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ABSTRACT 

Successful software must evolve to remain relevant, but this process of evolution can cause the 

software design to decay and lead to significantly reduced productivity and even canceled 

projects. Several studies show that developers are postponing software maintenance activities 

that improve software quality, even while seeking high-quality source code for themselves when 

updating existing projects. One reason is that time and money pressures force developers to 

neglect improving the quality of their source code. However, a more fundamental reason is that 

there is little scientific understanding of how developers restructure/refactor source code for the 

purpose of improving program quality, which limits the support that researchers can offer 

developers. In fact, developers often need to make trade-offs between code quality, available 

resources and delivering a product on time, and such management support is beyond the scope 

and capability of existing refactoring engines. In addition, existing fully-automated techniques 

are under-utilized because of the lack of flexibility and worries about introducing bugs. While 

automation is important, it is essential to understand the points at which human intervention and 

decision-making should affect the automation process. 

To address the above challenges, the main goal of this thesis is to develop a better 

understanding of how to integrate the preferences of software engineers in the maintenance 

process. The majority of existing work treats software engineering problems from a single-

objective point of view, where the main goal is to maximize or minimize one objective, e.g., 

correctness, quality, etc. However, most software engineering problems are naturally complex in 

which many conflicting objectives need to be optimized such as model transformation to 

transform a model from a source to a target language, software refactoring to improve the quality 

systems while preserving the behavior, and software remodularization to improve the modularity 

of systems. The number of objectives to consider for most of software engineering problems is, 

in general, high (more than three objectives); such problems are termed many-objective. In this 
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context, the use of traditional multi-objective techniques widely used in software engineering is 

clearly not sufficient. The main contributions of this thesis can be summarized as follows: 

 Designing, implementing and validating novel scalable many-objective search algorithms for 

model transformation, software refactoring and software re-modularization. 

 Optimization under uncertainty: This contribution extends the formulation of software 

refactoring as a multi-objective problem to take into account the uncertainties related to the 

dynamic environment of software development. It enables the generation of robust 

refactoring solutions without a high loss of quality. 

 Designing, implementing and validating a novel interactive dynamic multi-objective search-

based software refactoring algorithm: The main goal of this contribution is to integrate the 

developer in the loop when performing software engineering activities such as software 

refactoring. The developers’ feedback is used during the optimization process to converge 

towards the user’s region of interest. 

The validation of these contributions on both industrial and open source software systems, in 

the context of model transformation, software refactoring and software re-modularization, has 

shown promising results in helping software engineers in the improvement of their software 

quality while performing their regular maintenance tasks. 

 

KEYWORDS 

Search-based Software Engineering, Software Refactoring, Software Remodularization, Model-

Driven Engineering, Many-Objective Optimization, Dynamic Interactive Optimization. 
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 Introduction 

 Research Context 

Software engineering (SE) problems tend to be complex as they usually evolve ambiguous 

requirements associated with competing constraints and other external factors. The theoretical 

analysis of such complex problems in order to linearly solve them is also very hard as the solving 

process has to take into account an exhaustive list of multiples conditions, heterogeneous 

decisions and different methodologies to find the optimal solution. To illustrate the complexity 

of SE problems, let us consider the Software maintenance cycle. Software maintenance is a key 

artifact in managing the continuous evolution of software. Based on IEEE definition [1], the 

primary objective of maintenance is to ensure the software quality through its increasing versions 

and releases demonstrated by evolving user requirements, adding new features, fixing bugs, 

migrating to new environments and other maintainability practices. The previous decades of 

software engineering have proven that software maintenance problems tend to be complex, time-

consuming and error-prone. Several surveys have been reporting that the highest portion of 

effort, in terms of manpower, money and time, in software project life cycles is being allocated 

to maintenance and it can reach up to 90 % of the overall software budget [2]. Therefore, 

providing new methodologies to preserve software quality while it’s being changed has become 

fundamental to reduce the software maintainability costs. 

In this context, the inefficiency of typical software engineering practices has driven the 

research towards reformulating traditional software engineering challenges as optimization 

problems and consequently deploying search heuristics to solve them. From the search-based 

perspective, any SE problem can be defined by a set of conflicting objectives, accompanied 

multiples constraints and other factors. Instead of targeting an optimal solution, the meta-

heuristic search has the capability of generating multiple near-optimal solutions that eventually 
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represent the best tradeoff between the conflicting objectives while satisfying their constraints. In 

spite of the idea of considering SE issues as an optimization problem has been present in 

literature since the early decade of software engineering [3], the concept of Search-Based 

Software Engineering (SBSE) was coined by Mark Harman in 2001 [4]. It is an approach to 

software engineering in which artificial intelligent and search algorithms are deployed to identify 

optimal or near optimal but satisfactory solutions. According to Harman [5], SBSE is attractive, 

compared with other approaches, as it supports a wide variety of semi-automated, automated and 

hybrid techniques when facing complex problems with multiple, competing and conflicting 

objectives. SBSE has been showing promising results when compared to deterministic and 

exhaustive techniques, in terms of scalability, feasibility, robustness and insight-richness [6]. 

Since then, Search-based techniques have been widely applied to solve software engineering 

problems such as in testing, modularization, refactoring, planning, etc. The concept of SBSE will 

be detailed in the next chapter of this thesis. 

 Problem Statement 

Most existing approaches to address software engineering problems (i.e., model 

transformation, design quality, testing, evolution, and comprehension, etc.) from a single 

objective point of view, where the main goal is to maximize or minimize one objective (e.g., 

correctness, quality, etc.). However, most SE problems are naturally complex in which many 

conflicting objectives need to be optimized such as model transformation, design quality, testing, 

etc. The number of objectives to consider for SE problems is, in general, high (more than three 

objectives). For example, evaluating the quality of a design after applying refactorings can be 

performed using a set of quality metrics where each metric can be considered as an objective. In 

this situation, the use of traditional mono-objective and multi-objective techniques, which are 

widely used in SBSE, is not sufficient as the context has a high number of objectives. 

Recently, researchers have proposed several approaches to tackling many-objective 

optimization problems (e.g., objective reduction, new preference ordering relations, 

decomposition, etc.). However, these techniques are not explored yet in SBSE [5]. In this 

context, this research has been initiated to coin the limitations of the existing techniques due to 

the high dimensionality of SE problems by integrating many-objective methodologies. 
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Furthermore, this research aims to bridge the gap between software engineers and SBSE tools by 

integrating the engineer’s preferences and feedback during the search process. To this end, this 

research will be firstly introducing the formularization of model transformation as a multi-

objective optimization problem. Secondly, by highlighting the limitations of the multi-objective 

optimization, we will be discussing the potential benefits of deploying many-objective 

optimization in software engineering. Thirdly, we will be addressing the several challenges 

raised during the validation of the many-objective optimization through designing various 

algorithms that can be applied in practical software engineering problems associated with mainly 

(1) model transformation, (2) software remodularization, and (3) software refactoring. 

1.2.1 Model Transformation 

Model Transformation plays an important role in Model Driven Engineering (MDE) [7]. The 

research efforts by the MDE community have produced various languages and tools for 

automating transformations between different modeling environments using mapping rules. 

These transformation rules can be implemented using general programming languages such as 

Java or C#, graph transformation languages like AGG [8]and VIATRA [9], or specific languages 

such as ATL [10] and QVT [11]. Sometimes, transformations are based on invariants that are 

explicitly defined as pre-conditions and post-conditions and written in languages such as OCL 

[12]. 

Research Problem 1: One major challenge is to automate transformations while preserving 

the quality of the produced models [7]. Thus, the main goal is to reduce the number of possible 

errors when defining transformation rules. These transformation errors have different causes 

such as transformation logic (rules) or source/target metamodels. Existing approaches and 

techniques have been successfully applied to transformation problems with a minimum number 

of errors. Especially at the model level, correctness is the gold standard characteristic of models: 

it is essential that the user understands exactly how the target model deviates from fidelity to the 

source model in order to be able to rely on any results. However, other important objectives are 

how to minimize the complexity of transformation rules (e.g. the number of rules, number of 

matching in the same rule) while maximizing the quality of target models to obtain well-

designed ones. In fact, reducing rules complexity and improving target models quality are 
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important to 1) make rules and target models easy to understand and evolve, 2) find 

transformation errors easily, and 3) generate optimal target models. 

Research Problem 2: The majority of existing approaches [7] [8] [13] formulate the 

transformation problem as a single-objective problem that maximizes rules correctness. In this 

case, the proposed transformation rules produce target models without errors. However, these 

rules are sometimes complex (e.g., size) and applying them may generate very large target 

model. For example, when complex transformation rules are available for mapping from 

dynamic Unified Modeling Language (UML) models to Colored Petri Nets (CPN), 

systematically applying them generally results in large PNs [13]. This could compromise the 

subsequent analysis tasks, which are generally limited by the number of the PNs’ states. 

Obtaining large PNs is not usually related to the size of the source models but to the rules 

complexity [14]. In addition, it is important to take into consideration the quality of produced 

target models (e.g. maximizing good design practices by reducing the number of design defects 

[15] in a generated class diagram from a relational schema). Another category of approaches [16] 

propose additional steps to minimize complexity, using refactoring operations, after generating 

transformation rules. However, it is a difficult and fastidious task to modify, evolve and improve 

the quality of already generated complex rules. To this extent, several open questions should be 

addressed during the process of generating transformation rules. 

1.2.2 Software Remodularization: 

Large software systems evolve and become complex quickly, fault-prone and difficult to 

maintain. In fact, most of the changes during the evolution of systems such as introducing new 

features or fixing bugs are conducted, in general, within strict deadlines and with a minimal 

number software developers and engineers. Consequently, these code changes can have a 

negative impact on the quality of systems design such as the distribution of the classes in 

packages. To address this issue, one of the widely used techniques is software remodularization, 

called also software restructuring, which improves the existing decomposition of systems. There 

has been much work on different techniques and tools for software remodularization [17] [18] 

[19]. Most of these studies addressed the problem of clustering by finding the best 

decomposition of a system in terms of modules and not by improving existing modularizations. 
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In both categories, cohesion and coupling are the main metrics used to improve the quality of 

existing packages (e.g. modules) by determining which classes need to be grouped in a package. 

Research Problem 1: The majority of existing contributions have formulated the 

restructuring problem as a single-objective problem where the goal is to improve the cohesion 

and coupling of packages. Even though most of the existing approaches are powerful enough to 

provide remodularization solutions, some issues still need to be addressed. 

Research Problem 2: One of the most important issues is the semantic coherence of the 

design. The restructured program could improve structural metrics but become semantically 

incoherent. In this case, the design will become difficult to understand since classes are placed in 

wrong packages to improve the structure in terms of cohesion and coupling. Also, the number of 

code changes is not considered when suggesting remodularization solutions; the only aim is to 

improve the structure of packages independently of the cost of code changes. However, in real-

world scenarios, developers prefer, in general, remodularization solutions that improve the 

structure with a minimum number of changes. It is important to minimize code changes to help 

developers in understanding the design after applying suggested changes. 

Research Problem 3: Existing remodularization studies are also limited to few types of 

changes mainly move class and split packages [18] [19]. However, refactoring at the class and 

method levels can improve remodularization solutions such as by moving methods between 

classes located in different packages. The use of development history can be an efficient aid 

when proposing remodularization solutions. For example, packages that were extensively 

modified in the past may have a high probability of being also changed in the future. Moreover, 

the packages to modify can be similar to some patterns that can be found in the development 

history, thus, developers can easily recognize and adapt them. 

1.2.3 Software Refactoring: 

Software Refactoring is defined as the process of improving code after it has been written by 

changing its internal structure without changing its external behavior [15]. The idea is to 

reorganize variables, classes and methods to facilitate future adaptations and extensions and 
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enhance comprehension. This reorganization is used to improve different aspects of software 

quality such as maintainability, extensibility, reusability, etc. Some modern Integrated 

Development Environments (IDEs), such as Eclipse, NetBeans, provide semi-automatic support 

for applying the most commonly used refactorings, e.g., move method, rename class, etc. 

However, automatically suggesting/deciding where and which refactorings to apply is still a real 

challenge in Software Engineering. In order to identify which parts of the source code need to be 

refactored, most existing work relies on the notion of code smells, also called design defects or 

anti-patterns. 

Research Problem 1: Most of the existing refactoring work uses a set of more than 3 to 4 

quality metrics to evaluate the quality of software design after applying refactoring operations 

while quality attributes, as well as design defects, are defined by more than simply 4 metrics. 

Consequently, more scalable search-based software refactoring approaches will be beneficial to 

handle such rich objective space. However, the difficulty faced when increasing the number of 

objectives could be summarized as follows. Firstly, most solutions become equivalent between 

each other according to the Pareto dominance relation which deteriorates dramatically the 

search’s ability to converge towards the Pareto front and the MOEA behavior becomes very 

similar to the random search one. Secondly, a search method requires a very high number of 

solutions (some thousands and even more) to cover the Pareto front when the number of 

objectives increases, which makes the evolution towards optimal space very expensive. 

Research Problem 2: Unlike software bugs, there is no general consensus on how to decide 

if a particular design violates a quality attribute. An optimal software design is generally 

described using informal or natural language and relies on a subjective interpretation of 

developers. Furthermore, different experts can have divergent opinions when identifying possible 

refactoring opportunities for the same software design. Overall, evaluating the quality of a design 

is subjective. In addition to the presence of false positives that may create a rejection reaction 

from development teams, the process of exposing several possible refactoring opportunities, in 

terms of candidate solutions to execute, asking the developers to understand their impact, and 

selecting one of them to apply, is long, expensive, and not always profitable. Thus, incorporating 
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Decision Maker (DM) (designer/expert) preferences can facilitate the best solution selection 

during the correction process. 

Research Problem 3: Fully automated refactoring for large systems involves the 

application of a lengthy sequence of refactorings at several levels of the source code. This 

becomes impractical when developers have constraints over some parts of the system that need 

to remain unchanged. Furthermore, due to the dynamic nature of software development, 

developers may want to run a subset of refactoring and postpone others. These constraints are not 

being handled in the classic optimization process, leading to refactoring sequences that lack 

robustness as their application cannot be accurately determined in practice. 

Research Problem 4: Indeed, fully-automated refactoring has several drawbacks as well. It 

lacks flexibility since developers have to either accept or reject the entire refactoring solution. It 

fails to consider developer perspective and feedback because suggested refactoring solutions 

cannot be updated dynamically. It is limited to structural improvements, which leads to 

infeasible refactoring solutions, and finally, it proposes a long static list of refactorings to be 

applied but developers may not have enough time to apply all of them. Thus, fully-automated 

refactoring methods are not useful for floss refactoring where the goal is to maintain good design 

quality while modifying existing functionality. The developers have to accept the entire 

refactoring solution even though they prefer, in general, step-wise approaches where the process 

is interactive and they have total control of the refactorings being applied. 

 Proposed Research Contributions 

Our primary goal was to explore a higher dimensionality of different SE problems. Problems 

belonging to different domains, such as model transformation, software refactoring and 

remodularization, have eventually different formulations (objectives, constraints etc.). The 

following figure will cluster our contributions according to their application domains. 
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Figure 1.1. Distribution of our contributions based on the application domains. 

Indeed, various techniques will be associated with different problems based on their 

specifications. The validation of these techniques is eventually achieved through rigorous 

empirical evaluation of their Pareto-optimal solutions: The qualitative and quantitative 

evaluation will be performed on empirical data collected from several open source and industrial 

systems. Several comparisons with the related work will be conducted, when possible. Finally, 

encapsulating all the implemented algorithms into a common framework that can be practically 

used by software engineers when performing software maintenance and evolution activities in a 

scalable fashion. In this thesis I have elaborated the following contributions: 

1.3.1 Contribution 1: Multi-objective Model Transformation 

We introduce a new approach for model transformation using multi-objective optimization. 

Our proposal does not require to define rules manually, but only to input a set of source models 

and equivalent target models (without traceability links); it generates well-designed target 

models/rules without the need to refactor them; it takes in consideration the complexity of the 

Multi-objective Model 

Transformation 

Many-objective Software 

Remodularization 

Software Refactoring 

Under Uncertainty 

Many-objective Software 

Refactoring 

Preference-based Software 

Refactoring 

Dynamic Interactive 
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[Advances in Computers Journal, 2013] 

[ACM Transactions on Software Engineering and Methodology. TOSEM 2015] 

[Symposium on Search Based Software 

Engineering. SSBSE 2014] 

[Empirical Software Engineering Journal. 

EMSE 2015] 

[International Conference in Software Engineering Workshop. 

ICSEw 2014] 

[North American Search Based Software Engineering 

NasBASE 2015] 

[Automated Software Engineering ASE 2015] 

[ACM Transactions on Software Engineering and 

Methodology. TOSEM 2016] 

[Genetic and Evolutionary Computation Conference 

GECCO 2014] 

[Empirical Software Engineering Journal. EMSE 2016] 
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generated rules; and it can be applied to any source or target metamodels (independent from 

source and target languages). We used three different transformation mechanisms to evaluate our 

proposal: class diagrams to relational schemas and vice-versa; and sequence diagrams to colored 

Petri nets. The generated rules for both mechanisms achieved high-quality scores with a minimal 

set of rules. 

1.3.2 Contribution 2: Many-objective Software remodularization 

We introduce a novel formulation of the remodularization problem as a many-objective 

problem that considers several objectives such as structural improvement, semantic coherence, 

number of changes and consistency with history of changes. We consider in the contribution the 

use of new operations, comparing to existing remodularization studies including move method, 

extract class and merge packages. This work was the subject of an empirical study of our many-

objective technique compared to different existing approaches. The obtained results provide 

evidence to support the claim that our proposal is, in average, more efficient than existing 

techniques based on a benchmark of four large open source systems and one industrial project. 

1.3.3 Contribution 3: High Dimensional and Dynamic Interactive Software refactoring 

We focus on the correction of design defects by proposing automated refactoring driven by 

metaheuristic search and guided by software quality metrics and used subsequently to address 

the problem of automating design improvement. To overcome the previously stated research 

problems, we propose several contributions that can be enumerated as follows. 

1.3.3.1 Multi-objective Software Refactoring under uncertainty 

The work introduces a novel formulation of the refactoring problem as a multi-objective 

problem that takes into account the uncertainties related to code smell detection and the dynamic 

environment of software development. To the best of our knowledge, this is the first work to use 

robust optimization for software refactoring, and the first in SBSE to treat robustness as a helper 

objective during the search. We report, in the results section, an empirical study of our robust 

technique as applied to 6 open source systems. We compared our approach to random search, 

multi-objective particle swarm optimization (MOPSO), and other refactoring techniques. The 
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results provide evidence to support the claim that our proposal enables the generation of robust 

refactoring solutions without a high loss of quality using a variety of real-world scenarios. 

1.3.3.2 Many-objective Software Refactoring 

We propose for the first time a scalable search-based software engineering approach based on 

NSGA-III where there are 15 different objectives to optimize. Thus, in our approach, automated 

refactoring solutions will be evaluated using a set of 15 software quality metrics. NSGA-III is a 

very recent many-objective algorithm proposed by Deb et al. [20]. The basic framework remains 

similar to the original NSGA-II algorithm [21], with significant changes in its selection 

mechanism. This contribution represents the first real-world application of NSGA-III and the 

first scalable work that supports the use of 15 objectives to address a software engineering 

problem. We implemented our approach and evaluated it on seven large open source systems and 

found that, on average, more than 92% of code smells were corrected. The statistical analysis of 

our experiments over 31 runs shows that NSGA-III performed significantly better than two other 

many-objective techniques (IBEA and MOEA/D), a multi-objective algorithm (NSGA-II) and 

two mono-objective approaches. 

1.3.3.3 Dynamic Interactive Software Refactoring 

We propose, for the first time, the use of innovization (innovation through optimization) [22] 

to analyze and explore the Pareto front interactively with the developers. Our innovization 

algorithm starts by finding the most frequent refactorings among the set of non-dominated 

refactoring solutions. Based on this analysis, the suggested refactorings are ranked and suggested 

to the developer one by one. The developer can approve, modify or reject each suggested 

refactoring. This feedback is later used to update the ranking of the suggested refactorings. After 

a number of introduced code changes (e.g. fix bugs, add new requirements, etc.) and interactions 

with the developers, the search is executed again while taking the feedback as constraints to 

prune the search space and converge towards a user-preferred region. 

We implemented our proposed approach and evaluated it on six open source systems. In 

addition, we evaluated our proposal on one industrial system provided by our industrial partner, 

i.e., the Ford Motor Company. Statistical analysis of our experiments over 31 runs showed that 

our proposal performed significantly better than four existing search-based approaches, and 
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manual refactorings using Eclipse. The software developers who participated in our experiments 

confirmed the relevance of the suggested refactoring and the flexibility of the tool in modifying 

and adapting the suggested refactorings. 

 Roadmap 

The remainder of this thesis is structured as follows: 

Chapter 2 reviews related work on model transformation, software remodularization and 

software refactoring. Chapter 3 reports our contribution for automating model transformation as 

a multi-objective optimization problem and which was published in Advances in Computers 

Journal [23]. Chapter 4 introduces software remodularization as a many-objective optimization 

that was published in the ACM Transactions on Software Engineering and Methodology [24]. 

Chapter 5 gathers various contributions related to software refactoring optimization. We present 

our Empirical Software Engineering journal paper [25] for the many-objective software 

refactoring. For the optimization under uncertainty, our Empirical Software Engineering journal 

paper [26] incorporates the robustness in the search process. The third and last part of chapter 5 

presents our approach to design the dynamic interactive optimizer. This contribution is illustrated 

via our ACM Transactions in Software Engineering and Methodology which is under review. 

Chapter 6 presents the conclusions of this dissertation and outlines some directions for future 

research 
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 Related work 

This chapter highlights the state of the art of existing work related to our proposed 

approaches. It starts by defining the concept of software engineering as an optimization problem, 

enumerates the related work in our areas of interests: (1) model transformation, (2) software 

remodularization, and (3) software refactoring. 

 Search-Based Software Engineering 

2.1.1 Introduction 

Our research is contributions are all gathered under the umbrella of Search-Based Software 

Engineering (SBSE). SBSE is defined as the application of search-based approaches to solving 

optimization problems in software engineering [4]. Once a software engineering task is framed 

as a search problem, there are numerous approaches that can be applied to solving that problem, 

from local searches such as exhaustive search and hill-climbing to meta-heuristic searches such 

as Genetic Algorithms (GAs) and ant colony optimization. All these techniques offer various 

explorations to the search space under various user-tuned parameters. The search results in one 

to possibly multiple candidate solutions as the output of the problem being analyzed. The 

evaluation process is done through a fitness function that, its optimization, guides the search 

towards an optimal or near-optimal state. Thus, the fitness function is calculated based on the 

outcome of the solution performance, once executed, to solve the given problem. Such 

evaluation can be automatically done in software engineering, unlike other engineering 

disciplines, as it is the unique discipline whose artifacts are virtual. This property is one of the 

main reasons behind the rapid growth of SBSE in the SE literature and many contributions have 

been proposed for various problems, mainly in cost estimation, testing, and maintenance. 



 

13 

 

SBSE is also very generic, by defining a fitness function, a given problem can be tackled by 

various search based optimization strategies. SBSE becomes of great value when there is a vast 

number of possible combinations of candidate solutions in the search space that their evolution is 

guided by a fitness function. A candidate solution can be defined in various ways depending on 

the problem formulation, it can be a vector, a graph, a set of rules or a sequence of code changes. 

According to Harman [4], SBSE methodology can be summarized in the following steps: 

Problem formulation: For multiple candidate solutions to the same problem, the evaluation 

of their quality is assessed by a fitness function, which can be defined by the degree of which, it 

is meeting the expected result for the problem. 

Solution representation: The formulation of a given SE problem is achieved by defining a 

possible solution representation that solves that problem 

Solution variation: In each search algorithm, the variation operators play the key role of 

moving candidate solutions within the search space with the aim of driving them towards optimal 

solutions. These recombination operators need to be defined respectfully to the solution 

presentation and their application should derive new solutions with eventually different fitness 

values. The deployed algorithm has the responsibility to conduct the search and evolve the 

candidate solutions until stopping criteria are being met. 

Consequently, our tackled SE problems will be presented according to the above-mentioned 

steps. Our problem formulation will be using population-based multi-objective genetic 

algorithms, where solutions are defined similarly to genes, their reproduction is maintained by 

crossover and mutation operators along with the repeated calculation of their fitness values to 

select the best solutions and constitute the next generation. Through the generations, solutions 

are being guided in the search space using the problem’s fitness functions until stopping criteria 

are being met, and an optimum is found. 

Based on recent SBSE survey [5], treating SE problems from a single-objective perspective 

us insufficient, as most SE problems are naturally complex in which many conflicting objectives 
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need to be optimized. As a consequence, our formulated problems are defined by many 

objectives. This formulation is detailed in the following sub-section. 

2.1.2 Many-objective Search-Based Software Engineering 

Recently, many-objective optimization has attracted much attention in evolutionary multi-

objective optimization (EMO) which is one of the most active research areas in evolutionary 

computation. By definition, a many-objective problem is multi-objective, but with a high number 

of objectives M, namely M >3. Analytically, it could be stated as follows: 
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where M is the number of objective functions and is strictly greater than 3, P is the number of 

inequality constraints, Q is the number of equality constraints, 
L
ix  and 

U
ix  correspond to the 

lower and upper bounds of the decision variable ix  (i.e., ith component of x). A solution x  

satisfying the (P+Q) constraints is said to be feasible and the set of all feasible solutions defines 

the feasible search space denoted by Ω. 

In this formulation, we consider a minimization MOP since maximization can be easily 

transformed to minimization based on the duality principle by negating each objective function. 

Over the past two decades, several Multi-Objective Evolutionary Algorithms (MOEAs) have 

been proposed with the hope to work with any number of objectives M. Unfortunately, it has 

been demonstrated that most MOEAs are ineffective in handling many-objective problems. For 

example, NSGA-II, which is one of the most used MOEAs, compares solutions based on their 

non-domination ranks. Solutions with higher ranks are emphasized in order to converge to the 

Pareto front. When M>3, there is a high probability that almost all population individuals 

become non-dominated with each other, resulting in them all being lumped together in a single 

rank. Thus, NSGA-II is not able to maintain selection pressure in high-dimensional objective 

spaces. 
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The difficulty faced when solving a many-objective problem can be summarized as follows. 

Firstly, most solutions become of equivalent quality to each other according to the Pareto 

dominance relation which deteriorates dramatically the search process’ ability to converge 

towards the Pareto front and the MOEA behavior becomes very similar to random search. 

Secondly, a search method requires a very high number of solutions (some thousands or even 

more) to cover the Pareto front when the number of objectives increases. For instance, it has 

been shown that in order to find a good approximation of the Pareto front for problems involving 

4, 5 and 7 objective functions, the number of required non-dominated solutions is about 62 500, 

1 953 125 and 1 708 984 375 respectively, which makes the decision-making task very difficult. 

Thirdly, the objective space dimensionality increases significantly which makes promising 

search directions very hard to find. Finally, the Pareto front visualization becomes more 

complicated for the DM, thereby complicating the interpretation of the MOEA’s results. 

Recently, researchers have proposed several solution approaches to tackle many-objective 

optimization problems. Table 2.1 illustrates a summary of existing many-objective approaches. 

Firstly, we find the objective reduction approach, which involves finding the minimal subset of 

objective functions that are in conflict with each other. The main idea is to study the different 

conflicts between the objectives. The objective reduction approach attempts to eliminate 

objectives that are not essential to describe the Pareto-optimal front. Even when the essential 

objectives are four or more, the reduced representation of the problem has a favorable impact on 

the search efficiency, computational cost, and decision making. However, although this approach 

has solved benchmark problems involving up to 20 objectives, its applicability in real world 

setting is not straightforward and it remains to be investigated since most objectives are usually 

in conflict with each other in real problems. Secondly, we have the incorporation of decision 

maker’s preferences: When the number of objective functions increases, the Pareto optimal 

approximation would be composed of a huge number of non-dominated solutions. Consequently, 

the selection of the final alternative would be very difficult for the human decision maker (DM). 

In reality, the DM is not interested with the whole Pareto front rather than the portion of the front 

that best matches his/her preferences, called the Region of Interest (ROI). The main idea is to 

exploit the DM’s preferences in order to differentiate between Pareto equivalent solutions so that 

we can direct the search towards the ROI on problems involving more than 3 objectives. 
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Preference-based MOEAs have demonstrated several promising results. Thirdly, we find new 

preference ordering relations. Since the Pareto dominance has the ability to differentiate 

between solutions with the increased of the number of objectives, researchers have proposed 

several new alternative relations. These relations try to circumvent the failure of the Pareto 

dominance by using additional information such as the ranks of the particular solution regarding 

the different objectives and the related population, but may not be agreeable to the decision 

makers. Fourthly, we have decomposition. This technique consists of decomposing the problem 

into several sub-problems and then solving these sub-problems simultaneously by exploiting the 

parallel search ability of evolutionary algorithms. The most reputable decomposition-based 

MOEA is MOEA/D. Finally, we find the use of a predefined multiple targeted search. Inspired 

by preference-based MOEAs and the decomposition approach, recently, Deb and Jain [20], have 

proposed a new idea that involves guiding the population during the optimization process based 

on multiple predefined targets (e.g., reference points, reference direction) in the objective space. 

This idea has demonstrated very promising results on MOPs involving up to 15 objectives. 

Table 2.1. Recapitulates the stated many-objective approaches. 

Table 2.1. Summary of many-objective approaches. 

Approach Basic idea Example algorithms 
No. of 

objectives 

Real world many-

objective application 

Objective 

reduction 

Find the minimal subset of 

conflicting objectives, then eliminate 

the objectives that are not essential to 

describe the Pareto optimal front. 

1) PCA-NSGA-II  

2) PCSEA  

10 

20 

1) Not found  

2) Water resource 

problem 

Incorporating 

decision 

maker’s 

preferences 

Exploit DM’s preferences in order to 

differentiate between Pareto 

equivalent solutions so that we can 

direct the search towards the region 

of interest instead of the whole front. 

1) r-NSGA-II 

 

2) PBEA  

3) R-NSGA-II  

10 

 

10 

10 

1) Payment scheduling 

negotiation problem 

2) Not found 

3) Welded beam design 

problem 

New 

preference 

ordering 

relations 

Propose alternative preference 

relations that are different from the 

Pareto dominance. 

1) Preference Order 

Ranking–based 

algorithm  

2) Ranking dominance-

based algorithm  

3) IBEA  

 

4) HypE  

8 

 

 

10 

 

5 

 

 

20 

1) Water distribution 

problem 

 

2) Not found 

3) Software product line 

management 

 

4) Not found 

Decomposition 

Decompose the problem into several 

sub-problems and then solve these 

subproblems simultaneously by 

exploiting the parallel search ability 

of EAs. 

1) MOEA/D  5 1) Not found  

Use of a 

predefined 

multiple 

Guide the population during the 

optimization process based on 

multiple predefined targets (e.g., 

1) PICEA  

2) NSGA-III  

10 

15 

1) Not found 

2) Crash-worthiness 

Design of Vehicles 
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targeted search reference points, reference direction) 

in the objective space. 

The following table summarizes the existing SBSE approaches with the number of objectives 

being equal or higher than 5. 

Table 2.2. Many-objectives approaches applied in software engineering. 

Author(s) Year Title Area Algorithm(s) 
Number of 

objectives 

Z. Liu, H. Guo, D. Li, 

T. Han and J. Zhang 

[27] 

2007 

Solving Multi-objective and Fuzzy Multi- 

attributive Integrated Technique for QoS Aware 

Web Service Selection 

Design 

Engineering 
MOGA 5 

H. Wada, P. 

Champrasert, J. 

Suzuki and K. Oba 

[28] 

2008 
Multiobjective Optimization of SLA- Aware 

Service Composition 

Design 

Engineering 
E3-MOGA 10 

M. Bowman, L. C. 

Briand and Y. 

Labiche [29] 

2010 

Solving the Class Responsibility Assignment 

Problem in Object-Oriented Analysis with 

Multi-Objective Genetic Algorithms 

Design 

Engineering 
SPEA2 5 

T. Kremmel, J. 

Kubalik and S. Biffl 

[30] 

2011 

Software Project Portfolio Optimization with 

Advanced Multiobjective Evolutionary 

Algorithms 

Management 

Engineering 
mPOEMS, 5 

D. Rodríguez, M. 

Ruiz, J. C. Riquelme 

and R. Harrison [31] 

2011 
Multiobjective Simulation Optimisation in 

Software Project Management 

Management 

Engineering 
NSGA-II 5 

K. Praditwong, M. 

Harman and X. Yao 

[32] 

2011 
Software Module Clustering as a Multi- 

Objective Search Problem 

Design 

Engineering 

Two-Archive 

GA 
5 

M. O. Barros [33] 2012 

An Analysis of the Effects of Composite 

Objectives in Multiobjective Software Module 

Clustering 

Design 

Engineering 
NSGA-II 5 

T. E. Colanzi and 

S.R. Vergilio [34] 
2012 

Applying Search-Based Optimization to SPL 

Architectures: Lessons Learned 

Design 

Engineering 
NSGA-II 5 

F. Sarro, F. Ferrucci 

and C. Gravino [35] 
2012 

Single and Multi-Objective GP for Software 

Development Effort Estimation 

Management 

engineering 
MOGP 5 

A. S. Sayyad, T. 

Menzies and H. 

Ammar [36] 

2013 

On the Value of User Preferences in Search-

Based Software Engineering: A Case Study in 

Software Product Lines 

Requirements 

Engineering 
IBEA Up to 5 

A. S. Sayyad, J. 

Ingram and T. 

Menzies [37] 

2013 
Scalable Product Line Configuration: A Straw 

to Break the Camel’s Back 

Requirements 

Engineering 
IBEA 5 

S. Kalboussi, S. 

Bechikh, M. 

Kessentini and L. 

Ben Said [38] 

2014 

Preference-Based Many-Objective Evolutionary 

Testing Generates Harder Test Cases for 

Autonomous Agents 

Testing 

Engineering 
P-MOET 7 

A. Ramírez, J R. 

Romero and S. 

Ventura [39] 

2014 

On the Performance of Multiple Objective 

Evolutionary Algorithms for Software 

Architecture Discovery 

Design 

Engineering 

SPEA2, NSGA-

II, ε-MOEA, 

MOEA/D, GrEA 

6 

R. Olaechea, D. 

Rayside, J. Guo and 

K. Czarnecki [40] 

2014 

Comparison of Exact and Approximate Multi-

Objective Optimization for Software Product 

Lines 

Requirements 

Engineering 
GIA, IBEA Up to 7 

A. Panichella, F. M. 

Kifetew, P. Tonella 

[41] 

2015 
Reformulating branch coverage as a many-

objective optimization problem 

Testing 

Engineering 
MOSA Up to 1213 

We notice from the previous table that some software engineering domains such as model-

driven engineering and software maintenance have not yet been the subject of many-objective 

optimization although they are, as we have shown earlier, in need of scalable approaches. This 



18 Related work 

 

 

 

was our motivation to firstly investigate the applicability of many-objective optimization based 

on the currently defined problems and secondly adapt novel algorithms to solve them. The next 

section will briefly introduce two main many-objective techniques that we deployed in our 

methodology. The following subsections will present the state of the art of our SE areas of 

interest i.e. model and code transformation to analyze the existing work and expose its limitation 

in handling high dimensional problems. 

 Model transformation 

Kleppe et al. [42] have provided the following definition of model transformation. A 

transformation is the automatic generation of a target model from a source model, according to a 

transformation definition. A transformation definition is a set of transformation rules that 

together describe how a model in the source language can be transformed into a model in the 

target language. A transformation rule is a description of how one or more constructs in the 

source language can be transformed into one or more constructs in the target language. 

 

Figure 2.1. Model transformation process. 

The closest work to our proposal is model transformation by example (MTBE). The 

commonalities of the by-example approaches for model transformation can be summarized as 

follows: All approaches define an example as a triple consisting of an input model and its 

equivalent output model, and traces between the input and output model elements. These 
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examples have to be established by the user, preferably in concrete syntax. Then, generalization 

techniques such as hard-coded reasoning rules, inductive logic, or relational concept analysis or 

pattern are used to derive model transformation rules from the examples, in a deterministic way 

that is applicable for all possible input models which have a high similarity with the predefined 

examples.  One conclusion to be drawn from studying the existing by-example approaches is that 

they use semi-automated rules generation, with the generated rules further refined by the user. In 

practice, this may be a lengthy process and require a large number of transformation examples to 

assure the quality of the inferred rules. In this context, the use of search-based optimization 

techniques can be a preferable transformation approach since it directly generates the target 

model from the existing examples, without using the rules step. This also leads to a higher degree 

of automation than in existing by-example approaches. Table 2.3 summarizes existing 

transformation by-example approaches according to given criteria. The majority of these 

approaches are specific to exogenous transformation and based on the use of traceability. 

Table 2.3. By-example Approaches. 

By-example 

approaches 

Exogenous 

transformation (different 

languages) 

Endogenous 

transformation (same 

language) 

Traceability 
Rules 

generation 

Varrò et al. [9]  X  X X 

Wimmer et al. 

[43]  
X  X X 

Sun et al. [44]   X X  

Dolques et al. [45]  X  X X 

Langler et al. [46]  X  X X 

As shown in the search-based section, like many other domains of software engineering, MDE 

is concerned with finding exact solutions to these problems, or those that fall within a specified 

acceptance margin. Search-based optimization techniques are well-suited for the purpose. For 

example, when testing model transformations, the use of deterministic techniques can be 

unfeasible due to the number of possibilities to explore for test case generation, in order to cover 

all source meta-model elements. However, the complex nature of MDE problems sometimes 

requires the definition of complex fitness functions. Furthermore, the definition is specific to the 

problem to solve and necessitate expertise in both search-based and MDE fields. It is thus 
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desirable to define a generic fitness function, evaluating a quality of a solution that can be 

applied to various MDE problems with low adaptation effort and expertise. 

To tackle these challenges, our contribution combines search-based and by-example 

techniques. The difference with case-based reasoning approaches is that many sub-cases can be 

combined to derive a solution, not just the most adequate case. In addition, if a large number of 

combinations have to be investigated, the use of search-based techniques becomes beneficial in 

terms of search speed to find the best combination. 

 Software remodularization 

Large systems such as automotive industry applications have to run and evolve over decades. 

Most of the industrial systems must evolve and the design is, in general, extended far away the 

initial structure. Thus, it is mandatory to restructure the program design to reduce the cost of 

possible future evolutions. To this end, software remodularization is an important component in 

software maintenance activities. 

Object-oriented software modularization consists of regrouping a set of classes C in terms of 

packages P. Thus, each package P contains a set of classes. Several types of dependencies 

between packages can be found in the literature. In this work, we use the definition of 

dependencies between packages defined in [32]. Two main types of dependencies are described: 

1- intra-edges dependencies and 2- inter-edges dependencies. The intra-edges include all types of 

internal dependencies between classes in the same package such as method call, class reference 

and inheritance. The inter-edges include external dependencies between classes that are not in 

the same package. As illustrated in Figure 2.2, the system includes 2 packages, 3 intra-edges 

such as (c1, c3) and 2 inter-edges such as (c3, c4) for package P1. 



 21 

 

 

 

 

Figure 2.2. The dependency graph including two packages, 3 intra-edges and 2 inter-edges. 

There have been several developments in search-based approaches to support the automation 

of software modularization. The work of Mancoridis et al. [47] was the first search-based 

approach to address the problem of software modularization using a single-objective 

optimization. Their initial work, to identify the modularization of a software system, is based 

hill-climbing to maximize cohesion and minimize coupling. The same technique has been also 

used in [48] where the authors present Bunch, a tool supporting automatic system 

decomposition. Subsystem decomposition is performed by Bunch by partitioning a graph of 

entities and relations in a given source code. To evaluate the quality of the graph partition, a 

fitness function is used to find the trade-off between interconnectivity (i.e., dependencies 

between the modules of two distinct subsystems) and intraconnectivity (i.e., dependencies 

between the modules of the same subsystem), to found out a satisfactory solution. In [49], 

Harman et al. use a genetic algorithm to improve the subsystem decomposition of a software 

system. The fitness function to maximize is defined using a combination of quality metrics, e.g., 

coupling, cohesion, and complexity. Similarly, Seng et al.  [50], treated the remodularization task 

as a single-objective optimization problem using the genetic algorithm. The goal is to develop a 

methodology for object-oriented systems that, starting from an existing subsystem 

decomposition, determines a decomposition with better metric values and fewer violations of 

design principles. Abdeen et al. [18] proposed a heuristic search-based approach for 

automatically optimizing (i.e., reducing) the dependencies between packages of a software 

system using simulated annealing. Their optimization technique is based on moving classes 

between the original packages. Taking inspiration from our previous work, Abdeen et al. have 
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recently extended their initial work to consider the remodularization task as a multi-objective 

optimization problem to improve existing packages structure while minimizing the modification 

amount on the original design. Using NSGA-II, this optimization approach aims at increasing the 

cohesion and reducing the coupling and cyclic connectivity of packages, by modifying as less as 

possible the existing packages organization. Praditwong et al. [32] have recently formulated the 

software clustering problem as a multi-objective optimization problem. Their work aim at 

maximizing the modularization quality measurement; minimizing the inter-package 

dependencies; increasing intra-package dependencies; maximizing the number of clusters having 

similar sizes; and minimizing the number of isolated clusters. 

Most of the remodularization approaches in the literature are based on information derived 

only from structural metrics to modularize/restructure the original package organization. 

However, this is not enough to produce a semantically coherent design. The first attempt that 

addresses this problem was by Bavota et al. [51] who proposed an automated, single-objective, 

approach to split an existing package into smaller but more cohesive ones. The proposed 

approach analyzes the structural and semantic relationships between classes in a package 

identifying chains of strongly related classes. The identified chains are used to define new 

packages with higher cohesion than the original package. This work has been extended in [19], 

to propose an interactive multi-objective remodularization approach. The proposed Interactive 

Genetic Algorithms (IGAs) aims at integrating developer's knowledge in a remodularization 

task. Specifically, the proposed algorithm uses a fitness composed of automatically-evaluated 

factors (accounting for the modularization quality achieved by the solution) and a human-

evaluated factor, penalizing cases where the way remodularization places components into 

modules is considered meaningless by the developer. One of the limitations of this approach is 

that, in each generation of the remodularization process, end users should analyze the suggested 

solution, class-by-class and package-by-package, and provide their feedback. User feedback can 

be either about classes which should stay together, or not, and/or about small/isolated clusters. 

This is not always profitable when we deal with industrial size software projects, and it need 

expert users to suitably drive the optimization process. 
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The semantic meaningfulness of the recommended restructuration is a fundamental issue when 

automatically modifying a software design. The first attempt to integrate the semantic coherence 

of when automatically modifying the software design was in [52]. Similarly to the related work, 

the remodularization approach uses the combination of semantic and structural information 

captured in the package and class levels to suggest more meaningful remodularization and better 

decide how to group together, split, or move, (or not) certain code elements. Furthermore, while 

automatic remodularization approaches proved to be very effective to increase cohesiveness and 

reduce coupling of software modules, they do not take into account the history of changes that 

provide a lot of information that is very useful in automating many software maintenance tasks. 

One of the characteristics of our approach is that it exploits the change history that represents an 

effective way to produce more meaningful remodularization. Another issue is that the majority of 

existing remodularization approaches considers only moving classes or grouping/splitting 

packages; however, none considered move methods/fields among classes in different packages. 

Hence, sometimes, it is enough to move only a method or a field between two classes in two 

different packages to reduce the dependency between them. 

To illustrate some of the limitation of the related work, Figure 2 shows a concrete example 

extracted from GanttProject v1.10.2, a well-known Java open-source project management 

software. We consider a design fragment containing four packages net.sourceforge.ganttproject, 

net.sourceforge.ganttproject.document, net.sourceforge.ganttproject.gui, and 

net.sourceforge.ganttproject.task. The largest package in GanttProject v1.10.2 is 

net.sourceforge.ganttproject including more than 40 classes, comparing to all other packages, 

implementing several features in one package. All the twelve software engineers that we asked in 

our experiments agreed that net.sourceforge.ganttproject is a large package that monopolizes the 

behavior of a large part of the system. 

We consider an example of a remodularization solution that consists of moving some classes 

from the package net.sourceforge.ganttproject to the package 

net.sourceforge.ganttproject.document. This operation can improve the modularization quality 

by reducing the number of classes/functionalities of the package net.sourceforge.ganttproject. 

However, from the semantics coherence standpoint, all the classes of 
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net.sourceforge.ganttproject.document are different from those implemented in 

net.sourceforge.ganttproject since they implement a feature to open streams to a project file. 

Based on the semantic and structural information, using respectively a vocabulary-based 

similarity, and cohesion/coupling, many other target packages are possible including 

net.sourceforge.ganttproject.gui, and net.sourceforge.ganttproject.task. These two packages 

have almost the same structure based on metrics such as number of classes and their semantic 

similarity is close to net.sourceforge.ganttproject using a vocabulary-based measure, or cohesion 

and coupling. On the other hand, from previous versions of GanttProject, we recorded that there 

are some classes (e.g. TaskManagerImpl) that have been moved from the package 

net.sourceforge.ganttproject to the package net.sourceforge.ganttproject.task. As a consequence, 

moving from the package net.sourceforge.ganttproject to the package 

net.sourceforge.ganttproject.task has higher correctness probability than moving classes between 

the remaining packages. Thus, some classes can be moved between these two packages such as 

GanttTask, GanttTaskPropertiesBean and GanttTaskRelationship. The direction of class 

movement should be taken into account while analyzing the history of changes to find 

similarities. 

Based on these observations, we believe that it is important to consider additional objectives 

rather than using only structural metrics to improve the automation of software remodularization. 

However, in most of the existing remodularization work, semantic coherence, code changes, and 

development history are not considered. Thus, the remodularization process needs a manual 

inspection by the user to evaluate the meaningfulness/feasibility of proposed changes that mainly 

improve structural metrics. The inspection aims at verifying if these changes could produce 

semantic incoherence in the program design. For large systems, this manual inspection is 

complex, time-consuming and error-prone. Improving the packages structure, minimizing 

semantic incoherencies, reducing code changes, and keeping consistent with development 

change history may be conflicting. In some cases, improving the program modularization could 

provide a design that does not make sense semantically or could change radically the initial 

design. For these reasons, a good remodularization strategy needs to find a compromise between 

all of these objectives. In addition, moving classes and splitting packages are not enough code 
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changes to improve the remodularization of systems. These observations are at the origin of the 

work described in Chapter 4:  

 

Figure 2.3. Motivating example extracted from GanttProject v1.10.2. 

 Software refactoring 

Refactoring is defined as the process of improving code after it has been written by changing 

its internal structure without changing its external behavior. The idea is to reorganize variables, 

classes and methods to facilitate future adaptations and extensions and enhance comprehension. 

This reorganization is used to improve different aspects of software quality such as 

maintainability, extensibility, reusability, etc. Some modern Integrated Development 

Environments (IDEs), such as Eclipse, NetBeans, provide semi-automatic support for applying 

the most commonly used refactorings, e.g., move method, rename class, etc. However, 

automatically suggesting/deciding where and which refactorings to apply is still a real challenge 

in Software Engineering. In order to identify which parts of the source code need to be 

refactored, most existing work relies on the notion of code smells, also called design defects or 

anti-patterns. 

The impact of code smells on software systems has been the subject of several studies over the 

past decade since their first introduction by Fowler [15]. He defined 22 code smells as structural 
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code flaws that may decrease the overall software quality and serve as indicators of potential 

issues related to software evolution and maintenance. To cope with these smells, Fowler has 

introduced a set of 72 Refactoring operations to fix code smells and thus improving the system 

overall design. 

The detection process can either be manual, semi-automated or fully automated. Mäntylä et al. 

[53] provided an initial formalization of the code smells, in terms of metrics, based on analyzing 

Fowler’s smells description, they studied the correlation between the smells and provided a 

classification according to their similarity. Mäntylä revealed that the manual detection of smells 

is dependent on the level of expertise of detection performers, which represents one of the main 

limitation of this approach. Marinescu et al. [54] presented an automated framework for smells 

identification using detection strategies which are defined by metric-based rules. Moha et al. [55] 

presented a semi-automated technique called DECOR. This framework allows subjects to 

manually suggest their own defects through their description with domain specific language, then 

the framework automatically searches for smells and visually reports any finding. Most of the 

above-mentioned work focus mainly on smells specification in order to improve their detection, 

for the correction step, their proposals were limited to guidance on how to manually manage 

these smells by suggesting refactoring recommendations according to detected smell’s type. 

Similarly to the detection’s state of the art, refactoring techniques can be either manual, semi-

automated or fully automated. Fowler [15] manually linked a set of suggested refactorings 

(Move Attribute, Extract Class, Move Method etc.) with each identified smell. Van Emden et al. 

[56] focused on the detection of two code smells related to the Java language and suggested their 

specific correction. Martin [57] has used patterns to cope with the poor system design in the 

presence of code smells. Mäntylä proposed refactoring solutions based on developers’ opinions 

and driven by an automatic detection of structural anomalies at the source code level. Counsell et 

al. [58] refined Fowler’s suggested refactorings by prioritizing some refactorings in the 

execution order. Piveta el al. [59] discussed when refactoring opportunities are eventually needed 

when detecting bad smells in aspect-oriented software. Meananeatra [60] presented another 

semi-automated heuristic for refactoring, it generates a graph or refactoring sequences that are 
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being refined using three main objectives to minimize the number of code smells, the number of 

refactorings and the number of refactored code elements. 

JDeodorant [61] is an automated refactoring tool implemented as an Eclipse plug-in that 

identifies some types of design defects using quality metrics and then proposes a list of 

refactoring strategies to fix them. Du Bois et al. [62] has investigated decreasing coupling and 

increasing cohesion metrics through the refactoring opportunities and use this to perform an 

optimal distribution of features over classes. They analyze how refactorings manipulate coupling 

and cohesion metrics, and how to identify refactoring opportunities that improve these metrics. 

However, this approach is limited to only some possible refactoring operations with few number 

of quality metrics. Murphy-Hill et al. [63] proposed several techniques and empirical studies to 

support refactoring activities. The authors proposed new tools to assist software engineers in 

applying refactoring such as selection assistant, box view, and refactoring annotation based on 

structural information and program analysis techniques. Recently, in [64] the authors have 

proposed a new refactoring tool called GhostFactor that allows the developer to transform code 

manually but check the correctness of the transformation automatically. BeneFactor [65] and 

WitchDoctor [66] can detect manual refactorings and then complete them automatically. 

Tahvildari et al. [67] also proposed a framework of object-oriented metrics used to suggest to the 

software engineer refactoring opportunities to improve the quality of an object-oriented legacy 

system. Dig et al. [68] proposed an interactive refactoring technique to improve the parallelism 

of software systems. Other contributions are based on rules that can be expressed as assertions 

(invariants, pre- and post-conditions). Kataoka et al. [69] used invariants in the detection and 

extraction of source code fragments in need of refactoring. 

Search-based refactoring represents fully automated refactoring driven by metaheuristic search 

and guided by software quality metrics and used subsequently to address the problem of 

automating design improvement. Seng et al. [50] propose a search-based technique that uses a 

genetic algorithm over refactoring sequences. The employed metrics are mainly related to 

various class level properties such as coupling, cohesion, complexity and stability. The approach 

was limited only to the use of one refactoring operation type, namely 'move method'. In contrast 

to O’Keeffe et al. [70], their fitness function is based on well-known measures of coupling 
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between program components. Both these approaches use weighted-sum to combine metrics into 

a fitness function, which is of practical value but is a questionable operation on ordinal metric 

values. Kessentini et al. [71] also propose a single-objective combinatorial optimization using a 

genetic algorithm to find the best sequence of refactoring operations that improve the quality of 

the code by minimizing as much as possible the number of code smells detected using a set of 

quality metrics. In [72] population-based direct approaches have been used in finding the local 

beam search for locating best refactoring solutions. 

Harman and Tratt were the first to introduce the concept of Pareto optimality to search-based 

refactoring [6]. They use it to combine two metrics into a fitness function, namely CBO 

(coupling between objects) and SDMPC (standard deviation of methods per class) and 

demonstrate that it has several advantages over the weighted-sum approach. More recent work 

on multi-objective search-based refactoring is the work by Ouni et al. [52] who propose a multi-

objective optimization approach to find the best sequence of refactorings using NSGA-II. The 

proposed approach is based on two objective functions, quality (proportion of corrected code 

smells) and code modification effort, to recommend a sequence of refactorings that provide the 

best trade-off between quality and effort. 
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 Model Transformation 

 Introduction 

Model Transformation plays an important role in Model Driven Engineering (MDE) [7]. The 

research efforts by the MDE community have produced various languages and tools for 

automating transformations between different formalisms using mapping rules. These 

transformation rules can be implemented using general programming languages such as Java or 

C#; graph transformation languages like AGG [8] and VIATRA [9]; or specific languages such 

as ATL [73] and QVT [11]. Sometimes, transformations are based on invariants (pre-conditions 

and post-conditions specified in languages such as OCL [12]). 

One major challenge is to automate transformations while preserving the quality of the 

produced models [7]. Thus, the main goal is to reduce the number of possible errors when 

defining transformation rules. These transformation errors have different causes such as 

transformation logic (rules) or source/target metamodels. Existing approaches and techniques 

have been successfully applied to transformation problems with a minimum number of errors. 

Especially at the model level, correctness is the gold standard characteristic of models: it is 

essential that the user understands exactly how the target model deviates from fidelity to the 

source model in order to be able to rely on any results. However, other important objectives are 

how to minimize the complexity of transformation rules (e.g. the number of rules, number of 

matching in the same rule) while maximizing the quality of target models to obtain well-

designed ones. In fact, reducing rules complexity and improving target models quality are 

important to 1) make rules and target models easy to understand and evolve, 2) find 

transformation errors easily, and 3) generate optimal target models. 
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The majority of existing approaches formulate the transformation problem as a single-

objective problem that maximizes rules correctness. In this case, the proposed transformation 

rules produce target models without errors. However, these rules are sometimes complex (e.g., 

size) and applying them may generate very large target model. For example, when complex 

transformation rules are available for mapping from dynamic Unified Modeling Language 

(UML) models to Colored Petri Nets (CPN), systematically applying them generally results in 

large PNs [13]. This could compromise the subsequent analysis tasks, which are generally 

limited by the number of the PNs’ states. Obtaining large PNs is not usually related to the size of 

the source models but to the rules complexity [14]. In addition, it is important to take into 

consideration the quality of produced target models (e.g. maximizing good design practices by 

reducing the number of bad smells in a generated class diagram from a relational schema). 

Another category of approaches proposes an additional step to minimize complexity, using 

refactoring operations, after generating transformation rules [16]. However, it is a difficult and 

fastidious task to modify, evolve and improve the quality of already generated complex rules.  

In this chapter, to overcome some of the above-mentioned limitations, we propose to 

alternatively view transformation rules generation as a multi-objective problem. We generate 

solutions matching the source metamodel elements to their equivalent target ones, taking in 

consideration two objectives: 1) minimizing rules’ complexity and 2) maximizing target-models’ 

quality. We start by randomly generating a set of rules, executing them on different source 

models to generate some target models, and then evaluate the quality of the proposed solution 

(rules). Of course, during the optimization process, we select only solutions ensuring full 

correctness (generating correct target models/rules). Correctness is the gold standard 

characteristic of models: it is essential that the user understands exactly how the target model 

deviates from fidelity to the source model in order to be able to rely on any results. To ensure the 

transformation correctness, we used a list of constraints to satisfy when generating target models. 

For the first objective, it calculates the number of rules and number of matching metamodels in 

each rule (one-to-one, many-to-one, etc.). For the second objective, we use a set of software 

quality metrics to evaluate the quality of generated target models. To search for solutions, we 

selected and adapted, from the existing Multi-Objective Evolutionary Algorithms (MOEAs), the 

Non-dominated Sorting Genetic Algorithm (NSGA-II) [21]. NSGA-II aims to find a set of 
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representative Pareto-optimal solutions in a single run. In our case, the evaluation of these 

solutions is based on the two mentioned conflicting criteria. 

The primary contributions of the chapter can be summarized as follows: 

1. We introduce a new approach for model transformation using multi-objective techniques. 

Our proposal does not require to define rules manually, but only to input a set of source models 

and equivalent target models (without traceability links); it generates well-designed target 

models/rules without the need to refactor them; it takes in consideration the complexity of the 

generated rules; and it can be applied to any source or target metamodels (independent from 

source and target languages). However, different limitations are discussed in the discussion 

section. 

2. We report the results of an evaluation of our approach; we used three different 

transformation mechanisms to evaluate our proposal: class diagrams to relational schemas and 

vice-versa; and sequence diagrams to colored Petri nets. The generated rules for both 

mechanisms achieved high-quality scores with a minimal set of rules. 

 Approach 

3.2.1 Automated model transformation 

A model transformation mechanism takes as input a model to transform, the source model, and 

produces as output another model, the target model. The source and target models must conform 

to specific metamodels and, usually, relatively complex transformation rules are defined to 

ensure this. 

We can illustrate this definition of the model transformation mechanism with the case of Class 

Diagram (CLD) to Relational Schema (RS) transformation. Our choice of CLD-to-RS 

transformation is motivated by the fact that it is well known and reasonably complex; this allows 

us to focus on describing the technical aspects of our approach. In the validation section, we 

show that our approach can also be applied to more complex transformations such as sequence 

diagrams to CPNs. 
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Figure 3.1.a shows a simplified metamodel of the UML class diagram, containing concepts like 

class, attribute, relationship between classes, etc. Figure 3.1.b shows a partial view of the 

relational schema metamodel, composed of table, column, attribute, etc. The transformation 

mechanism, based on rules, will then specify how the persistent classes, their attributes and their 

associations should be transformed into tables, columns and keys. 

(a) Class diagram metamodel 

 

(b) Relational schema metamodel 

 

Figure 3.1. Class diagram and relational schema metamodels. 

Figure 3.2 shows the example of a source model as class diagram containing 4 classes, and 2 

association links. It shows also the associated target model expressed as a RS. 4 classes are 

mapped to tables (Client, Order, OrderDetails and Product). The two association links become 

foreign keys. Finally, attributes in subclasses are mapped into columns of the table derived from 

the parent class. The class diagram to relational schema transformation is used to illustrate our 

approach described in the rest of this chapter. 
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(a) Class diagram example 

 

(b) Relational schema diagram example 

 

Figure 3.2. Class diagram (source model) with equivalent relational schema diagram (target model). 

The general structure of our approach is introduced in Figure 3.3. The following two 

subsections give more details about our proposals. As described in Figure 3.3, the number of 

source models and the expected target ones is used to generate the transformation rules. In fact, 

our approach takes as inputs a set of source models with their equivalent target models, a list of 

quality metrics and another list of constraints (to ensure transformation correctness) and takes as 

controlling parameters a list of source and target metamodel elements. Our approach generates a 

set of rules as output. 
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Figure 3.3. Overview of the approach: general architecture. 

The rule generation process combines source and target metamodel elements within rule 

expressions. Some logical expressions (union OR; intersection AND) can be used to combine 

between metamodel elements. Consequently, a solution to the transformation problem is a set of 

rules that best transform the source models to target models within the satisfaction of the list of 

all transformation-constraints. For example, the following rule states that a class is transformed 

into a table with the same name having a primary key: 

R1: IF Class(A) THEN Table(A) AND Column(idA, A, pk). 

In this example of a rule, class, table and primary key column correspond to some elements 

extracted from the source and target metamodels. The first part of the rule contains only elements 

from the source metamodel. Consequently, the second part of the rule contains only elements 

from the target metamodel. 

To ensure the transformation correctness when generating transformation rules, the idea is that 

the transformation of source models into target models is coupled with a contract consisting of 

pre- and post-conditions. Hence, the transformation is tested with a range of source models that 

satisfy the pre-conditions to ensure that it always yield target models that satisfy the post-

conditions. If the transformation produces an output model that violates a post-condition, then 

the contract is not satisfied and the transformation needs to be corrected. The contract is defined 
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at the metamodel level and conditions are generally expressed in OCL. We used these constraints 

as input in our approach. 

After ensuring the transformation correctness, our multi-objective optimization process uses 

two criteria to evaluate the generated solutions. The first criterion consists of minimizing the 

rules complexity by reducing the number of rules and the number of matching metamodels in 

each rule. The second criterion consists of maximizing the quality of generated target models 

based on different quality metrics. Quality metrics provide useful information that helps to assess 

the level of conformance of a software system to the desired quality such as evolvability and 

reusability. For instance, [16] propose different metrics to evaluate the quality of relational 

schemas such as: Depth of Relational Tree of a table T (DRT(T)) which is defined as the longest 

referential path between tables, from the table T to any other table in the schema database; 

Referential Degree of a table T (RD(T)) consists of the number of foreign keys in the table T; 

Percentage of complex columns PCC(T) metric of a table T; and Size of a Schema (SS) defined 

as the sum of the tables size (TS) in the schema. 

We selected also a set of quality metrics that can be applied on class diagrams as target models. 

These metrics include: Number of associations (Naccoc): the total number of associations; 

Number of aggregations (Nagg): the total number of aggregation relationships; Number of 

dependencies (Ndep): the total number of dependency relationships; Number of generalizations 

(Ngen): the total number of generalization relationships (each parent-child pair in a 

generalization relationship); Number of aggregations hierarchies (NAggH): the total number of 

aggregation hierarchies; Number of generalization hierarchies (NGenH): the total number of 

generalization hierarchies; Maximum DIT (MaxDIT): the maximum of the DIT (Depth of 

Inheritance Tree) values for each class in a class diagram. The DIT value for a class within a 

generalization hierarchy is the longest path from the class to the root of the hierarchy; Number of 

attributes (NA): the total number of attributes; Number of methods (LOCMETHOD): the total 

number of methods; and Number of private attributes (NPRIVFIELD): number of private 

attributes in a specific class. 

During the multi-objective optimization process, our approach combines randomly source and 

target metamodel elements within logical expressions (union OR; intersection AND) to create 
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rules. In this case, the number n of possible combinations is very large. The rule generation 

process consists of finding the best combination between m source metamodel elements and k 

target metamodel elements. In addition, a huge number of possibilities to execute the 

transformation rules exist (rules execution sequence). In this context, the number NR of possible 

combinations that have to be explored is given by: NR = ((n+k)!)m 

This value quickly becomes huge. Consequently, the rule generation process is a combinatorial 

optimization problem. As any solution must satisfy two criteria (complexity and quality), we 

propose to consider the search as a multi-objective optimization problem instead of a single-

objective one. To this end, we propose an adaptation of the NSGA-II. This algorithm and its 

adaptation are described in the next sub-section. 

3.2.2 NSGA-II adaptation 

We adapted NSGA-II to the problem of generating transformation rules, taking in 

consideration both complexity and models quality dimensions. We consider each one of these 

criteria as a separate objective for NSGA-II. The pseudo-code for the algorithm is given in 

Algorithm 3.1. 

Algorithm 3.1. High-level pseudo-code for NSGA-II adaptation to our problem. 

Input: Source metamodel elements SMM - Target metamodel elements TMM - source models SM  

Input: Correctness constraints CC - Quality metrics QM 

Output: Near-optimal transformation rules 

1: initial_population(P, Max_size)  

2: P0:= set_of(S)  

3: S:= set_of(Rules:SMM:TMM) 

4: SM:= Source_Models 

5: t:=0 

6: repeat 

7: Qt:= Gen_Operators(Pt) 

8:  Rt:=Pt U Qt 

9: for all Si Rt do 

10:      TM:= execute_rules(Rules, SM); 

11:              Correctness(Si) := calculate_constraintsCoverage(SM, TM, CC); 

12:        if (calculate_constraintsCoverage(SM, TM, CC) ==1 ) then  
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13:                  Complexity(Si) := calculate_Complexity(Rules); 

14:            QualityModels(Si) := calculate_qualityModels(TM, QM); 

15:       else 

16:  Complexity(Si) == 0; 

17:            QualityModels(Si) == 0; 

18:      End if 

19: end for 

20: F:=fast-non-dominated-sort(Rt) 

21: Pt+1 :=Ø 

22: while |Pt+1|<Max_size 

23:        Fi := crowding_distance_assignment(Fi) 

24:         Pt+1 := Pt+1+Fi 

25: end while 

26: Pt+1 :=Pt+1[0:Max_size] 

27: t:=t+1; 

28: until t=max_it 

29: best_solution = First_front(Rt) 

30: return best_solution 

As Algorithm 3.1 shows, the algorithm takes as input a set of source and target metamodel 

elements, and a set of source models and its equivalent target ones. Lines 1–5 construct an initial 

population based on a specific representation, using the list of metamodels elements given at the 

inputs. Thus, the initial population stands for a set of possible transformation rules solutions that 

represent a set of source and target metamodel elements selected and combined randomly. Lines 

6–30 encode the main NSGA-II loop whose goal is to make a population of candidate solutions 

evolves toward the best rules combination, i.e., the one that minimizes as much as possible the 

number of rules and matching metamodels in the same rule, and maximizes the target models 

quality by improving quality metrics values. During each iteration t, a child population Qt is 

generated from a parent generation Pt (line 7) using genetic operators. Then, Qt and Pt are 

assembled in order to create a global population Rt (line 8). After that, each solution Si in the 

population Rt is evaluated using the two fitness functions, complexity and quality (lines 11-18): 

 Complexity function (line 13) calculates the number of rules and matching metamodels in 

each rule. 
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 Quality function (line 14) represents the quality score of target models based on a 

combination of quality metrics. 

These two functions take the value 0 if the transformation-correctness is not ensured. The 

correctness function (line 11) represents the percentage of source/target metamodel constraints 

that are satisfied by the proposed solution Si. We consider during the optimization process only 

solutions that satisfy all correctness constraints. 

Once quality and complexity are calculated, solutions are sorted in order to return a list of non-

dominated fronts F (line 20). When the whole current population is sorted, the next population 

Pt+1 will be created using solutions that are selected from sorted fronts F (lines 21-26). When two 

solutions are in the same front, i.e., same dominance, they are sorted by the crowding distance, a 

measure of density in the neighborhood of a solution. The algorithm terminates (line 28) when it 

achieves the termination criterion (maximum iteration number). The algorithm returns the best 

solutions that are extracted from the first front of the last iteration (line 29). 

We give more details in the following sub-sections about the representation of solutions, genetic 

operators, and the fitness functions. 

3.2.2.1 Solution representation 

An individual is a set of declarative IF – THEN rules. To ease the manipulation of the source 

and target metamodels and their transformation, the metamodels are described using a set of 

predicates that correspond to the included element. For example, Figure 3.4 shows the rule 

interpretation of an individual containing two rules. So, the mapping between predicates Class 

(A) and Table (A) indicates that class A is transformed into a table with the same name.  

Similarly, the mapping between Association(1,n,1,n,N,A, B)  and ‘Table(N) AND Column(idA, 

N,pfk) AND Column(idB, N,pfk)’ indicates that the association link N is transformed into a table 

with the same name containing two primary-foreign keys pfk, idA and idB which are primary 

keys respectively in tables A and B. 

Rule 1: Class(A) THEN Table(A)  

Rule 2: Association(1,n,1,n,N,A, B). THEN Table(N) AND Column(idA, N,pfk) AND 

Column(idB, N,pfk).  
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Figure 3.4. Rule interpretation of an individual. 

Consequently, a transformation rule has the following structure:  

IF “Combination of source metamodel elements” THEN “Combination of target metamodel 

elements” 

As it is shown in Figure 3.4, the IF clause contains a combination of source metamodel 

elements. These elements are combined using logic operators (AND, OR). Consequently, THEN 

clauses highlight the equivalent target metamodel elements. Some other additional rules 

determine the sequence of applying transformation rules. 

One of the most suitable computer representations of rules is based on the use of trees. In our 

case, the rule interpretation of an individual will be handled by a tree representation which is 

composed of two types of nodes: terminals and functions. The terminals (leaf nodes of a tree) 

correspond to source or target metamodel elements. The functions that can be used between 

these elements correspond to logical operators, which are Union (OR) and Intersection (AND).  

 

Figure 3.5. Solution representation. 

Consequently, the rule interpretation of the individual of Figure 3.4 has the following tree 

representation of Figure 3.5. The sequence of applying the rules is determined randomly. 
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3.2.2.2 Generation of an initial population 

To generate an initial population, we start by defining the maximum tree length including the 

number of nodes and levels. Because the individuals will evolve with different tree lengths 

(structures), we randomly assign for each one: 

 One source or target metamodel element to each terminal node 

 A logic operator (AND, OR) to each function node 

3.2.2.3 Selection and genetic operations 

Selection: There are many selection strategies where fittest individuals are allocated more copies 

in the next generations than the other ones. Thus, to guide the selection process, NSGA-II uses a 

comparison operator based on a calculation of the crowding distance to select potential 

individuals to construct a new population Pt+1. Furthermore, for our initial prototype, we used 

Stochastic Universal Sampling (SUS) to derive a child population Qt from a parent population Pt, 

in which each individual’s probability of selection is directly proportional to its relative overall 

fitness value (average score of the two fitness values) in the population. We use SUS to select 

elements from Pt that represents the best elements to be reproduced in the child population Qt 

using genetic operators such as mutation and crossover. 

Crossover: Two parent individuals are selected, and a sub-tree is picked on each one. Then, the 

crossover operator swaps the nodes and their relative sub-trees from one parent to the other. Each 

child thus combines information from both parents. 

Figure 7 shows an example of the crossover process. In fact, the rule R1 and a rule R2 are 

combined to generate two new rules. The right sub-tree of R1 is swapped with the left sub-tree of 

R2. 
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Figure 3.6. Crossover operator. 

Mutation: The mutation operator can be applied either to function or terminal nodes. This 

operator can modify one or many nodes. Given a selected individual, the mutation operator first 

randomly selects a node in the tree representation of the individual. Then, if the selected node is 

a terminal (source or target metamodel element), it is replaced by another terminal (another 

metamodel element).  

If the selected node is a function (AND operator, for example), it is replaced by a new function 

(i.e. AND becomes OR). If a tree mutation is to be carried out, the node and its subtrees are 

replaced by a new randomly generated sub-tree. 

 

Figure 3.7. Mutation operator. 
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To illustrate the mutation process, consider again the example that corresponds to a candidate 

rule. Figure 8 illustrates the effect of a mutation that modifies the metamodel element association 

link in the rule R1. Thus, after applying the mutation operator the new rule R1 will be: 

Rule 1: Association (0,n,0,n,N,A, B). THEN Table(A)  

When the cross-over and mutation operators are executed, many pre and post-conditions should 

be satisfied to ensure that the rules modifications are valid. We specified these conditions for 

each metamodel element. 

1.1.1 Multi-criteria evaluation 

In the majority of existing work, the fitness function evaluates a generated solution by 

verifying its ability to ensure transformation correctness. In our case, in addition to ensuring 

transformation correctness we define two new fitness functions in our NSGA-II adaptation: (1) 

rules complexity and (2) target models quality.  

To ensure transformation correctness, different constraints are defined manually including two 

parts: pre and post conditions. The pre-conditions constrain the set of valid models and the post-

conditions declare a set of properties that can be expected in the output model. For example, a 

table should contain at least one primarily key or a foreign key should be a primary key in 

another table. As described in Figure 4, the transformation correctness constraints are verified 

before evaluating the rules-complexity and models-quality. If the proposed solution generates 

correct transformation rules then complexity and quality criterion can be evaluated. Thus, the 

correctness C parameter takes 1 if all constraints are satisfied otherwise 0: 






otherwise 0,

satisfied are sconstraint scorrectnesation  transformall if 1,
  C

 

Complexity criterion: In our approach, we define the complexity function, to minimize, as the 

sum of number of generated rules and number of metamodel elements in each rule: 

)(1 mncf 
 

(3.1) 
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Where n is the number of rules to define and m is the number of metamodel elements in the same 

rule. Of course, the complexity function takes 0 if the transformation correctness is not ensured 

(c =0). 

Quality criterion: The quality criterion is evaluated using the fitness function given in Equation 

(2). The quality value increases when the metrics values (mi) are in the range of well-designed 

models thresholds (mi,best_minOrmax). This function, to minimize, returns a real value that represents 

the difference between good metrics values (expected) and those extracted from the generated 

target models. The choice of good metrics thresholds is based on our previous works in models 

quality improvements. 
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(3.2) 

In this case, the quality of generated target models is maximized when f2 is minimized. To 

illustrate the fitness function, we consider that a solution generated contains these four rules: 

R1: IF Class(A)  THEN Table(A) AND Column(idA,A,pk). 

R2: IF Attribute(a,A) THEN Column(a,A,_). 

R3: IF Association(0,1,0,n,N,A,B) THEN Column(idA,B,fk). 

R4: IF Association(1,n,1,n,N,A, B) THEN Table(N) AND Column(idA,idB,N,pfk). 

To evaluate this solution, let’s consider the class diagram source model of Figure 3.2.a. After 

executing this set of four rules, we obtain the relational schema target model of Figure 3.2.b. We 

consider, for example, that the correctness is ensured based on two constraints: C1) each table 

should contain, at least, one primary key; and C2) a foreign key in table A should be a primary 

key in another table B. To evaluate the design quality of target models, we are using two quality 

metrics: 

 Referential Degree of a table T (RD(T)) consists of the number of foreign keys in the 

schema: m1,best = (min = 1; max = 3) 



44 Model Transformation 

 

 

 

 Size of a Schema (SS) defined as the sum of the tables size (TS) in the schema: m2,best = 

(min = 3; max = 5) 

In such scenario, the parameters of the complexity fitness function take the following values: 

c=1 since both correctness constraints are satisfied by the target model; n=4 which corresponds 

to the number of rules; m=3+2+2+3 =10 (number of matching metamodels). Thus, the 

complexity score of the generated solution is: 

14)104(11 f
 

Regarding the quality dimension, based on Figure 3.2.b RD and SS take, respectively, the value 

3 (0+1+2+0) and 4. Thus, the quality fitness function is defined as follow:  

    11045,4333,31
2

 MinMinf
 

 Validation 

To evaluate the feasibility of our approach, we conducted an experiment with three 

transformation mechanisms. We start by presenting our research questions. Then, we describe 

and discuss the obtained results. 

3.3.1 Research Questions 

Our study addresses two research questions, which are defined here. We also explain how our 

experiments are designed to address them. The goal of the study is to evaluate the efficiency of 

our approach for generating correct transformation rules while minimizing the rules-complexity 

and maximizing the quality of generated target models. The three research questions are then: 

 RQ1: To what extent can the proposed approach minimize rules complexity? 

 RQ2: To what extent can the proposed approach maximize the quality of generated target 

models? 

 RQ3: To what extent can the proposed multi-objective approach perform comparing to 

mono-objective search algorithms? 
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To answer RQ1, we compared the complexity of the generated rules with expected ones 

defined manually: number of rules and number of elements in each rule. 

To answer RQ2, the transformation result is checked for quality using two methods: 1) we 

calculate the dissimilarity between reference metrics threshold and those related to generated 

target models, and 2) we evaluate the variation in terms of size between generated target models 

using NSGA-II and those provided manually by experts.  

To answer RQ3, we implemented a mono-objective genetic algorithm where the goal is to 

generate a minimal set of correct transformation rules (one objective is used which is the 

complexity). Then, we compared the results to those generated by our NSGA-II approach based 

on complexity and quality criterions.  

3.3.2 Setting 

To evaluate the feasibility of our approach, we conducted an experiment on generating rules 

for: class diagram (CLD) to relational schema (RS) and vice-versa (RS to CLD), and sequence 

diagram (SD) to colored Petri nets (CPN). We used twelve large class-diagrams with their 

equivalent relational schemas. The examples were provided by an industrial partner. The size of 

the CLDs varied from twenty-eight to ninety-two model elements, with an average of fifty-eight. 

In addition, we collected the transformations of ten sequence diagrams to sequence diagrams 

from the Internet and textbooks. We ensured by manual inspection that all the transformations 

are valid. The size of the SDs varied from sixteen to fifty-seven constructs, with an average of 

thirty-six. The ten sequence diagrams contained many complex fragments: loop, alt, opt, par, 

region, neg and ref.  

As described in the previous section, we selected a set of twelve quality metrics for CLD, nine 

for RS and two for CPN (number of places and transitions). Based on our previous work, we 

define the thresholds range for each of those metrics. As described previously, we implemented a 

set of constraints to ensure the correctness of generated target models during the optimization 

process. 
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1.2 Results and Discussions 

In this subsection we present the answer to each research question, in turn, indicating how the 

results answer each. 

Figure 3.8 shows the rules complexity and target models quality for all the three transformation 

mechanisms based on the two fitness function values. These two fitness functions to minimize 

correspond to 1) Complexity: the number of rules and matching metamodels in each rule; and 2) 

Dissimilarity: the difference between the solution’s calculated metrics values and the reference 

metrics values; so, decreasing the dissimilarity will increase the solution’s quality. For all the 

transformation mechanisms, different solutions generate well-designed target models with a 

minimal set of rules. 

  

 

Figure 3.8. Results of the last iteration for the 3 transformations. 

As shown in Figure 3.8, NSGA-II converges to Pareto-optimal solutions that are considered as 

good compromises between quality and complexity. In this figure, each point is a solution with 
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the complexity score represented in the x-axis and the dissimilarity score (deviation from 

reference metrics threshold) in the y-axis. The best solutions exist in the middle representing the 

Pareto-front that minimizes dissimilarity with reference metrics threshold and the rules 

complexity. The user can choose a solution from this front depending on his preferences in terms 

of compromise. However, at least for our validation, we need to have only one best solution that 

will be suggested by our approach. To this end and in order to fully automate our approach, we 

propose to extract and suggest only one best solution from the returned set of solutions. Equation 

(3.3) is used to choose the solution that corresponds to the best compromise between Quality and 

Complexity. Hence, we select the nearest solution to the ideal one in terms of Euclidian distance: 

 ])²[(])²[(
0

iComplexityiityDissimilarbestSol Min
n

i


  

(3.3) 

where n is the number of solutions in the Pareto front returned by NSGA-II. Since the two 

objectives of quality and complexity are conflicting/contradicting, the results of Figure 3.8 

confirm that a solution which scores better in complexity is better than any other solution which 

is of lower quality. 

  

Figure 3.9. Complexity and Dissimilarity comparison between NSGA-II, manually defined rules and a mono-objective 

Genetic Algorithm (GA). 

As described in Figure 3.9, the majority of proposed transformation rules generate good quality 

of target models with minimal complexity comparing to those provided manually by experts or a 

mono-objective genetic algorithm. For all the three transformation mechanisms, the dissimilarity 

of generated target models using NSGA-II is lower than those generated by the manual and 

genetic algorithm methods which means that NSGA-II’s quality is much better than the other 
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transformation mechanisms. In fact, when experts write rules manually they did not take into 

consideration, in general, the quality of produced models but only the correctness. Since the 

mono-objective algorithm considers only correctness when generating transformation rules thus 

it is evident that NSGA-II performs better in terms of target models quality. The generated rules 

using NSGA-II are less complex than those generated by an expert for all the three 

transformation mechanisms. In fact, experts ensure that the rules are correct as the main goal. 

However, GA provides less complex rules for CLD-to-RS and RS-to-CLD than our NSGA-II 

algorithm. This is can be explained by the reason that these two transformation mechanisms are 

not complex. However, with more complex transformation mechanisms, such as SD-to-CPN, it 

is difficult to obtain a minimal set of rules without specifying complexity as a separate objective 

in addition to correctness. In addition, based on NSGA-II algorithm we can sacrifice a small 

complexity decrease to improve the quality of generated target models.  

Figure 3.9 shows that, in general, we generate, approximately, the same number of rules for all 

transformation mechanisms. The number of generated rules is comparable to those provided by 

our expert in terms of number of matching metamodels. The different generated rules are 

verified manually and we did not found any errors.  

As described in Figure 3.9, the average of quality deviation, from reference metrics values, for 

all transformed source models is low. This is confirming the good quality of generated target 

models. After a manual investigation of the results, we found that most of the quality deviations 

are due to the bad quality of source models to transform. In conclusion, our approach produces 

good refactoring suggestions both from the point of views of complexity and target models 

quality.  

The generated rules might vary depending on search space exploration since solutions are 

randomly generated, though guided by a meta-heuristic. To ensure that our results are relatively 

stable, we compared the results of multiple executions for NSGA-II as shown in Figure 11. We, 

consequently, believe that our technique is stable since the quality and complexity scores are 

approximately the same for different executions (each fold). 
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Figure 3.10. An example of seven executions on CLD-to-RS (best solutions). 

Since we viewed the maintainability defects correction problem as a combinatorial problem 

addressed with heuristic search, it is important to contrast the results with the execution time. We 

executed our algorithm on a standard desktop computer (i7 CPU running at 4 GHz with 4GB of 

RAM). The execution time for finding the optimal rules with a number of iterations (stopping 

criteria) fixed to 1000 was less than one hour. This indicates that our approach is reasonably 

scalable from the performance standpoint. However, the execution time depends on the source 

and target metamodels. 

As described in Table 3.1, we used the CPN-SD transformation mechanism to compare the 

quality of the generated CPNs using a mono-objective genetic algorithm (minimizing only rules 

complexity) and multi-objective approach. 

Table 3.1. Complexity comparison. 

CPN size (mono-

objective) 

CPN size (multi-

objective) 
Variation 

13 11 15% 

22 19 14% 

24 24 0% 

31 26 17% 

36 33 9% 

39 29 25% 

44 37 16% 

52 43 18% 

54 46 15% 

Average variation 13% 

When developing our approach, we conjectured that the multi-objective approach produces 

CPNs less complex/better quality (in size for example) than the one obtained by a mono-
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objective approach. Table 3.1 compares the obtained CPN sizes by using both approaches for the 

10 source models to transform.  

The size of a CPN is defined by the number of elements. In all cases, a reduction in size occurs 

when using our multi-objective approach, with an average reduction of 13% in comparison with 

mono-objective. The obtained results confirm our assumption that systematic application of rules 

using a mono-objective approach results in larger CPNs. 

 Conclusion 

In this chapter, we introduced a new multi-objective approach for generating model 

transformation rules. Our algorithm starts by randomly generating a set of rules, executing them 

to generate some target models, and then evaluates the complexity by reducing the number of 

generated rules and the quality of generated target models based on some quality-metric 

thresholds. Our approach differs from rule-based transformation approaches as it does not 

require writing rules. To our best knowledge, our proposal represents the first work that uses 

multi-objective techniques to automated model transformations. It also differs from existing by 

example approaches by the fact that no traceability links are needed in the examples. 

We have evaluated our approach on three transformation mechanisms. The experimental 

results indicate that the quality of derived target models is comparable and sometimes better than 

those defined by experts in the base of examples in terms of correctness with a minimal set of 

rules. 

Finally, we discussed some limitations and open research directions related to our proposal. 

First, all our performance contribution depends on the availability of examples, which could be 

difficult to collect. However, as we have shown in the experiments, only a few examples are 

needed to obtain good results. Second, due to the nature of our solution, i.e., an optimization 

technique, the process could be time-consuming for large models. Furthermore, as we use 

heuristic algorithms, different executions for the same input could lead to different outputs. This 

can be a disadvantage for some model-driven engineering applications, e.g. when the model 

transformation is a deterministic process and the generated target model is unique. Nevertheless, 
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having different and equivalent output models is close to what happens in the real world where 

different experts may propose different target models. 

Different future work directions can be explored. The application of new search-based 

techniques like the artificial immune system to model evolution or model refactoring is 

challenging. We are working on an extension of our first contribution about exogenous 

transformation by example. The idea is to generate transformation rules from examples using 

heuristic search. Our approach starts by randomly generating a set of rules, executing them to 

generate some target models. Then, it evaluates the quality of the proposed solution (rules) by 

comparing the generated target models to the expected ones in the base of examples. In this case, 

the search space is large and heuristic-search is needed. 

We are actually working to extend our proposal to other problems. A new technique for 

predicting “buggy” changes, when modifying an existing version of a model, can be proposed. 

The idea is to classify the changes as clean or not. The Change classification determines whether 

a new model change is more similar to prior “buggy” or clean changes in the base of examples. 

In this manner, change classification can predict the existence of “bugs” in models changes. 

Furthermore, we are working on transformation composition using examples. We propose a 

solution based on a music-inspired approach. We draw an analogy between the transformation 

composition process and finding the best harmony when composing music. Say, for example, 

that we have a transformation mechanism M1 that transforms formalism T1 into T2, but the 

meta-model of T2 evolved into T3, after deleting or adding elements. We want to generate new 

transformation rules that transform T1 into T3. The idea is to compose two transformation 

mechanisms T1 to T2 and T2 to T3. To this end, we propose to view transformation rules 

generation as an optimization problem where rules are automatically derived from available 

examples. Each example corresponds to a source model and its corresponding target model, 

without transformation traces from T1 to T3. Our approach starts by composing a set of rules (T1 

to T2 and T2 to T3), executing them to generate some target models, and then evaluating the 

quality of the proposed solution (rules) by comparing the generated target models and the 

expected ones in the base of examples. 
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 Software Remodularization 

 Introduction 

Large software systems evolve and become complex quickly, fault-prone and difficult to 

maintain [48]. In fact, most of the changes during the evolution of systems such as introducing 

new features or fixing bugs are conducted, in general, within strict deadlines. As a consequence, 

these code changes can have a negative impact on the quality of systems design such as the 

distribution of the classes in packages. To address this issue, one of the widely used techniques is 

software remodularization, called also software restructuring, which improves the existing 

decomposition of systems. 

There has been much work on different techniques and tools for software remodularization 

[17] [47] [74] [75] [76] [77]. Most of these studies addressed the problem of clustering by 

finding the best decomposition of a system in terms of modules and not by improving existing 

modularizations. In both categories, cohesion and coupling are the main metrics used to improve 

the quality of existing packages (e.g. modules) by determining which classes need to be grouped 

in a package. In this chapter, we focus on restructuring software design and not on the 

decomposition of systems to generate an initial coherent object oriented design. 

The majority of existing contributions have formulated the restructuring problem as a single-

objective problem where the goal is to improve the cohesion and coupling of packages [18] [32] 

[51]. Even though most of the existing approaches are powerful enough to provide 

remodularization solutions, some issues still need to be addressed. 

One of the most important issues is the semantic coherence of the design. The restructured 

program could improve structural metrics but become semantically incoherent. In this case, the 
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design will become difficult to understand since classes are placed in wrong packages to improve 

the structure in terms of cohesion and coupling. Also, the number of code changes is not 

considered when suggesting remodularization solutions; the only aim is to improve the structure 

of packages independently of the cost of code changes.  

However, in real-world scenarios, developers prefer, in general, remodularization solutions 

that improve the structure with a minimum number of changes. It is important to minimize code 

changes to help developers in understanding the design after applying suggested changes. 

Existing remodularization studies are also limited to few types of changes mainly move class 

and split packages [18] [19] [51] [78] [79]. However, refactoring at the class and method levels 

can improve remodularization solutions such as by moving methods between classes located in 

different packages. The use of development history can be an efficient aid when proposing 

remodularization solutions [80]. For example, packages that were extensively modified in the 

past may have a high probability of being also changed in the future. Moreover, the packages to 

modify can be similar to some patterns that can be found in the development history, thus, 

developers can easily recognize and adapt them. 

In this chapter, we propose a many-objective search-based approach to address the above-

mentioned limitations. Search-based software engineering is suitable for the software 

remodularization problem since the goal is to find the best sequence of operations that can lead 

to a better-remodularized system. The number of combinations to explore is high, leading to a 

huge and complex search space. Our many-objective search-based software engineering 

approach aims at finding the remodularization solution that: 1) Improve the structure of packages 

by optimizing some metrics such as number of classes per package, number of packages, 

coupling and cohesion; 2) Improve the semantic coherence of the restructured program. We 

combine two heuristics to estimate the semantic proximity between packages when moving 

elements between them (vocabulary similarity, and dependencies between extracted classes from 

call graphs) and some semantic/syntactic heuristics depending on the change type; 3) Minimize 

code changes. Compared to existing remodularization studies, we consider new changes that can 

be related to the package, class and method levels; and 4) Maximize the consistency with 

development change history. To better guide the search process, recorded code changes that are 



54 Software Remodularization 

 

 

 

applied in the past in similar contexts are considered. We evaluate if similar changes are applied 

in previous versions of the packages that will be modified by the suggested remodularization 

solution.  

The number of objectives to consider in our problem formulation is high (more than three 

objectives); such problems are termed many-objective. In this context, the use of traditional 

multi-objective techniques, e.g., NSGA-II [21], widely used in Search-Based Software 

Engineering (SBSE) [6] [81], is clearly not sufficient like in our case for the problem of software 

remodularization. There is a growing need for SBSE approaches that address software 

engineering problems where a large number of objectives are to be optimized. Recent work in 

optimization has proposed several solution approaches to tackle many-objective optimization 

problems [20] [82] [83] using e.g., objective reduction, new preference ordering relations and 

decomposition. However, these techniques have not yet been widely explored in SBSE [5]. To 

the best of our knowledge and based on recent SBSE surveys [84], only one work exists 

proposed by [36] [37] that uses a many-objective approach, IBEA (Indicator-Based Evolutionary 

Algorithm) [85], to address the problem of software product line creation. However, the number 

of considered objectives is limited to five. 

We propose a scalable search-based software engineering approach based on NSGA-III [20] 

where there are seven different objectives to optimize. Thus, in our approach, automated 

remodularization solutions will be evaluated using a set of seven measures as described above. 

The basic framework remains similar to the original NSGA-II algorithm, with significant 

changes in its selection mechanism. This work represents one of the first real-world applications 

of NSGA-III and the first scalable work that supports the use of seven objectives to address and 

improve software remodularization. 

We evaluated our approach on four open source systems and one industrial system provided by 

our industrial partner Ford Motor Company. We report the results on the efficiency and 

effectiveness of our approach, compared to the state of the art remodularization approaches [18] 

[78] [79]. Our results indicate that our approach significantly outperforms, in average, existing 

approaches in terms of improving the structure, reducing the number code changes, and 

semantics preservation. 
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The primary contributions of this work can be summarized as follows:  

1. A novel formulation of the remodularization problem as a many-objective problem that 

considers several objectives such as structural improvement, semantic coherence, 

number of changes and consistency with the history of changes. 

2. We consider the use of new operations, comparing to existing remodularization studies 

including move method, extract class and merge packages. 

3. This chapter reports the results of an empirical study of our many-objective technique 

compared to different existing approaches. The obtained results provide evidence to 

support the claim that our proposal is, in average, more efficient than existing 

techniques based on a benchmark of four large open source systems and one industrial 

project. 

4. The qualitative evaluation of the results by software engineers at Ford Motor Company 

and also graduate students confirms the usefulness the suggested remodularization 

solutions. 

 Approach 

4.2.1 Approach Overview 

Our approach aims at exploring a huge search space to find a set of remodularization solutions 

on the Pareto front such that in order to optimize any objective further will result in sub-

optimizing one or more additional objectives. These remodularization solutions are a sequence of 

change operations, to restructure packages. The search space is determined not only by the 

number of possible change combinations but also by the order in which they are applied. A 

heuristic-based optimization method is used to generate remodularization solutions. We have 7 

objectives to optimize: 1) minimize the number of classes per package; 2) minimize the number 

of packages; 3) maximize package cohesion; 4) minimize package coupling; 5) minimize the 

number of semantic errors by preserving the way classes are semantically grouped and connected 

together; 6) minimize code changes needed to apply remodularization solution; and 7) maximize 
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the consistency with development change history. We consider the remodularization task as a 

many-objective optimization problem instead of a single-objective one using the new many-

objective non-dominated sorting genetic algorithm (NSGA-III) that will be described in Section 

4.  

 

Figure 4.1. Approach overview. 

The general structure of our approach is sketched in Fig. 3. It takes as input the source code of 

the program to be restructured, a list of possible Remodularization Operations (ROs) that can be 

applied, a set of semantic and structural measures, and a history of applied changes to previous 

versions of the system. Our approach generates as output the optimal sequence of operations, 

selected from a list of possible ones that improve the structure of packages, minimize code 

changes needed to apply the remodularization solution, preserve the semantics coherence, and 

maximize the consistency with development change history. In the following, we describe the 

formal formulation of these different remodularization objectives to optimize. 

4.2.1.1 Remodularization Objectives 

We describe in this section the 7 objectives to optimize in our many-objective adaptation to the 

software remodularization problem.  

Structure. Four conflicting objectives are related to improving the structure of packages: 1) 

number of classes per package (to minimize); 2) number of packages in the system (to 

minimize); 3) cohesion (to maximize); it corresponds to the number of intra-edges (calls between 

classes in the same package) as described in Section 2; and 4) coupling (to minimize); it 

corresponds to the number of inter-edges (class between classes in different packages).  

Number of code changes. Table 2 describes the types of ROs that are considered by our 

approach: Move method, Extract class, Move class, Merge packages, and Extract/Split package. 

Existing remodularization studies are limited to only two operation types: move class and 
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split/extract package. We believe that these two operations are not enough to generate good 

remodularization solutions. In fact, sometimes only part of the class should be moved to another 

package (e.g. methods) and not the whole class. To apply a remodularization operation we need 

to specify which actors, i.e., code fragments, are involved in this operation and which roles they 

play when performing the change. As illustrated in Table 2, an actor can be a package, class, or 

method and we specify for each operation the involved actors and their roles. It is important to 

minimize the number of suggested operations in the remodularization solution since the designer 

can have some preferences regarding the percentage of deviation with the initial program 

modularization. In addition, most of the developers prefer solutions that minimize the number of 

changes applied to their design [86]. 

Table 4.1. Types of remodularization operations. 

Type of the operation Actors Roles 

Move method 
class source class, target class 

method moved method 

Extract class 
class source class, new class 

method moved methods 

Move class 
package source package, target package 

class moved class 

Merge packages package source package, target package 

Extract/Split package 
package source package, target package 

class moved class 

Similarity with the history of code changes. The idea is to encourage the use of ROs that are 

similar to those applied to the same code fragments (packages) in the past. To calculate the 

similarity score between a proposed operation and a recorded code change, we use the following 

function: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦(𝑅𝑂)  =  ∑ 𝑤𝑗

𝑛

𝑗=1

 (4.1) 

where n is the number of recorded operations applied to the system in the past, and wj is a 

change weight that reflects the similarity between the suggested RO and the recorded code 

change j. The weight wj is computed as described in Table 3. 
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Table 4.2. Similarity scores between remodularization operations applied to similar code fragments. 

 
Move 

method 

Extract 

class 
Move class 

Merge 

packages 

Extract/Split 

package 

Move method wj = 2 wj = 1 wj = 1 wj = 0 wj = 0 

Extract class wj = 1 wj = 2 wj = 0 wj = 0 wj = 0 

Move class wj = 1 wj = 0 wj = 2 wj = 1 wj = 1 

Merge packages wj = 0 wj = 0 wj = 1 wj = 2 wj = 0 

Extract/Split package wj = 0 wj =  0 wj = 1 wj = 0 wj = 2 

Semantics. Most of the ROs are simple to implement and it is almost trivial to show that they 

preserve the behavior. However, until now there is no consensual way to investigate whether a 

code change can preserve the semantic coherence of the original program/design. To preserve the 

semantics design, some constraints should be satisfied to ensure the correctness of the applied 

operations. We distinguish between two kinds of constraints: structural constraints and semantic 

constraints. Structural constraints were extensively investigated in the literature. Opdyke, for 

example, defined in [87] a set of pre and post-conditions for a large list of operations to ensure 

the structural consistency. Developers should check manually all code elements (packages, 

classes, methods and fields) related to the operation to inspect the semantic relationship between 

them. We formulate semantics constraints using different measures in which we describe the 

concepts from a perspective that helps in automating the remodularization task: 

Vocabulary-based similarity (VS) 

This kind of similarity is interesting to consider when moving methods, or classes or merging 

packages or extracting packages. For example, when a class has to be moved from one package 

to another, the operation would make sense if both code elements (source class and target 

packages) use similar vocabularies [52] [88]. The vocabulary could be used as an indicator of the 

semantic similarity between different code elements that are involved when performing a 

remodularization operation. We start from the assumption that the vocabulary of an actor is 

borrowed from the domain terminology and, therefore, could be used to determine which part of 

the domain semantics is encoded by an actor. Thus, two code elements could be semantically 

similar if they use similar vocabularies. 
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The vocabulary could be extracted from the names of packages, classes, methods, fields, 

variables, parameters and types. Tokenization is performed using the Camel Case Splitter [88] 

which is one of the most used techniques in Software Maintenance tools for the preprocessing of 

identifiers. A more pertinent vocabulary can also be extracted from comments, commits 

information, and documentation. We calculate the semantic similarity between code elements 

using information retrieval-based techniques (e.g., cosine similarity). The following equation 

calculates the cosine similarity between two code elements. Each actor is represented as an n-

dimensional vector, where each dimension corresponds to a vocabulary term. The cosine of the 

angle between two vectors is considered as an indicator of similarity. Using cosine similarity, the 

conceptual similarity between two code elements c1 and c2 is determined as follows: 
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(4.2) 

where ),...,(1 1,1,1 nwwc 


 is the term vector corresponding to actor c1 and ),...,(2 2,2,1 nwwc 


 is the term 

vector corresponding to c2. The weights wi,j can be computed using information retrieval based 

techniques such as the Term Frequency – Inverse Term Frequency (TF-IDF) method. We used a 

method similar to that described in [52] to determine the vocabulary and represent the code 

elements as term vectors.  

Dependency-based similarity (DS) 

We approximate domain semantics closeness between code elements starting from their 

mutual dependencies. The intuition is that code elements that are strongly connected (i.e., having 

dependency links) are semantically related. As a consequence, ROs requiring semantic closeness 

between involved code elements are likely to be successful when these code elements are 

strongly connected. We consider two types of dependency links: 

1) Shared method calls (SMC) that can be captured from call graphs derived from the whole 

program using CHA (Class Hierarchy Analysis) [89]. A call graph is a directed graph which 

represents the different calls (call in and call out) among all methods of the entire program. 

Nodes represent methods, and edges represent calls between these methods. CHA is a basic call 

graph that considers class hierarchy information, e.g, for a call c.m(...) assume that any m(...) is 
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reachable that is declared in a supertype of the declared type of c. For a pair of code elements, 

shared calls are captured through this graph by identifying shared neighbors of nodes related to 

each actor. We consider both, shared call-out and shared call-in. The following equations are 

used to measure respectively the shared call-out and the shared call-in between two code 

elements c1 and c2 (two classes, for example). A shared method call is defined as the average of 

shared call-in and call-out. 

]1,0[
|)callOut(c2  )callOut(c1|

|)callOut(c2  )callOut(c1|
 c2) Out(c1,sharedCall 






 
(4.3) 

]1,0[
|callIn(c2)  callIn(c1)|

|callIn(c2)  callIn(c1)|
 c2) In(c1,sharedCall 




  (4.4) 

2) Shared field access (SFA) can be calculated by capturing all field references that occur 

using static analysis to identify dependencies based on field accesses (read or modify). We 

assume that two software elements are semantically related if they read or modify the same 

fields. The rate of shared fields (read or modified) between two code elements c1 and c2 is 

calculated according to the following equation. In this equation, fieldRW(ci) computes the 

number of fields that may be read or modified by each method of the actor ci. Thus, by applying 

a suitable static program analysis to the whole method body, all field references that occur could 

be easily computed. 

]1,0[
|)fieldRW(c2  )fieldRW(c1|

|)fieldRW(c2  )fieldRW(c1|
 c2) dsRW(c1,sharedFiel 




  (4.5) 

Cohesion-based dependency (CD) 

The cohesion-based similarity that we propose for software remodularization is mainly used by 

the extract-class, merge-package and extract-package operations. It is defined to find a cohesive 

set of classes and methods to be moved to the newly extracted class or package. A new class or 

package can be extracted from a source class or package by moving a set of strongly related 

(cohesive) classes and methods from the original class or package to the new class or package. 

Extracting this set will improve the cohesion of the original package or class and minimize the 

coupling with the new package/class. Applying the Extract Package/Class or Merge Packages 

operation on a specific package/class will result in this class being split (or merged) into 
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classes/packages. We need to calculate the semantic similarity between the elements in the 

original package/class to decide how to split or merge the original packages/classes. 

We use vocabulary-based similarity and dependency-based similarity to find the cohesive set 

of code elements. For move method, the cohesion matrix is composed of the fields of the source 

method as lines, and the fields and methods of the target class as columns. For extract class, the 

lines are the fields and methods of the source class and the columns are the methods of the 

extracted class. For move class, the lines of the cohesion matrix are composed of the fields, 

methods of the class to move, and the columns are the fields and methods of the classes of the 

target package. Regarding merge package and extract/split package operations, the lines 

correspond to the fields and methods of the classes of the source package and the columns are 

the fields and methods of the classes of the target package. We calculate the similarity between 

each pair of elements in a cohesion matrix. The cohesion matrix is obtained as follows: For the 

field-field similarity, we consider the vocabulary-based similarity. For the method-method 

similarity, we consider both vocabulary and dependency-based similarity. For the method-field 

similarity, if the method mi may access (read or write) the field fj, then the similarity value is 1. 

Otherwise, the similarity value is 0. For example, the suitable set of methods to be moved to a 

new class is obtained as follows: we consider the line with the highest average value and 

construct a set that consists of the elements in this line that have a similarity value that is higher 

than a certain threshold.  

The semantic function for a remodularization operation corresponds to the average (equal 

importance) of the different three semantic measures described above. As a remodularization 

solution is a sequence of operations, the overall semantic evaluation of the solution is the average 

of the semantic values of all the operations composing a solution. 

Some code changes contribute to the domain vocabulary of the system but not necessarily all 

of them. Thus, we are considering semantic coherence and consistency with prior code changes 

as separate objectives. In addition, the consistency with priori code changes is not mainly related 

to the domain vocabulary but to the type of operations that are applied to a similar context. 

Treating the similarity with prior changes as a separate objective can address the problem that 

developers use sometimes names of code elements that semantically do not make any sense. 
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Furthermore, we decided to separate semantic coherence and the consistency with prior code 

changes in two different objectives to give more flexibility to user when selecting the best 

solution based on their preferences and also to ensure the usefulness of our approach even in the 

situation when the change history is not available (the user can easily exclude this objective 

while maintaining the semantic coherence one). 

To find a compromise between the seven objectives described in this section, we used a recent 

many-objective optimization algorithm (NSGA-III) that will be described in the next section. 

4.2.2 Software remodularization using NSGA-III 

This section shows how the remodularization problem can be addressed using NSGA-III. We 

first present an overview of the technique then we provide the details of our adaptation to the 

remodularization problem. 

4.2.2.1 NSGA-III 

NSGA-III is a recent many-objective algorithm proposed by [20]. The basic framework 

remains similar to the original NSGA-II algorithm with significant changes in its selection 

mechanism. Figure 5 gives the pseudo-code of the NSGA-III procedure for a particular 

generation t. First, the parent population Pt (of size N) is randomly initialized in the specified 

domain, and then the binary tournament selection, crossover and mutation operators are applied 

to create an offspring population Qt. Thereafter, both populations are combined and sorted 

according to their domination level and the best N members are selected from the combined 

population to form the parent population for the next generation. The fundamental difference 

between NSGA-II and NSGA-III lies in the way the niche preservation operation is performed. 

Unlike NSGA-II, NSGA-III starts with a set of reference points Zr. The set of uniformly 

distributed reference points is generated using the method of Das and Dennis [90] which is well-

detailed and described in [91]. 

In order to illustrate the reference point generation process, we give in what follows an 

example of such generation with only three objectives in order to ease the understanding and the 

visualization of such process. However, this process is generic for any number of objectives M. 

The Das and Dennis approach for this case generates W reference points on the hyperplane with 
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a uniform spacing δ = 1/p. We assume for this example that p = 3 (i.e., δ = 0.33). The number of 

reference points is thus 
)1( 


pM

pCW
 which is equal to 10. The following figure describes the 

reference point set generation mechanism: 

The following Figure 4.2 shows an Illustration of the Das and Dennis method for the 

generation of the reference points by computing R1, R2, and R3 recursively. The table shows the 

combinations of R1, R2, and R3 components. The figure shows the plotting of the 10 obtained 

reference points on the hyperplane. For our remodularization problem, we have seven objectives 

(M = 7) and we use p = 5. These are the only parameters to adjust for our remodularization 

problem. 

 

R1 R2 R3 = (1-R1-R2) 

0.0 0.0 1.0 

0.0 0.33 0.66 

0.0 0.66 0.33 

0.0 1.0 0.0 

0.33 0.0 0.66 

0.33 0.33 0.33 

0.33 0.66 0.0 

0.66 0.0 0.33 

0.66 0.33 0.0 

1.0 0.0 0.0 
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Figure 4.2. 3D plotting of the obtained 10 reference points with p = 3. 

After non-dominated sorting, all acceptable front members and the last front Fl that could not 

be completely accepted are saved in a set St. Members in St/Fl are selected right away for the 

next generation. However, the remaining members are selected from Fl such that a desired 

diversity is maintained in the population. Original NSGA-II uses the crowding distance measure 

for selecting a well-distributed set of points, however, in NSGA-III the supplied reference points 

(Zr) are used to select these remaining members (cf. Figure 4.2). To accomplish this, objective 

values and reference points are first normalized so that they have an identical range. Thereafter, 

the orthogonal distance between a member in St and each of the reference lines (joining the ideal 

point, i.e., the vector composed of 7 zero and a reference point) is computed. The member is then 

associated with the reference point having the smallest orthogonal distance. Next, the niche 

count ρ for each reference point, defined as the number of members in St/Fl that are associated 

with the reference point, is computed for further processing. The reference point having the 

minimum niche count is identified and the member from the last front Fl that is associated with it 

is included in the final population. The niche count of the identified reference point is increased 

by one and the procedure is repeated to fill up population Pt+1. 

It is worth noting that a reference point may have one or more population members associated 

with it or need not have any population member associated with it. Let us denote this niche count 

as ρj for the j-th reference point. We now devise a new niche-preserving operation as follows. 

First, we identify the reference point set Jmin = {j: argminj (ρj)} having minimum ρj. In case of 

multiple such reference points, one (j*
Jmin) is chosen at random. If ρj* = 0 (meaning that there is 



 65 

 

 

 

no associated Pt+1 member to the reference point j*), two scenarios can occur. First, there exist 

one or more members in front Fl that are already associated with the reference point j*. In this 

case, the one having the shortest perpendicular distance from the reference line is added to Pt+1. 

The count ρj* is then incremented by one. Second, the front Fl does not have any member 

associated with the reference point j*. In this case, the reference point is excluded from further 

consideration for the current generation. In the event of ρj* ≥ 1 (meaning that already one 

member associated with the reference point exists), a randomly chosen member, if exists, from 

front Fl that is associated with the reference point Fl is added to Pt+1. If such a member exists, the 

count ρj* is incremented by one. After ρj counts are updated, the procedure is repeated for a total 

of K times to increase the population size of Pt+1 to N.  

This following section describes our adaptation of NSGA-III to our remodularization 

problem. Thus, we define the following adaptation steps: representation of the solutions and the 

generation of the initial population, evaluation of individuals using the fitness functions, 

selection of the individuals from one generation to another, generation of new individuals using 

genetic operators (crossover and mutation) to explore the search space and the normalization of 

population members. 

4.2.2.2 Solution Representation 

To represent a candidate remodularization solution (individual), we used a vector 

representation. Each vector’s dimension represents a remodularization operation. Thus, a 

solution is defined as a sequence of operations applied to different parts of the system to improve 

its modularization. A randomly generated solution is created as follows. First, we generate the 

solution length randomly between the lower and upper bounds of the solution length. After that, 

for each chromosome dimension, we generate a number i between 1 and the total number of 

possible operations, then we assign the ith operation to the considered dimension. For each 

operation, the parameters, described in Table 2, are randomly generated from the list of source 

code elements extracted from the system to remodularize using a parser. An example of a 

solution is given in Figure 6 applied to the motivating example described in Section 2. 

When generating a sequence of operations (individual), it is important to guarantee that they 

are feasible and that they can be applied. The first work in the literature was proposed by [87] 
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who introduced a way of formalizing the preconditions that must be imposed before a code 

change can be applied in order to preserve the behavior of the system. Opdyke created functions 

which could be used to formalize constraints. These constraints are similar to the Analysis 

Functions used later by [70] [92] who developed a tool to reduce program analysis. In our 

approach, we used a system to check a set of simple conditions, taking inspiration from the work 

proposed by Ó Cinnéide. Our search-based remodularization tool simulates operations using pre 

and post conditions that are expressed in terms of conditions on a code model. For example, to 

apply the remodularization operation MoveClass(GanttTaskRelationship, 

net.sourceforge.ganttproject, net.sourceforge.ganttproject.task), a number of necessary 

preconditions should be satisfied, e.g., net.sourceforge.ganttproject and 

net.sourceforge.ganttproject.task should exist and should be packages; GanttTaskRelationship 

should exist and should be a class and the class AttrNSImpl should be implemented in the 

package net.sourceforge.ganttproject. As postconditions, GanttTaskRelationship, 

net.sourceforge.ganttproject, and net.sourceforge.ganttproject.task should exist; 

GanttTaskRelationship class should be in the package net.sourceforge.ganttproject.task and 

should not exists anymore in the package net.sourceforge.ganttproject.  
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Algorithm 4.1. Pseudo-code of NSGA-III main procedure at 

generation t. 

Input: H structured reference points Zs, parent population Pt 

Output: Pt+1 

00: 

01: 

02: 

03: 

04: 

05: 

06: 

07: 

08: 

09: 

10: 

11: 

12: 

 

13: 

 

14: 

 

 

 

15: 

 

 

16: 

 

17: 

18: 

19: 

 Begin 

 St ← Ø, i ← 1; 

 Qt ← Variation (Pt); 

 Rt ← Pt Qt; 

 (F1, F2, ...) ← Non-dominationed_Sort (Rt); 

 Repeat 

    St ← St  Fi; i ← i+1; 

 Until | St | ≥ N; 

 Fl ← Fi; /*Last front to be included*/ 

 If | St | = N then 

    Pt+1 ← St;  

 Else 

   Pt+1 ← 
1
1




l
j Fj; 

   /*Number of points to be chosen from Fl*/ 

   K ← N – |Pt+1|;  

   /*Normalize objectives and create reference set Zr*/ 

   Normalize (FM; St; Zr; Zs);   

   /*Associate each member s of St with a reference point*/ 

   /*π(s): closest reference point*/ 

   /*d(s): distance between s and π(s)*/ 

   [π(s), d(s)] ← Associate (St, Zr);  

   /*Compute niche count of reference point r
Zj */ 

   ρj ←  lFtSs /
((π(s) = j) ? 1 : 0); 

   /*Choose K members one at a time from Fl to construct Pt+1*/ 

   Niching (K, ρj, π(s), d(s), Zr, Fl, Pt+1); 

 End If 

 End 

 
Move Class(GanttTaskRelationship, net.sourceforge.ganttproject, net.sourceforge.ganttproject.task) 

Extract Class(XGrammarWriter, XGrammarInput, parseInt()) 

Move Method(normalize(), XGrammarWriter, DTDGrammar) 

Extract Package(net.sourceforge.ganttproject, net.sourceforge.ganttproject.dtl, CharacterDataImpl, ChildNode) 

Figure 4.3. An example of solution representation. 
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4.2.2.3 Fitness Functions 

Each generated remodularization solution is executed on the system S. Once all required data 

is computed, the solution is evaluated based on the 7 objectives described in Section 4.2.1.1. 

Based on these values, the remodularization solution is assigned a non-domination rank (as in 

NSGA-II) and a position in the objective space allowing it to be assigned to a particular 

reference point based on distance calculation as previously described. As a reminder, the 

following fitness functions are used: 1) number of classes per package (to minimize); 2) number 

of packages in the system (to minimize); 3) cohesion (to maximize); 4) coupling (to minimize); 

5) Semantics coherence (to maximize); 6) number of operations (to minimize); and 7) coherence 

with the history of code changes (to minimize). The semantic fitness function of a solution 

corresponds to the average of the semantic values of the operations in the vector. The history of 

changes fitness function maximizes the use of ROs that are similar to those applied to the same 

code fragments in the past. To calculate the similarity score between a proposed 

remodularization operation and a recorded operation, we use the fitness function described in 

Section 4.2.1.1. 

Normalization of population members. Usually objective functions are incommensurable 

(i.e., they have different scales). For this reason, we used the normalization procedure proposed 

by [20] to circumvent this problem. At each generation, the minimal and maximal values for 

each metric are recorded and then used by the normalization procedure. Normalization allows the 

population members and with the reference points to have the same range, which is a pre-

requisite for diversity preservation. 

4.2.2.4 Evolutionary Operators 

In each search algorithm, the variation operators play the key role of moving within the search 

space with the aim of driving the search towards optimal solutions.  

For the crossover, we use the one-point crossover operator. It starts by selecting and splitting 

at random two parent solutions. Then, this operator creates two child solutions by putting, for the 

first child, the first part of the first parent with the second part of the second parent, and vice 

versa for the second child. This operator must ensure the respect of the length limits by 
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eliminating randomly some ROs. As illustrated in Figure 4.4, each child combines some of the 

operations of the first parent with some ones of the second parent. In any given generation, each 

solution will be the parent in at most one crossover operation. It is important to note that in 

many-objective optimization, it is better to create children that are close to their parents in order 

have a more efficient search process. For this reason, we control the cutting point of the one-

point crossover operator by restricting its position to be either belonging to the first third of the 

operations sequence or belonging to the last third. 

 

Figure 4.4. Crossover operator. 

For mutation, we use the bit-string mutation operator that picks probabilistically one or more 

operations from its or their associated sequence and replace them by other ones from the initial 

list of possible operations as described in the running example of Figure 4.5. The number of 

changes is unknown a priori and depends on the mutation probability. Indeed, each chromosome 

dimension would be changed according to the mutation probability. For example, for a mutation 

probability of 0.2, for each dimension, we generate randomly a number x between 0 and 1, if 

x<0.2 we change the dimension, otherwise not. 

 

Figure 4.5. Mutation operator. 

After applying genetic operators (mutation and crossover), we verify the feasibility of the 

generated sequence of operations by checking the pre and post conditions. Each operation that is 
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not feasible due to unsatisfied preconditions will be removed from the generated 

remodularization sequence. The new sequence is considered valid in our NSGA-III adaptation if 

the number of rejected operations is less than 10% of the total sequence size. 

 Validation 

In order to evaluate our approach for restructuring systems using NSGA-III, we conducted a 

set of experiments based on different versions of large open source systems and one industrial 

project provided by Ford Motor Company. Each experiment is repeated 31 times, and the 

obtained results are subsequently statistically analyzed with the aim to compare our NSGA-III 

proposal with a variety of existing approaches [18] [79] [78]. In this section, we first present our 

research questions and then describe and discuss the obtained results. Finally, we discuss the 

various threats to the validity of our experiments. 

4.3.1 Research Questions 

In our study, we assess the performance of our remodularization approach by finding out 

whether it could generate meaningful sequences of operations that improve the structure of 

packages while reducing the number of code changes, preserving the semantic coherence of the 

design, and reusing as much as possible a base of recorded operations applied in the past in 

similar contexts. Our study aims at addressing the following research questions outlined below. 

We also explain how our experiments are designed to address these questions. The main question 

to answer is to what extent the proposed approach can propose meaningful remodularization 

solutions. To find an answer, we defined the following 7 research questions: 

RQ1.1: To what extent can the proposed approach improve the structure of packages in the 

system? 

RQ1.2: To what extent the proposed approach preserve the semantics while improving the 

packages structure?  

RQ1.3: To what extent can the proposed approach minimize the number of changes (size)? 
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RQ1.4: To what extent the use of recorded changes improves the suggestion of good 

remodularization solutions? 

RQ2: How does the proposed many-objective approach based on NSGA-III perform 

compared to other many/multi-objective algorithms or a mono-objective approach? 

RQ3: How does the proposed many-objective approach based on NSGA-III perform 

compared to existing remodularization approach not based on heuristic search? 

RQ4: Insight. How our many-objective remodularization approach can be useful for software 

engineers in a real-world setting? 

To answer RQ1.1, we validate the proposed remodularization on four medium to large-size 

open-source systems and one industrial project to evaluate the structural improvements of 

systems after applying the best solution. To this end, we used the following metrics: average 

number of classes per package (NCP), number of packages (NP), number of inter-edges (NIE) 

and number of intra-edges (NAE). 

To answer RQ1.2, it is important to validate the proposed remodularization solutions from 

both quantitative and qualitative perspectives. To this end, we use two different validation 

methods: manual validation and automatic validation of the efficiency of the proposed solutions. 

For the manual validation, we asked groups of potential users (software engineers) of our 

remodularization tool to evaluate, manually, whether the suggested operations are feasible and 

make sense semantically. We define the metric “manual precision” (MP) which corresponds to 

the number of meaningful operations, in terms of semantic coherence, over the total number of 

suggested operations. MP is given by the following equation: 

𝑀𝑃 =
|𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠|

|𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠|
 ∈ [0,1] (4.6) 

For the automatic validation, we introduce manually several changes on the remodularization 

of JHotDraw and we evaluate the ability of our approach to generating the initial version of the 

system (considered as a well-designed system). In fact, JHotDraw is considered as one of the 

well-designed open source systems and several design patterns are used in its implementation. 
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Thus, we compare the proposed operations with the expected ones in terms of recall and 

precision: 

]1,0[
|operations expected| 

 |operations expected|  |operations suggested|
RE 


recall

 
(4.7) 

]1,0[
|operations suggested| 

 |operations expected|  |operations suggested|
PR 


precesion

 
(4.8) 

To answer RQ1.3, we evaluate the number of operations (NO) suggested by the best 

remodularization solutions on the different systems.  

To answer RQ1.4, we use the metric MP to evaluate the effect of the use of recorded 

operations, applied in the past to similar contexts, on the semantic coherence. Moreover, in order 

to evaluate the importance of reusing recorded operations in similar contexts, we define the 

metric “reused operations” (ROP) that calculates the percentage of operations from the base of 

recorded operations used to generate the optimal remodularization solutions by our proposal. 

ROP is given by the following equation: 

]1,0[
operations recorded of base 

 operations recorded of base  thefrom operations used 
ROP

 
(4.9) 

To answer RQ2, we compared the performance of NSGA-III with two many-objective 

techniques, MOEA/D and IBEA, and also with a multi-objective algorithm that uses NSGA-II. 

We used Inverted Generational Distance (IGD) to compare between the different algorithms: A 

number of performance metrics for multi-objective optimization have been proposed and 

discussed in the literature, which aims to evaluate the closeness to the Pareto optimal front and 

the diversity of the obtained solution set, or both criterion. Most of the existing metrics require 

the obtained set to be compared against a specified set of Pareto optimal reference solutions. In 

this study, the inverted generational distance (IGD) is used as the performance metric since it has 

been shown to reflect both the diversity and convergence of the obtained non-dominated 

solutions. The IGD corresponds to the average Euclidean distance separating each reference 

solution from its closest non-dominated one. Note that for each system we use the set of Pareto 

optimal solutions generated by all algorithms over all runs as reference solutions. In addition to 

IGD, we used the above-described metrics to compare between all the algorithms: NCP, NP, 

NIE, NAE, MP, RE, and PR. We also compared our approach with a multi-objective 

remodularization technique proposed by [79] where the objectives considered are coupling, 
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cohesion and number of changes. Since the approach of Abdeen et al. is limited to the use of 

only one operation (Move Class), we only used the qualitative evaluation based on MP for the 

comparison. 

It is important also to determine if considering each conflicting metric as a separate objective 

to optimize performs better than a mono-objective approach that aggregates several metrics in 

one objective. The comparison between a many-objective EA with a mono-objective one is not 

straightforward. The first one returns a set of non-dominated solutions while the second one 

returns a single optimal solution. In order to resolve this problem, for each many-objective 

algorithm we choose the nearest solution to the Knee point (i.e., the vector composed of the best 

objective values among the population members) as a candidate solution to be compared with the 

single solution returned by the mono-objective algorithm. We compared NSGA-III with an 

existing mono-objective remodularization approach [18] based on the use of cohesion and 

coupling aggregated in one fitness function. Since the mono-objective approach is limited to the 

use of only one operation (Move Class), we only used the qualitative evaluation based on MP for 

the comparison and feedback from software engineers on using both tools. 

For RQ3, since it is not sufficient to outperform existing search-based remodularization 

techniques, we compared our proposal to an existing remodularization technique based on the 

use of coupling and cohesion [78] and limited to the only use of Split packages change. Thus, we 

compared our proposal using only the qualitative evaluation based on MP and feedback from 

software engineers on using both tools.  

For RQ4, we evaluated the benefits of our remodularization tool by several software 

engineers. To this end, they classify the suggested operations (IOP) one by one as interesting or 

not. The difference with the MP metric is that the operations are not classified from a semantic 

coherence perspective but form a usefulness one: 

]1,0[
 operations 

 operations useful
IOP  

(4.10) 

To answer the above research questions, we selected the solution from the set of non-

dominated ones providing the maximum trade-off using the following strategy when comparing 

between the different algorithms (expect the mono-objective algorithm where we select the 
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solution with the highest fitness function). In order to find the maximal trade-off solution of the 

multi-objective or many-objective algorithm, we use the trade-off worthiness metric proposed by 

Rachmawati and Srinivasan [93] to evaluate the worthiness of each non-dominated solution in 

terms of compromise between the objectives. This metric is expressed as follows: 
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We note that xj denotes members of the set of non-dominated solutions S that are non-

dominated with respect to xi. The quantity ),( Sxi  expresses the least amount of improvement per 

unit deterioration by substituting any alternative xj from S with xi. We note also that )( im xf  

corresponds to the mth objective value of solution xi and 
max

mf / min

mf  corresponds to the 

maximal/minimal value of the mth objective in the population individuals. In the above equations, 

normalization is performed in order to prevent some objectives being predominant over others 

since objectives are usually incommensurable in real world applications. In the last equation, the 

numerator expresses the aggregated improvement gained by substituting xj with xi. However, the 

denominator evaluates the deterioration generated by the substitution. 

4.3.2 Software Projects Studied 

We used a set of well-known open-source java projects and one project from our industrial 

partner Ford Motor Company. We applied our approach to four large and medium size open-

source java projects: Xerces-J, JFreeChart, GanttProject, and JHotDraw. Xerces-J is a family of 

software packages for parsing XML. JFreeChart is a powerful and flexible Java library for 

generating charts. GanttProject is a cross-platform tool for project scheduling. JHotDraw is a 

GUI framework for drawing editors. Finally, the industrial project, JDI, is a Java-based software 

system that helps Ford Motor Company analyze useful information from the past sales of 

dealerships data and suggests which vehicles to order for their dealer inventories in the future. 

This system is main key software application used by Ford Motor Company to improve their 

vehicles sales by selecting the right vehicle configuration to the expectations of customers. JDI is 



 75 

 

 

 

a highly structured and several versions were proposed by software engineers at Ford during the 

past 10 years. Due to the importance of the application and the high number of updates 

performed during a period of 10 years, it is critical to ensure good modularization of JDI to 

reduce the time required by developers to introduce new features in the future. We selected these 

systems for our validation because they range from medium to large-sized open-source projects, 

which have been actively developed over the past 10 years. Table 4.3 Table 4.3. Statistics of the 

studied systems and solution length limits.provides some descriptive statistics about these six 

programs. As described in, the upper and lower bounds on the chromosome length used in this 

study are set to 10 and 350 respectively. Several SBSE problems including remodularization are 

characterized by a varying chromosome length. This issue is similar to the problem of bloat 

control in genetic programming where the goal is to identify the tree size limits. To solve this 

problem, we performed several trial and error experiments where we assess the average 

performance of NSGA-III using the HV (hypervolume) performance indicator while varying the 

size limits between 10 and 500 operations. Figure 4.6 shows the obtained results which explain 

our choices described in Table 4.3. 

 

Figure 4.6. Average Performance of NSGA-III the search algorithms using the HV (hypervolume) indicator while varying 

the size limits between 10 and 500 operations. 

 

Table 4.3. Statistics of the studied systems and solution length limits. 

Systems Release # classes KLOC Solution length limits (Min/Max) 

Xerces-J v2.7.0 991 240 [35 , 350] 

JHotDraw v6.1 585 21 [20 , 250] 

JFreeChart v1.0.9 521 170 [20 , 250] 
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GanttProject v1.10.2 245 41 [10 , 150] 

JDI-Ford v5.8 638 247 [25 , 300] 

To collect operations applied in previous program versions, we use Ref-Finder [94]. Ref-

Finder, implemented as an Eclipse plug-in, can identify operations between two releases of a 

software system. Table 4.4 shows the analyzed versions and the number of operations, identified 

by Ref-Finder, between each subsequent couple of analyzed versions, after the manual 

validation. In our study, we consider only the operation types described in Table 4.4. 

Table 4.4. Analyzed versions and operations collection. 

Systems 
Collected operation 

Previous releases # operations 

Xerces-J v1.4.2 - v2.6.1 52 

JFreeChart  v1.0.6 - v1.0.8 63 

GanttProject v1.7 - v1.10.1 81 

JHotDraw  v5.1 - v6.0 56 

JDI-Ford v2.4 – v5.6 97 

4.3.3 Experimental Setting 

The goal of the study is to evaluate the usefulness and the effectiveness of our 

remodularization tool in practice. We conducted a non-subjective evaluation with potential 

developers who can use our tool. Indeed, operations should not only improve the structure of 

packages but should also be meaningful from a developer's point of view in terms of semantic 

coherence and usefulness. 

4.3.3.1 Subjects 

Our study involved 13 subjects from the University of Michigan and 2 software engineers 

from Ford Motor Company. Subjects include 5 master students in Software Engineering, 7 Ph.D. 

students in Software Engineering, 1 faculty member in Software Engineering, and 2 junior 

software developers. 4 of them are females and 11 are males. All the subjects are volunteers and 

familiar with Java development. The experience of these subjects on Java programming ranged 

from 2 to 16 years. The evaluated solutions by the subjects are those that represent the maximum 

trade-off between the objective using the trade-off worthiness metric proposed by Rachmawati 

and Srinivasan as described in Section 4.3.1. 
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4.3.3.2 Scenario 

We designed our study to answer our research questions. The subjects were invited to fill a 

questionnaire that aims to evaluate our suggested operations. We divided the subjects into six 

groups according to 1) the number of studied systems 2) the number of remodularization 

solutions to evaluate, and 3) the number of techniques to be tested. 

Table 4.5. Considered solutions for the qualitative evaluation. 

Ref. 

Solution 
Algorithm/ Approach  # Objectives Considered objectives  

Solution 1 

NSGA-III 

2 NCP, NP 

Solution 2 3 NCP, NP, COU 

Solution 3 4 NCP, NP, COU, COH 

Solution 4 5 NCP, NP, COU, COH, SP 

Solution 5 6 NCP, NP, COU, COH, SP, NCH 

Solution 6 7 NCP, NP, COU, COH, SP, NCH, CHC 

Solution 7 

IBEA 

2 NCP, NP 

Solution 8 3 NCP, NP, COU 

Solution 9 4 NCP, NP, COU, COH 

Solution 10 5 NCP, NP, COU, COH, SP 

Solution 11 6 NCP, NP, COU, COH, SP, NCH 

Solution 12 7 NCP, NP, COU, COH, SP, NCH, CHC 

Solution 13 

MOEA/D 

2 NCP, NP 

Solution 14 3 NCP, NP, COU 

Solution 15 4 NCP, NP, COU, COH 

Solution 16 5 NCP, NP, COU, COH, SP 

Solution 17 6 NCP, NP, COU, COH, SP, NCH 

Solution 18 7 NCP, NP, COU, COH, SP, NCH, CHC 

Solution 19 Mono-objective Simulate Annealing [18] 1 COU+COH 

Solution 20 NSGA-II [79] 3 COU, COH, NCH 

Solution 21 Automated re-modularization [78] 2 COU, COH 

The number of remodularization solutions to evaluate depends on different objectives 

combinations: average number of classes per package (NCP), number of packages (NP), 

coupling (COU), cohesion (COH), semantics preservation (SP), number of changes (NCH) and 

coherence with history of changes (CHC). For each combination (two, three, four, five, six and 

seven, objectives), a remodularization solution is suggested to find the best compromise between 

the considered objectives. Similarly, the solutions of the state-of-the-art works are empirically 

evaluated in order to compare them to our approach as described in the previous section. Table 6 

describes the number of remodularization solutions to be evaluated for each studied system in 

order to answer our research questions. 

As shown in Table 4.5, for each system, 21 remodularization solutions have to be evaluated. 

Due to the huge number of operations to be evaluated (each solution consists of a set of 
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operations), we pick at random a subset of up to 10 operations per solution to be evaluated in our 

study. In Table 4.5, we summarize how we divided subjects into 6 groups in order to cover all 

remodularization solutions. In addition, as illustrated in Table 4.6, we are using a cross-validation 

to reduce the impact of subjects on the evaluation. Each subject evaluates different 

remodularization solutions for three different systems. 

Subjects were first asked to fill out a pre-study questionnaire containing five questions. The 

questionnaire helped to collect background information such as their role within the company, 

their programming experience, their familiarity with software remodularization. In addition, all 

the participants attended one lecture about software remodularization and passed five tests to 

evaluate their performance to evaluate and suggest remodularization solutions. Then, the groups 

are formed based on the pre-study questionnaire and the test result to make sure that all the 

groups have almost the same average skills.  

The participants were asked to justify their evaluation of the solutions and these justifications 

are reviewed by the organizers of the study (one faculty member, one postdoc, one Ph.D. student 

and one master student). In addition, our experiments are not only limited to the manual 

validation, but also, the automatic validation can verify the effectiveness of our approach.   

Subjects were aware that they are going to evaluate the semantic coherence and the usefulness 

of the operations, but do not know the particular experiment research questions (algorithms used, 

different objectives used and their combinations). Consequently, each group of subjects who 

accepted to participate in the study, received a questionnaire, a manuscript guide to help them to 

fill the questionnaire, and the source code of the studied systems, in order to evaluate 21 

solutions (10 operations per solution). The questionnaire is organized in an excel file with 

hyperlinks to visualize easily the source code of the affected code elements. Subjects are invited 

to select for each operation one of the possibilities: "Yes", "No", or "Maybe" (if not sure) about 

the semantic coherence and usefulness. Since the application of remodularization solutions is a 

subjective process, it is normal that not all the developers have the same opinion. In our case, we 

considered the majority of votes to determine if suggested solutions are correct or not. 
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Table 4.6. Survey organization. 

Subject groups Systems Algorithms / Approaches Solutions 

Group A 

GanttProject 
NSGA-III 

IBEA 

Solution 1-6 

Solution 7-12 

Xerces  
MOEA/D,  

Abdeen et al.2011 

Solution 13-18 

Solution 19 

JFreeChart 
Abdeen et al. 2013, 

Bavota et al. 2013 

Solution 20 

Solution 21 

Group B 

GanttProject 
NSGA-III 

IBEA 

Solution 1-6 

Solution 7-12 

Xerces  
MOEA/D,  

Abdeen et al.2011 

Solution 13-18 

Solution 19 

JFreeChart 
Abdeen et al. 2013, 

Bavota et al. 2013 

Solution 20 

Solution 21 

Group C 

GanttProject 
NSGA-III 

IBEA 

Solution 1-6 

Solution 7-12 

Xerces  
MOEA/D,  

Abdeen et al.2011 

Solution 13-18 

Solution 19 

JFreeChart 
Abdeen et al. 2013, 

Bavota et al. 2013 

Solution 20 

Solution 21 

Group D 

GanttProject 
NSGA-III 

IBEA 

Solution 1-6 

Solution 7-12 

JHotDraw  
MOEA/D,  

Abdeen et al.2011 

Solution 13-18 

Solution 19 

JDI-Ford 
Abdeen et al. 2013, 

Bavota et al. 2013 

Solution 20 

Solution 21 

Group E 

Xerces 
NSGA-III 

IBEA 

Solution 1-6 

Solution 7-12 

JHotDraw  
MOEA/D,  

Abdeen et al.2011 

Solution 13-18 

Solution 19 

JDI-Ford 
Abdeen et al. 2013, 

Bavota et al. 2013 

Solution 20 

Solution 21 

Group F 

JFreeChart 
NSGA-III 

IBEA 

Solution 1-6 

Solution 7-12 

JHotDraw  
MOEA/D,  

Abdeen et al.2011 

Solution 13-18 

Solution 19 

JDI-Ford 
Abdeen et al. 2013, 

Bavota et al. 2013 

Solution 20 

Solution 21 

 

4.3.3.3 Parameters Tuning 

The parameter setting influences significantly the performance of a search algorithm for a 

particular problem [95]. For this reason, for the search-based algorithm and for each system (cf. 

Table 4.7), we perform a set of experiments using several population sizes: 62, 100, 150, 180, 

140, and 190 for respectively 2, 3, 4, 5, 6 and 7 objectives. The maximum number of generations 

used is 300, 500, 700, 1000, 1200, and 1400 respectively, for 2, 3, 4, 5, 6 and 7 objectives. For 

each algorithm, to generate an initial population, we start by defining the maximum vector length 

(maximum number of operations per solution). The vector length is proportional to the number 

of operations that are considered and the size of the program to be restructured (cf.  
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Table 4.3). A higher number of operations in a solution do not necessarily mean that the 

results will be better. Ideally, a small number of operations should be sufficient to provide a good 

trade-off between the fitness functions. This parameter can be specified by the user or derived 

randomly from the sizes of the program and the used operations list. During the creation, the 

solutions have random sizes in the allowed range. Each algorithm is executed 31 times with each 

configuration and then the comparison between the configurations is done based on IGD using 

the Wilcoxon test. In order to have significant results, for each couple (algorithm, system), we 

use the trial and error method in order to obtain a good parameter configuration. Since we are 

comparing different search algorithms, we classify parameters into common parameters and 

specific parameters.  

Table 4.7 depicts the important common parameters. For MOEA/D, the neighborhood size is 

set to 20. For IBEA, the scaling parameter κ is set to 0.01. For the SA of [18], the start and stop 

temperatures are set respectively to 22.8 and 1.0 using a geometrical cooling scheme with a 

cooling rate of 0.9975 and the number of local search iterations is set to 15. It is important to 

note that all heuristic algorithms have the same termination criterion for each experiment (same 

number of evaluations) in order to ensure fairness of comparisons. 

Table 4.7. The setting of common parameters. 

Number of 

objectives 

Number of reference points 

(for NSGA-III and 

MOEA/D) 

Population 

size 

Number of 

generations 

Crossover 

rate 

Mutation 

rate 

2 62 100 300 0.9 0.1 

3 100 150 500 0.9 0.1 

4 150 182 700 0.9 0.1 

5 180 174 1000 0.8 0.2 

6 140 186 1200 0.8 0.2 

7 190 193 1400 0.8 0.2 

 

4.3.3.4 Statistical Tests 

Since metaheuristic algorithms are stochastic optimizers, they can provide different results for 

the same problem instance from one run to another. For this reason, our experimental study is 

performed based on 31 independent simulation runs for each problem instance and the obtained 

results are statistically analyzed by using the Wilcoxon rank sum test [96] with a 99% confidence 

level (α = 1%). The latter verifies the null hypothesis H0 that the obtained results of the two 

algorithms are samples from continuous distributions with equal medians, against the alternative 
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that they are not H1. The p-value of the Wilcoxon test corresponds to the probability of rejecting 

the null hypothesis H0 while it is true (type I error). A p-value that is less than or equal to α (≤ 

0.01) means that we accept H1 and we reject H0. However, a p-value that is strictly greater than 

α (> 0.01) means the opposite. In fact, for each problem instance, we compute the p-value 

obtained by comparing NSGA-II, IBEA, MOEA/D and mono-objective search results with 

NSGA-III ones. In this way, we determine whether the performance difference between NSGA-

III and one of the other approaches is statistically significant or just a random result. 

4.3.4 Results 

4.3.4.1 Results for RQ1.1 

Table 4.8 summarizes the results of median values of the structural metrics over 31 

independent simulation runs after applying the proposed operations by the remodularization 

solution selected using the knee-point strategy. The results of Table 4.8 are based on the 

consideration of all the 7 objectives for the many-objective algorithms, thus, the order is not 

important and has no impact on the results. The software engineer can select the best solution 

based on his preferences (fitness function values) and programming behavior from the non-

dominated (trade-off) set of solutions.  

As described in Table 4.8, we found that NSGA-III algorithm provides similar structural 

improvements the other techniques in terms of an average number of classes per package (NCP), 

cohesion (NIE) and coupling (NAE). However, the number of packages (NP) in the system after 

applying NSGA-III solutions is slightly higher than all NP values proposed by the best solutions 

to most of the remaining algorithms in most of the cases except Xerces-J. This can be explained 

by the fact that decreasing the number of classes per package will automatically increase the 

number of packages. In addition, the extract class operation created new classes that increased 

the average number of classes per package.  

The structural improvement scores of multi-objective and mono-objective algorithms are very 

close to those produced by many-objective algorithms, especially NSGA-III. This is an 

interesting result confirming that our NSGA-III can find very good compromises between 7 

objectives that are similar and sometimes outperforms those that are produced by existing 
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approaches using only structural and semantic objectives. We believe that improving the 

structure of packages it is a difficult and very important objective to reach. We consider that 

NSGA-III performance in terms of improving the structure similar to existing approaches is a 

very interesting result since the main goal of this work is to improve the structure while 

preserving the domain semantics which not well-considered by the remaining approaches. 

Table 4.8. Average number of classes per package (NCP), number of packages (NP), number of inter-edges (NIE), 

number of intra-edges (NAE) and the deviation (delta with the initial design) median values of NSGA-III, IBEA, 

MOEA/D, SA, NSGA-II and Bavota et al. over 31 independent simulation runs. A “+” symbol at the ith position in the 

sequence of signs presented below the instance names means that the NSGA-III algorithm metric median value is 

statistically different from the ith algorithm one. A “-” symbol at the ith position in the sequence of signs means the 

opposite (e.g., for Xerces-J, NSGA-III is not statistically different from IBEA, however, it is statistically different from the 

other algorithms). 

System Approach NCP dev.NCP NP dev.NP NIE dev.NIE NAE Dev.NAE 

Xerces-J 

(-++++) 

NSGA-III 19 -4  46  +5  316  -69  432 +72 

IBEA 21 -2 44 +3 328 -57 411 +51 

MOEA/D 18 -5 56 +15 352 -33 397 +37 

SA Abdeen et al. 2011 24 +1 42 +1 314 -71 441 +81 

NSGA-II Abdeen et 

al.2011 

18 -5 56 +15 333 -52 422 +62 

Bavota et al. 2013  18 -5 56 +15 302 -83 453 +93 

JFreeChart 

(+++++) 

NSGA-III 14 -6 38 +8 286 -71 384 +69 

IBEA 16 -4 36 +6 304 -53 392 +77 

MOEA/D 16 -4 36 +6 314 -43 383 +86 

SA Abdeen et al. 2011 13 -7 42 +12 291 -66 396 +81 

NSGA-II Abdeen et 

al.2011 

13 -7 42 +12 301 -56 3786 +71 

Bavota et al. 2013  11 -9 47 +17 278 -79 398 +94 

GanttProject 

(--+++) 

NSGA-III 14 -3 18 +9 259 -68 294 +81 

IBEA 12 -5 21 +12 247 -80 304 +91 

MOEA/D 14 -3 18 +9 259 -68 291 +78 

SA Abdeen et al. 2011 12 -5 21 +12 238 -89 329 +116 

NSGA-II Abdeen et 

al.2011 

13 -4 19 +10 244 -83 323 +111 

Bavota et al. 2013  12 -6 21 +12 236 -91 331 +118 

JHotDraw (+-

++-) 

NSGA-III 16 -8 37 +14 391 -83 425 +84 

IBEA 18 -6 33 +10 404 -70 418 +77 

MOEA/D 16 -8 37 +14 391 -83 433 +92 

SA Abdeen et al. 2011 14 -10 42 +19 384 -90 439 +98 

NSGA-II Abdeen et 

al.2011 

15 -9 40 +17 388 -86 435 +94 

Bavota et al. 2013  11 -13 52 +29 378 -96 445 +104 

JDI-Ford (++-

-+) 

NSGA-III 14 -4 46 +21 301 -67 412 +76 

IBEA 14 -4 46 +21 324 -44 422 +86 

MOEA/D 16 -2 39 +16 308 -60 391 +55 

SA Abdeen et al. 2011 13 -5 52 +27 297 -71 421 +85 

NSGA-II Abdeen et 

al.2011 

14 -4 48 +23 304 -64 414 +78 

Bavota et al. 2013  13 -5 52 +27 294 -74 424 +88 
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4.3.4.2 Results for RQ1.2 

To answer RQ1.2, we need to assess the correctness/meaningfulness of the suggested 

remodularization solutions from a developers’ standpoint. To this end, we reported the results of 

our empirical qualitative evaluation in Figure 4.7 (MP). As reported in Figure 4.7, the majority 

of the suggested solutions by NSGA-III improve significantly the structure (RQ1.1) while 

preserving the semantic coherence much better than all existing approaches. On average, for all 

of our five studied systems, 88% of proposed operations are considered as semantically feasible 

and do not generate semantic incoherence by the software engineers. This score is significantly 

higher than the ones of the NSGA-II and SA approaches having respectively between 51% and 

70%, in average, of MP scores on the different systems. However, the performance of the IBEA, 

MOEA/D and Bavota et al. are close to the performance of our NSGA-II approach in terms of 

semantic preservation with respectively an average of 84%, 83% and 81% of MP. This can be 

explained by the fact that semantic measures are considered by these approaches. 

Thus, our many-objective approach reduces the number of semantic incoherencies when 

suggesting ROs. To sum up, our approach performs clearly better for semantics preservation 

with the cost of a slight degradation of structural improvements compared to the other 

approaches. This slight loss in the structure (RQ1.1) is largely compensated by the significant 

improvement of the semantic coherence.  

 

Figure 4.7. Qualitative evaluation of the remodularization solutions (semantics). A “+” symbol at the ith position in the 

sequence of signs means that the algorithm metric median value is statistically different from the ith algorithm one. A “-” 

symbol at the ith position in the sequence of signs means the opposite. Sequences of “+” and “-” Signs should be read from 

top to bottom. The column referring to the system under analysis should be left out of the count in the sequence. 
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In addition to the empirical evaluation, we automatically evaluate our approach without using 

the feedback of potential users to give a more quantitative evaluation to answer RQ1.2. Thus, we 

compare the proposed operations with some expected ones. The expected operations are the 

inverse of those applied manually by the software engineers who participated in our experiments 

to modify an initial version of JHotDraw. The participants of our experiments did not introduce 

changes randomly to JHotDraw. We selected the packages that are clearly very well designed 

based on a manual inspection using also the following quality metrics: number of classes per 

package, cohesion of the package, number of lines of code per package, average depth of 

inheritance tree of classes per package, average number of methods per package and coupling of 

the package. Thus, the expected refactorings are those that can generate the initial version of 

these modified well-designed packages. The developers considered only move class and 

split/extract package operations when modifying the original version of JHotDraw. Thus, we are 

not only considering JHotDraw without a manual inspection of the best well-designed packages 

to modify. The total number of introduced changes is 68. Four developers from the University of 

Michigan subjects worked together to introduce the changes on the same copy of JHotDraw 

system. We use Ref-Finder to identify operations that are applied to the program version under 

analysis and the next version. Figure 4.8 summarizes our findings. We found that a considerable 

number of proposed operations by NSGA-III (an average of 85% in terms of precision and 

recall) are already applied in the next version by a software development team comparing to 

other existing mono-objective and multi-objective remodularization approaches having only less 

than 65% as precision and recall. However, we found that the remodularization solutions 

proposed by the other many-objective algorithms IBEA and MOEA/D, and Bavota et al. have 

close scores to NSGA-III with respectively an average of 80%, 75% and 81% of precision. The 

same observation is valid for the recall.  

In conclusion, our approach produces good remodularization suggestions in terms of 

structural improvements, semantic coherence, and code changes reduction from the point of view 

of 1) potential users of our tool and 2) expected operations applied to the next program version. 
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Figure 4.8. Quantitative evaluation (precision and recall) of the remodularization solutions (semantics). A “+” symbol at 

the ith position in the sequence of signs means that the algorithm metric median value is statistically different from the ith 

algorithm one. A “-” symbol at the ith position in the sequence of signs means the opposite. Signs should be read from top 

to bottom. The column referring to the system under analysis should be left out of the count in the sequence. 

4.3.4.3 Results for 1.3 

To answer RQ1.3, we evaluate the Number of Operations (NO) suggested by the best 

remodularization solutions on the different systems. Figure 4.9 presents the code changes scores 

(NO) needed to apply the suggested remodularization solutions for each many-objective or 

multi-objective algorithm. We found that our approach succeeded in suggesting solutions that do 

not require high code changes (an average of only 64 operations) comparing to other many-

objective (IBEA, MOEA/D) and multi-objective (NSGA-II) algorithms having respectively an 

average of 72, 71 and 79 for all studied systems. We did not compare the number of changes 

suggested by our proposal with existing work since they are limited to only two types of changes 

(move class and split packages). 
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Figure 4.9. Average number of operations. A “+” symbol at the ith position in the sequence of signs means that the 

algorithm metric median value is statistically different from the ith algorithm one. A “-” symbol at the ith position in the 

sequence of signs means the opposite. Signs should be read from top to bottom. The column referring to the system under 

analysis should be left out of the count in the sequence. 

4.3.4.4 Results for RQ1.4 

To answer RQ1.4, we evaluated the results of our approach compared to other approaches that 

do not use the history of changes. As described in the previous sections, our NSGA-III approach 

outperforms clearly existing work including Abdeen et al. 2011, Abdeen et al. 2013 and Bavota 

et al. 2013 that are not based on the use of the history of changes. This is a good indication that 

the recorded operations contribute significantly to provide good solutions. In fact, the use of the 

history of changes is a helper objective to improve the semantic coherence of suggested 

remodularization solutions. It is also important to note that the SP metrics has the most positive 

impact on the results of our approach. 
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Figure 4.10. The impact of different combinations of objectives on the remodularization solutions (MP). 

We conducted also a more quantitative evaluation to investigate the effects of the use of 

recorded operations, on the semantic coherence (MP). To this end, we compare the MP score 

with and without using recorded operations. We present in Figure 4.10 the results of different 

combinations of our seven objectives. The order is important only when we considered the lower 

number of objectives (Figure 4.10) to evaluate the improvement of the solutions quality if a 

higher number of objectives are used. The first studies on software remodularization used only 

the structure then the semantics and after that the effort and history of changes. Our work 

combined them together in one approach using many-objective techniques. As presented in 

Figure 4.10, the best MP scores are obtained when the recorded code changes are considered. 

Moreover, we found that the optimal remodularization solutions found by our approach are 

obtained with a considerable percentage of reused operations history (ROP) (more than 75% as 

shown in Figure 4.11). Thus, the obtained results support the claim that recorded operations 

applied in the past are useful to generate coherent and meaningful remodularization solutions. 
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Figure 4.11. Percentage of recorded operations that are used by the best remodularization.  A “+” symbol at the ith 

position in the sequence of signs means that the algorithm metric median value is statistically different from the ith 

algorithm one. A “-” symbol at the ith position in the sequence of signs means the opposite solutions. Signs should be read 

from top to bottom. The column referring to the system under analysis should be left out of the count in the sequence. 

4.3.4.5 Results for RQ2 

In the previous sections, we compared our NSGA-III proposal with one mono-objective 

technique and one existing multi-objective technique based on NSGA-II. Thus, we focus on the 

comparison between our NSGA-III adaption and two other many-objective algorithms IBEA and 

MOEA/D using the same adaptation. Table 10 shows the median IGD values over 31 

independent runs for all algorithms under comparison. All the results were statistically 

significant on the 31 independent simulations using the Wilcoxon rank sum test with a 99% 

confidence level (α < 1%). For the 3-objective case, we see that NSGA-III and NSGA-II present 

similar results and that NSGA-III provides slightly better results than IBEA and MOEA/D. For 

the 5-objective case, NSGA-III strictly outperforms NSGA-II and gives similar results to those 

of the two other multi-objective algorithms. For the 7-objective case, NSGA-III is better than 

NSGA-II, IBEA and MOEA/D. Additionally, IBEA seems to be slightly better than MOEA/D. It 

is worth noting that for problems instances with more 3 objectives, NSGA-II performance is 

dramatically degraded, which is simply denoted by the ~ symbol. The performance of NSGA-III 

could be explained by the interaction between: (1) Pareto dominance-based selection and (2) 

reference point-based selection, which is the distinguishing feature of NSGA-III compared to 

other existing many-objective algorithms. 
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Table 4.9. Median IGD values on 31 runs (best values are in bold). ~ means a large value that is not interesting to show.  

The results were statistically significant on 31 independent runs using the Wilcoxon rank sum test with a 99% confidence 

level (α < 1%). 

System M MaxGen NSGA-III IBEA MOEA/D NSGA-II 

Xerces-J 

3 250 9.861 x 10-4 9.864 x 10-4 9.863 x 10-4 9.862 x 10-4 

5 500 7.799 x 10-3 7.875 x 10-3 7.878 x 10-3 8.991 x 10-3 

7 750 8.013 x 10-3 8.372 x 10-3 8.368 x 10-3 ~ 

JHotDraw 

3 250 2.477 x 10-3 2.478 x 10-3 2.478 x 10-3 2.477 x 10-3 

5 500 4.193 x 10-3 4.201 x 10-3 4.206 x 10-3 4.533 x 10-3 

7 750 5.536 x 10-3 5.801 x 10-3 5.796 x 10-3 ~ 

JFreeChart 

3 250 3.744 x 10-4 3.747 x 10-4 3.746 x 10-4 3.746 x 10-4 

5 500 4.578 x 10-4 4.602 x 10-4 4.609 x 10-4 5.042 x 10-4 

7 750 6.099 x 10-4 6.208 x 10-4 6.193 x 10-4 ~ 

GanttProject 

3 250 5.112 x 10-3 5.115 x 10-3 5.116 x 10-3 5.112 x 10-3 

5 500 6.701 x 10-3 6.802 x 10-3 6.801 x 10-3 6.997 x 10-3 

7 750 7.823 x 10-3 8.068 x 10-3 8.044 x 10-3 ~ 

JDI-Ford 

3 250 6.229 x 10-4 6.232 x 10-4 6.231 x 10-4 6.231 x 10-4 

5 500 6.608 x 10-4 6.682 x 10-4 6.686 x 10-4 6.887 x 10-4 

7 750 6.984 x 10-4 7.305 x 10-4 7.299 x 10-4 ~ 

Figure 4.12 illustrates the value path plots of all algorithms the 7-objective remodularization 

problem on JDI-Ford, one of the largest system used in our experiments. Similar observations 

were made in the remaining systems but are omitted due to space considerations. All quality 

metrics were normalized between 0 and 1 and all are to be minimized. We observe that NSGA-

III and MOEA/D present the best convergence since their non-dominated solution sets are the 

closest to the ideal point, i.e., the vector composed of 7 zero. However, NSGA-III presents better 

diversity than all algorithms under comparisons including MOEA/D since its non-dominated 

solutions have a better spread varying approximately in [0, 0.88] which is not the case for 

MOEA/D (varying in [0, 0.8]). Besides, MOEA/D seems to have a better convergence than 

IBEA. However, NSGA-II is unable to progress in terms of convergence as its non-dominated 

solutions are so far from the ideal vector, and even it diversity is so reduced which may explain 

the stagnation of its evolutionary process. We conclude that although NSGA-II is the most 

famous multi-objective algorithm in SBSE, it is not adequate for problems involving over 3 

objectives. Based on the results we obtained, it appears that NSGA-III is a very good candidate 

solution for tackling many-objective SBSE problems. 
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Figure 4.12. Value path plots of non-dominated solutions obtained by NSGA-III, MOEA/D, IBEA and NSGA-II during 

the median run of the 7-objective remodularization problem on JDI-Ford. 

The results of Figure 4.12 are not sufficient to show that the 7 objectives are conflicting. 

Table 11 presents the results of studying the conflict relation between each pair of objectives. In 

fact, for each experiment (each plot), we execute a mono-objective GA minimizing the objective 

shown on the line label and we study the behavior of the other objective shown in the column 

label by recording its values at the beginning (generation 0) and at the end (generation 300) of 

the evolutionary process. For example, for the first plot (NCP, NP), we observe that the 

minimization of NCP causes the maximization of NP, thus NCP and NP are conflicting. The 

opposite phenomenon could be seen for the plot (NP, CHC). Indeed, the minimization of NP 

makes CHC decreasing too. We conclude that NP and CHC are in support (non-conflicting). To 

sum up, there are some pairs of objectives that are in conflict and some others that are in support. 

For this reason, we should verify whether there are some redundant objectives or not [97], i.e., 

whether there are some objectives that could be omitted while preserving the Pareto dominance 

order. Based on Table 4.10 results, we draw Table 4.11 which illustrates for each objective i, the 

objectives that are in conflict with it. We observe from this table that each objective i has a set of 

conflicting objectives that is different from all other objectives’ ones, which means that we 

cannot omit any objective when comparing between any pair of solutions. Indeed, a redundant 
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objective could appear if two non-conflicting objectives have the same set of conflicting 

objectives which is not the case for our remodularization problem. Thus, we can say that the 

latter well involves 7 objectives to be optimized simultaneously without omitting anyone of 

them.  

Table 4.10. Conflict study between objectives. 
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Table 4.11. Existing conflict between objectives. 

Objective i Conflicting objectives with i 

NCP NP, COU, COH, SP, NCH. 

NP COU, NCP, COH, SP, NCH. 

COU NCP, NP, COH, SP, NCH. 

COH NCP, NP, COU, SP, NCH. 

SP NCP, NP, COU, COH, NCH. 

NCH NCP, NP, COU, COH, SP, CHC. 

CHC NCP, NCH. 

 

The Wilcoxon rank sum test allows verifying whether the results are statistically different or 

not. However, it does not give any idea about the difference magnitude. The effect size could be 

computed by using the Cohen’s d statistic [98]. The effect size is considered: (1) small if 0.2 ≤ d 

< 0.5, (2) medium if 0.5 ≤ d < 0.8, or (3) large if d ≥ 0.8. For all experiments, we obtained a large 

difference between NSGA-III/IBEA/MOEA/D results and NSGA-II ones for the cases of 5 and 7 

objectives using all the evaluation metrics. The same difference is small for the case of 3 

objectives. However, when comparing NSGA-III against MOEA/D and IBEA, we have found 

the following results: a) On small and medium scale Software systems (JFreeChart and 

GanttProject) NSGA-III is better that MOEA/D and IBEA on most systems with a medium effect 

size; b) On large scale Software systems (Xerces-J and JDI-Ford), NSGA-III is better than 

MOEA/D and IBEA on most systems with a small effect size. 

When using optimization techniques, the most time-consuming operation is the evaluation 

step. Thus, we studied the execution time of all many/multi-objective algorithms used in our 

experiments. Figure 4.13 shows the evolution of the execution time of the different algorithms on 

the JDI-Ford system, one of the largest systems in our experiments. The results show that the 

execution time grows linearly with respect to the number of objectives. It is clear from this 

figure, that all the algorithms have similar running times for the 3-objective cases. However, for 

a higher number of objectives NSGA-III is faster than IBEA. This observation could be 

explained by the computational effort required to compute the contribution of each solution in 

terms of hypervolume. In comparison to MOEA/D, MOEA/D is slightly faster than NSGA-III 

since it does not make use of non-dominated sorting. 
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Figure 4.13. Computational time of the different used many-objective remodularization algorithms. 

To further evaluate the scalability of the performance of our many-objective approach on 

systems of increasing size, we executed our remodularization tool on the Eclipse system without 

assessing the quality of the results. Eclipse is an open source integrated development 

environment (IDE) written in Java and widely used to develop applications. We considered four 

versions of Eclipse that contains more than 3 MLOCs. Figure 4.14 describes the execution time 

of our many-objective approach on 4 different versions of Eclipse using the 7 objectives. We 

believe that an execution time of 8 hours is still acceptable and reasonable even with the 

considered huge system to remodularize. Developers can execute our tool overnight then 

evaluate the results and work next day on the new system. 
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Figure 4.14. Scalability of our remodularization tool tested on Eclipse. 

4.3.4.6 Results for RQ3 

We compared the results of our proposal with an existing non-search-based work of Bavota et 

al. [78] that eventually relies on the use of coupling and cohesion along with semantic measures. 

In addition, the user needs to give as an input the different packages to restructure. We first note 

that it (like mono-objective approaches also) provides only one remodularization solution, while 

NSGA-III generate a set of non-dominated solutions. In order to make meaningful comparisons, 

we select the best solution for NSGA-III using a knee point strategy. For Bavota et al. study, we 

use the best solution corresponding to the median observation on 31 runs. The results from the 

31 runs are depicted in Figure 4.7 and Figure 4.8, and Table 4.8. It can be seen that NSGA-III 

provides better results than Bavota et al. in all systems as discussed in the previous sections. As 

described in Figure 4.15, the NSGA-III outperforms it mainly due the use of the history of 

changes as a helper objective for the semantic measures. In addition, Bavota et al. work is 

limited to few types of operations and do not consider all the operation types supported by our 

approach. 
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Figure 4.15. A comparison between Bavota et al. 2013 and NSGA-III based on the qualitative evaluation (MP). 

4.3.4.7 Results for RQ4 

We asked the software engineers involved in our experiments to evaluate the usefulness of the 

suggested ROs to apply one by one. In fact, sometimes these operations can improve the 

structure and preserve the semantics but developers will consider them as not useful due to many 

reasons such as some packages are not used/updated anymore or includes some features that are 

not important. Figure 4.16 shows that NSGA-III clearly outperforms existing work by suggesting 

useful remodularization operations for developers. This is can be explained mainly by the use of 

the history of recorded changes when suggested remodularization solutions. In fact, the use of 

the history of changes can help our technique to identify which packages are widely updated. In 

addition, several recent empirical studies showed that repetitive changes are common during the 

development of systems [89]. We found, in our experiments, that several patterns of changes 

(applied to different code locations) are repetitive. For example, move methods are in general 

applied after extract class since several methods are moved to the newly created class. A similar 

observation is valid for extract package and move class. Thus, the use of the history of changes 

can guide the search for good remodularization solutions based on the reuse of patterns identified 

from the history of changes. 
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Figure 4.16. Qualitative evaluation of the suggested remodularization solutions in terms of usefulness. 

Another feature that the software engineers, involved in our experiments, found it interesting 

is the use of several types of ROs. Figure 4.17 describes the distribution of the operations types 

used by the best solutions in all the system. It is clear that the three most important ones are 

move method, move class and extract/split packages. The software engineers found the idea very 

useful of moving methods between classes located in different packages or extracting a class 

then moving it to another class instead of moving the whole initial class to a new package. 

Sometimes, it is enough to move only a method from a class to another class in order to improve 

the cohesion of a package or decrease coupling between packages. However, existing 

remodularization work are limited to only two types of operations (move class and split 

packages). 

 

Figure 4.17. Distribution of the types of suggested remodularization operations. 
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During the survey, the software engineers confirm that the main limitation related to the use 

of NSGA-III for software remodularization is the high number of equivalent solutions. However, 

found the idea of the use of the Knee point as described previously useful to select a good 

solution. We will investigate in our future work different other techniques to select the region of 

interest based on the preferences of developers. 

 Conclusion 

In this chapter, we introduced a new scalable search-based software engineering approach for 

software remodularization based on NSGA-III. We address several challenges of existing 

software remodularization techniques that are limited to mainly the use of coupling and 

cohesion, and few types of operations (move class and split package). Our proposal aims at 

finding the remodularization solution that improves the structure of packages by optimizing 

some metrics such as number of classes per package, number of packages, coupling and 

cohesion; improve the semantic coherence of the restructured program; minimize code changes, 

and maximize the consistency with development change history. 

We evaluated our approach on four open source systems and one industrial system provided by 

our industrial partner Ford Motor Company. We report the results on the efficiency and 

effectiveness of our approach, compared to the state of the art remodularization approaches. Our 

results indicate that our approach significantly outperforms, in average, existing approaches 

based on a quantitative and qualitative evaluation. All the results were statistically significant on 

the 31 independent simulations using the Wilcoxon rank sum test with a 99% confidence level (α 

< 1%) where more than 92% of code-smells were fixed on the different open source systems. 

As part of the future work, we plan to work on adapting NSGA-III to additional software 

engineering problems and we will perform more comparative studies on larger open source 

systems. Furthermore, we will investigate the impact of different parameter settings on the 

quality of our results. Nevertheless, this extensive study has shown a direction using NSGA-III 

to handle as many as 7 objectives in the context of solving software engineering problems and 

would remain as one of the first studies in which such a large number of objectives have been 

considered. Weighting certain objectives can be an interesting future work direction to integrate 
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the preferences of developers during the search process. We are also planning to consider only 

the remodularization of the modified packages after the last release based on analysis of the 

history of the code changes. Finally, we plan to extend the use of our modularization approach 

by additional experts to generalize the obtained results. 



 

99 

 

 Software Refactoring 

 Multi-objective Optimization under Uncertainty 

5.1.1 Introduction 

Software evolution is an essential component of software development process. It is mainly 

intended to keep the software system up to the user’s requirements by regularly performing a set 

of development activities linked to adding new features, fixing reported bugs, migrating to 

different environments and platforms, and other function related tasks. Eventually. As a software 

system evolves, the code-related changes tend to degrade the system’s structure as the evolution 

focuses mainly on the incorporation of required features and the correction of errors on the 

expense of the deterioration of the system’s design. Since these code changes have become 

inevitable as they constitute a key role in agile methodologies, strategies need to be adapted in 

order to preserve the software architecture’s value over changes. Therefore, software 

maintenance gathers software change control and management strategies that aim to maintain the 

software quality during its evolution. On the other hand, the new functionalities, incorporated 

during the evolution of a software system, exhibit a growth of its size and complexity and so it 

becomes harder to maintain. As a consequence, the cost of maintenance and evolution activities 

comprises more than 80% of total software costs. In addition, it has been shown that software 

maintainers spend around 60% of their time in understanding the code [99]. To facilitate 

maintenance tasks, one of the widely used techniques is refactoring which can be defined as the 

restructuration of the system’s architecture with the intention of improving its internal design 

while preserving the overall external behavior of the software [15]. 

Software refactoring, as a concept, has been introduced in the early nineties by Obdyke [87] 

and became a key artifact of the agile development processes such as Extreme Programming 
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(XP). Fowler [15] has identified refactoring opportunities within code fragments and provides a 

refactoring operations catalog that can be applied to enhance the code’s structure of code while 

preserving its semantics. There has been much work on different refactoring techniques and tools 

[50] [62] [71] [86]. The vast majority of these techniques identify key symptoms that 

characterize the code to refactor using a combination of quantitative, structural, and/or lexical 

information and then propose different possible refactoring solutions, for each identified segment 

of code. In order to find out which parts of the source code need to be refactored, most of the 

existing work rely on the notion of design defects or code smells. Originally coined by Fowler, 

the generic term code smell refers to structures in the code that suggest the possibility of 

refactoring. Once code smells have been identified, refactorings need to be proposed to resolve 

them. Several automated refactoring approaches are proposed in the literature and most of them 

are based on the use of software metrics to estimate quality improvements of the system after 

applying refactorings. 

Most of existing approaches propose refactoring solutions without a consideration of the 

severity and importance of detected refactoring opportunities to fix. In fact, both severity and 

importance are difficult to define and estimate. The estimation scores of these factors can change 

during the time due to the highly dynamic nature of software development. The importance and 

severity of code fragments can be different after new commits introduced by developers. Thus, it 

is important to consider the uncertainty related to these two factors when recommending 

refactoring solutions. In addition, the definition of severity and importance is very subjective and 

depends on the developers’ perception. 

In this work, we take into account two dynamic aspects as follows: 

 Code Smell Severity: Once a list of code smells is detected, the correction techniques 

treat these detected defects equally by suggesting which refactorings could be applied 

to the code in order to eliminate, or at least reducing them. Whereas, the effects of a 

defect in terms of potential introduction of faults may vary depending on the type of 

the code smell [100]. Also, many studies have been investigating the impact of each 

defect type on the maintenance effort [101]. Thus, we consider a severity level 

assigned to a code smell type by a developer based on his prior knowledge and his 
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preference on prioritizing the correction of a specific type of code smell among others. 

This is the severity level assigned to a code smell type by a developer. It usually varies 

from developer to developer, and indeed, a developer’s assessment of smell severity 

will change over time as well. 

 Code Smell Class Importance: This is the importance of a class that contains a code 

smell, where importance refers to the number and size of the features that the class 

supports. A code smell with large class importance will have a greater detrimental 

impact on the software. Again, this property will vary over time as software 

requirements change [5] and classes are added/deleted/extracted. 

We believe that the uncertainties related to the class importance and the code smell severity 

need to be taken into consideration when suggesting a refactoring solution. To this end, we 

introduce a novel representation of the code refactoring problem, based on robust optimization 

[102] [103] that generates robust refactoring solutions by taking into account the uncertainties 

related to code smell severity and the importance of the class that contains the code smell. Our 

robustness model is based on the well-known multi-objective evolutionary algorithm NSGA-II 

proposed by Deb et al. [83] and considers possible changes in class importance and code smell 

severity by generating different scenarios at each iteration of the algorithm. In each scenario, the 

detected code smell to be corrected is assigned a severity score and each class in the system is 

assigned an importance score. In our model, we assume that these scores change regularly due to 

reasons such as developers’ evolving perspectives on the software or new features and 

requirements being implemented or any other code changes that could make some classes/code 

smells more or less important. Our multi-objective approach aims to find the best trade-off 

between three objectives to maximize: quality improvements (number of fixed code smells), 

severity and importance of refactoring opportunities to be fixed (e.g. code smells). 

The primary contributions of this work are as follows: 

 A novel formulation of the refactoring problem as a multi-objective problem that takes 

into account the uncertainties related to code smell detection and the dynamic 

environment of software development. We extended our previous work [104] by 

considering severity and importance of refactoring opportunities as separate objectives. 
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In addition, we are considering additional types of code smells to fix and extended our 

validation to 8 open source systems and one industrial project. 

 The Validation of an empirical study of our robust NSGA-II technique as applied 

different medium and large size systems. We compared our approach to random search, 

multi-objective particle swarm optimization (MOPSO) [105], search-based refactoring 

[70] [52] and a non-search-based refactoring tool [106]. The results provide evidence to 

support the claim that our proposal enables the generation of robust refactoring solutions 

without a high loss of quality using a variety of real-world scenarios.  

5.1.2 Approach 

5.1.2.1 Robust Optimization 

In dealing with optimization problems, including software engineering ones, most 

researchers assume that the parameters of the problem are exactly known in advance. 

Unfortunately, this is an idealization often not the case in a real-world setting. Additionally, 

uncertainty can change the effective values of some parameters with respect to nominal values. 

For instance, when handling the knapsack problem (KP), which is one of the most studied 

combinatorial problems [103], we can face such a problem. The KP problem requires one to find 

the optimal subset of items to put in a knapsack of capacity C in order to maximize the total 

profit while respecting the capacity C. The items are selected from an item set where each item 

has its own weight and its own profit. Usually, the KP’s input parameters are not known with 

certainty in advance. Consequently, we should search for robust solutions that are immune to 

small perturbations in terms of input parameter values. In other words, we prefer solutions whose 

performance levels do not significantly degrade due to small perturbations in one or several input 

parameters such as item weights, item profits and knapsack capacity for a KP. As stated by 

Beyer et al. [103], uncertainty is unavoidable in real problem settings; therefore, it should be 

taken into account in every optimization approach in order to obtain robust solutions. Robustness 

of an optimal solution can usually be discussed from the following two perspectives: (1) the 

optimal solution is insensitive to small perturbations in terms of the decision variables and/or (2) 

the optimal solution is insensitive to small variations in terms of environmental parameters. 
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Figure 5.1 illustrates the robustness concept with respect to a single decision variable named x. 

Based on the f (x) landscape, we have two optima: A and B. We remark that solution A is very 

sensitive to local perturbation of the variable x. A very slight perturbation of x within the interval 

[2, 4] can make the optimum A unacceptable since its performance f(A) would dramatically 

degrade. On the other hand, small perturbations of the optimum B, which has a relatively lower 

objective function value than A, within the interval [5,7] hardly affects the performance of 

solution B (i.e., f(B)) at all. We can say that although solution A has a better quality than solution 

B, solution B is more robust than solution A. In an uncertain context, the user would probably 

prefer solution B to solution A. This choice is justified by the performance of B in terms of 

robustness. It is clear from this discussion robustness has a price, called robustness price or cost, 

since it engenders a loss in optimality. This loss is due to preferring the robust solution B over 

the non-robust solution A. According to Figure 1, this loss is equal to ))()(( AfBfabs  . Several 

approaches have been proposed to handle robustness in the optimization field in general and 

more specifically in design engineering. These approaches can be classified as follows [102]: 

• Explicit averaging: Assuming f(x) to be the fitness function of solution x, the basic idea is 

to generate a weighted average for the fitness value in the neighborhood Bδ(x) of solution x with 

an uncertainty distribution p(δ). The fitness function then becomes: 





dxfp
B

)()(
(x)


  

However, because in the robustness term, case disturbances can be chosen deliberately, 

variance reduction techniques can be applied, allowing a more accurate estimation with fewer 

samples. 

• Implicit averaging: The basic idea is to compute an expected fitness function based on 

the fitness values of some solutions residing within the neighborhood of the considered solution. 

Beyer et al. [107] noted that it is important to use a large population size in this case. In fact, 

given a fixed number of evaluations per generation, it was found that increasing the population 

size yields better results than multiple random sampling. 

• Use of constraints: The difference between the weighted average fitness value and the 

actual fitness value at any point can be restricted to lie within a pre-defined threshold in order to 

yield more robust solutions [108]. Such an optimization process will prefer robust solutions to 
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the problem and it then depends on the efficacy of the optimization algorithm to find the highest 

quality robust solution. 

• Multi-objective formulation: The core idea in the multi-objective approach is to use an 

additional helper objective function that handles robustness related to uncertainty in the 

problem’s parameters and/or decision variables. Thus, we can solve a mono-objective problem 

by means of a multi-objective approach by adding robustness as a new objective to the problem 

at hand. The same idea could be used to handle robustness in a multi-objective problem; 

however, in this case, the problem’s dimensionality would increase. Another reason to separate 

fitness from robustness is that using the expected fitness function as a basis for robustness is not 

sufficient in some cases [109]. With expected fitness as the only objective, positive and negative 

deviations from the true fitness can cancel each other in the neighborhood of the considered 

solution. Thus, a solution with high fitness variance may be wrongly considered to be robust. For 

this reason, it may be advantageous to consider expected fitness and fitness variance as separate 

additional optimization criteria, which allows searching for solutions with different trade-offs 

between performance and robustness. 

Robustness has a cost in terms of the loss in optimality, termed the price of robustness, or 

sometimes robustness cost. This is usually expressed as the ratio between the gain in robustness 

and the loss in optimality. Robustness handling methods have been successfully applied in 

several engineering disciplines such as scheduling, electronic engineering and chemistry (cf. 

[103] for a comprehensive survey). 

 

Figure 5.1. Illustration of the robustness concept under uncertainty related to the decision variable x. Solution B is more 

robust than solution A. 
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5.1.2.2 Problem Formulation 

The refactoring problem, from the search-based perspective, includes the exploration of a set 

of candidate solutions in order to determine the best one whose sequence of refactorings best 

satisfies the fitness function(s). A refactoring solution is a set of refactoring operations where the 

goal of applying the sequence to a software system S is typically to minimize the number of 

design defects in S. As outlined in the Introduction, in a real-world setting code smell severity 

and class importance are not certainties. A refactoring sequence that resolves the smells that one 

developer rates as severe may not be viewed as effective by another developer with a different 

outlook on smells. Similarly, a refactoring sequence that fixes the smells in a class that is 

subsequently deleted in the next commit is not of much value [110]. 

We propose a robust formulation of the refactoring problem that separates class importance 

and smells severity into two different objectives. Consequently, we have three objective 

functions to be maximized in our problem formulation: (1) the quality of the system to refactor, 

i.e., minimizing the number of code smells, and the robustness of the refactoring solutions in 

relation to uncertainty in both (2) severity level of the code smells and (3) the importance of the 

classes that contain the code smells. Analytically speaking, the formulation of the robust 

refactoring problem can be stated as follows: 
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(5.1) 

where X is the set of all legal refactoring sequences starting from S, xi is the ith refactoring in 

the sequence x, NCCS(x,S) is the Number of Corrected Code Smells after applying the 

refactoring solution x on the system S, NDCS(S) is the Number of Detected Code-Smells prior to 

the application of solution x to the system S, CCSi is the ith Corrected Code Smell, 

SmellSeverity(CCSi, x, S) is the severity level of the ith corrected code smell related to the 
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execution of x on S, and ClassImportance(CCSi, x, S) is the importance of the class containing 

the ith code smell corrected by the execution of x on S. 

The smell’s severity level is a numeric quantity, varying between 0 and 1, assigned by the 

developer to each code smell type (e.g., blob, spaghetti code, functional decomposition, etc.). We 

define the class importance of a code smell as follows: 

3

))(/())(/())(/(
),,(

SMaxNMNMSMaxNRNRSMaxNCNC
SxCCSImportance i




 
(5.2) 

such that NC/NR/NM correspond respectively to the Number of 

Comments/Relationships/Methods related to the CCSi and MaxNC/MaxNR/MaxNM correspond 

respectively to the Maximum Number of Comments/Relationships/Methods of any class in the 

system S. There are of course many ways in which class importance could be measured, and one 

of the advantages of the search-based approach is that this definition could be easily replaced 

with a different one. We used in our approach the widely used metrics by existing literature to 

estimate the importance and severity of code smells [111]. In fact, few empirical studies were 

performed with software engineers to evaluate the severity and importance of several types of 

code smells [111] [112]. We are taking these metrics and the severity scores as input for our 

approach. 

In summary, the basic idea behind this work is to maximize the resistance of the refactoring 

solutions to perturbations in the severity levels and class importance of the code smells while 

maximizing simultaneously the number of corrected code smells. These three objectives are in 

conflict with each other since the quality of the proposed refactoring solution usually decreases 

when the environmental change (smell severity and/or class importance) increases. In addition, 

severe quality issues may exist in code fragments that are not important for developers. Thus, the 

goal is to find a good compromise between these three conflicting objectives. This compromise 

is directly related to robustness cost, as discussed above. In fact, once the three objectives trade-

off front is obtained, the developer can navigate through this front in order to select his/her 

preferred refactoring solution. This is achieved through sacrificing some degree of solution 

quality while gaining in terms of robustness and smell severity and importance. In fact, 

robustness is inversely proportional to the severity and class importance, and this is how we 
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make our algorithm robust. The approach is to use a multi-objective search algorithm to explore 

the trade-off that can be obtained by ignoring the user's wishes to varying degrees. The results 

show this to be the case; quality can be most improved when importance and severity objective 

values are lower. For example, a refactoring applied to a class that is then deleted; the 

instantaneous quality improvement may be high, but in the project's timeline it is minimal. This 

makes a solid case for so-called "robust" optimization which seeks to identify good solutions that 

are resilient against changes in the developer's priorities. 

In our robust formulation, we introduce perturbations/variations in the severity and 

importance scores of the code smells and classes at every iteration of our NSGA-II algorithm. As 

described later in the experiments section, the severity scores of 0.8, 0.6, 0.4, 0.3, 0.5, 0.3, and 

0.2 of the different types of code represent just the initial values but these values slightly change 

at each iteration (a slight random increase or decrease of these scores using a variation rate 

parameter). These variations correspond to some artificially created changes in the environment 

(new code changes introduced, etc.) or priorities change or different opinions of developers 

about the importance or severity of the classes. 

5.1.2.3 The Solution Approach 

Solution representation. To represent a candidate solution (individual/chromosome), we use 

a vector-based representation which is widely adopted in the literature. According to this 

encoding, a solution is an array of refactoring operations where the order of their execution is 

accorded by their positions in the array. The standard approach of pre- and post-conditions is 

used to ensure that the refactoring operation can be applied while preserving program behavior. 

For each refactoring operation, a set of controlling parameters (e.g., actors and roles as illustrated 

in Table 1) is randomly picked from the program to be refactored. Assigning randomly a 

sequence of refactorings to certain code fragments generates the initial population. To apply a 

refactoring operation we need to specify which actors, i.e., code fragments, are 

involved/impacted by this refactoring and which roles they play to perform the refactoring 

operation. An actor can be a package, class, field, method, parameter, statement or variable. 

Table 1 depicts, for each refactoring, its involved actors and its role. 
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Table 5.1. Refactoring types and their involved actors and roles. 

Refactorings Actors Roles 

Move method 
class source class, target class 

method moved method 

Move field 
class source class, target class 

field moved field 

Pull up field 
class sub classes, super class 

field moved field 

Pull up method 
class sub classes, super class 

method moved method 

Push down field 
class super class, sub classes 

field moved field 

Push down method 
class super class, sub classes 

method moved method 

Inline class class source class, target class 

Extract class 

class source class, new class 

field moved fields 

method moved methods 

Move class 
package source package, target package 

class moved class 

Extract interface 

class source classes, new interface 

field moved fields 

method moved methods 

Solution variation. For crossover, we use the one-point crossover operator. It starts by 

selecting and splitting at random two parent solutions. Then, this operator creates two child 

solutions by putting, for the first child, the first part of the first parent with the second part of the 

second parent, and vice versa for the second child. This operator must respect the refactoring 

sequence length limits by eliminating randomly some refactoring operations if necessary. For 

mutation, we use the bit-string mutation operator that picks probabilistically one or more 

refactoring operations from its or their associated sequence and replaces them by other ones from 

a list of possible refactorings. These two variation operators have already demonstrated good 

performance when tackling the refactoring problem [50] [86]. 

Solution evaluation. Each refactoring sequence in the population is executed on the system 

S. For each sequence, the solution is evaluated based on the three objective functions defined in 

the previous section. Since we are considering a three objectives formulation, we use the concept 

of Pareto optimality to find a set of compromise (Pareto-optimal) refactoring solutions. 

By definition, a solution x Pareto-dominates a solution y if and only if x is at least as good as 

y in all objectives and strictly better than y in at least one objective. The fitness of a particular 

solution in NSGA-II corresponds to a couple (Pareto Rank, Crowding distance). In fact, NSGA-

II classifies the population individuals (of parents and children) into different layers, called non-
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dominated fronts. Non-dominated solutions are assigned a rank of 1 and then are discarded 

temporary from the population. Non-dominated solutions from the truncated population are 

assigned a rank of 2 and then discarded temporarily. This process is repeated until the entire 

population is classified with the domination metric.  

After that, a diversity measure, called crowding distance, is assigned front-wise to each 

individual. The crowding distance is the average side length of the cuboid formed by the nearest 

neighbors of the considered solution. Once each solution is assigned its Pareto rank, based on 

refactoring quality and robustness to change in terms of class importance and smell severity 

levels, in addition to its crowding distance, mating selection and environmental selection are 

performed. This is based on the crowded comparison operator that favors solutions having better 

Pareto ranks and, in the case of equal ranks, it favors the solution having larger crowding 

distance. In this way, convergence towards the Pareto optimal bi-objective front (quality, 

robustness) and diversity along this front are emphasized simultaneously. The basic iteration of 

NSGA-II consists in generating an offspring population (of size N) from the parent one (of size N 

too) based on variation operators (crossover and mutation) where the parent individuals are 

selected based on the crowded comparison operator. After that, parents and children are merged 

into a single population R of size 2N. The parent population for the next generation is composed 

of the best non-dominated fronts. This process continues until the satisfaction of a stopping 

criterion. The output of NSGA-II is the last obtained parent population containing the best of the 

non-dominated solutions found. When plotted in the objective space, they form the Pareto front 

from which the developer will select his/her preferred refactoring solution. 

5.1.3 Validation 

5.1.3.1 Design of the Empirical Study 

This section describes our empirical study including the research questions to address, the 

systems examined, evaluation metrics considered in our experiments and the statistical tests 

results. In addition, we compared different refactoring algorithms quantitatively and qualitatively 

across several subject systems. 
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We defined six research questions that address the applicability, performance in comparison 

to existing refactoring approaches, and the usefulness of our robust multi-objective refactoring. 

The six research questions are as follows: 

RQ1: Search Validation. To validate the problem formulation of our approach, we 

compared our NSGA-II formulation with Random Search. If Random Search outperforms an 

intelligent search method thus we can conclude that our problem formulation is not adequate. 

Since outperforming a random search is not sufficient, the next four questions are related to the 

comparison between our proposal and the state-of-the-art refactoring approaches.   

RQ2.1: How does NSGA-II perform compared to other multi-objective algorithms? It is 

important to justify the use of NSGA-II for the problem of refactoring under uncertainties. We 

compare NSGA-II with another widely used multi-objective algorithm, MOPSO (Multi-

Objective Particle Swarm Optimization), using the same adaptation (fitness functions). In 

addition, we compared our approach to our previous robust refactoring study (based on only 2 

objectives) [26]. 

RQ2.2: How do robust, multi-objective algorithms perform compared to mono-

objective Evolutionary Algorithms? A multi-objective algorithm provides a trade-off between 

the two objectives where the developers can select their desired solution from the Pareto-optimal 

front. A mono-objective approach uses a single fitness function that is formed as an aggregation 

of both objectives and generates as output only one refactoring solution. This comparison is 

required to ensure that the refactoring solutions provided by NSGA-II and MOPSO provide a 

better trade-off between quality and robustness than a mono-objective approach. Otherwise, 

there is no benefit to our multi-objective adaptation. 

RQ2.3: How does NSGA-II perform compare to existing search-based refactoring 

approaches? Our proposal is the first work that treats the problem of refactoring under 

uncertainties. A comparison with existing search-based refactoring approaches [71] [70] is 

helpful to evaluate the cost of robustness of our proposed approach. 

RQ2.4: How does NSGA-II perform compared to existing refactoring approaches not 

based on the use of metaheuristic search? While it is very interesting to show that our proposal 
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outperforms existing search-based refactoring approaches, developers will consider our approach 

useful, if it can outperform other existing refactoring tools [106] that are not based on 

optimization techniques.  

RQ3: Developers' evaluation of the recommended refactorings. Can our robust multi-

objective approach be useful for software engineers in a real-world setting? In a real-world 

problem involving uncertainties, it is important to show that a robustness-unaware methodology 

drives the search to non-robust solutions that are sensitive to variation in the uncertainty 

parameters. However when robustness is taken into account, a more robust and insensitive 

solution is found. Some scenarios are required to illustrate the importance of robust refactoring 

solutions in a real-world setting: a) exploring the trade-off of robust and qualitative solutions, 

and b) asking what developers think of the results. 

Table 5.2. Software studied in our experiments. 

Systems Release #Classes #Smells KLOC 

Xerces-J v2.7.0 991 82 240 

JFreeChart  v1.0.9 521 73 170 

GanttProject v1.10.2 245 56 41 

ApacheAnt  v1.8.2 1191 91 255 

JHotDraw  v6.1 585 33 21 

Rhino v1.7R1 305 74 42 

Log4J v1.2.1 189 64 31 

Nutch v1.1 207 72 39 

JDI-Ford v5.8 638 88 247 

Software Projects Studied. In our experiments, we used a set of well-known and well-

commented open-source Java projects. We applied our approach to eight large and medium-sized 

open source Java projects: Xerces-J [113], JFreeChart [114], GanttProject [115], ApacheAnt 

[116], JHotDraw [117], Rhino [118], Log4J [119], Nutch [120] and JDI-Ford. Xerces-J is a 

family of software packages for parsing XML. JFreeChart is a powerful and flexible Java library 

for generating charts. GanttProject is a cross-platform tool for project scheduling. ApacheAnt is 

a build tool and library specifically conceived for Java applications. JHotDraw is a GUI 

framework for drawing editors. Rhino is a JavaScript interpreter and compiler written in Java 

and developed for the Mozilla/Firefox browser. Nutch is an open source Java implementation of 

a search engine. Log4j is a Java-based logging utility. Table 2 provides some descriptive 

statistics about these eight programs. We selected these systems for our validation because they 
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range from medium to large-sized open source projects that have been actively developed over 

the past 10 years, and include a large number of code smells. In addition, these systems are well 

studied in the literature and their code smells have been either detected, analyzed manually [71] 

[70] or using an existing detection tool [54]. In these corpuses, the four following code smell 

types were identified manually (that are described in Section 2): Blob, Feature Envy (FE), Data 

Class (DC), Spaghetti Code (SC), Functional Decomposition (FD), Lazy Class (LC) and Long 

Parameter List (LPL). We chose these code smell types in our experiments because they are the 

most frequent ones detected and corrected in recent studies in existing corpuses. 

We performed also a small industrial case study, based on one industrial project JDI-Ford. It 

is a Java-based software system that helps, our industrial partner, the Ford Motor Company, 

analyzes useful information from the past sales of dealerships data and suggests which vehicles 

to order for their dealer inventories in the future. This system is the main key software 

application used by the Ford Motor Company to improve their vehicle sales by selecting the right 

vehicle configuration to the expectations of customers. Several versions of JDI were proposed by 

software engineers at Ford during the past 10 years. Due to the importance of the application and 

the high number of updates performed during a period of 10 years, it is critical to making sure 

that all the JDI releases are within a good quality to reduce the time required by developers to 

introduce new features in the future. The software engineers at Ford manually evaluated the 

suggested refactorings based on their knowledge of the system since they are some of the 

original developers. 

Evaluation Metrics Used. When comparing two mono-objective algorithms, it is usual to 

compare their best solutions found so far during the optimization process. However, this is not 

applicable when comparing two multi-objective evolutionary algorithms since each of them 

gives as output a set of non-dominated (Pareto equivalent) solutions. For this reason, we defined 

the following metrics: 

−Hypervolume (IHV) corresponds to the proportion of the objective space that is dominated by 

the Pareto front approximation returned by the algorithm and delimited by a reference point. 

Larger values for this metric mean better performance. The most interesting features of this 

indicator are its Pareto dominance compliance and its ability to capture both convergence and 
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diversity. The reference point used in this study corresponds to the nadir point of the Reference 

Front (RF), where the Reference Front is the set of all non-dominated solutions found so far by 

all algorithms under comparison. 

−Inverse Generational Distance (IGD) is a convergence measure that corresponds to the average 

Euclidean distance between the Pareto front Approximation PA provided by the algorithm and 

the reference front RF. The distance between PA and RF in an M-objective space is calculated as 

the average M-dimensional Euclidean distance between each solution in PA and its nearest 

neighbor in RF. Lower values for this indicator mean better performance (convergence). 

−Contribution (IC) corresponds to the ratio of the number of non-dominated solutions the 

algorithm provides to the cardinality of RF. Larger values for this metric mean better 

performance.  

In addition to these three multi-objective evaluation measures, we used these other metrics 

mainly to compare between mono-objective and multi-objective approaches defined as follows: 

−Quality: number of Fixed Code-Smells (FCS) is the number of code smells fixed after applying 

the best refactoring solution. 

−Severity of fixed Code-Smells (SCS) is defined as the sum of the severity of fixed code smells: 

SCS(S) = SmellSeverity(di )
i=1

k

å
 

(5.3) 

where k is the number of fixed code smells and SmellSeverity corresponds to the severity (value 

between 0 and 1) assigned by the developer to each code smell type (blob, spaghetti code, etc.). 

In our experiments, we use these severity scores 0.8, 0.6, 0.4, 0.3, 0.5, 0.3, and 0.2 respectively 

for Blob, Spaghetti Code (SC), Functional Decomposition (FD), Lazy Class (LC), Feature Envy 

(FE), Data Class (DC) and Long Parameter List (LPL). We introduce “perturbations/variations” 

in the severity and importance scores of the code smells and classes at every iteration of our 

NSGA-II algorithm. Thus, these severity scores of the different types of code represent just the 

initial values but these values slightly change at each iteration (a slight random increase or 

decrease of these scores using a variation rate parameter between -0.2 and +0.2). 
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−Importance of fixed Code-Smells (ICS) is defined using three metrics (number of comments, 

number of relationships and number of methods) as follows: 
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(5.4) 

where importance is as defined in Section 5.1.2.2. 

−Correctness of the suggested Refactorings (CR) is defined as the number of semantically 

correct refactorings divided by the total number of manually evaluated refactorings. 

−Computational time (ICT) is a measure of efficiency employed here since robustness inclusion 

may cause the search to use more time in order to find a set of Pareto-optimal trade-offs between 

refactoring quality and solution robustness. 

When we compared the different algorithms to NSGA-II, we used the original initial weights 

(before the perturbation). 

Subjects. Our study involved 6 subjects from the University of Michigan and 4 software 

engineers from Ford Motor Company. Subjects include 1 master student in Software 

Engineering, 4 Ph.D. students in Software Engineering, 1 faculty member in Software 

Engineering, 3 junior software developers and 1 senior projects manager. All the subjects are 

familiar with Java development, software maintenance activities including refactoring. The 

experience of these subjects on Java programming ranged from 3 to 17 years. All the graduate 

students have an industrial experience of at least 2 years with large-scale object-oriented 

systems. The 6 subjects from the University of Michigan evaluated the refactoring results on the 

open source systems. The 4 software engineers from Ford evaluated the refactoring results only 

on the JDI-Ford system. They were selected, as part of a project funded by Ford, based on having 

similar development skills, their motivations to participate in the project and their availability. 

They are part of the original developers’ team of the JDI system. 

Parameter tuning and setting. An often-omitted aspect in metaheuristic search is the tuning 

of algorithm parameters. In fact, parameter setting influences significantly the performance of a 

search algorithm on a particular problem. For this reason, for each multi-objective algorithm and 

for each system (cf. Table 5.3), we performed a set of experiments using several population 



 115 

 

 

 

sizes: 50, 100, 200, 500 and 1000. The stopping criterion was set to 250,000 fitness evaluations 

for all algorithms in order to ensure fairness of comparison. Each algorithm was executed 51 

times with each configuration and then the comparison between the configurations was 

performed based on IHV, IGD and IC using the Wilcoxon test. Table 5.3 reports the best 

configuration obtained for each couple (algorithm, system). For the mono-objective EA, we 

adopted the same approach using best fitness value criterion since multi-objective metrics cannot 

be used for single-objective algorithms. The best configurations are also shown in Table 3. 

The MOPSO used in this work is the Non-dominated Sorting PSO (NSPSO) proposed by Li 

[105]. The other parameters’ values were fixed by trial and error and are as follows: (1) 

crossover probability = 0.8; mutation probability = 0.5 where the probability of gene 

modification is 0.3; stopping criterion = 250,000 fitness evaluations. For MOPSO, the cognitive 

and social scaling parameters c1 and c2 were both set to 2.0 and the inertia weighting coefficient 

w decreased gradually from 1.0 to 0.4. Since refactoring sequences usually have different 

lengths, we authorized the length n of number of refactorings to belong to the interval [10, 250]. 

Table 5.3. Best population size configurations. 

System NSGA-II MOPSO Mono-EA 

Xerces-J 1000 1000 1000 

JFreeChart  500 200 500 

GanttProject 100 100 100 

ApacheAnt  1000 1000 1000 

JHotDraw  200 200 200 

Rhino 100 200 200 

Log4J 200 200 100 

Nutch 100 200 150 

JDI-Ford 500 600 460 

Approaches in comparison. We compared our approach with different existing studies. For 

the mono-objective approaches, Kessentini et al. [71] used the Genetic Algorithm (GA) to find 

the best sequence of refactoring that minimizes the number of code smells while O’Keeffe and Ó 

Cinnéide [70] used different mono-objective algorithms to find the best sequence of refactorings 

that optimize a fitness function composed of a set of quality metrics. Kessentini et al. [71] and 

O’Keeffe et al. [70], where uncertainties are not taken into account. We also implemented a 

mono-objective GA where one fitness function is defined as an average of the three objectives 

(quality, severity and importance). For the multi-objective algorithms, in Ouni et al. [86], the 



116 Software Refactoring 

 

 

 

authors ask a set of developers to fix manually the code smells in a number of open source 

systems including those that we are considering in our experiments. They proposed a multi-

objective approach to maximize the number of fixed defects and minimize the number of 

refactorings. We also compared our approach with our previous SSBSE2014 robust refactoring 

study (based on only 2 objectives) [104] as described in the introduction. In addition, we 

compared our proposal to a popular design defects detection and correction tool JDeodorant 

[106] that does not use heuristic search techniques. The current version of JDeodorant is 

implemented as an Eclipse plug-in that identifies some types of design defects using quality 

metrics and then proposes a list of refactoring strategies to fix them.  

5.1.3.2 Results Analysis 

This section describes and discusses the results obtained from the different research questions 

of Section 4.1. Since metaheuristic algorithms are stochastic optimizers, they can provide 

different results for the same problem instance from one run to another. For this reason, our 

experimental study is performed based on 51 independent simulation runs for each problem 

instance and the obtained results are statistically analyzed by using the Wilcoxon rank sum test 

with a 95% confidence level (α = 5%). The latter verifies the null hypothesis H0 that the obtained 

results of two algorithms are samples from continuous distributions with equal medians, as 

against the alternative that they are not, H1. The p-value of the Wilcoxon test corresponds to the 

probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value that is less 

than or equal to α (≤ 0.05) means that we accept H1 and we reject H0. However, a p-value that is 

strictly greater than α (> 0.05) means the opposite. In fact, for each problem instance, we 

compute the p-value of random search, MOPSO and mono-objective search results, our previous 

multi-objective work [104] with NSGA-II ones. In this way, we could decide whether the 

outperformance of NSGA-II over one of each of the others (or the opposite) is statistically 

significant or just a random result. The inference on the best result is done on the basis of 

ranking through multiple pair-wise tests. 

The Wilcoxon signed-rank test allows verifying whether the results are statistically different 

or not. However, it does not give any idea about the difference in magnitude. To this end, we 

used the Vargha and Delaney’s A statistics which is a non-parametric effect size measure [121]. 
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In our context, given the different performance metrics (such as FCS, SCS and ICS), the A 

statistics measures the probability that running an algorithm B1 (our robust multi-objective 

algorithm) yields better performance than running another algorithm B2 (such as random search 

and MOPSO). If the two algorithms are equivalent, then A = 0.5. In our experiments, we have 

found the following results: a) On small and medium scale Software systems (JFreeChart and 

GanttProject) NSGA-II is better than all the other algorithms based on all the performance 

metrics with an A-effect size higher than 0.9; b) On large scale Software systems (Xerces-J and 

JDI-Ford), NSGA-II is better than all the other algorithms with a an A-effect size higher than 

0.83. 

Results for RQ1: Comparison between NSGA-II and Random Search. 

To answer the first research question RQ1 an algorithm was implemented where refactorings 

were randomly applied at each iteration. The obtained Pareto fronts were compared for 

statistically significant differences with NSGA-II using IHV, IGD and IC. 

We do not dwell long in answering the first research question, RQ1 that involves comparing 

our approach based on NSGA-II with the random search. The remaining research questions will 

reveal more about the performance, insight, and usefulness of our approach. 

Table 5.4 confirms that NSGA-II and MOPSO are better than random search based on the 

three quality indicators IHV, IGD and IC on all six open source systems. The Wilcoxon rank 

sum test showed that in 51 runs both NSGA-II and MOPSO results were significantly better than 

random search. We conclude that there is empirical evidence that our multi-objective 

formulation surpasses the performance of random search thus our formulation is adequate (this 

answers RQ1).  

Table 5.4. The significantly best algorithm among random search, NSGA-II and MOPSO (No sign. diff. means that 

NSGA-II and MOPSO are significantly better than random, but not statistically different). 

Project IC IHV IGD 

Xerces-J NSGA-II NSGA-II NSGA-II 

JFreeChart  NSGA-II NSGA-II NSGA-II 

GanttProject MOPSO No sign. diff. MOPSO 

ApacheAnt  NSGA-II NSGA-II NSGA-II 

JHotDraw  NSGA-II NSGA-II NSGA-II 

Rhino No sign. diff. NSGA-II No sign. diff. 

Log4J NSGA-II NSGA-II NSGA-II 
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Nutch No sign. diff. No sign. diff. NSGA-II 

JDI-Ford NSGA-II NSGA-II NSGA-II 

Results for RQ2: Comparison with State of the Art Refactoring Approaches. 

In this section, we compare our NSGA-II adaptation to the current, state-of-the-art 

refactoring approaches. To answer RQ2.1, we implemented a widely used multi-objective 

algorithm, namely multi-objective particle swarm optimization (MOPSO) and we compared 

NSGA-II and MOPSO using the same quality indicators used in RQ1. In addition, we used 

boxplots to analyze the distribution of the results and discover the knee point (best trade-off 

between the objectives). Furthermore, we compare our proposal with our previous formulation 

[104] based on two objectives using the FCS, SCS, ICS, CR, and ICT. To answer RQ2.2 we 

implemented a mono-objective Genetic Algorithm where one fitness function is defined as an 

average of the three objectives (quality, severity and importance). The multi-objective evaluation 

measures (IHV, IGD and IC) cannot be used in this comparison thus we considered the five 

metrics FCS, SCS, ICS, CR, and ICT defined in Section 4.3. To answer RQ2.3 we compared 

NSGA-II with two existing search-based refactoring approaches, Kessentini et al. [71] and 

O’Keeffe et al. [70], where uncertainties are not taken into account. We considered the same 

metrics used to answer RQ2.2. To answer RQ2.4, we compared our proposal to a popular design 

defects detection and correction tool JDeodorant that does not use heuristic search techniques. 

We compared the results of this tool with NSGA-II using FCS, SCS, ICS, CR, and ICT since only 

one refactoring solution can be proposed and not a set of “non-dominated” solutions. To answer 

the above research questions, we selected the solution from the set of non-dominated ones 

providing the maximum trade-off using the following strategy when comparing the different 

algorithms (expect the mono-objective algorithm where we select the solution with the highest 

fitness function or the JDeodorant tool). In order to find the maximal trade-off solution of the 

multi-objective or many-objective algorithm, we use the trade-off worthiness metric proposed by 

Rachmawati and Srinivasan [93] to evaluate the worthiness of each non-dominated solution in 

terms of compromise between the objectives.  

Results for RQ2.1: Comparison with Multi-Objective Approaches. 
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To answer the second research question, RQ2.1, we compared NSGA-II to another widely 

used multi-objective algorithm, MOPSO, using the same adapted fitness function. Table 4 shows 

the overview of the results of the significance tests comparison between NSGA-II and MOPSO. 

NSGA-II outperforms MOPSO in most of the cases: 20 out of 27 experiments (74%). MOPSO 

outperforms the NSGA-II approach only in GanttProject, which is the smallest open source 

system considered in our experiments, having the lowest number of legal refactorings available, 

so it appears that MOPSO’s search operators make a better task of working with a smaller search 

space. In particular, NSGA-II outperforms MOPSO in terms of IC values in 4 out 6 experiments 

with one ‘no significant difference’ result. Regarding IHV, NSGA-II outperformed MOPSO in 6 

out of 9 experiments, where only two cases were not statistically significant, namely 

GanttProject and Nutch. For IGD, the results were similar as for IC. 

A more qualitative evaluation is presented in Figure 5.2. Boxplots using the quality measures 

(a) IC, (b) IHV, and (c) IGD applied to NSGAII and MOPSO. illustrating the box plots obtained 

for the multi-objective metrics on the different projects. For almost all problems the distributions 

of the metrics values for NSGA-II have smaller variability than for MOPSO. This fact confirms 

the effectiveness of NSGA-II over MOPSO in finding a well-converged and well-diversified set 

of Pareto-optimal refactoring solutions.  

Next, we use all four metrics FCS, SCS, ICS and ICT to compare four robust refactoring 

algorithms: our NSGA-II adaptation with the three objectives, MOPSO, our previous work based 

on NSGA-II with two objectives.  

The results from 51 runs are depicted in Table 5.5. For FCS, the number of fixed code smells 

using NSGA-II is better than MOPSO in all systems except for GanttProject and also, the FCS 

score for NSGA-II is better than mono-EA in 100% of cases. We have the same observation for 

the SCS and ICS scores where NSGA-II outperforms MOPSO at least 88% of cases. Even for 

GanttProject, the number of fixed code smells using NSGA-II is very close to those fixed by 

MOPSO. The execution time of NSGA-II is invariably lower than that of MOPSO with the same 

number of iterations, however, the execution time required by Mono-EA is lower than both 

NSGA-II and MOPSO. The NSGA-II with the two objectives has a lower execution time than 

our adaptation with three objectives which normal. The different algorithms are using different 
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change operators and the number of objectives. In addition, our robust algorithm is using a 

perturbation function which not used by the non-robust algorithms. Thus, it is normal that the 

execution time is different. However, it is not a very important factor since refactoring 

recommendation is not a real-time problem 

In conclusion, we answer RQ2.2 by concluding that the results obtained in Table 5.5 (a) 

confirm that both multi-objective formulations are adequate and that NSGA-II outperforms 

MOPSO in most of the cases. 

 

Figure 5.2. Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGAII and MOPSO. 

We first note that the mono-EA provides only one refactoring solution while NSGA-II and 

MOPSO generate a set of non-dominated solutions. In order to make meaningful comparisons, 
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we select the best solution for NSGA-II and MOPSO using a knee point strategy as described 

previously. The knee point corresponds to the solution with the maximal trade-off between 

quality and robustness, i.e., a small improvement in either objective induces a large degradation 

in the other. Hence moving from the knee point in either direction is usually not interesting for 

the developer. Thus, for NSGA-II and MOPSO, we select the knee point from the Pareto 

approximation having the median IHV value. We aim by this strategy to ensure fairness when 

making comparisons against the mono-objective EA. For the latter, we use the best solution 

corresponding to the median observation on 51 runs. We use the trade-off “worth” metric 

proposed by Rachmawati et al. to find the knee point [93]. This metric estimates the worthiness 

of each non-dominated refactoring solution in terms of the trade-off between quality and 

robustness. After that, the knee point corresponds to the solution having the maximal trade-off 

“worthiness” value.  

 

Table 5.5. FCS, SCS and ICS median values of 51 independent runs: (a) Robust Algorithms, and (b) Non-Robust 

algorithms. 

Systems  NSGA-II (3 Obj) MOPSO NSGA-II (2 Obj) Mono-EA 

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT 

Xerces-J 74/82 42.6 49.2 1h56 69/82 34.6 46.8 1h48 61/82 29.6 39.6 1h32 54/82 21.8 32.8 1h08 

JFreeChart  61/73 39.8 37.8 2h02 60/73 39.4 36.1 2h21 51/73 24.8 31.2 1h29 42/73 19.9 23.6 1h06 

GanttProject 42/56 31.4 29.6 1h59 40/56 30.1 27.1 2h09 32/56 21.1 22.4 1h22 24/56 18.7 17.6 1h01 

ApacheAnt  83/91 44.6 46.4 2h18 84/91 44.9 46.4 2h22 69/91 32.6 38.6 1h42 53/91 26.4 31.2 1h11 

JHotDraw  28/33 14.3 18.7 1h49 25/33 12.2 16.2 1h46 16/33 11.1 10.3 1h34 12/33 06.3 07.1 1h04 

Rhino 62/74 42.8 32.3 1h56 63/74 43.2 33.1 1h59 58/74 33.1 28.4 1h39 41/74 21.4 19.5 1h12 

Log4J 53/64 39.5 29.4 1h38 50/64 35.9 27.3 1h52 41/64 28.9 23.1 1h14 32/64 19.4 18.9 1h01 

Nutch 66/72 41.1 36.8 1h49 61/72 39.2 31.6 1h58 49/72 30.2 21.8 1h19 43/72 24.8 19.1 1h02 

JDI-Ford 74/88 43.8 42.1 1h56 72/88 42.9 40.2 2h12 64/88 37.3 28.4 1h24 61/88 32.6 21.1 1h04 

 

 

Systems  Kessentini et al.’11 O’Keeffe et al.’08 JDedorant 

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT 

Xerces-J 52/82 20.2 32.8 1h10 50/82 19.4 30.2 1h02 46/82 19.1 29.1 N/A 

JFreeChart  43/73 18.2 23.6 1h04 38/73 17.9 21.6 1h00 37/73 17.2 20.4 N/A 

GanttProject 20/56 13.7 17.6 1h06 21/56 16.9 15.8 0h56 22/56 15.8 14.2 N/A 

ApacheAnt  51/91 20.4 31.2 1h14 48/91 22.3 27.1 0h54 41/91 21.2 27.1 N/A 

JHotDraw  13/33 05.3 07.1 1h24 12/33 06.2 07.2 0h51 10/33 05.9 06.3 N/A 

Rhino 40/74 18.6 19.5 1h16 38/74 17.2 17.4 1h01 34/74 19.1 17.2 N/A 
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Log4J 32/64 18.4 17.6 1h10 31/64 15.9 17.8 1h04 29/64 16.5 15.1 N/A 

Nutch 43/72 21.2 20.1 1h02 40/72 18.4 19.6 0h48 31/72 17.1 18.2 N/A 

JDI-Ford 61/88 29.4 20.4 1h01 56/88 27.1 18.2 0h52 43/88 25.9 17.6 N/A 

Results for RQ2.2, RQ2.3 and RQ2.4: Comparison with Mono-Objective and non-Search-

Based Approaches. 

Table 5.5 also shows the results of comparing our robust approach based on NSGA-II with 

two mono-objective refactoring approaches, a mono-objective genetic algorithm (Mono-EA) that 

has a single fitness function aggregating the two objectives, and a practical refactoring technique 

where developers used a refactoring plug-in in Eclipse to suggest solutions to fix code smells. It 

is apparent from Table 5.5 that our NSGA-II adaptation outperforms mono-objective approaches 

in terms of smell-fixing ability (FCS) all the cases. In addition, our NSGA-II adaptation 

outperforms all the mono-objective and manual approaches in 100% of experiments in terms of 

the two robustness metrics, SCS and ICS. This is can be explained by the fact that NSGA-II aims 

to find a compromise between the three objectives however the remaining approaches did not 

consider robustness but only quality. Thus, NSGA-II sacrifices a small amount of quality in 

order to improve importance and severity. Furthermore, the number of code smells fixed by 

NSGA-II is very close to the number fixed by the mono-objective and manual approaches, so the 

sacrifice in solution quality is quite small. When comparing NSGA-II with the remaining 

approaches we considered the best solution selected from the Pareto-optimal front using the knee 

point-based strategy described above. Another interesting observation is that our refactoring 

solutions prioritized fixing code fragments containing severe code smells and also located in 

important classes. In fact, as described in Table 5.5 our approach fixed more important and 

severe code smells than all other existing approaches based on the SCS and ICS metrics. It is 

also well-known that a mono-objective algorithm requires lower execution time for convergence 

since only one objective is handled. 

To answer RQ2.3 and RQ2.4, the results of Table 5.5(b) support the claim that our NSGA-II 

formulation provides a good trade-off between importance, severity and quality, and outperforms 

on average the state of the art of refactoring approaches, both search-based and manual, with a 

low robustness cost.  

Results for RQ3: Manual Evaluation of the Results by Developers. 
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To answer the last question RQ3 a manual evaluation were performed by subjects to estimate 

the correctness of the suggested refactoring. Figure 5.3 depicts the different Pareto surface 

obtained on the JDI-Ford system using NSGA-II to optimize the three objectives of quality, 

severity and importance. Due to space limitations, we show only this example of the Pareto-

optimal front approximation. Similar fronts were obtained on the remaining systems. The 3D 

projection of the Pareto front helps developers to select the best trade-off solution between the 

three objectives based on their own preferences. Based on the plot of Figure 5.3, the developer 

could degrade quality in favor of importance and severity while controlling visually the 

robustness cost, which corresponds to the ratio of the quality loss to the achieved importance and 

severity gain. In this way, the preferred robust refactoring solution can be realized. 

 

Figure 5.3. 3D projection of the Pareto-Front solutions on the JDI-Ford system. 

One striking feature is that starting from the highest quality solution the trade-off between the 

three objectives is in favor of quality, meaning that the quality degrades slowly with a fast 

increase in importance and severity up to the knee point, marked in each figure. Thereafter, there 

is a sharp drop in quality with only a small increase in importance. It is very interesting to note 

that this property of the Pareto-optimal front is apparent in all the problems considered in this 

study. Without any robustness consideration in the search process, one would obtain the highest 

quality solution all the time (which is not robust at all), but Figure 5.3 shows how a better robust 

solution (importance and severity) can be obtained by sacrificing just a little in quality. 
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Figure 5.3 shows the impact of different levels of perturbation on the Pareto-optimal front. 

However, it is difficult to generalize the observation that the sacrifice in solution quality is quite 

small. The developers may select the solution based on their preferences and the current context. 

In case that the developers do not have enough time to fix all or most of the defects, they may 

select the refactoring solution fixing the most severe ones or those located in important classes. 

In other situations where there is enough time before the next release and several developers are 

available, a solution that minimizes the sacrifice in quality is more adequate. The slight sacrifice 

on quality was only observed on few systems, thus, it is hard to generalize the results. 

Our approach takes as input as the maximum level of perturbation applied in the smell 

severity and class importance at each iteration during the optimization process. A high level of 

perturbation generates more robust refactoring solutions than those generated with lower 

variations, but the solution quality, in this case, will be higher. As described by Figure 5.3, the 

developer can choose the level of perturbation based on his/her preferences to prioritize quality 

or robustness. Although the Pareto-optimal front changes depending on the perturbation level, 

there still exists a knee point, which makes the decision making by a developer easier in such 

problems. 

Figure 5.4 describes the manual qualitative evaluation of some suggested refactoring 

solutions. It is clear that results are almost similar to our proposal and existing approach in terms 

of the semantic coherence of suggested refactorings. We consider that a semantic precision more 

than 70% acceptable since most of the solutions should be executed manually by developers and 

our tool is a recommendation system. Thus, developers can evaluate if it is interesting or not in 

applying some refactorings based on their preferences and the semantic coherence.  
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Figure 5.4. The median correctness values (CR) of the recommended refactorings based on 51 runs. The obtained results 

are statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%). 

To answer RQ3 more adequately, we considered two real-world scenarios to justify the 

importance of taking into consideration robustness when suggestion refactoring solutions. In the 

first scenario, we modified the degree of severity of the four types of code smells over time and 

we evaluated the impact of this variation on the robustness of our refactoring solution in terms of 

smell severity (SCS). This scenario is motivated by the fact that there is no general consensus on 

the severity score of detected code smells thus software engineers can have divergent opinions 

about the severity of detected code smells.  

 

Figure 5.5. The impact of code smells severity variations on the robustness of refactoring solutions for ApacheAnt. The 

obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%). 
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Figure 5.5 shows that our NSGA-II approach generates robust refactoring solutions on the 

Ant Apache system in comparison to existing state of the art refactoring approaches. In fact, the 

more the variation in severity increases over time the more the refactoring solutions provided by 

existing approaches become non-robust. Thus, our multi-objective approach enables the most 

severe code smells to be corrected even with slight modifications in the severity scores. The 

second scenario involved applying randomly a set of commits, collected from the history of 

changes of the open source systems [86], and evaluating the impact of these changes on the 

robustness of suggested refactoring proposed by our NSGA-II algorithm and non-robust 

approaches. 

 

Figure 5.6. The impact of class importance variation on the robustness of refactoring solutions for Apache Ant. The 

obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%). 

As depicted in Figure 5.6, the application of new commits modifies the importance of classes 

in the system containing code smells and the refactoring solutions proposed by mono-objective 

and manual approaches become ineffective. However, in all the scenarios it is clear that our 

refactoring solutions are still robust and fixing code smells in most of the important classes in the 

system even with a high number of new commits (more than 40 commits). We also compared the 

results achieved by the different techniques for different values of severity and class importance 

using the Wilcoxon test. The obtained results are statistically analyzed by using the Wilcoxon 

rank sum test with a 95% confidence level (α = 5%). We also compared the refactoring solution 

at the knee-point (robust) for ApacheAnt with the best refactoring solution that maximizes only 

the quality (non-robust) to understand why the former solution is robust in both scenarios. We 
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found that the knee-point solution rectified some code smells that were not very risky and not 

located in important classes but these code-smells become more important after new commits. 

Thus, we can conclude that the simulation of changes in both importance and severity helps our 

NSGA-II to predict some future changes and adapt the best solutions according to that. Hence, 

we conclude that RQ3 is affirmed and that the robust multi-objective approach has value for 

software engineers in a real-world setting. 

5.1.4 Conclusion 

We have introduced a novel formulation of the refactoring problem that takes into account 

the uncertainties related to code smell correction in the dynamic environment of software 

development where code smell severity and class importance cannot be regarded as fixed. Code 

smell severity will vary from developer to developer and the importance of the class that 

contains the smell will vary as the code base itself evolves. We have reported the results of an 

empirical study of our robust technique compared to different existing approaches, and the 

results obtained have provided evidence to support the claim that our proposal enables the 

generation of robust refactoring solutions without a high loss of quality based on a benchmark of 

six large open source systems.  

Our consideration of robustness as a separate objective has revealed an interesting feature of 

the refactoring problem in general. In our experiments, the trade-off between quality and 

robustness resulted in a knee solution in every case. From the highest quality solution to the knee 

point, the trade-off is in favor of quality, while after the knee point quality degrades more 

quickly than robustness. Based on this observation, we can recommend the knee solution to the 

software engineer as the most likely quality-robustness trade-off solution to consider.  

Future work involves extending our approach to handling additional code smell types in 

order to test further the general applicability of our methodology. We focused on the use of a 

structural metric to estimate class importance, but this can be extended to consider also the 

pattern of repository submits to achieve another perspective on class importance. In a similar 

vein, our notion of smell severity assumes each smell type has a certain severity, but a more 

realistic model is to allow each individual smell instance to be assigned its own severity. If 
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further experiments confirm our observation that the knee point is indeed a trademark of the 

quality-robustness trade-off frontier for all software refactoring problems, then it would be 

interesting to apply straightway a knee-finding algorithm [122] to the bi-objective problem and 

determine if it yields any computational benefit. In an interactive software refactoring tool, the 

potential speed-up might be critical to success. Overall the use of robustness as a helper objective 

in the software refactoring task opens up a new direction of research and application with the 

possibility of finding new and interesting insights about the quality and severity trade-off in the 

refactoring problem. 

 Many-objective Software Refactoring 

5.2.1 Introduction 

Search-based software engineering (SBSE) studies the application of meta-heuristic 

optimization techniques to software engineering problems. Once a software engineering task is 

framed as a search problem, by defining it in terms of solution representation, objective function, 

and solution change operators, there is a multitude of search algorithms that can be applied to 

solve that problem. Search-based techniques are widely applied to solve software engineering 

problems such as in testing, modularization, refactoring, planning, etc. [84]. 

Based on a recent SBSE survey [5], the majority of existing work treats software engineering 

(SE) problems from a single objective point of view, where the main goal is to maximize or 

minimize one objective, e.g., correctness, quality, etc. However, most SE problems are naturally 

complex in which many conflicting objectives need to be optimized such as model 

transformation, design quality improvement, test suite generation etc. The number of objectives 

to consider for most of software engineering problems is, in general, high (more than three 

objectives); such problems are termed many-objective. We claim that the reason that software 

engineering problems have not been formulated as many-objective problems is because of the 

challenges in constructing a many-objective solution. In this context, the use of traditional multi-

objective techniques, e.g., NSGA-II, widely used in SBSE, is clearly not sufficient [83]. 
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There is a growing need for scalable search-based software engineering approaches that 

address software engineering problems where a large number of objectives are to be optimized. 

Recent work in optimization has proposed several solution approaches to tackle many-objective 

optimization problems [82] [123] using e.g., objective reduction, new preference ordering 

relations, decomposition, etc. However, these techniques have not yet been widely explored in 

SBSE [5]. To the best of our knowledge and based on recent SBSE surveys [5], very few studies 

used many-objective techniques to address software engineering problems such as the work 

proposed by Abdel-Salam et al. [36] that uses a many-objective approach, IBEA (Indicator-

Based Evolutionary Algorithm) [124], to address the problem of software product line creation. 

However, the number of considered objectives is limited to five. In our recent work [125], we 

proposed a many-objective approach for software refactoring using a set of 15 quality metrics as 

separate objectives. Software refactoring is one of those software engineering problems that 

require several quality objectives to be satisfied. Although, the approach has given promising 

results, some limitations have been raised, investigated and resulted in this extension that copes 

with the following concerns: the choice of using 15 metrics as separate objectives, at the expense 

of higher computational complexity and higher number of solutions, made the benefit of 

selecting good refactoring solutions unclear due to conflict uncertainty between some objectives 

and the difficult interpretation of their metric values. Another limitation of our previous work is 

the exclusive optimization of the system’s structure without taking into consideration the 

semantic coherence of its actors (classes, methods, attributes). Furthermore, One of the main 

objectives of Pareto-optimality is allowing the user to choose among equivalent solutions the 

one(s) that satisfies better his/her preferred objectives, in our context, it is harder to ask a 

developer to express his preference in terms of 15 internal quality attributes, so it is difficult for 

developers to select a solution from the high number of non-dominated refactoring solutions.  

To address the above challenges, we propose to extend our previous work using a different 

many-objective formulation. Whereas, we assume that it would be more convenient for 

developers to formulate their quality preferences in terms of external quality attributes such as 

reusability, flexibility and understandability instead of a large number of quality metrics [70]. 

Thus, the goal of improving the software overall quality is still maintained while the number of 

objectives has been reduced. This is being done through the aggregation of metrics, previously 
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optimized separately, into 8 objectives described as external quality attributes. This 

representation helps in analyzing the impact of applying refactoring operations on raising the 

conflicts between these objectives during the solutions evolution. Thus, the purpose of this work 

is to formulate the refactoring problem using the quality attributes of QMOOD [126] as 

objectives along with the number of refactorings and the design coherence preservation. To this 

end, we adapted the many-objective algorithm NSGA-III [20]. NSGA-III is a many-objective 

algorithm proposed by Deb and Jain. The basic framework remains similar to the original 

NSGA-II algorithm [21], with significant changes in its selection mechanism. We implemented 

our approach and evaluated it on seven large open source systems and one industrial project 

provided by our industrial partner. We compared our findings to several other many-objective 

techniques, an existing multi-objective approach [86], a mono-objective technique [71] and an 

existing refactoring technique not based on heuristic search [106]. Statistical analysis of our 

experiments over 31 runs shows the efficiency of our approach. 

The primary contributions of this work can be summarized as follows:  

(1) Many-objective formulation of the refactoring problem through several objectives using 

NSGA-III. 

(2) The reported results provide evidence to support the claim that our proposal is more 

efficient, on average, than several of existing refactoring techniques based on a 

benchmark of seven open source systems and one industrial project. As part of the 

validation, an evaluation of the relevance and usefulness of the suggested refactoring is 

done for software engineers to improve the quality of their systems. 

5.2.2 Approach 

The refactoring problem involves searching for the best refactoring solution among the set of 

candidate ones, which constitutes a huge search space. A refactoring solution is a sequence of 

refactoring operations where the goal of applying the sequence to a software system S is 

typically to fix maintenance issues in S. Usually in SBSE approaches, we use two or three 

metrics as objective functions for a particular multi-objective heuristic algorithm to find these 

design issues and correct them. In reality, we assume that increasing the number of metrics to 
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optimize may increase the quality of the refactored code. However, the high number of suggested 

solutions in a 16-objectives Pareto-Front quickly exceeds the developer’s ability to manually 

choose between them. It has been known that developers most likely want a unique optimal 

solution that better satisfies his/her preferences that can be easily expressed in terms of quality 

objectives. Motivated by this observation, we propose in this research work to consider the six 

objectives of the QMOOD model where each represents a separate objective function along with 

two other objectives to reduce the number of refactorings to apply and maximize the design 

coherence after refactoring. In this way, we obtain a many-objective (8-objective) formulation of 

the refactoring problem that could not be solved using standard multi-objective approaches. This 

formulation is given as follows: 
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where X is the set of all legal refactoring sequences starting from S, xi is the ith refactoring 

operation, and fk(x,S) is the kth objective.  

The concern about using these operations is whether each one of them have a positive impact 

on the refactored code quality. In this context, previous work has studied the impact analysis of 

refactoring operations on internal and external quality metrics. Du Bois et al. [127] proposed the 

evaluation of a selected set of refactorings based on their impact on the internal CK quality 

metrics. They extended their work by including more studied operations while enhancing 

cohesion and coupling measures [62]. They provided guidelines to distinguish between 

operations that optimize software quality and ruled out those which their application will 

increase coupling or decrease cohesion. Similarly, Alshayeb [128] has quantitatively assessed, 

using internal metrics, the effect of refactorings on different quality attributes to help developers 

in the estimation of refactoring effort in terms of the cost and time. 

In the following, we will describe in details the different objectives considered in our 

formulation. 
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5.2.2.1 QMOOD model quality attributes as objectives 

Many studies have been utilizing structural metrics as a basis of defining quality indicators 

for a good system design [129] [130] [131]. As an illustrative example, Bansiya et al. [126] 

proposed a set of quality measures, using the ISO 9126 specification, called QMOOD. Each of 

these quality metrics is defined using a combination of high-level metrics detailed in Table 5.6. 

Table 5.6. QMOOD metrics description. 

Design Metric 
Design 

Property 
Description 

Design Size in Classes 

(DSC) 
Design Size Total number of classes in the design. 

Number Of Hierarchies 

(NOH) 
Hierarchies 

Total number of ‘root’ classes in the design 

(count(MaxInheritenceTree(class)=0)) 

Average Number of 

Ancestors (ANA) 
Abstraction Average number of classes in the inheritance tree for each class. 

Direct Access Metric 

(DAM) 
Encapsulation 

Ratio of the number of private and protected attributes to the total 

number of attributes in a class. 

Direct Class Coupling 

(DCC) 
Coupling 

Number of other classes a class relates to, either through a shared 

attribute or a parameter in a method. 

Cohesion Among Methods 

of class (CAMC) 
Cohesion 

Measure of how related methods are in a class in terms of used 

parameters. It can also be computed by: 1 – 

LackOfCohesionOfMethods() 

Measure Of Aggregation 

(MOA) 
Composition 

Count of number of attributes whose type is user defined 

class(es). 

Measure of Functional 

Abstraction (MFA) 
Inheritance 

Ratio of the number of inherited methods per the total number of 

methods within a class. 

Number of Polymorphic 

Methods (NOP) 
Polymorphism 

Any method that can be used by a class and its descendants. 

Counts of the number of methods in a class excluding private, 

static and final ones. 

Class Interface Size (CIS) Messaging Number of public methods in class 

Number of Methods 

(NOM) 
Complexity Number of methods declared in a class. 

These above-mentioned metrics were eventually used to define the quality attributes that are 

enumerated in the following Table 5.7. The adaptation of the QMOOD model in the problem 

formularization has provided six quality attributes as separate objectives: reusability, flexibility, 

understandability, functionality, extendibility and effectiveness. 
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Table 5.7. Quality attributes and their computation equations. 

Quality 

attribute 

Definition 

Computation 

Reusability 
A design with low coupling and high cohesion is easily reused by other designs. 

-0.25*Coupling+0.25*Cohesion+0.5*Messaging+0.5*Design Size 

Flexibility 
The degree of allowance of changes in the design. 

0.25*Encapsulation-0.25*Coupling+0.5*Composition+0.5*Polymorphism 

Understandability 

The degree of understanding and the easiness of learning the design implementation details. 

0.33*Abstraction+0.33*Encapsulation-0.33*Coupling+0.33*Cohesion-0.33*Polymorphism-

0.33*Complexity-0.33*Design Size 

Functionality 
Classes with given functions that are publically stated in interfaces to be used by others. 

0.12*Cohesion+0.22*Polymorphism+0.22*Messaging+0.22*DesignSize+0.22*Hierarchies 

Extendibility 
Measurement of design’s allowance to incorporate new functional requirements. 

0.5*Abstraction-0.5*Coupling+0.5*Inheritance+0.5*Polymorphism 

Effectiveness 
Design efficiency in fulfilling the required functionality. 

0.2*Abstarction+0.2*Encapsulation+0.2*Composition+0.2*Inheritance+0.2*Polymorphism 

5.2.2.2 Number of code changes as an objective 

It is known that multiple refactoring sequences may have a completely different set of 

operations which their execution will give two different resulting designs but they might have the 

same quality. So, the execution of a specifically suggested refactoring sequence may require an 

effort that is comparable to the one of re-implementing part of the system from scratch. Taking 

this observation into account, it is trivial to minimize the number of suggested operations in the 

refactoring solution since the designer can have some preferences regarding the percentage of 

deviation with the initial program design. In addition, most developers prefer solutions that 

minimize the number of changes applied to their design [71]. Thus, we formally defined the 

fitness function as the number of refactoring operations (size of the solution) to be minimized: 

)()(7 xSizexf 
 where x is the solution to evaluate. 

The different code changes (refactoring types) used in our approach may have different 

impacts on the maintainability/quality objectives considered in our formulation. We show in the 

following that the different quality objectives are conflicting since the different refactoring types 
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considered in our approach may decrease some quality attributes and increase some others. In 

Shatnawi et al. [132], the impact analysis of some of Fowler’s catalog operations on some 

external quality factors (effectiveness, flexibility, extendibility and reusability) has shown that 

not all refactorings necessarily improve these quality factors. Rules of thumb have been 

established using heuristics to dictate which refactorings to use in order to enhance a given 

quality attribute. The following table has been extracted from [132] to show the impact analysis 

of the refactorings applied on restructuring EclipseIU 2.1.3 and Struts (1.1 and 1.2.4). 

Table 5.8. Refactorings impact analysis on QMOOD internal metrics. 

Refactoring 

Operation 
DSC NOH ANA DAM DCC CAMC MOA MFA NOP CIS NOM 

Extract class + 0 0 0 + + + 0 0 0 0 

Extract interface + 0 + 0 0 0 0 + + 0 0 

Inline class - 0 0 0 - - - 0 0 0 0 

Move field 0 0 0 0 0 + 0 0 0 0 0 

Move method 0 0 0 0 - + 0 0 0 - 0 

Push down field 0 0 0 0 0 + 0 0 0 0 0 

Push down method 0 0 0 0 + 0 0 + + + 0 

Pull up field 0 0 0 0 0 - 0 0 0 0 0 

Pull up method 0 0 0 0 - 0 0 - - - 0 

Based on Table 5.8, the operations have various implications on the internal metrics that can 

reach the degree of conflict. The composition of these metrics values can be an indicator of how 

the external quality attributes will be affected. Table 5.9 shows the resulting impact analysis on 

QMOOD quality attributes and the potential conflict between them. 

Table 5.9. Refactorings impact analysis on QMOOD quality attributes. 

Refactoring 

Operation 
Reusability Flexibility 

Understanda

bility 
Functionality Extendibility Effectiveness 

Extract class + + - + - + 

Extract interface + + - + + + 

Inline class - - + - + - 

Move field + 0 + + 0 0 

Move method 0 + + - + 0 

Push down field + 0 + + 0 0 

Push down method + + - + + + 

Pull up field - 0 - - 0 0 

Pull up method - - + - - - 
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Although the statistical significance of the reported results in Table 5.9 was not studied in 

this work and kept as part of our future investigations, it does not affect our problem formulation, 

in fact, if the degree of conflict between two objectives is not considerable for a random set of 

refactorings, this degrades the heuristics’ performance by increasing the computational time of 

the heuristics but it does not affect the quality of the results. 

In general, the related work has given the following observations: (1) Not all refactoring 

operations have a desired impact on internal and external quality attributes. (2) It is difficult to 

theoretically come up with an optimal set of corrections to increase a chosen quality attribute 

without decreasing another. (3) A goal-oriented process has been given to include or/and exclude 

refactorings based on developer’s preferred quality attribute. 

These limitations motivated our formulation that (1) is not limited to specific types of 

refactorings and that (2) is not limited to optimizing a preferred quality attribute with disregard 

to the others. 

5.2.2.3 Design coherence preservation as an objective 

It is usually the designer’s responsibility to manually inspect the feasibility of the suggested 

refactorings and evaluate their meaningfulness from the design coherence perspective. 

Sometimes, the new refactored design may be structurally improved but introduce several design 

incoherences. To preserve the semantics design, we present two main formulated different 

measures in which we describe the following sections. The fitness function is formulated as an 

average of the two following measures. 

A. Vocabulary-based similarity (VS) 

This kind of similarity should be eventually considered when moving methods, or attributes 

between classes. For instance, when moving a method or an attribute from one source class to 

another destination class, this operation would make sense if both source and target classes have 

similar vocabularies. In this case, it is assumed that the vocabulary of naming the code elements 

in classes is reflecting a specific domain terminology. That’s why two code elements could be 

semantically similar if they use similar vocabularies [52]. 
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A token-based extraction [133] of vocabulary is performed on the naming of classes, 

methods, attributes, parameters and comments. This Tokenization process is widely used in code 

clones detection techniques and it is known to be more robust to code changes compared to text-

based approaches. The semantic similarity is calculated based on information retrieval-based 

techniques (e.g., cosine similarity). The following equation calculates the cosine similarity 

between two classes. Each actor is represented as an n-dimensional vector, where each 

dimension corresponds to a vocabulary term. The cosine of the angle between two vectors is 

considered as an indicator of similarity. Using cosine similarity, the conceptual similarity 

between two classes, c1 and c2, is determined as follows: 
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where 
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 are respectively two vectors corresponding to c1 

and c2 The weights wi,j are automatically generated by information retrieval-based techniques 

such as the Term Frequency – Inverse Term Frequency (TF-IDF) method. We used a method 

similar to that described in [133] to determine the vocabulary and represent the classes as term 

vectors. 

B. Dependency-based similarity (DS) 

Similarly to vocabulary similarity, the semantic closeness can be also extracted from mutual 

dependencies. In general, a high coupling (i.e., multiple call in and call out) between two classes 

is usually not recommended, and if it exists, developers are usually prompted to merge them to 

reduce the design complexity, this also hints that these two classes are semantically close. 

Intuitively, the application of refactoring on highly dependent classes is not only beneficial to the 

design quality, but also has a higher probability to eventually be meaningful. To follow up with 

dependency, we point out two types of dependency links:  

1) Shared Method Calls (SMC) that can be easily detected through the application call graphs 

using the Class Hierarchy Analysis (CHA) [134]. Methods are modeled as graphs while calls 
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represent the edges between nodes. A call graph can either be a call in or call out. This technique 

is applied for each couple of classes, shared calls are being detected through the graph by 

identifying shared neighbors of nodes related to each actor. Shared call-in and shared call-out are 

distinguished and separately calculated for a given couple c1 and c2 (i.e., two classes) using the 

following equations. 

]1,0[
|)callOut(c2  )callOut(c1|

|)callOut(c2  )callOut(c1|
 c2) Out(c1,sharedCall 






 
(5.6) 

]1,0[
|callIn(c2)  callIn(c1)|

|callIn(c2)  callIn(c1)|
 c2) In(c1,sharedCall 






 
(5.7) 

2) Shared field access (SFA) is also known as data coupling and occurs when a class refers to 

another as a type or shares a method that references another class as a parameter type. Static 

analysis is adopted to view occurrences of possible invocation of calls of field accesses through 

methods or constructors. Two classes have a high shared field access rate if they read or modify 

the same fields belonging to one or both of them. This violation of the principle of modularity 

can be, for example, fixed by either merging these two classes. In this context, the rate of shared 

field access is used as an indicator of a semantic closeness between two classes c1 and c2, and it 

is calculated according to the following equation.  

]1,0[
|)fieldRW(c2  )fieldRW(c1|

|)fieldRW(c2  )fieldRW(c1|
 c2) dsRW(c1,sharedFiel 






 

(5.8) 

where fieldRW(ci) refers to the number of fields that may be read or write by each method of the 

module ci. 

To illustrate the dependency similarity measure, let us take the example of two classes A and 

B with no direct calls between them, if a third class C calls both of them, then the callIn(A) inter 

callIn(B) will be incremented, the intersection between callIns determines the number of classes 

that both call these two classes. It is divided by the overall number of callIns received by these 

two classes. Similarly for the callsOut which informs about the number of common entities 

called by two given classes. For the shared field access, the idea is similar, even if sharing 

attributes is a bad practice indeed, if it exists, then it creates a dependency between the class 
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sharing the attribute and the other classes accessing it, we use this as an indicator of semantic 

closeness between them. 

5.2.2.4 Solution representation 

As defined in the previous section, a solution consists of a sequence of n refactoring 

operations applied to different code elements in the source code to fix. In order to represent a 

candidate solution (individual/chromosome), we use a vector-based representation. Each vector’s 

dimension represents a refactoring operation where the order of applying these refactoring 

operations corresponds to their positions in the vector. For each of these refactoring operations, 

we specify pre- and post-conditions in the style of Fowler [15] to ensure the feasibility of their 

application. The initial population is generated by assigning randomly a sequence of refactorings 

to some code fragments. 

5.2.2.5 Solution variation 

In each search algorithm, the variation operators play the key role of moving within the 

search space with the aim of driving the search towards optimal solutions. For crossover, we use 

the one-point crossover operator. It starts by selecting and splitting at random two parent 

solutions. Then, this operator creates two child solutions by putting, for the first child, the first 

part of the first parent with the second part of the second parent, and vice versa for the second 

child. This operator must ensure the respect of the length limits (size of the solution is limited to 

up-to 500 refactorings in our experiments) by eliminating randomly some refactoring operations. 

It is important to note that in many-objective optimization, it is better to create children that are 

close to their parents in order have a more efficient search process [20]. For this reason, we 

control the cutting point of the one-point crossover operator by restricting its position to be either 

belonging to the first tier of the refactoring sequence or belonging to the last tier. For mutation, 

we use the bit-string mutation operator that picks probabilistically one or more refactoring 

operations from its or their associated sequence and replaces them by other ones from the initial 

list of possible refactorings. 
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5.2.2.6 Solution evaluation 

Each generated refactoring solution is executed on the system S. Once all required data is 

computed, the solution is evaluated based on the quality of the resulting design (the six quality 

attribute objectives to be maximized), along with the aggregation of semantics similarity 

functions (to be maximized) followed by the complexity of the refactoring operations (to be 

minimized). These values are the coordinates of the solution in the objectives space and so, it is 

assigned a non-domination rank as well as a particular reference point which is the closest to the 

solution. 

5.2.2.7 Normalization of population members 

Duo to the heterogeneous nature of objective functions (i.e., they have different ranges of 

values), we used the normalization procedure proposed by Deb et al. [20] to circumvent this 

problem. At each generation, the minimal and maximal values for each metric are recorded and 

then used by the normalization procedure to calculate respectively the Nadir and ideal points 

[135]. Normalization allows the population members and the reference points to have the same 

range, which is a pre-requisite for diversity preservation. 

5.2.2.8 Final solution selection 

Once the final Pareto front has been generated, for each fitness function, the reference sets 

are calculated from the union of all Pareto front approximations which are being normalized with 

respect to ideal and Nadir point. The choice of one individual among the large set of Pareto-

optimal solutions is not trivial. The preference of the developer can be then used to determine 

which of the solution may better satisfy his/her needs since the objectives have been defined in 

terms of quality attributes along with minimizing the size and maximizing the semantic 

coherence, it is easier for the developer to specify a ranking that can be used as input to the 

hyperplane and consider only reference points that match (or closest to) the rank. This will 

reduce drastically the number of preferred reference points. Still, if few solutions satisfy such 

condition, the niche point selection will sort them and send the top of the queue as output. In the 

case of absence of developer’s input, we choose the nearest solution to the Knee point [136] (i.e., 
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the vector composed of the best objective values among the population members in all 

iterations). 

5.2.3 Validation 

The goal of the study is to evaluate the usefulness our many-objective refactoring tool in 

practice. We conducted experiments on popular open source systems and one industrial project 

using the Goal, Question, Metrics (GQM) assessment approach [137]. This Section is organized 

as follows. Section 5.2.3.1 poses three research questions that drive our experiments whose 

settings have been detailed in Section 5.2.3.2. Finally, Section 0 is dedicated to subjects and 

scenarios that constitute the non-subjective evaluation conducted with potential developers who 

can use our tool. 

5.2.3.1 Research questions 

In our study, we assess the performance of our refactoring approach by finding out whether it 

could generate meaningful sequences of operations that improve the quality of the systems while 

reducing the number of code changes and preserving the semantic coherence of the design. Our 

study aims at addressing the following research questions outlined below. We also explain how 

our experiments are designed to address these questions. The main question to answer is to what 

extent the proposed approach can propose meaningful refactoring solutions that can help 

developers to improve the quality of their systems. To find an answer, we defined the following 

three research questions: 

RQ1: To what extent can the proposed approach improve the quality of the evaluated systems? 

RQ2: How does the proposed many-objective approach based on NSGA-III perform compared 

to other many/multi-objective algorithms or a mono-objective approach for software refactoring 

and to an existing approach that is not based on heuristic search? 

RQ3: How our many-objective refactoring approach can be useful for software engineers in real-

world setting? 
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One of the challenges in SBSE is to find the most suitable search algorithm for a specific 

software engineering problem. The only proof is the experimental results, thus, it is important to 

address this question when designing a new software engineering problem as an optimization 

problem. In addition, a comparison with a mono-objective algorithm may justify the need to use 

a many-objective approach to show that the different objectives are really conflicting and cannot 

be merged into one fitness function.  It is maybe also not sufficient to show that the proposed 

many-objective formulation outperforms others search algorithms, thus it is important to 

compare with a non-search-based approach to confirm the practical value of the proposed search-

based approach. 

To answer RQ1, we validate the proposed refactoring technique on seven open-source 

systems and one industrial project to evaluate the quality improvements of systems after 

applying the suggested refactoring solution. We calculate the overall Quality Gain (QG) for the 

six quality attributes as follows: Let Q={q1, q2,... q6} and Q'={q'1, q'2,... q'6} be respectively 

the set of quality attribute values before and after applying the suggested refactorings, and {w1, 

w2,... w6} the weights assigned to each of these quality factors. Then the QG is calculated by: 
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(5.9) 

In addition, we validate the proposed refactoring operations to fix code smells by calculating 

the Defect Correction Ratio (DCR) which is given by the following equation and corresponds to 

the ratio of the number of corrected design defects to the initial number of detected defects 

before applying the suggested refactoring solution. The code smells were collected using existing 

detection tools DÉCOR [55] and InCode [138]. 

]1,0[
|Instances Defects All|

 |Instances Defects Corrected| 
DCR

 
(5.10) 

Since it is important to validate the proposed refactoring solutions from both quantitative and 

qualitative perspectives, we use two different validation methods: manual validation and 

automatic validation of the efficiency of the proposed solutions. For the manual validation, we 

asked groups of potential users (software engineers) of our refactoring tool to evaluate, 
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manually, whether the suggested operations are feasible, make sense semantically. We define the 

metric Manual Precision (MP) which corresponds to the number of semantically coherent 

operations over the total number of suggested operations. MP is given by the following equation. 

]1,0[
|Operations Suggested|

 |OperationsCoherent | 
MP  (5.11) 

For the automatic validation, we compared the proposed refactorings with the expected ones 

using the different systems in terms of recall and precision. The expected refactorings are those 

applied by the software development team to the next software release. To collect these expected 

refactorings, we use Ref-Finder [89], an Eclipse plug-in designed to detect refactorings between 

two program versions. Ref-Finder allows us to detect the list of refactorings applied to the 

current version of a system (see Table 5.12): 

]1,0[
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]1,0[
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To answer RQ2, we compared the performance of NSGA-III based approach with four 

many-objective techniques, Gr-EA [139], DBEA-Eps [91], IBEA [124] and MOEA/D [123], an 

existing work based on a multi-objective NSGA-II algorithm [86] and also a mono-objective 

evolutionary algorithm [71]. The approaches are briefly introduced as follows: 

Grid-based Evolutionary Algorithm (Gr-EA) partitions the search space into grids (also 

called hypercubes). The number of divisions in Gr-EA is a parameter. Then, it recombines them 

based on the current objective values in the population. Just like in dominance-based algorithms, 

it also ranks the population by fronts but the crowding distance and the spread of solutions are 

calculated from grid-based metrics. 

Decomposition Based Evolutionary Algorithm with Epsilon Sampling (DBEA-Eps) is 

another decomposition-based EA with a variation in the decomposition method which generates 

reference points via systematic sampling and deals with a constraint by an adaptive epsilon 

scheme to manage the balance between convergence and diversity. 
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Indicator-Based Evolutionary Algorithm (IBEA) is distinguished among other EAs by its 

continuous dominance criteria where each solution is assigned a weight that is calculated from 

quality indicators, usually given by the user. 

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) 

simultaneously performs an optimization of previously decomposed sub-problems, according to 

their neighborhood information. MOEA/D assigns a weight vector to every individual in the 

population, each one being focused on the resolution of the sub-problem represented by its 

weight vector. The solutions evaluation is done by the Tchebycheff approach and by computing 

their distance to a reference point. 

The comparison between these many-objective algorithms is performed in terms of 

convergence of the Pareto Front and with respect to the diversity of the obtained solutions. In 

order to estimate the convergence and diversity, we used the Inverted Generational Distance 

(IGD), which is the sum of distances from each point of the true Pareto front to the nearest point 

of the non-dominated set found by the algorithm in all iterations, the lower the IGD value, the 

better the approximation is. Since both indicators measure the convergence and spread of the 

obtained set of solutions, we will only use the IGD as a performance indicator and it will be 

statistically analyzed to assess the significance of results. 

As part of our experiments, to demonstrate the importance of taking each quality attribute as 

separate objective instead of simply aggregating them into a single fitness function, a comparison 

with a mono-objective approach that aggregates several quality attributes in one objective is 

required. The comparison between many-objective algorithms with a mono-objective one is not 

straightforward. The first one returns a set of non-dominated solutions while the second one 

returns a single optimal solution. In order to cope with this situation, for each many-objective 

algorithm, the nearest solution to the Knee point is selected as a candidate solution to be 

compared with the single solution return by the mono-objective algorithm. We compared NSGA-

III with an existing mono-objective refactoring approach [71] based on the use of QMOOD 

quality attributes aggregated in one fitness function. 
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We compared our proposal to the popular design defects detection and correction tool 

JDeodorant [106] that does not use heuristic search techniques. The current version of 

JDeodorant is implemented as an Eclipse plug-in that identifies some types of design defects 

using quality metrics and then proposes a list of refactoring strategies to fix them.  

For RQ3, we evaluated the benefits of our refactoring tool by several software engineers. To 

this end, they classify the suggested refactorings (IR) one by one as interesting or not. The 

difference with the MP metric is that the operations are not classified from a semantic coherence 

perspective but form a usefulness one.  

]1,0[
|Operations Suggested|

 |Operations Useful| 
IR  (5.14) 

To answer the above research questions, we selected the solution from the set of non-

dominated ones providing the maximum trade-off using the following strategy when comparing 

the different algorithms (expect the mono-objective algorithm where we select the solution with 

the highest fitness function). In order to find the maximal trade-off solution of the multi-

objective or many-objective algorithm, we use the trade-off worthiness metric proposed by 

Rachmawati and Srinivasan [93] to evaluate the worthiness of each non-dominated solution in 

terms of compromise between the objectives. This metric is expressed as follows: 
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We note that xj denotes members of the set of non-dominated solutions S that are non-

dominated with respect to xi. The quantity ),( Sxi  expresses the least amount of improvement per 

unit deterioration by substituting any alternative xj from S with xi. We note also that )( im xf  

corresponds to the mth objective value of solution xi and max

mf / min

mf  corresponds to the 

maximal/minimal value of the mth objective in the population individuals. In the above equations, 
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normalization is performed in order to prevent some objectives being predominant over others 

since objectives are usually incommensurable in real world applications. In the last equation, the 

numerator expresses the aggregated improvement gained by substituting xj with xi. However, the 

denominator evaluates the deterioration generated by the substitution. 

Table 5.10. Summary of the empirical study design. 

5.2.3.2 Experimental Setting 

Software Systems. We used a set of well-known open-source java projects that have been 

investigated in our previous work [125] and one project from our industrial partner Ford Motor 

Company. We applied our approach to the following open-source java projects: ArgoUML 

v0.26, Xerces v2.7, ArgoUML v0.3, Ant-Apache v1.5, Ant-Apache v1.7.0, Gantt v1.10.2 and 

Azureus v2.3.0.6. Xerces-J is a family of software packages for parsing XML. ArgoUML is a 

Java open source UML tool that provides cognitive support for object-oriented design. Apache 

Ant is a build tool and library specifically conceived for Java applications. GanttProject is a 

cross-platform tool for project scheduling. Azureus is a Java BitTorrent client for handling 

multiple torrents. We also considered in our experiments an industrial project, JDI, provided by 

our industrial partner the Ford Motor Company. It is a Java-based software system that helps 

Ford Motor Company analyze useful information from the past sales of dealerships data and 

suggests which vehicles to order for their dealer inventories in the future. This system is main 

key software application used by Ford Motor Company to improve their vehicles sales by 

selecting the right vehicle configuration to the expectations of customers. JDI is a highly 

Research questions Metrics and measurements 

Quality improvement of refactored 

systems?  

Total Quality Gain (QG) (Figure 5.7) 

Defect Correction Ratio (DCR) (Figure 5.8) 

Manual Precision (MP), Precision (PR) and Recall (RE) (Figure 5.9) 

NSGA-III performance compared to other 

mono/many/multi-objective algorithms 

and a non-search-based approach? 

The Inverted Generational Distance (IGD) (Figure 5.10) 

Computational Time (CT) (Figure 5.11) 

Total Quality Gain (QG) (Figure 5.12) 

Manual Precision (MP), Precision (PR) and Recall (RE) 

(Figure 5.13) 

Average Number of Suggested Refactorings (Figure 5.14) 

Usefulness of the refactoring approach in a 

real-world setting? 
Useful Refactorings (IR) (Figure 5.15) 
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structured and several versions were proposed by software engineers at Ford during the past 10 

years. Due to the importance of the application and the high number of updates performed during 

a period of 10 years, it is critical to ensure good refactoring solutions of JDI to reduce the time 

required by developers to introduce new features in the future and understand existing 

implementations. 

We selected these systems for our validation because they range from medium to large-sized 

open-source projects, which have been actively developed over the past 10 years and because 

their defects are known and were the subject of various previous studies [55] [80] [86] [71]. 

Table 5.11 provides some descriptive statistics about these projects. 

Table 5.11. Statistics of the studied systems. 

Systems Release classes KLOC Code smells 

Xerces-J v2.7.0 991 240 82 

Azureus  v2.3.0.6 1449 264 108 

ArgoUML  v0.26 1358 283 1358 

ArgoUML v0.3 1409 271 1409 

Ant-Apache v1.5.0 1024 266 103 

Ant-Apache v1.7.0 1839 294 124 

GanttProject v1.10.2 245 81 41 

JDI-Ford v5.8 638 247 88 

To collect operations applied in previous program versions, we used Ref-Finder. Table 5.12 

shows the analyzed versions and the number of operations, identified by Ref-Finder, between 

each subsequent couple of analyzed versions, after the manual validation. 

Table 5.12. Analyzed versions and operations collection. 

Systems 
Collected operation 

Previous releases Refactorings 

Xerces-J v1.4.2 - v2.6.1 52 

GanttProject v1.7 - v1.10.1 113 

Azureus  v2.1.0.0- v2.3.0.0 146 

ArgoUML  v0.11.4 - v0.17.2 182 

Ant-Apache v1.1.0- v1.4.0 177 

JDI-Ford v2.4 – v5.6 97 

Parameter tuning. The algorithms have been configured according to the parameters 

detailed in Table 5.13. Different values have been used for the population size and the maximum 

number of evaluations, generating a variety of configurations related the projects sizes and the 
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number of objectives. For the mono-objective EA, we adopted the same approach using best 

fitness value criterion since multi-objective metrics cannot be used for single-objective 

algorithms. 

Table 5.13. Parameters configuration. 

Global parameters 

Population Size 190 

Objectives 8 

Max Evaluations 1400 

Crossover Weight  0.8 

Mutation Weight 0.2 

Reference Points 156 

NSGA-III/Gr-EA parameters 

Number of Divisions 4 

IBEA parameters 

Archive Size 100 

MOEA/D parameters 

Neighborhood Size 8 

Max Replacements 2 

H 99 

Statistical Tests. Since metaheuristic algorithms are stochastic optimizers, they can provide 

different results for the same problem instance from one run to another. For this reason, our 

experimental study is performed based on 31 independent simulation runs for each problem 

instance and the obtained results are statistically analyzed by using the Wilcoxon rank sum test 

with a 95% confidence level (α = 5%). The latter verifies the null hypothesis H0 that the 

obtained results of two algorithms are samples from continuous distributions with equal medians, 

against the alternative that they are not H1. The p-value of the Wilcoxon test corresponds to the 

probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value that is less 

than or equal to α (≤ 0.05) means that we accept H1 and we reject H0. However, a p-value that is 

strictly greater than α (> 0.05) means the opposite. For example, we compute the p-value 

obtained by comparing NSGA-II, IBEA, MOEA/D and mono-objective search results with 

NSGA-III ones. In this way, we determine whether the performance difference between NSGA-

III and one of the other approaches is statistically significant or just a random result. 
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Subjects. Our study involved 11 subjects from the University of Michigan and 5 software 

engineers from Ford Motor Company. Subjects include 6 master students in Software 

Engineering, 4 Ph.D. students in Software Engineering, 1 faculty member in Software 

Engineering, and 5 junior software developers. 3 of them are females and 8 are males. All the 

subjects are volunteers and familiar with Java development. The experience of these subjects on 

Java programming ranged from 2 to 14 years. The evaluated solutions by the subjects are those 

that represent the maximum trade-off between the objectives using the trade-off worthiness 

metric proposed by Rachmawati as described in the previous section. 

Scenarios. We designed our study to answer our research questions. The subjects were 

invited to fill a questionnaire that aims to evaluate the suggested refactorings. We divided the 

subjects into 8 groups according to 1) the number of studied systems (Table 5.11), 2) the number 

of refactoring solutions to evaluate, and 3) the number of techniques to be tested. 

As shown in Table 5.14, for each system, several solutions have to be evaluated. In 

Table 5.14, we summarize how we divided subjects into 8 groups. In addition, as illustrated in 

Table 5.14, we are using a cross-validation to reduce the impact of subjects on the evaluation. 

Each subject evaluates different refactoring solutions for different systems. 

Subjects were first asked to fill out a pre-study questionnaire containing seven questions. The 

questionnaire helped to collect background information such as their role within the company, 

their programming experience, their familiarity with software refactoring. In addition, all 

participants attended one lecture of 50 minutes about software refactoring and passed 10 tests to 

evaluate their performance to evaluate and suggest refactoring solutions. Then, the groups are 

formed based on the pre-study questionnaire and the tests result to make sure that all the groups 

have almost the same average skills. Group 8 is composed by only software engineers from Ford 

and evaluated only refactoring suggestions for JDI-Ford. 

The participants were asked to justify their evaluation of the solutions and these justifications 

are reviewed by the organizers of the study (one faculty member, one postdoc and one PhD 

student). In addition, our experiments are not only limited to the manual validation but also the 

automatic validation can verify the effectiveness of our approach. 
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Table 5.14. Survey organization. 

Subject groups Systems Algorithms / Approaches 

Group 1 

Xerces-J v2.7.0 Gr-EA / DBEA-Eps / IBEA / JDeodorant 

ArgoUML v0.26 MOEA/D / NSGA-II / GA 

Ant-Apach v1.5.0 DBEA-Eps / IBEA / NSGA-II / GA 

Group 2 

Azureus  v2.3.0.6 MOEA/D / JDeodorant / Gr-EA 

ArgoUML v0.3 Gr-EA / DBEA-Eps / IBEA / JDeodorant 

Ant-Apache v1.7.0 Gr-EA / DBEA-Eps / IBEA / JDeodorant 

Group 3 

GanttProject v1.10.2 Gr-EA / DBEA-Eps / IBEA / JDeodorant 

Xerces-J v2.7.0 MOEA/D / NSGA-II / GA 

ArgoUML v0.26 Gr-EA / DBEA-Eps / IBEA / JDeodorant 

Group 4 

Ant-Apach v1.5.0 MOEA/D / JDeodorant / Gr-EA 

Azureus  v2.3.0.6 DBEA-Eps / IBEA / NSGA-II / GA 

ArgoUML v0.3 MOEA/D / NSGA-II / GA 

Group 5 

Ant-Apache v1.7.0 MOEA/D / NSGA-II / GA 

GanttProject v1.10.2 MOEA/D / NSGA-II / GA 

JDI-Ford v5.8 Gr-EA / DBEA-Eps / IBEA / MOEA/D 

Group 6 

ArgoUML v0.3 DBEA-Eps / IBEA / NSGA-II / GA 

Ant-Apache v1.7.0 DBEA-Eps / IBEA / NSGA-II / GA 

JDI-Ford v5.8 NSGA-II / GA / JDeodorant 

Group 7 

GanttProject v1.10.2 DBEA-Eps / IBEA / NSGA-II /GA 

Xerces-J v2.7.0 DBEA-Eps / IBEA / NSGA-II / GA 

JDI-Ford v5.8 Gr-EA / DBEA-Eps / IBEA / MOEA/D 

Group 8 JDI-Ford v5.8 
Gr-EA / DBEA-Eps / IBEA / MOEA/D / NSGA-II / GA / 

JDeodorant 

Subjects were aware that they are going to evaluate the design coherence and the usefulness 

of the suggested refactorings, but do not know the particular experiment research questions 

(algorithms used, different objectives used and their combinations). Consequently, each group of 

subjects who accepted to participate in the study, received an online questionnaire, a manuscript 

guide to help them to fill the questionnaire, and the source code of the studied systems, in order 

to evaluate the solutions. The questionnaire is organized in an excel file with hyperlinks to 

visualize easily the source code of the affected code elements. Subjects are invited to select for 

each operation one of the possibilities: "Yes", "No", or "Maybe" (if not sure) about the design 

coherence and usefulness. Since the application of refactoring solutions is a subjective process, it 

is normal that not all the developers have the same opinion. In our case, we considered the 

majority of votes to determine if suggested solutions are correct or not. 
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5.2.3.3 Results and Discussions 

Results for RQ1. Figure 5.7 summarizes the results of median values of the quality 

improvement metrics over 31 independent simulation runs after applying the proposed 

operations by the refactoring solution selected using the knee-point strategy [136]. In our 

experiments, we used all the 8 objectives in our many-objective formulation. It is clear from 

Figure 5.7 that all the six quality objectives are improved using our NSGA-III algorithm 

compared to the program version before refactoring. The reusability, understandability and 

extendibility are the most improved metrics and this can be explained by the fact that refactoring 

is not expected to change a lot the behavior/functionality of a system and this explains that some 

objectives were not improved significantly such as the functionality improvements metric. The 

same observation regarding the behavior preservation is valid for the extendibility factor because 

it is, to some extent, a subjective quality factor and using a model of merely static measures to 

evaluate extendibility is may be a not very good estimator. Overall, the NSGA-III algorithm was 

able to find a good trade-off between all the six quality objectives since most of them were 

significantly increased and no one of these metrics was decreased comparing the initial version 

of the system before refactoring. The variation in terms of quality improvements between the 

different systems is not high. ArgoUML and Ant-Apache were the main systems who are 

significantly improved and this can be explained by the lower quality of these projects 

comparing to the remaining systems before refactoring. 
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Figure 5.7. Average quality improvements, over 31 runs, on the different systems using NSGA-III. 

As described in Figure 5.8, after applying the proposed refactoring operations by our 

approach (NSGA-III), we found that, on average, 82% of the detected defects were fixed (DCR) 

for all the eight studied systems. This high score is considered significant in terms of improving 

the quality of the refactored systems by fixing the majority of defects of various types (blob, 

spaghetti code, functional decomposition [55], god class, data class, and feature envy [138]).  

 

Figure 5.8. Average percentage of fixed defects, over 31 runs, on the different systems using NSGA-III. 

A closer look to the fixed defects in Xerces-J v2.7.0, the one with the highest percentage of 

fixed defects (86%), is detailed in Table 5.15. Fixed code smells distribution in Xerces-J v2.7.0. 
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Table 5.15. Fixed code smells distribution in Xerces-J v2.7.0. 

Code smell Flawed classes Number of fixed code smells 

Blob 

143 (32% overlap) 

30 (%89) 

Data Class 19 (%83) 

God Class 10 (%64) 

Feature Envy 25 (%96) 

Functional 

Decomposition 
13 (%94) 

Spaghetti Code 39 (%92) 

On Table 5.15. Fixed code smells distribution in Xerces-J v2.7.0., it is noticeable that some 

code smells are harder to fix (such as God classes) compared to others (Feature Envy), further 

analysis needs to be done to better understand this observation. Although the bad smell detection 

literature suggests a wide variety of code smells to be corrected, we narrowed our selection to the 

five types that have given significant results compared to the others. This can be explained by the 

fact that the defects types that are not fixed require the considerations of more refactoring 

operations rather than those included in this work. In addition, some of these defects are difficult 

to detect just using structural metrics [80]. 

We also need to assess the correctness/meaningfulness of the suggested refactorings from the 

developers’ point of view. Figure 5.9 confirms that the majority of the suggested refactorings 

improve significantly the code quality while preserving design’s semantic coherence. On 

average, for all of our studied systems, an average of around 91% of proposed refactoring 

operations are considered by potential users to be semantically feasible and do not generate 

semantic incoherence.  

In addition to the manual evaluation, we automatically evaluate our approach without using 

the feedback of potential users to give a more quantitative evaluation to answer RQ1. Thus, we 

compare the proposed refactorings with the expected ones. The expected refactorings are those 

applied by the software development team to the next software release as described in 

Table 5.12. We use Ref-Finder to identify refactoring operations that are applied to the program 

version under analysis and the next version. Figure 5.9 summarizes our results. We found that a 

considerable number of proposed refactorings (an average of 59% for all studied systems in 
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terms of recall) are already applied to the next version by software development team which is 

considered as a good recommendation score, especially that not all refactorings applied to next 

version are related to quality improvement, but also to add new functionalities, increase security, 

fix bugs, etc. 

To conclude, we found that our approach produces good refactoring suggestions in terms of 

defect-correction ratio, semantic coherence from the point of view of 1) potential users of our 

refactoring tool and 2) expected refactorings applied to the next program version. 

 

Figure 5.9. Average manual and automatic design coherence measures (MP, PR and RE), over 31 runs, on the different 

systems using NSGA-III. 

Results for RQ2. In this section, we focus first on the comparison between our NSGA-III 

adaption and other many-objective algorithms using the same adaptation. Table 5.16 shows the 

median IGD values over 31 independent runs for all algorithms under comparison. We have used 

pairwise comparisons, so we do not need to adjust p-values. After applying Cohen's d effect size 

we noticed that the effect size between the paired comparison of NSGA-III with each of the 

remaining algorithms is higher than 0.8 except for Gr-EA, which effect values were found to be 

medium. 
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Table 5.16. Median IGD values on 31 runs (best values are in bold and underlined, second best values are in bold). ~ 

means a large value that is not interesting to show. The results were statistically significant on 31 independent runs using 

the Wilcoxon rank sum test with a 95% confidence level (α = 5%). 

System NSGA-III Gr-EA DBEA-Eps IBEA MOEA/D NSGA-II 

ArgoUML v0.26 4.113 x 10-3 4.229 x 10-3 4.206 x 10-3 4.329 x 10-3 4.342 x 10-3 ~ 

Xerces v2.7 7.998 x 10-3 8.308 x 10-3 8.181 x 10-3 8.399 x 10-3 8.431 x 10-3 ~ 

ArgoUML v0.3 5.499 x 10-3 5.677 x 10-3 5.603 x 10-3 5.712 x 10-3 5.733 x 10-3 ~ 

Ant-Apache v1.5 6.008 x 10-4 6.256x 10-4 6.224 x 10-4 6.325 x 10-4 6.333 x 10-4 ~ 

Ant-Apache v1.7.0 6.202 x 10-3 6.412 x 10-3 6.377 x 10-3 6.489 x 10-3 6.539 x 10-3 ~ 

Gantt v1.10.2 7.806 x 10-3 8.002 x 10-3 7.968 x 10-3 8.088 x 10-3 8.101 x 10-3 ~ 

Azureus v2.3.0.6 6.933 x 10-4 7.112 x 10-4 7.075 x 10-4 7.191 x 10-4 7.208 x 10-4 ~ 

JDI-Ford 5.748 x 10-4 6.066 x 10-4 5.851 x 10-4 6.294 x 10-4 6.646 x 10-4 ~ 

All the results were statistically significant on the 31 independent simulations using the 

Wilcoxon rank sum test with a 95% confidence level (α = 5 %). NSGA-III strictly outperforms 

NSGA-II and gives slightly better results to those of the other many-objective algorithms. It is 

worth noting that for problems formulations with more 3 objectives, NSGA-II performance is 

dramatically degraded, which is simply denoted by the ~ symbol. The performance of NSGA-III 

could be explained by the interaction between (1) Pareto dominance-based selection and (2) 

reference point-based selection, which is the distinguishing feature of NSGA-III compared to 

other existing many-objective algorithms.  
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Figure 5.10. Value path plots of non-dominated solutions obtained by NSGA-III, DBEA-Eps, Gr-EA, IBEA, IBEA, and 

NSGA-II during the median run of the 8-objective refactoring problem on ArgoUML v0.26. The X-axis represents the 

different objectives while the Y-axis shows the variation of fitness values between [0...1]. 

Figure 5.10 describes value path plots of all algorithms for the 8-objective refactoring 

problem on Argo-UML. The horizontal axis shows the objective functions while the vertical axis 

marks its related values. The objectives values were normalized between 0 and 1 and set to be 
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minimized. In terms of convergence, the algorithm whose solutions are closest to the ideal vector 

of height zeros has better convergence ratio. Thus, NSGA-III and DBEA-Eps outperform the 

remaining algorithms. Also, the spread of NSGA-III solutions vary in between [0, 0.9] presents a 

slightly better diversity than its follower DBEA-Eps whose solutions vary in between [0, 0.85]. 

On the other hand, the worst convergence is associated to NSGA-II as its solutions are so far 

from the ideal vector, and even it diversity is so reduced which may explain the stagnation of its 

evolutionary process. We conclude that although NSGA-II is the most famous multi-objective 

algorithm in SBSE, it is not adequate for problems involving over 3 objectives and NSGA-III is 

a very good candidate solution for tackling many-objective SBSE problems. 

When using optimization techniques, the most time-consuming operation is the evaluation 

step. Thus, we studied the execution time of all many/multi-objective algorithms used in our 

experiments. Figure 5.11 shows the evolution of the running times of the different algorithms on 

the ArgoUMLv0.26 system, the largest system in our experiments. It is clear from this figure that 

for 8 objectives NSGA-III is faster than IBEA. This observation could be explained by the 

computational effort required to compute the contribution (IGD) of each solution. In comparison 

to MOEA/D, MOEA/D is slightly faster than NSGA-III since it does not make use of non-

dominated sorting.  Note that the experiments were conducted on a single machine (i7 – 2.70 

GHz, 12.0 GB – DDR3, SSD - 520MB/s) which may not be the optimal setting for some of these 

heuristics that can perform faster in an appropriate distributed or parallel environment. 

 

Figure 5.11. Average Computational time values on 31 runs on refactoring ArgoUMLv0.26. 

We compared also the different search algorithms using metrics related to quality 

improvements, number of fixed defects, number of generated refactorings and a manual 
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inspection of the results to check the correctness of the suggested operations. Figure 5.12 shows 

that our NSGA-III algorithm presents the best compromise between the different quality 

attributes among all the other search algorithms. In addition, it is clear that the many-objective 

algorithms propose a better trade-off in terms of quality improvements than the mono and multi-

objective techniques. 

Since it is not sufficient to outperform existing search-based refactoring techniques, we 

compared our proposal to a popular design defects detection and correction tool JDeodorant. We 

first note that JDeodorant (like mono-objective approaches also) provides only one refactoring 

solution, while NSGA-III generates a set of non-dominated solutions. It can be seen that NSGA-

III provides better results than JDeodorant, in average. The main reason can be related to the fact 

that JDeodrant provides a template of possible refactorings to apply for each detected defect but 

it is difficult to generalize such refactoring solutions since a defect can have several different 

refactoring strategies. 

 

Figure 5.12. Average quality improvements, over 31 runs, on the different systems. 

Figure 5.12 confirms that the majority of the suggested refactorings by NSGA-III improve 

significantly the code quality while preserving design’s semantic coherence better than most of 

the other search algorithms. In addition, we automatically evaluated our approach without using 

the feedback of potential users to give a more quantitative evaluation. Thus, we compared the 

proposed refactorings with the expected ones. The expected refactorings are those applied by the 



158 Software Refactoring 

 

 

 

software development team to the next software release as described in Table 5.12. Figure 5.13 

confirms the outperformance of NSGA-III comparing to the remaining techniques. 

 

Figure 5.13. Average manual and automatic design coherence measures (MP, PR and RE), over 31 runs, on the different 

systems. 

We evaluated the number of operations (NO) suggested by the best refactoring solutions on 

the different systems over 31 runs. Figure 5.14 presents the code changes score for each 

algorithm, calculated by summing the size (number of operations) of each solution assigned to 

one project, divided by the number of projects. It is clear that our NSGA-III approach succeeded 

in suggesting solutions that do not require high code changes. However, IBEA generated less 

number of refactorings than our approach but this can be due to the fact that our technique 

improved better the quality comparing to IBEA’s solutions. Thus, it may require a higher number 

of refactorings to better improve the quality attributes. Another observation is that the number of 

refactorings proposed by JDeodorant is lower than the number of refactorings suggested by 

NSGA-III. However, the number of defects fixed by NSGA-III is higher than JDeodorant thus it 

is normal in this case that NSGA-III generates a higher number of refactorings. 
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Figure 5.14. Average suggested number of refactoring operations, over 31 runs, on the different systems. 

Results for RQ3.We asked the software engineers involved in our experiments to evaluate 

the usefulness of the suggested refactorings to apply one by one. In fact, sometimes these 

operations can improve the quality and preserve the semantics but developers will consider them 

as not useful due to many reasons such as some code fragments are not used/updated anymore or 

includes some features that are not important. Figure 5.15 shows that NSGA-III clearly 

outperforms existing work by suggesting useful refactoring operations for developers. 

 

Figure 5.15. Average of percentages of useful operations (IR), on the different systems using NSGA-III. 

During the survey, the software engineers confirm that the main limitation related to the use 

of NSGA-III for software refactoring is the high number of equivalent solutions. However, found 

the idea of the use of the Knee point as described previously useful to select a good solution. We 

will investigate in our future work different other techniques to select the region of interest based 

on the preferences of developers. 



160 Software Refactoring 

 

 

 

5.2.4 Conclusion 

We propose a novel formulation of the refactoring problem as a many-objective problem, 

based on NSGA-III, using the quality attributes of QMOOD as objectives along with the number 

of refactorings and the design coherence preservation. This initial empirical investigation has 

shown that a possible conflict among QMOOD objectives may occur depending on the kind of 

employed refactorings. In this context, a statistical analysis needs to be conducted to prove the 

validity of this insight. Furthermore, we did not yet prioritize any objective(s) although the 

definition of QMOOD and the capability of NSGA-III allows it. It would be interesting to 

compare between multiple refactored systems while each one of them is the result of high 

prioritization of one quality objective. 

We evaluated our approach on seven large open source systems. We implemented our 

approach and evaluated it on seven large open source systems and one industrial project provided 

by our industrial partner. We compared our findings to several other many-objective techniques 

(IBEA, MOEA/D, GrEA, and DBEA-Eps), a mono-objective technique and an existing 

refactoring technique not based on heuristic search. Statistical analysis of our experiments over 

31 runs shows the efficiency of NSGA-III as powerful algorithm to tackle many objective 

formulations.  

We also studied the impact of refactoring on fixing code smells. Although we were able to 

fix most of the detected defects, our defect selection types were limited due to limited types of 

used refactorings. Another limitation to take into account is the possibility of introducing code 

smells while performing the refactoring operations, for example, we noticed that, some fixed 

feature envied entities have had an intrusion of shotgun surgery defect. Since the later type is not 

covered in this work, it did not affect our DCR, but it gives a strong indication for further 

investigation about how to perform refactoring interactively with the detection to avoid such 

drawback. 

For the qualitative evaluation, we were able to show promising results, along with 

JDeodorant, which, as a tool, was highly appreciated by the participants because of its simplicity, 
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ease of use and the possibility to preview changes and visualize entities. Unfortunately, limited 

to four types of smells. 

In future work, multiple research directions are to be taken from some of the previously 

mentioned limitations and they are mainly linked to (1) the problem formulation and (2) NSGA-

III tuning. Firstly, investigating the statistical significance of the refactorings impact analysis on 

internal and external attributes can be an interesting research direction that helps in better 

understanding to what extent each refactoring type can affect the existing quality models. 

Moreover, code smells can be also described in terms of structural metrics, such statistical 

investigation will help in the validation of attributing a subset of refactorings to a known type of 

code smell. As for NSGA-III tuning, we will investigate the impact of different parameter 

settings on the quality of our results, in particular, the size of the reference set |Zr| can either be 

predefined and calculated based on the number of objectives and the number of desired divisions 

in the hyperplane or preferentially introduced by the user. Augmenting the density of the 

hyperplane i.e. increasing the number of used reference points will refine the niche count and 

thus will provide solutions with better diversity. Since, in our experiments, we only considered 

the predefined size of reference set, we plan in the future to investigate the impact of varying this 

parameter on the quality of the generated solutions. Another interesting research direction 

regards the prioritization of the code smells to be removed, for two candidate solutions extracted 

from the Pareto-front, they have equivalent fitness functions’ values but their impact on reducing 

code smells may vary in terms of number and types of fixed code smells. So, this can be used as 

an additional developer preference to compare between given solutions. Moreover, the solution’s 

robustness can be also studied as to take into account the uncertainties related to analyzed classes 

importance and code smells severities while suggesting refactoring operations. Furthermore, we 

plan to work on adapting NSGA-III to additional software engineering problems and we will 

perform more comparative studies on larger open source systems. Nevertheless, this extensive 

study has shown a direction using NSGA-III to handle as many as 8 objectives in the context of 

solving software engineering problems and would remain as one of the first studies in which 

such a large number of objectives have been considered. 
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 Dynamic Interactive Software Refactoring 

5.3.1 Introduction 

Successful software products evolve through a process of continuous change. However, this 

may lead to poor design quality and make systems complex. This complexity leads to 

significantly reduced productivity, decreased system performance, increased fault-proneness, 

makes software costly and has even led to projects being canceled. Many studies report that 

software maintenance activities to improve the quality of systems consume up to 90% of the total 

cost of a typical software project. It has also been shown that software engineers spend around 

60% of their time in understanding the code [140].  

Clearly, software engineers need better ways to reduce and manage the growing complexity 

of software systems and improve their productivity. Refactoring, which improves design 

structure while preserving functionality [15], is an extremely important solution to address this 

challenge. There has been much work on various techniques and tools for software refactoring 

[141] [68] [142] [71], and these studies can be classified into two main categories: manual and 

fully-automated approaches.  

Murphy-Hill et al. [142] found in their empirical study with developers that in almost 90% of 

cases they performed refactorings manually and did not use automated refactoring tools. Kim et 

al. [143] confirmed this observation, finding that the interviewed developers from Microsoft 

preferred to perform refactoring manually in 86% of cases. Several studies [144] have shown 

that manual refactoring [15] is error-prone, time-consuming, not scalable and not useful for 

radical refactoring that requires an extensive application of refactorings to correct unhealthy 

code. 

Fully-automated refactoring has several drawbacks as well. It lacks flexibility since 

developers have to either accept or reject the entire refactoring solution. It fails also to consider 

the developer perspective and feedback because suggested refactoring solutions cannot be 

updated dynamically. It is limited to structural improvements, which leads to infeasible 

refactoring solutions. Finally, it proposes a long static list of refactorings to be applied, but 
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developers may not have enough time to apply all of them. Thus, fully-automated refactoring 

methods are not useful for floss refactoring where the goal is to maintain good design quality 

while modifying existing functionality. The developers have to accept the entire refactoring 

solution even though they prefer, in general, step-wise approaches where the process is 

interactive and they have a total control of the refactorings being applied. 

Very few studies have considered an interactive approach with the developers to improve 

software quality [68] [145] [146]. In [145], an approach was proposed for the interactive 

remodularization of packages using an interactive genetic algorithms. Another similar approach 

[146] was proposed based on supervised learning to fix existing modularizations of a software 

design. However, both approaches were limited to just moving classes between packages. In 

addition, the interaction with the designer is restricted to evaluating most of the solutions which 

is a time-consuming task. The feedback received from the designer is just an evaluation of the 

remodularization solutions. In our previous studies [26] [125], we proposed a fully-automated 

technique, using evolutionary algorithms, to find the best refactoring solutions that improve 

quality metrics and reduce the number of recommended refactorings. Our previous work did not 

consider any interactions with the programmers and cannot update/repair refactoring solutions 

based on new code changes introduced by programmers. 

We propose in this work an interactive recommendation approach for software refactoring 

that dynamically adapts and suggests refactorings to developers based on introduced new code 

changes (e.g. to update existing features) and the developers’ feedback such as accepting, 

rejecting or modifying a refactoring. The suggested refactorings are presented to the developers 

one by one as a sequence of transformations. The proposed approach extends our previous work 

where we proposed a fully-automated technique, using the multi-objective evolutionary 

algorithm NSGA-II , to find the best refactoring solutions that improve quality metrics and 

reduce the number of recommended refactorings. Our previous work did not consider any 

interactions with the developers and cannot update/repair refactoring solutions based on new 

code changes introduced by developers. 

Our approach starts by finding upfront a set of refactoring solutions that optimize the two 

above objectives. One of the challenges when adapting a multi-objective technique to a software 
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engineering problem, and any real-world problem in general, is how to select the best solution 

from the set of non-dominated ones, called the Pareto front. To this end, we propose, for the first 

time, the use of innovization (innovation through optimization) [22] to analyze and explore the 

Pareto front interactively and implicitly with the developers. Our innovization algorithm starts by 

finding the most frequent refactorings among the set of non-dominated refactoring solutions. 

Based on this analysis, the suggested refactorings are ranked and suggested to the developer one 

by one. The developer can approve, modify or reject each suggested refactoring. This feedback is 

later used to update the ranking of the suggested refactorings.  

After a number of introduced code changes and interactions with the developer (e.g. a 

number of rejected refactorings), NSGA-II will continue to execute on the new modified system 

to repair the set of good refactoring solutions based on the feedback received from the developer. 

The feedback received from the developers will be also used as a set of new constraints to 

consider for the next iterations of NSGA-II. The algorithm will avoid, for example, including 

rejected refactorings by the developers when generating new solutions or repairing existing ones. 

We implemented our proposed approach and evaluated it on a set of 9 open source systems 

and 2 industrial systems provided by our industrial partner, i.e., the Ford Motor Company. 

Statistical analysis of our experiments over 50 runs showed that our proposal performed 

significantly better than four existing search-based refactoring approaches [86] [6] [71] [147] and 

an existing refactoring tool not based on heuristic search, JDeodorant [106]. The software 

developers who participated in our experiments confirmed the relevance of the suggested 

refactoring and the flexibility of the tool in modifying and adapting the suggested refactorings. 

The primary contributions of this work can be summarized as follows:  

(1) The introduction of an interactive way to refactor software systems using innovization and 

interactive dynamic multi-objective optimization. The proposed technique supports the 

adaptation of refactoring solutions based on developers’ feedback while also taking into 

account other code changes that the developer may have performed in parallel with the 

refactoring activity. 
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(2) We propose an implicit exploration of the Pareto front of non-dominated solutions based 

on our new interaction way that can help software engineers to use multi-objective 

optimization for software engineering problems, avoiding the necessity for manual 

exploration of the Pareto front to find the best trade-off between the objectives. 

(3) This work reports the results of an empirical study on an implementation of our approach. 

The results obtained provide evidence to support the claim that our proposal is more 

efficient, on average, than existing refactoring techniques based on a benchmark of 9 open 

source systems and 2 industrial projects. This work also evaluates the relevance and 

usefulness of the suggested refactorings for software engineers in improving the quality of 

their systems.  

5.3.2 Approach 

5.3.2.1 Interactive and Dynamic Evolutionary Multi-objective Optimization: Background 

In this section, we give a brief overview about two important aspects of the Evolutionary 

Multiobjective Optimization (EMO) paradigm related to the: (1) Interaction with the user and (2) 

Dynamicity of the problem. 

Interacting with the human user means allowing the latter to inject his/her preferences in the 

computational search algorithm and then handling these preferences so that the search process is 

guided based on them. There exists a lot of work about preference incorporation in EMO. To 

express his/her preferences, the user needs some preference modeling tools. The most used ones 

are:  

– Weights: Each objective is assigned a weighting coefficient expressing its importance. The 

larger the weight is, the more important the objective is. 

– Solution ranking: The user is provided with a sample of solutions (a subset of the current 

population) and is invited to perform pairwise comparisons between pairs of solutions in 

order to rank the sample’s solutions where indifference may exist between the solutions to 

rank. 
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– Objective ranking: Pairwise comparisons between pairs of objectives are performed in order to 

rank the problem’s objectives where indifference may exist between some objectives. 

– Reference point (also called a goal or an aspiration level vector): The user supplies, for each 

objective, the desired level that he/she wishes to achieve. This desired level is called 

aspiration level. 

– Reservation point (also called a reservation level vector): The user supplies, for each objective, 

the accepted level that he/she wishes to reach. This accepted level is called reservation level. 

– Trade-off between objectives: The user specifies that the gain of one unit in one objective is 

worth degradation in some others and vice versa. 

– Outranking thresholds: The user specifies the necessary thresholds to design a fuzzy predicate 

modeling the truth degree of the predicate “solution x is at least as good as solution y”. 

– Desirability thresholds: The user supplies: (1) an absolutely satisfying objective value and (2) a 

marginally infeasible objective value. These thresholds represent the parameters that define 

the desirability functions.  

Based on these preference modeling tools, we observe that the goal of a preference-based 

EMO algorithm is to assign different importance levels to the problem’s objectives with the aim 

to guide the search towards the ROI (Region of Interest) that is the portion of the Pareto Front 

that best matches the user preferences. In fact, usually, the user is not interested with the whole 

Pareto front and thus he/she is searching only for his/her ROI from which the problem’s final 

solution will be selected. Several preference-based EMO algorithms have been proposed and 

used to solve real problems such as PI-EMOA [148], iTDEA [149], NOSGA [150], DF-SMS-

EMOA [151], just to cite a few. There are several algorithmic challenges that should be 

overcome such the preservation of the Pareto dominance, the preservation of population 

diversity, the scalability with the number of objectives, etc. [149]. 

It is very important to note that till today, the user’s preferences are expressed and handled 

in the objective space. Hence, one of the original aspects of our work, as detailed later, is 
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allowing the user (software engineer) to express his/her preferences in the decision space and 

then handling these preferences to help the user finding his/her most desired refactoring solution. 

Moreover, our approach helps the user in eliciting his/her preferences, which is very important 

for any preference-based EMO algorithm. These preferences are introduced implicitly by moving 

between the Pareto front of non-dominated solutions after getting a feedback from the user about 

just a few parts of the solution to better understand his preferences. This implicit exploration of 

the Pareto front will be detailed in the next section about the formulation of our refactoring 

problem. 

The incorporation of the preferences may require handling dynamicity issues related to the 

introduce changes to the solution or the input (e.g. software system). Handling dynamicity in 

EMO means solving dynamic problems where the objective functions and or the constraints may 

change over time such due for example to the dynamic nature of most of software evolution 

problems including software refactoring. Applying evolutionary algorithms (EAs) to solve 

Dynamic Multi-Objective Problems (DMOPs) has obtained great attention among researchers 

thanks to the adaptive behavior of evolutionary computation methods. A DMOP consists in 

minimizing or maximizing an objective function vector under some constraints over time. Its 

general form is the following [152]: 
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where M is the number of objective functions, t is the time instant, P is the number of inequality 

constraints, Q is the number of equality constraints, 
L
ix

 and 
U
ix

 correspond respectively to the 

lower and upper bounds of the variable ix
. A solution ix

 satisfying the (P+Q) constraints is 

said feasible and the set of all feasible solutions defines the feasible search space denoted by Ω. 

In this formulation, we consider a minimization MOP since maximization can be easily turned 

into minimization based on the duality principle by multiplying each objective function by -1 and 

transforming the constraints based on the duality rules. 
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The resolution of a MOP yields a set of trade-off solutions, called Pareto optimal solutions or 

non-dominated solutions, and the image of this set in the objective space is called the PF. Hence, 

the resolution of a MOP consists in approximating the whole PF. In the following, we give some 

background definitions related to multi-objective optimization. It is worth noting that these 

definitions remain valid for the case of DMOPs: 

Definition 1: Pareto optimality 

A solution 
*

x  is Pareto optimal if  x  and  MI ,...,1  either    Im  we have 

)()(
*

xfxf mm   or there is at least one Im  such that )()(
*

xfxf mm  . 

The definition of Pareto optimality states that *x  is Pareto optimal if no feasible vector x  exists 

which would improve some objectives without causing a simultaneous worsening in at least 

another one. 

Definition 2: Pareto dominance 

A solution ),...,,( 21 nuuuu   is said to dominate another solution ),...,,( 21 nvvvv   (denoted by 

)(  )( vfuf  ) if and only if )(uf  is partially less than )(vf . In other words,  Mm ,...,1    we have 

 )()( vfuf mm   and  Mm ,...,1     where )()( vfuf mm  . 

Definition 3: Pareto optimal set 

For a given MOP )(xf , the Pareto optimal set is  )( )'( ,'   * xfxfxxP  . 

Definition 4: Pareto optimal front 

For a given MOP )(xf  and its Pareto optimal set *P , the Pareto front is  * ),( * PxxfPF  . 

Based on these definitions, we can conclude that a dynamic problem could be seen as a 

sequence of static problems. In this approach, we consider integrated dynamicity in our 

interactive multi-objective algorithm by considering a new input (new version of the system after 

introduced changes and refactorings) for every continuation of the execution of the algorithm 
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after several interactions with the user. Thus, we considered our dynamic problem as a sequence 

of static ones. In the next section, we describe an overview of our dynamic interactive 

refactoring approach then a detailed formulation of our solution.  

5.3.2.2 Approach Overview 

The goal of our approach is to propose a new dynamic interactive way for software 

developers to refactor their systems. The general structure of our approach is sketched in 

Figure 5.16. 

 

Figure 5.16. Approach overview. 

Our technique comprises two main components. The first component is an offline phase, 

executed in the background, when developers are modifying the source code of the system. 

During this phase, the multi-objective algorithm, NSGA-II [21], is executed for a number of 

iterations to find the non-dominated solutions balancing the two objectives of improving the 

quality which corresponds to minimizing the number of code smells, maximizing/preserving the 

semantic coherence of the design and improving the QMOOD (Quality Model for Object-

Oriented Design) quality metrics [126], and the second objective of minimizing the size of 

refactoring solutions (number of operations). 
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The output of this first step of the offline phase is a set of Pareto-equivalent refactoring 

solutions, that optimizes the above two objectives. As explained in Algorithms 1 and 2, the 

second step of the offline phase explores this Pareto front in an intelligent manner using the 

innovization algorithm to rank recommended refactorings based on the common features 

between the non-dominated solutions. In our adaptation, we considered the hypothesis that the 

most redundant/frequent refactorings between the non-dominated solutions are the most 

important ones. The best refactoring solution will contain most of the frequently used 

refactorings between non-dominated solutions. Thus, the output of this second step of the offline 

phase is a set of ranked solutions based on this redundancy score. 

The second component of our approach is an online phase to manage the interaction with the 

developers. It will dynamically update the ranking of recommended refactorings based on the 

feedback of the developer. This feedback can be to approve/apply or modify or reject the 

suggested refactoring one by one as a sequence of transformations. Thus, the goal is to guide, 

implicitly, the exploration of the Pareto front to find good refactoring recommendations. Since 

the ranking is updated dynamically, our interactive algorithm allows the implicit move between 

non-dominated solutions of the Pareto front.  

After a number of interactions, developers may have modified or rejected a high number of 

suggested refactorings or have introduced several new code changes (new functionalities, fix 

bugs, etc.). In this case, the first component of our approach is executed again to update the last 

set of non-dominated refactoring solutions by continuing the execution of NSGA-II based on the 

two objectives defined in the first component as described in Algorithm 3 and also the new 

constraints summarizing the feedback of the developer. In fact, we consider the rejected 

refactorings by the developer as constraints to avoid generating solutions containing several 

already rejected refactorings. This may lead to reducing the search space and thus a fast 

convergence to better solutions. Of course, the continuation of the execution of interactive 

NSGA-II is taking as input the updated version of the system after the interactions with 

developers.  

The whole process will continue to be executed until the developers decide to stop refactoring 

the process. 
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Algorithm 5.1. Pseudo-code of the Dynamic Interactive NSGA-

II for software refactoring at generation t 

Input 

Sys: system to evaluate, Pt: parent population 

Output 

Pt+1 

00: 

01: 

02: 

03: 

04: 

05: 

06: 

07: 

08: 

09: 

10: 

11: 

12: 

 

13: 

 

14: 

15: 

 

15: 

 

 

15: 

 

 

16: 

 

17: 

18: 

19: 

 Begin 

/* Test if any user interaction occurred in the previous 

iteration */ 

If UserFeedback = TRUE then  

/* Rejected refactoring operations as constraints */ 

   Ct ← Get-Constraints (); 

/* Updated source code after applying changes */ 

…Sys ← Get-Refactored-System (); 

   UserFeedback ← FALSE; 

End If 

St ← Ø, i ← 1; 

 Qt ← Variation (Pt); 

 Rt ← Pt Qt; 

Pt ← evaluate (Pt, Ct, Sys); 

 (F1, F2, ...) ← Non-dominationed-Sort (Rt); 

 Repeat 

    St ← St  Fi; i ← i+1; 

 Until | St | ≥ N; 

 Fl ← Fi; //Last front to be included*/ 

 If | St | = N then 

    Pt+1 ← St;  

 Else 

   Pt+1 ← 

1
1




l
j

Fj; 

   /*Number of points to be chosen from Fl*/ 

   K ← N – |Pt+1|;  

   /*Crowding distance of points in Fl */ 

   Crowding-Distance-Assignment(Fl); 

…Quick-Sort(Fl);  

   /*Choose K solutions with largest distance*/ 



172 Software Refactoring 

 

 

 

   Pt+1← Pt+1 ∪ Select(Fl, k);  

End If 

If t+1 = Threshold then  

   UserFeedback ← TRUE; 

/* Select and rank the best front */ 

…Rank-Solution (F1);  

   Threshold ← Threshold + t+1; 

End If 

End 

 

Algorithm 5.2. Pseudo-code of the Innoviazation procedure to 

rank the non-dominated refactoring solutions. 

Rank Solution procedure  

Input 

NS: Non-dominated SolutionSet of the first front 

Output: 

RNS: Ranked Non-dominated SolutionSet 

Begin 

/*Compute the score of each Refactoring Operation*/ 

HM ← Rank-Refactoring-Operation (NS); 

/*Compute the score of each solution*/ 

For i=1 to |NS| do 

   SolutionRanki ← 0; 

   For each j=1 to |NSi| do 

      SolutionRanki ←  SolutionRanki + HM[Hash(NSi,j)]; 

   End for 

End for 

RNS ← Quick-Sort(NS); 

Get-User-Feedback(RNS); 

End   

Rank Refactoring Operation procedure  

Input 

NS: Non-dominated SolutionSet of the first front 

Output 

HM: HashMap of refactorings along with their occurrences. 

Begin 
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HM ← Ø; 

/* Compute the number of occurrence of each refactoring 

operation*/ 

For i=1 to |NS| do 

   For each j=1 to |NSi| do 

/* If a refactoring operation does not exist in the list, add its 

hash and set its occurrence number to 1*/ 

      If (NSi,j ∉ HM) then  

         HM ← HM ∪ Hash(NSi,j); 

         HM[Hash(NSi,j)] ← 1; 

/* If a refactoring operation exists in the list, increment its 

occurrence number */ 

      else 

         HM[Hash(NSi,j)] ← HM[Hash(NSi,j)] + 1; 

   End for 

End for 

End   

 

Algorithm 5.3. Pseudo-code of the procedure to manage the 

interactions with the developer (online phase). 

GUF (Get User Feedback) procedure  

Input 

RNS: Ranked Non-dominated SolutionSet  

Output 

HM: HashMap of refactorings along with their occurrences. 

Begin 

Applied-Refactorings ← Ø; 

Rejected-Refactorings ← Ø; 

For i=1 to |RNS| do 

   ref[i] ← 0; 

End for 

/* Main loop to suggest refactorings one by one to the 

user*/ 

While |Rejected-Refactorings|< α do 

/* Select index of the the solution with highest rank*/ 
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   index ← Max-Rank(RNS); 

   d ← User-Decision(RNSindex,ref[index]); 

/* If the user has applied or modified the operation*/ 

   If (d = True) then  

         Applied-Refactorings ← Applied-Refactorings ∪ 

RNSindex,ref[index]; 

/* If the user has rejected the operation*/ 

   else 

         Rejected-Refactorings ← Rejected-Refactorings ∪ 

RNSindex,ref[index]; 

   End if 

   ref[index] ← ref[index] + 1; 

/* Update solutions indexes */ 

   For i=1 to |RNS| do 

      Update-Rank(RNSi; Applied-Refactorings,  Rejected-

Refactorings) 

End While 

End   

5.3.2.3 Multi-objective formulation 

In our previous work [86] [104], we proposed a fully automated approach, to improve the 

quality of a system while preserving its domain semantics. It uses multi-objective optimization 

based on NSGA-II to find the best compromise between code quality improvements and 

reducing the number of code changes. In this work, we are introducing the interactive component 

to our NSGA-II algorithm which radically change the process of finding good refactoring 

solutions comparing to [86] [104]. We will compare later in the experiments the performance of 

both algorithms. We present in the following the different adaptation steps of our approach. 

Solution presentation. A solution consists of a sequence of n refactoring operations 

involving one or multiple source code elements of the system to refactor. The vector-based 

representation is used to define the refactoring sequence. Each vector’s dimension has a 

refactoring operation and its index in the vector indicates the order in which it will be applied. 

For every refactoring, pre- and post-conditions are specified to ensure the feasibility of the 

operation as detailed in [87]. 
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The initial population is generated by randomly assigning a sequence of refactorings to a 

randomly chosen set of code elements. The type of code element usually depends on the type of 

the refactoring it is assigned to and also depends on its role in the refactoring operation. An actor 

can be a package, class, field, method, parameter, statement or variable. 

The size of a solution, i.e. the vector’s length is randomly chosen between an upper and 

lower bound values. The determination of these two bounds is similar to the problem of bloat 

control in genetic programming where the goal is to identify the tree size limits. Figure 5.19 

shows an example of a refactoring solution including 3 operations applied to a simplified version 

of a solution applied to JVacation v1.0, a Java open-source trip management and scheduling 

software. 

Solution variation. In each search algorithm, the variation operators play the key role of 

moving within the search space with the aim of driving the search towards optimal solutions.  

For the crossover, we use the one-point crossover operator. It starts by selecting and splitting 

at random two parent solutions. Then, this operator creates two child solutions by putting, for the 

first child, the first part of the first parent with the second part of the second parent, and vice 

versa for the second child. This operator must ensure the respect of the length limits by 

eliminating randomly some refactoring operations. It is important to note that in multi-objective 

optimization, it is better to create children that are close to their parents in order to have a more 

efficient search process. For this reason, we control the cutting point of the one-point crossover 

operator by restricting its position to be either belonging to the first tier of the refactoring 

sequence or belonging to the last tier.  

For mutation, we use the bit-string mutation operator that picks probabilistically one or more 

refactoring operations from its or their associated sequence and replaces them by other ones from 

the initial list of possible refactorings. When applying the change operators, the different pre- 

and post-conditions are checked to ensure the applicability of the newly generated solutions [87]. 

We also apply a repair operator to randomly select new refactorings to replace those creating 

conflicts. 
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Solution evaluation. The generated solutions are evaluated using two fitness functions as 

detailed in the following.  

Minimize the number of code changes as an objective: The application of a specific 

suggested refactoring sequence may require an effort that is comparable to the one of re-

implementing part of the system from scratch. Taking this observation into account, it is trivial to 

minimize the number of suggested operations in the refactoring solution since the designer can 

have some preferences regarding the percentage of deviation with the initial program design. In 

addition, most of the developers prefer solutions that minimize the number of changes applied to 

their design. Thus, we formally defined the fitness function as the number of modified 

actors/code elements (packages, classes, methods, attributes) by the generated refactorings 

solution divided by the sum of all the actors in the system. 

)(____)( xoperationsinparametersofsumxf   where x is the solution is to evaluate. Any 

solution with operations being executed in the same code elements will have better (lower) 

fitness value for this objective. Such definition of the objective is in favor of code locality since 

it encourages refactoring a same code fragment, as developers eventually prefer to refactor 

specific elements that they are mostly familiar with instead of applying scattered changes 

throughout the whole system. The proposed fitness function is different than our previous work 

[86] where only the number of applied refactorings are counted. In fact, every refactoring type 

may have a different impact on the system in terms of number of changes which can be 

identified using our new formulation. 

Maximize software quality as an objective: Many studies has been utilizing structural metrics 

as a basis of defining quality indicators for a good system design [70] [125]. As an illustrative 

example, Bansiya et al. proposed a set of quality measures, using the ISO 9126 specification, 

called QMOOD. The adaptation of the QMOOD model in the problem of software refactoring 

has been studied in [25] [92] and provided considerable improvements to the object-oriented 

system’s design. Thus, we used the QMOOD model to estimate the effect of the suggested 

refactoring solutions on quality attributes. QMOOD has the advantage that it defines six high-

level design quality attributes (reusability, flexibility, understandability, functionality, 
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extendibility, and effectiveness) that can be calculated using 11 lower level design metrics. Its 

objective function is defined as: 

6

)(
6

1


 i

i SQA

Quality
 

(5.16) 

Where QAi is the quality attribute number i being calculated based on the returned structural 

metrics from the system S. 

Since it may not be sufficient to consider structural metrics, we used the design coherence 

measures of our previous work [25] to ensure that every refactoring solution preserves the 

semantics of the design. 

5.3.2.4 Interactive Recommendation of Refactorings  

The first step of the interactive step will be executed as described in Algorithm 5.1, to investigate 

if there are some common principles among many of the generated non-dominated refactoring 

solutions. The algorithm check if the optimal refactoring solutions have some common features 

such as identical refactoring operations among most or all of the solutions and a specific 

common order/sequence in which to apply the refactorings. Such information will be used to 

rank the suggested refactorings for developers using the following formula: 
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(5.17) 

where Rx,y is the refactoring operation number x (index in the solution vector) of solution number 

y, and n is the number of solutions in the front. Si is the solution of index i. All the solutions of 

the Pareto front are ranked based on the score of this measure applied to every solution.   

Once the Pareto front solutions are ranked, the second step of the interactive step will be 

executed as described in Algorithm 5.2. The refactorings of the best solution, in terms of 

ranking, are recommended to the developer based on their order in the vector. Then, the ranking 

score of the solutions will be updated automatically after every feedback (interaction) with the 
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developer. Our interactive algorithm proposes three levels of interactions as described in 

Figure 5.17. The developer can check the ranked list of refactorings and then apply, modify or 

reject the refactoring. If the developers prefer to modify the refactoring, then our algorithm can 

help them during the modification process as described in Figure 5.18. In fact, our tool proposes 

to the developer a set of recommendations to modify the refactoring based on the history of 

changes applied in the past and the semantic similarity between code elements (classes, methods, 

etc.). For example, if the developer wants to modify a move method refactoring them, having 

specified, the source method to move, our interactive algorithm automatically suggests a list of 

possible target classes ranked based on the history of changes and semantic similarity. This is an 

interesting feature since developers often know which method to move, but find it hard to 

determine a suitable target class. The same observation is valid for the remaining refactoring 

types. Another action that the developers can select is to reject/delete a refactoring from the list. 

After every action selected by the developer, the ranking is updated based on the feedback using 

the following formula: 
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Where Si is the solution to be ranked, the first component consists of the sum of the ranks of its 

operation as explained previously and the second component will take the value of: 1 if the 

recommended refactoring operation was applied by the developer, or -1 if the refactoring 

operation was rejected or 0.5 if it was partially modified by the developer. The recommended 

refactorings will be adjusted based on the updated ranking score. 

It is important to note that we calculate the ranking score for each non-dominated solution 

and then the solution with the highest score will be presented refactoring by refactoring to the 

developer. In fact, refactorings tend to be dependent on one another thus it is important to ensure 

the coherence of the recommended solution. After a number of modified or rejected refactorings 

or several new code changes introduced, the generated Pareto front of refactoring solutions by 

NSGA-II need to be updated since the system was modified in different locations. To check the 

applicability of the refactorings, we continuously check the pre-conditions of individual 
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refactorings on the version after manual edits. Thus, the ranking of the solutions will change 

after every interaction. In case that many refactorings are rejected, the interactive NSGA-II 

algorithm will continue to execute while taking into consideration all the feedback from 

developers as constraints to satisfy during the search. The rejected refactorings should not be 

considered as part of the newly generated solutions and the new system after refactoring will be 

considered in the input of the next iterations of the interactive NSGA-II. 

 

Figure 5.17. Recommended refactorings by DINAR 

Fig. 3. Refactorings recommended by our technique. 

 

Figure 5.18. Recommended target classes by our technique for a move method refactoring to modify. 
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In the non-interactive refactoring systems, the set of refactorings, suggested by the best-

chosen solution, needs to be fully executed in order to reach the solution’s promised results. 

Thus, any changes applied to the set of refactorings such as changing or skipping some of them 

could deteriorate the resulting system’s quality. In this context, the goal of this work is to cope 

with the above-mentioned limitation by granting to the developer’s the possibility to customize 

the set of suggested refactorings either by accepting, modifying or rejecting them. The novelty of 

this work is the approach’s ability to take into account the developer’s interaction, in terms of 

introduced customization to the existing solution, by conducting a local search to locate a new 

solution in the Pareto Front that is nearest to the newly introduced changes. We believe that our 

approach may narrow the gap that exists between automated refactoring techniques and human 

intensive development. It allows the developer to select the refactorings that best matches his/her 

coding preferences while modifying the source code to update existing features. 

To illustrate our interactive algorithm, we consider the refactoring of JVacation v1.0, a Java 

open-source trip management and scheduling software [153]. After generating the upfront list of 

best refactoring solutions that represents a good trade-off between improving quality while 

minimizing the number of refactorings, we extracted three solutions from the Pareto front, for the 

purpose of simplicity, and we considered a fragment of each solution, Figure 5 describes each 

solution refactorings along with its rank after the execution of the first step of the interactive 

algorithm. The solutions are ranked based on Equation 5.18 to identify the most common 

refactorings between the non-dominated solutions. This is achieved by counting the number of 

occurrences of operation within the Pareto front solution set, this number will be averaged by the 

maximum number of occurrences found.  
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Figure 5.19. Three simplified refactoring solutions recommended for JVacation v1.0. 

The solution with the highest rank will be selected for execution, its related operations will 

be shown to the user based on their order in the vector. Figure 5.20 summarizes the various 

interactions between the developer and the suggested refactorings. The first recommended 

refactoring of the top ranked solution (Solution 2) was applied by the developer thus the ranking 

score was increased by 1 for both solutions 2 and 3 since they include this refactoring in their 

solutions. In the second interaction, the recommended refactoring was partially modified by the 

programmer thus the ranking score of the second solution was increased by 0.5 for solution 2 but 

by 1 for solution 1 since the applied operation exists in that solution. In the third interaction, the 

recommended refactoring was rejected thus the score of the top solution number 2 was decreased 

by 1. 

 

Operation Source/entity Target entity Operation rank 

Solution1 fitness scores before normalization (0.198, 3) 

Move Method 
ctrl.booking.BookingController::handleLodgingViewEvent(java.aw

t.event.ActionEvent):void 
ctrl.booking.LodgingModel 0.4165 

Extract Class 
ctrl.booking.SelectionModel:: - flightList + addFlight():void 

+clearFlight():void 
ctrl.booking.FlightList 0.2915 

Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.DateEdit  0.0525 

Solution1 Rank 0.7605 

Solution1 fitness scores before normalization (0.202, 4) 

Move Method 
ctrl.booking.BookingController::handleLodgingViewEvent(java.aw

t.event.ActionEvent):void 
ctrl.booking.lodgingList 0.4025 

Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.LabelCombo 0.4025 

Inline Class ctrl.ModelChangeEvent ctrl.CoreModel 0.0555 

Extract Class 
ctrl.booking.SelectionModel:: - travelerList + addTraveler():void 

+clearTraveler():void 
ctrl.booking.TravelerList 0.4165 

Solution2 Rank 1.2770 

Solution3 fitness scores before normalization (0.209, 5) 

Extract Class 
ctrl.booking.SelectionModel:: - flightList + addFlight():void 

+clearFlight():void 
ctrl.booking.FlightList 0.2915 

Move Method 
ctrl.booking.BookingController::handleLodgingViewEvent(java.aw

t.event.ActionEvent):void 
ctrl.booking.lodgingList 0.4025 

Extract Class 
ctrl.booking.SelectionModel:: - travelerList + addTraveler():void 

+clearTraveler():void 
ctrl.booking.TravelerList 0.4165 

Inline Class ctrl.ModelChangeEvent ctrl.CoreView 0.0555 

Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel 0.0025 

Inline Class ctrl.ModelChangeEvent ctrl.Core 0.0025 

Solution3 Rank 1.1710 
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Operation R1:MoveMethod(ctrl.booking.BookingController::handleLodgingViewEvent:void, ctrl.booking.LodgingModel) 

Decision Applied 

Changes AppliedRefactoringsList = {R1} RejectedRefactoringsList = {} 

SolutionSet Solution1 Solution2 * Solution3 

Initial rank 0.7605 1.2770 1.1710 

Interation1 0.7605 2.2770 (+1) 2.1710 (+1) 

 

Operation R2:MoveMethod(gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date, gui.components.LabelCombo) 

Decision Modified to: R2: MoveMethod(gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date, gui.components.DateEdit) 

Changes AppliedRefactoringsList = {R1, R2} RejectedRefactoringsList = {} 

 Solution1 Solution2 * Solution3 

Initial rank 0.7605 1.2770 1.1710 

Interation1 0.7605 2.2770 (+1) 2.1710 (+1) 

Interation2 1.7605 (+1) 2.7770 (+0.5) 2.1710 

 

Operation R3: InlineClass (ctrl.ModelChangeEvent, ctrl.CoreModel) 

Decision Rejected 

Changes AppliedRefactoringsList = {R1, R2} RejectedRefactoringsList = {R3} 

 Solution1 Solution2 * Solution3 

Initial rank 0.7605 1.2770 1.1710 

Interation1 0.7605 2.2770 (+1) 2.1710 (+1) 

Interation2 1.7605 (+1) 2.7770 (+0.5) 2.1710 

Interation3 1.7605 1.7770 (-1) 2.1710 

 

Operation R4: ExtractClass (ctrl.booking.SelectionModel:: - flightList + addFlight():void +clearFlight():void, ctrl.booking.FlightList) 

Decision Applied 

Changes AppliedRefactoringsList = {R1, R2, R4} RejectedRefactoringsList = {R3} 

 Solution1 Solution2  Solution3 * 

Initial rank 0.7605 1.2770 1.1710 

Interation1 0.7605 2.2770 (+1) 2.1710 (+1) 

Interation2 1.7605 (+1) 2.7770 (+0.5) 2.1710 

Interation3 1.7605 1.7770 (-1) 2.1710 

Interation4 2.7605 (+1) 1.7770 3.1710 (+1) 

Figure 5.20. Four different interaction examples with the developer applied on the refactoring solutions recommended for 

JVacation v1.0. 

The algorithm will stop recommending new refactorings based on the request of the 

developer or when the system achieve acceptable quality improvements in terms of number of 

design defects and quality metrics. These parameters can be specified by the developer or the 

team manager. 

5.3.3 Validation 

In order to evaluate the ability of our refactoring framework to generate good refactoring 

recommendations, we conducted a set of experiments based on nine open source systems and 
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two industrial projects provided by the IT department at the Ford Motor Company. Each 

experiment is repeated 30 times, and the obtained results are subsequently statistically analyzed 

with the aim to compare our proposal with a variety of existing approaches [6] [70] [71] [86] 

[106]. In this section, we first present our research questions and then describe and discuss the 

obtained results.  

5.3.3.1 Research Questions and Evaluation Metrics 

We defined four research questions that address the applicability, performance in comparison 

to existing refactoring approaches, and the usefulness of our interactive multi-objective 

refactoring approach. The four research questions are as follows: 

RQ1: To what extent can our approach recommend relevant refactorings to developers? 

RQ2: To what extent can our approach efficiently rank the recommended refactorings? 

RQ3: How does our interactive formulation perform compared to fully-automated refactoring 

techniques? 

RQ4: Can our approach be useful for developers during the development of software systems? 

To answer all these research questions, we considered the refactoring solutions recommended 

by our approach after interactions with the developers as described in the previous section. To 

answer RQ1, it is important to validate the proposed refactoring solutions from both quantitative 

and qualitative perspectives. For the quantitative validation, we asked a group of developers to 

analyze and apply manually several refactoring types using Eclipse on several code fragments 

extracted from different systems where most of them correspond to code smells identified in 

previous studies as worth removing by refactoring [71] [86]. Then, we calculated precision and 

recall scores to compare between refactorings recommended by our approach after interaction 

with developers and those suggested manually: 
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operations expected 

 operations expected  operations suggested
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(5.19) 
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Another metric that we considered for the quantitative evaluation is the percentage of fixed 

code smells (NF) by the refactoring solution. The detection of code smells after applying a 

refactoring solution is performed using the detection rules of [71]. Formally, NF is defined as: 

]1,0[
smells code# 

 smells code fixed#
NF

 
(5.20) 

The detection of code smells is very subjective and some developers prefer not to fix some 

smells because the code is stable or some of them are not important to fix. To this end, we 

considered another metric G based on QMOOD that estimates the quality improvement of the 

system by comparing the quality before and after refactoring independently from the number of 

fixed design defects. Four main different quality factors are considered by QMOOD: reusability, 

flexibility, understandability and effectiveness. All of them are formalized using a set of quality 

metrics. Hence, the total gain in quality G for each of the considered QMOOD quality attributes 

qi before and after refactoring can be easily estimated as: 
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(5.21) 

where q’i and qi represents the value of the quality attribute i respectively after and before 

refactoring. 

For the qualitative validation, we asked groups of potential users of our tool to evaluate, 

manually, whether the suggested refactorings are feasible and efficient at improving the software 

quality and achieving their maintainability objectives. We define the metric Manual Correctness 

(MC) to mean the number of meaningful refactorings divided by the total number of suggested 

refactorings. The MC metric is computed after the user interaction is completed. In fact, the 

number of correct refactorings includes the number of refactorings applied by developers when 

using our tool since they can either apply, modify or reject a refactoring recommendation. MC is 

given by the following equation: 
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gsrefactorin proposed#

gsrefactorin appliedcoherent #
MC

 
(5.22) 

To avoid that the computation of the MC metric will be biased by the developers’ feedback, 

we asked the developers who did not participate in the experiments to use our tool to manually 

evaluate the correctness of the recommended refactorings. 

We considered also some other useful metrics to answer RQ2 that counts the percentage of 

refactorings that were accepted (NAR) or rejected (NRR) or applied with some modifications 

(NMR). Formally, these metrics are defined as: 

 

]1,0[
gsrefactorin drecommende# 

 gsrefactorin accepted#
NAR

 (5.23) 

]1,0[
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 (5.24) 

]1,0[
gsrefactorin drecommende# 

 gsrefactorin modified#
NMR

 (5.25) 

To answer RQ2, we evaluated the relevance of the recommended refactorings in the top k 

where k =1, 5, 10 and 15 using the following metrics PR@k, MC@k, NAR@k, NRR@k and 

NMR@k.  

To answer RQ3, we compared our approach to four other existing fully-automated search-

based refactoring techniques: Kessentini et al. [71], O’Keeffe and Ó Cinnéide [70], Ouni et al. 

[86] and Harman et al. [6] that consider the refactoring suggestion task only from the quality 

improvement perspective. Kessentini et al. [71] formulate software refactoring as a mono-

objective search problem where the main goal is to fix design defects and improve quality 

metrics. O’Keeffe and Ó Cinnéide [70] also proposed a mono-objective formulation to automate 

the refactoring process by optimizing a set of quality metrics. Ouni et al. [86] and Harman et al. 

[6] proposed a multi-objective refactoring formulation that generates solutions to fix code smells. 
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Both techniques are non-interactive and fully-automatic. We considered in our experiments 

another popular design defects detection and correction tool JDeodorant [106] that does not use 

heuristic search techniques. The current version of JDeodorant is implemented as an Eclipse 

plug-in that identifies some types of design defects using quality metrics and then proposes a list 

of refactoring strategies to fix them. Since JDeodorant just recommends a few types of 

refactoring with respect to the ones considered by our tool. We restricted, in this case, the 

comparison to the same refactoring types supported by JDeodorant. All these existing techniques 

are fully-automated and do not provide any interaction with the developers to update their 

solutions. We used the metrics MC, RC, PR, NF and G to perform the comparisons.  

To answer RQ4, we used a post-study questionnaire that collects the opinions of developers 

on our tool. We also wished to assess how the refactoring actually increases the software quality 

and productivity in that the effort to add new features or fixing bugs should reduce after 

performing the refactorings. To this end, we asked 22 software engineers, including 7 developers 

from our industrial partner, to add five new features and fix a set of ten bugs. We divided them 

into two groups. To avoid that the achieved results might be due to the different levels of ability 

of the two groups, we adapted a counter-balanced design where each subject performed two 

tasks, one on the original system and one on the refactored system. The details of these scenarios 

will be described later. To estimate the impact of the suggested refactorings on the productivity 

of developers, we defined the following metric TP to measure the time required to perform the 

same activities on the system with and without refactoring: 

grefactorin before system on the i task perform  torequired minutes #

grefactorinafter  system on the i task perform  torequired minutes #
iTP

 
(5.26) 

5.3.3.2 Software Projects Studied 

We used a set of well-known open-source Java projects and 2 systems from our industrial 

partner, the Ford Motor Company. We selected these 10 systems for our validation because they 

range from medium to large-sized open-source projects, which have been actively developed 

over the past 10 years, and their design has not been responsible for a slowdown of their 

developments. Table 1 provides some descriptive statistics about these programs. 



 187 

 

 

 

Table 5.17. Statistics of the studied systems. 

Systems Release #classes KLOC #Code smells #Refactorings 

Xerces-J v2.7.0 991 240 91 83 

JHotDraw  v6.1 585 21 25 49 

JFreeChart  v1.0.9 521 170 72 88 

GanttProject v1.10.2 245 41 49 56 

Apache Ant v1.8.2 1191 255 112 103 

Rhino v1.7R1 305 42 69 59 

Log4J v1.2.1 189 31  64 71 

Nutch v1.1 207 39  72 84 

JDI-Ford v5.8 638 247 83 94 

MROI-Ford V6.4 786 264 97 119 

5.3.3.3 Scenarios 

The first group of two developers added these features and fixed the bugs in the system 

before refactoring. The second group includes the remaining two developers and performed the 

same activities on the system after refactoring. 

Our study involved 14 subjects from the University of Michigan and 8 software engineers 

from the Ford Motor Company. Subjects include 6 master students in Software Engineering, 8 

Ph.D. students in Software Engineering and 8 software developers. All the subjects are 

volunteers and familiar with Java development and refactoring. The experience of these subjects 

on Java programming ranged from 2 to 19 years.  

Subjects were first asked to fill out a pre-study questionnaire containing five questions. The 

questionnaire helped to collect background information such as their role within the company, 

their programming experience, their familiarity with software refactoring. In addition, all the 

participants attended one lecture about software refactoring and passed six tests to evaluate their 

performance to evaluate and suggest refactoring solutions. 

As described in Table 5.18, we formed 3 groups. Each of the first two groups (A and B) is 

composed of 3 master students and 4 Ph.D. students. The third group is composed of the 8 

software developers from the Ford Motor company since they accept to participate only in the 
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evaluation of their two software systems. Table 5.18 summarizes the survey organization 

including the list of systems and algorithms evaluated by the group. The groups were formed 

based on the pre-study questionnaire and the tests result to make sure that all the groups have 

almost the same average skills. We divided the subjects into groups according to the studied 

systems, the techniques to be tested and developers’ experience. Consequently, each group of 

subjects who accepted to participate in the study received a questionnaire, a manuscript guide to 

help them to fill the questionnaire, the tools and results to evaluate and the source code of the 

studied systems. Since the application of refactoring solutions is a subjective process, it is normal 

that not all the developers have the same opinion. In our case, we considered the majority of 

votes to determine if suggested solutions are correct or not. Each subject evaluates different 

refactoring solutions for the different techniques and systems. 

We executed five different scenarios. In the first scenario, we selected a total of 90 classes 

from all the systems that include design defects (9 classes to fix per system). Then, we asked 

every participant to manually apply refactorings to improve the quality of the systems by fixing 

an average of two of these defects. As an outcome of the first scenario, we calculated the 

differences between the recommended refactorings and the expected ones (manually suggested 

by the developers. In the second scenario, we asked the different developers to manually evaluate 

the last recommended solution by our algorithm after the interaction with the user. We did a 

cross-validation between the groups to avoid that the computation of the MC metric will be 

biased by the developers’ feedback thus we asked the developers who did not participate in the 

experiments to use our tool to manually evaluate the correctness of the recommended 

refactorings. In the third scenario, we asked the participants to use our tool during a period of 

two hours on the different systems and then we collected their opinions based on a post-study 

questionnaire that will be detailed later. In the fourth scenario, we collected a set of 6 bugs per 

system from the bug reports of the studied release for every project and asked the groups to fix 

them based on the refactored and non-refactored version. To avoid that the achieved results 

might be due to the different levels of ability of the two groups, we adapted a counter-balanced 

design where we asked every group to fix 2 bugs on the version before refactoring and then 2 

other bugs on the version after refactoring. We selected the bugs that require almost the same 

effort to be fixed in terms of number of changes with an average of 15 changes. In the last 
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scenario, we asked the groups to add two simple features for every system before refactoring, 

and then two other features on the system after refactoring. All the features require almost the 

same number of changes to be introduced or deleted with an average of 23 code changes per 

feature. In the two last scenarios, the bugs to fix and features to add are related to the classes that 

are refactored by the developers when using our tool. 

The participants were asked to justify their evaluation of the solutions and these justifications 

are reviewed by the organizers of the study (one faculty member, one postdoc, one Ph.D. student 

and one master student). In addition, our experiments are not only limited to the manual 

validation but also the automatic validation can verify the effectiveness of our approach. Subjects 

were aware that they are going to goals of the experiments, but do not know the particular 

experiment research questions and the used algorithms.  

Table 5.18. Survey organization. 

Subject groups Systems Algorithms / Approaches 

Group A 

Xerces-J Interactive NSGA-II, 

Kessentini et al. [71], 

O’Keeffe and Ó Cinnéide [70], Ouni et al [86], 

Harman et al. [6], 

JDeodorant [106] 

JHotDraw  

JFreeChart  

GanttProject 

Group B 

Apache Ant Interactive NSGA-II, 

Kessentini et al. [71], 

O’Keeffe and Ó Cinnéide [70], Ouni et al. [86], 

Harman et al. [6], 

JDeodorant [106] 

Rhino 

Log4J 

Nutch 

Group C 

JDI-Ford 
Interactive NSGA-II, 

O’Keeffe and Ó Cinnéide [70], 

Ouni et al. [86] 

JDeodorant [106] 
MROI-Ford 

5.3.3.4 Experimental setting 

The parameter setting influences significantly the performance of a search algorithm on a 

particular problem [95]. For this reason, for each algorithm and for each system, we perform a 

set of experiments using several population sizes: 50, 100, 200, 300 and 500. The stopping 

criterion was set to 100,000 evaluations for all algorithms in order to ensure fairness of 

comparison. The other parameters’ values were fixed by trial and error and are as follows: (1) 

crossover probability = 0.8; mutation probability = 0.5 where the probability of gene 
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modification is 0.3; stopping criterion = 100,000 evaluations. Each algorithm is executed 30 

times with each configuration and then the comparison between the configurations is done using 

the Wilcoxon test. In order to have significant results, for each couple (algorithm, system), we 

use the trial and error method in order to obtain a good parameter configuration. Regarding the 

evaluation of fixed code smells, we focus on the eight following code smell types [15]: Blob, 

Spaghetti Code (SC), Functional Decomposition (FD), Feature Envy (FE), Data Class (DC), 

Lazy Class (LC), Long Parameter List (LPL), and Shotgun Surgery (SS). We choose these code 

smell types in our experiments because they are the most frequent and hard to fix based on 

several studies [15] [55]. 

The upper and lower bounds on the chromosome length used in this study are set to 10 and 

350 respectively. Several SBSE problems including software refactoring are characterized by a 

varying chromosome length. This issue is similar to the problem of bloat control in genetic 

programming where the goal is to identify the tree size limits. To solve this problem, we 

performed several trial and error experiments where we assess the average performance of our 

algorithm using the HV (hypervolume) performance indicator while varying the size limits 

between 10 and 500 operations. 

5.3.3.5 Statistical test methods  

Since metaheuristic algorithms are stochastic optimizers, they can provide different results 

for the same problem instance from one run to another. For this reason, our experimental study is 

based on 31 independent simulation runs for each problem instance and the obtained results are 

statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%). 

The latter tests the null hypothesis, H0, that the obtained results of two algorithms are samples 

from continuous distributions with equal medians, against the alternative that they are not, H1. 

The p-value of the Wilcoxon test corresponds to the probability of rejecting the null hypothesis 

H0 while it is true (type I error). A p-value that is less than or equal to α (≤ 0.05) means that we 

accept H1 and we reject H0. However, a p-value that is strictly greater than α (> 0.05) means the 

opposite. In fact, for each problem instance, we compute the p-value obtained by comparing 

Kessentini et al. [71], Ouni et al. [86], Harman et al. [6] and JDeodorant [106] results with 

DINAR ones. In this way, we determine whether the performance difference between DINAR 
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and one of the other approaches is statistically significant or just a random result. The results 

presented were found to be statistically significant on 31 independent runs using the Wilcoxon 

rank sum test with a 99% confidence level (α < 1%). 

The Wilcoxon rank sum test allows verifying whether the results are statistically different or 

not. However, it does not give any idea about the difference in magnitude. To this end, we used 

the Vargha and Delaney’s A statistics [121] which is a non-parametric effect size measure. In our 

context, given the different performance metrics (such as PR, RC, MC, etc.), the A statistics 

measures the probability that running an algorithm B1 (interactive NSGA-II) yields better 

performance than running another algorithm B2 (such as Kessentini et al. [71], Ouni et al. [86], 

etc.). If the two algorithms are equivalent, then A = 0.5. In our experiments, we have found the 

following results: a) On small and medium scale software projects (GanttProject, Rhino, Log4J 

and Nutch) interactive NSGA-II is better than all the other algorithms based on all the 

performance metrics with an A effect size higher than 0.94; and b) On large scale software 

projects (JDI-Ford, MROI-Ford, Apache Ant, Xerces-J, JHotDraw and JFreeChart), interactive 

NSGA-II is better than all the other algorithms with an A effect size higher than 0.87. 

5.3.3.6 Results and Discussions 

Results for RQ1: We reported the results of our empirical qualitative evaluation in 

Figure 5.21 (MC). As reported in Figure 5.21, the majority of the refactoring solutions 

recommended by our interactive approach were correct and approved by developers. On average, 

for all of our ten studied projects, 87% of the proposed refactoring operations are considered as 

semantically feasible, improve the quality and are found to be useful by the software engineers of 

our experiments. The highest MC score is 93% for the Gantt project and the lowest score is 86% 

for JFreeChart. Thus, it is clear that the results are independent of the size of the systems and the 

number of recommended refactorings. Most of the refactorings that were not manually approved 

by the developers are either violating few pre- or post-conditions or introducing a design 

incoherence.  
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Figure 5.21. Median manual correctness (MC) value over 31 runs on all the five systems using the different refactoring 

techniques with a 99% confidence level (α < 1%). 

Since the MC metric just evaluates the correctness and not the relevance of the recommended 

refactorings, we also compared the proposed operations with some expected ones defined 

manually by the different groups for several code fragments extracted from the ten systems. 

Most of these classes represent some severe code smells detected using our previous work [71]. 

Figure 5.22  and Figure 5.23 summarize our findings. We found that a considerable number of 

proposed refactorings, with an average of more than 82% in terms of precision and recall, are 

already applied by the software development team and suggested manually (expected 

refactorings). The recall scores are higher than precision ones since we found that the 

refactorings suggested manually by developers are incomplete compared to the solutions 

provided by our approach and this is was confirmed by the qualitative evaluation (MC). In 

addition, we found that the slight deviation with the expected refactorings are not related to 

incorrect operations but to the fact that the developers were interested mainly to fix the severest 

code smells or improving the quality of the code fragments that they frequently modify.  
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Figure 5.22. Median precision (PR) value over 31 runs on all the five systems using the different refactoring techniques 

with a 99% confidence level (α < 1%). 

 

Figure 5.23. Median recall (RC) value over 31 runs on all the five systems using the different refactoring techniques with 

a 99% confidence level (α < 1%). 

We evaluated also the ability of our approach to fixing several types of code smell and to 

improve the quality as described in Figure 5.24 and Figure 5.25. Figure 5.24 depicts the 

percentage of fixed code smells (NF). It is higher than 82% on all the ten systems, which is an 

acceptable score since developers may reject or modify some refactorings that fix some code 

smells because they do not consider them very important (their goal is not to fix all code smells 

in the system) or the current version of the code becomes stable. Some systems, such as Rhino 

and Gantt, have a higher percentage of fixed code smells with an average of more than 88%. 
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This can be explained by the fact that these systems include a higher number of code smells than 

others. Figure 5.25 shows that the refactorings recommended by the approach and applied by 

developers improved the quality metrics value (G) of the ten systems. For example, the average 

quality gain for the two industrial systems was the highest among the ten systems with more than 

0.3. The improvements in the quality gain confirm that the recommended refactorings helped to 

optimize different quality metrics. 

 

Figure 5.24. Median percentage of fixed code smells (NF) value over 31 runs on all the five systems using the different 

refactoring techniques with a 99% confidence level (α < 1%). 

 

Figure 5.25. Median quality gain (G) value over 31 runs on all the five systems using the different refactoring techniques 

with a 99% confidence level (α < 1%). 
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To summarize and answer RQ1, the experimentation results confirm that our interactive 

approach helps the subjects to refactor their systems efficiently by finding the relevant 

refactorings and improve the quality of all the ten systems.  

Results for RQ2: We evaluated the ability of our approach to help software engineers in 

finding quickly good refactorings based on an efficient ranking of the proposed operations. We 

evaluated the manual correctness and the precision of the recommended refactoring at the top k 

of the list at the different interactions where k was varied between 1, 5, 10 and 15 as described in 

Figure 5.26 and Figure 5.27. Figure 5.26 shows that the lowest MC@1 is 93% and the highest is 

100% on the different ten systems confirming that the top1 refactoring was almost always correct 

and relevant for the developers. The MC@15 presents the lowest results which are expected 

since we evaluated the manual correctness of the top15 recommended refactorings at several 

interactions which increase the probability to contain few irrelevant refactorings. However, the 

average MC@15 still could be considered acceptable with an average of more than 81%. The 

same observations are also valid for the PR@k however the results are a bit lower than MC@k. 

The average PR@k results were respectively 94%, 89%, 84% and 80% for k = 1, 5, 10 and 15. 

Thus, it is clear that the ranking function using by our interactive approach to exploring the 

Pareto front is efficient. 

 

Figure 5.26. Median of manual correctness (MC) of the recommended refactoring at the top k = 1, 5, 10 and 15 with a 

99% confidence level (α < 1%). 
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Figure 5.27. Median of precision (PR) of the recommended refactoring at the top k = 1, 5, 10 and 15 with a 99% 

confidence level (α < 1%). 

 

Figure 5.28. Median percentage of accepted refactorings (NAR), percentage of modified refactorings (NMR) and 

percentage of rejected refactorings (NRR) values over 31 runs on all the five systems with a 99% confidence level (α < 

1%). 

We have also considered three other metrics NAR (percentage of accepted refactorings), 

NMR (percentage of modified refactorings) and NRR (percentage of rejected refactorings) to 

evaluate the efficiency of our interactive approach to rank the refactorings. We collected this 

data using a feature that we implemented in our tool to record all the actions performed by the 

developers during the refactoring sessions. Figure 5.28 shows that, in average, more than 71% of 

the recommended refactorings were applied by the developers. In addition, an average of 17% of 

the recommended refactorings were modified by the developers. The users reject lower than 12% 

of suggested refactorings. Thus, it is clear that our recommendation tool successfully suggested a 

good set of refactorings to apply. 
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To conclude, our way to rank the recommended refactorings helped software engineers to 

quickly find good refactorings recommendations (answer to RQ2). 

Results for RQ3: Figures from Figure 5.21 to Figure 5.25 confirm the superior performance 

of DINAR compared to both fully automated and manual refactoring techniques. Figure 5 shows 

that DINAR provides significantly higher manual correctness results (MC) than all other 

approaches having MC scores respectively between 50% and 75%, on average as MC scores on 

the different systems. The same observation is valid for the precision, recall and quality gain as 

described in, respectively, Figure 5.22, Figure 5.23 and Figure 5.25. However, the percentage of 

fixed code smells (NF) is slightly lower than Kessentini et al. [71] and Ouni et al. [86] as showed 

in Figure 5.24. This is can be explained by the fact that the main goal of developers is not to fix 

the maximum number the code smells detected in the system (which was the goal of Kessentini 

et al. [71] and Ouni et al. [86]) thus they rejected or modified some refactorings suggested by 

DINAR. In addition, DINAR is based on a multi-objective algorithm to find a trade-off between 

fixing code smells, improving the quality and preserving the semantics. Thus, the slight loss of 

NF is justified by a better improvement of the quality as described in Figure 5.25. Figure 5.29 

shows that DINAR can help developers to find suitable refactorings quicker than existing search-

based refactoring approaches and manual refactorings but it was not the case for JDeodorant. 

This can be explained by the fact that JDeodorant is not using heuristic search but just proposing 

a template to fix certain types of code smell and does not suggest high-quality refactorings as 

described previously (lowest quality scores). However, the time required to use DINAR is still 

comparable to JDeodorant but provides more effective refactoring solutions. 

Overall the superior performance of DINAR can be explained by several factors. First, 

Kessentini et al. [71] and Harman et al. [6] use only structural indications (quality metrics) to 

evaluate the refactoring solutions thus a high number of refactorings are not feasible 

semantically. Thus, our approach reduces the number of semantic incoherencies when suggesting 

operations. Second, the innovization component improved the efficiency of suggested refactoring 

solutions by DINAR compared to NSGA-II where the developers need to select one solution 

from the Pareto front that cannot be updated dynamically. Third, JDeodorant proposes some pre-
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defined patterns to fix some types of code smells that cannot be sometimes generalized. Finally, 

manual refactoring is an error-prone process that is also time-consuming. 

In our qualitative evaluation, we considered how the refactoring actually increases the 

software quality and productivity in that the effort to add new features or to fix bugs should 

reduce after performing the refactorings on the JDI-Ford system. To this end, we created six 

scenarios as described in Figure 5.29 and we asked four software engineers from our industrial 

partner, with almost the same experience, to add four new features and fix a set of eight bugs 

(three scenarios to add and modify existing features, and the remaining ones to fix a set of bugs). 

Then, we compared the time required by the two groups of developers to finalize the same tasks 

on the JDI-Ford system before and after refactoring using the metric TP. Figure 5.29 shows that 

the time is reduced on average by 25% to finalize the tasks when the refactored system is used. 

In some scenarios, the time is reduced by more than 45% since the required tasks are time-

consuming (involving the implementation of new features).  

 

Figure 5.29. Productivity difference (T) value on six different tasks performed on JDI-Ford system. 

Results for RQ4: To answer RQ4, we asked the subjects to take a post-study questionnaire 

after completing the refactoring tasks using DINAR and all the techniques considered in our 

experiments. The post-study questionnaires collected the opinions of the participants about their 

experience in using DINAR compared to manual and fully-automated refactoring tools. 
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The post-study questionnaire asked participants to rate their agreement on a Likert scale from 

1 (complete disagreement) to 5 (complete agreement) with the following statements: 

 The interactive dynamic refactoring recommendations are a desirable feature in 

Integrated Development Environments (IDEs). 

 The interactive manner of recommending refactorings by DINAR is a useful and 

flexible way to refactor systems compared to fully-automated or manual refactorings. 

The agreement of the participants was 4.7 and 4.4 for the first and second statements 

respectively. This confirms the usefulness of DINAR for the software developers considered in 

our experiments.  

The remaining questions of the post-study questionnaire were about the benefits and also 

limitations (possible improvements) of DINAR. We summarize in the following the feedback of 

the developers. Most of the participants mention that DINAR is faster than manual refactoring 

since they spent a long time with manual refactoring to find the locations where refactorings 

should be applied. For example, developers spend time when they decide to extract class to find 

the methods to move to the new created class or when they want to move a method then it takes 

time to find the best target class by manual exploration of the source code. Thus, the developers 

liked the functionality of DINAR that helps them to modify a refactoring and finding quickly the 

right parameters based on the recommendations. Furthermore, refactorings may affect several 

locations in the source code, which is a time-consuming task to perform manually, but they can 

perform it instantly using DINAR.  

The participants found DINAR helpful for both floss refactoring, to maintain a good quality 

design and also for root canal refactoring to fix some quality issues such as code smells. The 

developers justify their conclusions by the following interesting features in DINAR: a) the list of 

recommended refactorings helps them to choose the desired refactoring very quickly, b) DINAR 

offers them the possibility to modify the source code (to add new functionality) while doing 

refactoring since the list of recommendations are updated dynamically. So, developers can 

switch between both activities: refactoring and modifying the source code to modify existing 
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functionalities. c) DINAR allows developers to access all the functionality of the IDE (e.g., 

Eclipse). d) the suggested refactorings by DINAR can fix code smells (root canal refactoring) or 

improve some quality metrics (floss canal refactoring) due to the use of the multi-objective 

approach. Another important feature that the participants mention is that DINAR allows them to 

take the advantages of using multi-objective optimization for software refactoring without the 

need to learn anything about optimization and exploring explicitly the Pareto front to select one 

“ideal” solution. The implicit exploration of the Pareto front in an interactive fashion represents 

an important advantage of DINAR along with the dynamic update of the recommended list of 

refactoring using innovization. In fact, the developers found a lot of difficulties with the multi-

objective tool of Ouni et al. [86] to explore the Pareto front to find a good refactoring solution. In 

addition, they did not appreciate the long list of refactoring suggested by [86] since they want to 

take control of modifying and rejecting some refactorings. In addition, the validation of this long 

list of refactorings is time-consuming. Thus, they appreciate that DINAR suggests refactoring 

one by one and update the list based on the feedback of developers.   

The participants also suggested some possible improvements to DINAR. Some participants 

believe that it will be very helpful to extend DINAR by adding a new feature to apply 

automatically some regression testing techniques to generate test cases to test applied 

refactorings. Another possible suggested improvement is to use some visualization techniques to 

evaluate the impact of applying a refactoring sequence. 

5.3.4 Conclusion 

We proposed an interactive recommendation tool, called DINAR, for software refactoring 

that dynamically adapts and suggests refactorings to developers based on their feedback and 

introduced code changes. DINAR allows developers to benefit from search-based refactoring 

tools without explicitly invoking any knowledge about optimization and multi-objective 

optimization algorithms. To evaluate the effectiveness of DINAR, we conducted a human study 

with a set of software developers who evaluated the tool and compared it with the state-of-the-art 

refactoring techniques. Our evaluation results provide strong evidence that DINAR improves the 

applicability of software refactoring and proposes a novel way for software developers to 

refactor their systems. 
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As part of the future work, we should validate DINAR with additional refactoring types, 

systems and code smell types in order to conclude about the general applicability of our 

methodology. We will also compare DINAR with other refactoring techniques. Furthermore, in 

this work, we only focused on the recommendation of refactorings. We are planning to extend 

the approach by automating the test and verification of applied refactorings. In addition, we will 

consider the importance of code smells during the correction step using previous code-changes, 

classes-complexity, etc. Another future research direction related to our work is to adapt our 

interactive refactoring recommendation approach to several other software engineering problems 

such as software re-modularization, change detection and the next release problem.
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 Conclusion and Future Work 

 Threats to Validity 

We explore in this section the factors that can bias our empirical study. These factors can be 

classified into three categories: construct, internal and external validity. Construct validity 

concerns the relation between the theory and the observation. Internal validity concerns possible 

bias with the results obtained by our proposal. Finally, external validity is related to the 

generalization of observed results outside the sample instances used in the experiment. 

In our experiments, construct validity threats are related to the several quantitative measures 

used in our experiments. To mitigate this threat, we manually inspect and validate the 

remodularization solutions by a set of experts. Another threat concerns the data about the 

expected operations of the studied systems. In addition to the documented operations, we are 

using Ref-Finder which is known to be efficient. Indeed, Ref-Finder was able to detect 

operations with an average recall of 99% and an average precision of 79%. To ensure the 

precision, we manually inspect the operations found by Ref-Finder and select only those types 

considered in our experiments.  

We take into consideration the internal threats to validity in the use of stochastic algorithms 

since our experimental study is performed based on 31 independent simulation runs for each 

problem instance and the obtained results are statistically analyzed by using the Wilcoxon rank 

sum test with a 99% confidence level (α = 1%). However, the parameter tuning of the different 

optimization algorithms used in our experiments creates another internal threat that we need to 

evaluate in our future work. In fact, parameter tuning of search algorithms is still an open 

research challenge till today. We have used the trial-and-error method which one of the most 

used ones [154]. However, the use of ANOVA-based technique [155] could be another 
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interesting direction from the viewpoint of the sensitivity to the parameter values. Another threat 

is related to the order of applying the objectives that my influences the outcome of the search. 

We are planning to investigate the impact of the order of objectives on the results by evaluating 

several combinations. In addition, the weights used for the semantic functions are selected 

manually and further experiments are required to study the impact of the variation of these 

weights on the quality of the results. Another threat is related to our experiments to show how 

the execution time is related to the size of the system in terms of number of classes. The number 

of classes of a system can be not enough to have a strong conclusion especially when other 

factors such as the density of the interdependency graph probably will influence execution time 

more than the number of classes in the system. In addition, it is may not be enough to show with 

3 version of Eclipse if the execution time is a linear or non-linear.  

We identify other three threats to internal validity: selection, learning and fatigue, and 

diffusion. Another internal threat is related to the problem of isomorphic solutions since inferring 

goodness based on an objective function can sometimes be misleading. To this end, we manually 

validated the solution as described in the experiments and we found correlation between the 

fitness function values and the success metrics (different from the fitness functions and 

correspond to the developers opinion after manually validating some solutions) used in the 

experiments. However, we cannot generalize our correlation results since it was limited to few 

solutions and the problem of isomorphic solutions is out of the scope of this work. In addition, it 

is challenging to address this problem especially for the case of many-objective optimization 

where a high number of solutions are generated. Thus, we plan in our future work to study the 

correlation through extensive empirical studies between the improvements of the fitness function 

values and the quality of solutions validated manually by experts on several software engineering 

problems. An additional internal threat is that our approach is limited to the use of static metrics 

analysis. However, our approach is generic thus additional objectives/metrics and inputs can be 

easily added to extend our algorithm. To this end, we are planning to use dynamic analysis 

techniques to evaluate the system after remodularization and evaluate the impact of suggested 

operations on the dynamic/runtime relations. 
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For the selection threat, the subject diversity in terms of profile and experience could affect 

our studies. First, all subjects were volunteers. We also mitigated the selection threat by giving 

written guidelines and examples of operations already evaluated with arguments and 

justification. Additionally, each group of subjects evaluated different operations from different 

systems using different techniques/algorithms. 

Randomization also helps to prevent the learning and fatigue threats. For the fatigue threat, 

specifically, we did not limit the time to fill the questionnaire. Consequently, we sent the 

questionnaires to the subjects by email and gave them enough time to complete the tasks. 

Finally, only ten operations per system were randomly picked for the evaluation. 

Diffusion threat is limited in our study because most of the subjects are geographically 

located in a university and a company, and the majority does not know each other. For the ones 

who are in the same location, they were instructed not to share information about the experience 

before a certain date. 

To ensure the heterogeneity of subjects and their differences, we took special care to 

diversify them in terms of professional status, university/company affiliations, gender, and years 

of experience. In addition, we organized subjects into balanced groups. This has been said, we 

plan to test our tool with Java development companies, to draw better conclusions. Moreover, the 

automatic evaluation is also a way to limit the threats related to subjects as it helps to ensure that 

our approach is efficient and useful in practice. Indeed, we compare our suggested operations 

with the expected ones that are already applied to the next releases and detected using Ref-

Finder. 

External validity refers to the generalizability of our findings. In this study, we performed our 

experiments on five different systems belonging to different domains and with different sizes. 

However, we cannot assert that our results can be generalized to other applications, other 

programming languages, and to other practitioners. Future replications of this study are 

necessary to confirm the generalizability of our findings. The participants considered in our 

experiments are not the original developers of the open source systems thus some of their 

evaluations of the remodularization solutions could be not very accurate since there are, 

sometimes, good reasons for the design and implementation choices made and this can be mainly 
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determined by the original developers. However, this not the case for the Ford project since some 

of the original developers of the system participated in our experiments. In addition, the number 

of participants in our experiments is limited. We are planning to integrate additional original 

developers from these open source projects to evaluate the detected code smells as part of our 

future work. 

 Conclusion 

It has been, and it is still challenging to automatically refactor software systems while taking 

into account several developers preferences to assess the maintenance process in a realistic 

software development context. The related work has emphasized the formalization of refactoring 

as single and multi-objective optimization problem and automated the generation of refactored 

systems based on several metrics that vary from the structure to the semantics etc. In this context, 

our first goal was to investigate how the automation can process incorporate all the developers’ 

preferences and if so, will it generate satisfactory results. We have shown through several 

contributions the feasibility of considering as many preferences as possible by breaking the 

boundaries of the few number of objectives that the existing techniques were limited to. 

Although our approach has proven scalability, its industrial application has revealed practical 

limitations related to the dynamics of the development environment that requires more flexibility 

that was not handled by our approach. 

The above-mentioned drawbacks were the main motivation for a further investigation of 

incorporating the developer in the loop of the optimization process. Our goal was to enable a 

more flexible and robust refactoring process that allows developers to have better control over 

the suggested code changes. We found that we can also benefit from the developer’s feedback to 

prune the search space and converge towards a region of his / her interest. Therefore, our 

approach was able to profile the developer instead of optimizing several metrics that 

mathematically define his / her preferences. 

To conclude, this thesis investigated the consideration of SE problems as many-objective and 

interactive problems to overcome the limitation of the existing work which is mostly 

approaching them from fully single or bi-objective perspective. Eventually, we have introduced a 
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new scalable search-based software engineering methodologies for various software engineering 

problems which are linked to model and code transformation. Some of the introduced 

methodologies presented the first real-world application of a many-objective and innovization 

paradigms on a domain specific software engineering problem. We formulated several 

challenges to test the applicability of our proposals and we compared them against related work 

approaches. The generated results were validated from both quantitative and qualitative 

perspectives. 

 Future Work 

Although software refactoring, as a practice, has been issuing considerable improvements in 

software overall quality, automated refactoring techniques, provided by the literature, have not 

yet been able to fully evolve while estimating the amount of testing effort needed for the 

refactored code. Despite the aim of refactoring is to improve the software’s quality, the amount 

of effort required to refactor large systems and test them afterward remains unpredictable. Also, 

some of the code changes may affect the system’s intended functionality or can also introduce 

some faults. Also, developers interleave functional-oriented code updates with some refactoring 

operations, as the mean of updating the system to the new specifications. The impact of these 

changes has not yet been taken into account by the refactoring tools and this represents one of 

the main limitations of the existing refactoring techniques. Another important drawback is that 

all techniques assume that refactoring operations are always correctly executed, this transaction-

based perspective is not always true especially if refactoring pre- and post-conditions are not 

well implemented, and with the lack of testing support, it may increase the vulnerability of the 

refactored code. This side effect of refactoring has not yet been analyzed in the literature and this 

is another limitation of existing techniques.  

Although software testing is a research intensive area as it prevents the propagation of faults, 

updating or prioritizing the existing test suits is in itself challenging. As the number of possible 

test cases increases, their execution time after every code change tends to be very expensive and 

so the testing effort becomes hard to predict. This problem has been well studied in the literature 

and resulted in many approaches related to test cases minimization, prioritization and selection 

while maximizing testing coverage has been proposed. However, Minimizing the cost of testing 
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is not the only challenge that developers face, as the testing effort does depend on the quality of 

tests cases that are usually designed without foreseeing the upcoming code changes, and without 

coupling testing to a refactoring plan, developers will be spending much more time in following 

up with the refactored code to re-update test suites. 

To address the previous shortcomings, we will investigate, as a future research direction, the 

combination of refactorings generation with test suites update as an optimization problem. Our 

approach aims will be to find the best sequence of refactoring that optimizes the software quality 

through the reduction of code smells while providing the user with an adequate test cases 

selection to execute based on the locations in which refactoring operations occurred. Although 

formulating each of refactoring and testing as optimization problems have been widely studied in 

Search-Based Software Engineering, no practical work has been done to provide a technique 

which supports such heterogeneous solution representation due to the impracticality of its 

evaluation under one uniform search space. We intend to address this challenge by formulating 

the refactoring / testing practices as a multitasking problem. The multitasking paradigm [156] 

evolves multiple optimization tasks at once, with each task, i.e. refactoring and testing, 

contributing a unique factor influencing the evolution of individuals in a composite solution 

space. Such formulation is referred to as multifactorial optimization. 
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