 

temperature, and SoC based on the collected data. At low SoCs (10~40%), the OCV 

variation is as high as 30 mV at -15ºC. At high SoCs (60~100%), the OCV variation is 

within 10mV. Notice that the OCV variations disappear at around 45~55% SoCs. 

We may build the analytical OCV-temperature compensation function based on the 

above test results through nonlinear least squares fitting method. Compared with a 

look-up table, the analytical expression has superiority in both numerical calculation and 
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accuracy. Furthermore, the derivative and the Taylor expansion of the analytical 

expression is easier to obtain for AEKF based SoC estimation, as mentioned in chapter 2. 

Table 3.2 shows the four typical OCV-SoC analytical functions. 

Table 3.2 OCV-SoC analytical functions 

# OCV-SoC analytical function and parameters description 

(1) 
𝑂𝐶𝑉 = 𝐾0 −

𝐾1
𝑆𝑜𝐶

− 𝐾2 ∙ 𝑆𝑜𝐶 + 𝐾3 ∙ 𝑙𝑛(𝑆𝑜𝐶) + 𝐾4 ∙ 𝑙𝑛(1 − 𝑆𝑜𝐶) 

𝜃 = [𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4] 

(2) 𝑂𝐶𝑉 = 𝐾0 + 𝐾1 ∙ 𝑆𝑜𝐶 + 𝐾2 ∙ (1 − 𝑒
−𝐾3∙𝑆𝑜𝐶) + 𝐾4 ∙ (1 − 𝑒

−𝐾5/(1−𝑆𝑜𝐶)) 

θ = [𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4] 

(3) 
𝑂𝐶𝑉 = 𝐾0 −

𝐾1
𝑆𝑜𝐶

+ 𝐾2 ∙ 𝑒
−𝐾3/(1−𝑆𝑜𝐶) 

θ = [𝐾0, 𝐾1, 𝐾2, 𝐾3] 

(4) 𝑂𝐶𝑉 = 𝐾0 + 𝐾1 ∙ 𝑆𝑜𝐶 + 𝐾2 ∙ 𝑆𝑜𝐶
2 + 𝐾3 ∙ 𝑆𝑜𝐶

3 + 𝐾4 ∙ 𝑆𝑜𝐶
4 + 𝐾5

∙ 𝑆𝑜𝐶5 + 𝐾6 ∙ 𝑆𝑜𝐶
6 

θ = [𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6] 

 

Among these functions, function (4) has the best fitting precision. For actual 

OCV-SoC curves, the derivative dQ/dV is very high at the beginning and end of SoC. 

Therefore, a high-order polynomial function is more suitable to describe the actual 

OCV-SoC relation. The fitting parameters results for function (4) are given in Table 3.3 

  



59 

Table 3.3 Parameters fitting results of OCV-SoC function 

# Parameters description 

(1) 𝐾0 = 0.013505 ∙ T
2 − 0.5634 ∙ 𝑇 + 7.429 

(2) 𝐾1 = −0.02452 ∙ T
2 + 1.095 ∙ 𝑇 − 14.73 

(3) 𝐾2 = 0.0085 ∙ T
2 − 0.4394 ∙ 𝑇 + 4.999 

(4) 𝐾3 = 0.01266 ∙ T
2 − 0.4583 ∙ 𝑇 + 8.706 

(5) 𝐾4 = −0.01141 ∙ T
2 + 0.4504 ∙ 𝑇 − 8.05 

(6) 𝐾5 = 0.00326 ∙ T
2 − 0.1304 ∙ 𝑇 + 2.614 

(7) 𝐾6 = −0.0003 ∙ T
2 − 0.01204 ∙ 𝑇 + 3.465 

 

Internal Resistance 

As mentioned in section 3.2, the conductivity of electrode and electrolyte in Li-ion 

battery decrease at low temperatures. In the point view of battery performance, the 

internal resistance, or Ohmic resistance, is increased. The battery may reach the cutoff 

voltage earlier at high rate current and exhibit false capacity reduction. The reserved 

capacity can be discharged at low rate current. Looking from the perspective of EV 

applications, the available range can be extended by improving control strategy and using 

the Hybrid Energy Sources System (HESS) to lower the current rate in the battery. 

Therefore, to develop advanced HESS and associated control strategy, the Li-ion battery 

internal resistance temperature variation must be well understood. 

The temperature-dependent internal resistance tests can be divided into two parts. 

Part one is to measure the resistance continuously by injecting current pulses when the 
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battery is charging or discharging. The Li-ion battery is discharged at a fixed rate of 1/3C 

and measure the internal resistance every 15 seconds. The current pulse is 2C with 15 

milliseconds duration. Due to the short time duration, the measurement error caused by 

polarization effect is minimized. Fig. 3.11 plots the internal resistance as a function of 

SoC at different temperatures. Among overall SoC range, internal resistance is relatively 

flat, except at the SoC of 100%~90% and SoC of 10%~0%. 
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Figure 3.11 Internal resistance vs. SoC at different temperatures. 

Part two of test measured the internal resistance at fixed SoC at temperatures from 20° 

C to -20° C. First, Li-ion battery is discharged to assigned SoCs and rest at least 12 hours 

to ensure the battery is in a chemical equilibrium state to exclude the polarization effect. 

Then the battery is placed in the temperature chamber for 2 hours before measuring the 
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internal resistance. The internal resistance results at different SoCs are illustrated in Fig. 

3.12. 
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Figure 3.12 Internal resistance vs. temperature at various SoCs. 

Based on the test results from the part one and part two, we can conclude that 

temperature and SoC influence to internal resistance are not correlated. The analytical 

function of internal resistance can be written as: 

𝑅𝑜 = f(𝑆𝑜𝐶, 𝑇) = 𝑓𝑅𝑜,𝑆𝑜𝑐(𝑆𝑜𝐶) + 𝑓𝑅𝑂,𝑇(𝑇)     (3.11) 

𝑓𝑅𝑜,𝑆𝑜𝐶(𝑆𝑜𝐶) = {

𝑎1 ∙ 𝑒
(𝜏1∙𝑆𝑜𝐶) + 𝑎2 ∙ 𝑒

(𝜏2∙𝑆𝑜𝐶)            𝑆𝑜𝐶 > 0.9
𝑎3 ∙ 𝑆𝑜𝐶                                    0.1 ≤ 𝑆𝑜𝐶 ≤ 0.9

𝑎4 ∙ 𝑒
(𝜏1∙𝑆𝑜𝐶) + 𝑎5 ∙ 𝑒

(𝜏2∙𝑆𝑜𝐶)            𝑆𝑜𝐶 < 0.1

   (3.12) 

𝑓𝑅𝑜,𝑇 = 𝑏1 ∙ 𝑇
2 + 𝑏2 ∙ 𝑇 + 𝑏3       (3.13) 
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It is noticed that the function fRo,SoC and fRo,T are separated. The increasing internal 

resistance can be calculated individually by measuring the temperature. The test result of 

Part II signifies that the DC internal resistance increasing at different SoC can be 

described by a quadratic function fRo,T. It also verified that EIS Rs analysis results in 

Chapter 3.2. Parameters in the analytical function are given in Table 3.4. 

Table 3.4 Parameters fitting results of internal resistance function 

a1 1.921∙10-3 b1 2.263∙10-6 

a2 1.596∙10-14 b2 -1.263∙10-4 

a3 0.003 b3 3.776∙10-3 

a4 4.642∙10-3  
 

a5 1.433∙10-3  
 

 

Polarization effect of Li-ion battery 

When Li-ion battery is under charging or discharging at high current rates, its 

terminal voltage is always higher or lower than the OCV. After charging or discharging is 

finished, the terminal voltage slowly returns to the new OCV. This phenomenon is due to 

the polarization effect of the Li-ion battery. The polarization effect is mainly attributed to 

following reasons: when Li-ion battery is discharging or charging at a high current rate, 

the electrochemical reaction rate is lower than the electron transfer rate determined by the 

current. Electrons accumulate in the positive and negative electrodes and then cause the 
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polarization. If the electrode active material diffusion rate is lower than electrochemical 

reaction rate, the polarization effect happens too. 
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Figure 3.13 Voltage and current in polarization test 

Similar to the internal resistance, polarization may cause false capacity losses due to 

the polarization voltage drop. Furthermore, the charging time of Li-ion battery is 

prolonged due to the long CV charging stage caused by polarization. As discussed in 

Chapter 3.2, polarization effect becomes severer when the temperature is low. The 

following tests are designed to explore the temperature and SOC influence to the 

polarization: First, fully charge the battery at 25°C. Then remove 10% capacity by 0.5C 

discharging and rest 40 minutes. Repeat this step until the battery reaches the cutoff 

voltage. Fig. 3.13 plots the voltage and current measurement in the tests. 
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Figure 3.14 Depolarization voltage curve at -20°C 
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Figure 3.15 Two order RC equivalent circuit Li-ion battery model 
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Figure 3.16 Depolarization voltage curve at 0°C 

Fig 3.14 and 3.16 show the comparison of depolarization voltage curves extracted 

from raw voltage data at 0ºC and -20ºC. A two order RC equivalent circuit model shown 

in Fig 3.15 is used to evaluate the depolarization polarization effect in numerical form. 

The sum of UD1 and UD2 represents the polarization voltage and the RC time constant can 

be used to describe the depolarization speed. In this model, the depolarization voltage fUD 

can be calculated when load current is zero (iL=0): 

{
 
 

 
 𝑈̇𝐷1 =

𝑈𝐷1

𝜏1
+

𝑖𝐿

𝐶𝑝1

𝑈̇𝐷2 =
𝑈𝐷2

𝜏2
+

𝑖𝐿

𝐶𝑝2

𝑉𝑡 = 𝑂𝐶𝑉(𝑆𝑜𝐶) − 𝑈𝐷1 − 𝑈𝐷2 − 𝑅𝑜 ∙ 𝑖𝐿

     (3.15) 

𝑓𝑈𝐷(𝑡) = 𝑈𝐷1 + 𝑈𝐷2 = 𝛼 ∙ 𝑒
(−

𝑡

𝜏1
)
+ 𝑏 ∙ 𝑒

(−
𝑡

𝜏2
)
      (3.16) 
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Eq (3.16) shows that the depolarization voltage is the sum of two exponential 

functions of time. Parameters a and b are related to the polarization voltage and time 

constants τ1 and τ2 are related to the depolarization speed. For all measured 

depolarization voltage, the goodness (R-square) of curve fitting is higher than 98%. 

Therefore, these four parameters can be used to evaluate the polarization accurately. The 

variables are plotted in Fig. 3.18 and 3.17. 
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Figure 3.17 Time Constant a (top) and b (bottom) vs. SoC 
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Figure 3.18 Time Constants τ1 (top) and τ2 (bottom) vs. SoC 

As shown in Fig. 3.17, parameters b and a increase linearly with temperature. It 

indicates that the polarization voltage is in inversely proportional to temperature. It 

confirms the conclusion in Chapter 3.2. From the aspect of SoC, the correlation between 

polarization voltage and SoC is not clear at moderate temperatures (above -10°C). 

However, at low temperatures, the polarization voltage become proportional to SoC when 

SoC is lower than 50%, as shown in the blue curve in the plot. 

For depolarization process, Fig 3.18 also shows a linear relationship between the 

temperature and time constant τ1 and τ2. At high temperatures, the depolarization rate is 

slightly higher than at low temperatures. However, the relationship between SoC and 

depolarization rate is not clear. 
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True capacity loss at low temperature 

As mentioned in previous sections, the capacity loss at low temperatures can be 

attributed to two parts: 1. the false capacity loss caused by internal resistance and 

polarization; 2. the real capacity loss due to the phase change of chemical material. To 

investigate the latter one, we conducted the low current ICA test. A tiny current (1/30C) is 

applied to charge and discharge the Li-ion battery. Thus, the early cutoff voltage reaching 

due to internal resistance and polarization effect can be minimized. Tests are conducted at 

three different temperatures: -20°C, 0°C, and 20°C, as shown in Fig. 3.19. At 20°C and 

0°C, the charged capacities are very close: 31.001Ah (100%) and 30.975Ah (99.91%), 

respectively. However, the charged capacity decreases to 28.820 Ah (92.96% of 31Ah) at 

-20°C. 
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Figure 3.19 Voltage response at low current charging 
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It is hard to tell the OCV-SoC difference at different temperatures directly. Therefore, 

the voltage plateau on the charging voltage curve is derived from dQ/dV curve which can 

be used to identify the staging phenomenon and detect the minor change in OCV-SoC. It 

is difficult to apply numerical derivative to the raw voltage data directly due to the 

measurement noise. A series of filtering and fitting are needed to process the raw data. 

The detail of ICA test will be explained in Chapter 4.5. In this chapter, only the capacity 

loss part is discussed. 
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Figure 3.20 ICA test results at different temperature 

The derived dQ/dV results are shown in Fig. 3.20. There are clearly 4 IC peaks in the 

plot at 20°C and 0°C, locate at 3.75V, 3.9V, 4.02V, and 4.07V. These four peaks represent 

four plateaus in the charging voltage curve, which is hard to observe directly from the 
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OCV-SoC curves. For ICA test result at -20°C, it shows that the IC peak #4 and IC peak 

#3 remain the same as the peaks at 20°C and 0°C. However, peak #1 and peak #2 are 

distorted and combined into one peak at 4.05V. The difference between these ICA results 

may be considered as the indications of real capacity difference. Unfortunately, there is 

no theoretical discussion about this phenomenon published. 

Fast charging at low temperature 

Some fast charging methods and standards such as the ―Supercharger‖, ―SAE J1772 

DC level III‖ and ―CHAdeMo‖, are developed to improve the charging speed. They claim 

that more than 80% capacity can be charged within 30 minutes [8]. A series of charging 

tests is carried out to investigate the temperature influence on fast charging. The charging 

current is set to 2C and charging time is limited to 30 minutes. Ideally, 100% capacity can 

be charged into the battery. 

As shown in Fig. 3.21, more than 90% capacity can be charged into the battery at 

25°C. At lower temperatures, the charging capacity reduced significantly: only 63% 

capacity is charged into battery. It can be explained that increased DC internal resistance 

and polarization effect made the battery reaches the cut-off voltage earlier and limited the 

charging current. From the battery chargers aspect, constant voltage (CV) charging mode 

will be applied earlier, so that the output power will drift away from the optimum 

operation point. 
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Figure 3.21 Charged capacity by using 2C fast charging tests at different temperature 

3.4 Summary 

In this chapter, we focus on the study of temperature influence to Li-ion battery. First, 

the temperature dependent performance of the battery is studied through EIS tests and 

theoretical analysis. It suggests that the Ohmic resistance and charge transfer resistance 

increasing at low temperature are the major limitation factors. Next, a series of 

experimental test are conducted to find out the temperature consideration in equivalent 
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circuit modeling and to build temperature compensation functions. It is found that the 

temperature influence to OCV-SoC curves is highly nonlinear and SoC dependent. Both 

internal resistance and polarization resistance are increased significantly at low 

temperature. The fast charging ability of Li-ion at difference temperatures is also 

investigated. 
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CHAPTER 4 

Aging effect in Li-ion Battery Modeling and State-Of-Health Estimation 

4.1 Background 

As the vehicle service time increase, the performance of EV will gradually decrease 

due to the Li-ion battery aging/degradation problem. In general, the capacity and power 

capability are the main indicators to evaluate the performance of Li-ion battery. For EV 

applications, capacity losses cause the reduced available mileage and the decreasing of 

power capability harms vehicle’s acceleration and regenerative brake ability. The Li-ion 

battery aging problem not only involves with the fault diagnostic, prognostic and 

maintenance of vehicles but also is related to vehicle control strategy and power 

management. 

As we discussed in Chapter 2, the performance of SoC estimation algorithm mainly 

relies on the accuracy of Li-ion battery model. Models considering the aging effect could 

dramatically improve estimation accuracy results and robustness of the algorithm. To do 

that, the SoH which is used to describe the aging level of Li-ion battery must be provided. 

SoH is usually defined as the actual battery capacity divided by the nominal capacity [14] 

provided by manufacturers. However, this simple definition is not applicable in EV 

applications. 

Capacity measurement, impedance measurement, parameter estimation, and the coup 

de fouet methods have been used to estimate the SoH. Capacity measurement requires 
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discharging and charging the battery to 0%/100% SoC, which is impractical for the EV 

applications. Battery impedance measurement has been widely used in industry. It 

employs dedicated hardware and software to measure the DC or AC impedance of the 

battery [44, 45] directly. The battery impedance is correlated to SoH. However, the cost 

and invasiveness of impedance measurement prevent its use in the EV applications. Coup 

de fouet [46, 47] is observed in Lead-Acid batteries that have been fully charged, rested 

and then pulse discharged. During the first discharge pulse, the voltage dips, increases, 

levels off at a plateau voltage and then decreases steadily. The voltage dip or undershoot 

has been shown empirically to be proportional to the battery capacity and SoH [48, 49]. 

The electrochemical mechanism behind coup de fouet is still not understood [46] and the 

requirement of full charge followed by rest limits its utility. Parameter estimation 

methods are suitable for dynamic applications such as EV applications. The estimated 

parameters are for specific simplified models of the cell electrochemistry so that they are 

explicitly related to the geometric, material, and electrochemical parameters of the 

underlying model. Thus, changes in the parameter estimates are explicitly correlated to 

specific degradation mechanisms and empirically correlated to the SoH. A variety of 

parameter estimation methods, including Subspace Identification [50, 51], Kalman 

Filtering [33, 52], Fuzzy Logic [53], and Least Squares [54], have been applied to Li-ion 

[36, 54], Ni-MH [33], and Lead-Acid [50, 52] batteries. The Least Squares Method (LSM) 

[55] is used in the present work because of its simplicity, computational efficiency, and 

guaranteed convergence. In [54], this method is used to estimate the coefficients of a 
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reduced order Li-ion battery model [56] and track the evolution of multiple parameters, 

including the capacity, diffusion time constant, and impedance. 

4.2 Li-ion Battery Aging Mechanism 

It not only requires lots of experimental data to build the practical models 

considering the aging effect but also the theoretical understanding of aging mechanism. 

Schlasza et al. [17] presented a review of known Li-ion battery aging mechanisms using 

the failure mode and effects analysis method, which categorized them and established the 

relationship between failure effects and causes. Wang et al. [18] summarized the failure 

modes in three types of batteries in electric vehicle applications. Vetter et al. [19] 

discussed the main aspects of Li-ion battery aging mechanisms, which include aging of 

carbonaceous negative electrodes, lithium metal oxide positive electrodes and electrolyte. 

These researchers indicated that the key of understanding the aging process is the various 

aging aspects in both chemical side and physical side. 

A Li-ion battery has to work within a certain electrochemical window to ensure the 

chemical stability. That is the voltage of Li-ion battery should not exceed the certain 

upper and lower limits. The upper cutoff voltage is determined by the electrochemical 

window of organic electrolyte [20]. The lower cutoff voltage is determined by the 

reduction potential of positive electrode material. When overcharge occurs, the organic 

electrolyte solvent decomposes at the positive electrode due to oxidization. It lowers the 

ion conductivity of electrolyte and causes server polarization. Furthermore, the 
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decomposition of electrolyte generates the heat and gasses. From the point view of the 

electric vehicles, the battery power capability is reduced due to the polarization. When 

the Li-ion battery is over-discharged, the over reduction reaction happens to the transition 

metal ions at the positive electrode. The original lattice structure is damaged, which cause 

the capacity loss [21]. Fig. 4.2 shows the main aspects of Li-ion battery aging 

mechanisms. 

During the normal use, the strain of lattice is the leading cause of Li-ion battery 

degradation [22]. The lattice defect also lowers the ion diffusion rate. At the carbon 

graphite negative electrode, the layer lattice structure is only bonded by the Van der 

Waals' force. The intercalation and deintercalation of ions could easily damage the lattice 

structure and cause the loss of original SEI. The new SEI will grow on the surface of the 

electrode and consume the electrolyte. Moreover, the high temperature will cause the SEI 

accelerated growing and decomposition. Li-ion battery contains lots of flammable 

organic material. Once fire or explosion happens to one cell, the entire battery pack can 

be burnt down in a short time [23]. Fig. 4.1 shows the photo of failed NCM battery and 



77 

LFP battery.

Leak

Bulging

 

Figure 4.1 Failed NCM battery (left) and LFP battery (right) 
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Figure 4.2 Main aspects of Li-ion battery aging mechanisms 
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4.3 Experimental Study of Li-ion Batteries Aging Tests 

In this study, five types of Li-ion batteries are selected as the experimental subjects, 

as shown in Table 4.1 and Fig. 4.3. Three main Li-ion battery chemistry types including 

Lithium Iron Phosphate, Lithium Ni-Co-Mn Oxide, and Lithium Manganese Oxide are 

included. All of these batteries are designed for EVs application. Particularly, part of the 

LFP batteries (A) and NCM batteries (D) are disassembled from used EVs that have been 

tested for more than two years. These aged batteries are great experimental subjects to 

investigate the aging problem and verify the states estimation algorithms. 

A series of aging tests are designed and carried out to collect the aging data of Li-ion 

battery. The test plan is described in the flow diagram shown in Fig. 4.4. First, the 

characteristics of the fresh battery are identified through a set of tests, including capacity 

test, internal resistance test, HPPC test, UDDS test and incremental capacity test. Then 

the Li-ion battery impedance is obtained by using IVIUM n-stat electrochemical 

workstation. Finally, three different aging tests are carried out to explore the influence of 

operating patterns to the battery aging. The aging test repeats until reaching a certain 

cycle number or the appearance of significant capacity loss. 
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C. EIG
217mm * 129mm * 7.2mm

428 g

E. AESC
290mm * 216mm * 9mm

790 g

A. Valence
(d)18mm*65mm

40 g

B. A&S
7.3mm*65.5mm*132.5mm

150 g

D. Electrovaya
240mm * 140mm * 10mm

928 g  

Figure 4.3 Experimental Li-ion batteries A~E 

Table 4.1 Datasheets of 5 different Li-ion batteries 

 Chemistry Type Capacity Voltage Range Package 

A Lithium iron phosphate (LPF) 1.2Ah 2.5V to 3.65V 18650 

B Lithium iron phosphate (LPF) 5Ah 2.0V to 3.65V Prismatic 

C Lithium Ni-Co-Mn Oxide (NCM) 20Ah 3.0V to 4.15V Prismatic 

D Lithium Ni-Co-Mn Oxide (NCM) 30Ah 3.0V to 4.05V Prismatic 

E Lithium Manganese Oxide (LMO) 32Ah 2.5V to 4.2V Prismatic 
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Figure 4.4 Li-ion battery aging tests flowchart 
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As demonstrated in Fig. 4.4, capacity test follows the standard test procedure in the 

datasheet of Li-ion battery. First, a fresh battery is discharged to the cutoff voltage at 0.5 

C current to remove the initial residual capacity. The typical residual capacity is around 

50% of nominal capacity due to the safety requirement of shipping and storage. Then 

charge the battery to full in CCCV (1/20 C cutoff current) mode after one-hour rest. 

Finally, repeat above test three times to obtain the average capacity of the battery. 
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Figure 4.5 Voltage and current in the capacity test 

The internal resistance test uses the pulse function of Arbin BT 2000 to measure the 

Ohmic resistance. Due to the very short pulse time (30 μs), the polarization resistance is 

eliminated from the measurement result, and the battery SoC is not changed. During the 

0.5C constant current discharging, Ohmic resistance is measured every 15 seconds to 
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obtain the continuous Resistance-SoC function. Fig. 4.6 shows the voltage response and 

resistance measurement result of the test. Notice that the voltage impulse appears every 

15 seconds and the impulse does not influence the voltage response during constant 

current discharging. 

The incremental capacity (ICA) test uses extreme low current (e.g. 1/20 C) to charge 

or discharge the battery and obtain the approximate dQ/dV curves for SoH estimation. 

The detail of ICA test will be discussed in chapter 4.5. The sampling rate should be high 

(>5Hz) in this test due to the low charging current. 

When all characteristics tests are finished, the Li-ion battery is moved to the IVIUM 

nStat electrochemical workstation to conduct EIS test. The detail of EIS test has been 

discussed in Chapter 3.2. 

There are three different aging tests, including standard aging test, high power aging 

test and fast charge test. The standard aging test follows the test procedure described in 

the datasheet, which is to cycle the battery at 1C rate for CC discharge and CCCV charge. 

The high power aging test discharge the battery with high current rate (2~5C) and use 1C 

current to charge the battery without CV stage. In the fast charging aging test, both 

discharge current and charge current are set to the maximum allowed value in the 

datasheet.  
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Figure 4.6 Ohmic resistance measurement based on current pulse method  

A piece of typical voltage and current data of A&S LFP Li-ion battery (5Ah) under 

standard aging test are plotted in Fig. 4.7. First, the battery is discharged to cutoff voltage 

(2.0V) at 1C (-5A) rate. After 5 minutes rest, 0.5C (2.5A) rate is used to charge the 

battery in CCCV mode. 
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Figure 4.7 Voltage and current in standard aging tests 

Results and Discussion 

The general status of aging test plan is illustrated in Table 4.2. It is noticed that only a 

few aging tests are carried out on type A and type E batteries. 

Table 4.2 Summary of Li-ion battery aging tests 

Battery Type Capacity Standard aging  High power Fast charge  

AESC (LMO) 32Ah 400 cycles 500 cycles N/A 

Valence (LFP) 1.5Ah 650 cycles N/A N/A 

A&S (LFP) 5 Ah 1200 cycles N/A N/A 

EIG (NCM) 20 Ah 1300 cycles 1300 cycles 350 cycles 

Electrovaya (NCM) 30 Ah 100 cycles N/A N/A 
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For the EIG NCM battery, five cells (#1, 2, 3, 4, and 5) are selected to conduct all 

three aging tests separately. Cell #1 and #2 are cycled 1300 times of high power aging 

tests. The capacity degradation during cycling is shown in Fig. 4.8. Notice the high power 

aging tests only charge the battery in CC mode without CV stage. Therefore, the depth of 

discharge (DoD) in this test is around 85% (17Ah/20Ah). 
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Figure 4.8 Capacity vs. cycles of cell EIG #1and #2, 1C charge 2C discharge. 

The full capacity (0.5C discharge, 0.5C charge CCCV) of the fresh cell EIG #1 

before cycling was 19.56 Ah. After 200 cycles, the full capacity slightly increased to 

19.66 Ah, which is due to the electrode material are being slowly activated at the 

beginning stage of life. After 1300 cycles, the full capacity of EIG #1 remains 18.55 Ah. 

The capacity loss is within 10% compare with the fresh cell (18.55Ah / 19.56Ah). The 
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internal resistance-SoC curves of fresh and aged EIG #1 are plotted together in Fig. 4.9. It 

shows that, after 1300 cycles, the internal resistance of EIG #1 remains similar to the 

fresh state. 
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Figure 4.9 Internal resistance vs. SoC of EIG #1 after 1300 cycles and fresh state. 

Cell EIG # 3 is cycled 1300 times of standard aging tests. Fig 4.10 plots the capacity 

of each cycle in the tests. Notice that the capacity is increased at the first 200 cycles, 

which is similar to EIG#1 and #12. After 300 cycles, capacity gradually decreased to 16 

Ah. Then the capacity starts to drop quickly after 1200 cycles, as shown in the red circle 

in Fig. 4.10. Because of the significant capacity loss, the cycling test of EIG #3 stopped at 

1250 cycles when the rest capacity is around 9 Ah. The internal resistance of EIG #3 at 

900, 1100, 1200 and 1250 cycles are plotted in the Fig. 4. 11. The internal resistance 
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increasing only happens after 900 cycles and the increasing rate also becomes larger 

when the battery approaches the end of life. The increased internal resistance from cycle 

1100 to 1200 (0.4 mOhm) is larger than the total increment from cycle 0 to 1100 (0.2 

mOhm). Finally, the internal resistance becomes four times larger (8 mOhm) than the 

fresh battery. 
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Figure 4.10 Capacity vs. cycles of cell EIG#3, 1C charge, and 1C discharge. 
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Figure 4.11 Internal resistance vs. SoC of EIG#3 at 900, 1100, 1200 and 1250 cycles. 

Cell EIG#4 and EIG#5 are cycled 370 and 330 times of the fast charging test. Notice 

that the only difference between the fast charging test and high power test is the different 

charging current rate. The charging current in fast charging test is 2C without CV stage. 

Fig 4.12 plots the capacity of each cycle in the tests. The capacity degradation pattern is 

similar to the standard test in Fig. 4.10. In the fast charging tests, the capacity dropping 

happens at around 300 cycles for cells EIG#4 and #5. 
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Figure 4.12 Capacity vs. cycle of cell EIG#4, #5, 2C charge and 2C discharge. 

After all EIG battery aging tests are finished, it is found that the surfaces of batteries 

become wrinkle and the thickness increase significantly. Fig. 4.13 shows the photo of a 

fresh EIG battery cell and the EIG #3 after 1300 cycles. In the right side of Fig. 4.13, the 

measured thickness 9.44 mm of EIG #3 is about 30% higher than the fresh EIG battery. 

Thickness measurement results of all EIG cells are given in the Table. 4.3. 
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Figure 4.13 Thickness measurement of fresh EIG battery and after 1300 cycles 

Table 4.3 Thickness measurement of all EIG cells 

EIG # Aging test Thickness (mm) 

Fresh N/A 7.2±0.2  100% 

1 1300 cycles of 2C discharge/1C CC charge 7.72 107% 

2 1300 cycles of 2C discharge/1C CC charge 7.67 106% 

3 1300 cycles of 1C discharge/1C CCCV charge 9.44 131% 

4 370 cycles of 2C discharge/2C CC charge 9.35 130% 

5 330 cycles of 2C discharge/2C CC charge 8.74 121% 

 

Other than NCM battery, the aging tests are conducted in other two LFP batteries, 

including one Valance 18650 cell and two A&S pouch cells (A&S #1 and #2). Due to the 

maximum current limitation, only standard aging tests are conducted. Fig 4.14 plots the 

capacity cycle curves of the aging tests. It is noticed that the capacities of all LFP 

batteries steadily decline from the beginning of the tests. The capacity drop is observed at 
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850 cycles in A&S cell #2. The degradation rate is lower than NCM battery in Fig. 4.10 

and Fig. 4.12. 

 

0 100 200 300 400 500 600 700
0

0.4

0.8

1.2

1.6

2

0 200 400 600 800 1000
3

3.5

4

4.5

5

5.5

Cycle Number (#)

C
ap

ac
it

y
 (

A
h

)

0 200 400 600 800 1000
3

3.5

4

4.5

5

5.5

Cycle Number (#)

C
ap

ac
it

y
 (

A
h

)
C

ap
ac

it
y

 (
A

h
)

Cycle Number (#)

Valence #1 

A&S #1

A&S #2

 

Figure 4.14 Capacity vs. cycle of Valence#1, A&S#1 and #2, at 1C charge/discharge. 

The approximate A&S#2 OCV-SoC curves at different cycle are shown in Fig. 4.16. 

These curves reflect a interesting phenomenon, which is the capacity loss is not uniform 

over the entire range of SoC. 
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Figure 4.15 Voltage plateaus at different cycles (A&S #2) 

For the LFP battery, there are three voltage plateaus in the OCV-SoC curves. These 

voltage plateaus are related to the characteristic of layer-structure graphite negative 

electrode. Researches [24-25] show that the voltage plateaus are corresponding to states 

of material microstructure. These states are essentially determined by the lowest material 

energy state. In different plateaus, the numbers of graphite layers that Lithium ions go 

through in intercalation/de-intercalation are different. The voltage plateaus and graphite 

associated reaction is shown in Fig. 4.16 and Table 4.4. 
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Table 4.4 Graphite intercalation reactions 

Plateau # Chemical reactions 

I LiC12+Li ↔ 2LiC6 

II 2LiC18+Li ↔ 3LiC12 

III 2LiC27+Li ↔ 3LiC18 

IV LiC72+Li ↔ 2LiC36 

Overall Li+C6 ↔ LiC6 
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Figure 4.16 Voltage plateaus in graphite electrode 

Three voltage plateaus shown in the zoom area of Fig. 4.15 are changed in the aging 

tests. Plateaus # 1 and #2 remain the same at the fresh (100% of nominal capacity), 300 

cycles (95% of nominal capacity) and 500 cycles (92% of nominal capacity). It indicates 
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that the most of first 10% capacity loss happens at the plateau #1. Compare 500 cycles 

curve to 900 cycles (83% of nominal capacity) curve; it shows that the entire plateau #3 

is shifted to the left side. It may claim that the capacity loss during this stage is mainly 

due to the shortened plateau #2. Differing from the conventional assumption of the 

uniform capacity loss over entire SoC range, the actual capacity loss is only related to 

certain SoC ranges, as demonstrated in Fig 4. 17. The OCV-SoC curve must be updated 

accordingly to build battery models considering the aging uncertainty. The shift of 

plateaus also causes some other problems. For example, Fig. 4.18 shows the entire 

polarization resistance-SoC curves of A&S#2 are shifted after the aging tests. 
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Figure 4.17 Capacity losses at different aging stages 
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Figure 4.18 Polarization resistance vs. SoC at different cycles 

All Electrovaya NCM battery cells are disassembled from a used electric pickup 

truck, and all AESC battery cells are disassembled from a Nissan LEAF EV, as shown in 

Fig. 4.19. Therefore, the usage histories of these battery cells are unknown. An 

Electrovaya battery cell with 29.5Ah capacity is selected to conduct the standard aging 

test. Two AESC battery cells (AESC#1 and #2) are selected to carry out the standard 

aging test and high power aging test. 
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Figure 4.19 Electrovaya battery and AESC battery packs 

Test results in Fig. 4.21 and Fig. 4.22 show that the capacities of Electrovaya #1 and 

AESC #2 decrease to the 80% of their initial capacity within 150 and 200 cycles. The 

high power aging test result (AESC #1) shows that the capacity drops quickly after 100 

cycles. 
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Figure 4.20 Capacity vs. cycle of AESC#1 and #2 

0 20 40 60 80 100 120 140 160 180 200

18

20

22

24

26

28

30

Cycle number (#)

C
ap

ac
it

y
 (

A
h

)

Electrovaya #1

 

Figure 4.21 Capacity vs. cycle of Electrovaya#1 
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4.4 State-Of-Health Estimation via Incremental Capacity Analysis 

In the previous chapter, we have discussed the Li-ion battery aging and modeling 

considerations. To utilize these modeling techniques in practice, one must be able to tell 

the SoH of Li-ion battery. SoH is used to describe the health level of Li-ion battery and is 

mainly presented in the degradation level of capacity and power. Capacity loss lowers the 

available mileage of EVs, and power degradation reduces the acceleration and 

regenerative brake abilities. Instead of using a single indicator such as the capacity, the 

SoH should be evaluated comprehensively. Direct capacity measurement, impedance 

measurement (EIS), battery model parameters identification, and incremental capacity 

analysis are major SoH estimation methods for Li-ion batteries. 

Direct capacity measurement is to fully discharge/charge the battery and obtain its 

capacity. Typically, this method is used in electronics devices such as Laptop computers 

for battery calibration. However, it is impractical for EV applications due to the high 

capacity/power of the battery pack used in EVs. As introduced in Chapter 3, the EIS 

measurement use dedicated hardware (the electrochemical workstation) to investigate the 

frequency response characteristics related to SoH. Therefore, it is only practical in the 

laboratory [26, 27]. Parameters identification is a promising method for EV applications. 

Parameters are identified through specific Li-ion battery models and the collected data 

such as current, voltage and temperature. So the change of the identified parameters is 

explicitly correlated to specific degradation mechanisms and the SoH.  
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As mentioned in Chapter 4.4, the battery internal resistance are correlated with the 

cycle in the aging tests. Total 50 Electrovaya cells are disassembled from a used battery 

pack to build the correlation function of internal resistance and SoH. Capacities and 

internal resistance of all cells are plotted in Fig. 4.22. It clearly shows that, in general, 

cells with higher capacity have lower internal resistance. The internal resistance 

increment at low SoC is also higher when the battery is more aged. The average internal 

resistance value of each cell from 100% SoC to 0% SoC is calculated and plotted on the 

horizontal axis of Fig. 4.23, while the capacity of each cell is plotted on the vertical axis. 

We can draw the conclusion from the Fig. 4.23 that the internal resistance is in linear with 

capacities and can be used to determine the SoH. However, to obtain the averaged 

internal resistance in practical is a challenge. Another problem is that the internal 

resistance is highly temperature dependent, as discussed in Chapter3. 
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Figure 4.22 Internal resistance vs. capacities of all 50 Electrovaya cells 
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Figure 4.23 Average internal resistance vs. capacity of all 50 Electrovaya cells 
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Demonstrated in Fig. 4.15, the OCV-SoC curve is another characteristic that is 

related to the SoH. The changes in OCV-SoC curve often reflect the battery degradation 

[31]. Therefore, it may use the incremental capacity analysis (ICA), also called 

differential capacity analysis, to study the origin of degradation and estimate the SoH [32]. 

This method highlights the phase transitions of the battery voltage in charging or 

discharging. Therefore, we can use the current and voltage data during the battery 

charging to conduct the ICA. Therefore, the ICA based SoH estimation is a promising 

method for practical use. The differential capacity dQ/dV curve is obtained by 

differentiating the capacity versus voltage. It is defined in the discrete equation below: 

𝑑𝑄

𝑑𝑉
=

|𝑄𝑛−𝑄𝑛−1|

𝑉𝑛−𝑉𝑛−1
, 𝑛 = 2,… ,length of data     (4.1) 

where Qn, Vn are capacity and voltage measurement at a certain sampling point n. Ideally, 

the voltage data should be the approximately OCV, which can be obtained through low 

current charging/discharging tests or measuring the voltage after a long relaxation period. 

Although ICA is an effective tool for SoH estimation, to calculate the dQ/dV directly 

from raw data is difficult. That is because the measurement noise and quantization noise 

are unavoidable due to the limited bits and limited bandwidth in ADC. Therefore, a series 

of signal processing is needed before the ICA. First of all, it should notice that the 

sampling period of DAQ system, i.e. the Arbin BT 2000, is not uniform. For example, set 

the sampling period to be 0.5s, the actual sampling periods varies from 0.51s to 0.58s 
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randomly, as shown in Fig. 4.24. It is critical to use the correct sampling period in ICA 

test, especially in the flat voltage plateau region. 
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Figure 4.24 Sampling problem of Arbin BT 2000 

The second challenge is the quantization noise. Although the Arbin BT2000 use a 16 

bits ADC to collect data; the resolution is not high enough when the dv/dt rate is very 

small at plateau region. Fig 4.25 plots the zoomed voltage with 2 Hz sampling rate. The 

minimum voltage resolution is around 0.3 mV. If we calculate dQ/dV curve directly from 

the raw data by using diff function in the MATLAB, the result is entirely distorted due to 

quantization noise, as shown in Fig. 4.26 top part. Setting the differentiation interval from 

0.5s to 500 s, the calculated dQ/dV curve is better, as shown in Fig. 4.26 bottom part. 

However, the resolution is still not insufficient to present the ICA peaks clearly. 
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Figure 4.25 Raw voltage data when battery is in charging. 
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Figure 4.26 dQ/dV curves by using diff function (up) and modified diff function (bottom) 
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A series of filtering and fitting process is needed to obtain the clear dQ/dV curves for 

SoH estimation. As known, smooth data can be obtained by increasing the order of the 

filter. However, the high order filters also cause the over-fitting problem and attenuate the 

true data. Therefore, the desired filtering method for ICA should be able to adjust its 

order and filter coefficients automatically. In this study, an adaptive filtering algorithm is 

developed to process raw data and calculate the dQ/dV. The flow chart of this algorithm 

is shown in Fig. 4.27. 

First, the entire raw data is processed by a two degree Savitzky–Golay filter with a 

span of 1/10 data length for the smoothing purpose. By doing this, most of the 

quantization noise is removed at low voltage variation ∆V region. However, the 

over-fitting problem occurs at high voltage variation ∆V region. Then it needs to subtract 

processed data from raw data to obtain the removed noise. Known the minimum voltage 

resolution of Arbin BT 2000 is 0.3 mV, any removed noise higher than 0.6mV should be 

considered as the over-fitting. The over-fitting usually occurs at the beginning or ending 

of charge/discharge where voltage variation ∆V rate is high. By comparing with the 

0.6mV threshold, the over-fitted data can be found. Repeat these filtering processes to the 

over-fitted data with lower orders until the removed noise is lower than the threshold. 

Finally, it can reorganize the data for the final dQ/dV calculation. 
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Figure 4.27 Adaptive filtering process for ICA 

In conventional ICA in the electrochemical study, the charging current is set to be 

very low (1/20C) to eliminate the polarization effect. However, for EV applications, the 

battery charging time is usually less than 8 hours when using an onboard AC charger, or 

less than 2 hours when using a DC charging station. In this study, the charging current in 

the ICA tests is set to be 0.3C~2C. The comparison of 1/20C and 1/2C ICA tests (A&S #2) 
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are plotted in Fig.4.28 and Fig. 4.29. The dQ/dV curves obtained from 1/20C current 

charging has very high IC peaks #2 at 3.33V due to the flat plateau. The flat plateaus not 

only create difficulty in the smoothing process but also eliminate the internal resistance 

difference. As shown in Fig. 4.28 up part, the horizontal difference in ICA peak #3 of all 

dQ/dV curves is too small to identify, and the IC peak 2# is not smoothed at all. The 

dQ/dV curves obtained from 1/2C current charging show that both IC peak #1 and #3 

have good correlations with cycles, which is more suitable for SoH estimation. 

Other than LFP batteries, voltage plateaus of NCM and LMO batteries are much less 

flat, as plotted in Fig. 4.30 and Fig. 4.31. Both IC peak #1 and #2 in EIG NCM battery 

show the possibility for SoH estimation. Notice that when EIG#3 is considered to as a 

failed battery after 1300 cycles, the corresponding dQ/dV curve become extremely flat 

and all IC peaks disappeared. For AESC LMO battery, three of total four IC peaks in the 

dQ/dV curves (#1, #3 and #4) are capable of SoH estimation. The correlation between IC 

peak #2 and the SoH is not clear. The peak #2 also disappears at low temperatures, as 

discussed in Chapter 3.3. 
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Figure 4.28 dQ/dV curves of A&S#2 using 1/20 C current 
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Figure 4.29 dQ/dV curves of A&S#2 using 1/4 C current 
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Figure 4.30 dQ/dV curves of EIG#2 using 1/2 C current 
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Figure 4.31 dQ/dV curves of AESC#2 using 1/3 C current 
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4.5 Bias Correction Modeling Method for Aged Li-ion battery 

Based on the conclusion in previous sections, the inconsistency of Li-ion battery 

cells can be summarized as the difference of capacities, OCV~SoC, internal resistance, 

and polarization. Each cell model in the Li-ion battery pack can be built based on the 

reference model with bias functions, as demonstrated in Fig. 4.32. First, select a standard 

cell from the battery pack to build the reference battery model. Then apply the ICA based 

SoH estimation method to each cell and use the estimation result to build the bias 

correction function. Finally, the modified models can be obtained from each cell by 

combining the reference model and bias correction function. 

Reference Cell Cell #1 Cell #N

Reference 

Model

Bias Correction 

Function #1

Reference 

Model

Bias Correction 

Function #N

 Battery Series Connected Pack Model

Cell Model #1 Cell Model #N

ICA ICA

+ -
+ -

… 

… 

 

Figure 4.32 Overview of pack modeling based on bias correction and ICA method 

Select the Electrovaya NCM battery as an example, the bias correction modeling 

procedure is given below. Three dQ/dV curves from a standard reference cell and two 

target cells are obtained from 0.5C constant current charging, as shown in Fig. 4.33. Two 
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IC peaks #1 and #2 locating at the voltage range from 3.5V to 3.8V denote the two 

plateaus on the charging voltage curves. 
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Figure 4.33 dQ/dV curves of reference cell and two aged target cells 

Plateau happen at the same OCV range with the same electrode material, the 

horizontal differences in IC peak #2 can be used to represent the resistance inconsistency. 

Set the identification results from the HPPC test as the reference, the goodness of 

estimation results based on the ICA method is up to 87%. Both vertical and horizontal 

difference of IC peaks #1 and #2 are used jointly to build the capacity and OCV bias 

functions. Based on the ICA tests results, the improved model with bias correction 

functions fn(ICAn,ICA0) can be written as: 
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{
 
 

 
 

𝑅𝑜
′(𝑆𝑜𝐶) = 𝑅𝑜(𝑆𝑜𝐶) + 𝑓𝑅𝑜(𝐼𝐶𝐴𝑛, 𝐼𝐶𝐴0, 𝑆𝑜𝐶)

𝑅𝑃
′(𝑆𝑜𝐶) = 𝑅𝑃(𝑆𝑜𝐶) + 𝑓𝑅𝑃(𝐼𝐶𝐴𝑛, 𝐼𝐶𝐴0, 𝑆𝑜𝐶)

𝐶𝑃
′(𝑆𝑜𝐶) = 𝐶𝑃(𝑆𝑜𝐶) + 𝑓𝐶𝑃(𝐼𝐶𝐴𝑛, 𝐼𝐶𝐴0, 𝑆𝑜𝐶)

𝑂𝐶𝑉′(𝑆𝑜𝐶) = 𝑂𝐶𝑉(𝑆𝑜𝐶) + 𝑓𝑂𝐶𝑉(𝐼𝐶𝐴𝑛, 𝐼𝐶𝐴0, 𝑆𝑜𝐶)

  (4.2) 

where ICA0 and ICAn denote the ICA peaks of reference battery and target battery 

respectively; RO, RP, CP and RO’, RP’, CP’ denote the model parameters of the reference 

battery and target battery. These bias correction functions f(ICAn, ICA0, SoC) as follow: 

{
 

 𝑓𝑅𝑂 = 𝑎1(𝑉𝐼𝐶𝐴𝑛 − 𝑉𝐼𝐶𝐴0)
2
+ 𝑎2(𝑉𝐼𝐶𝐴𝑛 − 𝑉𝐼𝐶𝐴0) ∙ 𝑓(𝑆𝑜𝐶)

𝑉 ∈ (
𝑑𝑄

𝑑𝑉
>

𝑑𝑄

𝑑𝑉𝑚𝑎𝑥
)

𝑓(𝑆𝑜𝐶) = 𝑎3 + 𝑎4 ∙ 𝑆𝑜𝐶 − 𝑎5 ∙ 𝑆𝑜𝐶
2

  (4.3) 

{
𝑓𝑅𝑃 =

1

𝑛
∑ (𝑉𝐼𝐶𝐴𝑛 − 𝑉𝐼𝐶𝐴0)
𝑛
𝑖=1 ∙ 𝑏1

3.71 < 𝑉 < 3.96
      (4.4) 

{
 

 𝑓𝑜𝑐𝑣 = 𝑐1(𝑉𝐼𝐶𝐴𝑛 − 𝑉𝐼𝐶𝐴0)
2
+ 𝑐2(𝑉𝐼𝐶𝐴𝑛 − 𝑉𝐼𝐶𝐴0) ∙ 𝑓(𝑆𝑜𝐶)

𝑉 ∈ (
𝑑2𝑄

𝑑𝑉2
< 𝑐3)

𝑓(𝑆𝑜𝐶) = 𝑐4 + 𝑐5 ∙ 𝑆𝑜𝐶 + 𝑐6 ∙ 𝑆𝑜𝐶
2

  (4.5) 

where V0 denotes ICA peak #2 voltage in the reference model, Vn denotes ICA test peak 

#2 voltage in the target model. As shown in functions fRo, fRP, fOCV , the Ohmic resistance 

difference is represented by a quadratic polynomial of lateral voltage shifting of ICA peak 

#2, where dQ/dV reaches the maximum value. Capacity and OCV difference are also 

represented by a quadratic polynomial of the position difference of both IC peak#1 and 

peak#2 in the dQ/dV curves. For relaxation processes difference, a simple empirical 

function drawn from the average voltage difference at IC peak #1from 3.7V to 3.96V is 

applied. 
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Table 4.5 Parameters in bias correction functions 

Parameters Value Parameters Value Parameters Value 

a1 23 b1 0.27 c1 0.03 

a2 1.7   c2 0.95 

a3 0.507   c3 127 

a4 0.0107   c4 0.418 

a5 5.87∙10
-4

   c5 0.0353 

    c6 0.00383 

 

An example of internal resistance modeling based on the bias correction method is 

shown in Fig. 4.34. In this example, the horizontal voltage difference of the main IC 

peaks #1 between the target cell and reference cell is 188 mV (3.889V - 3.701V). The 

calculation of corresponding bias function at 50% SoC and bias corrected/measured 

Ohmic resistances are given below and in Table 4.6. 

The Federal Urban Driving Schedule (FUDS) is applied to all 50 cells to collect 

voltage and current data to evaluate the performance of bias correction method. The cell 

with the highest capacity is selected as the benchmark to build the reference model. 

Compared with the voltage prediction results from the HPPC based one order RC battery 

model, the voltage prediction result of bias correction method remains good. The average 

voltage errors of all 50 Li-ion battery cells are within 12 mV. The voltage prediction 

results by using both the bias correction method and the HPPC modeling method are 

displayed in Fig. 4.35. 
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{

𝑓𝑅𝑂(0.5) = 23 ∙ (3.889 − 3.701)
2 + 1.7 ∙ 10−1 ∙ (3.889 − 3.701) ∙ 𝑓(0.5)

𝑉 ∈ (
𝑑𝑄

𝑑𝑉
>

𝑑𝑄

𝑑𝑉𝑚𝑎𝑥
)

𝑓(0.5) = 0.507 + 0.0107 ∙ 0.5 − 5.87 ∙ 10−4 ∙ 0.52 = 0.512

 (4.6) 

𝑓𝑅𝑂(0.5) = 23 ∙ 0.188
2 + 1.7 ∙ 10−1 ∙ 0.512 = 0.82927 𝑚𝑂𝑕𝑚 

Table 4.6 Corrected Ohmic resistance and measured value 

SoC (%) Corrected resistance (mOhm) Measured resistance (mOhm) Error (%) 

100 3.35 3.27 2.39 

50 3.4 3.39 0.5 

10 3.78 3.81 0.79 
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Figure 4.34 Example of Ohmic resistance correction. Measured resistance and bias 

corrected resistance calculated based on reference model. 
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Figure 4.35 Voltage predictions in the FUDS tests. 
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The pack model is the combination of 50 bias corrected individual cell models 

together. The voltage prediction error comparison of the proposed method and the 

uncorrected single cell method shows that the error of the proposed modeling method is 

much lower, as illustrated in Fig. 4. 36. It is noted that the prediction error of each cell is 

less than 45mV, which is close to the standard HPPC method. However, the model error 

increases when SoC reaches 85% and higher. The dQ/dV peak # 3 in the high voltage 

range (3.8~4.05V) is distorted at the 0.5C high charging current. It is expected to improve 

the accuracy by adding the SoC as a state variable in functions f2/f3, and to consider the 

correlation between the temperature, aging, polarization effect and IC peaks. 
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Figure 4.36 Voltage prediction error in average cell model and bias correction model. 

4.6 Summary 
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In this chapter, Li-ion battery aging mechanism is studied first. It shows that the 

aging is caused by both physical and chemical process in the battery. Then, a series of 

aging tests are designed and carried out to understand the degradation path. It shows that 

the high charging current with deep DoD are the major aging factors. The incremental 

capacity analysis is applied to experimental data to estimate the SoH. It shows that the 

incremental capacity peaks in dQ/dV curve can track the SoH accurately. Finally, a bias 

correction modeling method using the SoH is proposed. It can model the entire aged 

battery pack by using the model of a reference cell and bias functions. 
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CHAPTER 5 

Modeling of Battery Packs with Parallel-Connected Cells 

The power and energy demands of PHEVs and EVs are usually higher than HEVs’ 

due to their full electric driven powertrain. The peak power requirement of a typical 

four-seat passenger EV can be up to 80~150 kW [9], compare with the 50kW in similar 

HEV. Hundreds of Li-ion battery cells are connected in series and parallel [10] to 

compose the battery pack to satisfy the demands. For examples, the battery pack in a 

Nissan Leaf EV consists of 192 LMO cells with two cells in parallel [11]; a Chevrolet 

Volt PHEV’s battery pack is composed of 288 NCM Li-ion battery cells with three cells 

in parallel [12]. 

For series connected Li-ion battery cells, it is feasible to monitor the voltage and 

current of each cell. However, there are tremendous difficulties to monitor the current in 

parallel connected cells. Ideally, the current of each cell can be obtained through divide 

the total current by the number of cells in parallel. However, in practice, the inconsistency 

problem of Li-ion battery cells may cause unbalanced current and further aging issue. 

This chapter focuses on the study of the characteristics of parallel-connected Li-ion 

battery. A series of experimental tests are designed and conducted to investigate the cell 

inconsistency problem together with influence on parallel connected Li-ion battery pack 

for EVs application. Based on the experimental results and analyses, unbalanced current 
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in the 2, 3 and 4 Li-ion battery cells in parallel are discussed and simulated through 

MATLAB/Simulink based battery pack model. 

5.1 Cell Inconsistency Problem 

The cell inconsistency problem limits the overall performance of Li-ion battery packs. 

Once multiple Li-ion battery cells are assembled into a battery pack, this pack cannot be 

regarded as the sum of individual cells. Based on the Cannikin Law (Wooden Bucket 

Theory), the poorest cell determines the battery pack performance, as shown in Fig. 5.1. 

Individual cells with the lowest and highest SoCs are used to determine the SoC of the 

entire battery pack. As discussed in Chapter 4, severe polarization effect more likely 

happens to aged cells, which generate more heat and then cause accelerated battery 

degradation [13]. As the increase of operating time, the inconsistency problem will 

become worse. 

High 

SoH

Low 

SoH

High

SOC

Low

SOC

the poorest cell 

 

Figure 5.1 Inconsistency problem in battery pack 
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A variety of factors causes the cell inconsistency problem. During the battery 

manufacturing stage, technique faults, impurity of electrode materials, and human 

operation errors can result in the initial cell characteristics differences, such as the 

different initial capacities and internal resistance. Different operating conditions, such as 

various environmental temperatures and charging/discharging power rate, may cause 

further different degradation rates, and then make the inconsistency problem worse. 

By improving the manufacturing technique and reinforcing the quality control, the 

initial cell characteristics differences can be reduced. The balancing circuit in the battery 

pack can inhibit the initial SoC variation and prolong the lifetime of the battery pack at 

some level. However, cell inconsistency problem in parallel connected Li-ion battery 

pack remains a significant challenge. 

5.2 Parallel connected Li-ion Cells Experimental Setup and Design 

Test Bench Setup and Noise Filtering 

To investigate the cell inconsistency problem in parallel connected Li-ion battery 

packs, we build a test bench system capable of measuring the current of each cell, as 

shown in Fig. 5.2. The Arbin BT2000 battery test system conducts the 

charging/discharging tests to battery packs and records the voltage, total current, and 

temperature data. For each branch of parallel connected cells, the voltage and current data 

are measured and recorded by Hall Effect current transducers (LEM LC 300-S), precision 
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isolation amplifiers (Analog Device AD210) and dSPACE DS1104 R&D controller 

boards. 

...

+

_

Arbin 

BT2000

dSPACE

Temp Chamber

AD210 &

LC 300-S

Battery

Cells

...

Data

 

Figure 5.2 Schematic of parallel connected Li-ion cells experimental setup 

Notice that the primary current measuring range of the LEM LC 300-S is 0~700A, 

which is greatly higher than the branch current (0~30A) in these experiments. Therefore, 

5 turns multiple winding of connector wire are used to adapt the actual current range and 

increase the measurement accuracy. For voltage acquisition, although the Analog AD210 

have wide bandwidth (20kHz @ -3 dB) and high CMR (120 dB), the recorded voltage 

data contain lots of noise, as shown in Fig. 5.3. These low-frequency noises are usually 

discrete and have much higher or lower magnitude than correct voltage data, while the 

right voltage data is continuous and current determines the variation rate (dV/dt) in the 

Li-ion battery. 
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Figure 5.3 Recorded raw voltage data. Red circles indicate the low-frequency discrete 

measurement noise from AD210 isolation amplifier. 

An adaptive filter algorithm capable of identifying these noises is designed to process 

the raw voltage data. In this algorithm, the t+2
th

 value is compared with previous t+1
th

 

value and next t+3
th

 value to obtain two voltage differences. If the both differences are 

greater than the threshold dV/dt rate, the t+2
th

 value is considered as the corrupted data. 
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By comparing with multiple data points from both current and voltage, it avoids 

considering mistakenly the voltage step response caused by current as the noise data. Fig 

5.4 shows the correct data is successfully restored from raw data by using the adaptive 

filter algorithm, and the magnitude of removed noise is within 50mV 

Table 5.1 Adaptive Filter Algorithm Flow Chart 

Algorithm Adaptive Filter to eliminate measurement noise 

Require: t, V(t), I(t), Length(V), dv/dtmax 

  loop 

while (t<(Length(V)-2)) do 

  if (||V(t+2)-V(t+1)||> dv/dtmax) and (||V(t+3)-V(t+2)||> dv/dtmax) 

    V(t+2)=0.25∙(V(t+4)+V(t+3)+V(t+1)+V(t)) 

  end if 

t=t+1 

end while 

  end loop 
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Figure 5.4 Comparison of raw data, processed data, and filtered noise 

Experiment Design 

A total number of 34 used NCM Li-ion battery cells with various degradation levels 

are selected for the experiment. These battery cells have been used in a prototype 

Chrysler electric pickup truck for more than four years. As show in Fig. 5.5, all cells are 

connected originally in series to compose the battery pack, which means the current in all 

battery cells are same. The nominal battery voltage is 3.7V with nominal capacity 32 Ah. 

The upper cut-off voltage is 4.05V; the lower cut-off voltage is 3.0 V. 
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…

 

Figure 5.5 Battery pack disassembled from the prototype pickup EV 

First, each Li-ion battery cell is disassembled from the pack to measure the capacity 

through 3 cycles of fully CCCV charging/CC discharging at 0.5 C (16A) current at room 

temperature (25°C). Capacities of all 34 cells are in the range of 58% to 99% of the 

nominal capacity of the maximum 31.7 Ah and the minimum 18.7 Ah. Most cells remain 

80% or higher capacity, as shown in Fig. 5.6. 
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Figure 5.6 Cells capacity statistical distribution 

All cells are assembled into 27 groups with two, three and four cells in parallel. A 

series of tests are carried out for model parameters identification and validation. These 

tests include capacity test, Hybrid Pulse Power Characterization (HPPC) test, Dynamic 

Stress Test (DST), Urban Dynamometer Driving Schedule (UDDS) test and Federal 

Urban Driving Schedule (FUDS) test. The capacity test consists of three cycles of CCCV 

charge/discharge patterns between 3V to 4.05V with charge/discharge rates of 0.5C and 

CV to 0.05C in about the sum of capacities. The DST, HPPC test are used to examine the 

dynamic power capability incorporating both discharge and regenerative current pulses 

and provide the data for parameters identification. The UDDS test and FUDS test are 

based on real world drivers in midsized vehicles and used to simulate the actual road 
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driving. For consistency, all experiment except capacity test begins with the battery at 90% 

SoC for charging ability test. 
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Figure 5.7 Voltage and current in HPPC test 

Three cells (#15, #19 and #13) with similar capacity and one cell (#24) with much 

lower capacity are selected to compose group 1 and group 2 of two cells in parallel. Three 

cells (#06, #13, and #25) and four cells (#05, #06, #13, and #27) with similar capacity 

difference are selected to compose the group #3/#4 of three/four cells in parallel. As 

shown in Table 5.1, group #1 and group #2 each has two cells in parallel with 0.5 Ah and 

10.5 Ah capacity difference; Group #3 has three cells with 4 Ah capacity difference; 

Group #4 has four cells with 2.5 Ah capacity difference. 
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Table 5.2 Summary of tested Li-ion battery cells 

Group 

Number 

Cell number and capacity (Ah) Capacity 

difference (Ah) 

#1 #15 

(31.7) 

#19 

(31.2) 

  0.5 

#2 #13 

(31.7) 

#24 

(21.2) 

  10.5 

#3 #06 

(22.7) 

#13 

(31.7) 

#25 

(27.3) 

 4 

#4 #14 

(29.7) 

#15 

(31.7) 

#31 

(30.1) 

 1 

#5 #04 

(31.5) 

#11 

(31.1) 

#20 

(24.9) 

 6 

#6 #05 

(28.7) 

#06 

(22.8) 

#13 

(31.7) 

#27 

(26.3) 

9 

#7 #14 

(29.7) 

#15 

(30.7) 

#16 

(30.2) 

#31 

(30.1) 

1 

#8 #02 

(24.9) 

#03 

(29.8) 

#18 

(29.4) 

#26 

(29.4) 

5.4 

 

Also, EIS of cells #15, #19, #13 and #24 are obtained to verify the aging level of 

each cell. The EIS test is conducted through the electrochemical workstation ZAHNER 

IM6 with 10 mV AC excitation from 25 mHz to 1 kHz, as shown in Fig. 5.8. The EIS 

result indicates that the degradation level of cell #24 is highest among four cells. 
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Figure 5.8 EIS test result of Cell # 13, 15, 19, and 24 

5.3 Two Cells Connected in Parallel 

For two cells connected in parallel, the measured capacities are significantly lower 

than the sum of individual cells, as the static result shown in Fig. 5.9. The capacity losses 

range from the minimum 0.5Ah to the maximum 3.5Ah. 
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Figure 5.9 Statistics of capacity loss in 2 cells in parallel 

Fig 5.10 ~ 5.11 display the discharge current distribution in the capacity tests of 1C 

(32A)/2C (64A) for group #1 and group #2. Compare with group #2, the current 

difference between cells in group #1 (<2A) is much lower than group #2. It indicates that 

the internal resistance or potential difference in group #2 is larger than group #1. 

According to test results in Chapter 3, the internal resistance of Li-ion battery is an 

approximate constant at a fixed environmental temperature, unless the SoC approaches 

nearly 0%. Moreover, we may see the current are still flowing between cells when the 

discharging is finished after reaching the cut-off voltage. It verifies that the potential 
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difference between cells is the major factor that causes the current difference, especially 

at low SoC. The current difference in Group #2 becomes larger near the discharging 

terminal stage. It indicates that the SoC of cell #24 reaches zero earlier than #13, which 

causes cell #24 OCV dropping quickly. Then cell #13 is forced to flow more current to 

maintain same voltage. When discharging current increase, the current difference turns to 

become larger at the end of discharge and the circulating current increase too. The cells 

impedance measurement results in Fig 5.8 indicate that significant differences exist in 

cell #24 and #13, #15, #19. Both imaginary and real part of the impedance of cell #24 are 

higher than other cells, which shows that the degradation level of #24 is highest among 

cells. 
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Figure 5.10 Discharge current of cell #15 and #19 at 1C rate (up) and 2C rate (bottom) 
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Figure 5.11 Discharge current of cell #13 and #24 at 1C rate (up) and 2C rate (bottom) 
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Figure 5.12 Charge current of cell #19 and #15 at 0.5C rate (up); #13 and #24 (bottom) 
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Dynamic Lumped Model of 2 Cells Connected in Parallel  

To further analyze and predict the characteristics of cells parallel-connected packs, 

the lumped one order equivalent RC circuit model of the battery pack is built in 

MATLAB/Simulink. The current difference between iL1 and iL2 is mainly due to the 

potential difference which is related to the internal parameters in the model such as 

Ohmic resistance Ro, polarization capacitance Cp , resistance Rp, and OCV-SoC. The 

voltage response of the lumped parameter model can be expressed as: 

{
𝑈̇𝑘 = −

𝑈𝑘

𝑅𝑘𝐶𝑘
+ 𝑖𝐿𝑘/𝐶𝑘

𝑈𝑡,𝑘 = 𝑂𝐶𝑉𝑘 − 𝑈𝑘 − 𝑖𝐿𝑘𝑅𝑜,𝑘
 (𝑘 = 1, . . )     (5.1) 

These SoC dependent parameters are identified through the HPPC test data. Select 

group #1 and #2 as examples; the parameters identification results are plotted in Fig 5.13. 

The Ohmic resistance Ro difference between #13 and #24 is around 0.8 mOhm in most of 

the SoC range. The Ohmic resistance difference between cell #19 and #15 is much 

smaller, within 0.4 mOhm. The polarization capacitance Cp and resistance Rp has the 

similarity at a constant level. 
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Figure 5.13 SoC dependent parameters identification results of the one order RC 

equivalent model 

Fig. 5.16 shows the dynamic lumped parameter model of the battery pack with two 

cells in parallel by using MATLAB/Simulink. In this model, two cell models are 

connected in parallel with a controlled current source as the load. Two same resistors are 

added into models to present the wire resistance to avoid the algebraic loop problem in 

the simulation. The SoC calculation of each cell is based the Coulomb counting method. 
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The initial SoC(0) and nominal capacity can be set separately. Fig 5.17 shows the one 

order RC equivalent circuit model used in the upper battery pack model. These SoC 

dependent parameters, OCV, Rp, Ro, and Cp are updated by using look-up tables when SoC 

changes at the upper pack model. 
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Figure 5.14 Experimental and simulated current distribution at 1C discharging 
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Figure 5.15 Experimental and simulated current distribution at 2C discharging 

Simulation results of group #1 and group #2 at 1C and 2C rate are shown in Fig. 5.14 

and Fig. 5.15. The current in simulation match the measured current very well at the most 

range of SoC, except when SoC approaches 0%. The reason is that the OCV and other 

parameters are highly non-linear especially at the end of discharging. Moreover, HPPC 

used to identify these parameters only covers 10% to 100% SoC. The thermal effect of 

Li-ion battery at continuous discharging is also not considered. 
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Figure 5.16 Parallel connected battery pack model based on MATLAB/Simulink 
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Figure 5.17 One order RC equivalent circuit model used in the pack model 
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5.4 Three and Four Cells in Parallel 

By increasing the number of cells in parallel, the current average difference between 

each cell is decreased. The discharge current of Group #3~#8 is shown in Fig. 5.18 and 

Fig. 5.19. The capacity difference between the highest and the lowest remains around 10 

Ah, same as Group #2. With 3 Ah capacity difference between each cell in Group #4, the 

discharging current difference is around 2 A. The distribution shows that the current of 

each cell is proportional to capacity, except when SoC is close to zero. 

It is also noticed that group #5 and group #8 are composed of cells with similar aging 

levels. The current of each cell is very even at most of the time during discharging and 

charging. However, unbalanced current in cells increase when SoC is lower than 15%. 

The current in cell #15 increase to 125% of the ideal current and cell# 16 current increase 

to 130%. Therefore, it may come a conclusion that the final 10%~15% SoC capacity of 

parallel connected cells should be avoided to use to prevent the high unbalancing current. 

5.5 Summary 

This chapter mainly studies the characteristics of parallel connected battery packs 

composed of cells with different aging levels. The characteristics of parallel connected 

battery packs are discussed based on experimental tests and simulation. Cells in parallel 

can lead to accelerated degradation process due to the unbalanced current distribution. 



141 

1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22
-5

0

5

10

15

20

25

9 9.2 9.4 9.6 9.8 10 10.2 10.410.6
-25

-20

-15

-10

-5

0

5

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
-5

0

5

10

15

20

25

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
-20

-15

-10

-5

0

5

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
-5

0

5

10

15

20

25

 

 

5.6 5.8 6 6.2 6.4 6.6 6.8 7

-16

-12

-8

-4

0

Time (S)

C
u

rr
en

t 
(A

)

Time (S)

C
u

rr
en

t 
(A

)

Time (S)

C
u

rr
en

t 
(A

)

Time (S)

C
u

rr
en

t 
(A

)

Time (S)

C
u

rr
en

t 
(A

)

Time (S)

C
u

rr
en

t 
(A

)

#15 #14 #03 #15 #14 #03

#20 #04 #11 #20 #04 #11

#14 #31 #15 #14 #31 #15

-20

 

Figure 5.18 Discharge current (left) and charge current (right) distributions in three cells 

in parallel (Group #3, #4 and #5). 
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Figure 5.19 Discharge current (left) and charge current (right) distributions in four cells 

in parallel (Group #3, #4 and #5). 
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CHAPTER 6 

Conclusions and Future Work 

6.1 Conclusion 

The Li-ion modeling methods and states estimation algorithms proposed in this 

dissertation provide a systematic methodology for analyzing and solving the temperature 

and aging uncertainties in battery management systems. In particular, these techniques are 

applied to build the model for used Li-ion battery pack from in electric vehicles under 

different temperature environment. 

Chapter 2 introduces the basic knowledge of Li-ion battery modeling and SoC 

estimation. First, the thesis focuses on the equivalent circuit model and associated 

parameters identification. A two RC network circuit model is selected to demonstrate the 

goodness of prediction results. Next, the battery model based SoC estimation using 

AEKF algorithm is presented. This method uses the error between the calculated voltage 

and measured voltage to correct the SoC estimation obtained through coulomb counting. 

The experimental results show the closed-loop AEKF SoC estimation method can solve 

the initial SoC value problem and provide good estimation result. 

In Chapter 3, the thesis focuses on the understanding of temperature dependent 

performance of Li-ion battery. First, the temperature influence is investigated through EIS 

experimental tests and theoretical analysis. The increased charge transfer polarization is 

the major factor that limits the battery performance under low temperature. The model 
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compensation functions for equivalent circuit model are derived from some experimental 

tests data to increase the model adaptability for different temperatures. 

In Chapter 4, the battery aging mechanism is revisited first; it shows that the major 

aging effect happens at the negative electrode and electrolyte. Then a series of aging tests 

is carried out to enhance the understanding of the degradation path. The wide SoC range 

and high charge current can exacerbate the Li-ion aging problem. In the latter part of 

Chapter 4, the SoH estimation method based incremental capacity analysis is presented. 

Moreover, the method is applied to experimental data to estimate SoH and results show it 

can track the SoH for different Li-ion batteries including NCM, LFP, and LMO. Finally, a 

bias correction modeling method using the SoH is developed for the modeling of the aged 

battery. 

Study of parallel-connected battery packs is presented in Chapter 5. The 

inconsistency problem in battery cells with different aging level and its influence to 

parallel-connected packs are discussed. The parallel connected battery pack model is 

developed to simulate the current distribution in parallel connected cells. Both simulation 

and experimental test results show that the current difference in parallel connected cells 

increases when the SoC is close to 0%, despite the aging level and the number of cells in 

parallel. 

This dissertation provides five distinct contributions toward the Li-ion battery 

modeling and states estimation for electric vehicle applications. In the present work, we: 
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1. Study the equivalent circuit model based Li-ion battery modeling methods and 

SoC estimation. Develop AEKF based SoC estimation algorithm and apply it 

to RC circuit model to solve the initial SoC value problem and provide 

excellent robustness in SoC estimation. (Chapter 2) 

2. Study the temperature influence to Li-ion battery through the EIS tests and 

theoretical analysis. Build analytical compensation functions to enhance the 

equivalent circuit model adaptability for different temperatures. (Chapter 3) 

3. Study the Li-ion battery aging mechanism, including various SoH degradation 

metrics. Conduct a series of aging tests in different batteries to understand the 

critical degradation factors and paths. (Chapter 4). 

4. Develop the novel SoH estimation method and bias-correction modeling 

method based on ICA peaks in the dQ/dV curves. This bias-correction 

modeling method can update the battery model by using the voltage data 

during constant charging and track the SoH in real-time. (Chapter 4) 

5. Study the characteristics of parallel connected battery packs composed of cells 

with different aging levels. Understand the current distribution phenomenon in 

parallel connected cells due to the cells inconsistency. Build the parallel 

connected cells model to predict current in cells. (Chapter 5) 

6.2 Future Work 
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The proposed modeling method and resulting algorithms make notable steps towards 

developing BMS with enhanced ability against temperature and aging uncertainties. 

Nonetheless, there exist several opportunities to advance the work presented here. 

In this study, we use forced air cooling/heating temperature chamber in the 

experimental test. So the heat generation and thermal effect from Lithium-ion battery 

itself are ignored. We can conduct research on the thermal effect from the battery itself by 

using heat insulation material (adiabat) in the test and analyze the heat generation from 

physical and electrochemical sides. Furthermore, we can build correlation functions 

between heat generation and SoH to increase the functionality of BMS.  

As we discussed in Chapter 4, model parameters identification is a promising method 

to estimate the SoH of Li-ion battery. This approach does not need any additional 

equipment and can be integrated to BMS easily. The critical problems in this approach 

are which specific battery model we should use for identification and how to identify 

these parameters based on actual data collected from EVs. Another issue is that these 

model parameters are usually influenced by hysteresis effect and temperature effect. The 

parameters identification can be implemented if we can decouple the battery model from 

these effects. Additional, the requirement of fast and accurate data acquisition and high 

computation task also raise challenges in the BMS hardware design part. 
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APPENDIX A  

MATLAB source code of data processing in ICA test in chapter 4 

data_v_raw=v; 
data_time_raw=t; 
data_current=i; 
data_chargecap_arbin=cap; 
data_chargecap_arbin=data_chargecap_arbin-min(data_chargecap_arbin); 
data_time_raw=data_time_raw-min(data_time_raw); 
data_chargecap=data_time_raw.*data_current; 
size=length(data_v_raw); 

  
dv1=[];dv2=[];dv3=[];dv4=[];dv5=[]; 
v_axis=[];c_axis=[]; 
j=[]; 
k=fix(size/100); 

l=[]; 
data_v_1=smooth(data_v_raw,size/20,'sgolay',2); 

  
for i=(k+1):size 
    

j=(data_v_1(i)-data_v_1(i-k))/(data_chargecap(i)-data_chargecap(i-k)); 
    dv1=[dv1 j]; 
    v_axis=[v_axis 0.5*(data_v_1(i)+data_v_1(i-k))]; 
    c_axis=[c_axis 

0.5*(data_chargecap_arbin(i)+data_chargecap_arbin(i-k))]; 
end 

  
clear j; j=[]; 
subplot (4,3,1);plot(v_axis,1./dv1);title('³õ´Î'); 

 
err_raw=data_v_1-data_v_raw; 
subplot (4,3,2);plot(data_time_raw,err_raw); 
err=smooth(err_raw,k,'sgolay',2); 
hold on;plot(data_time_raw,err,'r'); 

  
for i=length(err)-10000:-1:1 
if abs(err(i))>0.0004 
    l=i+500;break 
end 
end 
l 
data_v_2raw=data_v_raw(1:l); 
stem(data_time_raw(l),err(l),'linewidth',5); 
hold off;title('×¢Òâ·ùÖµ¹ý´óµÄ²¿·Ö'); 
size2=length(data_v_2raw); 
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subplot (4,3,3); 
for i=5:size2 
    data_v_2=smooth(data_v_2raw,size2/i,'sgolay',2); 
    err2=data_v_2-data_v_2raw; 
    plot(err2,'r');hold on; 
    if mean(abs(err2))<0.001 
        i 
    break 
    end 
    i 
end 
hold off; 
data_v_3=[data_v_2; data_v_1(l+1:end)]; 

  
subplot (4,3,4);plot(data_time_raw,err_raw,'r');hold 

on;plot(data_time_raw,data_v_3-data_v_raw); 
title('¶Ô±ÈÐÂ¾ÉÈ¥³ýµÄÔëÉù'); 
subplot (4,3,5);plot(data_time_raw,data_v_raw,'r');hold 

on;plot(data_time_raw,data_v_3);stem(data_time_raw(l),data_v_3(l),'lines

tyle','none'); 

  

 
clear v_axis c_axis; 
v_axis=[]; c_axis=[]; 

  
for i=(k+1):size 
    

j=(data_v_3(i)-data_v_3(i-k))/(data_chargecap(i)-data_chargecap(i-k)); 
    dv3=[dv3 j]; 
    v_axis=[v_axis 0.5*(data_v_3(i)+data_v_3(i-k))]; 
    c_axis=[c_axis 

0.5*(data_chargecap_arbin(i)+data_chargecap_arbin(i-k))]; 

  
end 

 
clear j; j=[]; 

  
subplot (4,3,6);plot(v_axis,1./dv3,'b');hold on;plot(v_axis,1./dv1,'r'); 
plot(v_axis,smooth(1./dv3,k,'sgolay',2),'k'); 
hold off;title('×îÖÕ'); 

  
err_raw2=data_v_3-data_v_raw; 
subplot (4,3,7);plot(data_time_raw,err_raw2); 
err2=smooth(err_raw2,k,'sgolay',2); 
hold on;plot(data_time_raw,err2,'r'); 

  
for i=l+1:1:size 
if abs(err2(i))>0.0004 
    m=i-500;break 
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end 
end 
m 
data_v_4raw=data_v_raw(m:end); 
stem(data_time_raw(m),err2(m),'linewidth',5); 
hold off;title('×¢Òâ·ùÖµ¹ý´óµÄ²¿·Ö'); 
size3=length(data_v_4raw); 

  
subplot (4,3,8); 
for i=5:size3 
    data_v_4=smooth(data_v_4raw,size3/i,'sgolay',2); 
    err3=data_v_4-data_v_4raw; 
    plot(err3,'r');hold on; 
    if mean(abs(err3))<0.001 
        i 
    break 
    end 
    i 
end 
hold off; 
data_v_5=[data_v_3(1:m-1);data_v_4]; 

  
subplot (4,3,9);plot(data_time_raw,err_raw2,'r');hold 

on;plot(data_time_raw,data_v_5-data_v_raw,'k');hold off; 
title('¶Ô±ÈÐÂ¾ÉÈ¥³ýµÄÔëÉù'); 
subplot (4,3,10);plot(data_time_raw,data_v_raw,'r');hold 

on;plot(data_time_raw,data_v_5);stem(data_time_raw(m),data_v_5(m),'lines

tyle','none');hold off; 

  
clear v_axis c_axis; 
v_axis=[]; c_axis=[]; 

  
for i=(k+1):size 
    

j=(data_v_5(i)-data_v_5(i-k))/(data_chargecap(i)-data_chargecap(i-k)); 
    dv4=[dv4 j]; 
    v_axis=[v_axis 0.5*(data_v_5(i)+data_v_5(i-k))]; 
    c_axis=[c_axis 

0.5*(data_chargecap_arbin(i)+data_chargecap_arbin(i-k))]; 

  
end 

  

  
clear j; j=[]; 

  
subplot (4,3,11);plot(v_axis,1./dv4,'b');hold on;plot(v_axis,1./dv1,'r'); 
plot(v_axis,smooth(1./dv4,k,'sgolay',2),'k'); 
hold off;title('×îÖÕ'); 
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dvdq_final=smooth(1./dv4,k,'sgolay',2); 

  
savefile = 'dvdq_4.9080_24_nov_2014.mat'; 
save(savefile, 'v_axis','c_axis', 'dvdq_final'); 
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APPENDIX B 

MATLAB source code of AEKF SoC estimation in chapter 2 

% Adaptive Extended Kalman Filter for SOC and C Estimation 
function [SOCEst,CEst,YEst,ComTime] = 

EKF_SOC_C_Sim_v2(Y,I,T,C,THETA,OCVData,SOCData,dOCVdSOCData) 

  
%% Define Noise Level 
% For Simulation Data 
W1 = 0.001^2;          % Variance of noise for z (state): SOC 
W2 = 0.0002;           % Variance of noise for C (state): capacity 

  
V1 = 0.1^2;             % Variance of noise for y (meas.): SOC 
V2 = 0.1^2;             % Variance of noise for y (meas.): capacity 

  
rand('state',sum(100*clock));    % Shuffle the pack! 
randn('state',sum(100*clock));   % Shuffle the pack! 

  
%% Initialize Variables 
Eta = 1.0;                   % Initial value for columbic efficiency eta 
nT = length(T);              % Time length for SOC estimation 

  
% Initilization 
SOC_ekf = 0.90;              % EKF estimate of the mean of SOC. 
SOC_ekf_pred = SOC_ekf;      % EKF one-step-ahead estimate of the mean of SOC. 

  
SIGSOC = W1;                 % EKF estimate of the variance of SOC. 
SIGSOC_pred = SIGSOC;        % EKF one-step-ahead estimate of the variance 

of SOC. 

  
C_ekf = C - 0.5;             % EKF estimate of the mean of capacity 
C_ekf_pred = C_ekf;          % One-step-ahead predicted values of capacity 

  
SIGC = W2;                   % EKF estimate of the variance of capacity. 
SIGC_pred = SIGC;            % EKF one-step-ahead estimate of the variance of 

capacity. 

  
Y_pred = 4;                  % Predicte measurement value 

  

  
%% Initilize ESC Model States 
% Initialize Hysterisis State 
h = zeros(1,1); 

  
% Initialize Filter State 
nf  = (length(THETA(5:end))+1)/2; 
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f = zeros(nf,1); 

  

  
SOCEst(1) = SOC_ekf; 
CEst(1) = C_ekf; 
YEst(1) = Y_pred; 

  
DgDC_k_1 = 0; 
DSOCPredDC_k_1 = 0; 
DSOCDC_k_1 = 0; 
LSOC_k_1 = 0; 

  
 ComTime = zeros(2,nT); 
%% Start Loop 
for k = 2:nT 
    tic 
%     k 
    % Prediction Step for Capacity 
    C_ekf_pred = C_ekf; 
    SIGC_pred = SIGC + W2; 

  
    % Prediction Step for SOC 
    delta_SOC = Eta*(T(k)-T(k-1))/3600./C_ekf_pred*I(k-1); 
    SOC_ekf_pred = SOC_ekf + delta_SOC; 
    ASOC = 1;           % df/dSOC 
    SIGSOC_pred = ASOC*SIGSOC*ASOC' + W1; 

     
    ComTime(1,k) = toc; 

         
    % Correction Step for SOC 
    [Y_pred,h,f] = YEstESC_EKF(THETA,I(k-1:k),T(k-1:k),.... 
        SOC_ekf_pred,Eta,C_ekf_pred,h,f,OCVData,SOCData); 
    CSOC = interp1(SOCData,dOCVdSOCData,SOC_ekf_pred,'line'); % dg/dSOC 
    tic 
    MSOC = CSOC*SIGSOC_pred*CSOC' + V1;                 % Innovations 

covariance. 
    LSOC_k = SIGSOC_pred*CSOC'/MSOC;                    % Kalman gain. 
    SOC_ekf = SOC_ekf_pred + LSOC_k*(Y(k)-Y_pred);      % Measurement update 
    SIGSOC = SIGSOC_pred - LSOC_k*CSOC*SIGSOC_pred;     % Variance update 
    ComTime(1,k) = ComTime(1,k) + toc; 

     
    PgPC = 0;               % Partial deriviative of g w.r.t. C 

     
    tic  
    % Correction Step for C 
    % Recursively Compute dg/dC 
    DSOCDC_k_1 = DSOCPredDC_k_1 - LSOC_k_1*DgDC_k_1; 
    DSOCPredDC_k = -delta_SOC/C_ekf_pred + DSOCDC_k_1; 
    PgPSOC = CSOC;          % Partial deriviative of g w.r.t. SOC 
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    DgDC_k = PgPC + PgPSOC*DSOCPredDC_k; 
    CC = DgDC_k;           % dg/dC 
    % Update Previous Values for Recursively Computing dg/dC 
    DgDC_k_1 = DgDC_k;  
    DSOCPredDC_k_1 = DSOCPredDC_k;  
    LSOC_k_1 = LSOC_k; 

  
    ComTime(2,k) = toc; 

     
    tic  

     
    % Update C 
    MC = CC*SIGC_pred*CC' + V2;                   % Innovations covariance. 
    LC = SIGC_pred*CC'*inv(MC);                   % Kalman gain. 
    C_ekf = C_ekf_pred + LC*(Y(k)-Y_pred);        % Measurement update 
    SIGC = SIGC_pred - LC*CC*SIGC_pred;           % Variance update 

     
    ComTime(1,k) = ComTime(1,k) + toc; 

     
    % Data Log 
    CEst(k) = C_ekf; 
    SOCEst(k) = SOC_ekf; 
    YEst(k) = Y_pred; 
end 

  
function [YEst,h,f] = 

YEstESC_EKF(THETA,I,T,SOC,Eta,C,h_his,f_his,OCVData,SOCData) 
nData = length(SOC); 

  
%% Compute OCV 
OCV = interp1(SOCData,OCVData,SOC','line'); 

  
%% Compute Ohmic Loss 
if I(2) > 0 
    OL = I(2)*THETA(1);  % Charge I*R+ 
else 
    OL = I(2)*THETA(2);  % DisCharge I*R- 
end 

  
%% Compute Hysterisis 
% Compute h matrix 
F = exp(-abs(Eta*I(1).*THETA(4).*(T(2)-T(1))/3600./C)); 
h = F.*h_his' + (1 - F)*sign(I(1)); 

  
% Compute hysterisis 
HYST = THETA(3)*h; 

  
%% Compute Filter Voltage 
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if length(THETA) == 4 % No filter 
    FILT = zeros(nData,1); 
    f = zeros(nData,1); 
else 
    % Extract Af and G 
    nf  = (length(THETA(5:end))+1)/2; 
    Af = THETA(5+nf-1:5+2*nf-2); 
    G(1:nf-1) = THETA(5:5+nf-2); 
    G(nf) = - (1 - Af(nf))*sum(G(1:nf-1)./(1 - Af(1:nf-1))); 
    Bf = ones(1,nf)*1e-4; 

  
    % Compute f 
    f = repmat(Af,nData,1).*f_his' + repmat(Bf,nData,1)*(-I(1)); 

  
    % Compute filter pole voltage 
    FILT = f*G'; 
end 

  
YEst = OCV + OL + HYST + FILT; 
YEst = YEst'; 
h = h'; 
f = f'; 
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