
Balancing Competing Needs of Machine and Human in Search-Based Software Refactoring

by

Mohamed Wiem Mkaouer

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Information Systems Engineering)

in the University of Michigan-Dearborn,

2016

Doctoral Committee:

Assistant Professor Marouane Kessentini, Chair

Professor & Koenig Endowed Chair Kalyanmoy Deb, Michigan State University

Dean Anthony England

Professor Mark Harman, University College London, UK

Associate Professor Bruce Maxim

Associate Professor Brahim Medjahed

Professor Qiang Zhu

© Mohamed Wiem Mkaouer 2016

i

DEDICATION

This thesis work is dedicated to:

My mother Chadlia

My father Mounir

My sister Amani

My brother Wael

My beautiful family who has been a constant source of support and encouragement during the

challenges of graduate school and life. I am truly thankful for having you in my life. This work is

the fruit of the hard work of my parents, who have always loved me unconditionally and whose

good examples have taught me to work hard for the things that I aspire to achieve.

In the memory of:

My grandfather Houssin

My cousin Khaldoun

My uncle Houssin

My uncle Abdel-Aziz

I miss them every day, they stood up for me since I was a child, believed in me, but they are no

longer among us to celebrate this moment with me, God forgives them and have mercy on them

ii

ACKNOWLEDGEMENTS

This journey would not have been possible without the support of my family, professors, and

friends. To my family, thank you for encouraging me in all of my pursuits and inspiring me to

follow my dreams. I am especially grateful to my parents, who supported me emotionally and

financially. I always knew that you believed in me and wanted the best for me. Thank you for

teaching me that my job in life was to learn, to be an educator, and to seek knowledge for myself

before I can spread it to others

I am very fortunate to have performed my graduate work at a university as collaborative and

warm as the University of Michigan-Dearborn. Therefore, there are many people to thank for

being a part of my success. I am greatly indebted to Prof. Marouane Kessentini, for guiding me

as a researcher, teacher, and a person. I’m grateful to his genuine supervision over the last four

years in which he has shown me what it means to be a dedicated and committed to research, he

modeled a great teacher and for furthered my thinking about challenges in software quality and

challenged my thinking by helping me question assumptions and view issues from multiple

perspectives. Simply, He has given endlessly his time, energy, and expertise to pave the path of

my Ph.D.

I would like to give special thanks to my dissertation committee that took some of their

precious time to review my thesis. I am grateful to Prof. Qiang Zhu, Prof. Brahim Medjahed,

Prof. Bruce Maxim, Dean Tony England, Prof. Mark Harman and Prof. Kalyanmoy Deb for their

insightful suggestions for improvement, the constructive long discussion I had with them about

the future directions I should take in my research.

I also would love to express my deep gratitude to Prof. Grosky for allowing me to be part of

the Computer and Information Science department teaching faculty, I really enjoyed teaching

several courses and interacting with bright students throughout my Ph.D. journey.

iii

I would like to recognize the SBSE lab members who have shared a part of themselves and

their work with me. Over the years, the connections made through several collaborations in our

research or in our teaching and grading duties have enriched my life and I look forward to

continuing our relationship. For my students, I would like to thank them for sharing their

enthusiasm for science and thirst for knowledge.

To my friends and roommates, thank you for listening, offering me advice, and supporting me

through this entire process. Special thanks to both my Missouri and Michigan friends along with

my friends scattered around the globe and that are too numerous to name, thank you for your

thoughts, well wishes/prayers, phone calls, e-mails, texts, visits, and being there whenever I

needed a friend. To all the people I have known, thank you for sharing your life stories with me

and for your friendship.

iv

PREFACE

The research that led to this thesis was performed at Search-Based Software Engineering

Laboratory at the Department of Computer and Information Science, University of Michigan-

Dearborn, with Prof. Marouane Kessentini as the main advisor. This work was funded by

Search-Based Software Engineering Laboratory in collaboration with Ford Motor Company.

v

TABLE OF CONTENTS

 Introduction ... 1

 Research Context .. 1

 Problem Statement .. 2

1.2.1 Model Transformation .. 3

1.2.2 Software Remodularization: ... 4

1.2.3 Software Refactoring: ... 5

 Proposed Research Contributions ... 7

1.3.1 Contribution 1: Multi-objective Model Transformation ... 8

1.3.2 Contribution 2: Many-objective Software remodularization 9

1.3.3 Contribution 3: High Dimensional and Dynamic Interactive Software refactoring ... 9

 Roadmap ... 11

 Related work ... 12

 Search-Based Software Engineering ... 12

2.1.1 Introduction ... 12

2.1.2 Many-objective Search-Based Software Engineering .. 14

 Model transformation.. 18

 Software remodularization .. 20

 Software refactoring .. 25

 Model Transformation .. 29

 Introduction ... 29

 Approach ... 31

3.2.1 Automated model transformation ... 31

3.2.2 NSGA-II adaptation .. 36

 Validation .. 44

3.3.1 Research Questions ... 44

3.3.2 Setting ... 45

vi

 Conclusion .. 50

 Software Remodularization .. 52

 Introduction ... 52

 Approach ... 55

4.2.1 Approach Overview .. 55

4.2.2 Software remodularization using NSGA-III ... 62

 Validation .. 70

4.3.1 Research Questions ... 70

4.3.2 Software Projects Studied ... 74

4.3.3 Experimental Setting ... 76

4.3.4 Results ... 81

 Conclusion .. 97

 Software Refactoring .. 99

 Multi-objective Optimization under Uncertainty .. 99

5.1.1 Introduction ... 99

5.1.2 Approach ... 102

5.1.3 Validation .. 109

5.1.4 Conclusion .. 127

 Many-objective Software Refactoring .. 128

5.2.1 Introduction ... 128

5.2.2 Approach ... 130

5.2.3 Validation .. 140

5.2.4 Conclusion .. 160

 Dynamic Interactive Software Refactoring .. 162

5.3.1 Introduction ... 162

5.3.2 Approach ... 165

5.3.3 Validation .. 182

5.3.4 Conclusion .. 200

 Conclusion and Future Work .. 202

 Threats to Validity .. 202

 Conclusion .. 205

vii

 Future Work .. 206

APPENDIX A. LIST OF ALGORITHMS ... 208

APPENDIX B. LIST OF PUBLICATIONS ... 209

BIBLIOGRAPHY ... 212

viii

LIST OF TABLES

Table 2.1. Summary of many-objective approaches. .. 16

Table 2.2. Many-objectives approaches applied in software engineering. 17

Table 2.3. By-example Approaches. ... 19

Table 3.1. Complexity comparison. .. 49

Table 4.1. Types of remodularization operations. .. 57

Table 4.2. Similarity scores between remodularization operations applied to similar code

fragments... 58

Table 4.3. Statistics of the studied systems and solution length limits. .. 75

Table 4.4. Analyzed versions and operations collection. .. 76

Table 4.5. Considered solutions for the qualitative evaluation. .. 77

Table 4.6. Survey organization. .. 79

Table 4.7. The setting of common parameters. ... 80

Table 4.8. Average number of classes per package (NCP), number of packages (NP), number of

inter-edges (NIE), number of intra-edges (NAE) and the deviation (delta with the initial design)

median values of NSGA-III, IBEA, MOEA/D, SA, NSGA-II and Bavota et al. over 31

independent simulation runs. A “+” symbol at the ith position in the sequence of signs presented

below the instance names means that the NSGA-III algorithm metric median value is statistically

different from the ith algorithm one. A “-” symbol at the ith position in the sequence of signs

means the opposite (e.g., for Xerces-J, NSGA-III is not statistically different from IBEA,

however, it is statistically different from the other algorithms). ... 82

Table 4.9. Median IGD values on 31 runs (best values are in bold). ~ means a large value that is

not interesting to show. The results were statistically significant on 31 independent runs using

the Wilcoxon rank sum test with a 99% confidence level (α < 1%). .. 89

Table 4.10. Conflict study between objectives. .. 91

Table 4.11. Existing conflict between objectives. .. 92

Table 5.1. Refactoring types and their involved actors and roles. .. 108

Table 5.2. Software studied in our experiments. .. 111

Table 5.3. Best population size configurations. .. 115

ix

Table 5.4. The significantly best algorithm among random search, NSGA-II and MOPSO (No

sign. diff. means that NSGA-II and MOPSO are significantly better than random, but not

statistically different). ... 117

Table 5.5. FCS, SCS and ICS median values of 51 independent runs: (a) Robust Algorithms, and

(b) Non-Robust algorithms. .. 121

Table 5.7. QMOOD metrics description. .. 132

Table 5.8. Quality attributes and their computation equations. .. 133

Table 5.9. Refactorings impact analysis on QMOOD internal metrics. 134

Table 5.10. Refactorings impact analysis on QMOOD quality attributes. 134

Table 5.11. Summary of the empirical study design. ... 145

Table 5.12. Statistics of the studied systems... 146

Table 5.13. Analyzed versions and operations collection. .. 146

Table 5.14. Parameters configuration. .. 147

Table 5.15. Survey organization. .. 149

Table 5.16. Fixed code smells distribution in Xerces-J v2.7.0. .. 152

Table 5.17. Median IGD values on 31 runs (best values are in bold and underlined, second best

values are in bold). ~ means a large value that is not interesting to show. The results were

statistically significant on 31 independent runs using the Wilcoxon rank sum test with a 95%

confidence level (α = 5%). .. 154

Table 5.18. Statistics of the studied systems... 187

Table 5.19. Survey organization. .. 189

x

LIST OF FIGURES

Figure 1.1. Distribution of our contributions based on the application domains. 8

Figure 2.1. Model transformation process. ... 18

Figure 2.2. The dependency graph including two packages, 3 intra-edges and 2 inter-edges. 21

Figure 2.3. Motivating example extracted from GanttProject v1.10.2. .. 25

Figure 3.1. Class diagram and relational schema metamodels. .. 32

Figure 3.2. Class diagram (source model) with equivalent relational schema diagram (target

model). .. 33

Figure 3.3. Overview of the approach: general architecture. .. 34

Figure 3.4. Rule interpretation of an individual. ... 39

Figure 3.5. Solution representation. .. 39

Figure 3.6. Crossover operator. ... 41

Figure 3.7. Mutation operator. .. 41

Figure 3.8. Pareto fronts for the 3 transformations. .. 46

Figure 3.9. Complexity and Dissimilarity comparison between NSGA-II, manually defined rules

and a mono-objective Genetic Algorithm (GA). .. 47

Figure 3.10. An example of seven executions on CLD-to-RS (best solutions). 49

Figure 4.1. Approach overview. ... 56

Figure 4.2. 3D plotting of the obtained 10 reference points with p = 3. 64

Figure 4.3. Example of solution representation. ... 67

Figure 4.4. Crossover operator. ... 69

Figure 4.5. Mutation operator. .. 69

Figure 4.6. Average Performance of NSGA-III the search algorithms using the HV

(hypervolume) indicator while varying the size limits between 10 and 500 operations. 75

Figure 4.7. Qualitative evaluation of the remodularization solutions (semantics). A “+” symbol at

the ith position in the sequence of signs means that the algorithm metric median value is

xi

statistically different from the ith algorithm one. A “-” symbol at the ith position in the sequence

of signs means the opposite. Sequences of “+” and “-” Signs should be read from top to bottom.

The column referring to the system under analysis should be left out of the count in the sequence.

... 83

Figure 4.8. Quantitative evaluation (precision and recall) of the remodularization solutions

(semantics). A “+” symbol at the ith position in the sequence of signs means that the algorithm

metric median value is statistically different from the ith algorithm one. A “-” symbol at the ith

position in the sequence of signs means the opposite. Signs should be read from top to bottom.

The column referring to the system under analysis should be left out of the count in the sequence.

... 85

Figure 4.9. Average number of operations. A “+” symbol at the ith position in the sequence of

signs means that the algorithm metric median value is statistically different from the ith

algorithm one. A “-” symbol at the ith position in the sequence of signs means the opposite.

Signs should be read from top to bottom. The column referring to the system under analysis

should be left out of the count in the sequence. .. 86

Figure 4.10. The impact of different combinations of objectives on the remodularization

solutions (MP). .. 87

Figure 4.11. Percentage of recorded operations that are used by the best remodularization. A “+”

symbol at the ith position in the sequence of signs means that the algorithm metric median value

is statistically different from the ith algorithm one. A “-” symbol at the ith position in the

sequence of signs means the opposite solutions. Signs should be read from top to bottom. The

column referring to the system under analysis should be left out of the count in the sequence. .. 88

Figure 4.12. Value path plots of non-dominated solutions obtained by NSGA-III, MOEA/D,

IBEA and NSGA-II during the median run of the 7-objective remodularization problem on JDI-

Ford. .. 90

Figure 4.13. Computational time of the different used many-objective remodularization

algorithms. .. 93

Figure 4.14. Scalability of our remodularization tool tested on Eclipse. 94

Figure 4.15. A comparison between Bavota et al. 2013 and NSGA-III based on the qualitative

evaluation (MP). ... 95

xii

Figure 4.16. Qualitative evaluation of the suggested remodularization solutions in terms of

usefulness. ... 96

Figure 4.17. Distribution of the types of suggested remodularization operations. 96

Figure 5.1. Illustration of the robustness concept under uncertainty related to the decision

variable x. Solution B is more robust than solution A. ... 104

Figure 5.2. Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGAII

and MOPSO. ... 120

Figure 5.3. 3D projection of the Pareto-Front solutions on the JDI-Ford system. 123

Figure 5.4. The median correctness values (CR) of the recommended refactorings based on 51

runs. The obtained results are statistically analyzed by using the Wilcoxon rank sum test with a

95% confidence level (α = 5%)... 125

Figure 5.5. The impact of code smells severity variations on the robustness of refactoring

solutions for ApacheAnt. The obtained results are statistically analyzed by using the Wilcoxon

rank sum test with a 95% confidence level (α = 5%). .. 125

Figure 5.6. The impact of class importance variation on the robustness of refactoring solutions

for Apache Ant. The obtained results are statistically analyzed by using the Wilcoxon rank sum

test with a 95% confidence level (α = 5%). .. 126

Figure 5.7. Average quality improvements, over 31 runs, on the different systems using NSGA-

III... 151

Figure 5.8. Average percentage of fixed defects, over 31 runs, on the different systems using

NSGA-III. ... 151

Figure 5.9. Average manual and automatic design coherence measures (MP, PR and RE), over

31 runs, on the different systems using NSGA-III. .. 153

Figure 5.10. Value path plots of non-dominated solutions obtained by NSGA-III, DBEA-Eps,

Gr-EA, IBEA, IBEA, and NSGA-II during the median run of the 8-objective refactoring problem

on ArgoUML v0.26. The X-axis represents the different objectives while the Y-axis shows the

variation of fitness values between [0...1]. ... 155

Figure 5.11. Average Computational time values on 31 runs on refactoring ArgoUMLv0.26. . 156

Figure 5.12. Average quality improvements, over 31 runs, on the different systems. 157

Figure 5.13. Average manual and automatic design coherence measures (MP, PR and RE), over

31 runs, on the different systems. ... 158

xiii

Figure 5.14. Average suggested number of refactoring operations, over 31 runs, on the different

systems. ... 159

Figure 5.15. Average of percentages of useful operations (IR), on the different systems using

NSGA-III. ... 159

Figure 5.16. Approach overview. ... 169

Figure 5.17. Recommended refactorings by DINAR ... 179

Figure 5.18. Recommended target classes by our technique for a move method refactoring to

modify. .. 179

Figure 5.19. Three simplified refactoring solutions recommended for JVacation v1.0. 181

Figure 5.20. Four different interaction examples with the developer applied on the refactoring

solutions recommended for JVacation v1.0. ... 182

Figure 5.21. Median manual correctness (MC) value over 31 runs on all the five systems using

the different refactoring techniques with a 99% confidence level (α < 1%). 192

Figure 5.22. Median precision (PR) value over 31 runs on all the five systems using the different

refactoring techniques with a 99% confidence level (α < 1%). .. 193

Figure 5.23. Median recall (RC) value over 31 runs on all the five systems using the different

refactoring techniques with a 99% confidence level (α < 1%). .. 193

Figure 5.24. Median percentage of fixed code smells (NF) value over 31 runs on all the five

systems using the different refactoring techniques with a 99% confidence level (α < 1%). 194

Figure 5.25. Median quality gain (G) value over 31 runs on all the five systems using the

different refactoring techniques with a 99% confidence level (α < 1%). 194

Figure 5.26. Median of manual correctness (MC) of the recommended refactoring at the top k =

1, 5, 10 and 15 with a 99% confidence level (α < 1%). .. 195

Figure 5.27. Median of precision (PR) of the recommended refactoring at the top k = 1, 5, 10 and

15 with a 99% confidence level (α < 1%). .. 196

Figure 5.28. Median percentage of accepted refactorings (NAR), percentage of modified

refactorings (NMR) and percentage of rejected refactorings (NRR) values over 31 runs on all the

five systems with a 99% confidence level (α < 1%). .. 196

Figure 5.29. Productivity difference (T) value on six different tasks performed on JDI-Ford

system. .. 198

xiv

LIST OF APPENDICES

APPENDIX A. LIST OF ALGORITHMS ... 208

APPENDIX B. LIST OF PUBLICATIONS ... 209

xv

ABSTRACT

Successful software must evolve to remain relevant, but this process of evolution can cause the

software design to decay and lead to significantly reduced productivity and even canceled

projects. Several studies show that developers are postponing software maintenance activities

that improve software quality, even while seeking high-quality source code for themselves when

updating existing projects. One reason is that time and money pressures force developers to

neglect improving the quality of their source code. However, a more fundamental reason is that

there is little scientific understanding of how developers restructure/refactor source code for the

purpose of improving program quality, which limits the support that researchers can offer

developers. In fact, developers often need to make trade-offs between code quality, available

resources and delivering a product on time, and such management support is beyond the scope

and capability of existing refactoring engines. In addition, existing fully-automated techniques

are under-utilized because of the lack of flexibility and worries about introducing bugs. While

automation is important, it is essential to understand the points at which human intervention and

decision-making should affect the automation process.

To address the above challenges, the main goal of this thesis is to develop a better

understanding of how to integrate the preferences of software engineers in the maintenance

process. The majority of existing work treats software engineering problems from a single-

objective point of view, where the main goal is to maximize or minimize one objective, e.g.,

correctness, quality, etc. However, most software engineering problems are naturally complex in

which many conflicting objectives need to be optimized such as model transformation to

transform a model from a source to a target language, software refactoring to improve the quality

systems while preserving the behavior, and software remodularization to improve the modularity

of systems. The number of objectives to consider for most of software engineering problems is,

in general, high (more than three objectives); such problems are termed many-objective. In this

xvi

context, the use of traditional multi-objective techniques widely used in software engineering is

clearly not sufficient. The main contributions of this thesis can be summarized as follows:

 Designing, implementing and validating novel scalable many-objective search algorithms for

model transformation, software refactoring and software re-modularization.

 Optimization under uncertainty: This contribution extends the formulation of software

refactoring as a multi-objective problem to take into account the uncertainties related to the

dynamic environment of software development. It enables the generation of robust

refactoring solutions without a high loss of quality.

 Designing, implementing and validating a novel interactive dynamic multi-objective search-

based software refactoring algorithm: The main goal of this contribution is to integrate the

developer in the loop when performing software engineering activities such as software

refactoring. The developers’ feedback is used during the optimization process to converge

towards the user’s region of interest.

The validation of these contributions on both industrial and open source software systems, in

the context of model transformation, software refactoring and software re-modularization, has

shown promising results in helping software engineers in the improvement of their software

quality while performing their regular maintenance tasks.

KEYWORDS

Search-based Software Engineering, Software Refactoring, Software Remodularization, Model-

Driven Engineering, Many-Objective Optimization, Dynamic Interactive Optimization.

1

 Introduction

 Research Context

Software engineering (SE) problems tend to be complex as they usually evolve ambiguous

requirements associated with competing constraints and other external factors. The theoretical

analysis of such complex problems in order to linearly solve them is also very hard as the solving

process has to take into account an exhaustive list of multiples conditions, heterogeneous

decisions and different methodologies to find the optimal solution. To illustrate the complexity

of SE problems, let us consider the Software maintenance cycle. Software maintenance is a key

artifact in managing the continuous evolution of software. Based on IEEE definition [1], the

primary objective of maintenance is to ensure the software quality through its increasing versions

and releases demonstrated by evolving user requirements, adding new features, fixing bugs,

migrating to new environments and other maintainability practices. The previous decades of

software engineering have proven that software maintenance problems tend to be complex, time-

consuming and error-prone. Several surveys have been reporting that the highest portion of

effort, in terms of manpower, money and time, in software project life cycles is being allocated

to maintenance and it can reach up to 90 % of the overall software budget [2]. Therefore,

providing new methodologies to preserve software quality while it’s being changed has become

fundamental to reduce the software maintainability costs.

In this context, the inefficiency of typical software engineering practices has driven the

research towards reformulating traditional software engineering challenges as optimization

problems and consequently deploying search heuristics to solve them. From the search-based

perspective, any SE problem can be defined by a set of conflicting objectives, accompanied

multiples constraints and other factors. Instead of targeting an optimal solution, the meta-

heuristic search has the capability of generating multiple near-optimal solutions that eventually

2 Introduction

represent the best tradeoff between the conflicting objectives while satisfying their constraints. In

spite of the idea of considering SE issues as an optimization problem has been present in

literature since the early decade of software engineering [3], the concept of Search-Based

Software Engineering (SBSE) was coined by Mark Harman in 2001 [4]. It is an approach to

software engineering in which artificial intelligent and search algorithms are deployed to identify

optimal or near optimal but satisfactory solutions. According to Harman [5], SBSE is attractive,

compared with other approaches, as it supports a wide variety of semi-automated, automated and

hybrid techniques when facing complex problems with multiple, competing and conflicting

objectives. SBSE has been showing promising results when compared to deterministic and

exhaustive techniques, in terms of scalability, feasibility, robustness and insight-richness [6].

Since then, Search-based techniques have been widely applied to solve software engineering

problems such as in testing, modularization, refactoring, planning, etc. The concept of SBSE will

be detailed in the next chapter of this thesis.

 Problem Statement

Most existing approaches to address software engineering problems (i.e., model

transformation, design quality, testing, evolution, and comprehension, etc.) from a single

objective point of view, where the main goal is to maximize or minimize one objective (e.g.,

correctness, quality, etc.). However, most SE problems are naturally complex in which many

conflicting objectives need to be optimized such as model transformation, design quality, testing,

etc. The number of objectives to consider for SE problems is, in general, high (more than three

objectives). For example, evaluating the quality of a design after applying refactorings can be

performed using a set of quality metrics where each metric can be considered as an objective. In

this situation, the use of traditional mono-objective and multi-objective techniques, which are

widely used in SBSE, is not sufficient as the context has a high number of objectives.

Recently, researchers have proposed several approaches to tackling many-objective

optimization problems (e.g., objective reduction, new preference ordering relations,

decomposition, etc.). However, these techniques are not explored yet in SBSE [5]. In this

context, this research has been initiated to coin the limitations of the existing techniques due to

the high dimensionality of SE problems by integrating many-objective methodologies.

 3

Furthermore, this research aims to bridge the gap between software engineers and SBSE tools by

integrating the engineer’s preferences and feedback during the search process. To this end, this

research will be firstly introducing the formularization of model transformation as a multi-

objective optimization problem. Secondly, by highlighting the limitations of the multi-objective

optimization, we will be discussing the potential benefits of deploying many-objective

optimization in software engineering. Thirdly, we will be addressing the several challenges

raised during the validation of the many-objective optimization through designing various

algorithms that can be applied in practical software engineering problems associated with mainly

(1) model transformation, (2) software remodularization, and (3) software refactoring.

1.2.1 Model Transformation

Model Transformation plays an important role in Model Driven Engineering (MDE) [7]. The

research efforts by the MDE community have produced various languages and tools for

automating transformations between different modeling environments using mapping rules.

These transformation rules can be implemented using general programming languages such as

Java or C#, graph transformation languages like AGG [8]and VIATRA [9], or specific languages

such as ATL [10] and QVT [11]. Sometimes, transformations are based on invariants that are

explicitly defined as pre-conditions and post-conditions and written in languages such as OCL

[12].

Research Problem 1: One major challenge is to automate transformations while preserving

the quality of the produced models [7]. Thus, the main goal is to reduce the number of possible

errors when defining transformation rules. These transformation errors have different causes

such as transformation logic (rules) or source/target metamodels. Existing approaches and

techniques have been successfully applied to transformation problems with a minimum number

of errors. Especially at the model level, correctness is the gold standard characteristic of models:

it is essential that the user understands exactly how the target model deviates from fidelity to the

source model in order to be able to rely on any results. However, other important objectives are

how to minimize the complexity of transformation rules (e.g. the number of rules, number of

matching in the same rule) while maximizing the quality of target models to obtain well-

designed ones. In fact, reducing rules complexity and improving target models quality are

4 Introduction

important to 1) make rules and target models easy to understand and evolve, 2) find

transformation errors easily, and 3) generate optimal target models.

Research Problem 2: The majority of existing approaches [7] [8] [13] formulate the

transformation problem as a single-objective problem that maximizes rules correctness. In this

case, the proposed transformation rules produce target models without errors. However, these

rules are sometimes complex (e.g., size) and applying them may generate very large target

model. For example, when complex transformation rules are available for mapping from

dynamic Unified Modeling Language (UML) models to Colored Petri Nets (CPN),

systematically applying them generally results in large PNs [13]. This could compromise the

subsequent analysis tasks, which are generally limited by the number of the PNs’ states.

Obtaining large PNs is not usually related to the size of the source models but to the rules

complexity [14]. In addition, it is important to take into consideration the quality of produced

target models (e.g. maximizing good design practices by reducing the number of design defects

[15] in a generated class diagram from a relational schema). Another category of approaches [16]

propose additional steps to minimize complexity, using refactoring operations, after generating

transformation rules. However, it is a difficult and fastidious task to modify, evolve and improve

the quality of already generated complex rules. To this extent, several open questions should be

addressed during the process of generating transformation rules.

1.2.2 Software Remodularization:

Large software systems evolve and become complex quickly, fault-prone and difficult to

maintain. In fact, most of the changes during the evolution of systems such as introducing new

features or fixing bugs are conducted, in general, within strict deadlines and with a minimal

number software developers and engineers. Consequently, these code changes can have a

negative impact on the quality of systems design such as the distribution of the classes in

packages. To address this issue, one of the widely used techniques is software remodularization,

called also software restructuring, which improves the existing decomposition of systems. There

has been much work on different techniques and tools for software remodularization [17] [18]

[19]. Most of these studies addressed the problem of clustering by finding the best

decomposition of a system in terms of modules and not by improving existing modularizations.

 5

In both categories, cohesion and coupling are the main metrics used to improve the quality of

existing packages (e.g. modules) by determining which classes need to be grouped in a package.

Research Problem 1: The majority of existing contributions have formulated the

restructuring problem as a single-objective problem where the goal is to improve the cohesion

and coupling of packages. Even though most of the existing approaches are powerful enough to

provide remodularization solutions, some issues still need to be addressed.

Research Problem 2: One of the most important issues is the semantic coherence of the

design. The restructured program could improve structural metrics but become semantically

incoherent. In this case, the design will become difficult to understand since classes are placed in

wrong packages to improve the structure in terms of cohesion and coupling. Also, the number of

code changes is not considered when suggesting remodularization solutions; the only aim is to

improve the structure of packages independently of the cost of code changes. However, in real-

world scenarios, developers prefer, in general, remodularization solutions that improve the

structure with a minimum number of changes. It is important to minimize code changes to help

developers in understanding the design after applying suggested changes.

Research Problem 3: Existing remodularization studies are also limited to few types of

changes mainly move class and split packages [18] [19]. However, refactoring at the class and

method levels can improve remodularization solutions such as by moving methods between

classes located in different packages. The use of development history can be an efficient aid

when proposing remodularization solutions. For example, packages that were extensively

modified in the past may have a high probability of being also changed in the future. Moreover,

the packages to modify can be similar to some patterns that can be found in the development

history, thus, developers can easily recognize and adapt them.

1.2.3 Software Refactoring:

Software Refactoring is defined as the process of improving code after it has been written by

changing its internal structure without changing its external behavior [15]. The idea is to

reorganize variables, classes and methods to facilitate future adaptations and extensions and

6 Introduction

enhance comprehension. This reorganization is used to improve different aspects of software

quality such as maintainability, extensibility, reusability, etc. Some modern Integrated

Development Environments (IDEs), such as Eclipse, NetBeans, provide semi-automatic support

for applying the most commonly used refactorings, e.g., move method, rename class, etc.

However, automatically suggesting/deciding where and which refactorings to apply is still a real

challenge in Software Engineering. In order to identify which parts of the source code need to be

refactored, most existing work relies on the notion of code smells, also called design defects or

anti-patterns.

Research Problem 1: Most of the existing refactoring work uses a set of more than 3 to 4

quality metrics to evaluate the quality of software design after applying refactoring operations

while quality attributes, as well as design defects, are defined by more than simply 4 metrics.

Consequently, more scalable search-based software refactoring approaches will be beneficial to

handle such rich objective space. However, the difficulty faced when increasing the number of

objectives could be summarized as follows. Firstly, most solutions become equivalent between

each other according to the Pareto dominance relation which deteriorates dramatically the

search’s ability to converge towards the Pareto front and the MOEA behavior becomes very

similar to the random search one. Secondly, a search method requires a very high number of

solutions (some thousands and even more) to cover the Pareto front when the number of

objectives increases, which makes the evolution towards optimal space very expensive.

Research Problem 2: Unlike software bugs, there is no general consensus on how to decide

if a particular design violates a quality attribute. An optimal software design is generally

described using informal or natural language and relies on a subjective interpretation of

developers. Furthermore, different experts can have divergent opinions when identifying possible

refactoring opportunities for the same software design. Overall, evaluating the quality of a design

is subjective. In addition to the presence of false positives that may create a rejection reaction

from development teams, the process of exposing several possible refactoring opportunities, in

terms of candidate solutions to execute, asking the developers to understand their impact, and

selecting one of them to apply, is long, expensive, and not always profitable. Thus, incorporating

 7

Decision Maker (DM) (designer/expert) preferences can facilitate the best solution selection

during the correction process.

Research Problem 3: Fully automated refactoring for large systems involves the

application of a lengthy sequence of refactorings at several levels of the source code. This

becomes impractical when developers have constraints over some parts of the system that need

to remain unchanged. Furthermore, due to the dynamic nature of software development,

developers may want to run a subset of refactoring and postpone others. These constraints are not

being handled in the classic optimization process, leading to refactoring sequences that lack

robustness as their application cannot be accurately determined in practice.

Research Problem 4: Indeed, fully-automated refactoring has several drawbacks as well. It

lacks flexibility since developers have to either accept or reject the entire refactoring solution. It

fails to consider developer perspective and feedback because suggested refactoring solutions

cannot be updated dynamically. It is limited to structural improvements, which leads to

infeasible refactoring solutions, and finally, it proposes a long static list of refactorings to be

applied but developers may not have enough time to apply all of them. Thus, fully-automated

refactoring methods are not useful for floss refactoring where the goal is to maintain good design

quality while modifying existing functionality. The developers have to accept the entire

refactoring solution even though they prefer, in general, step-wise approaches where the process

is interactive and they have total control of the refactorings being applied.

 Proposed Research Contributions

Our primary goal was to explore a higher dimensionality of different SE problems. Problems

belonging to different domains, such as model transformation, software refactoring and

remodularization, have eventually different formulations (objectives, constraints etc.). The

following figure will cluster our contributions according to their application domains.

8 Introduction

Figure 1.1. Distribution of our contributions based on the application domains.

Indeed, various techniques will be associated with different problems based on their

specifications. The validation of these techniques is eventually achieved through rigorous

empirical evaluation of their Pareto-optimal solutions: The qualitative and quantitative

evaluation will be performed on empirical data collected from several open source and industrial

systems. Several comparisons with the related work will be conducted, when possible. Finally,

encapsulating all the implemented algorithms into a common framework that can be practically

used by software engineers when performing software maintenance and evolution activities in a

scalable fashion. In this thesis I have elaborated the following contributions:

1.3.1 Contribution 1: Multi-objective Model Transformation

We introduce a new approach for model transformation using multi-objective optimization.

Our proposal does not require to define rules manually, but only to input a set of source models

and equivalent target models (without traceability links); it generates well-designed target

models/rules without the need to refactor them; it takes in consideration the complexity of the

Multi-objective Model

Transformation

Many-objective Software

Remodularization

Software Refactoring

Under Uncertainty

Many-objective Software

Refactoring

Preference-based Software

Refactoring

Dynamic Interactive

Software Refactoring

[Advances in Computers Journal, 2013]

[ACM Transactions on Software Engineering and Methodology. TOSEM 2015]

[Symposium on Search Based Software

Engineering. SSBSE 2014]

[Empirical Software Engineering Journal.

EMSE 2015]

[International Conference in Software Engineering Workshop.

ICSEw 2014]

[North American Search Based Software Engineering

NasBASE 2015]

[Automated Software Engineering ASE 2015]

[ACM Transactions on Software Engineering and

Methodology. TOSEM 2016]

[Genetic and Evolutionary Computation Conference

GECCO 2014]

[Empirical Software Engineering Journal. EMSE 2016]

 9

generated rules; and it can be applied to any source or target metamodels (independent from

source and target languages). We used three different transformation mechanisms to evaluate our

proposal: class diagrams to relational schemas and vice-versa; and sequence diagrams to colored

Petri nets. The generated rules for both mechanisms achieved high-quality scores with a minimal

set of rules.

1.3.2 Contribution 2: Many-objective Software remodularization

We introduce a novel formulation of the remodularization problem as a many-objective

problem that considers several objectives such as structural improvement, semantic coherence,

number of changes and consistency with history of changes. We consider in the contribution the

use of new operations, comparing to existing remodularization studies including move method,

extract class and merge packages. This work was the subject of an empirical study of our many-

objective technique compared to different existing approaches. The obtained results provide

evidence to support the claim that our proposal is, in average, more efficient than existing

techniques based on a benchmark of four large open source systems and one industrial project.

1.3.3 Contribution 3: High Dimensional and Dynamic Interactive Software refactoring

We focus on the correction of design defects by proposing automated refactoring driven by

metaheuristic search and guided by software quality metrics and used subsequently to address

the problem of automating design improvement. To overcome the previously stated research

problems, we propose several contributions that can be enumerated as follows.

1.3.3.1 Multi-objective Software Refactoring under uncertainty

The work introduces a novel formulation of the refactoring problem as a multi-objective

problem that takes into account the uncertainties related to code smell detection and the dynamic

environment of software development. To the best of our knowledge, this is the first work to use

robust optimization for software refactoring, and the first in SBSE to treat robustness as a helper

objective during the search. We report, in the results section, an empirical study of our robust

technique as applied to 6 open source systems. We compared our approach to random search,

multi-objective particle swarm optimization (MOPSO), and other refactoring techniques. The

10 Introduction

results provide evidence to support the claim that our proposal enables the generation of robust

refactoring solutions without a high loss of quality using a variety of real-world scenarios.

1.3.3.2 Many-objective Software Refactoring

We propose for the first time a scalable search-based software engineering approach based on

NSGA-III where there are 15 different objectives to optimize. Thus, in our approach, automated

refactoring solutions will be evaluated using a set of 15 software quality metrics. NSGA-III is a

very recent many-objective algorithm proposed by Deb et al. [20]. The basic framework remains

similar to the original NSGA-II algorithm [21], with significant changes in its selection

mechanism. This contribution represents the first real-world application of NSGA-III and the

first scalable work that supports the use of 15 objectives to address a software engineering

problem. We implemented our approach and evaluated it on seven large open source systems and

found that, on average, more than 92% of code smells were corrected. The statistical analysis of

our experiments over 31 runs shows that NSGA-III performed significantly better than two other

many-objective techniques (IBEA and MOEA/D), a multi-objective algorithm (NSGA-II) and

two mono-objective approaches.

1.3.3.3 Dynamic Interactive Software Refactoring

We propose, for the first time, the use of innovization (innovation through optimization) [22]

to analyze and explore the Pareto front interactively with the developers. Our innovization

algorithm starts by finding the most frequent refactorings among the set of non-dominated

refactoring solutions. Based on this analysis, the suggested refactorings are ranked and suggested

to the developer one by one. The developer can approve, modify or reject each suggested

refactoring. This feedback is later used to update the ranking of the suggested refactorings. After

a number of introduced code changes (e.g. fix bugs, add new requirements, etc.) and interactions

with the developers, the search is executed again while taking the feedback as constraints to

prune the search space and converge towards a user-preferred region.

We implemented our proposed approach and evaluated it on six open source systems. In

addition, we evaluated our proposal on one industrial system provided by our industrial partner,

i.e., the Ford Motor Company. Statistical analysis of our experiments over 31 runs showed that

our proposal performed significantly better than four existing search-based approaches, and

 11

manual refactorings using Eclipse. The software developers who participated in our experiments

confirmed the relevance of the suggested refactoring and the flexibility of the tool in modifying

and adapting the suggested refactorings.

 Roadmap

The remainder of this thesis is structured as follows:

Chapter 2 reviews related work on model transformation, software remodularization and

software refactoring. Chapter 3 reports our contribution for automating model transformation as

a multi-objective optimization problem and which was published in Advances in Computers

Journal [23]. Chapter 4 introduces software remodularization as a many-objective optimization

that was published in the ACM Transactions on Software Engineering and Methodology [24].

Chapter 5 gathers various contributions related to software refactoring optimization. We present

our Empirical Software Engineering journal paper [25] for the many-objective software

refactoring. For the optimization under uncertainty, our Empirical Software Engineering journal

paper [26] incorporates the robustness in the search process. The third and last part of chapter 5

presents our approach to design the dynamic interactive optimizer. This contribution is illustrated

via our ACM Transactions in Software Engineering and Methodology which is under review.

Chapter 6 presents the conclusions of this dissertation and outlines some directions for future

research

12

 Related work

This chapter highlights the state of the art of existing work related to our proposed

approaches. It starts by defining the concept of software engineering as an optimization problem,

enumerates the related work in our areas of interests: (1) model transformation, (2) software

remodularization, and (3) software refactoring.

 Search-Based Software Engineering

2.1.1 Introduction

Our research is contributions are all gathered under the umbrella of Search-Based Software

Engineering (SBSE). SBSE is defined as the application of search-based approaches to solving

optimization problems in software engineering [4]. Once a software engineering task is framed

as a search problem, there are numerous approaches that can be applied to solving that problem,

from local searches such as exhaustive search and hill-climbing to meta-heuristic searches such

as Genetic Algorithms (GAs) and ant colony optimization. All these techniques offer various

explorations to the search space under various user-tuned parameters. The search results in one

to possibly multiple candidate solutions as the output of the problem being analyzed. The

evaluation process is done through a fitness function that, its optimization, guides the search

towards an optimal or near-optimal state. Thus, the fitness function is calculated based on the

outcome of the solution performance, once executed, to solve the given problem. Such

evaluation can be automatically done in software engineering, unlike other engineering

disciplines, as it is the unique discipline whose artifacts are virtual. This property is one of the

main reasons behind the rapid growth of SBSE in the SE literature and many contributions have

been proposed for various problems, mainly in cost estimation, testing, and maintenance.

13

SBSE is also very generic, by defining a fitness function, a given problem can be tackled by

various search based optimization strategies. SBSE becomes of great value when there is a vast

number of possible combinations of candidate solutions in the search space that their evolution is

guided by a fitness function. A candidate solution can be defined in various ways depending on

the problem formulation, it can be a vector, a graph, a set of rules or a sequence of code changes.

According to Harman [4], SBSE methodology can be summarized in the following steps:

Problem formulation: For multiple candidate solutions to the same problem, the evaluation

of their quality is assessed by a fitness function, which can be defined by the degree of which, it

is meeting the expected result for the problem.

Solution representation: The formulation of a given SE problem is achieved by defining a

possible solution representation that solves that problem

Solution variation: In each search algorithm, the variation operators play the key role of

moving candidate solutions within the search space with the aim of driving them towards optimal

solutions. These recombination operators need to be defined respectfully to the solution

presentation and their application should derive new solutions with eventually different fitness

values. The deployed algorithm has the responsibility to conduct the search and evolve the

candidate solutions until stopping criteria are being met.

Consequently, our tackled SE problems will be presented according to the above-mentioned

steps. Our problem formulation will be using population-based multi-objective genetic

algorithms, where solutions are defined similarly to genes, their reproduction is maintained by

crossover and mutation operators along with the repeated calculation of their fitness values to

select the best solutions and constitute the next generation. Through the generations, solutions

are being guided in the search space using the problem’s fitness functions until stopping criteria

are being met, and an optimum is found.

Based on recent SBSE survey [5], treating SE problems from a single-objective perspective

us insufficient, as most SE problems are naturally complex in which many conflicting objectives

14 Related work

need to be optimized. As a consequence, our formulated problems are defined by many

objectives. This formulation is detailed in the following sub-section.

2.1.2 Many-objective Search-Based Software Engineering

Recently, many-objective optimization has attracted much attention in evolutionary multi-

objective optimization (EMO) which is one of the most active research areas in evolutionary

computation. By definition, a many-objective problem is multi-objective, but with a high number

of objectives M, namely M >3. Analytically, it could be stated as follows:





















.1

1 0)(

1 0)(

)](),...,(),([)(21

,...,nixxx

,...,Q;kxh

,...,P;jxg

xfxfxfxfMin

U
ii

L
i

k

j

T
M

where M is the number of objective functions and is strictly greater than 3, P is the number of

inequality constraints, Q is the number of equality constraints,
L
ix and

U
ix correspond to the

lower and upper bounds of the decision variable ix (i.e., ith component of x). A solution x

satisfying the (P+Q) constraints is said to be feasible and the set of all feasible solutions defines

the feasible search space denoted by Ω.

In this formulation, we consider a minimization MOP since maximization can be easily

transformed to minimization based on the duality principle by negating each objective function.

Over the past two decades, several Multi-Objective Evolutionary Algorithms (MOEAs) have

been proposed with the hope to work with any number of objectives M. Unfortunately, it has

been demonstrated that most MOEAs are ineffective in handling many-objective problems. For

example, NSGA-II, which is one of the most used MOEAs, compares solutions based on their

non-domination ranks. Solutions with higher ranks are emphasized in order to converge to the

Pareto front. When M>3, there is a high probability that almost all population individuals

become non-dominated with each other, resulting in them all being lumped together in a single

rank. Thus, NSGA-II is not able to maintain selection pressure in high-dimensional objective

spaces.

 15

The difficulty faced when solving a many-objective problem can be summarized as follows.

Firstly, most solutions become of equivalent quality to each other according to the Pareto

dominance relation which deteriorates dramatically the search process’ ability to converge

towards the Pareto front and the MOEA behavior becomes very similar to random search.

Secondly, a search method requires a very high number of solutions (some thousands or even

more) to cover the Pareto front when the number of objectives increases. For instance, it has

been shown that in order to find a good approximation of the Pareto front for problems involving

4, 5 and 7 objective functions, the number of required non-dominated solutions is about 62 500,

1 953 125 and 1 708 984 375 respectively, which makes the decision-making task very difficult.

Thirdly, the objective space dimensionality increases significantly which makes promising

search directions very hard to find. Finally, the Pareto front visualization becomes more

complicated for the DM, thereby complicating the interpretation of the MOEA’s results.

Recently, researchers have proposed several solution approaches to tackle many-objective

optimization problems. Table 2.1 illustrates a summary of existing many-objective approaches.

Firstly, we find the objective reduction approach, which involves finding the minimal subset of

objective functions that are in conflict with each other. The main idea is to study the different

conflicts between the objectives. The objective reduction approach attempts to eliminate

objectives that are not essential to describe the Pareto-optimal front. Even when the essential

objectives are four or more, the reduced representation of the problem has a favorable impact on

the search efficiency, computational cost, and decision making. However, although this approach

has solved benchmark problems involving up to 20 objectives, its applicability in real world

setting is not straightforward and it remains to be investigated since most objectives are usually

in conflict with each other in real problems. Secondly, we have the incorporation of decision

maker’s preferences: When the number of objective functions increases, the Pareto optimal

approximation would be composed of a huge number of non-dominated solutions. Consequently,

the selection of the final alternative would be very difficult for the human decision maker (DM).

In reality, the DM is not interested with the whole Pareto front rather than the portion of the front

that best matches his/her preferences, called the Region of Interest (ROI). The main idea is to

exploit the DM’s preferences in order to differentiate between Pareto equivalent solutions so that

we can direct the search towards the ROI on problems involving more than 3 objectives.

16 Related work

Preference-based MOEAs have demonstrated several promising results. Thirdly, we find new

preference ordering relations. Since the Pareto dominance has the ability to differentiate

between solutions with the increased of the number of objectives, researchers have proposed

several new alternative relations. These relations try to circumvent the failure of the Pareto

dominance by using additional information such as the ranks of the particular solution regarding

the different objectives and the related population, but may not be agreeable to the decision

makers. Fourthly, we have decomposition. This technique consists of decomposing the problem

into several sub-problems and then solving these sub-problems simultaneously by exploiting the

parallel search ability of evolutionary algorithms. The most reputable decomposition-based

MOEA is MOEA/D. Finally, we find the use of a predefined multiple targeted search. Inspired

by preference-based MOEAs and the decomposition approach, recently, Deb and Jain [20], have

proposed a new idea that involves guiding the population during the optimization process based

on multiple predefined targets (e.g., reference points, reference direction) in the objective space.

This idea has demonstrated very promising results on MOPs involving up to 15 objectives.

Table 2.1. Recapitulates the stated many-objective approaches.

Table 2.1. Summary of many-objective approaches.

Approach Basic idea Example algorithms
No. of

objectives

Real world many-

objective application

Objective

reduction

Find the minimal subset of

conflicting objectives, then eliminate

the objectives that are not essential to

describe the Pareto optimal front.

1) PCA-NSGA-II

2) PCSEA

10

20

1) Not found

2) Water resource

problem

Incorporating

decision

maker’s

preferences

Exploit DM’s preferences in order to

differentiate between Pareto

equivalent solutions so that we can

direct the search towards the region

of interest instead of the whole front.

1) r-NSGA-II

2) PBEA

3) R-NSGA-II

10

10

10

1) Payment scheduling

negotiation problem

2) Not found

3) Welded beam design

problem

New

preference

ordering

relations

Propose alternative preference

relations that are different from the

Pareto dominance.

1) Preference Order

Ranking–based

algorithm

2) Ranking dominance-

based algorithm

3) IBEA

4) HypE

8

10

5

20

1) Water distribution

problem

2) Not found

3) Software product line

management

4) Not found

Decomposition

Decompose the problem into several

sub-problems and then solve these

subproblems simultaneously by

exploiting the parallel search ability

of EAs.

1) MOEA/D 5 1) Not found

Use of a

predefined

multiple

Guide the population during the

optimization process based on

multiple predefined targets (e.g.,

1) PICEA

2) NSGA-III

10

15

1) Not found

2) Crash-worthiness

Design of Vehicles

 17

targeted search reference points, reference direction)

in the objective space.

The following table summarizes the existing SBSE approaches with the number of objectives

being equal or higher than 5.

Table 2.2. Many-objectives approaches applied in software engineering.

Author(s) Year Title Area Algorithm(s)
Number of

objectives

Z. Liu, H. Guo, D. Li,

T. Han and J. Zhang

[27]

2007

Solving Multi-objective and Fuzzy Multi-

attributive Integrated Technique for QoS Aware

Web Service Selection

Design

Engineering
MOGA 5

H. Wada, P.

Champrasert, J.

Suzuki and K. Oba

[28]

2008
Multiobjective Optimization of SLA- Aware

Service Composition

Design

Engineering
E3-MOGA 10

M. Bowman, L. C.

Briand and Y.

Labiche [29]

2010

Solving the Class Responsibility Assignment

Problem in Object-Oriented Analysis with

Multi-Objective Genetic Algorithms

Design

Engineering
SPEA2 5

T. Kremmel, J.

Kubalik and S. Biffl

[30]

2011

Software Project Portfolio Optimization with

Advanced Multiobjective Evolutionary

Algorithms

Management

Engineering
mPOEMS, 5

D. Rodríguez, M.

Ruiz, J. C. Riquelme

and R. Harrison [31]

2011
Multiobjective Simulation Optimisation in

Software Project Management

Management

Engineering
NSGA-II 5

K. Praditwong, M.

Harman and X. Yao

[32]

2011
Software Module Clustering as a Multi-

Objective Search Problem

Design

Engineering

Two-Archive

GA
5

M. O. Barros [33] 2012

An Analysis of the Effects of Composite

Objectives in Multiobjective Software Module

Clustering

Design

Engineering
NSGA-II 5

T. E. Colanzi and

S.R. Vergilio [34]
2012

Applying Search-Based Optimization to SPL

Architectures: Lessons Learned

Design

Engineering
NSGA-II 5

F. Sarro, F. Ferrucci

and C. Gravino [35]
2012

Single and Multi-Objective GP for Software

Development Effort Estimation

Management

engineering
MOGP 5

A. S. Sayyad, T.

Menzies and H.

Ammar [36]

2013

On the Value of User Preferences in Search-

Based Software Engineering: A Case Study in

Software Product Lines

Requirements

Engineering
IBEA Up to 5

A. S. Sayyad, J.

Ingram and T.

Menzies [37]

2013
Scalable Product Line Configuration: A Straw

to Break the Camel’s Back

Requirements

Engineering
IBEA 5

S. Kalboussi, S.

Bechikh, M.

Kessentini and L.

Ben Said [38]

2014

Preference-Based Many-Objective Evolutionary

Testing Generates Harder Test Cases for

Autonomous Agents

Testing

Engineering
P-MOET 7

A. Ramírez, J R.

Romero and S.

Ventura [39]

2014

On the Performance of Multiple Objective

Evolutionary Algorithms for Software

Architecture Discovery

Design

Engineering

SPEA2, NSGA-

II, ε-MOEA,

MOEA/D, GrEA

6

R. Olaechea, D.

Rayside, J. Guo and

K. Czarnecki [40]

2014

Comparison of Exact and Approximate Multi-

Objective Optimization for Software Product

Lines

Requirements

Engineering
GIA, IBEA Up to 7

A. Panichella, F. M.

Kifetew, P. Tonella

[41]

2015
Reformulating branch coverage as a many-

objective optimization problem

Testing

Engineering
MOSA Up to 1213

We notice from the previous table that some software engineering domains such as model-

driven engineering and software maintenance have not yet been the subject of many-objective

optimization although they are, as we have shown earlier, in need of scalable approaches. This

18 Related work

was our motivation to firstly investigate the applicability of many-objective optimization based

on the currently defined problems and secondly adapt novel algorithms to solve them. The next

section will briefly introduce two main many-objective techniques that we deployed in our

methodology. The following subsections will present the state of the art of our SE areas of

interest i.e. model and code transformation to analyze the existing work and expose its limitation

in handling high dimensional problems.

 Model transformation

Kleppe et al. [42] have provided the following definition of model transformation. A

transformation is the automatic generation of a target model from a source model, according to a

transformation definition. A transformation definition is a set of transformation rules that

together describe how a model in the source language can be transformed into a model in the

target language. A transformation rule is a description of how one or more constructs in the

source language can be transformed into one or more constructs in the target language.

Figure 2.1. Model transformation process.

The closest work to our proposal is model transformation by example (MTBE). The

commonalities of the by-example approaches for model transformation can be summarized as

follows: All approaches define an example as a triple consisting of an input model and its

equivalent output model, and traces between the input and output model elements. These

 19

examples have to be established by the user, preferably in concrete syntax. Then, generalization

techniques such as hard-coded reasoning rules, inductive logic, or relational concept analysis or

pattern are used to derive model transformation rules from the examples, in a deterministic way

that is applicable for all possible input models which have a high similarity with the predefined

examples. One conclusion to be drawn from studying the existing by-example approaches is that

they use semi-automated rules generation, with the generated rules further refined by the user. In

practice, this may be a lengthy process and require a large number of transformation examples to

assure the quality of the inferred rules. In this context, the use of search-based optimization

techniques can be a preferable transformation approach since it directly generates the target

model from the existing examples, without using the rules step. This also leads to a higher degree

of automation than in existing by-example approaches. Table 2.3 summarizes existing

transformation by-example approaches according to given criteria. The majority of these

approaches are specific to exogenous transformation and based on the use of traceability.

Table 2.3. By-example Approaches.

By-example

approaches

Exogenous

transformation (different

languages)

Endogenous

transformation (same

language)

Traceability
Rules

generation

Varrò et al. [9] X X X

Wimmer et al.

[43]
X X X

Sun et al. [44] X X

Dolques et al. [45] X X X

Langler et al. [46] X X X

As shown in the search-based section, like many other domains of software engineering, MDE

is concerned with finding exact solutions to these problems, or those that fall within a specified

acceptance margin. Search-based optimization techniques are well-suited for the purpose. For

example, when testing model transformations, the use of deterministic techniques can be

unfeasible due to the number of possibilities to explore for test case generation, in order to cover

all source meta-model elements. However, the complex nature of MDE problems sometimes

requires the definition of complex fitness functions. Furthermore, the definition is specific to the

problem to solve and necessitate expertise in both search-based and MDE fields. It is thus

20 Related work

desirable to define a generic fitness function, evaluating a quality of a solution that can be

applied to various MDE problems with low adaptation effort and expertise.

To tackle these challenges, our contribution combines search-based and by-example

techniques. The difference with case-based reasoning approaches is that many sub-cases can be

combined to derive a solution, not just the most adequate case. In addition, if a large number of

combinations have to be investigated, the use of search-based techniques becomes beneficial in

terms of search speed to find the best combination.

 Software remodularization

Large systems such as automotive industry applications have to run and evolve over decades.

Most of the industrial systems must evolve and the design is, in general, extended far away the

initial structure. Thus, it is mandatory to restructure the program design to reduce the cost of

possible future evolutions. To this end, software remodularization is an important component in

software maintenance activities.

Object-oriented software modularization consists of regrouping a set of classes C in terms of

packages P. Thus, each package P contains a set of classes. Several types of dependencies

between packages can be found in the literature. In this work, we use the definition of

dependencies between packages defined in [32]. Two main types of dependencies are described:

1- intra-edges dependencies and 2- inter-edges dependencies. The intra-edges include all types of

internal dependencies between classes in the same package such as method call, class reference

and inheritance. The inter-edges include external dependencies between classes that are not in

the same package. As illustrated in Figure 2.2, the system includes 2 packages, 3 intra-edges

such as (c1, c3) and 2 inter-edges such as (c3, c4) for package P1.

 21

Figure 2.2. The dependency graph including two packages, 3 intra-edges and 2 inter-edges.

There have been several developments in search-based approaches to support the automation

of software modularization. The work of Mancoridis et al. [47] was the first search-based

approach to address the problem of software modularization using a single-objective

optimization. Their initial work, to identify the modularization of a software system, is based

hill-climbing to maximize cohesion and minimize coupling. The same technique has been also

used in [48] where the authors present Bunch, a tool supporting automatic system

decomposition. Subsystem decomposition is performed by Bunch by partitioning a graph of

entities and relations in a given source code. To evaluate the quality of the graph partition, a

fitness function is used to find the trade-off between interconnectivity (i.e., dependencies

between the modules of two distinct subsystems) and intraconnectivity (i.e., dependencies

between the modules of the same subsystem), to found out a satisfactory solution. In [49],

Harman et al. use a genetic algorithm to improve the subsystem decomposition of a software

system. The fitness function to maximize is defined using a combination of quality metrics, e.g.,

coupling, cohesion, and complexity. Similarly, Seng et al. [50], treated the remodularization task

as a single-objective optimization problem using the genetic algorithm. The goal is to develop a

methodology for object-oriented systems that, starting from an existing subsystem

decomposition, determines a decomposition with better metric values and fewer violations of

design principles. Abdeen et al. [18] proposed a heuristic search-based approach for

automatically optimizing (i.e., reducing) the dependencies between packages of a software

system using simulated annealing. Their optimization technique is based on moving classes

between the original packages. Taking inspiration from our previous work, Abdeen et al. have

22 Related work

recently extended their initial work to consider the remodularization task as a multi-objective

optimization problem to improve existing packages structure while minimizing the modification

amount on the original design. Using NSGA-II, this optimization approach aims at increasing the

cohesion and reducing the coupling and cyclic connectivity of packages, by modifying as less as

possible the existing packages organization. Praditwong et al. [32] have recently formulated the

software clustering problem as a multi-objective optimization problem. Their work aim at

maximizing the modularization quality measurement; minimizing the inter-package

dependencies; increasing intra-package dependencies; maximizing the number of clusters having

similar sizes; and minimizing the number of isolated clusters.

Most of the remodularization approaches in the literature are based on information derived

only from structural metrics to modularize/restructure the original package organization.

However, this is not enough to produce a semantically coherent design. The first attempt that

addresses this problem was by Bavota et al. [51] who proposed an automated, single-objective,

approach to split an existing package into smaller but more cohesive ones. The proposed

approach analyzes the structural and semantic relationships between classes in a package

identifying chains of strongly related classes. The identified chains are used to define new

packages with higher cohesion than the original package. This work has been extended in [19],

to propose an interactive multi-objective remodularization approach. The proposed Interactive

Genetic Algorithms (IGAs) aims at integrating developer's knowledge in a remodularization

task. Specifically, the proposed algorithm uses a fitness composed of automatically-evaluated

factors (accounting for the modularization quality achieved by the solution) and a human-

evaluated factor, penalizing cases where the way remodularization places components into

modules is considered meaningless by the developer. One of the limitations of this approach is

that, in each generation of the remodularization process, end users should analyze the suggested

solution, class-by-class and package-by-package, and provide their feedback. User feedback can

be either about classes which should stay together, or not, and/or about small/isolated clusters.

This is not always profitable when we deal with industrial size software projects, and it need

expert users to suitably drive the optimization process.

 23

The semantic meaningfulness of the recommended restructuration is a fundamental issue when

automatically modifying a software design. The first attempt to integrate the semantic coherence

of when automatically modifying the software design was in [52]. Similarly to the related work,

the remodularization approach uses the combination of semantic and structural information

captured in the package and class levels to suggest more meaningful remodularization and better

decide how to group together, split, or move, (or not) certain code elements. Furthermore, while

automatic remodularization approaches proved to be very effective to increase cohesiveness and

reduce coupling of software modules, they do not take into account the history of changes that

provide a lot of information that is very useful in automating many software maintenance tasks.

One of the characteristics of our approach is that it exploits the change history that represents an

effective way to produce more meaningful remodularization. Another issue is that the majority of

existing remodularization approaches considers only moving classes or grouping/splitting

packages; however, none considered move methods/fields among classes in different packages.

Hence, sometimes, it is enough to move only a method or a field between two classes in two

different packages to reduce the dependency between them.

To illustrate some of the limitation of the related work, Figure 2 shows a concrete example

extracted from GanttProject v1.10.2, a well-known Java open-source project management

software. We consider a design fragment containing four packages net.sourceforge.ganttproject,

net.sourceforge.ganttproject.document, net.sourceforge.ganttproject.gui, and

net.sourceforge.ganttproject.task. The largest package in GanttProject v1.10.2 is

net.sourceforge.ganttproject including more than 40 classes, comparing to all other packages,

implementing several features in one package. All the twelve software engineers that we asked in

our experiments agreed that net.sourceforge.ganttproject is a large package that monopolizes the

behavior of a large part of the system.

We consider an example of a remodularization solution that consists of moving some classes

from the package net.sourceforge.ganttproject to the package

net.sourceforge.ganttproject.document. This operation can improve the modularization quality

by reducing the number of classes/functionalities of the package net.sourceforge.ganttproject.

However, from the semantics coherence standpoint, all the classes of

24 Related work

net.sourceforge.ganttproject.document are different from those implemented in

net.sourceforge.ganttproject since they implement a feature to open streams to a project file.

Based on the semantic and structural information, using respectively a vocabulary-based

similarity, and cohesion/coupling, many other target packages are possible including

net.sourceforge.ganttproject.gui, and net.sourceforge.ganttproject.task. These two packages

have almost the same structure based on metrics such as number of classes and their semantic

similarity is close to net.sourceforge.ganttproject using a vocabulary-based measure, or cohesion

and coupling. On the other hand, from previous versions of GanttProject, we recorded that there

are some classes (e.g. TaskManagerImpl) that have been moved from the package

net.sourceforge.ganttproject to the package net.sourceforge.ganttproject.task. As a consequence,

moving from the package net.sourceforge.ganttproject to the package

net.sourceforge.ganttproject.task has higher correctness probability than moving classes between

the remaining packages. Thus, some classes can be moved between these two packages such as

GanttTask, GanttTaskPropertiesBean and GanttTaskRelationship. The direction of class

movement should be taken into account while analyzing the history of changes to find

similarities.

Based on these observations, we believe that it is important to consider additional objectives

rather than using only structural metrics to improve the automation of software remodularization.

However, in most of the existing remodularization work, semantic coherence, code changes, and

development history are not considered. Thus, the remodularization process needs a manual

inspection by the user to evaluate the meaningfulness/feasibility of proposed changes that mainly

improve structural metrics. The inspection aims at verifying if these changes could produce

semantic incoherence in the program design. For large systems, this manual inspection is

complex, time-consuming and error-prone. Improving the packages structure, minimizing

semantic incoherencies, reducing code changes, and keeping consistent with development

change history may be conflicting. In some cases, improving the program modularization could

provide a design that does not make sense semantically or could change radically the initial

design. For these reasons, a good remodularization strategy needs to find a compromise between

all of these objectives. In addition, moving classes and splitting packages are not enough code

 25

changes to improve the remodularization of systems. These observations are at the origin of the

work described in Chapter 4:

Figure 2.3. Motivating example extracted from GanttProject v1.10.2.

 Software refactoring

Refactoring is defined as the process of improving code after it has been written by changing

its internal structure without changing its external behavior. The idea is to reorganize variables,

classes and methods to facilitate future adaptations and extensions and enhance comprehension.

This reorganization is used to improve different aspects of software quality such as

maintainability, extensibility, reusability, etc. Some modern Integrated Development

Environments (IDEs), such as Eclipse, NetBeans, provide semi-automatic support for applying

the most commonly used refactorings, e.g., move method, rename class, etc. However,

automatically suggesting/deciding where and which refactorings to apply is still a real challenge

in Software Engineering. In order to identify which parts of the source code need to be

refactored, most existing work relies on the notion of code smells, also called design defects or

anti-patterns.

The impact of code smells on software systems has been the subject of several studies over the

past decade since their first introduction by Fowler [15]. He defined 22 code smells as structural

26 Related work

code flaws that may decrease the overall software quality and serve as indicators of potential

issues related to software evolution and maintenance. To cope with these smells, Fowler has

introduced a set of 72 Refactoring operations to fix code smells and thus improving the system

overall design.

The detection process can either be manual, semi-automated or fully automated. Mäntylä et al.

[53] provided an initial formalization of the code smells, in terms of metrics, based on analyzing

Fowler’s smells description, they studied the correlation between the smells and provided a

classification according to their similarity. Mäntylä revealed that the manual detection of smells

is dependent on the level of expertise of detection performers, which represents one of the main

limitation of this approach. Marinescu et al. [54] presented an automated framework for smells

identification using detection strategies which are defined by metric-based rules. Moha et al. [55]

presented a semi-automated technique called DECOR. This framework allows subjects to

manually suggest their own defects through their description with domain specific language, then

the framework automatically searches for smells and visually reports any finding. Most of the

above-mentioned work focus mainly on smells specification in order to improve their detection,

for the correction step, their proposals were limited to guidance on how to manually manage

these smells by suggesting refactoring recommendations according to detected smell’s type.

Similarly to the detection’s state of the art, refactoring techniques can be either manual, semi-

automated or fully automated. Fowler [15] manually linked a set of suggested refactorings

(Move Attribute, Extract Class, Move Method etc.) with each identified smell. Van Emden et al.

[56] focused on the detection of two code smells related to the Java language and suggested their

specific correction. Martin [57] has used patterns to cope with the poor system design in the

presence of code smells. Mäntylä proposed refactoring solutions based on developers’ opinions

and driven by an automatic detection of structural anomalies at the source code level. Counsell et

al. [58] refined Fowler’s suggested refactorings by prioritizing some refactorings in the

execution order. Piveta el al. [59] discussed when refactoring opportunities are eventually needed

when detecting bad smells in aspect-oriented software. Meananeatra [60] presented another

semi-automated heuristic for refactoring, it generates a graph or refactoring sequences that are

 27

being refined using three main objectives to minimize the number of code smells, the number of

refactorings and the number of refactored code elements.

JDeodorant [61] is an automated refactoring tool implemented as an Eclipse plug-in that

identifies some types of design defects using quality metrics and then proposes a list of

refactoring strategies to fix them. Du Bois et al. [62] has investigated decreasing coupling and

increasing cohesion metrics through the refactoring opportunities and use this to perform an

optimal distribution of features over classes. They analyze how refactorings manipulate coupling

and cohesion metrics, and how to identify refactoring opportunities that improve these metrics.

However, this approach is limited to only some possible refactoring operations with few number

of quality metrics. Murphy-Hill et al. [63] proposed several techniques and empirical studies to

support refactoring activities. The authors proposed new tools to assist software engineers in

applying refactoring such as selection assistant, box view, and refactoring annotation based on

structural information and program analysis techniques. Recently, in [64] the authors have

proposed a new refactoring tool called GhostFactor that allows the developer to transform code

manually but check the correctness of the transformation automatically. BeneFactor [65] and

WitchDoctor [66] can detect manual refactorings and then complete them automatically.

Tahvildari et al. [67] also proposed a framework of object-oriented metrics used to suggest to the

software engineer refactoring opportunities to improve the quality of an object-oriented legacy

system. Dig et al. [68] proposed an interactive refactoring technique to improve the parallelism

of software systems. Other contributions are based on rules that can be expressed as assertions

(invariants, pre- and post-conditions). Kataoka et al. [69] used invariants in the detection and

extraction of source code fragments in need of refactoring.

Search-based refactoring represents fully automated refactoring driven by metaheuristic search

and guided by software quality metrics and used subsequently to address the problem of

automating design improvement. Seng et al. [50] propose a search-based technique that uses a

genetic algorithm over refactoring sequences. The employed metrics are mainly related to

various class level properties such as coupling, cohesion, complexity and stability. The approach

was limited only to the use of one refactoring operation type, namely 'move method'. In contrast

to O’Keeffe et al. [70], their fitness function is based on well-known measures of coupling

28 Related work

between program components. Both these approaches use weighted-sum to combine metrics into

a fitness function, which is of practical value but is a questionable operation on ordinal metric

values. Kessentini et al. [71] also propose a single-objective combinatorial optimization using a

genetic algorithm to find the best sequence of refactoring operations that improve the quality of

the code by minimizing as much as possible the number of code smells detected using a set of

quality metrics. In [72] population-based direct approaches have been used in finding the local

beam search for locating best refactoring solutions.

Harman and Tratt were the first to introduce the concept of Pareto optimality to search-based

refactoring [6]. They use it to combine two metrics into a fitness function, namely CBO

(coupling between objects) and SDMPC (standard deviation of methods per class) and

demonstrate that it has several advantages over the weighted-sum approach. More recent work

on multi-objective search-based refactoring is the work by Ouni et al. [52] who propose a multi-

objective optimization approach to find the best sequence of refactorings using NSGA-II. The

proposed approach is based on two objective functions, quality (proportion of corrected code

smells) and code modification effort, to recommend a sequence of refactorings that provide the

best trade-off between quality and effort.

29

 Model Transformation

 Introduction

Model Transformation plays an important role in Model Driven Engineering (MDE) [7]. The

research efforts by the MDE community have produced various languages and tools for

automating transformations between different formalisms using mapping rules. These

transformation rules can be implemented using general programming languages such as Java or

C#; graph transformation languages like AGG [8] and VIATRA [9]; or specific languages such

as ATL [73] and QVT [11]. Sometimes, transformations are based on invariants (pre-conditions

and post-conditions specified in languages such as OCL [12]).

One major challenge is to automate transformations while preserving the quality of the

produced models [7]. Thus, the main goal is to reduce the number of possible errors when

defining transformation rules. These transformation errors have different causes such as

transformation logic (rules) or source/target metamodels. Existing approaches and techniques

have been successfully applied to transformation problems with a minimum number of errors.

Especially at the model level, correctness is the gold standard characteristic of models: it is

essential that the user understands exactly how the target model deviates from fidelity to the

source model in order to be able to rely on any results. However, other important objectives are

how to minimize the complexity of transformation rules (e.g. the number of rules, number of

matching in the same rule) while maximizing the quality of target models to obtain well-

designed ones. In fact, reducing rules complexity and improving target models quality are

important to 1) make rules and target models easy to understand and evolve, 2) find

transformation errors easily, and 3) generate optimal target models.

30 Model Transformation

The majority of existing approaches formulate the transformation problem as a single-

objective problem that maximizes rules correctness. In this case, the proposed transformation

rules produce target models without errors. However, these rules are sometimes complex (e.g.,

size) and applying them may generate very large target model. For example, when complex

transformation rules are available for mapping from dynamic Unified Modeling Language

(UML) models to Colored Petri Nets (CPN), systematically applying them generally results in

large PNs [13]. This could compromise the subsequent analysis tasks, which are generally

limited by the number of the PNs’ states. Obtaining large PNs is not usually related to the size of

the source models but to the rules complexity [14]. In addition, it is important to take into

consideration the quality of produced target models (e.g. maximizing good design practices by

reducing the number of bad smells in a generated class diagram from a relational schema).

Another category of approaches proposes an additional step to minimize complexity, using

refactoring operations, after generating transformation rules [16]. However, it is a difficult and

fastidious task to modify, evolve and improve the quality of already generated complex rules.

In this chapter, to overcome some of the above-mentioned limitations, we propose to

alternatively view transformation rules generation as a multi-objective problem. We generate

solutions matching the source metamodel elements to their equivalent target ones, taking in

consideration two objectives: 1) minimizing rules’ complexity and 2) maximizing target-models’

quality. We start by randomly generating a set of rules, executing them on different source

models to generate some target models, and then evaluate the quality of the proposed solution

(rules). Of course, during the optimization process, we select only solutions ensuring full

correctness (generating correct target models/rules). Correctness is the gold standard

characteristic of models: it is essential that the user understands exactly how the target model

deviates from fidelity to the source model in order to be able to rely on any results. To ensure the

transformation correctness, we used a list of constraints to satisfy when generating target models.

For the first objective, it calculates the number of rules and number of matching metamodels in

each rule (one-to-one, many-to-one, etc.). For the second objective, we use a set of software

quality metrics to evaluate the quality of generated target models. To search for solutions, we

selected and adapted, from the existing Multi-Objective Evolutionary Algorithms (MOEAs), the

Non-dominated Sorting Genetic Algorithm (NSGA-II) [21]. NSGA-II aims to find a set of

 31

representative Pareto-optimal solutions in a single run. In our case, the evaluation of these

solutions is based on the two mentioned conflicting criteria.

The primary contributions of the chapter can be summarized as follows:

1. We introduce a new approach for model transformation using multi-objective techniques.

Our proposal does not require to define rules manually, but only to input a set of source models

and equivalent target models (without traceability links); it generates well-designed target

models/rules without the need to refactor them; it takes in consideration the complexity of the

generated rules; and it can be applied to any source or target metamodels (independent from

source and target languages). However, different limitations are discussed in the discussion

section.

2. We report the results of an evaluation of our approach; we used three different

transformation mechanisms to evaluate our proposal: class diagrams to relational schemas and

vice-versa; and sequence diagrams to colored Petri nets. The generated rules for both

mechanisms achieved high-quality scores with a minimal set of rules.

 Approach

3.2.1 Automated model transformation

A model transformation mechanism takes as input a model to transform, the source model, and

produces as output another model, the target model. The source and target models must conform

to specific metamodels and, usually, relatively complex transformation rules are defined to

ensure this.

We can illustrate this definition of the model transformation mechanism with the case of Class

Diagram (CLD) to Relational Schema (RS) transformation. Our choice of CLD-to-RS

transformation is motivated by the fact that it is well known and reasonably complex; this allows

us to focus on describing the technical aspects of our approach. In the validation section, we

show that our approach can also be applied to more complex transformations such as sequence

diagrams to CPNs.

32 Model Transformation

Figure 3.1.a shows a simplified metamodel of the UML class diagram, containing concepts like

class, attribute, relationship between classes, etc. Figure 3.1.b shows a partial view of the

relational schema metamodel, composed of table, column, attribute, etc. The transformation

mechanism, based on rules, will then specify how the persistent classes, their attributes and their

associations should be transformed into tables, columns and keys.

(a) Class diagram metamodel

(b) Relational schema metamodel

Figure 3.1. Class diagram and relational schema metamodels.

Figure 3.2 shows the example of a source model as class diagram containing 4 classes, and 2

association links. It shows also the associated target model expressed as a RS. 4 classes are

mapped to tables (Client, Order, OrderDetails and Product). The two association links become

foreign keys. Finally, attributes in subclasses are mapped into columns of the table derived from

the parent class. The class diagram to relational schema transformation is used to illustrate our

approach described in the rest of this chapter.

 33

(a) Class diagram example

(b) Relational schema diagram example

Figure 3.2. Class diagram (source model) with equivalent relational schema diagram (target model).

The general structure of our approach is introduced in Figure 3.3. The following two

subsections give more details about our proposals. As described in Figure 3.3, the number of

source models and the expected target ones is used to generate the transformation rules. In fact,

our approach takes as inputs a set of source models with their equivalent target models, a list of

quality metrics and another list of constraints (to ensure transformation correctness) and takes as

controlling parameters a list of source and target metamodel elements. Our approach generates a

set of rules as output.

34 Model Transformation

Figure 3.3. Overview of the approach: general architecture.

The rule generation process combines source and target metamodel elements within rule

expressions. Some logical expressions (union OR; intersection AND) can be used to combine

between metamodel elements. Consequently, a solution to the transformation problem is a set of

rules that best transform the source models to target models within the satisfaction of the list of

all transformation-constraints. For example, the following rule states that a class is transformed

into a table with the same name having a primary key:

R1: IF Class(A) THEN Table(A) AND Column(idA, A, pk).

In this example of a rule, class, table and primary key column correspond to some elements

extracted from the source and target metamodels. The first part of the rule contains only elements

from the source metamodel. Consequently, the second part of the rule contains only elements

from the target metamodel.

To ensure the transformation correctness when generating transformation rules, the idea is that

the transformation of source models into target models is coupled with a contract consisting of

pre- and post-conditions. Hence, the transformation is tested with a range of source models that

satisfy the pre-conditions to ensure that it always yield target models that satisfy the post-

conditions. If the transformation produces an output model that violates a post-condition, then

the contract is not satisfied and the transformation needs to be corrected. The contract is defined

 35

at the metamodel level and conditions are generally expressed in OCL. We used these constraints

as input in our approach.

After ensuring the transformation correctness, our multi-objective optimization process uses

two criteria to evaluate the generated solutions. The first criterion consists of minimizing the

rules complexity by reducing the number of rules and the number of matching metamodels in

each rule. The second criterion consists of maximizing the quality of generated target models

based on different quality metrics. Quality metrics provide useful information that helps to assess

the level of conformance of a software system to the desired quality such as evolvability and

reusability. For instance, [16] propose different metrics to evaluate the quality of relational

schemas such as: Depth of Relational Tree of a table T (DRT(T)) which is defined as the longest

referential path between tables, from the table T to any other table in the schema database;

Referential Degree of a table T (RD(T)) consists of the number of foreign keys in the table T;

Percentage of complex columns PCC(T) metric of a table T; and Size of a Schema (SS) defined

as the sum of the tables size (TS) in the schema.

We selected also a set of quality metrics that can be applied on class diagrams as target models.

These metrics include: Number of associations (Naccoc): the total number of associations;

Number of aggregations (Nagg): the total number of aggregation relationships; Number of

dependencies (Ndep): the total number of dependency relationships; Number of generalizations

(Ngen): the total number of generalization relationships (each parent-child pair in a

generalization relationship); Number of aggregations hierarchies (NAggH): the total number of

aggregation hierarchies; Number of generalization hierarchies (NGenH): the total number of

generalization hierarchies; Maximum DIT (MaxDIT): the maximum of the DIT (Depth of

Inheritance Tree) values for each class in a class diagram. The DIT value for a class within a

generalization hierarchy is the longest path from the class to the root of the hierarchy; Number of

attributes (NA): the total number of attributes; Number of methods (LOCMETHOD): the total

number of methods; and Number of private attributes (NPRIVFIELD): number of private

attributes in a specific class.

During the multi-objective optimization process, our approach combines randomly source and

target metamodel elements within logical expressions (union OR; intersection AND) to create

36 Model Transformation

rules. In this case, the number n of possible combinations is very large. The rule generation

process consists of finding the best combination between m source metamodel elements and k

target metamodel elements. In addition, a huge number of possibilities to execute the

transformation rules exist (rules execution sequence). In this context, the number NR of possible

combinations that have to be explored is given by: NR = ((n+k)!)m

This value quickly becomes huge. Consequently, the rule generation process is a combinatorial

optimization problem. As any solution must satisfy two criteria (complexity and quality), we

propose to consider the search as a multi-objective optimization problem instead of a single-

objective one. To this end, we propose an adaptation of the NSGA-II. This algorithm and its

adaptation are described in the next sub-section.

3.2.2 NSGA-II adaptation

We adapted NSGA-II to the problem of generating transformation rules, taking in

consideration both complexity and models quality dimensions. We consider each one of these

criteria as a separate objective for NSGA-II. The pseudo-code for the algorithm is given in

Algorithm 3.1.

Algorithm 3.1. High-level pseudo-code for NSGA-II adaptation to our problem.

Input: Source metamodel elements SMM - Target metamodel elements TMM - source models SM

Input: Correctness constraints CC - Quality metrics QM

Output: Near-optimal transformation rules

1: initial_population(P, Max_size)

2: P0:= set_of(S)

3: S:= set_of(Rules:SMM:TMM)

4: SM:= Source_Models

5: t:=0

6: repeat

7: Qt:= Gen_Operators(Pt)

8: Rt:=Pt U Qt

9: for all Si Rt do

10: TM:= execute_rules(Rules, SM);

11: Correctness(Si) := calculate_constraintsCoverage(SM, TM, CC);

12: if (calculate_constraintsCoverage(SM, TM, CC) ==1) then



 37

13: Complexity(Si) := calculate_Complexity(Rules);

14: QualityModels(Si) := calculate_qualityModels(TM, QM);

15: else

16: Complexity(Si) == 0;

17: QualityModels(Si) == 0;

18: End if

19: end for

20: F:=fast-non-dominated-sort(Rt)

21: Pt+1 :=Ø

22: while |Pt+1|<Max_size

23: Fi := crowding_distance_assignment(Fi)

24: Pt+1 := Pt+1+Fi

25: end while

26: Pt+1 :=Pt+1[0:Max_size]

27: t:=t+1;

28: until t=max_it

29: best_solution = First_front(Rt)

30: return best_solution

As Algorithm 3.1 shows, the algorithm takes as input a set of source and target metamodel

elements, and a set of source models and its equivalent target ones. Lines 1–5 construct an initial

population based on a specific representation, using the list of metamodels elements given at the

inputs. Thus, the initial population stands for a set of possible transformation rules solutions that

represent a set of source and target metamodel elements selected and combined randomly. Lines

6–30 encode the main NSGA-II loop whose goal is to make a population of candidate solutions

evolves toward the best rules combination, i.e., the one that minimizes as much as possible the

number of rules and matching metamodels in the same rule, and maximizes the target models

quality by improving quality metrics values. During each iteration t, a child population Qt is

generated from a parent generation Pt (line 7) using genetic operators. Then, Qt and Pt are

assembled in order to create a global population Rt (line 8). After that, each solution Si in the

population Rt is evaluated using the two fitness functions, complexity and quality (lines 11-18):

 Complexity function (line 13) calculates the number of rules and matching metamodels in

each rule.

38 Model Transformation

 Quality function (line 14) represents the quality score of target models based on a

combination of quality metrics.

These two functions take the value 0 if the transformation-correctness is not ensured. The

correctness function (line 11) represents the percentage of source/target metamodel constraints

that are satisfied by the proposed solution Si. We consider during the optimization process only

solutions that satisfy all correctness constraints.

Once quality and complexity are calculated, solutions are sorted in order to return a list of non-

dominated fronts F (line 20). When the whole current population is sorted, the next population

Pt+1 will be created using solutions that are selected from sorted fronts F (lines 21-26). When two

solutions are in the same front, i.e., same dominance, they are sorted by the crowding distance, a

measure of density in the neighborhood of a solution. The algorithm terminates (line 28) when it

achieves the termination criterion (maximum iteration number). The algorithm returns the best

solutions that are extracted from the first front of the last iteration (line 29).

We give more details in the following sub-sections about the representation of solutions, genetic

operators, and the fitness functions.

3.2.2.1 Solution representation

An individual is a set of declarative IF – THEN rules. To ease the manipulation of the source

and target metamodels and their transformation, the metamodels are described using a set of

predicates that correspond to the included element. For example, Figure 3.4 shows the rule

interpretation of an individual containing two rules. So, the mapping between predicates Class

(A) and Table (A) indicates that class A is transformed into a table with the same name.

Similarly, the mapping between Association(1,n,1,n,N,A, B) and ‘Table(N) AND Column(idA,

N,pfk) AND Column(idB, N,pfk)’ indicates that the association link N is transformed into a table

with the same name containing two primary-foreign keys pfk, idA and idB which are primary

keys respectively in tables A and B.

Rule 1: Class(A) THEN Table(A)

Rule 2: Association(1,n,1,n,N,A, B). THEN Table(N) AND Column(idA, N,pfk) AND

Column(idB, N,pfk).

 39

Figure 3.4. Rule interpretation of an individual.

Consequently, a transformation rule has the following structure:

IF “Combination of source metamodel elements” THEN “Combination of target metamodel

elements”

As it is shown in Figure 3.4, the IF clause contains a combination of source metamodel

elements. These elements are combined using logic operators (AND, OR). Consequently, THEN

clauses highlight the equivalent target metamodel elements. Some other additional rules

determine the sequence of applying transformation rules.

One of the most suitable computer representations of rules is based on the use of trees. In our

case, the rule interpretation of an individual will be handled by a tree representation which is

composed of two types of nodes: terminals and functions. The terminals (leaf nodes of a tree)

correspond to source or target metamodel elements. The functions that can be used between

these elements correspond to logical operators, which are Union (OR) and Intersection (AND).

Figure 3.5. Solution representation.

Consequently, the rule interpretation of the individual of Figure 3.4 has the following tree

representation of Figure 3.5. The sequence of applying the rules is determined randomly.

40 Model Transformation

3.2.2.2 Generation of an initial population

To generate an initial population, we start by defining the maximum tree length including the

number of nodes and levels. Because the individuals will evolve with different tree lengths

(structures), we randomly assign for each one:

 One source or target metamodel element to each terminal node

 A logic operator (AND, OR) to each function node

3.2.2.3 Selection and genetic operations

Selection: There are many selection strategies where fittest individuals are allocated more copies

in the next generations than the other ones. Thus, to guide the selection process, NSGA-II uses a

comparison operator based on a calculation of the crowding distance to select potential

individuals to construct a new population Pt+1. Furthermore, for our initial prototype, we used

Stochastic Universal Sampling (SUS) to derive a child population Qt from a parent population Pt,

in which each individual’s probability of selection is directly proportional to its relative overall

fitness value (average score of the two fitness values) in the population. We use SUS to select

elements from Pt that represents the best elements to be reproduced in the child population Qt

using genetic operators such as mutation and crossover.

Crossover: Two parent individuals are selected, and a sub-tree is picked on each one. Then, the

crossover operator swaps the nodes and their relative sub-trees from one parent to the other. Each

child thus combines information from both parents.

Figure 7 shows an example of the crossover process. In fact, the rule R1 and a rule R2 are

combined to generate two new rules. The right sub-tree of R1 is swapped with the left sub-tree of

R2.

 41

Figure 3.6. Crossover operator.

Mutation: The mutation operator can be applied either to function or terminal nodes. This

operator can modify one or many nodes. Given a selected individual, the mutation operator first

randomly selects a node in the tree representation of the individual. Then, if the selected node is

a terminal (source or target metamodel element), it is replaced by another terminal (another

metamodel element).

If the selected node is a function (AND operator, for example), it is replaced by a new function

(i.e. AND becomes OR). If a tree mutation is to be carried out, the node and its subtrees are

replaced by a new randomly generated sub-tree.

Figure 3.7. Mutation operator.

42 Model Transformation

To illustrate the mutation process, consider again the example that corresponds to a candidate

rule. Figure 8 illustrates the effect of a mutation that modifies the metamodel element association

link in the rule R1. Thus, after applying the mutation operator the new rule R1 will be:

Rule 1: Association (0,n,0,n,N,A, B). THEN Table(A)

When the cross-over and mutation operators are executed, many pre and post-conditions should

be satisfied to ensure that the rules modifications are valid. We specified these conditions for

each metamodel element.

1.1.1 Multi-criteria evaluation

In the majority of existing work, the fitness function evaluates a generated solution by

verifying its ability to ensure transformation correctness. In our case, in addition to ensuring

transformation correctness we define two new fitness functions in our NSGA-II adaptation: (1)

rules complexity and (2) target models quality.

To ensure transformation correctness, different constraints are defined manually including two

parts: pre and post conditions. The pre-conditions constrain the set of valid models and the post-

conditions declare a set of properties that can be expected in the output model. For example, a

table should contain at least one primarily key or a foreign key should be a primary key in

another table. As described in Figure 4, the transformation correctness constraints are verified

before evaluating the rules-complexity and models-quality. If the proposed solution generates

correct transformation rules then complexity and quality criterion can be evaluated. Thus, the

correctness C parameter takes 1 if all constraints are satisfied otherwise 0:






otherwise 0,

satisfied are sconstraint scorrectnesation transformall if 1,
 C

Complexity criterion: In our approach, we define the complexity function, to minimize, as the

sum of number of generated rules and number of metamodel elements in each rule:

)(1 mncf 

(3.1)

 43

Where n is the number of rules to define and m is the number of metamodel elements in the same

rule. Of course, the complexity function takes 0 if the transformation correctness is not ensured

(c =0).

Quality criterion: The quality criterion is evaluated using the fitness function given in Equation

(2). The quality value increases when the metrics values (mi) are in the range of well-designed

models thresholds (mi,best_minOrmax). This function, to minimize, returns a real value that represents

the difference between good metrics values (expected) and those extracted from the generated

target models. The choice of good metrics thresholds is based on our previous works in models

quality improvements.

 



nbMetrics

i

iiii mmmmMinf
0

max,min, ,
2

(3.2)

In this case, the quality of generated target models is maximized when f2 is minimized. To

illustrate the fitness function, we consider that a solution generated contains these four rules:

R1: IF Class(A) THEN Table(A) AND Column(idA,A,pk).

R2: IF Attribute(a,A) THEN Column(a,A,_).

R3: IF Association(0,1,0,n,N,A,B) THEN Column(idA,B,fk).

R4: IF Association(1,n,1,n,N,A, B) THEN Table(N) AND Column(idA,idB,N,pfk).

To evaluate this solution, let’s consider the class diagram source model of Figure 3.2.a. After

executing this set of four rules, we obtain the relational schema target model of Figure 3.2.b. We

consider, for example, that the correctness is ensured based on two constraints: C1) each table

should contain, at least, one primary key; and C2) a foreign key in table A should be a primary

key in another table B. To evaluate the design quality of target models, we are using two quality

metrics:

 Referential Degree of a table T (RD(T)) consists of the number of foreign keys in the

schema: m1,best = (min = 1; max = 3)

44 Model Transformation

 Size of a Schema (SS) defined as the sum of the tables size (TS) in the schema: m2,best =

(min = 3; max = 5)

In such scenario, the parameters of the complexity fitness function take the following values:

c=1 since both correctness constraints are satisfied by the target model; n=4 which corresponds

to the number of rules; m=3+2+2+3 =10 (number of matching metamodels). Thus, the

complexity score of the generated solution is:

14)104(11 f

Regarding the quality dimension, based on Figure 3.2.b RD and SS take, respectively, the value

3 (0+1+2+0) and 4. Thus, the quality fitness function is defined as follow:

    11045,4333,31
2

 MinMinf

 Validation

To evaluate the feasibility of our approach, we conducted an experiment with three

transformation mechanisms. We start by presenting our research questions. Then, we describe

and discuss the obtained results.

3.3.1 Research Questions

Our study addresses two research questions, which are defined here. We also explain how our

experiments are designed to address them. The goal of the study is to evaluate the efficiency of

our approach for generating correct transformation rules while minimizing the rules-complexity

and maximizing the quality of generated target models. The three research questions are then:

 RQ1: To what extent can the proposed approach minimize rules complexity?

 RQ2: To what extent can the proposed approach maximize the quality of generated target

models?

 RQ3: To what extent can the proposed multi-objective approach perform comparing to

mono-objective search algorithms?

 45

To answer RQ1, we compared the complexity of the generated rules with expected ones

defined manually: number of rules and number of elements in each rule.

To answer RQ2, the transformation result is checked for quality using two methods: 1) we

calculate the dissimilarity between reference metrics threshold and those related to generated

target models, and 2) we evaluate the variation in terms of size between generated target models

using NSGA-II and those provided manually by experts.

To answer RQ3, we implemented a mono-objective genetic algorithm where the goal is to

generate a minimal set of correct transformation rules (one objective is used which is the

complexity). Then, we compared the results to those generated by our NSGA-II approach based

on complexity and quality criterions.

3.3.2 Setting

To evaluate the feasibility of our approach, we conducted an experiment on generating rules

for: class diagram (CLD) to relational schema (RS) and vice-versa (RS to CLD), and sequence

diagram (SD) to colored Petri nets (CPN). We used twelve large class-diagrams with their

equivalent relational schemas. The examples were provided by an industrial partner. The size of

the CLDs varied from twenty-eight to ninety-two model elements, with an average of fifty-eight.

In addition, we collected the transformations of ten sequence diagrams to sequence diagrams

from the Internet and textbooks. We ensured by manual inspection that all the transformations

are valid. The size of the SDs varied from sixteen to fifty-seven constructs, with an average of

thirty-six. The ten sequence diagrams contained many complex fragments: loop, alt, opt, par,

region, neg and ref.

As described in the previous section, we selected a set of twelve quality metrics for CLD, nine

for RS and two for CPN (number of places and transitions). Based on our previous work, we

define the thresholds range for each of those metrics. As described previously, we implemented a

set of constraints to ensure the correctness of generated target models during the optimization

process.

46 Model Transformation

1.2 Results and Discussions

In this subsection we present the answer to each research question, in turn, indicating how the

results answer each.

Figure 3.8 shows the rules complexity and target models quality for all the three transformation

mechanisms based on the two fitness function values. These two fitness functions to minimize

correspond to 1) Complexity: the number of rules and matching metamodels in each rule; and 2)

Dissimilarity: the difference between the solution’s calculated metrics values and the reference

metrics values; so, decreasing the dissimilarity will increase the solution’s quality. For all the

transformation mechanisms, different solutions generate well-designed target models with a

minimal set of rules.

Figure 3.8. Results of the last iteration for the 3 transformations.

As shown in Figure 3.8, NSGA-II converges to Pareto-optimal solutions that are considered as

good compromises between quality and complexity. In this figure, each point is a solution with

 47

the complexity score represented in the x-axis and the dissimilarity score (deviation from

reference metrics threshold) in the y-axis. The best solutions exist in the middle representing the

Pareto-front that minimizes dissimilarity with reference metrics threshold and the rules

complexity. The user can choose a solution from this front depending on his preferences in terms

of compromise. However, at least for our validation, we need to have only one best solution that

will be suggested by our approach. To this end and in order to fully automate our approach, we

propose to extract and suggest only one best solution from the returned set of solutions. Equation

(3.3) is used to choose the solution that corresponds to the best compromise between Quality and

Complexity. Hence, we select the nearest solution to the ideal one in terms of Euclidian distance:

 ])²[(])²[(
0

iComplexityiityDissimilarbestSol Min
n

i




(3.3)

where n is the number of solutions in the Pareto front returned by NSGA-II. Since the two

objectives of quality and complexity are conflicting/contradicting, the results of Figure 3.8

confirm that a solution which scores better in complexity is better than any other solution which

is of lower quality.

Figure 3.9. Complexity and Dissimilarity comparison between NSGA-II, manually defined rules and a mono-objective

Genetic Algorithm (GA).

As described in Figure 3.9, the majority of proposed transformation rules generate good quality

of target models with minimal complexity comparing to those provided manually by experts or a

mono-objective genetic algorithm. For all the three transformation mechanisms, the dissimilarity

of generated target models using NSGA-II is lower than those generated by the manual and

genetic algorithm methods which means that NSGA-II’s quality is much better than the other

48 Model Transformation

transformation mechanisms. In fact, when experts write rules manually they did not take into

consideration, in general, the quality of produced models but only the correctness. Since the

mono-objective algorithm considers only correctness when generating transformation rules thus

it is evident that NSGA-II performs better in terms of target models quality. The generated rules

using NSGA-II are less complex than those generated by an expert for all the three

transformation mechanisms. In fact, experts ensure that the rules are correct as the main goal.

However, GA provides less complex rules for CLD-to-RS and RS-to-CLD than our NSGA-II

algorithm. This is can be explained by the reason that these two transformation mechanisms are

not complex. However, with more complex transformation mechanisms, such as SD-to-CPN, it

is difficult to obtain a minimal set of rules without specifying complexity as a separate objective

in addition to correctness. In addition, based on NSGA-II algorithm we can sacrifice a small

complexity decrease to improve the quality of generated target models.

Figure 3.9 shows that, in general, we generate, approximately, the same number of rules for all

transformation mechanisms. The number of generated rules is comparable to those provided by

our expert in terms of number of matching metamodels. The different generated rules are

verified manually and we did not found any errors.

As described in Figure 3.9, the average of quality deviation, from reference metrics values, for

all transformed source models is low. This is confirming the good quality of generated target

models. After a manual investigation of the results, we found that most of the quality deviations

are due to the bad quality of source models to transform. In conclusion, our approach produces

good refactoring suggestions both from the point of views of complexity and target models

quality.

The generated rules might vary depending on search space exploration since solutions are

randomly generated, though guided by a meta-heuristic. To ensure that our results are relatively

stable, we compared the results of multiple executions for NSGA-II as shown in Figure 11. We,

consequently, believe that our technique is stable since the quality and complexity scores are

approximately the same for different executions (each fold).

 49

Figure 3.10. An example of seven executions on CLD-to-RS (best solutions).

Since we viewed the maintainability defects correction problem as a combinatorial problem

addressed with heuristic search, it is important to contrast the results with the execution time. We

executed our algorithm on a standard desktop computer (i7 CPU running at 4 GHz with 4GB of

RAM). The execution time for finding the optimal rules with a number of iterations (stopping

criteria) fixed to 1000 was less than one hour. This indicates that our approach is reasonably

scalable from the performance standpoint. However, the execution time depends on the source

and target metamodels.

As described in Table 3.1, we used the CPN-SD transformation mechanism to compare the

quality of the generated CPNs using a mono-objective genetic algorithm (minimizing only rules

complexity) and multi-objective approach.

Table 3.1. Complexity comparison.

CPN size (mono-

objective)

CPN size (multi-

objective)
Variation

13 11 15%

22 19 14%

24 24 0%

31 26 17%

36 33 9%

39 29 25%

44 37 16%

52 43 18%

54 46 15%

Average variation 13%

When developing our approach, we conjectured that the multi-objective approach produces

CPNs less complex/better quality (in size for example) than the one obtained by a mono-

50 Model Transformation

objective approach. Table 3.1 compares the obtained CPN sizes by using both approaches for the

10 source models to transform.

The size of a CPN is defined by the number of elements. In all cases, a reduction in size occurs

when using our multi-objective approach, with an average reduction of 13% in comparison with

mono-objective. The obtained results confirm our assumption that systematic application of rules

using a mono-objective approach results in larger CPNs.

 Conclusion

In this chapter, we introduced a new multi-objective approach for generating model

transformation rules. Our algorithm starts by randomly generating a set of rules, executing them

to generate some target models, and then evaluates the complexity by reducing the number of

generated rules and the quality of generated target models based on some quality-metric

thresholds. Our approach differs from rule-based transformation approaches as it does not

require writing rules. To our best knowledge, our proposal represents the first work that uses

multi-objective techniques to automated model transformations. It also differs from existing by

example approaches by the fact that no traceability links are needed in the examples.

We have evaluated our approach on three transformation mechanisms. The experimental

results indicate that the quality of derived target models is comparable and sometimes better than

those defined by experts in the base of examples in terms of correctness with a minimal set of

rules.

Finally, we discussed some limitations and open research directions related to our proposal.

First, all our performance contribution depends on the availability of examples, which could be

difficult to collect. However, as we have shown in the experiments, only a few examples are

needed to obtain good results. Second, due to the nature of our solution, i.e., an optimization

technique, the process could be time-consuming for large models. Furthermore, as we use

heuristic algorithms, different executions for the same input could lead to different outputs. This

can be a disadvantage for some model-driven engineering applications, e.g. when the model

transformation is a deterministic process and the generated target model is unique. Nevertheless,

 51

having different and equivalent output models is close to what happens in the real world where

different experts may propose different target models.

Different future work directions can be explored. The application of new search-based

techniques like the artificial immune system to model evolution or model refactoring is

challenging. We are working on an extension of our first contribution about exogenous

transformation by example. The idea is to generate transformation rules from examples using

heuristic search. Our approach starts by randomly generating a set of rules, executing them to

generate some target models. Then, it evaluates the quality of the proposed solution (rules) by

comparing the generated target models to the expected ones in the base of examples. In this case,

the search space is large and heuristic-search is needed.

We are actually working to extend our proposal to other problems. A new technique for

predicting “buggy” changes, when modifying an existing version of a model, can be proposed.

The idea is to classify the changes as clean or not. The Change classification determines whether

a new model change is more similar to prior “buggy” or clean changes in the base of examples.

In this manner, change classification can predict the existence of “bugs” in models changes.

Furthermore, we are working on transformation composition using examples. We propose a

solution based on a music-inspired approach. We draw an analogy between the transformation

composition process and finding the best harmony when composing music. Say, for example,

that we have a transformation mechanism M1 that transforms formalism T1 into T2, but the

meta-model of T2 evolved into T3, after deleting or adding elements. We want to generate new

transformation rules that transform T1 into T3. The idea is to compose two transformation

mechanisms T1 to T2 and T2 to T3. To this end, we propose to view transformation rules

generation as an optimization problem where rules are automatically derived from available

examples. Each example corresponds to a source model and its corresponding target model,

without transformation traces from T1 to T3. Our approach starts by composing a set of rules (T1

to T2 and T2 to T3), executing them to generate some target models, and then evaluating the

quality of the proposed solution (rules) by comparing the generated target models and the

expected ones in the base of examples.

52

 Software Remodularization

 Introduction

Large software systems evolve and become complex quickly, fault-prone and difficult to

maintain [48]. In fact, most of the changes during the evolution of systems such as introducing

new features or fixing bugs are conducted, in general, within strict deadlines. As a consequence,

these code changes can have a negative impact on the quality of systems design such as the

distribution of the classes in packages. To address this issue, one of the widely used techniques is

software remodularization, called also software restructuring, which improves the existing

decomposition of systems.

There has been much work on different techniques and tools for software remodularization

[17] [47] [74] [75] [76] [77]. Most of these studies addressed the problem of clustering by

finding the best decomposition of a system in terms of modules and not by improving existing

modularizations. In both categories, cohesion and coupling are the main metrics used to improve

the quality of existing packages (e.g. modules) by determining which classes need to be grouped

in a package. In this chapter, we focus on restructuring software design and not on the

decomposition of systems to generate an initial coherent object oriented design.

The majority of existing contributions have formulated the restructuring problem as a single-

objective problem where the goal is to improve the cohesion and coupling of packages [18] [32]

[51]. Even though most of the existing approaches are powerful enough to provide

remodularization solutions, some issues still need to be addressed.

One of the most important issues is the semantic coherence of the design. The restructured

program could improve structural metrics but become semantically incoherent. In this case, the

 53

design will become difficult to understand since classes are placed in wrong packages to improve

the structure in terms of cohesion and coupling. Also, the number of code changes is not

considered when suggesting remodularization solutions; the only aim is to improve the structure

of packages independently of the cost of code changes.

However, in real-world scenarios, developers prefer, in general, remodularization solutions

that improve the structure with a minimum number of changes. It is important to minimize code

changes to help developers in understanding the design after applying suggested changes.

Existing remodularization studies are also limited to few types of changes mainly move class

and split packages [18] [19] [51] [78] [79]. However, refactoring at the class and method levels

can improve remodularization solutions such as by moving methods between classes located in

different packages. The use of development history can be an efficient aid when proposing

remodularization solutions [80]. For example, packages that were extensively modified in the

past may have a high probability of being also changed in the future. Moreover, the packages to

modify can be similar to some patterns that can be found in the development history, thus,

developers can easily recognize and adapt them.

In this chapter, we propose a many-objective search-based approach to address the above-

mentioned limitations. Search-based software engineering is suitable for the software

remodularization problem since the goal is to find the best sequence of operations that can lead

to a better-remodularized system. The number of combinations to explore is high, leading to a

huge and complex search space. Our many-objective search-based software engineering

approach aims at finding the remodularization solution that: 1) Improve the structure of packages

by optimizing some metrics such as number of classes per package, number of packages,

coupling and cohesion; 2) Improve the semantic coherence of the restructured program. We

combine two heuristics to estimate the semantic proximity between packages when moving

elements between them (vocabulary similarity, and dependencies between extracted classes from

call graphs) and some semantic/syntactic heuristics depending on the change type; 3) Minimize

code changes. Compared to existing remodularization studies, we consider new changes that can

be related to the package, class and method levels; and 4) Maximize the consistency with

development change history. To better guide the search process, recorded code changes that are

54 Software Remodularization

applied in the past in similar contexts are considered. We evaluate if similar changes are applied

in previous versions of the packages that will be modified by the suggested remodularization

solution.

The number of objectives to consider in our problem formulation is high (more than three

objectives); such problems are termed many-objective. In this context, the use of traditional

multi-objective techniques, e.g., NSGA-II [21], widely used in Search-Based Software

Engineering (SBSE) [6] [81], is clearly not sufficient like in our case for the problem of software

remodularization. There is a growing need for SBSE approaches that address software

engineering problems where a large number of objectives are to be optimized. Recent work in

optimization has proposed several solution approaches to tackle many-objective optimization

problems [20] [82] [83] using e.g., objective reduction, new preference ordering relations and

decomposition. However, these techniques have not yet been widely explored in SBSE [5]. To

the best of our knowledge and based on recent SBSE surveys [84], only one work exists

proposed by [36] [37] that uses a many-objective approach, IBEA (Indicator-Based Evolutionary

Algorithm) [85], to address the problem of software product line creation. However, the number

of considered objectives is limited to five.

We propose a scalable search-based software engineering approach based on NSGA-III [20]

where there are seven different objectives to optimize. Thus, in our approach, automated

remodularization solutions will be evaluated using a set of seven measures as described above.

The basic framework remains similar to the original NSGA-II algorithm, with significant

changes in its selection mechanism. This work represents one of the first real-world applications

of NSGA-III and the first scalable work that supports the use of seven objectives to address and

improve software remodularization.

We evaluated our approach on four open source systems and one industrial system provided by

our industrial partner Ford Motor Company. We report the results on the efficiency and

effectiveness of our approach, compared to the state of the art remodularization approaches [18]

[78] [79]. Our results indicate that our approach significantly outperforms, in average, existing

approaches in terms of improving the structure, reducing the number code changes, and

semantics preservation.

 55

The primary contributions of this work can be summarized as follows:

1. A novel formulation of the remodularization problem as a many-objective problem that

considers several objectives such as structural improvement, semantic coherence,

number of changes and consistency with the history of changes.

2. We consider the use of new operations, comparing to existing remodularization studies

including move method, extract class and merge packages.

3. This chapter reports the results of an empirical study of our many-objective technique

compared to different existing approaches. The obtained results provide evidence to

support the claim that our proposal is, in average, more efficient than existing

techniques based on a benchmark of four large open source systems and one industrial

project.

4. The qualitative evaluation of the results by software engineers at Ford Motor Company

and also graduate students confirms the usefulness the suggested remodularization

solutions.

 Approach

4.2.1 Approach Overview

Our approach aims at exploring a huge search space to find a set of remodularization solutions

on the Pareto front such that in order to optimize any objective further will result in sub-

optimizing one or more additional objectives. These remodularization solutions are a sequence of

change operations, to restructure packages. The search space is determined not only by the

number of possible change combinations but also by the order in which they are applied. A

heuristic-based optimization method is used to generate remodularization solutions. We have 7

objectives to optimize: 1) minimize the number of classes per package; 2) minimize the number

of packages; 3) maximize package cohesion; 4) minimize package coupling; 5) minimize the

number of semantic errors by preserving the way classes are semantically grouped and connected

together; 6) minimize code changes needed to apply remodularization solution; and 7) maximize

56 Software Remodularization

the consistency with development change history. We consider the remodularization task as a

many-objective optimization problem instead of a single-objective one using the new many-

objective non-dominated sorting genetic algorithm (NSGA-III) that will be described in Section

4.

Figure 4.1. Approach overview.

The general structure of our approach is sketched in Fig. 3. It takes as input the source code of

the program to be restructured, a list of possible Remodularization Operations (ROs) that can be

applied, a set of semantic and structural measures, and a history of applied changes to previous

versions of the system. Our approach generates as output the optimal sequence of operations,

selected from a list of possible ones that improve the structure of packages, minimize code

changes needed to apply the remodularization solution, preserve the semantics coherence, and

maximize the consistency with development change history. In the following, we describe the

formal formulation of these different remodularization objectives to optimize.

4.2.1.1 Remodularization Objectives

We describe in this section the 7 objectives to optimize in our many-objective adaptation to the

software remodularization problem.

Structure. Four conflicting objectives are related to improving the structure of packages: 1)

number of classes per package (to minimize); 2) number of packages in the system (to

minimize); 3) cohesion (to maximize); it corresponds to the number of intra-edges (calls between

classes in the same package) as described in Section 2; and 4) coupling (to minimize); it

corresponds to the number of inter-edges (class between classes in different packages).

Number of code changes. Table 2 describes the types of ROs that are considered by our

approach: Move method, Extract class, Move class, Merge packages, and Extract/Split package.

Existing remodularization studies are limited to only two operation types: move class and

 57

split/extract package. We believe that these two operations are not enough to generate good

remodularization solutions. In fact, sometimes only part of the class should be moved to another

package (e.g. methods) and not the whole class. To apply a remodularization operation we need

to specify which actors, i.e., code fragments, are involved in this operation and which roles they

play when performing the change. As illustrated in Table 2, an actor can be a package, class, or

method and we specify for each operation the involved actors and their roles. It is important to

minimize the number of suggested operations in the remodularization solution since the designer

can have some preferences regarding the percentage of deviation with the initial program

modularization. In addition, most of the developers prefer solutions that minimize the number of

changes applied to their design [86].

Table 4.1. Types of remodularization operations.

Type of the operation Actors Roles

Move method
class source class, target class

method moved method

Extract class
class source class, new class

method moved methods

Move class
package source package, target package

class moved class

Merge packages package source package, target package

Extract/Split package
package source package, target package

class moved class

Similarity with the history of code changes. The idea is to encourage the use of ROs that are

similar to those applied to the same code fragments (packages) in the past. To calculate the

similarity score between a proposed operation and a recorded code change, we use the following

function:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦(𝑅𝑂) = ∑ 𝑤𝑗

𝑛

𝑗=1

 (4.1)

where n is the number of recorded operations applied to the system in the past, and wj is a

change weight that reflects the similarity between the suggested RO and the recorded code

change j. The weight wj is computed as described in Table 3.

58 Software Remodularization

Table 4.2. Similarity scores between remodularization operations applied to similar code fragments.

Move

method

Extract

class
Move class

Merge

packages

Extract/Split

package

Move method wj = 2 wj = 1 wj = 1 wj = 0 wj = 0

Extract class wj = 1 wj = 2 wj = 0 wj = 0 wj = 0

Move class wj = 1 wj = 0 wj = 2 wj = 1 wj = 1

Merge packages wj = 0 wj = 0 wj = 1 wj = 2 wj = 0

Extract/Split package wj = 0 wj = 0 wj = 1 wj = 0 wj = 2

Semantics. Most of the ROs are simple to implement and it is almost trivial to show that they

preserve the behavior. However, until now there is no consensual way to investigate whether a

code change can preserve the semantic coherence of the original program/design. To preserve the

semantics design, some constraints should be satisfied to ensure the correctness of the applied

operations. We distinguish between two kinds of constraints: structural constraints and semantic

constraints. Structural constraints were extensively investigated in the literature. Opdyke, for

example, defined in [87] a set of pre and post-conditions for a large list of operations to ensure

the structural consistency. Developers should check manually all code elements (packages,

classes, methods and fields) related to the operation to inspect the semantic relationship between

them. We formulate semantics constraints using different measures in which we describe the

concepts from a perspective that helps in automating the remodularization task:

Vocabulary-based similarity (VS)

This kind of similarity is interesting to consider when moving methods, or classes or merging

packages or extracting packages. For example, when a class has to be moved from one package

to another, the operation would make sense if both code elements (source class and target

packages) use similar vocabularies [52] [88]. The vocabulary could be used as an indicator of the

semantic similarity between different code elements that are involved when performing a

remodularization operation. We start from the assumption that the vocabulary of an actor is

borrowed from the domain terminology and, therefore, could be used to determine which part of

the domain semantics is encoded by an actor. Thus, two code elements could be semantically

similar if they use similar vocabularies.

 59

The vocabulary could be extracted from the names of packages, classes, methods, fields,

variables, parameters and types. Tokenization is performed using the Camel Case Splitter [88]

which is one of the most used techniques in Software Maintenance tools for the preprocessing of

identifiers. A more pertinent vocabulary can also be extracted from comments, commits

information, and documentation. We calculate the semantic similarity between code elements

using information retrieval-based techniques (e.g., cosine similarity). The following equation

calculates the cosine similarity between two code elements. Each actor is represented as an n-

dimensional vector, where each dimension corresponds to a vocabulary term. The cosine of the

angle between two vectors is considered as an indicator of similarity. Using cosine similarity, the

conceptual similarity between two code elements c1 and c2 is determined as follows:

 

   

]1,0[

²²

*

||2||*||1||

2.1
)2,1cos()2,1(

1

2,

1

1,

1

2,1,











n

i

i

n

i

i

n

i

ii

ww

ww

cc

cc
ccccSim 




(4.2)

where),...,(1 1,1,1 nwwc 


 is the term vector corresponding to actor c1 and),...,(2 2,2,1 nwwc 


 is the term

vector corresponding to c2. The weights wi,j can be computed using information retrieval based

techniques such as the Term Frequency – Inverse Term Frequency (TF-IDF) method. We used a

method similar to that described in [52] to determine the vocabulary and represent the code

elements as term vectors.

Dependency-based similarity (DS)

We approximate domain semantics closeness between code elements starting from their

mutual dependencies. The intuition is that code elements that are strongly connected (i.e., having

dependency links) are semantically related. As a consequence, ROs requiring semantic closeness

between involved code elements are likely to be successful when these code elements are

strongly connected. We consider two types of dependency links:

1) Shared method calls (SMC) that can be captured from call graphs derived from the whole

program using CHA (Class Hierarchy Analysis) [89]. A call graph is a directed graph which

represents the different calls (call in and call out) among all methods of the entire program.

Nodes represent methods, and edges represent calls between these methods. CHA is a basic call

graph that considers class hierarchy information, e.g, for a call c.m(...) assume that any m(...) is

60 Software Remodularization

reachable that is declared in a supertype of the declared type of c. For a pair of code elements,

shared calls are captured through this graph by identifying shared neighbors of nodes related to

each actor. We consider both, shared call-out and shared call-in. The following equations are

used to measure respectively the shared call-out and the shared call-in between two code

elements c1 and c2 (two classes, for example). A shared method call is defined as the average of

shared call-in and call-out.

]1,0[
|)callOut(c2)callOut(c1|

|)callOut(c2)callOut(c1|
 c2) Out(c1,sharedCall 






(4.3)

]1,0[
|callIn(c2) callIn(c1)|

|callIn(c2) callIn(c1)|
 c2) In(c1,sharedCall 




 (4.4)

2) Shared field access (SFA) can be calculated by capturing all field references that occur

using static analysis to identify dependencies based on field accesses (read or modify). We

assume that two software elements are semantically related if they read or modify the same

fields. The rate of shared fields (read or modified) between two code elements c1 and c2 is

calculated according to the following equation. In this equation, fieldRW(ci) computes the

number of fields that may be read or modified by each method of the actor ci. Thus, by applying

a suitable static program analysis to the whole method body, all field references that occur could

be easily computed.

]1,0[
|)fieldRW(c2)fieldRW(c1|

|)fieldRW(c2)fieldRW(c1|
 c2) dsRW(c1,sharedFiel 




 (4.5)

Cohesion-based dependency (CD)

The cohesion-based similarity that we propose for software remodularization is mainly used by

the extract-class, merge-package and extract-package operations. It is defined to find a cohesive

set of classes and methods to be moved to the newly extracted class or package. A new class or

package can be extracted from a source class or package by moving a set of strongly related

(cohesive) classes and methods from the original class or package to the new class or package.

Extracting this set will improve the cohesion of the original package or class and minimize the

coupling with the new package/class. Applying the Extract Package/Class or Merge Packages

operation on a specific package/class will result in this class being split (or merged) into

 61

classes/packages. We need to calculate the semantic similarity between the elements in the

original package/class to decide how to split or merge the original packages/classes.

We use vocabulary-based similarity and dependency-based similarity to find the cohesive set

of code elements. For move method, the cohesion matrix is composed of the fields of the source

method as lines, and the fields and methods of the target class as columns. For extract class, the

lines are the fields and methods of the source class and the columns are the methods of the

extracted class. For move class, the lines of the cohesion matrix are composed of the fields,

methods of the class to move, and the columns are the fields and methods of the classes of the

target package. Regarding merge package and extract/split package operations, the lines

correspond to the fields and methods of the classes of the source package and the columns are

the fields and methods of the classes of the target package. We calculate the similarity between

each pair of elements in a cohesion matrix. The cohesion matrix is obtained as follows: For the

field-field similarity, we consider the vocabulary-based similarity. For the method-method

similarity, we consider both vocabulary and dependency-based similarity. For the method-field

similarity, if the method mi may access (read or write) the field fj, then the similarity value is 1.

Otherwise, the similarity value is 0. For example, the suitable set of methods to be moved to a

new class is obtained as follows: we consider the line with the highest average value and

construct a set that consists of the elements in this line that have a similarity value that is higher

than a certain threshold.

The semantic function for a remodularization operation corresponds to the average (equal

importance) of the different three semantic measures described above. As a remodularization

solution is a sequence of operations, the overall semantic evaluation of the solution is the average

of the semantic values of all the operations composing a solution.

Some code changes contribute to the domain vocabulary of the system but not necessarily all

of them. Thus, we are considering semantic coherence and consistency with prior code changes

as separate objectives. In addition, the consistency with priori code changes is not mainly related

to the domain vocabulary but to the type of operations that are applied to a similar context.

Treating the similarity with prior changes as a separate objective can address the problem that

developers use sometimes names of code elements that semantically do not make any sense.

62 Software Remodularization

Furthermore, we decided to separate semantic coherence and the consistency with prior code

changes in two different objectives to give more flexibility to user when selecting the best

solution based on their preferences and also to ensure the usefulness of our approach even in the

situation when the change history is not available (the user can easily exclude this objective

while maintaining the semantic coherence one).

To find a compromise between the seven objectives described in this section, we used a recent

many-objective optimization algorithm (NSGA-III) that will be described in the next section.

4.2.2 Software remodularization using NSGA-III

This section shows how the remodularization problem can be addressed using NSGA-III. We

first present an overview of the technique then we provide the details of our adaptation to the

remodularization problem.

4.2.2.1 NSGA-III

NSGA-III is a recent many-objective algorithm proposed by [20]. The basic framework

remains similar to the original NSGA-II algorithm with significant changes in its selection

mechanism. Figure 5 gives the pseudo-code of the NSGA-III procedure for a particular

generation t. First, the parent population Pt (of size N) is randomly initialized in the specified

domain, and then the binary tournament selection, crossover and mutation operators are applied

to create an offspring population Qt. Thereafter, both populations are combined and sorted

according to their domination level and the best N members are selected from the combined

population to form the parent population for the next generation. The fundamental difference

between NSGA-II and NSGA-III lies in the way the niche preservation operation is performed.

Unlike NSGA-II, NSGA-III starts with a set of reference points Zr. The set of uniformly

distributed reference points is generated using the method of Das and Dennis [90] which is well-

detailed and described in [91].

In order to illustrate the reference point generation process, we give in what follows an

example of such generation with only three objectives in order to ease the understanding and the

visualization of such process. However, this process is generic for any number of objectives M.

The Das and Dennis approach for this case generates W reference points on the hyperplane with

 63

a uniform spacing δ = 1/p. We assume for this example that p = 3 (i.e., δ = 0.33). The number of

reference points is thus
)1(


pM

pCW
 which is equal to 10. The following figure describes the

reference point set generation mechanism:

The following Figure 4.2 shows an Illustration of the Das and Dennis method for the

generation of the reference points by computing R1, R2, and R3 recursively. The table shows the

combinations of R1, R2, and R3 components. The figure shows the plotting of the 10 obtained

reference points on the hyperplane. For our remodularization problem, we have seven objectives

(M = 7) and we use p = 5. These are the only parameters to adjust for our remodularization

problem.

R1 R2 R3 = (1-R1-R2)

0.0 0.0 1.0

0.0 0.33 0.66

0.0 0.66 0.33

0.0 1.0 0.0

0.33 0.0 0.66

0.33 0.33 0.33

0.33 0.66 0.0

0.66 0.0 0.33

0.66 0.33 0.0

1.0 0.0 0.0

64 Software Remodularization

Figure 4.2. 3D plotting of the obtained 10 reference points with p = 3.

After non-dominated sorting, all acceptable front members and the last front Fl that could not

be completely accepted are saved in a set St. Members in St/Fl are selected right away for the

next generation. However, the remaining members are selected from Fl such that a desired

diversity is maintained in the population. Original NSGA-II uses the crowding distance measure

for selecting a well-distributed set of points, however, in NSGA-III the supplied reference points

(Zr) are used to select these remaining members (cf. Figure 4.2). To accomplish this, objective

values and reference points are first normalized so that they have an identical range. Thereafter,

the orthogonal distance between a member in St and each of the reference lines (joining the ideal

point, i.e., the vector composed of 7 zero and a reference point) is computed. The member is then

associated with the reference point having the smallest orthogonal distance. Next, the niche

count ρ for each reference point, defined as the number of members in St/Fl that are associated

with the reference point, is computed for further processing. The reference point having the

minimum niche count is identified and the member from the last front Fl that is associated with it

is included in the final population. The niche count of the identified reference point is increased

by one and the procedure is repeated to fill up population Pt+1.

It is worth noting that a reference point may have one or more population members associated

with it or need not have any population member associated with it. Let us denote this niche count

as ρj for the j-th reference point. We now devise a new niche-preserving operation as follows.

First, we identify the reference point set Jmin = {j: argminj (ρj)} having minimum ρj. In case of

multiple such reference points, one (j*
Jmin) is chosen at random. If ρj* = 0 (meaning that there is

 65

no associated Pt+1 member to the reference point j*), two scenarios can occur. First, there exist

one or more members in front Fl that are already associated with the reference point j*. In this

case, the one having the shortest perpendicular distance from the reference line is added to Pt+1.

The count ρj* is then incremented by one. Second, the front Fl does not have any member

associated with the reference point j*. In this case, the reference point is excluded from further

consideration for the current generation. In the event of ρj* ≥ 1 (meaning that already one

member associated with the reference point exists), a randomly chosen member, if exists, from

front Fl that is associated with the reference point Fl is added to Pt+1. If such a member exists, the

count ρj* is incremented by one. After ρj counts are updated, the procedure is repeated for a total

of K times to increase the population size of Pt+1 to N.

This following section describes our adaptation of NSGA-III to our remodularization

problem. Thus, we define the following adaptation steps: representation of the solutions and the

generation of the initial population, evaluation of individuals using the fitness functions,

selection of the individuals from one generation to another, generation of new individuals using

genetic operators (crossover and mutation) to explore the search space and the normalization of

population members.

4.2.2.2 Solution Representation

To represent a candidate remodularization solution (individual), we used a vector

representation. Each vector’s dimension represents a remodularization operation. Thus, a

solution is defined as a sequence of operations applied to different parts of the system to improve

its modularization. A randomly generated solution is created as follows. First, we generate the

solution length randomly between the lower and upper bounds of the solution length. After that,

for each chromosome dimension, we generate a number i between 1 and the total number of

possible operations, then we assign the ith operation to the considered dimension. For each

operation, the parameters, described in Table 2, are randomly generated from the list of source

code elements extracted from the system to remodularize using a parser. An example of a

solution is given in Figure 6 applied to the motivating example described in Section 2.

When generating a sequence of operations (individual), it is important to guarantee that they

are feasible and that they can be applied. The first work in the literature was proposed by [87]

66 Software Remodularization

who introduced a way of formalizing the preconditions that must be imposed before a code

change can be applied in order to preserve the behavior of the system. Opdyke created functions

which could be used to formalize constraints. These constraints are similar to the Analysis

Functions used later by [70] [92] who developed a tool to reduce program analysis. In our

approach, we used a system to check a set of simple conditions, taking inspiration from the work

proposed by Ó Cinnéide. Our search-based remodularization tool simulates operations using pre

and post conditions that are expressed in terms of conditions on a code model. For example, to

apply the remodularization operation MoveClass(GanttTaskRelationship,

net.sourceforge.ganttproject, net.sourceforge.ganttproject.task), a number of necessary

preconditions should be satisfied, e.g., net.sourceforge.ganttproject and

net.sourceforge.ganttproject.task should exist and should be packages; GanttTaskRelationship

should exist and should be a class and the class AttrNSImpl should be implemented in the

package net.sourceforge.ganttproject. As postconditions, GanttTaskRelationship,

net.sourceforge.ganttproject, and net.sourceforge.ganttproject.task should exist;

GanttTaskRelationship class should be in the package net.sourceforge.ganttproject.task and

should not exists anymore in the package net.sourceforge.ganttproject.

 67

Algorithm 4.1. Pseudo-code of NSGA-III main procedure at

generation t.

Input: H structured reference points Zs, parent population Pt

Output: Pt+1

00:

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

 Begin

 St ← Ø, i ← 1;

 Qt ← Variation (Pt);

 Rt ← Pt Qt;

 (F1, F2, ...) ← Non-dominationed_Sort (Rt);

 Repeat

 St ← St  Fi; i ← i+1;

 Until | St | ≥ N;

 Fl ← Fi; /*Last front to be included*/

 If | St | = N then

 Pt+1 ← St;

 Else

 Pt+1 ←
1
1




l
j Fj;

 /*Number of points to be chosen from Fl*/

 K ← N – |Pt+1|;

 /*Normalize objectives and create reference set Zr*/

 Normalize (FM; St; Zr; Zs);

 /*Associate each member s of St with a reference point*/

 /*π(s): closest reference point*/

 /*d(s): distance between s and π(s)*/

 [π(s), d(s)] ← Associate (St, Zr);

 /*Compute niche count of reference point r
Zj */

 ρj ←  lFtSs /
((π(s) = j) ? 1 : 0);

 /*Choose K members one at a time from Fl to construct Pt+1*/

 Niching (K, ρj, π(s), d(s), Zr, Fl, Pt+1);

 End If

 End

Move Class(GanttTaskRelationship, net.sourceforge.ganttproject, net.sourceforge.ganttproject.task)

Extract Class(XGrammarWriter, XGrammarInput, parseInt())

Move Method(normalize(), XGrammarWriter, DTDGrammar)

Extract Package(net.sourceforge.ganttproject, net.sourceforge.ganttproject.dtl, CharacterDataImpl, ChildNode)

Figure 4.3. An example of solution representation.

68 Software Remodularization

4.2.2.3 Fitness Functions

Each generated remodularization solution is executed on the system S. Once all required data

is computed, the solution is evaluated based on the 7 objectives described in Section 4.2.1.1.

Based on these values, the remodularization solution is assigned a non-domination rank (as in

NSGA-II) and a position in the objective space allowing it to be assigned to a particular

reference point based on distance calculation as previously described. As a reminder, the

following fitness functions are used: 1) number of classes per package (to minimize); 2) number

of packages in the system (to minimize); 3) cohesion (to maximize); 4) coupling (to minimize);

5) Semantics coherence (to maximize); 6) number of operations (to minimize); and 7) coherence

with the history of code changes (to minimize). The semantic fitness function of a solution

corresponds to the average of the semantic values of the operations in the vector. The history of

changes fitness function maximizes the use of ROs that are similar to those applied to the same

code fragments in the past. To calculate the similarity score between a proposed

remodularization operation and a recorded operation, we use the fitness function described in

Section 4.2.1.1.

Normalization of population members. Usually objective functions are incommensurable

(i.e., they have different scales). For this reason, we used the normalization procedure proposed

by [20] to circumvent this problem. At each generation, the minimal and maximal values for

each metric are recorded and then used by the normalization procedure. Normalization allows the

population members and with the reference points to have the same range, which is a pre-

requisite for diversity preservation.

4.2.2.4 Evolutionary Operators

In each search algorithm, the variation operators play the key role of moving within the search

space with the aim of driving the search towards optimal solutions.

For the crossover, we use the one-point crossover operator. It starts by selecting and splitting

at random two parent solutions. Then, this operator creates two child solutions by putting, for the

first child, the first part of the first parent with the second part of the second parent, and vice

versa for the second child. This operator must ensure the respect of the length limits by

 69

eliminating randomly some ROs. As illustrated in Figure 4.4, each child combines some of the

operations of the first parent with some ones of the second parent. In any given generation, each

solution will be the parent in at most one crossover operation. It is important to note that in

many-objective optimization, it is better to create children that are close to their parents in order

have a more efficient search process. For this reason, we control the cutting point of the one-

point crossover operator by restricting its position to be either belonging to the first third of the

operations sequence or belonging to the last third.

Figure 4.4. Crossover operator.

For mutation, we use the bit-string mutation operator that picks probabilistically one or more

operations from its or their associated sequence and replace them by other ones from the initial

list of possible operations as described in the running example of Figure 4.5. The number of

changes is unknown a priori and depends on the mutation probability. Indeed, each chromosome

dimension would be changed according to the mutation probability. For example, for a mutation

probability of 0.2, for each dimension, we generate randomly a number x between 0 and 1, if

x<0.2 we change the dimension, otherwise not.

Figure 4.5. Mutation operator.

After applying genetic operators (mutation and crossover), we verify the feasibility of the

generated sequence of operations by checking the pre and post conditions. Each operation that is

70 Software Remodularization

not feasible due to unsatisfied preconditions will be removed from the generated

remodularization sequence. The new sequence is considered valid in our NSGA-III adaptation if

the number of rejected operations is less than 10% of the total sequence size.

 Validation

In order to evaluate our approach for restructuring systems using NSGA-III, we conducted a

set of experiments based on different versions of large open source systems and one industrial

project provided by Ford Motor Company. Each experiment is repeated 31 times, and the

obtained results are subsequently statistically analyzed with the aim to compare our NSGA-III

proposal with a variety of existing approaches [18] [79] [78]. In this section, we first present our

research questions and then describe and discuss the obtained results. Finally, we discuss the

various threats to the validity of our experiments.

4.3.1 Research Questions

In our study, we assess the performance of our remodularization approach by finding out

whether it could generate meaningful sequences of operations that improve the structure of

packages while reducing the number of code changes, preserving the semantic coherence of the

design, and reusing as much as possible a base of recorded operations applied in the past in

similar contexts. Our study aims at addressing the following research questions outlined below.

We also explain how our experiments are designed to address these questions. The main question

to answer is to what extent the proposed approach can propose meaningful remodularization

solutions. To find an answer, we defined the following 7 research questions:

RQ1.1: To what extent can the proposed approach improve the structure of packages in the

system?

RQ1.2: To what extent the proposed approach preserve the semantics while improving the

packages structure?

RQ1.3: To what extent can the proposed approach minimize the number of changes (size)?

 71

RQ1.4: To what extent the use of recorded changes improves the suggestion of good

remodularization solutions?

RQ2: How does the proposed many-objective approach based on NSGA-III perform

compared to other many/multi-objective algorithms or a mono-objective approach?

RQ3: How does the proposed many-objective approach based on NSGA-III perform

compared to existing remodularization approach not based on heuristic search?

RQ4: Insight. How our many-objective remodularization approach can be useful for software

engineers in a real-world setting?

To answer RQ1.1, we validate the proposed remodularization on four medium to large-size

open-source systems and one industrial project to evaluate the structural improvements of

systems after applying the best solution. To this end, we used the following metrics: average

number of classes per package (NCP), number of packages (NP), number of inter-edges (NIE)

and number of intra-edges (NAE).

To answer RQ1.2, it is important to validate the proposed remodularization solutions from

both quantitative and qualitative perspectives. To this end, we use two different validation

methods: manual validation and automatic validation of the efficiency of the proposed solutions.

For the manual validation, we asked groups of potential users (software engineers) of our

remodularization tool to evaluate, manually, whether the suggested operations are feasible and

make sense semantically. We define the metric “manual precision” (MP) which corresponds to

the number of meaningful operations, in terms of semantic coherence, over the total number of

suggested operations. MP is given by the following equation:

𝑀𝑃 =
|𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠|

|𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠|
 ∈ [0,1] (4.6)

For the automatic validation, we introduce manually several changes on the remodularization

of JHotDraw and we evaluate the ability of our approach to generating the initial version of the

system (considered as a well-designed system). In fact, JHotDraw is considered as one of the

well-designed open source systems and several design patterns are used in its implementation.

72 Software Remodularization

Thus, we compare the proposed operations with the expected ones in terms of recall and

precision:

]1,0[
|operations expected|

 |operations expected| |operations suggested|
RE 


recall

(4.7)

]1,0[
|operations suggested|

 |operations expected| |operations suggested|
PR 


precesion

(4.8)

To answer RQ1.3, we evaluate the number of operations (NO) suggested by the best

remodularization solutions on the different systems.

To answer RQ1.4, we use the metric MP to evaluate the effect of the use of recorded

operations, applied in the past to similar contexts, on the semantic coherence. Moreover, in order

to evaluate the importance of reusing recorded operations in similar contexts, we define the

metric “reused operations” (ROP) that calculates the percentage of operations from the base of

recorded operations used to generate the optimal remodularization solutions by our proposal.

ROP is given by the following equation:

]1,0[
operations recorded of base

 operations recorded of base thefrom operations used
ROP

(4.9)

To answer RQ2, we compared the performance of NSGA-III with two many-objective

techniques, MOEA/D and IBEA, and also with a multi-objective algorithm that uses NSGA-II.

We used Inverted Generational Distance (IGD) to compare between the different algorithms: A

number of performance metrics for multi-objective optimization have been proposed and

discussed in the literature, which aims to evaluate the closeness to the Pareto optimal front and

the diversity of the obtained solution set, or both criterion. Most of the existing metrics require

the obtained set to be compared against a specified set of Pareto optimal reference solutions. In

this study, the inverted generational distance (IGD) is used as the performance metric since it has

been shown to reflect both the diversity and convergence of the obtained non-dominated

solutions. The IGD corresponds to the average Euclidean distance separating each reference

solution from its closest non-dominated one. Note that for each system we use the set of Pareto

optimal solutions generated by all algorithms over all runs as reference solutions. In addition to

IGD, we used the above-described metrics to compare between all the algorithms: NCP, NP,

NIE, NAE, MP, RE, and PR. We also compared our approach with a multi-objective

remodularization technique proposed by [79] where the objectives considered are coupling,

 73

cohesion and number of changes. Since the approach of Abdeen et al. is limited to the use of

only one operation (Move Class), we only used the qualitative evaluation based on MP for the

comparison.

It is important also to determine if considering each conflicting metric as a separate objective

to optimize performs better than a mono-objective approach that aggregates several metrics in

one objective. The comparison between a many-objective EA with a mono-objective one is not

straightforward. The first one returns a set of non-dominated solutions while the second one

returns a single optimal solution. In order to resolve this problem, for each many-objective

algorithm we choose the nearest solution to the Knee point (i.e., the vector composed of the best

objective values among the population members) as a candidate solution to be compared with the

single solution returned by the mono-objective algorithm. We compared NSGA-III with an

existing mono-objective remodularization approach [18] based on the use of cohesion and

coupling aggregated in one fitness function. Since the mono-objective approach is limited to the

use of only one operation (Move Class), we only used the qualitative evaluation based on MP for

the comparison and feedback from software engineers on using both tools.

For RQ3, since it is not sufficient to outperform existing search-based remodularization

techniques, we compared our proposal to an existing remodularization technique based on the

use of coupling and cohesion [78] and limited to the only use of Split packages change. Thus, we

compared our proposal using only the qualitative evaluation based on MP and feedback from

software engineers on using both tools.

For RQ4, we evaluated the benefits of our remodularization tool by several software

engineers. To this end, they classify the suggested operations (IOP) one by one as interesting or

not. The difference with the MP metric is that the operations are not classified from a semantic

coherence perspective but form a usefulness one:

]1,0[
 operations

 operations useful
IOP

(4.10)

To answer the above research questions, we selected the solution from the set of non-

dominated ones providing the maximum trade-off using the following strategy when comparing

between the different algorithms (expect the mono-objective algorithm where we select the

74 Software Remodularization

solution with the highest fitness function). In order to find the maximal trade-off solution of the

multi-objective or many-objective algorithm, we use the trade-off worthiness metric proposed by

Rachmawati and Srinivasan [93] to evaluate the worthiness of each non-dominated solution in

terms of compromise between the objectives. This metric is expressed as follows:

),(),(
,,

ji
xxxxSx

i xxTMinSx
ijjij  



(4.11)

Where




































M

m mm

jmim

M

m mm

imjm

ji

ff

xfxf

ff

xfxf

xxT

1
minmax

1
minmax

)()(
,0max

)()(
,0max

),(

We note that xj denotes members of the set of non-dominated solutions S that are non-

dominated with respect to xi. The quantity),(Sxi expresses the least amount of improvement per

unit deterioration by substituting any alternative xj from S with xi. We note also that)(im xf

corresponds to the mth objective value of solution xi and
max

mf / min

mf corresponds to the

maximal/minimal value of the mth objective in the population individuals. In the above equations,

normalization is performed in order to prevent some objectives being predominant over others

since objectives are usually incommensurable in real world applications. In the last equation, the

numerator expresses the aggregated improvement gained by substituting xj with xi. However, the

denominator evaluates the deterioration generated by the substitution.

4.3.2 Software Projects Studied

We used a set of well-known open-source java projects and one project from our industrial

partner Ford Motor Company. We applied our approach to four large and medium size open-

source java projects: Xerces-J, JFreeChart, GanttProject, and JHotDraw. Xerces-J is a family of

software packages for parsing XML. JFreeChart is a powerful and flexible Java library for

generating charts. GanttProject is a cross-platform tool for project scheduling. JHotDraw is a

GUI framework for drawing editors. Finally, the industrial project, JDI, is a Java-based software

system that helps Ford Motor Company analyze useful information from the past sales of

dealerships data and suggests which vehicles to order for their dealer inventories in the future.

This system is main key software application used by Ford Motor Company to improve their

vehicles sales by selecting the right vehicle configuration to the expectations of customers. JDI is

 75

a highly structured and several versions were proposed by software engineers at Ford during the

past 10 years. Due to the importance of the application and the high number of updates

performed during a period of 10 years, it is critical to ensure good modularization of JDI to

reduce the time required by developers to introduce new features in the future. We selected these

systems for our validation because they range from medium to large-sized open-source projects,

which have been actively developed over the past 10 years. Table 4.3 Table 4.3. Statistics of the

studied systems and solution length limits.provides some descriptive statistics about these six

programs. As described in, the upper and lower bounds on the chromosome length used in this

study are set to 10 and 350 respectively. Several SBSE problems including remodularization are

characterized by a varying chromosome length. This issue is similar to the problem of bloat

control in genetic programming where the goal is to identify the tree size limits. To solve this

problem, we performed several trial and error experiments where we assess the average

performance of NSGA-III using the HV (hypervolume) performance indicator while varying the

size limits between 10 and 500 operations. Figure 4.6 shows the obtained results which explain

our choices described in Table 4.3.

Figure 4.6. Average Performance of NSGA-III the search algorithms using the HV (hypervolume) indicator while varying

the size limits between 10 and 500 operations.

Table 4.3. Statistics of the studied systems and solution length limits.

Systems Release # classes KLOC Solution length limits (Min/Max)

Xerces-J v2.7.0 991 240 [35 , 350]

JHotDraw v6.1 585 21 [20 , 250]

JFreeChart v1.0.9 521 170 [20 , 250]

76 Software Remodularization

GanttProject v1.10.2 245 41 [10 , 150]

JDI-Ford v5.8 638 247 [25 , 300]

To collect operations applied in previous program versions, we use Ref-Finder [94]. Ref-

Finder, implemented as an Eclipse plug-in, can identify operations between two releases of a

software system. Table 4.4 shows the analyzed versions and the number of operations, identified

by Ref-Finder, between each subsequent couple of analyzed versions, after the manual

validation. In our study, we consider only the operation types described in Table 4.4.

Table 4.4. Analyzed versions and operations collection.

Systems
Collected operation

Previous releases # operations

Xerces-J v1.4.2 - v2.6.1 52

JFreeChart v1.0.6 - v1.0.8 63

GanttProject v1.7 - v1.10.1 81

JHotDraw v5.1 - v6.0 56

JDI-Ford v2.4 – v5.6 97

4.3.3 Experimental Setting

The goal of the study is to evaluate the usefulness and the effectiveness of our

remodularization tool in practice. We conducted a non-subjective evaluation with potential

developers who can use our tool. Indeed, operations should not only improve the structure of

packages but should also be meaningful from a developer's point of view in terms of semantic

coherence and usefulness.

4.3.3.1 Subjects

Our study involved 13 subjects from the University of Michigan and 2 software engineers

from Ford Motor Company. Subjects include 5 master students in Software Engineering, 7 Ph.D.

students in Software Engineering, 1 faculty member in Software Engineering, and 2 junior

software developers. 4 of them are females and 11 are males. All the subjects are volunteers and

familiar with Java development. The experience of these subjects on Java programming ranged

from 2 to 16 years. The evaluated solutions by the subjects are those that represent the maximum

trade-off between the objective using the trade-off worthiness metric proposed by Rachmawati

and Srinivasan as described in Section 4.3.1.

 77

4.3.3.2 Scenario

We designed our study to answer our research questions. The subjects were invited to fill a

questionnaire that aims to evaluate our suggested operations. We divided the subjects into six

groups according to 1) the number of studied systems 2) the number of remodularization

solutions to evaluate, and 3) the number of techniques to be tested.

Table 4.5. Considered solutions for the qualitative evaluation.

Ref.

Solution
Algorithm/ Approach # Objectives Considered objectives

Solution 1

NSGA-III

2 NCP, NP

Solution 2 3 NCP, NP, COU

Solution 3 4 NCP, NP, COU, COH

Solution 4 5 NCP, NP, COU, COH, SP

Solution 5 6 NCP, NP, COU, COH, SP, NCH

Solution 6 7 NCP, NP, COU, COH, SP, NCH, CHC

Solution 7

IBEA

2 NCP, NP

Solution 8 3 NCP, NP, COU

Solution 9 4 NCP, NP, COU, COH

Solution 10 5 NCP, NP, COU, COH, SP

Solution 11 6 NCP, NP, COU, COH, SP, NCH

Solution 12 7 NCP, NP, COU, COH, SP, NCH, CHC

Solution 13

MOEA/D

2 NCP, NP

Solution 14 3 NCP, NP, COU

Solution 15 4 NCP, NP, COU, COH

Solution 16 5 NCP, NP, COU, COH, SP

Solution 17 6 NCP, NP, COU, COH, SP, NCH

Solution 18 7 NCP, NP, COU, COH, SP, NCH, CHC

Solution 19 Mono-objective Simulate Annealing [18] 1 COU+COH

Solution 20 NSGA-II [79] 3 COU, COH, NCH

Solution 21 Automated re-modularization [78] 2 COU, COH

The number of remodularization solutions to evaluate depends on different objectives

combinations: average number of classes per package (NCP), number of packages (NP),

coupling (COU), cohesion (COH), semantics preservation (SP), number of changes (NCH) and

coherence with history of changes (CHC). For each combination (two, three, four, five, six and

seven, objectives), a remodularization solution is suggested to find the best compromise between

the considered objectives. Similarly, the solutions of the state-of-the-art works are empirically

evaluated in order to compare them to our approach as described in the previous section. Table 6

describes the number of remodularization solutions to be evaluated for each studied system in

order to answer our research questions.

As shown in Table 4.5, for each system, 21 remodularization solutions have to be evaluated.

Due to the huge number of operations to be evaluated (each solution consists of a set of

78 Software Remodularization

operations), we pick at random a subset of up to 10 operations per solution to be evaluated in our

study. In Table 4.5, we summarize how we divided subjects into 6 groups in order to cover all

remodularization solutions. In addition, as illustrated in Table 4.6, we are using a cross-validation

to reduce the impact of subjects on the evaluation. Each subject evaluates different

remodularization solutions for three different systems.

Subjects were first asked to fill out a pre-study questionnaire containing five questions. The

questionnaire helped to collect background information such as their role within the company,

their programming experience, their familiarity with software remodularization. In addition, all

the participants attended one lecture about software remodularization and passed five tests to

evaluate their performance to evaluate and suggest remodularization solutions. Then, the groups

are formed based on the pre-study questionnaire and the test result to make sure that all the

groups have almost the same average skills.

The participants were asked to justify their evaluation of the solutions and these justifications

are reviewed by the organizers of the study (one faculty member, one postdoc, one Ph.D. student

and one master student). In addition, our experiments are not only limited to the manual

validation, but also, the automatic validation can verify the effectiveness of our approach.

Subjects were aware that they are going to evaluate the semantic coherence and the usefulness

of the operations, but do not know the particular experiment research questions (algorithms used,

different objectives used and their combinations). Consequently, each group of subjects who

accepted to participate in the study, received a questionnaire, a manuscript guide to help them to

fill the questionnaire, and the source code of the studied systems, in order to evaluate 21

solutions (10 operations per solution). The questionnaire is organized in an excel file with

hyperlinks to visualize easily the source code of the affected code elements. Subjects are invited

to select for each operation one of the possibilities: "Yes", "No", or "Maybe" (if not sure) about

the semantic coherence and usefulness. Since the application of remodularization solutions is a

subjective process, it is normal that not all the developers have the same opinion. In our case, we

considered the majority of votes to determine if suggested solutions are correct or not.

 79

Table 4.6. Survey organization.

Subject groups Systems Algorithms / Approaches Solutions

Group A

GanttProject
NSGA-III

IBEA

Solution 1-6

Solution 7-12

Xerces
MOEA/D,

Abdeen et al.2011

Solution 13-18

Solution 19

JFreeChart
Abdeen et al. 2013,

Bavota et al. 2013

Solution 20

Solution 21

Group B

GanttProject
NSGA-III

IBEA

Solution 1-6

Solution 7-12

Xerces
MOEA/D,

Abdeen et al.2011

Solution 13-18

Solution 19

JFreeChart
Abdeen et al. 2013,

Bavota et al. 2013

Solution 20

Solution 21

Group C

GanttProject
NSGA-III

IBEA

Solution 1-6

Solution 7-12

Xerces
MOEA/D,

Abdeen et al.2011

Solution 13-18

Solution 19

JFreeChart
Abdeen et al. 2013,

Bavota et al. 2013

Solution 20

Solution 21

Group D

GanttProject
NSGA-III

IBEA

Solution 1-6

Solution 7-12

JHotDraw
MOEA/D,

Abdeen et al.2011

Solution 13-18

Solution 19

JDI-Ford
Abdeen et al. 2013,

Bavota et al. 2013

Solution 20

Solution 21

Group E

Xerces
NSGA-III

IBEA

Solution 1-6

Solution 7-12

JHotDraw
MOEA/D,

Abdeen et al.2011

Solution 13-18

Solution 19

JDI-Ford
Abdeen et al. 2013,

Bavota et al. 2013

Solution 20

Solution 21

Group F

JFreeChart
NSGA-III

IBEA

Solution 1-6

Solution 7-12

JHotDraw
MOEA/D,

Abdeen et al.2011

Solution 13-18

Solution 19

JDI-Ford
Abdeen et al. 2013,

Bavota et al. 2013

Solution 20

Solution 21

4.3.3.3 Parameters Tuning

The parameter setting influences significantly the performance of a search algorithm for a

particular problem [95]. For this reason, for the search-based algorithm and for each system (cf.

Table 4.7), we perform a set of experiments using several population sizes: 62, 100, 150, 180,

140, and 190 for respectively 2, 3, 4, 5, 6 and 7 objectives. The maximum number of generations

used is 300, 500, 700, 1000, 1200, and 1400 respectively, for 2, 3, 4, 5, 6 and 7 objectives. For

each algorithm, to generate an initial population, we start by defining the maximum vector length

(maximum number of operations per solution). The vector length is proportional to the number

of operations that are considered and the size of the program to be restructured (cf.

80 Software Remodularization

Table 4.3). A higher number of operations in a solution do not necessarily mean that the

results will be better. Ideally, a small number of operations should be sufficient to provide a good

trade-off between the fitness functions. This parameter can be specified by the user or derived

randomly from the sizes of the program and the used operations list. During the creation, the

solutions have random sizes in the allowed range. Each algorithm is executed 31 times with each

configuration and then the comparison between the configurations is done based on IGD using

the Wilcoxon test. In order to have significant results, for each couple (algorithm, system), we

use the trial and error method in order to obtain a good parameter configuration. Since we are

comparing different search algorithms, we classify parameters into common parameters and

specific parameters.

Table 4.7 depicts the important common parameters. For MOEA/D, the neighborhood size is

set to 20. For IBEA, the scaling parameter κ is set to 0.01. For the SA of [18], the start and stop

temperatures are set respectively to 22.8 and 1.0 using a geometrical cooling scheme with a

cooling rate of 0.9975 and the number of local search iterations is set to 15. It is important to

note that all heuristic algorithms have the same termination criterion for each experiment (same

number of evaluations) in order to ensure fairness of comparisons.

Table 4.7. The setting of common parameters.

Number of

objectives

Number of reference points

(for NSGA-III and

MOEA/D)

Population

size

Number of

generations

Crossover

rate

Mutation

rate

2 62 100 300 0.9 0.1

3 100 150 500 0.9 0.1

4 150 182 700 0.9 0.1

5 180 174 1000 0.8 0.2

6 140 186 1200 0.8 0.2

7 190 193 1400 0.8 0.2

4.3.3.4 Statistical Tests

Since metaheuristic algorithms are stochastic optimizers, they can provide different results for

the same problem instance from one run to another. For this reason, our experimental study is

performed based on 31 independent simulation runs for each problem instance and the obtained

results are statistically analyzed by using the Wilcoxon rank sum test [96] with a 99% confidence

level (α = 1%). The latter verifies the null hypothesis H0 that the obtained results of the two

algorithms are samples from continuous distributions with equal medians, against the alternative

 81

that they are not H1. The p-value of the Wilcoxon test corresponds to the probability of rejecting

the null hypothesis H0 while it is true (type I error). A p-value that is less than or equal to α (≤

0.01) means that we accept H1 and we reject H0. However, a p-value that is strictly greater than

α (> 0.01) means the opposite. In fact, for each problem instance, we compute the p-value

obtained by comparing NSGA-II, IBEA, MOEA/D and mono-objective search results with

NSGA-III ones. In this way, we determine whether the performance difference between NSGA-

III and one of the other approaches is statistically significant or just a random result.

4.3.4 Results

4.3.4.1 Results for RQ1.1

Table 4.8 summarizes the results of median values of the structural metrics over 31

independent simulation runs after applying the proposed operations by the remodularization

solution selected using the knee-point strategy. The results of Table 4.8 are based on the

consideration of all the 7 objectives for the many-objective algorithms, thus, the order is not

important and has no impact on the results. The software engineer can select the best solution

based on his preferences (fitness function values) and programming behavior from the non-

dominated (trade-off) set of solutions.

As described in Table 4.8, we found that NSGA-III algorithm provides similar structural

improvements the other techniques in terms of an average number of classes per package (NCP),

cohesion (NIE) and coupling (NAE). However, the number of packages (NP) in the system after

applying NSGA-III solutions is slightly higher than all NP values proposed by the best solutions

to most of the remaining algorithms in most of the cases except Xerces-J. This can be explained

by the fact that decreasing the number of classes per package will automatically increase the

number of packages. In addition, the extract class operation created new classes that increased

the average number of classes per package.

The structural improvement scores of multi-objective and mono-objective algorithms are very

close to those produced by many-objective algorithms, especially NSGA-III. This is an

interesting result confirming that our NSGA-III can find very good compromises between 7

objectives that are similar and sometimes outperforms those that are produced by existing

82 Software Remodularization

approaches using only structural and semantic objectives. We believe that improving the

structure of packages it is a difficult and very important objective to reach. We consider that

NSGA-III performance in terms of improving the structure similar to existing approaches is a

very interesting result since the main goal of this work is to improve the structure while

preserving the domain semantics which not well-considered by the remaining approaches.

Table 4.8. Average number of classes per package (NCP), number of packages (NP), number of inter-edges (NIE),

number of intra-edges (NAE) and the deviation (delta with the initial design) median values of NSGA-III, IBEA,

MOEA/D, SA, NSGA-II and Bavota et al. over 31 independent simulation runs. A “+” symbol at the ith position in the

sequence of signs presented below the instance names means that the NSGA-III algorithm metric median value is

statistically different from the ith algorithm one. A “-” symbol at the ith position in the sequence of signs means the

opposite (e.g., for Xerces-J, NSGA-III is not statistically different from IBEA, however, it is statistically different from the

other algorithms).

System Approach NCP dev.NCP NP dev.NP NIE dev.NIE NAE Dev.NAE

Xerces-J

(-++++)

NSGA-III 19 -4 46 +5 316 -69 432 +72

IBEA 21 -2 44 +3 328 -57 411 +51

MOEA/D 18 -5 56 +15 352 -33 397 +37

SA Abdeen et al. 2011 24 +1 42 +1 314 -71 441 +81

NSGA-II Abdeen et

al.2011

18 -5 56 +15 333 -52 422 +62

Bavota et al. 2013 18 -5 56 +15 302 -83 453 +93

JFreeChart

(+++++)

NSGA-III 14 -6 38 +8 286 -71 384 +69

IBEA 16 -4 36 +6 304 -53 392 +77

MOEA/D 16 -4 36 +6 314 -43 383 +86

SA Abdeen et al. 2011 13 -7 42 +12 291 -66 396 +81

NSGA-II Abdeen et

al.2011

13 -7 42 +12 301 -56 3786 +71

Bavota et al. 2013 11 -9 47 +17 278 -79 398 +94

GanttProject

(--+++)

NSGA-III 14 -3 18 +9 259 -68 294 +81

IBEA 12 -5 21 +12 247 -80 304 +91

MOEA/D 14 -3 18 +9 259 -68 291 +78

SA Abdeen et al. 2011 12 -5 21 +12 238 -89 329 +116

NSGA-II Abdeen et

al.2011

13 -4 19 +10 244 -83 323 +111

Bavota et al. 2013 12 -6 21 +12 236 -91 331 +118

JHotDraw (+-

++-)

NSGA-III 16 -8 37 +14 391 -83 425 +84

IBEA 18 -6 33 +10 404 -70 418 +77

MOEA/D 16 -8 37 +14 391 -83 433 +92

SA Abdeen et al. 2011 14 -10 42 +19 384 -90 439 +98

NSGA-II Abdeen et

al.2011

15 -9 40 +17 388 -86 435 +94

Bavota et al. 2013 11 -13 52 +29 378 -96 445 +104

JDI-Ford (++-

-+)

NSGA-III 14 -4 46 +21 301 -67 412 +76

IBEA 14 -4 46 +21 324 -44 422 +86

MOEA/D 16 -2 39 +16 308 -60 391 +55

SA Abdeen et al. 2011 13 -5 52 +27 297 -71 421 +85

NSGA-II Abdeen et

al.2011

14 -4 48 +23 304 -64 414 +78

Bavota et al. 2013 13 -5 52 +27 294 -74 424 +88

 83

4.3.4.2 Results for RQ1.2

To answer RQ1.2, we need to assess the correctness/meaningfulness of the suggested

remodularization solutions from a developers’ standpoint. To this end, we reported the results of

our empirical qualitative evaluation in Figure 4.7 (MP). As reported in Figure 4.7, the majority

of the suggested solutions by NSGA-III improve significantly the structure (RQ1.1) while

preserving the semantic coherence much better than all existing approaches. On average, for all

of our five studied systems, 88% of proposed operations are considered as semantically feasible

and do not generate semantic incoherence by the software engineers. This score is significantly

higher than the ones of the NSGA-II and SA approaches having respectively between 51% and

70%, in average, of MP scores on the different systems. However, the performance of the IBEA,

MOEA/D and Bavota et al. are close to the performance of our NSGA-II approach in terms of

semantic preservation with respectively an average of 84%, 83% and 81% of MP. This can be

explained by the fact that semantic measures are considered by these approaches.

Thus, our many-objective approach reduces the number of semantic incoherencies when

suggesting ROs. To sum up, our approach performs clearly better for semantics preservation

with the cost of a slight degradation of structural improvements compared to the other

approaches. This slight loss in the structure (RQ1.1) is largely compensated by the significant

improvement of the semantic coherence.

Figure 4.7. Qualitative evaluation of the remodularization solutions (semantics). A “+” symbol at the ith position in the

sequence of signs means that the algorithm metric median value is statistically different from the ith algorithm one. A “-”

symbol at the ith position in the sequence of signs means the opposite. Sequences of “+” and “-” Signs should be read from

top to bottom. The column referring to the system under analysis should be left out of the count in the sequence.

84 Software Remodularization

In addition to the empirical evaluation, we automatically evaluate our approach without using

the feedback of potential users to give a more quantitative evaluation to answer RQ1.2. Thus, we

compare the proposed operations with some expected ones. The expected operations are the

inverse of those applied manually by the software engineers who participated in our experiments

to modify an initial version of JHotDraw. The participants of our experiments did not introduce

changes randomly to JHotDraw. We selected the packages that are clearly very well designed

based on a manual inspection using also the following quality metrics: number of classes per

package, cohesion of the package, number of lines of code per package, average depth of

inheritance tree of classes per package, average number of methods per package and coupling of

the package. Thus, the expected refactorings are those that can generate the initial version of

these modified well-designed packages. The developers considered only move class and

split/extract package operations when modifying the original version of JHotDraw. Thus, we are

not only considering JHotDraw without a manual inspection of the best well-designed packages

to modify. The total number of introduced changes is 68. Four developers from the University of

Michigan subjects worked together to introduce the changes on the same copy of JHotDraw

system. We use Ref-Finder to identify operations that are applied to the program version under

analysis and the next version. Figure 4.8 summarizes our findings. We found that a considerable

number of proposed operations by NSGA-III (an average of 85% in terms of precision and

recall) are already applied in the next version by a software development team comparing to

other existing mono-objective and multi-objective remodularization approaches having only less

than 65% as precision and recall. However, we found that the remodularization solutions

proposed by the other many-objective algorithms IBEA and MOEA/D, and Bavota et al. have

close scores to NSGA-III with respectively an average of 80%, 75% and 81% of precision. The

same observation is valid for the recall.

In conclusion, our approach produces good remodularization suggestions in terms of

structural improvements, semantic coherence, and code changes reduction from the point of view

of 1) potential users of our tool and 2) expected operations applied to the next program version.

 85

Figure 4.8. Quantitative evaluation (precision and recall) of the remodularization solutions (semantics). A “+” symbol at

the ith position in the sequence of signs means that the algorithm metric median value is statistically different from the ith

algorithm one. A “-” symbol at the ith position in the sequence of signs means the opposite. Signs should be read from top

to bottom. The column referring to the system under analysis should be left out of the count in the sequence.

4.3.4.3 Results for 1.3

To answer RQ1.3, we evaluate the Number of Operations (NO) suggested by the best

remodularization solutions on the different systems. Figure 4.9 presents the code changes scores

(NO) needed to apply the suggested remodularization solutions for each many-objective or

multi-objective algorithm. We found that our approach succeeded in suggesting solutions that do

not require high code changes (an average of only 64 operations) comparing to other many-

objective (IBEA, MOEA/D) and multi-objective (NSGA-II) algorithms having respectively an

average of 72, 71 and 79 for all studied systems. We did not compare the number of changes

suggested by our proposal with existing work since they are limited to only two types of changes

(move class and split packages).

86 Software Remodularization

Figure 4.9. Average number of operations. A “+” symbol at the ith position in the sequence of signs means that the

algorithm metric median value is statistically different from the ith algorithm one. A “-” symbol at the ith position in the

sequence of signs means the opposite. Signs should be read from top to bottom. The column referring to the system under

analysis should be left out of the count in the sequence.

4.3.4.4 Results for RQ1.4

To answer RQ1.4, we evaluated the results of our approach compared to other approaches that

do not use the history of changes. As described in the previous sections, our NSGA-III approach

outperforms clearly existing work including Abdeen et al. 2011, Abdeen et al. 2013 and Bavota

et al. 2013 that are not based on the use of the history of changes. This is a good indication that

the recorded operations contribute significantly to provide good solutions. In fact, the use of the

history of changes is a helper objective to improve the semantic coherence of suggested

remodularization solutions. It is also important to note that the SP metrics has the most positive

impact on the results of our approach.

 87

Figure 4.10. The impact of different combinations of objectives on the remodularization solutions (MP).

We conducted also a more quantitative evaluation to investigate the effects of the use of

recorded operations, on the semantic coherence (MP). To this end, we compare the MP score

with and without using recorded operations. We present in Figure 4.10 the results of different

combinations of our seven objectives. The order is important only when we considered the lower

number of objectives (Figure 4.10) to evaluate the improvement of the solutions quality if a

higher number of objectives are used. The first studies on software remodularization used only

the structure then the semantics and after that the effort and history of changes. Our work

combined them together in one approach using many-objective techniques. As presented in

Figure 4.10, the best MP scores are obtained when the recorded code changes are considered.

Moreover, we found that the optimal remodularization solutions found by our approach are

obtained with a considerable percentage of reused operations history (ROP) (more than 75% as

shown in Figure 4.11). Thus, the obtained results support the claim that recorded operations

applied in the past are useful to generate coherent and meaningful remodularization solutions.

88 Software Remodularization

Figure 4.11. Percentage of recorded operations that are used by the best remodularization. A “+” symbol at the ith

position in the sequence of signs means that the algorithm metric median value is statistically different from the ith

algorithm one. A “-” symbol at the ith position in the sequence of signs means the opposite solutions. Signs should be read

from top to bottom. The column referring to the system under analysis should be left out of the count in the sequence.

4.3.4.5 Results for RQ2

In the previous sections, we compared our NSGA-III proposal with one mono-objective

technique and one existing multi-objective technique based on NSGA-II. Thus, we focus on the

comparison between our NSGA-III adaption and two other many-objective algorithms IBEA and

MOEA/D using the same adaptation. Table 10 shows the median IGD values over 31

independent runs for all algorithms under comparison. All the results were statistically

significant on the 31 independent simulations using the Wilcoxon rank sum test with a 99%

confidence level (α < 1%). For the 3-objective case, we see that NSGA-III and NSGA-II present

similar results and that NSGA-III provides slightly better results than IBEA and MOEA/D. For

the 5-objective case, NSGA-III strictly outperforms NSGA-II and gives similar results to those

of the two other multi-objective algorithms. For the 7-objective case, NSGA-III is better than

NSGA-II, IBEA and MOEA/D. Additionally, IBEA seems to be slightly better than MOEA/D. It

is worth noting that for problems instances with more 3 objectives, NSGA-II performance is

dramatically degraded, which is simply denoted by the ~ symbol. The performance of NSGA-III

could be explained by the interaction between: (1) Pareto dominance-based selection and (2)

reference point-based selection, which is the distinguishing feature of NSGA-III compared to

other existing many-objective algorithms.

 89

Table 4.9. Median IGD values on 31 runs (best values are in bold). ~ means a large value that is not interesting to show.

The results were statistically significant on 31 independent runs using the Wilcoxon rank sum test with a 99% confidence

level (α < 1%).

System M MaxGen NSGA-III IBEA MOEA/D NSGA-II

Xerces-J

3 250 9.861 x 10-4 9.864 x 10-4 9.863 x 10-4 9.862 x 10-4

5 500 7.799 x 10-3 7.875 x 10-3 7.878 x 10-3 8.991 x 10-3

7 750 8.013 x 10-3 8.372 x 10-3 8.368 x 10-3 ~

JHotDraw

3 250 2.477 x 10-3 2.478 x 10-3 2.478 x 10-3 2.477 x 10-3

5 500 4.193 x 10-3 4.201 x 10-3 4.206 x 10-3 4.533 x 10-3

7 750 5.536 x 10-3 5.801 x 10-3 5.796 x 10-3 ~

JFreeChart

3 250 3.744 x 10-4 3.747 x 10-4 3.746 x 10-4 3.746 x 10-4

5 500 4.578 x 10-4 4.602 x 10-4 4.609 x 10-4 5.042 x 10-4

7 750 6.099 x 10-4 6.208 x 10-4 6.193 x 10-4 ~

GanttProject

3 250 5.112 x 10-3 5.115 x 10-3 5.116 x 10-3 5.112 x 10-3

5 500 6.701 x 10-3 6.802 x 10-3 6.801 x 10-3 6.997 x 10-3

7 750 7.823 x 10-3 8.068 x 10-3 8.044 x 10-3 ~

JDI-Ford

3 250 6.229 x 10-4 6.232 x 10-4 6.231 x 10-4 6.231 x 10-4

5 500 6.608 x 10-4 6.682 x 10-4 6.686 x 10-4 6.887 x 10-4

7 750 6.984 x 10-4 7.305 x 10-4 7.299 x 10-4 ~

Figure 4.12 illustrates the value path plots of all algorithms the 7-objective remodularization

problem on JDI-Ford, one of the largest system used in our experiments. Similar observations

were made in the remaining systems but are omitted due to space considerations. All quality

metrics were normalized between 0 and 1 and all are to be minimized. We observe that NSGA-

III and MOEA/D present the best convergence since their non-dominated solution sets are the

closest to the ideal point, i.e., the vector composed of 7 zero. However, NSGA-III presents better

diversity than all algorithms under comparisons including MOEA/D since its non-dominated

solutions have a better spread varying approximately in [0, 0.88] which is not the case for

MOEA/D (varying in [0, 0.8]). Besides, MOEA/D seems to have a better convergence than

IBEA. However, NSGA-II is unable to progress in terms of convergence as its non-dominated

solutions are so far from the ideal vector, and even it diversity is so reduced which may explain

the stagnation of its evolutionary process. We conclude that although NSGA-II is the most

famous multi-objective algorithm in SBSE, it is not adequate for problems involving over 3

objectives. Based on the results we obtained, it appears that NSGA-III is a very good candidate

solution for tackling many-objective SBSE problems.

90 Software Remodularization

Figure 4.12. Value path plots of non-dominated solutions obtained by NSGA-III, MOEA/D, IBEA and NSGA-II during

the median run of the 7-objective remodularization problem on JDI-Ford.

The results of Figure 4.12 are not sufficient to show that the 7 objectives are conflicting.

Table 11 presents the results of studying the conflict relation between each pair of objectives. In

fact, for each experiment (each plot), we execute a mono-objective GA minimizing the objective

shown on the line label and we study the behavior of the other objective shown in the column

label by recording its values at the beginning (generation 0) and at the end (generation 300) of

the evolutionary process. For example, for the first plot (NCP, NP), we observe that the

minimization of NCP causes the maximization of NP, thus NCP and NP are conflicting. The

opposite phenomenon could be seen for the plot (NP, CHC). Indeed, the minimization of NP

makes CHC decreasing too. We conclude that NP and CHC are in support (non-conflicting). To

sum up, there are some pairs of objectives that are in conflict and some others that are in support.

For this reason, we should verify whether there are some redundant objectives or not [97], i.e.,

whether there are some objectives that could be omitted while preserving the Pareto dominance

order. Based on Table 4.10 results, we draw Table 4.11 which illustrates for each objective i, the

objectives that are in conflict with it. We observe from this table that each objective i has a set of

conflicting objectives that is different from all other objectives’ ones, which means that we

cannot omit any objective when comparing between any pair of solutions. Indeed, a redundant

 91

objective could appear if two non-conflicting objectives have the same set of conflicting

objectives which is not the case for our remodularization problem. Thus, we can say that the

latter well involves 7 objectives to be optimized simultaneously without omitting anyone of

them.

Table 4.10. Conflict study between objectives.

92 Software Remodularization

Table 4.11. Existing conflict between objectives.

Objective i Conflicting objectives with i

NCP NP, COU, COH, SP, NCH.

NP COU, NCP, COH, SP, NCH.

COU NCP, NP, COH, SP, NCH.

COH NCP, NP, COU, SP, NCH.

SP NCP, NP, COU, COH, NCH.

NCH NCP, NP, COU, COH, SP, CHC.

CHC NCP, NCH.

The Wilcoxon rank sum test allows verifying whether the results are statistically different or

not. However, it does not give any idea about the difference magnitude. The effect size could be

computed by using the Cohen’s d statistic [98]. The effect size is considered: (1) small if 0.2 ≤ d

< 0.5, (2) medium if 0.5 ≤ d < 0.8, or (3) large if d ≥ 0.8. For all experiments, we obtained a large

difference between NSGA-III/IBEA/MOEA/D results and NSGA-II ones for the cases of 5 and 7

objectives using all the evaluation metrics. The same difference is small for the case of 3

objectives. However, when comparing NSGA-III against MOEA/D and IBEA, we have found

the following results: a) On small and medium scale Software systems (JFreeChart and

GanttProject) NSGA-III is better that MOEA/D and IBEA on most systems with a medium effect

size; b) On large scale Software systems (Xerces-J and JDI-Ford), NSGA-III is better than

MOEA/D and IBEA on most systems with a small effect size.

When using optimization techniques, the most time-consuming operation is the evaluation

step. Thus, we studied the execution time of all many/multi-objective algorithms used in our

experiments. Figure 4.13 shows the evolution of the execution time of the different algorithms on

the JDI-Ford system, one of the largest systems in our experiments. The results show that the

execution time grows linearly with respect to the number of objectives. It is clear from this

figure, that all the algorithms have similar running times for the 3-objective cases. However, for

a higher number of objectives NSGA-III is faster than IBEA. This observation could be

explained by the computational effort required to compute the contribution of each solution in

terms of hypervolume. In comparison to MOEA/D, MOEA/D is slightly faster than NSGA-III

since it does not make use of non-dominated sorting.

 93

Figure 4.13. Computational time of the different used many-objective remodularization algorithms.

To further evaluate the scalability of the performance of our many-objective approach on

systems of increasing size, we executed our remodularization tool on the Eclipse system without

assessing the quality of the results. Eclipse is an open source integrated development

environment (IDE) written in Java and widely used to develop applications. We considered four

versions of Eclipse that contains more than 3 MLOCs. Figure 4.14 describes the execution time

of our many-objective approach on 4 different versions of Eclipse using the 7 objectives. We

believe that an execution time of 8 hours is still acceptable and reasonable even with the

considered huge system to remodularize. Developers can execute our tool overnight then

evaluate the results and work next day on the new system.

94 Software Remodularization

Figure 4.14. Scalability of our remodularization tool tested on Eclipse.

4.3.4.6 Results for RQ3

We compared the results of our proposal with an existing non-search-based work of Bavota et

al. [78] that eventually relies on the use of coupling and cohesion along with semantic measures.

In addition, the user needs to give as an input the different packages to restructure. We first note

that it (like mono-objective approaches also) provides only one remodularization solution, while

NSGA-III generate a set of non-dominated solutions. In order to make meaningful comparisons,

we select the best solution for NSGA-III using a knee point strategy. For Bavota et al. study, we

use the best solution corresponding to the median observation on 31 runs. The results from the

31 runs are depicted in Figure 4.7 and Figure 4.8, and Table 4.8. It can be seen that NSGA-III

provides better results than Bavota et al. in all systems as discussed in the previous sections. As

described in Figure 4.15, the NSGA-III outperforms it mainly due the use of the history of

changes as a helper objective for the semantic measures. In addition, Bavota et al. work is

limited to few types of operations and do not consider all the operation types supported by our

approach.

 95

Figure 4.15. A comparison between Bavota et al. 2013 and NSGA-III based on the qualitative evaluation (MP).

4.3.4.7 Results for RQ4

We asked the software engineers involved in our experiments to evaluate the usefulness of the

suggested ROs to apply one by one. In fact, sometimes these operations can improve the

structure and preserve the semantics but developers will consider them as not useful due to many

reasons such as some packages are not used/updated anymore or includes some features that are

not important. Figure 4.16 shows that NSGA-III clearly outperforms existing work by suggesting

useful remodularization operations for developers. This is can be explained mainly by the use of

the history of recorded changes when suggested remodularization solutions. In fact, the use of

the history of changes can help our technique to identify which packages are widely updated. In

addition, several recent empirical studies showed that repetitive changes are common during the

development of systems [89]. We found, in our experiments, that several patterns of changes

(applied to different code locations) are repetitive. For example, move methods are in general

applied after extract class since several methods are moved to the newly created class. A similar

observation is valid for extract package and move class. Thus, the use of the history of changes

can guide the search for good remodularization solutions based on the reuse of patterns identified

from the history of changes.

0

0.2

0.4

0.6

0.8

1

M
P

NSGA-III

NCP, NP

NCP, NP, COU

NCP, NP, COU, COH

NCP, NP, COU, COH, SP

NCP, NP, COU, COH, SP,
NCH
NCP, NP, COU, COH, SP,
NCH, CHC
Bavota et al. 2013

96 Software Remodularization

Figure 4.16. Qualitative evaluation of the suggested remodularization solutions in terms of usefulness.

Another feature that the software engineers, involved in our experiments, found it interesting

is the use of several types of ROs. Figure 4.17 describes the distribution of the operations types

used by the best solutions in all the system. It is clear that the three most important ones are

move method, move class and extract/split packages. The software engineers found the idea very

useful of moving methods between classes located in different packages or extracting a class

then moving it to another class instead of moving the whole initial class to a new package.

Sometimes, it is enough to move only a method from a class to another class in order to improve

the cohesion of a package or decrease coupling between packages. However, existing

remodularization work are limited to only two types of operations (move class and split

packages).

Figure 4.17. Distribution of the types of suggested remodularization operations.

 97

During the survey, the software engineers confirm that the main limitation related to the use

of NSGA-III for software remodularization is the high number of equivalent solutions. However,

found the idea of the use of the Knee point as described previously useful to select a good

solution. We will investigate in our future work different other techniques to select the region of

interest based on the preferences of developers.

 Conclusion

In this chapter, we introduced a new scalable search-based software engineering approach for

software remodularization based on NSGA-III. We address several challenges of existing

software remodularization techniques that are limited to mainly the use of coupling and

cohesion, and few types of operations (move class and split package). Our proposal aims at

finding the remodularization solution that improves the structure of packages by optimizing

some metrics such as number of classes per package, number of packages, coupling and

cohesion; improve the semantic coherence of the restructured program; minimize code changes,

and maximize the consistency with development change history.

We evaluated our approach on four open source systems and one industrial system provided by

our industrial partner Ford Motor Company. We report the results on the efficiency and

effectiveness of our approach, compared to the state of the art remodularization approaches. Our

results indicate that our approach significantly outperforms, in average, existing approaches

based on a quantitative and qualitative evaluation. All the results were statistically significant on

the 31 independent simulations using the Wilcoxon rank sum test with a 99% confidence level (α

< 1%) where more than 92% of code-smells were fixed on the different open source systems.

As part of the future work, we plan to work on adapting NSGA-III to additional software

engineering problems and we will perform more comparative studies on larger open source

systems. Furthermore, we will investigate the impact of different parameter settings on the

quality of our results. Nevertheless, this extensive study has shown a direction using NSGA-III

to handle as many as 7 objectives in the context of solving software engineering problems and

would remain as one of the first studies in which such a large number of objectives have been

considered. Weighting certain objectives can be an interesting future work direction to integrate

98 Software Remodularization

the preferences of developers during the search process. We are also planning to consider only

the remodularization of the modified packages after the last release based on analysis of the

history of the code changes. Finally, we plan to extend the use of our modularization approach

by additional experts to generalize the obtained results.

99

 Software Refactoring

 Multi-objective Optimization under Uncertainty

5.1.1 Introduction

Software evolution is an essential component of software development process. It is mainly

intended to keep the software system up to the user’s requirements by regularly performing a set

of development activities linked to adding new features, fixing reported bugs, migrating to

different environments and platforms, and other function related tasks. Eventually. As a software

system evolves, the code-related changes tend to degrade the system’s structure as the evolution

focuses mainly on the incorporation of required features and the correction of errors on the

expense of the deterioration of the system’s design. Since these code changes have become

inevitable as they constitute a key role in agile methodologies, strategies need to be adapted in

order to preserve the software architecture’s value over changes. Therefore, software

maintenance gathers software change control and management strategies that aim to maintain the

software quality during its evolution. On the other hand, the new functionalities, incorporated

during the evolution of a software system, exhibit a growth of its size and complexity and so it

becomes harder to maintain. As a consequence, the cost of maintenance and evolution activities

comprises more than 80% of total software costs. In addition, it has been shown that software

maintainers spend around 60% of their time in understanding the code [99]. To facilitate

maintenance tasks, one of the widely used techniques is refactoring which can be defined as the

restructuration of the system’s architecture with the intention of improving its internal design

while preserving the overall external behavior of the software [15].

Software refactoring, as a concept, has been introduced in the early nineties by Obdyke [87]

and became a key artifact of the agile development processes such as Extreme Programming

100 Software Refactoring

(XP). Fowler [15] has identified refactoring opportunities within code fragments and provides a

refactoring operations catalog that can be applied to enhance the code’s structure of code while

preserving its semantics. There has been much work on different refactoring techniques and tools

[50] [62] [71] [86]. The vast majority of these techniques identify key symptoms that

characterize the code to refactor using a combination of quantitative, structural, and/or lexical

information and then propose different possible refactoring solutions, for each identified segment

of code. In order to find out which parts of the source code need to be refactored, most of the

existing work rely on the notion of design defects or code smells. Originally coined by Fowler,

the generic term code smell refers to structures in the code that suggest the possibility of

refactoring. Once code smells have been identified, refactorings need to be proposed to resolve

them. Several automated refactoring approaches are proposed in the literature and most of them

are based on the use of software metrics to estimate quality improvements of the system after

applying refactorings.

Most of existing approaches propose refactoring solutions without a consideration of the

severity and importance of detected refactoring opportunities to fix. In fact, both severity and

importance are difficult to define and estimate. The estimation scores of these factors can change

during the time due to the highly dynamic nature of software development. The importance and

severity of code fragments can be different after new commits introduced by developers. Thus, it

is important to consider the uncertainty related to these two factors when recommending

refactoring solutions. In addition, the definition of severity and importance is very subjective and

depends on the developers’ perception.

In this work, we take into account two dynamic aspects as follows:

 Code Smell Severity: Once a list of code smells is detected, the correction techniques

treat these detected defects equally by suggesting which refactorings could be applied

to the code in order to eliminate, or at least reducing them. Whereas, the effects of a

defect in terms of potential introduction of faults may vary depending on the type of

the code smell [100]. Also, many studies have been investigating the impact of each

defect type on the maintenance effort [101]. Thus, we consider a severity level

assigned to a code smell type by a developer based on his prior knowledge and his

 101

preference on prioritizing the correction of a specific type of code smell among others.

This is the severity level assigned to a code smell type by a developer. It usually varies

from developer to developer, and indeed, a developer’s assessment of smell severity

will change over time as well.

 Code Smell Class Importance: This is the importance of a class that contains a code

smell, where importance refers to the number and size of the features that the class

supports. A code smell with large class importance will have a greater detrimental

impact on the software. Again, this property will vary over time as software

requirements change [5] and classes are added/deleted/extracted.

We believe that the uncertainties related to the class importance and the code smell severity

need to be taken into consideration when suggesting a refactoring solution. To this end, we

introduce a novel representation of the code refactoring problem, based on robust optimization

[102] [103] that generates robust refactoring solutions by taking into account the uncertainties

related to code smell severity and the importance of the class that contains the code smell. Our

robustness model is based on the well-known multi-objective evolutionary algorithm NSGA-II

proposed by Deb et al. [83] and considers possible changes in class importance and code smell

severity by generating different scenarios at each iteration of the algorithm. In each scenario, the

detected code smell to be corrected is assigned a severity score and each class in the system is

assigned an importance score. In our model, we assume that these scores change regularly due to

reasons such as developers’ evolving perspectives on the software or new features and

requirements being implemented or any other code changes that could make some classes/code

smells more or less important. Our multi-objective approach aims to find the best trade-off

between three objectives to maximize: quality improvements (number of fixed code smells),

severity and importance of refactoring opportunities to be fixed (e.g. code smells).

The primary contributions of this work are as follows:

 A novel formulation of the refactoring problem as a multi-objective problem that takes

into account the uncertainties related to code smell detection and the dynamic

environment of software development. We extended our previous work [104] by

considering severity and importance of refactoring opportunities as separate objectives.

102 Software Refactoring

In addition, we are considering additional types of code smells to fix and extended our

validation to 8 open source systems and one industrial project.

 The Validation of an empirical study of our robust NSGA-II technique as applied

different medium and large size systems. We compared our approach to random search,

multi-objective particle swarm optimization (MOPSO) [105], search-based refactoring

[70] [52] and a non-search-based refactoring tool [106]. The results provide evidence to

support the claim that our proposal enables the generation of robust refactoring solutions

without a high loss of quality using a variety of real-world scenarios.

5.1.2 Approach

5.1.2.1 Robust Optimization

In dealing with optimization problems, including software engineering ones, most

researchers assume that the parameters of the problem are exactly known in advance.

Unfortunately, this is an idealization often not the case in a real-world setting. Additionally,

uncertainty can change the effective values of some parameters with respect to nominal values.

For instance, when handling the knapsack problem (KP), which is one of the most studied

combinatorial problems [103], we can face such a problem. The KP problem requires one to find

the optimal subset of items to put in a knapsack of capacity C in order to maximize the total

profit while respecting the capacity C. The items are selected from an item set where each item

has its own weight and its own profit. Usually, the KP’s input parameters are not known with

certainty in advance. Consequently, we should search for robust solutions that are immune to

small perturbations in terms of input parameter values. In other words, we prefer solutions whose

performance levels do not significantly degrade due to small perturbations in one or several input

parameters such as item weights, item profits and knapsack capacity for a KP. As stated by

Beyer et al. [103], uncertainty is unavoidable in real problem settings; therefore, it should be

taken into account in every optimization approach in order to obtain robust solutions. Robustness

of an optimal solution can usually be discussed from the following two perspectives: (1) the

optimal solution is insensitive to small perturbations in terms of the decision variables and/or (2)

the optimal solution is insensitive to small variations in terms of environmental parameters.

 103

Figure 5.1 illustrates the robustness concept with respect to a single decision variable named x.

Based on the f (x) landscape, we have two optima: A and B. We remark that solution A is very

sensitive to local perturbation of the variable x. A very slight perturbation of x within the interval

[2, 4] can make the optimum A unacceptable since its performance f(A) would dramatically

degrade. On the other hand, small perturbations of the optimum B, which has a relatively lower

objective function value than A, within the interval [5,7] hardly affects the performance of

solution B (i.e., f(B)) at all. We can say that although solution A has a better quality than solution

B, solution B is more robust than solution A. In an uncertain context, the user would probably

prefer solution B to solution A. This choice is justified by the performance of B in terms of

robustness. It is clear from this discussion robustness has a price, called robustness price or cost,

since it engenders a loss in optimality. This loss is due to preferring the robust solution B over

the non-robust solution A. According to Figure 1, this loss is equal to))()((AfBfabs  . Several

approaches have been proposed to handle robustness in the optimization field in general and

more specifically in design engineering. These approaches can be classified as follows [102]:

• Explicit averaging: Assuming f(x) to be the fitness function of solution x, the basic idea is

to generate a weighted average for the fitness value in the neighborhood Bδ(x) of solution x with

an uncertainty distribution p(δ). The fitness function then becomes:





dxfp
B

)()(
(x)




However, because in the robustness term, case disturbances can be chosen deliberately,

variance reduction techniques can be applied, allowing a more accurate estimation with fewer

samples.

• Implicit averaging: The basic idea is to compute an expected fitness function based on

the fitness values of some solutions residing within the neighborhood of the considered solution.

Beyer et al. [107] noted that it is important to use a large population size in this case. In fact,

given a fixed number of evaluations per generation, it was found that increasing the population

size yields better results than multiple random sampling.

• Use of constraints: The difference between the weighted average fitness value and the

actual fitness value at any point can be restricted to lie within a pre-defined threshold in order to

yield more robust solutions [108]. Such an optimization process will prefer robust solutions to

104 Software Refactoring

the problem and it then depends on the efficacy of the optimization algorithm to find the highest

quality robust solution.

• Multi-objective formulation: The core idea in the multi-objective approach is to use an

additional helper objective function that handles robustness related to uncertainty in the

problem’s parameters and/or decision variables. Thus, we can solve a mono-objective problem

by means of a multi-objective approach by adding robustness as a new objective to the problem

at hand. The same idea could be used to handle robustness in a multi-objective problem;

however, in this case, the problem’s dimensionality would increase. Another reason to separate

fitness from robustness is that using the expected fitness function as a basis for robustness is not

sufficient in some cases [109]. With expected fitness as the only objective, positive and negative

deviations from the true fitness can cancel each other in the neighborhood of the considered

solution. Thus, a solution with high fitness variance may be wrongly considered to be robust. For

this reason, it may be advantageous to consider expected fitness and fitness variance as separate

additional optimization criteria, which allows searching for solutions with different trade-offs

between performance and robustness.

Robustness has a cost in terms of the loss in optimality, termed the price of robustness, or

sometimes robustness cost. This is usually expressed as the ratio between the gain in robustness

and the loss in optimality. Robustness handling methods have been successfully applied in

several engineering disciplines such as scheduling, electronic engineering and chemistry (cf.

[103] for a comprehensive survey).

Figure 5.1. Illustration of the robustness concept under uncertainty related to the decision variable x. Solution B is more

robust than solution A.

 105

5.1.2.2 Problem Formulation

The refactoring problem, from the search-based perspective, includes the exploration of a set

of candidate solutions in order to determine the best one whose sequence of refactorings best

satisfies the fitness function(s). A refactoring solution is a set of refactoring operations where the

goal of applying the sequence to a software system S is typically to minimize the number of

design defects in S. As outlined in the Introduction, in a real-world setting code smell severity

and class importance are not certainties. A refactoring sequence that resolves the smells that one

developer rates as severe may not be viewed as effective by another developer with a different

outlook on smells. Similarly, a refactoring sequence that fixes the smells in a class that is

subsequently deleted in the next commit is not of much value [110].

We propose a robust formulation of the refactoring problem that separates class importance

and smells severity into two different objectives. Consequently, we have three objective

functions to be maximized in our problem formulation: (1) the quality of the system to refactor,

i.e., minimizing the number of code smells, and the robustness of the refactoring solutions in

relation to uncertainty in both (2) severity level of the code smells and (3) the importance of the

classes that contain the code smells. Analytically speaking, the formulation of the robust

refactoring problem can be stated as follows:

),...,(

),,(),(

),,(),(

)(),(),(

1

),(

1

3

),(

1

2

1

Xxxxtosubject

SxCCStanceClassImporSxf

SxCCSitySmellSeverSxf

SNDCSSxNCCSSxf

Maximize

n

SxNCCS

i

i

SxNCCS

i

i































(5.1)

where X is the set of all legal refactoring sequences starting from S, xi is the ith refactoring in

the sequence x, NCCS(x,S) is the Number of Corrected Code Smells after applying the

refactoring solution x on the system S, NDCS(S) is the Number of Detected Code-Smells prior to

the application of solution x to the system S, CCSi is the ith Corrected Code Smell,

SmellSeverity(CCSi, x, S) is the severity level of the ith corrected code smell related to the

106 Software Refactoring

execution of x on S, and ClassImportance(CCSi, x, S) is the importance of the class containing

the ith code smell corrected by the execution of x on S.

The smell’s severity level is a numeric quantity, varying between 0 and 1, assigned by the

developer to each code smell type (e.g., blob, spaghetti code, functional decomposition, etc.). We

define the class importance of a code smell as follows:

3

))(/())(/())(/(
),,(

SMaxNMNMSMaxNRNRSMaxNCNC
SxCCSImportance i




(5.2)

such that NC/NR/NM correspond respectively to the Number of

Comments/Relationships/Methods related to the CCSi and MaxNC/MaxNR/MaxNM correspond

respectively to the Maximum Number of Comments/Relationships/Methods of any class in the

system S. There are of course many ways in which class importance could be measured, and one

of the advantages of the search-based approach is that this definition could be easily replaced

with a different one. We used in our approach the widely used metrics by existing literature to

estimate the importance and severity of code smells [111]. In fact, few empirical studies were

performed with software engineers to evaluate the severity and importance of several types of

code smells [111] [112]. We are taking these metrics and the severity scores as input for our

approach.

In summary, the basic idea behind this work is to maximize the resistance of the refactoring

solutions to perturbations in the severity levels and class importance of the code smells while

maximizing simultaneously the number of corrected code smells. These three objectives are in

conflict with each other since the quality of the proposed refactoring solution usually decreases

when the environmental change (smell severity and/or class importance) increases. In addition,

severe quality issues may exist in code fragments that are not important for developers. Thus, the

goal is to find a good compromise between these three conflicting objectives. This compromise

is directly related to robustness cost, as discussed above. In fact, once the three objectives trade-

off front is obtained, the developer can navigate through this front in order to select his/her

preferred refactoring solution. This is achieved through sacrificing some degree of solution

quality while gaining in terms of robustness and smell severity and importance. In fact,

robustness is inversely proportional to the severity and class importance, and this is how we

 107

make our algorithm robust. The approach is to use a multi-objective search algorithm to explore

the trade-off that can be obtained by ignoring the user's wishes to varying degrees. The results

show this to be the case; quality can be most improved when importance and severity objective

values are lower. For example, a refactoring applied to a class that is then deleted; the

instantaneous quality improvement may be high, but in the project's timeline it is minimal. This

makes a solid case for so-called "robust" optimization which seeks to identify good solutions that

are resilient against changes in the developer's priorities.

In our robust formulation, we introduce perturbations/variations in the severity and

importance scores of the code smells and classes at every iteration of our NSGA-II algorithm. As

described later in the experiments section, the severity scores of 0.8, 0.6, 0.4, 0.3, 0.5, 0.3, and

0.2 of the different types of code represent just the initial values but these values slightly change

at each iteration (a slight random increase or decrease of these scores using a variation rate

parameter). These variations correspond to some artificially created changes in the environment

(new code changes introduced, etc.) or priorities change or different opinions of developers

about the importance or severity of the classes.

5.1.2.3 The Solution Approach

Solution representation. To represent a candidate solution (individual/chromosome), we use

a vector-based representation which is widely adopted in the literature. According to this

encoding, a solution is an array of refactoring operations where the order of their execution is

accorded by their positions in the array. The standard approach of pre- and post-conditions is

used to ensure that the refactoring operation can be applied while preserving program behavior.

For each refactoring operation, a set of controlling parameters (e.g., actors and roles as illustrated

in Table 1) is randomly picked from the program to be refactored. Assigning randomly a

sequence of refactorings to certain code fragments generates the initial population. To apply a

refactoring operation we need to specify which actors, i.e., code fragments, are

involved/impacted by this refactoring and which roles they play to perform the refactoring

operation. An actor can be a package, class, field, method, parameter, statement or variable.

Table 1 depicts, for each refactoring, its involved actors and its role.

108 Software Refactoring

Table 5.1. Refactoring types and their involved actors and roles.

Refactorings Actors Roles

Move method
class source class, target class

method moved method

Move field
class source class, target class

field moved field

Pull up field
class sub classes, super class

field moved field

Pull up method
class sub classes, super class

method moved method

Push down field
class super class, sub classes

field moved field

Push down method
class super class, sub classes

method moved method

Inline class class source class, target class

Extract class

class source class, new class

field moved fields

method moved methods

Move class
package source package, target package

class moved class

Extract interface

class source classes, new interface

field moved fields

method moved methods

Solution variation. For crossover, we use the one-point crossover operator. It starts by

selecting and splitting at random two parent solutions. Then, this operator creates two child

solutions by putting, for the first child, the first part of the first parent with the second part of the

second parent, and vice versa for the second child. This operator must respect the refactoring

sequence length limits by eliminating randomly some refactoring operations if necessary. For

mutation, we use the bit-string mutation operator that picks probabilistically one or more

refactoring operations from its or their associated sequence and replaces them by other ones from

a list of possible refactorings. These two variation operators have already demonstrated good

performance when tackling the refactoring problem [50] [86].

Solution evaluation. Each refactoring sequence in the population is executed on the system

S. For each sequence, the solution is evaluated based on the three objective functions defined in

the previous section. Since we are considering a three objectives formulation, we use the concept

of Pareto optimality to find a set of compromise (Pareto-optimal) refactoring solutions.

By definition, a solution x Pareto-dominates a solution y if and only if x is at least as good as

y in all objectives and strictly better than y in at least one objective. The fitness of a particular

solution in NSGA-II corresponds to a couple (Pareto Rank, Crowding distance). In fact, NSGA-

II classifies the population individuals (of parents and children) into different layers, called non-

 109

dominated fronts. Non-dominated solutions are assigned a rank of 1 and then are discarded

temporary from the population. Non-dominated solutions from the truncated population are

assigned a rank of 2 and then discarded temporarily. This process is repeated until the entire

population is classified with the domination metric.

After that, a diversity measure, called crowding distance, is assigned front-wise to each

individual. The crowding distance is the average side length of the cuboid formed by the nearest

neighbors of the considered solution. Once each solution is assigned its Pareto rank, based on

refactoring quality and robustness to change in terms of class importance and smell severity

levels, in addition to its crowding distance, mating selection and environmental selection are

performed. This is based on the crowded comparison operator that favors solutions having better

Pareto ranks and, in the case of equal ranks, it favors the solution having larger crowding

distance. In this way, convergence towards the Pareto optimal bi-objective front (quality,

robustness) and diversity along this front are emphasized simultaneously. The basic iteration of

NSGA-II consists in generating an offspring population (of size N) from the parent one (of size N

too) based on variation operators (crossover and mutation) where the parent individuals are

selected based on the crowded comparison operator. After that, parents and children are merged

into a single population R of size 2N. The parent population for the next generation is composed

of the best non-dominated fronts. This process continues until the satisfaction of a stopping

criterion. The output of NSGA-II is the last obtained parent population containing the best of the

non-dominated solutions found. When plotted in the objective space, they form the Pareto front

from which the developer will select his/her preferred refactoring solution.

5.1.3 Validation

5.1.3.1 Design of the Empirical Study

This section describes our empirical study including the research questions to address, the

systems examined, evaluation metrics considered in our experiments and the statistical tests

results. In addition, we compared different refactoring algorithms quantitatively and qualitatively

across several subject systems.

110 Software Refactoring

We defined six research questions that address the applicability, performance in comparison

to existing refactoring approaches, and the usefulness of our robust multi-objective refactoring.

The six research questions are as follows:

RQ1: Search Validation. To validate the problem formulation of our approach, we

compared our NSGA-II formulation with Random Search. If Random Search outperforms an

intelligent search method thus we can conclude that our problem formulation is not adequate.

Since outperforming a random search is not sufficient, the next four questions are related to the

comparison between our proposal and the state-of-the-art refactoring approaches.

RQ2.1: How does NSGA-II perform compared to other multi-objective algorithms? It is

important to justify the use of NSGA-II for the problem of refactoring under uncertainties. We

compare NSGA-II with another widely used multi-objective algorithm, MOPSO (Multi-

Objective Particle Swarm Optimization), using the same adaptation (fitness functions). In

addition, we compared our approach to our previous robust refactoring study (based on only 2

objectives) [26].

RQ2.2: How do robust, multi-objective algorithms perform compared to mono-

objective Evolutionary Algorithms? A multi-objective algorithm provides a trade-off between

the two objectives where the developers can select their desired solution from the Pareto-optimal

front. A mono-objective approach uses a single fitness function that is formed as an aggregation

of both objectives and generates as output only one refactoring solution. This comparison is

required to ensure that the refactoring solutions provided by NSGA-II and MOPSO provide a

better trade-off between quality and robustness than a mono-objective approach. Otherwise,

there is no benefit to our multi-objective adaptation.

RQ2.3: How does NSGA-II perform compare to existing search-based refactoring

approaches? Our proposal is the first work that treats the problem of refactoring under

uncertainties. A comparison with existing search-based refactoring approaches [71] [70] is

helpful to evaluate the cost of robustness of our proposed approach.

RQ2.4: How does NSGA-II perform compared to existing refactoring approaches not

based on the use of metaheuristic search? While it is very interesting to show that our proposal

 111

outperforms existing search-based refactoring approaches, developers will consider our approach

useful, if it can outperform other existing refactoring tools [106] that are not based on

optimization techniques.

RQ3: Developers' evaluation of the recommended refactorings. Can our robust multi-

objective approach be useful for software engineers in a real-world setting? In a real-world

problem involving uncertainties, it is important to show that a robustness-unaware methodology

drives the search to non-robust solutions that are sensitive to variation in the uncertainty

parameters. However when robustness is taken into account, a more robust and insensitive

solution is found. Some scenarios are required to illustrate the importance of robust refactoring

solutions in a real-world setting: a) exploring the trade-off of robust and qualitative solutions,

and b) asking what developers think of the results.

Table 5.2. Software studied in our experiments.

Systems Release #Classes #Smells KLOC

Xerces-J v2.7.0 991 82 240

JFreeChart v1.0.9 521 73 170

GanttProject v1.10.2 245 56 41

ApacheAnt v1.8.2 1191 91 255

JHotDraw v6.1 585 33 21

Rhino v1.7R1 305 74 42

Log4J v1.2.1 189 64 31

Nutch v1.1 207 72 39

JDI-Ford v5.8 638 88 247

Software Projects Studied. In our experiments, we used a set of well-known and well-

commented open-source Java projects. We applied our approach to eight large and medium-sized

open source Java projects: Xerces-J [113], JFreeChart [114], GanttProject [115], ApacheAnt

[116], JHotDraw [117], Rhino [118], Log4J [119], Nutch [120] and JDI-Ford. Xerces-J is a

family of software packages for parsing XML. JFreeChart is a powerful and flexible Java library

for generating charts. GanttProject is a cross-platform tool for project scheduling. ApacheAnt is

a build tool and library specifically conceived for Java applications. JHotDraw is a GUI

framework for drawing editors. Rhino is a JavaScript interpreter and compiler written in Java

and developed for the Mozilla/Firefox browser. Nutch is an open source Java implementation of

a search engine. Log4j is a Java-based logging utility. Table 2 provides some descriptive

statistics about these eight programs. We selected these systems for our validation because they

112 Software Refactoring

range from medium to large-sized open source projects that have been actively developed over

the past 10 years, and include a large number of code smells. In addition, these systems are well

studied in the literature and their code smells have been either detected, analyzed manually [71]

[70] or using an existing detection tool [54]. In these corpuses, the four following code smell

types were identified manually (that are described in Section 2): Blob, Feature Envy (FE), Data

Class (DC), Spaghetti Code (SC), Functional Decomposition (FD), Lazy Class (LC) and Long

Parameter List (LPL). We chose these code smell types in our experiments because they are the

most frequent ones detected and corrected in recent studies in existing corpuses.

We performed also a small industrial case study, based on one industrial project JDI-Ford. It

is a Java-based software system that helps, our industrial partner, the Ford Motor Company,

analyzes useful information from the past sales of dealerships data and suggests which vehicles

to order for their dealer inventories in the future. This system is the main key software

application used by the Ford Motor Company to improve their vehicle sales by selecting the right

vehicle configuration to the expectations of customers. Several versions of JDI were proposed by

software engineers at Ford during the past 10 years. Due to the importance of the application and

the high number of updates performed during a period of 10 years, it is critical to making sure

that all the JDI releases are within a good quality to reduce the time required by developers to

introduce new features in the future. The software engineers at Ford manually evaluated the

suggested refactorings based on their knowledge of the system since they are some of the

original developers.

Evaluation Metrics Used. When comparing two mono-objective algorithms, it is usual to

compare their best solutions found so far during the optimization process. However, this is not

applicable when comparing two multi-objective evolutionary algorithms since each of them

gives as output a set of non-dominated (Pareto equivalent) solutions. For this reason, we defined

the following metrics:

−Hypervolume (IHV) corresponds to the proportion of the objective space that is dominated by

the Pareto front approximation returned by the algorithm and delimited by a reference point.

Larger values for this metric mean better performance. The most interesting features of this

indicator are its Pareto dominance compliance and its ability to capture both convergence and

 113

diversity. The reference point used in this study corresponds to the nadir point of the Reference

Front (RF), where the Reference Front is the set of all non-dominated solutions found so far by

all algorithms under comparison.

−Inverse Generational Distance (IGD) is a convergence measure that corresponds to the average

Euclidean distance between the Pareto front Approximation PA provided by the algorithm and

the reference front RF. The distance between PA and RF in an M-objective space is calculated as

the average M-dimensional Euclidean distance between each solution in PA and its nearest

neighbor in RF. Lower values for this indicator mean better performance (convergence).

−Contribution (IC) corresponds to the ratio of the number of non-dominated solutions the

algorithm provides to the cardinality of RF. Larger values for this metric mean better

performance.

In addition to these three multi-objective evaluation measures, we used these other metrics

mainly to compare between mono-objective and multi-objective approaches defined as follows:

−Quality: number of Fixed Code-Smells (FCS) is the number of code smells fixed after applying

the best refactoring solution.

−Severity of fixed Code-Smells (SCS) is defined as the sum of the severity of fixed code smells:

SCS(S) = SmellSeverity(di)
i=1

k

å

(5.3)

where k is the number of fixed code smells and SmellSeverity corresponds to the severity (value

between 0 and 1) assigned by the developer to each code smell type (blob, spaghetti code, etc.).

In our experiments, we use these severity scores 0.8, 0.6, 0.4, 0.3, 0.5, 0.3, and 0.2 respectively

for Blob, Spaghetti Code (SC), Functional Decomposition (FD), Lazy Class (LC), Feature Envy

(FE), Data Class (DC) and Long Parameter List (LPL). We introduce “perturbations/variations”

in the severity and importance scores of the code smells and classes at every iteration of our

NSGA-II algorithm. Thus, these severity scores of the different types of code represent just the

initial values but these values slightly change at each iteration (a slight random increase or

decrease of these scores using a variation rate parameter between -0.2 and +0.2).

114 Software Refactoring

−Importance of fixed Code-Smells (ICS) is defined using three metrics (number of comments,

number of relationships and number of methods) as follows:






k

i

idSICS

1

)(importance)(

(5.4)

where importance is as defined in Section 5.1.2.2.

−Correctness of the suggested Refactorings (CR) is defined as the number of semantically

correct refactorings divided by the total number of manually evaluated refactorings.

−Computational time (ICT) is a measure of efficiency employed here since robustness inclusion

may cause the search to use more time in order to find a set of Pareto-optimal trade-offs between

refactoring quality and solution robustness.

When we compared the different algorithms to NSGA-II, we used the original initial weights

(before the perturbation).

Subjects. Our study involved 6 subjects from the University of Michigan and 4 software

engineers from Ford Motor Company. Subjects include 1 master student in Software

Engineering, 4 Ph.D. students in Software Engineering, 1 faculty member in Software

Engineering, 3 junior software developers and 1 senior projects manager. All the subjects are

familiar with Java development, software maintenance activities including refactoring. The

experience of these subjects on Java programming ranged from 3 to 17 years. All the graduate

students have an industrial experience of at least 2 years with large-scale object-oriented

systems. The 6 subjects from the University of Michigan evaluated the refactoring results on the

open source systems. The 4 software engineers from Ford evaluated the refactoring results only

on the JDI-Ford system. They were selected, as part of a project funded by Ford, based on having

similar development skills, their motivations to participate in the project and their availability.

They are part of the original developers’ team of the JDI system.

Parameter tuning and setting. An often-omitted aspect in metaheuristic search is the tuning

of algorithm parameters. In fact, parameter setting influences significantly the performance of a

search algorithm on a particular problem. For this reason, for each multi-objective algorithm and

for each system (cf. Table 5.3), we performed a set of experiments using several population

 115

sizes: 50, 100, 200, 500 and 1000. The stopping criterion was set to 250,000 fitness evaluations

for all algorithms in order to ensure fairness of comparison. Each algorithm was executed 51

times with each configuration and then the comparison between the configurations was

performed based on IHV, IGD and IC using the Wilcoxon test. Table 5.3 reports the best

configuration obtained for each couple (algorithm, system). For the mono-objective EA, we

adopted the same approach using best fitness value criterion since multi-objective metrics cannot

be used for single-objective algorithms. The best configurations are also shown in Table 3.

The MOPSO used in this work is the Non-dominated Sorting PSO (NSPSO) proposed by Li

[105]. The other parameters’ values were fixed by trial and error and are as follows: (1)

crossover probability = 0.8; mutation probability = 0.5 where the probability of gene

modification is 0.3; stopping criterion = 250,000 fitness evaluations. For MOPSO, the cognitive

and social scaling parameters c1 and c2 were both set to 2.0 and the inertia weighting coefficient

w decreased gradually from 1.0 to 0.4. Since refactoring sequences usually have different

lengths, we authorized the length n of number of refactorings to belong to the interval [10, 250].

Table 5.3. Best population size configurations.

System NSGA-II MOPSO Mono-EA

Xerces-J 1000 1000 1000

JFreeChart 500 200 500

GanttProject 100 100 100

ApacheAnt 1000 1000 1000

JHotDraw 200 200 200

Rhino 100 200 200

Log4J 200 200 100

Nutch 100 200 150

JDI-Ford 500 600 460

Approaches in comparison. We compared our approach with different existing studies. For

the mono-objective approaches, Kessentini et al. [71] used the Genetic Algorithm (GA) to find

the best sequence of refactoring that minimizes the number of code smells while O’Keeffe and Ó

Cinnéide [70] used different mono-objective algorithms to find the best sequence of refactorings

that optimize a fitness function composed of a set of quality metrics. Kessentini et al. [71] and

O’Keeffe et al. [70], where uncertainties are not taken into account. We also implemented a

mono-objective GA where one fitness function is defined as an average of the three objectives

(quality, severity and importance). For the multi-objective algorithms, in Ouni et al. [86], the

116 Software Refactoring

authors ask a set of developers to fix manually the code smells in a number of open source

systems including those that we are considering in our experiments. They proposed a multi-

objective approach to maximize the number of fixed defects and minimize the number of

refactorings. We also compared our approach with our previous SSBSE2014 robust refactoring

study (based on only 2 objectives) [104] as described in the introduction. In addition, we

compared our proposal to a popular design defects detection and correction tool JDeodorant

[106] that does not use heuristic search techniques. The current version of JDeodorant is

implemented as an Eclipse plug-in that identifies some types of design defects using quality

metrics and then proposes a list of refactoring strategies to fix them.

5.1.3.2 Results Analysis

This section describes and discusses the results obtained from the different research questions

of Section 4.1. Since metaheuristic algorithms are stochastic optimizers, they can provide

different results for the same problem instance from one run to another. For this reason, our

experimental study is performed based on 51 independent simulation runs for each problem

instance and the obtained results are statistically analyzed by using the Wilcoxon rank sum test

with a 95% confidence level (α = 5%). The latter verifies the null hypothesis H0 that the obtained

results of two algorithms are samples from continuous distributions with equal medians, as

against the alternative that they are not, H1. The p-value of the Wilcoxon test corresponds to the

probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value that is less

than or equal to α (≤ 0.05) means that we accept H1 and we reject H0. However, a p-value that is

strictly greater than α (> 0.05) means the opposite. In fact, for each problem instance, we

compute the p-value of random search, MOPSO and mono-objective search results, our previous

multi-objective work [104] with NSGA-II ones. In this way, we could decide whether the

outperformance of NSGA-II over one of each of the others (or the opposite) is statistically

significant or just a random result. The inference on the best result is done on the basis of

ranking through multiple pair-wise tests.

The Wilcoxon signed-rank test allows verifying whether the results are statistically different

or not. However, it does not give any idea about the difference in magnitude. To this end, we

used the Vargha and Delaney’s A statistics which is a non-parametric effect size measure [121].

 117

In our context, given the different performance metrics (such as FCS, SCS and ICS), the A

statistics measures the probability that running an algorithm B1 (our robust multi-objective

algorithm) yields better performance than running another algorithm B2 (such as random search

and MOPSO). If the two algorithms are equivalent, then A = 0.5. In our experiments, we have

found the following results: a) On small and medium scale Software systems (JFreeChart and

GanttProject) NSGA-II is better than all the other algorithms based on all the performance

metrics with an A-effect size higher than 0.9; b) On large scale Software systems (Xerces-J and

JDI-Ford), NSGA-II is better than all the other algorithms with a an A-effect size higher than

0.83.

Results for RQ1: Comparison between NSGA-II and Random Search.

To answer the first research question RQ1 an algorithm was implemented where refactorings

were randomly applied at each iteration. The obtained Pareto fronts were compared for

statistically significant differences with NSGA-II using IHV, IGD and IC.

We do not dwell long in answering the first research question, RQ1 that involves comparing

our approach based on NSGA-II with the random search. The remaining research questions will

reveal more about the performance, insight, and usefulness of our approach.

Table 5.4 confirms that NSGA-II and MOPSO are better than random search based on the

three quality indicators IHV, IGD and IC on all six open source systems. The Wilcoxon rank

sum test showed that in 51 runs both NSGA-II and MOPSO results were significantly better than

random search. We conclude that there is empirical evidence that our multi-objective

formulation surpasses the performance of random search thus our formulation is adequate (this

answers RQ1).

Table 5.4. The significantly best algorithm among random search, NSGA-II and MOPSO (No sign. diff. means that

NSGA-II and MOPSO are significantly better than random, but not statistically different).

Project IC IHV IGD

Xerces-J NSGA-II NSGA-II NSGA-II

JFreeChart NSGA-II NSGA-II NSGA-II

GanttProject MOPSO No sign. diff. MOPSO

ApacheAnt NSGA-II NSGA-II NSGA-II

JHotDraw NSGA-II NSGA-II NSGA-II

Rhino No sign. diff. NSGA-II No sign. diff.

Log4J NSGA-II NSGA-II NSGA-II

118 Software Refactoring

Nutch No sign. diff. No sign. diff. NSGA-II

JDI-Ford NSGA-II NSGA-II NSGA-II

Results for RQ2: Comparison with State of the Art Refactoring Approaches.

In this section, we compare our NSGA-II adaptation to the current, state-of-the-art

refactoring approaches. To answer RQ2.1, we implemented a widely used multi-objective

algorithm, namely multi-objective particle swarm optimization (MOPSO) and we compared

NSGA-II and MOPSO using the same quality indicators used in RQ1. In addition, we used

boxplots to analyze the distribution of the results and discover the knee point (best trade-off

between the objectives). Furthermore, we compare our proposal with our previous formulation

[104] based on two objectives using the FCS, SCS, ICS, CR, and ICT. To answer RQ2.2 we

implemented a mono-objective Genetic Algorithm where one fitness function is defined as an

average of the three objectives (quality, severity and importance). The multi-objective evaluation

measures (IHV, IGD and IC) cannot be used in this comparison thus we considered the five

metrics FCS, SCS, ICS, CR, and ICT defined in Section 4.3. To answer RQ2.3 we compared

NSGA-II with two existing search-based refactoring approaches, Kessentini et al. [71] and

O’Keeffe et al. [70], where uncertainties are not taken into account. We considered the same

metrics used to answer RQ2.2. To answer RQ2.4, we compared our proposal to a popular design

defects detection and correction tool JDeodorant that does not use heuristic search techniques.

We compared the results of this tool with NSGA-II using FCS, SCS, ICS, CR, and ICT since only

one refactoring solution can be proposed and not a set of “non-dominated” solutions. To answer

the above research questions, we selected the solution from the set of non-dominated ones

providing the maximum trade-off using the following strategy when comparing the different

algorithms (expect the mono-objective algorithm where we select the solution with the highest

fitness function or the JDeodorant tool). In order to find the maximal trade-off solution of the

multi-objective or many-objective algorithm, we use the trade-off worthiness metric proposed by

Rachmawati and Srinivasan [93] to evaluate the worthiness of each non-dominated solution in

terms of compromise between the objectives.

Results for RQ2.1: Comparison with Multi-Objective Approaches.

 119

To answer the second research question, RQ2.1, we compared NSGA-II to another widely

used multi-objective algorithm, MOPSO, using the same adapted fitness function. Table 4 shows

the overview of the results of the significance tests comparison between NSGA-II and MOPSO.

NSGA-II outperforms MOPSO in most of the cases: 20 out of 27 experiments (74%). MOPSO

outperforms the NSGA-II approach only in GanttProject, which is the smallest open source

system considered in our experiments, having the lowest number of legal refactorings available,

so it appears that MOPSO’s search operators make a better task of working with a smaller search

space. In particular, NSGA-II outperforms MOPSO in terms of IC values in 4 out 6 experiments

with one ‘no significant difference’ result. Regarding IHV, NSGA-II outperformed MOPSO in 6

out of 9 experiments, where only two cases were not statistically significant, namely

GanttProject and Nutch. For IGD, the results were similar as for IC.

A more qualitative evaluation is presented in Figure 5.2. Boxplots using the quality measures

(a) IC, (b) IHV, and (c) IGD applied to NSGAII and MOPSO. illustrating the box plots obtained

for the multi-objective metrics on the different projects. For almost all problems the distributions

of the metrics values for NSGA-II have smaller variability than for MOPSO. This fact confirms

the effectiveness of NSGA-II over MOPSO in finding a well-converged and well-diversified set

of Pareto-optimal refactoring solutions.

Next, we use all four metrics FCS, SCS, ICS and ICT to compare four robust refactoring

algorithms: our NSGA-II adaptation with the three objectives, MOPSO, our previous work based

on NSGA-II with two objectives.

The results from 51 runs are depicted in Table 5.5. For FCS, the number of fixed code smells

using NSGA-II is better than MOPSO in all systems except for GanttProject and also, the FCS

score for NSGA-II is better than mono-EA in 100% of cases. We have the same observation for

the SCS and ICS scores where NSGA-II outperforms MOPSO at least 88% of cases. Even for

GanttProject, the number of fixed code smells using NSGA-II is very close to those fixed by

MOPSO. The execution time of NSGA-II is invariably lower than that of MOPSO with the same

number of iterations, however, the execution time required by Mono-EA is lower than both

NSGA-II and MOPSO. The NSGA-II with the two objectives has a lower execution time than

our adaptation with three objectives which normal. The different algorithms are using different

120 Software Refactoring

change operators and the number of objectives. In addition, our robust algorithm is using a

perturbation function which not used by the non-robust algorithms. Thus, it is normal that the

execution time is different. However, it is not a very important factor since refactoring

recommendation is not a real-time problem

In conclusion, we answer RQ2.2 by concluding that the results obtained in Table 5.5 (a)

confirm that both multi-objective formulations are adequate and that NSGA-II outperforms

MOPSO in most of the cases.

Figure 5.2. Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGAII and MOPSO.

We first note that the mono-EA provides only one refactoring solution while NSGA-II and

MOPSO generate a set of non-dominated solutions. In order to make meaningful comparisons,

 121

we select the best solution for NSGA-II and MOPSO using a knee point strategy as described

previously. The knee point corresponds to the solution with the maximal trade-off between

quality and robustness, i.e., a small improvement in either objective induces a large degradation

in the other. Hence moving from the knee point in either direction is usually not interesting for

the developer. Thus, for NSGA-II and MOPSO, we select the knee point from the Pareto

approximation having the median IHV value. We aim by this strategy to ensure fairness when

making comparisons against the mono-objective EA. For the latter, we use the best solution

corresponding to the median observation on 51 runs. We use the trade-off “worth” metric

proposed by Rachmawati et al. to find the knee point [93]. This metric estimates the worthiness

of each non-dominated refactoring solution in terms of the trade-off between quality and

robustness. After that, the knee point corresponds to the solution having the maximal trade-off

“worthiness” value.

Table 5.5. FCS, SCS and ICS median values of 51 independent runs: (a) Robust Algorithms, and (b) Non-Robust

algorithms.

Systems NSGA-II (3 Obj) MOPSO NSGA-II (2 Obj) Mono-EA

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT

Xerces-J 74/82 42.6 49.2 1h56 69/82 34.6 46.8 1h48 61/82 29.6 39.6 1h32 54/82 21.8 32.8 1h08

JFreeChart 61/73 39.8 37.8 2h02 60/73 39.4 36.1 2h21 51/73 24.8 31.2 1h29 42/73 19.9 23.6 1h06

GanttProject 42/56 31.4 29.6 1h59 40/56 30.1 27.1 2h09 32/56 21.1 22.4 1h22 24/56 18.7 17.6 1h01

ApacheAnt 83/91 44.6 46.4 2h18 84/91 44.9 46.4 2h22 69/91 32.6 38.6 1h42 53/91 26.4 31.2 1h11

JHotDraw 28/33 14.3 18.7 1h49 25/33 12.2 16.2 1h46 16/33 11.1 10.3 1h34 12/33 06.3 07.1 1h04

Rhino 62/74 42.8 32.3 1h56 63/74 43.2 33.1 1h59 58/74 33.1 28.4 1h39 41/74 21.4 19.5 1h12

Log4J 53/64 39.5 29.4 1h38 50/64 35.9 27.3 1h52 41/64 28.9 23.1 1h14 32/64 19.4 18.9 1h01

Nutch 66/72 41.1 36.8 1h49 61/72 39.2 31.6 1h58 49/72 30.2 21.8 1h19 43/72 24.8 19.1 1h02

JDI-Ford 74/88 43.8 42.1 1h56 72/88 42.9 40.2 2h12 64/88 37.3 28.4 1h24 61/88 32.6 21.1 1h04

Systems Kessentini et al.’11 O’Keeffe et al.’08 JDedorant

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT

Xerces-J 52/82 20.2 32.8 1h10 50/82 19.4 30.2 1h02 46/82 19.1 29.1 N/A

JFreeChart 43/73 18.2 23.6 1h04 38/73 17.9 21.6 1h00 37/73 17.2 20.4 N/A

GanttProject 20/56 13.7 17.6 1h06 21/56 16.9 15.8 0h56 22/56 15.8 14.2 N/A

ApacheAnt 51/91 20.4 31.2 1h14 48/91 22.3 27.1 0h54 41/91 21.2 27.1 N/A

JHotDraw 13/33 05.3 07.1 1h24 12/33 06.2 07.2 0h51 10/33 05.9 06.3 N/A

Rhino 40/74 18.6 19.5 1h16 38/74 17.2 17.4 1h01 34/74 19.1 17.2 N/A

122 Software Refactoring

Log4J 32/64 18.4 17.6 1h10 31/64 15.9 17.8 1h04 29/64 16.5 15.1 N/A

Nutch 43/72 21.2 20.1 1h02 40/72 18.4 19.6 0h48 31/72 17.1 18.2 N/A

JDI-Ford 61/88 29.4 20.4 1h01 56/88 27.1 18.2 0h52 43/88 25.9 17.6 N/A

Results for RQ2.2, RQ2.3 and RQ2.4: Comparison with Mono-Objective and non-Search-

Based Approaches.

Table 5.5 also shows the results of comparing our robust approach based on NSGA-II with

two mono-objective refactoring approaches, a mono-objective genetic algorithm (Mono-EA) that

has a single fitness function aggregating the two objectives, and a practical refactoring technique

where developers used a refactoring plug-in in Eclipse to suggest solutions to fix code smells. It

is apparent from Table 5.5 that our NSGA-II adaptation outperforms mono-objective approaches

in terms of smell-fixing ability (FCS) all the cases. In addition, our NSGA-II adaptation

outperforms all the mono-objective and manual approaches in 100% of experiments in terms of

the two robustness metrics, SCS and ICS. This is can be explained by the fact that NSGA-II aims

to find a compromise between the three objectives however the remaining approaches did not

consider robustness but only quality. Thus, NSGA-II sacrifices a small amount of quality in

order to improve importance and severity. Furthermore, the number of code smells fixed by

NSGA-II is very close to the number fixed by the mono-objective and manual approaches, so the

sacrifice in solution quality is quite small. When comparing NSGA-II with the remaining

approaches we considered the best solution selected from the Pareto-optimal front using the knee

point-based strategy described above. Another interesting observation is that our refactoring

solutions prioritized fixing code fragments containing severe code smells and also located in

important classes. In fact, as described in Table 5.5 our approach fixed more important and

severe code smells than all other existing approaches based on the SCS and ICS metrics. It is

also well-known that a mono-objective algorithm requires lower execution time for convergence

since only one objective is handled.

To answer RQ2.3 and RQ2.4, the results of Table 5.5(b) support the claim that our NSGA-II

formulation provides a good trade-off between importance, severity and quality, and outperforms

on average the state of the art of refactoring approaches, both search-based and manual, with a

low robustness cost.

Results for RQ3: Manual Evaluation of the Results by Developers.

 123

To answer the last question RQ3 a manual evaluation were performed by subjects to estimate

the correctness of the suggested refactoring. Figure 5.3 depicts the different Pareto surface

obtained on the JDI-Ford system using NSGA-II to optimize the three objectives of quality,

severity and importance. Due to space limitations, we show only this example of the Pareto-

optimal front approximation. Similar fronts were obtained on the remaining systems. The 3D

projection of the Pareto front helps developers to select the best trade-off solution between the

three objectives based on their own preferences. Based on the plot of Figure 5.3, the developer

could degrade quality in favor of importance and severity while controlling visually the

robustness cost, which corresponds to the ratio of the quality loss to the achieved importance and

severity gain. In this way, the preferred robust refactoring solution can be realized.

Figure 5.3. 3D projection of the Pareto-Front solutions on the JDI-Ford system.

One striking feature is that starting from the highest quality solution the trade-off between the

three objectives is in favor of quality, meaning that the quality degrades slowly with a fast

increase in importance and severity up to the knee point, marked in each figure. Thereafter, there

is a sharp drop in quality with only a small increase in importance. It is very interesting to note

that this property of the Pareto-optimal front is apparent in all the problems considered in this

study. Without any robustness consideration in the search process, one would obtain the highest

quality solution all the time (which is not robust at all), but Figure 5.3 shows how a better robust

solution (importance and severity) can be obtained by sacrificing just a little in quality.

124 Software Refactoring

Figure 5.3 shows the impact of different levels of perturbation on the Pareto-optimal front.

However, it is difficult to generalize the observation that the sacrifice in solution quality is quite

small. The developers may select the solution based on their preferences and the current context.

In case that the developers do not have enough time to fix all or most of the defects, they may

select the refactoring solution fixing the most severe ones or those located in important classes.

In other situations where there is enough time before the next release and several developers are

available, a solution that minimizes the sacrifice in quality is more adequate. The slight sacrifice

on quality was only observed on few systems, thus, it is hard to generalize the results.

Our approach takes as input as the maximum level of perturbation applied in the smell

severity and class importance at each iteration during the optimization process. A high level of

perturbation generates more robust refactoring solutions than those generated with lower

variations, but the solution quality, in this case, will be higher. As described by Figure 5.3, the

developer can choose the level of perturbation based on his/her preferences to prioritize quality

or robustness. Although the Pareto-optimal front changes depending on the perturbation level,

there still exists a knee point, which makes the decision making by a developer easier in such

problems.

Figure 5.4 describes the manual qualitative evaluation of some suggested refactoring

solutions. It is clear that results are almost similar to our proposal and existing approach in terms

of the semantic coherence of suggested refactorings. We consider that a semantic precision more

than 70% acceptable since most of the solutions should be executed manually by developers and

our tool is a recommendation system. Thus, developers can evaluate if it is interesting or not in

applying some refactorings based on their preferences and the semantic coherence.

 125

Figure 5.4. The median correctness values (CR) of the recommended refactorings based on 51 runs. The obtained results

are statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%).

To answer RQ3 more adequately, we considered two real-world scenarios to justify the

importance of taking into consideration robustness when suggestion refactoring solutions. In the

first scenario, we modified the degree of severity of the four types of code smells over time and

we evaluated the impact of this variation on the robustness of our refactoring solution in terms of

smell severity (SCS). This scenario is motivated by the fact that there is no general consensus on

the severity score of detected code smells thus software engineers can have divergent opinions

about the severity of detected code smells.

Figure 5.5. The impact of code smells severity variations on the robustness of refactoring solutions for ApacheAnt. The

obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%).

126 Software Refactoring

Figure 5.5 shows that our NSGA-II approach generates robust refactoring solutions on the

Ant Apache system in comparison to existing state of the art refactoring approaches. In fact, the

more the variation in severity increases over time the more the refactoring solutions provided by

existing approaches become non-robust. Thus, our multi-objective approach enables the most

severe code smells to be corrected even with slight modifications in the severity scores. The

second scenario involved applying randomly a set of commits, collected from the history of

changes of the open source systems [86], and evaluating the impact of these changes on the

robustness of suggested refactoring proposed by our NSGA-II algorithm and non-robust

approaches.

Figure 5.6. The impact of class importance variation on the robustness of refactoring solutions for Apache Ant. The

obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%).

As depicted in Figure 5.6, the application of new commits modifies the importance of classes

in the system containing code smells and the refactoring solutions proposed by mono-objective

and manual approaches become ineffective. However, in all the scenarios it is clear that our

refactoring solutions are still robust and fixing code smells in most of the important classes in the

system even with a high number of new commits (more than 40 commits). We also compared the

results achieved by the different techniques for different values of severity and class importance

using the Wilcoxon test. The obtained results are statistically analyzed by using the Wilcoxon

rank sum test with a 95% confidence level (α = 5%). We also compared the refactoring solution

at the knee-point (robust) for ApacheAnt with the best refactoring solution that maximizes only

the quality (non-robust) to understand why the former solution is robust in both scenarios. We

 127

found that the knee-point solution rectified some code smells that were not very risky and not

located in important classes but these code-smells become more important after new commits.

Thus, we can conclude that the simulation of changes in both importance and severity helps our

NSGA-II to predict some future changes and adapt the best solutions according to that. Hence,

we conclude that RQ3 is affirmed and that the robust multi-objective approach has value for

software engineers in a real-world setting.

5.1.4 Conclusion

We have introduced a novel formulation of the refactoring problem that takes into account

the uncertainties related to code smell correction in the dynamic environment of software

development where code smell severity and class importance cannot be regarded as fixed. Code

smell severity will vary from developer to developer and the importance of the class that

contains the smell will vary as the code base itself evolves. We have reported the results of an

empirical study of our robust technique compared to different existing approaches, and the

results obtained have provided evidence to support the claim that our proposal enables the

generation of robust refactoring solutions without a high loss of quality based on a benchmark of

six large open source systems.

Our consideration of robustness as a separate objective has revealed an interesting feature of

the refactoring problem in general. In our experiments, the trade-off between quality and

robustness resulted in a knee solution in every case. From the highest quality solution to the knee

point, the trade-off is in favor of quality, while after the knee point quality degrades more

quickly than robustness. Based on this observation, we can recommend the knee solution to the

software engineer as the most likely quality-robustness trade-off solution to consider.

Future work involves extending our approach to handling additional code smell types in

order to test further the general applicability of our methodology. We focused on the use of a

structural metric to estimate class importance, but this can be extended to consider also the

pattern of repository submits to achieve another perspective on class importance. In a similar

vein, our notion of smell severity assumes each smell type has a certain severity, but a more

realistic model is to allow each individual smell instance to be assigned its own severity. If

128 Software Refactoring

further experiments confirm our observation that the knee point is indeed a trademark of the

quality-robustness trade-off frontier for all software refactoring problems, then it would be

interesting to apply straightway a knee-finding algorithm [122] to the bi-objective problem and

determine if it yields any computational benefit. In an interactive software refactoring tool, the

potential speed-up might be critical to success. Overall the use of robustness as a helper objective

in the software refactoring task opens up a new direction of research and application with the

possibility of finding new and interesting insights about the quality and severity trade-off in the

refactoring problem.

 Many-objective Software Refactoring

5.2.1 Introduction

Search-based software engineering (SBSE) studies the application of meta-heuristic

optimization techniques to software engineering problems. Once a software engineering task is

framed as a search problem, by defining it in terms of solution representation, objective function,

and solution change operators, there is a multitude of search algorithms that can be applied to

solve that problem. Search-based techniques are widely applied to solve software engineering

problems such as in testing, modularization, refactoring, planning, etc. [84].

Based on a recent SBSE survey [5], the majority of existing work treats software engineering

(SE) problems from a single objective point of view, where the main goal is to maximize or

minimize one objective, e.g., correctness, quality, etc. However, most SE problems are naturally

complex in which many conflicting objectives need to be optimized such as model

transformation, design quality improvement, test suite generation etc. The number of objectives

to consider for most of software engineering problems is, in general, high (more than three

objectives); such problems are termed many-objective. We claim that the reason that software

engineering problems have not been formulated as many-objective problems is because of the

challenges in constructing a many-objective solution. In this context, the use of traditional multi-

objective techniques, e.g., NSGA-II, widely used in SBSE, is clearly not sufficient [83].

 129

There is a growing need for scalable search-based software engineering approaches that

address software engineering problems where a large number of objectives are to be optimized.

Recent work in optimization has proposed several solution approaches to tackle many-objective

optimization problems [82] [123] using e.g., objective reduction, new preference ordering

relations, decomposition, etc. However, these techniques have not yet been widely explored in

SBSE [5]. To the best of our knowledge and based on recent SBSE surveys [5], very few studies

used many-objective techniques to address software engineering problems such as the work

proposed by Abdel-Salam et al. [36] that uses a many-objective approach, IBEA (Indicator-

Based Evolutionary Algorithm) [124], to address the problem of software product line creation.

However, the number of considered objectives is limited to five. In our recent work [125], we

proposed a many-objective approach for software refactoring using a set of 15 quality metrics as

separate objectives. Software refactoring is one of those software engineering problems that

require several quality objectives to be satisfied. Although, the approach has given promising

results, some limitations have been raised, investigated and resulted in this extension that copes

with the following concerns: the choice of using 15 metrics as separate objectives, at the expense

of higher computational complexity and higher number of solutions, made the benefit of

selecting good refactoring solutions unclear due to conflict uncertainty between some objectives

and the difficult interpretation of their metric values. Another limitation of our previous work is

the exclusive optimization of the system’s structure without taking into consideration the

semantic coherence of its actors (classes, methods, attributes). Furthermore, One of the main

objectives of Pareto-optimality is allowing the user to choose among equivalent solutions the

one(s) that satisfies better his/her preferred objectives, in our context, it is harder to ask a

developer to express his preference in terms of 15 internal quality attributes, so it is difficult for

developers to select a solution from the high number of non-dominated refactoring solutions.

To address the above challenges, we propose to extend our previous work using a different

many-objective formulation. Whereas, we assume that it would be more convenient for

developers to formulate their quality preferences in terms of external quality attributes such as

reusability, flexibility and understandability instead of a large number of quality metrics [70].

Thus, the goal of improving the software overall quality is still maintained while the number of

objectives has been reduced. This is being done through the aggregation of metrics, previously

130 Software Refactoring

optimized separately, into 8 objectives described as external quality attributes. This

representation helps in analyzing the impact of applying refactoring operations on raising the

conflicts between these objectives during the solutions evolution. Thus, the purpose of this work

is to formulate the refactoring problem using the quality attributes of QMOOD [126] as

objectives along with the number of refactorings and the design coherence preservation. To this

end, we adapted the many-objective algorithm NSGA-III [20]. NSGA-III is a many-objective

algorithm proposed by Deb and Jain. The basic framework remains similar to the original

NSGA-II algorithm [21], with significant changes in its selection mechanism. We implemented

our approach and evaluated it on seven large open source systems and one industrial project

provided by our industrial partner. We compared our findings to several other many-objective

techniques, an existing multi-objective approach [86], a mono-objective technique [71] and an

existing refactoring technique not based on heuristic search [106]. Statistical analysis of our

experiments over 31 runs shows the efficiency of our approach.

The primary contributions of this work can be summarized as follows:

(1) Many-objective formulation of the refactoring problem through several objectives using

NSGA-III.

(2) The reported results provide evidence to support the claim that our proposal is more

efficient, on average, than several of existing refactoring techniques based on a

benchmark of seven open source systems and one industrial project. As part of the

validation, an evaluation of the relevance and usefulness of the suggested refactoring is

done for software engineers to improve the quality of their systems.

5.2.2 Approach

The refactoring problem involves searching for the best refactoring solution among the set of

candidate ones, which constitutes a huge search space. A refactoring solution is a sequence of

refactoring operations where the goal of applying the sequence to a software system S is

typically to fix maintenance issues in S. Usually in SBSE approaches, we use two or three

metrics as objective functions for a particular multi-objective heuristic algorithm to find these

design issues and correct them. In reality, we assume that increasing the number of metrics to

 131

optimize may increase the quality of the refactored code. However, the high number of suggested

solutions in a 16-objectives Pareto-Front quickly exceeds the developer’s ability to manually

choose between them. It has been known that developers most likely want a unique optimal

solution that better satisfies his/her preferences that can be easily expressed in terms of quality

objectives. Motivated by this observation, we propose in this research work to consider the six

objectives of the QMOOD model where each represents a separate objective function along with

two other objectives to reduce the number of refactorings to apply and maximize the design

coherence after refactoring. In this way, we obtain a many-objective (8-objective) formulation of

the refactoring problem that could not be solved using standard multi-objective approaches. This

formulation is given as follows:

),...,(

)],(),...,,(),,([),(

1

821

Xxxxtosubject

SxfSxfSxfSxFMaximize

n 



where X is the set of all legal refactoring sequences starting from S, xi is the ith refactoring

operation, and fk(x,S) is the kth objective.

The concern about using these operations is whether each one of them have a positive impact

on the refactored code quality. In this context, previous work has studied the impact analysis of

refactoring operations on internal and external quality metrics. Du Bois et al. [127] proposed the

evaluation of a selected set of refactorings based on their impact on the internal CK quality

metrics. They extended their work by including more studied operations while enhancing

cohesion and coupling measures [62]. They provided guidelines to distinguish between

operations that optimize software quality and ruled out those which their application will

increase coupling or decrease cohesion. Similarly, Alshayeb [128] has quantitatively assessed,

using internal metrics, the effect of refactorings on different quality attributes to help developers

in the estimation of refactoring effort in terms of the cost and time.

In the following, we will describe in details the different objectives considered in our

formulation.

132 Software Refactoring

5.2.2.1 QMOOD model quality attributes as objectives

Many studies have been utilizing structural metrics as a basis of defining quality indicators

for a good system design [129] [130] [131]. As an illustrative example, Bansiya et al. [126]

proposed a set of quality measures, using the ISO 9126 specification, called QMOOD. Each of

these quality metrics is defined using a combination of high-level metrics detailed in Table 5.6.

Table 5.6. QMOOD metrics description.

Design Metric
Design

Property
Description

Design Size in Classes

(DSC)
Design Size Total number of classes in the design.

Number Of Hierarchies

(NOH)
Hierarchies

Total number of ‘root’ classes in the design

(count(MaxInheritenceTree(class)=0))

Average Number of

Ancestors (ANA)
Abstraction Average number of classes in the inheritance tree for each class.

Direct Access Metric

(DAM)
Encapsulation

Ratio of the number of private and protected attributes to the total

number of attributes in a class.

Direct Class Coupling

(DCC)
Coupling

Number of other classes a class relates to, either through a shared

attribute or a parameter in a method.

Cohesion Among Methods

of class (CAMC)
Cohesion

Measure of how related methods are in a class in terms of used

parameters. It can also be computed by: 1 –

LackOfCohesionOfMethods()

Measure Of Aggregation

(MOA)
Composition

Count of number of attributes whose type is user defined

class(es).

Measure of Functional

Abstraction (MFA)
Inheritance

Ratio of the number of inherited methods per the total number of

methods within a class.

Number of Polymorphic

Methods (NOP)
Polymorphism

Any method that can be used by a class and its descendants.

Counts of the number of methods in a class excluding private,

static and final ones.

Class Interface Size (CIS) Messaging Number of public methods in class

Number of Methods

(NOM)
Complexity Number of methods declared in a class.

These above-mentioned metrics were eventually used to define the quality attributes that are

enumerated in the following Table 5.7. The adaptation of the QMOOD model in the problem

formularization has provided six quality attributes as separate objectives: reusability, flexibility,

understandability, functionality, extendibility and effectiveness.

 133

Table 5.7. Quality attributes and their computation equations.

Quality

attribute

Definition

Computation

Reusability
A design with low coupling and high cohesion is easily reused by other designs.

-0.25*Coupling+0.25*Cohesion+0.5*Messaging+0.5*Design Size

Flexibility
The degree of allowance of changes in the design.

0.25*Encapsulation-0.25*Coupling+0.5*Composition+0.5*Polymorphism

Understandability

The degree of understanding and the easiness of learning the design implementation details.

0.33*Abstraction+0.33*Encapsulation-0.33*Coupling+0.33*Cohesion-0.33*Polymorphism-

0.33*Complexity-0.33*Design Size

Functionality
Classes with given functions that are publically stated in interfaces to be used by others.

0.12*Cohesion+0.22*Polymorphism+0.22*Messaging+0.22*DesignSize+0.22*Hierarchies

Extendibility
Measurement of design’s allowance to incorporate new functional requirements.

0.5*Abstraction-0.5*Coupling+0.5*Inheritance+0.5*Polymorphism

Effectiveness
Design efficiency in fulfilling the required functionality.

0.2*Abstarction+0.2*Encapsulation+0.2*Composition+0.2*Inheritance+0.2*Polymorphism

5.2.2.2 Number of code changes as an objective

It is known that multiple refactoring sequences may have a completely different set of

operations which their execution will give two different resulting designs but they might have the

same quality. So, the execution of a specifically suggested refactoring sequence may require an

effort that is comparable to the one of re-implementing part of the system from scratch. Taking

this observation into account, it is trivial to minimize the number of suggested operations in the

refactoring solution since the designer can have some preferences regarding the percentage of

deviation with the initial program design. In addition, most developers prefer solutions that

minimize the number of changes applied to their design [71]. Thus, we formally defined the

fitness function as the number of refactoring operations (size of the solution) to be minimized:

)()(7 xSizexf 
 where x is the solution to evaluate.

The different code changes (refactoring types) used in our approach may have different

impacts on the maintainability/quality objectives considered in our formulation. We show in the

following that the different quality objectives are conflicting since the different refactoring types

134 Software Refactoring

considered in our approach may decrease some quality attributes and increase some others. In

Shatnawi et al. [132], the impact analysis of some of Fowler’s catalog operations on some

external quality factors (effectiveness, flexibility, extendibility and reusability) has shown that

not all refactorings necessarily improve these quality factors. Rules of thumb have been

established using heuristics to dictate which refactorings to use in order to enhance a given

quality attribute. The following table has been extracted from [132] to show the impact analysis

of the refactorings applied on restructuring EclipseIU 2.1.3 and Struts (1.1 and 1.2.4).

Table 5.8. Refactorings impact analysis on QMOOD internal metrics.

Refactoring

Operation
DSC NOH ANA DAM DCC CAMC MOA MFA NOP CIS NOM

Extract class + 0 0 0 + + + 0 0 0 0

Extract interface + 0 + 0 0 0 0 + + 0 0

Inline class - 0 0 0 - - - 0 0 0 0

Move field 0 0 0 0 0 + 0 0 0 0 0

Move method 0 0 0 0 - + 0 0 0 - 0

Push down field 0 0 0 0 0 + 0 0 0 0 0

Push down method 0 0 0 0 + 0 0 + + + 0

Pull up field 0 0 0 0 0 - 0 0 0 0 0

Pull up method 0 0 0 0 - 0 0 - - - 0

Based on Table 5.8, the operations have various implications on the internal metrics that can

reach the degree of conflict. The composition of these metrics values can be an indicator of how

the external quality attributes will be affected. Table 5.9 shows the resulting impact analysis on

QMOOD quality attributes and the potential conflict between them.

Table 5.9. Refactorings impact analysis on QMOOD quality attributes.

Refactoring

Operation
Reusability Flexibility

Understanda

bility
Functionality Extendibility Effectiveness

Extract class + + - + - +

Extract interface + + - + + +

Inline class - - + - + -

Move field + 0 + + 0 0

Move method 0 + + - + 0

Push down field + 0 + + 0 0

Push down method + + - + + +

Pull up field - 0 - - 0 0

Pull up method - - + - - -

 135

Although the statistical significance of the reported results in Table 5.9 was not studied in

this work and kept as part of our future investigations, it does not affect our problem formulation,

in fact, if the degree of conflict between two objectives is not considerable for a random set of

refactorings, this degrades the heuristics’ performance by increasing the computational time of

the heuristics but it does not affect the quality of the results.

In general, the related work has given the following observations: (1) Not all refactoring

operations have a desired impact on internal and external quality attributes. (2) It is difficult to

theoretically come up with an optimal set of corrections to increase a chosen quality attribute

without decreasing another. (3) A goal-oriented process has been given to include or/and exclude

refactorings based on developer’s preferred quality attribute.

These limitations motivated our formulation that (1) is not limited to specific types of

refactorings and that (2) is not limited to optimizing a preferred quality attribute with disregard

to the others.

5.2.2.3 Design coherence preservation as an objective

It is usually the designer’s responsibility to manually inspect the feasibility of the suggested

refactorings and evaluate their meaningfulness from the design coherence perspective.

Sometimes, the new refactored design may be structurally improved but introduce several design

incoherences. To preserve the semantics design, we present two main formulated different

measures in which we describe the following sections. The fitness function is formulated as an

average of the two following measures.

A. Vocabulary-based similarity (VS)

This kind of similarity should be eventually considered when moving methods, or attributes

between classes. For instance, when moving a method or an attribute from one source class to

another destination class, this operation would make sense if both source and target classes have

similar vocabularies. In this case, it is assumed that the vocabulary of naming the code elements

in classes is reflecting a specific domain terminology. That’s why two code elements could be

semantically similar if they use similar vocabularies [52].

136 Software Refactoring

A token-based extraction [133] of vocabulary is performed on the naming of classes,

methods, attributes, parameters and comments. This Tokenization process is widely used in code

clones detection techniques and it is known to be more robust to code changes compared to text-

based approaches. The semantic similarity is calculated based on information retrieval-based

techniques (e.g., cosine similarity). The following equation calculates the cosine similarity

between two classes. Each actor is represented as an n-dimensional vector, where each

dimension corresponds to a vocabulary term. The cosine of the angle between two vectors is

considered as an indicator of similarity. Using cosine similarity, the conceptual similarity

between two classes, c1 and c2, is determined as follows:

||2||*||1||

2.1
)2,1cos()2,1(




cc

cc
ccccSim 

=

 

   

]1,0[

²²

*

1

2,

1

1,

1

2,1,











n

i

i

n

i

i

n

i

ii

ww

ww

(5.5)

where
),...,(1 1,1,1 nwwc 



 and
),...,(2 2,2,1 nwwc 



 are respectively two vectors corresponding to c1

and c2 The weights wi,j are automatically generated by information retrieval-based techniques

such as the Term Frequency – Inverse Term Frequency (TF-IDF) method. We used a method

similar to that described in [133] to determine the vocabulary and represent the classes as term

vectors.

B. Dependency-based similarity (DS)

Similarly to vocabulary similarity, the semantic closeness can be also extracted from mutual

dependencies. In general, a high coupling (i.e., multiple call in and call out) between two classes

is usually not recommended, and if it exists, developers are usually prompted to merge them to

reduce the design complexity, this also hints that these two classes are semantically close.

Intuitively, the application of refactoring on highly dependent classes is not only beneficial to the

design quality, but also has a higher probability to eventually be meaningful. To follow up with

dependency, we point out two types of dependency links:

1) Shared Method Calls (SMC) that can be easily detected through the application call graphs

using the Class Hierarchy Analysis (CHA) [134]. Methods are modeled as graphs while calls

 137

represent the edges between nodes. A call graph can either be a call in or call out. This technique

is applied for each couple of classes, shared calls are being detected through the graph by

identifying shared neighbors of nodes related to each actor. Shared call-in and shared call-out are

distinguished and separately calculated for a given couple c1 and c2 (i.e., two classes) using the

following equations.

]1,0[
|)callOut(c2)callOut(c1|

|)callOut(c2)callOut(c1|
 c2) Out(c1,sharedCall 






(5.6)

]1,0[
|callIn(c2) callIn(c1)|

|callIn(c2) callIn(c1)|
 c2) In(c1,sharedCall 






(5.7)

2) Shared field access (SFA) is also known as data coupling and occurs when a class refers to

another as a type or shares a method that references another class as a parameter type. Static

analysis is adopted to view occurrences of possible invocation of calls of field accesses through

methods or constructors. Two classes have a high shared field access rate if they read or modify

the same fields belonging to one or both of them. This violation of the principle of modularity

can be, for example, fixed by either merging these two classes. In this context, the rate of shared

field access is used as an indicator of a semantic closeness between two classes c1 and c2, and it

is calculated according to the following equation.

]1,0[
|)fieldRW(c2)fieldRW(c1|

|)fieldRW(c2)fieldRW(c1|
 c2) dsRW(c1,sharedFiel 






(5.8)

where fieldRW(ci) refers to the number of fields that may be read or write by each method of the

module ci.

To illustrate the dependency similarity measure, let us take the example of two classes A and

B with no direct calls between them, if a third class C calls both of them, then the callIn(A) inter

callIn(B) will be incremented, the intersection between callIns determines the number of classes

that both call these two classes. It is divided by the overall number of callIns received by these

two classes. Similarly for the callsOut which informs about the number of common entities

called by two given classes. For the shared field access, the idea is similar, even if sharing

attributes is a bad practice indeed, if it exists, then it creates a dependency between the class

138 Software Refactoring

sharing the attribute and the other classes accessing it, we use this as an indicator of semantic

closeness between them.

5.2.2.4 Solution representation

As defined in the previous section, a solution consists of a sequence of n refactoring

operations applied to different code elements in the source code to fix. In order to represent a

candidate solution (individual/chromosome), we use a vector-based representation. Each vector’s

dimension represents a refactoring operation where the order of applying these refactoring

operations corresponds to their positions in the vector. For each of these refactoring operations,

we specify pre- and post-conditions in the style of Fowler [15] to ensure the feasibility of their

application. The initial population is generated by assigning randomly a sequence of refactorings

to some code fragments.

5.2.2.5 Solution variation

In each search algorithm, the variation operators play the key role of moving within the

search space with the aim of driving the search towards optimal solutions. For crossover, we use

the one-point crossover operator. It starts by selecting and splitting at random two parent

solutions. Then, this operator creates two child solutions by putting, for the first child, the first

part of the first parent with the second part of the second parent, and vice versa for the second

child. This operator must ensure the respect of the length limits (size of the solution is limited to

up-to 500 refactorings in our experiments) by eliminating randomly some refactoring operations.

It is important to note that in many-objective optimization, it is better to create children that are

close to their parents in order have a more efficient search process [20]. For this reason, we

control the cutting point of the one-point crossover operator by restricting its position to be either

belonging to the first tier of the refactoring sequence or belonging to the last tier. For mutation,

we use the bit-string mutation operator that picks probabilistically one or more refactoring

operations from its or their associated sequence and replaces them by other ones from the initial

list of possible refactorings.

 139

5.2.2.6 Solution evaluation

Each generated refactoring solution is executed on the system S. Once all required data is

computed, the solution is evaluated based on the quality of the resulting design (the six quality

attribute objectives to be maximized), along with the aggregation of semantics similarity

functions (to be maximized) followed by the complexity of the refactoring operations (to be

minimized). These values are the coordinates of the solution in the objectives space and so, it is

assigned a non-domination rank as well as a particular reference point which is the closest to the

solution.

5.2.2.7 Normalization of population members

Duo to the heterogeneous nature of objective functions (i.e., they have different ranges of

values), we used the normalization procedure proposed by Deb et al. [20] to circumvent this

problem. At each generation, the minimal and maximal values for each metric are recorded and

then used by the normalization procedure to calculate respectively the Nadir and ideal points

[135]. Normalization allows the population members and the reference points to have the same

range, which is a pre-requisite for diversity preservation.

5.2.2.8 Final solution selection

Once the final Pareto front has been generated, for each fitness function, the reference sets

are calculated from the union of all Pareto front approximations which are being normalized with

respect to ideal and Nadir point. The choice of one individual among the large set of Pareto-

optimal solutions is not trivial. The preference of the developer can be then used to determine

which of the solution may better satisfy his/her needs since the objectives have been defined in

terms of quality attributes along with minimizing the size and maximizing the semantic

coherence, it is easier for the developer to specify a ranking that can be used as input to the

hyperplane and consider only reference points that match (or closest to) the rank. This will

reduce drastically the number of preferred reference points. Still, if few solutions satisfy such

condition, the niche point selection will sort them and send the top of the queue as output. In the

case of absence of developer’s input, we choose the nearest solution to the Knee point [136] (i.e.,

140 Software Refactoring

the vector composed of the best objective values among the population members in all

iterations).

5.2.3 Validation

The goal of the study is to evaluate the usefulness our many-objective refactoring tool in

practice. We conducted experiments on popular open source systems and one industrial project

using the Goal, Question, Metrics (GQM) assessment approach [137]. This Section is organized

as follows. Section 5.2.3.1 poses three research questions that drive our experiments whose

settings have been detailed in Section 5.2.3.2. Finally, Section 0 is dedicated to subjects and

scenarios that constitute the non-subjective evaluation conducted with potential developers who

can use our tool.

5.2.3.1 Research questions

In our study, we assess the performance of our refactoring approach by finding out whether it

could generate meaningful sequences of operations that improve the quality of the systems while

reducing the number of code changes and preserving the semantic coherence of the design. Our

study aims at addressing the following research questions outlined below. We also explain how

our experiments are designed to address these questions. The main question to answer is to what

extent the proposed approach can propose meaningful refactoring solutions that can help

developers to improve the quality of their systems. To find an answer, we defined the following

three research questions:

RQ1: To what extent can the proposed approach improve the quality of the evaluated systems?

RQ2: How does the proposed many-objective approach based on NSGA-III perform compared

to other many/multi-objective algorithms or a mono-objective approach for software refactoring

and to an existing approach that is not based on heuristic search?

RQ3: How our many-objective refactoring approach can be useful for software engineers in real-

world setting?

 141

One of the challenges in SBSE is to find the most suitable search algorithm for a specific

software engineering problem. The only proof is the experimental results, thus, it is important to

address this question when designing a new software engineering problem as an optimization

problem. In addition, a comparison with a mono-objective algorithm may justify the need to use

a many-objective approach to show that the different objectives are really conflicting and cannot

be merged into one fitness function. It is maybe also not sufficient to show that the proposed

many-objective formulation outperforms others search algorithms, thus it is important to

compare with a non-search-based approach to confirm the practical value of the proposed search-

based approach.

To answer RQ1, we validate the proposed refactoring technique on seven open-source

systems and one industrial project to evaluate the quality improvements of systems after

applying the suggested refactoring solution. We calculate the overall Quality Gain (QG) for the

six quality attributes as follows: Let Q={q1, q2,... q6} and Q'={q'1, q'2,... q'6} be respectively

the set of quality attribute values before and after applying the suggested refactorings, and {w1,

w2,... w6} the weights assigned to each of these quality factors. Then the QG is calculated by:





6

1

)'(*
i

iii qqwQG

(5.9)

In addition, we validate the proposed refactoring operations to fix code smells by calculating

the Defect Correction Ratio (DCR) which is given by the following equation and corresponds to

the ratio of the number of corrected design defects to the initial number of detected defects

before applying the suggested refactoring solution. The code smells were collected using existing

detection tools DÉCOR [55] and InCode [138].

]1,0[
|Instances Defects All|

 |Instances Defects Corrected|
DCR

(5.10)

Since it is important to validate the proposed refactoring solutions from both quantitative and

qualitative perspectives, we use two different validation methods: manual validation and

automatic validation of the efficiency of the proposed solutions. For the manual validation, we

asked groups of potential users (software engineers) of our refactoring tool to evaluate,

142 Software Refactoring

manually, whether the suggested operations are feasible, make sense semantically. We define the

metric Manual Precision (MP) which corresponds to the number of semantically coherent

operations over the total number of suggested operations. MP is given by the following equation.

]1,0[
|Operations Suggested|

 |OperationsCoherent |
MP (5.11)

For the automatic validation, we compared the proposed refactorings with the expected ones

using the different systems in terms of recall and precision. The expected refactorings are those

applied by the software development team to the next software release. To collect these expected

refactorings, we use Ref-Finder [89], an Eclipse plug-in designed to detect refactorings between

two program versions. Ref-Finder allows us to detect the list of refactorings applied to the

current version of a system (see Table 5.12):

]1,0[
|operations expected|

 |operations expected| |operations suggested|
RE 


recall

(5.12)

]1,0[
|operations suggested|

 |operations expected| |operations suggested|
PR 


precesion

(5.13)

To answer RQ2, we compared the performance of NSGA-III based approach with four

many-objective techniques, Gr-EA [139], DBEA-Eps [91], IBEA [124] and MOEA/D [123], an

existing work based on a multi-objective NSGA-II algorithm [86] and also a mono-objective

evolutionary algorithm [71]. The approaches are briefly introduced as follows:

Grid-based Evolutionary Algorithm (Gr-EA) partitions the search space into grids (also

called hypercubes). The number of divisions in Gr-EA is a parameter. Then, it recombines them

based on the current objective values in the population. Just like in dominance-based algorithms,

it also ranks the population by fronts but the crowding distance and the spread of solutions are

calculated from grid-based metrics.

Decomposition Based Evolutionary Algorithm with Epsilon Sampling (DBEA-Eps) is

another decomposition-based EA with a variation in the decomposition method which generates

reference points via systematic sampling and deals with a constraint by an adaptive epsilon

scheme to manage the balance between convergence and diversity.

 143

Indicator-Based Evolutionary Algorithm (IBEA) is distinguished among other EAs by its

continuous dominance criteria where each solution is assigned a weight that is calculated from

quality indicators, usually given by the user.

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

simultaneously performs an optimization of previously decomposed sub-problems, according to

their neighborhood information. MOEA/D assigns a weight vector to every individual in the

population, each one being focused on the resolution of the sub-problem represented by its

weight vector. The solutions evaluation is done by the Tchebycheff approach and by computing

their distance to a reference point.

The comparison between these many-objective algorithms is performed in terms of

convergence of the Pareto Front and with respect to the diversity of the obtained solutions. In

order to estimate the convergence and diversity, we used the Inverted Generational Distance

(IGD), which is the sum of distances from each point of the true Pareto front to the nearest point

of the non-dominated set found by the algorithm in all iterations, the lower the IGD value, the

better the approximation is. Since both indicators measure the convergence and spread of the

obtained set of solutions, we will only use the IGD as a performance indicator and it will be

statistically analyzed to assess the significance of results.

As part of our experiments, to demonstrate the importance of taking each quality attribute as

separate objective instead of simply aggregating them into a single fitness function, a comparison

with a mono-objective approach that aggregates several quality attributes in one objective is

required. The comparison between many-objective algorithms with a mono-objective one is not

straightforward. The first one returns a set of non-dominated solutions while the second one

returns a single optimal solution. In order to cope with this situation, for each many-objective

algorithm, the nearest solution to the Knee point is selected as a candidate solution to be

compared with the single solution return by the mono-objective algorithm. We compared NSGA-

III with an existing mono-objective refactoring approach [71] based on the use of QMOOD

quality attributes aggregated in one fitness function.

144 Software Refactoring

We compared our proposal to the popular design defects detection and correction tool

JDeodorant [106] that does not use heuristic search techniques. The current version of

JDeodorant is implemented as an Eclipse plug-in that identifies some types of design defects

using quality metrics and then proposes a list of refactoring strategies to fix them.

For RQ3, we evaluated the benefits of our refactoring tool by several software engineers. To

this end, they classify the suggested refactorings (IR) one by one as interesting or not. The

difference with the MP metric is that the operations are not classified from a semantic coherence

perspective but form a usefulness one.

]1,0[
|Operations Suggested|

 |Operations Useful|
IR (5.14)

To answer the above research questions, we selected the solution from the set of non-

dominated ones providing the maximum trade-off using the following strategy when comparing

the different algorithms (expect the mono-objective algorithm where we select the solution with

the highest fitness function). In order to find the maximal trade-off solution of the multi-

objective or many-objective algorithm, we use the trade-off worthiness metric proposed by

Rachmawati and Srinivasan [93] to evaluate the worthiness of each non-dominated solution in

terms of compromise between the objectives. This metric is expressed as follows:

),(
,,

),(jxixT

ixjxjxixSjx
MinSix

 


(5.15)

where


 




 























M

m
mfmf

jxmfixmf

M

m
mfmf

ixmfjxmf

jxixT

1 minmax

)()(

,0max

1 minmax

)()(

,0max

),(

We note that xj denotes members of the set of non-dominated solutions S that are non-

dominated with respect to xi. The quantity),(Sxi expresses the least amount of improvement per

unit deterioration by substituting any alternative xj from S with xi. We note also that)(im xf

corresponds to the mth objective value of solution xi and max

mf / min

mf corresponds to the

maximal/minimal value of the mth objective in the population individuals. In the above equations,

 145

normalization is performed in order to prevent some objectives being predominant over others

since objectives are usually incommensurable in real world applications. In the last equation, the

numerator expresses the aggregated improvement gained by substituting xj with xi. However, the

denominator evaluates the deterioration generated by the substitution.

Table 5.10. Summary of the empirical study design.

5.2.3.2 Experimental Setting

Software Systems. We used a set of well-known open-source java projects that have been

investigated in our previous work [125] and one project from our industrial partner Ford Motor

Company. We applied our approach to the following open-source java projects: ArgoUML

v0.26, Xerces v2.7, ArgoUML v0.3, Ant-Apache v1.5, Ant-Apache v1.7.0, Gantt v1.10.2 and

Azureus v2.3.0.6. Xerces-J is a family of software packages for parsing XML. ArgoUML is a

Java open source UML tool that provides cognitive support for object-oriented design. Apache

Ant is a build tool and library specifically conceived for Java applications. GanttProject is a

cross-platform tool for project scheduling. Azureus is a Java BitTorrent client for handling

multiple torrents. We also considered in our experiments an industrial project, JDI, provided by

our industrial partner the Ford Motor Company. It is a Java-based software system that helps

Ford Motor Company analyze useful information from the past sales of dealerships data and

suggests which vehicles to order for their dealer inventories in the future. This system is main

key software application used by Ford Motor Company to improve their vehicles sales by

selecting the right vehicle configuration to the expectations of customers. JDI is a highly

Research questions Metrics and measurements

Quality improvement of refactored

systems?

Total Quality Gain (QG) (Figure 5.7)

Defect Correction Ratio (DCR) (Figure 5.8)

Manual Precision (MP), Precision (PR) and Recall (RE) (Figure 5.9)

NSGA-III performance compared to other

mono/many/multi-objective algorithms

and a non-search-based approach?

The Inverted Generational Distance (IGD) (Figure 5.10)

Computational Time (CT) (Figure 5.11)

Total Quality Gain (QG) (Figure 5.12)

Manual Precision (MP), Precision (PR) and Recall (RE)

(Figure 5.13)

Average Number of Suggested Refactorings (Figure 5.14)

Usefulness of the refactoring approach in a

real-world setting?
Useful Refactorings (IR) (Figure 5.15)

146 Software Refactoring

structured and several versions were proposed by software engineers at Ford during the past 10

years. Due to the importance of the application and the high number of updates performed during

a period of 10 years, it is critical to ensure good refactoring solutions of JDI to reduce the time

required by developers to introduce new features in the future and understand existing

implementations.

We selected these systems for our validation because they range from medium to large-sized

open-source projects, which have been actively developed over the past 10 years and because

their defects are known and were the subject of various previous studies [55] [80] [86] [71].

Table 5.11 provides some descriptive statistics about these projects.

Table 5.11. Statistics of the studied systems.

Systems Release classes KLOC Code smells

Xerces-J v2.7.0 991 240 82

Azureus v2.3.0.6 1449 264 108

ArgoUML v0.26 1358 283 1358

ArgoUML v0.3 1409 271 1409

Ant-Apache v1.5.0 1024 266 103

Ant-Apache v1.7.0 1839 294 124

GanttProject v1.10.2 245 81 41

JDI-Ford v5.8 638 247 88

To collect operations applied in previous program versions, we used Ref-Finder. Table 5.12

shows the analyzed versions and the number of operations, identified by Ref-Finder, between

each subsequent couple of analyzed versions, after the manual validation.

Table 5.12. Analyzed versions and operations collection.

Systems
Collected operation

Previous releases Refactorings

Xerces-J v1.4.2 - v2.6.1 52

GanttProject v1.7 - v1.10.1 113

Azureus v2.1.0.0- v2.3.0.0 146

ArgoUML v0.11.4 - v0.17.2 182

Ant-Apache v1.1.0- v1.4.0 177

JDI-Ford v2.4 – v5.6 97

Parameter tuning. The algorithms have been configured according to the parameters

detailed in Table 5.13. Different values have been used for the population size and the maximum

number of evaluations, generating a variety of configurations related the projects sizes and the

 147

number of objectives. For the mono-objective EA, we adopted the same approach using best

fitness value criterion since multi-objective metrics cannot be used for single-objective

algorithms.

Table 5.13. Parameters configuration.

Global parameters

Population Size 190

Objectives 8

Max Evaluations 1400

Crossover Weight 0.8

Mutation Weight 0.2

Reference Points 156

NSGA-III/Gr-EA parameters

Number of Divisions 4

IBEA parameters

Archive Size 100

MOEA/D parameters

Neighborhood Size 8

Max Replacements 2

H 99

Statistical Tests. Since metaheuristic algorithms are stochastic optimizers, they can provide

different results for the same problem instance from one run to another. For this reason, our

experimental study is performed based on 31 independent simulation runs for each problem

instance and the obtained results are statistically analyzed by using the Wilcoxon rank sum test

with a 95% confidence level (α = 5%). The latter verifies the null hypothesis H0 that the

obtained results of two algorithms are samples from continuous distributions with equal medians,

against the alternative that they are not H1. The p-value of the Wilcoxon test corresponds to the

probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value that is less

than or equal to α (≤ 0.05) means that we accept H1 and we reject H0. However, a p-value that is

strictly greater than α (> 0.05) means the opposite. For example, we compute the p-value

obtained by comparing NSGA-II, IBEA, MOEA/D and mono-objective search results with

NSGA-III ones. In this way, we determine whether the performance difference between NSGA-

III and one of the other approaches is statistically significant or just a random result.

148 Software Refactoring

Subjects. Our study involved 11 subjects from the University of Michigan and 5 software

engineers from Ford Motor Company. Subjects include 6 master students in Software

Engineering, 4 Ph.D. students in Software Engineering, 1 faculty member in Software

Engineering, and 5 junior software developers. 3 of them are females and 8 are males. All the

subjects are volunteers and familiar with Java development. The experience of these subjects on

Java programming ranged from 2 to 14 years. The evaluated solutions by the subjects are those

that represent the maximum trade-off between the objectives using the trade-off worthiness

metric proposed by Rachmawati as described in the previous section.

Scenarios. We designed our study to answer our research questions. The subjects were

invited to fill a questionnaire that aims to evaluate the suggested refactorings. We divided the

subjects into 8 groups according to 1) the number of studied systems (Table 5.11), 2) the number

of refactoring solutions to evaluate, and 3) the number of techniques to be tested.

As shown in Table 5.14, for each system, several solutions have to be evaluated. In

Table 5.14, we summarize how we divided subjects into 8 groups. In addition, as illustrated in

Table 5.14, we are using a cross-validation to reduce the impact of subjects on the evaluation.

Each subject evaluates different refactoring solutions for different systems.

Subjects were first asked to fill out a pre-study questionnaire containing seven questions. The

questionnaire helped to collect background information such as their role within the company,

their programming experience, their familiarity with software refactoring. In addition, all

participants attended one lecture of 50 minutes about software refactoring and passed 10 tests to

evaluate their performance to evaluate and suggest refactoring solutions. Then, the groups are

formed based on the pre-study questionnaire and the tests result to make sure that all the groups

have almost the same average skills. Group 8 is composed by only software engineers from Ford

and evaluated only refactoring suggestions for JDI-Ford.

The participants were asked to justify their evaluation of the solutions and these justifications

are reviewed by the organizers of the study (one faculty member, one postdoc and one PhD

student). In addition, our experiments are not only limited to the manual validation but also the

automatic validation can verify the effectiveness of our approach.

 149

Table 5.14. Survey organization.

Subject groups Systems Algorithms / Approaches

Group 1

Xerces-J v2.7.0 Gr-EA / DBEA-Eps / IBEA / JDeodorant

ArgoUML v0.26 MOEA/D / NSGA-II / GA

Ant-Apach v1.5.0 DBEA-Eps / IBEA / NSGA-II / GA

Group 2

Azureus v2.3.0.6 MOEA/D / JDeodorant / Gr-EA

ArgoUML v0.3 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Ant-Apache v1.7.0 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Group 3

GanttProject v1.10.2 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Xerces-J v2.7.0 MOEA/D / NSGA-II / GA

ArgoUML v0.26 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Group 4

Ant-Apach v1.5.0 MOEA/D / JDeodorant / Gr-EA

Azureus v2.3.0.6 DBEA-Eps / IBEA / NSGA-II / GA

ArgoUML v0.3 MOEA/D / NSGA-II / GA

Group 5

Ant-Apache v1.7.0 MOEA/D / NSGA-II / GA

GanttProject v1.10.2 MOEA/D / NSGA-II / GA

JDI-Ford v5.8 Gr-EA / DBEA-Eps / IBEA / MOEA/D

Group 6

ArgoUML v0.3 DBEA-Eps / IBEA / NSGA-II / GA

Ant-Apache v1.7.0 DBEA-Eps / IBEA / NSGA-II / GA

JDI-Ford v5.8 NSGA-II / GA / JDeodorant

Group 7

GanttProject v1.10.2 DBEA-Eps / IBEA / NSGA-II /GA

Xerces-J v2.7.0 DBEA-Eps / IBEA / NSGA-II / GA

JDI-Ford v5.8 Gr-EA / DBEA-Eps / IBEA / MOEA/D

Group 8 JDI-Ford v5.8
Gr-EA / DBEA-Eps / IBEA / MOEA/D / NSGA-II / GA /

JDeodorant

Subjects were aware that they are going to evaluate the design coherence and the usefulness

of the suggested refactorings, but do not know the particular experiment research questions

(algorithms used, different objectives used and their combinations). Consequently, each group of

subjects who accepted to participate in the study, received an online questionnaire, a manuscript

guide to help them to fill the questionnaire, and the source code of the studied systems, in order

to evaluate the solutions. The questionnaire is organized in an excel file with hyperlinks to

visualize easily the source code of the affected code elements. Subjects are invited to select for

each operation one of the possibilities: "Yes", "No", or "Maybe" (if not sure) about the design

coherence and usefulness. Since the application of refactoring solutions is a subjective process, it

is normal that not all the developers have the same opinion. In our case, we considered the

majority of votes to determine if suggested solutions are correct or not.

150 Software Refactoring

5.2.3.3 Results and Discussions

Results for RQ1. Figure 5.7 summarizes the results of median values of the quality

improvement metrics over 31 independent simulation runs after applying the proposed

operations by the refactoring solution selected using the knee-point strategy [136]. In our

experiments, we used all the 8 objectives in our many-objective formulation. It is clear from

Figure 5.7 that all the six quality objectives are improved using our NSGA-III algorithm

compared to the program version before refactoring. The reusability, understandability and

extendibility are the most improved metrics and this can be explained by the fact that refactoring

is not expected to change a lot the behavior/functionality of a system and this explains that some

objectives were not improved significantly such as the functionality improvements metric. The

same observation regarding the behavior preservation is valid for the extendibility factor because

it is, to some extent, a subjective quality factor and using a model of merely static measures to

evaluate extendibility is may be a not very good estimator. Overall, the NSGA-III algorithm was

able to find a good trade-off between all the six quality objectives since most of them were

significantly increased and no one of these metrics was decreased comparing the initial version

of the system before refactoring. The variation in terms of quality improvements between the

different systems is not high. ArgoUML and Ant-Apache were the main systems who are

significantly improved and this can be explained by the lower quality of these projects

comparing to the remaining systems before refactoring.

 151

Figure 5.7. Average quality improvements, over 31 runs, on the different systems using NSGA-III.

As described in Figure 5.8, after applying the proposed refactoring operations by our

approach (NSGA-III), we found that, on average, 82% of the detected defects were fixed (DCR)

for all the eight studied systems. This high score is considered significant in terms of improving

the quality of the refactored systems by fixing the majority of defects of various types (blob,

spaghetti code, functional decomposition [55], god class, data class, and feature envy [138]).

Figure 5.8. Average percentage of fixed defects, over 31 runs, on the different systems using NSGA-III.

A closer look to the fixed defects in Xerces-J v2.7.0, the one with the highest percentage of

fixed defects (86%), is detailed in Table 5.15. Fixed code smells distribution in Xerces-J v2.7.0.

152 Software Refactoring

Table 5.15. Fixed code smells distribution in Xerces-J v2.7.0.

Code smell Flawed classes Number of fixed code smells

Blob

143 (32% overlap)

30 (%89)

Data Class 19 (%83)

God Class 10 (%64)

Feature Envy 25 (%96)

Functional

Decomposition
13 (%94)

Spaghetti Code 39 (%92)

On Table 5.15. Fixed code smells distribution in Xerces-J v2.7.0., it is noticeable that some

code smells are harder to fix (such as God classes) compared to others (Feature Envy), further

analysis needs to be done to better understand this observation. Although the bad smell detection

literature suggests a wide variety of code smells to be corrected, we narrowed our selection to the

five types that have given significant results compared to the others. This can be explained by the

fact that the defects types that are not fixed require the considerations of more refactoring

operations rather than those included in this work. In addition, some of these defects are difficult

to detect just using structural metrics [80].

We also need to assess the correctness/meaningfulness of the suggested refactorings from the

developers’ point of view. Figure 5.9 confirms that the majority of the suggested refactorings

improve significantly the code quality while preserving design’s semantic coherence. On

average, for all of our studied systems, an average of around 91% of proposed refactoring

operations are considered by potential users to be semantically feasible and do not generate

semantic incoherence.

In addition to the manual evaluation, we automatically evaluate our approach without using

the feedback of potential users to give a more quantitative evaluation to answer RQ1. Thus, we

compare the proposed refactorings with the expected ones. The expected refactorings are those

applied by the software development team to the next software release as described in

Table 5.12. We use Ref-Finder to identify refactoring operations that are applied to the program

version under analysis and the next version. Figure 5.9 summarizes our results. We found that a

considerable number of proposed refactorings (an average of 59% for all studied systems in

 153

terms of recall) are already applied to the next version by software development team which is

considered as a good recommendation score, especially that not all refactorings applied to next

version are related to quality improvement, but also to add new functionalities, increase security,

fix bugs, etc.

To conclude, we found that our approach produces good refactoring suggestions in terms of

defect-correction ratio, semantic coherence from the point of view of 1) potential users of our

refactoring tool and 2) expected refactorings applied to the next program version.

Figure 5.9. Average manual and automatic design coherence measures (MP, PR and RE), over 31 runs, on the different

systems using NSGA-III.

Results for RQ2. In this section, we focus first on the comparison between our NSGA-III

adaption and other many-objective algorithms using the same adaptation. Table 5.16 shows the

median IGD values over 31 independent runs for all algorithms under comparison. We have used

pairwise comparisons, so we do not need to adjust p-values. After applying Cohen's d effect size

we noticed that the effect size between the paired comparison of NSGA-III with each of the

remaining algorithms is higher than 0.8 except for Gr-EA, which effect values were found to be

medium.

154 Software Refactoring

Table 5.16. Median IGD values on 31 runs (best values are in bold and underlined, second best values are in bold). ~

means a large value that is not interesting to show. The results were statistically significant on 31 independent runs using

the Wilcoxon rank sum test with a 95% confidence level (α = 5%).

System NSGA-III Gr-EA DBEA-Eps IBEA MOEA/D NSGA-II

ArgoUML v0.26 4.113 x 10-3 4.229 x 10-3 4.206 x 10-3 4.329 x 10-3 4.342 x 10-3 ~

Xerces v2.7 7.998 x 10-3 8.308 x 10-3 8.181 x 10-3 8.399 x 10-3 8.431 x 10-3 ~

ArgoUML v0.3 5.499 x 10-3 5.677 x 10-3 5.603 x 10-3 5.712 x 10-3 5.733 x 10-3 ~

Ant-Apache v1.5 6.008 x 10-4 6.256x 10-4 6.224 x 10-4 6.325 x 10-4 6.333 x 10-4 ~

Ant-Apache v1.7.0 6.202 x 10-3 6.412 x 10-3 6.377 x 10-3 6.489 x 10-3 6.539 x 10-3 ~

Gantt v1.10.2 7.806 x 10-3 8.002 x 10-3 7.968 x 10-3 8.088 x 10-3 8.101 x 10-3 ~

Azureus v2.3.0.6 6.933 x 10-4 7.112 x 10-4 7.075 x 10-4 7.191 x 10-4 7.208 x 10-4 ~

JDI-Ford 5.748 x 10-4 6.066 x 10-4 5.851 x 10-4 6.294 x 10-4 6.646 x 10-4 ~

All the results were statistically significant on the 31 independent simulations using the

Wilcoxon rank sum test with a 95% confidence level (α = 5 %). NSGA-III strictly outperforms

NSGA-II and gives slightly better results to those of the other many-objective algorithms. It is

worth noting that for problems formulations with more 3 objectives, NSGA-II performance is

dramatically degraded, which is simply denoted by the ~ symbol. The performance of NSGA-III

could be explained by the interaction between (1) Pareto dominance-based selection and (2)

reference point-based selection, which is the distinguishing feature of NSGA-III compared to

other existing many-objective algorithms.

 155

NSGA-III

IBEA

DBEA-Eps

MOEA/D

Gr-EA

NSGA-II

Figure 5.10. Value path plots of non-dominated solutions obtained by NSGA-III, DBEA-Eps, Gr-EA, IBEA, IBEA, and

NSGA-II during the median run of the 8-objective refactoring problem on ArgoUML v0.26. The X-axis represents the

different objectives while the Y-axis shows the variation of fitness values between [0...1].

Figure 5.10 describes value path plots of all algorithms for the 8-objective refactoring

problem on Argo-UML. The horizontal axis shows the objective functions while the vertical axis

marks its related values. The objectives values were normalized between 0 and 1 and set to be

156 Software Refactoring

minimized. In terms of convergence, the algorithm whose solutions are closest to the ideal vector

of height zeros has better convergence ratio. Thus, NSGA-III and DBEA-Eps outperform the

remaining algorithms. Also, the spread of NSGA-III solutions vary in between [0, 0.9] presents a

slightly better diversity than its follower DBEA-Eps whose solutions vary in between [0, 0.85].

On the other hand, the worst convergence is associated to NSGA-II as its solutions are so far

from the ideal vector, and even it diversity is so reduced which may explain the stagnation of its

evolutionary process. We conclude that although NSGA-II is the most famous multi-objective

algorithm in SBSE, it is not adequate for problems involving over 3 objectives and NSGA-III is

a very good candidate solution for tackling many-objective SBSE problems.

When using optimization techniques, the most time-consuming operation is the evaluation

step. Thus, we studied the execution time of all many/multi-objective algorithms used in our

experiments. Figure 5.11 shows the evolution of the running times of the different algorithms on

the ArgoUMLv0.26 system, the largest system in our experiments. It is clear from this figure that

for 8 objectives NSGA-III is faster than IBEA. This observation could be explained by the

computational effort required to compute the contribution (IGD) of each solution. In comparison

to MOEA/D, MOEA/D is slightly faster than NSGA-III since it does not make use of non-

dominated sorting. Note that the experiments were conducted on a single machine (i7 – 2.70

GHz, 12.0 GB – DDR3, SSD - 520MB/s) which may not be the optimal setting for some of these

heuristics that can perform faster in an appropriate distributed or parallel environment.

Figure 5.11. Average Computational time values on 31 runs on refactoring ArgoUMLv0.26.

We compared also the different search algorithms using metrics related to quality

improvements, number of fixed defects, number of generated refactorings and a manual

 157

inspection of the results to check the correctness of the suggested operations. Figure 5.12 shows

that our NSGA-III algorithm presents the best compromise between the different quality

attributes among all the other search algorithms. In addition, it is clear that the many-objective

algorithms propose a better trade-off in terms of quality improvements than the mono and multi-

objective techniques.

Since it is not sufficient to outperform existing search-based refactoring techniques, we

compared our proposal to a popular design defects detection and correction tool JDeodorant. We

first note that JDeodorant (like mono-objective approaches also) provides only one refactoring

solution, while NSGA-III generates a set of non-dominated solutions. It can be seen that NSGA-

III provides better results than JDeodorant, in average. The main reason can be related to the fact

that JDeodrant provides a template of possible refactorings to apply for each detected defect but

it is difficult to generalize such refactoring solutions since a defect can have several different

refactoring strategies.

Figure 5.12. Average quality improvements, over 31 runs, on the different systems.

Figure 5.12 confirms that the majority of the suggested refactorings by NSGA-III improve

significantly the code quality while preserving design’s semantic coherence better than most of

the other search algorithms. In addition, we automatically evaluated our approach without using

the feedback of potential users to give a more quantitative evaluation. Thus, we compared the

proposed refactorings with the expected ones. The expected refactorings are those applied by the

158 Software Refactoring

software development team to the next software release as described in Table 5.12. Figure 5.13

confirms the outperformance of NSGA-III comparing to the remaining techniques.

Figure 5.13. Average manual and automatic design coherence measures (MP, PR and RE), over 31 runs, on the different

systems.

We evaluated the number of operations (NO) suggested by the best refactoring solutions on

the different systems over 31 runs. Figure 5.14 presents the code changes score for each

algorithm, calculated by summing the size (number of operations) of each solution assigned to

one project, divided by the number of projects. It is clear that our NSGA-III approach succeeded

in suggesting solutions that do not require high code changes. However, IBEA generated less

number of refactorings than our approach but this can be due to the fact that our technique

improved better the quality comparing to IBEA’s solutions. Thus, it may require a higher number

of refactorings to better improve the quality attributes. Another observation is that the number of

refactorings proposed by JDeodorant is lower than the number of refactorings suggested by

NSGA-III. However, the number of defects fixed by NSGA-III is higher than JDeodorant thus it

is normal in this case that NSGA-III generates a higher number of refactorings.

 159

Figure 5.14. Average suggested number of refactoring operations, over 31 runs, on the different systems.

Results for RQ3.We asked the software engineers involved in our experiments to evaluate

the usefulness of the suggested refactorings to apply one by one. In fact, sometimes these

operations can improve the quality and preserve the semantics but developers will consider them

as not useful due to many reasons such as some code fragments are not used/updated anymore or

includes some features that are not important. Figure 5.15 shows that NSGA-III clearly

outperforms existing work by suggesting useful refactoring operations for developers.

Figure 5.15. Average of percentages of useful operations (IR), on the different systems using NSGA-III.

During the survey, the software engineers confirm that the main limitation related to the use

of NSGA-III for software refactoring is the high number of equivalent solutions. However, found

the idea of the use of the Knee point as described previously useful to select a good solution. We

will investigate in our future work different other techniques to select the region of interest based

on the preferences of developers.

160 Software Refactoring

5.2.4 Conclusion

We propose a novel formulation of the refactoring problem as a many-objective problem,

based on NSGA-III, using the quality attributes of QMOOD as objectives along with the number

of refactorings and the design coherence preservation. This initial empirical investigation has

shown that a possible conflict among QMOOD objectives may occur depending on the kind of

employed refactorings. In this context, a statistical analysis needs to be conducted to prove the

validity of this insight. Furthermore, we did not yet prioritize any objective(s) although the

definition of QMOOD and the capability of NSGA-III allows it. It would be interesting to

compare between multiple refactored systems while each one of them is the result of high

prioritization of one quality objective.

We evaluated our approach on seven large open source systems. We implemented our

approach and evaluated it on seven large open source systems and one industrial project provided

by our industrial partner. We compared our findings to several other many-objective techniques

(IBEA, MOEA/D, GrEA, and DBEA-Eps), a mono-objective technique and an existing

refactoring technique not based on heuristic search. Statistical analysis of our experiments over

31 runs shows the efficiency of NSGA-III as powerful algorithm to tackle many objective

formulations.

We also studied the impact of refactoring on fixing code smells. Although we were able to

fix most of the detected defects, our defect selection types were limited due to limited types of

used refactorings. Another limitation to take into account is the possibility of introducing code

smells while performing the refactoring operations, for example, we noticed that, some fixed

feature envied entities have had an intrusion of shotgun surgery defect. Since the later type is not

covered in this work, it did not affect our DCR, but it gives a strong indication for further

investigation about how to perform refactoring interactively with the detection to avoid such

drawback.

For the qualitative evaluation, we were able to show promising results, along with

JDeodorant, which, as a tool, was highly appreciated by the participants because of its simplicity,

 161

ease of use and the possibility to preview changes and visualize entities. Unfortunately, limited

to four types of smells.

In future work, multiple research directions are to be taken from some of the previously

mentioned limitations and they are mainly linked to (1) the problem formulation and (2) NSGA-

III tuning. Firstly, investigating the statistical significance of the refactorings impact analysis on

internal and external attributes can be an interesting research direction that helps in better

understanding to what extent each refactoring type can affect the existing quality models.

Moreover, code smells can be also described in terms of structural metrics, such statistical

investigation will help in the validation of attributing a subset of refactorings to a known type of

code smell. As for NSGA-III tuning, we will investigate the impact of different parameter

settings on the quality of our results, in particular, the size of the reference set |Zr| can either be

predefined and calculated based on the number of objectives and the number of desired divisions

in the hyperplane or preferentially introduced by the user. Augmenting the density of the

hyperplane i.e. increasing the number of used reference points will refine the niche count and

thus will provide solutions with better diversity. Since, in our experiments, we only considered

the predefined size of reference set, we plan in the future to investigate the impact of varying this

parameter on the quality of the generated solutions. Another interesting research direction

regards the prioritization of the code smells to be removed, for two candidate solutions extracted

from the Pareto-front, they have equivalent fitness functions’ values but their impact on reducing

code smells may vary in terms of number and types of fixed code smells. So, this can be used as

an additional developer preference to compare between given solutions. Moreover, the solution’s

robustness can be also studied as to take into account the uncertainties related to analyzed classes

importance and code smells severities while suggesting refactoring operations. Furthermore, we

plan to work on adapting NSGA-III to additional software engineering problems and we will

perform more comparative studies on larger open source systems. Nevertheless, this extensive

study has shown a direction using NSGA-III to handle as many as 8 objectives in the context of

solving software engineering problems and would remain as one of the first studies in which

such a large number of objectives have been considered.

162 Software Refactoring

 Dynamic Interactive Software Refactoring

5.3.1 Introduction

Successful software products evolve through a process of continuous change. However, this

may lead to poor design quality and make systems complex. This complexity leads to

significantly reduced productivity, decreased system performance, increased fault-proneness,

makes software costly and has even led to projects being canceled. Many studies report that

software maintenance activities to improve the quality of systems consume up to 90% of the total

cost of a typical software project. It has also been shown that software engineers spend around

60% of their time in understanding the code [140].

Clearly, software engineers need better ways to reduce and manage the growing complexity

of software systems and improve their productivity. Refactoring, which improves design

structure while preserving functionality [15], is an extremely important solution to address this

challenge. There has been much work on various techniques and tools for software refactoring

[141] [68] [142] [71], and these studies can be classified into two main categories: manual and

fully-automated approaches.

Murphy-Hill et al. [142] found in their empirical study with developers that in almost 90% of

cases they performed refactorings manually and did not use automated refactoring tools. Kim et

al. [143] confirmed this observation, finding that the interviewed developers from Microsoft

preferred to perform refactoring manually in 86% of cases. Several studies [144] have shown

that manual refactoring [15] is error-prone, time-consuming, not scalable and not useful for

radical refactoring that requires an extensive application of refactorings to correct unhealthy

code.

Fully-automated refactoring has several drawbacks as well. It lacks flexibility since

developers have to either accept or reject the entire refactoring solution. It fails also to consider

the developer perspective and feedback because suggested refactoring solutions cannot be

updated dynamically. It is limited to structural improvements, which leads to infeasible

refactoring solutions. Finally, it proposes a long static list of refactorings to be applied, but

 163

developers may not have enough time to apply all of them. Thus, fully-automated refactoring

methods are not useful for floss refactoring where the goal is to maintain good design quality

while modifying existing functionality. The developers have to accept the entire refactoring

solution even though they prefer, in general, step-wise approaches where the process is

interactive and they have a total control of the refactorings being applied.

Very few studies have considered an interactive approach with the developers to improve

software quality [68] [145] [146]. In [145], an approach was proposed for the interactive

remodularization of packages using an interactive genetic algorithms. Another similar approach

[146] was proposed based on supervised learning to fix existing modularizations of a software

design. However, both approaches were limited to just moving classes between packages. In

addition, the interaction with the designer is restricted to evaluating most of the solutions which

is a time-consuming task. The feedback received from the designer is just an evaluation of the

remodularization solutions. In our previous studies [26] [125], we proposed a fully-automated

technique, using evolutionary algorithms, to find the best refactoring solutions that improve

quality metrics and reduce the number of recommended refactorings. Our previous work did not

consider any interactions with the programmers and cannot update/repair refactoring solutions

based on new code changes introduced by programmers.

We propose in this work an interactive recommendation approach for software refactoring

that dynamically adapts and suggests refactorings to developers based on introduced new code

changes (e.g. to update existing features) and the developers’ feedback such as accepting,

rejecting or modifying a refactoring. The suggested refactorings are presented to the developers

one by one as a sequence of transformations. The proposed approach extends our previous work

where we proposed a fully-automated technique, using the multi-objective evolutionary

algorithm NSGA-II , to find the best refactoring solutions that improve quality metrics and

reduce the number of recommended refactorings. Our previous work did not consider any

interactions with the developers and cannot update/repair refactoring solutions based on new

code changes introduced by developers.

Our approach starts by finding upfront a set of refactoring solutions that optimize the two

above objectives. One of the challenges when adapting a multi-objective technique to a software

164 Software Refactoring

engineering problem, and any real-world problem in general, is how to select the best solution

from the set of non-dominated ones, called the Pareto front. To this end, we propose, for the first

time, the use of innovization (innovation through optimization) [22] to analyze and explore the

Pareto front interactively and implicitly with the developers. Our innovization algorithm starts by

finding the most frequent refactorings among the set of non-dominated refactoring solutions.

Based on this analysis, the suggested refactorings are ranked and suggested to the developer one

by one. The developer can approve, modify or reject each suggested refactoring. This feedback is

later used to update the ranking of the suggested refactorings.

After a number of introduced code changes and interactions with the developer (e.g. a

number of rejected refactorings), NSGA-II will continue to execute on the new modified system

to repair the set of good refactoring solutions based on the feedback received from the developer.

The feedback received from the developers will be also used as a set of new constraints to

consider for the next iterations of NSGA-II. The algorithm will avoid, for example, including

rejected refactorings by the developers when generating new solutions or repairing existing ones.

We implemented our proposed approach and evaluated it on a set of 9 open source systems

and 2 industrial systems provided by our industrial partner, i.e., the Ford Motor Company.

Statistical analysis of our experiments over 50 runs showed that our proposal performed

significantly better than four existing search-based refactoring approaches [86] [6] [71] [147] and

an existing refactoring tool not based on heuristic search, JDeodorant [106]. The software

developers who participated in our experiments confirmed the relevance of the suggested

refactoring and the flexibility of the tool in modifying and adapting the suggested refactorings.

The primary contributions of this work can be summarized as follows:

(1) The introduction of an interactive way to refactor software systems using innovization and

interactive dynamic multi-objective optimization. The proposed technique supports the

adaptation of refactoring solutions based on developers’ feedback while also taking into

account other code changes that the developer may have performed in parallel with the

refactoring activity.

 165

(2) We propose an implicit exploration of the Pareto front of non-dominated solutions based

on our new interaction way that can help software engineers to use multi-objective

optimization for software engineering problems, avoiding the necessity for manual

exploration of the Pareto front to find the best trade-off between the objectives.

(3) This work reports the results of an empirical study on an implementation of our approach.

The results obtained provide evidence to support the claim that our proposal is more

efficient, on average, than existing refactoring techniques based on a benchmark of 9 open

source systems and 2 industrial projects. This work also evaluates the relevance and

usefulness of the suggested refactorings for software engineers in improving the quality of

their systems.

5.3.2 Approach

5.3.2.1 Interactive and Dynamic Evolutionary Multi-objective Optimization: Background

In this section, we give a brief overview about two important aspects of the Evolutionary

Multiobjective Optimization (EMO) paradigm related to the: (1) Interaction with the user and (2)

Dynamicity of the problem.

Interacting with the human user means allowing the latter to inject his/her preferences in the

computational search algorithm and then handling these preferences so that the search process is

guided based on them. There exists a lot of work about preference incorporation in EMO. To

express his/her preferences, the user needs some preference modeling tools. The most used ones

are:

– Weights: Each objective is assigned a weighting coefficient expressing its importance. The

larger the weight is, the more important the objective is.

– Solution ranking: The user is provided with a sample of solutions (a subset of the current

population) and is invited to perform pairwise comparisons between pairs of solutions in

order to rank the sample’s solutions where indifference may exist between the solutions to

rank.

166 Software Refactoring

– Objective ranking: Pairwise comparisons between pairs of objectives are performed in order to

rank the problem’s objectives where indifference may exist between some objectives.

– Reference point (also called a goal or an aspiration level vector): The user supplies, for each

objective, the desired level that he/she wishes to achieve. This desired level is called

aspiration level.

– Reservation point (also called a reservation level vector): The user supplies, for each objective,

the accepted level that he/she wishes to reach. This accepted level is called reservation level.

– Trade-off between objectives: The user specifies that the gain of one unit in one objective is

worth degradation in some others and vice versa.

– Outranking thresholds: The user specifies the necessary thresholds to design a fuzzy predicate

modeling the truth degree of the predicate “solution x is at least as good as solution y”.

– Desirability thresholds: The user supplies: (1) an absolutely satisfying objective value and (2) a

marginally infeasible objective value. These thresholds represent the parameters that define

the desirability functions.

Based on these preference modeling tools, we observe that the goal of a preference-based

EMO algorithm is to assign different importance levels to the problem’s objectives with the aim

to guide the search towards the ROI (Region of Interest) that is the portion of the Pareto Front

that best matches the user preferences. In fact, usually, the user is not interested with the whole

Pareto front and thus he/she is searching only for his/her ROI from which the problem’s final

solution will be selected. Several preference-based EMO algorithms have been proposed and

used to solve real problems such as PI-EMOA [148], iTDEA [149], NOSGA [150], DF-SMS-

EMOA [151], just to cite a few. There are several algorithmic challenges that should be

overcome such the preservation of the Pareto dominance, the preservation of population

diversity, the scalability with the number of objectives, etc. [149].

It is very important to note that till today, the user’s preferences are expressed and handled

in the objective space. Hence, one of the original aspects of our work, as detailed later, is

 167

allowing the user (software engineer) to express his/her preferences in the decision space and

then handling these preferences to help the user finding his/her most desired refactoring solution.

Moreover, our approach helps the user in eliciting his/her preferences, which is very important

for any preference-based EMO algorithm. These preferences are introduced implicitly by moving

between the Pareto front of non-dominated solutions after getting a feedback from the user about

just a few parts of the solution to better understand his preferences. This implicit exploration of

the Pareto front will be detailed in the next section about the formulation of our refactoring

problem.

The incorporation of the preferences may require handling dynamicity issues related to the

introduce changes to the solution or the input (e.g. software system). Handling dynamicity in

EMO means solving dynamic problems where the objective functions and or the constraints may

change over time such due for example to the dynamic nature of most of software evolution

problems including software refactoring. Applying evolutionary algorithms (EAs) to solve

Dynamic Multi-Objective Problems (DMOPs) has obtained great attention among researchers

thanks to the adaptive behavior of evolutionary computation methods. A DMOP consists in

minimizing or maximizing an objective function vector under some constraints over time. Its

general form is the following [152]:





















.1

1 0),(

1 0),(

)],(),...,,(),,([),(21

,...,nixxx

,...,Q;ktxh

,...,P;jtxg

txftxftxftxfMin

U
ii

L
i

k

j

T
M

where M is the number of objective functions, t is the time instant, P is the number of inequality

constraints, Q is the number of equality constraints,
L
ix

 and
U
ix

 correspond respectively to the

lower and upper bounds of the variable ix
. A solution ix

 satisfying the (P+Q) constraints is

said feasible and the set of all feasible solutions defines the feasible search space denoted by Ω.

In this formulation, we consider a minimization MOP since maximization can be easily turned

into minimization based on the duality principle by multiplying each objective function by -1 and

transforming the constraints based on the duality rules.

168 Software Refactoring

The resolution of a MOP yields a set of trade-off solutions, called Pareto optimal solutions or

non-dominated solutions, and the image of this set in the objective space is called the PF. Hence,

the resolution of a MOP consists in approximating the whole PF. In the following, we give some

background definitions related to multi-objective optimization. It is worth noting that these

definitions remain valid for the case of DMOPs:

Definition 1: Pareto optimality

A solution 
*

x is Pareto optimal if  x and  MI ,...,1 either Im we have

)()(
*

xfxf mm  or there is at least one Im such that)()(
*

xfxf mm  .

The definition of Pareto optimality states that *x is Pareto optimal if no feasible vector x exists

which would improve some objectives without causing a simultaneous worsening in at least

another one.

Definition 2: Pareto dominance

A solution),...,,(21 nuuuu  is said to dominate another solution),...,,(21 nvvvv  (denoted by

)()(vfuf ) if and only if)(uf is partially less than)(vf . In other words,  Mm ,...,1  we have

)()(vfuf mm  and  Mm ,...,1  where)()(vfuf mm  .

Definition 3: Pareto optimal set

For a given MOP)(xf , the Pareto optimal set is  )()'(,' * xfxfxxP  .

Definition 4: Pareto optimal front

For a given MOP)(xf and its Pareto optimal set *P , the Pareto front is  *),(* PxxfPF  .

Based on these definitions, we can conclude that a dynamic problem could be seen as a

sequence of static problems. In this approach, we consider integrated dynamicity in our

interactive multi-objective algorithm by considering a new input (new version of the system after

introduced changes and refactorings) for every continuation of the execution of the algorithm

 169

after several interactions with the user. Thus, we considered our dynamic problem as a sequence

of static ones. In the next section, we describe an overview of our dynamic interactive

refactoring approach then a detailed formulation of our solution.

5.3.2.2 Approach Overview

The goal of our approach is to propose a new dynamic interactive way for software

developers to refactor their systems. The general structure of our approach is sketched in

Figure 5.16.

Figure 5.16. Approach overview.

Our technique comprises two main components. The first component is an offline phase,

executed in the background, when developers are modifying the source code of the system.

During this phase, the multi-objective algorithm, NSGA-II [21], is executed for a number of

iterations to find the non-dominated solutions balancing the two objectives of improving the

quality which corresponds to minimizing the number of code smells, maximizing/preserving the

semantic coherence of the design and improving the QMOOD (Quality Model for Object-

Oriented Design) quality metrics [126], and the second objective of minimizing the size of

refactoring solutions (number of operations).

170 Software Refactoring

The output of this first step of the offline phase is a set of Pareto-equivalent refactoring

solutions, that optimizes the above two objectives. As explained in Algorithms 1 and 2, the

second step of the offline phase explores this Pareto front in an intelligent manner using the

innovization algorithm to rank recommended refactorings based on the common features

between the non-dominated solutions. In our adaptation, we considered the hypothesis that the

most redundant/frequent refactorings between the non-dominated solutions are the most

important ones. The best refactoring solution will contain most of the frequently used

refactorings between non-dominated solutions. Thus, the output of this second step of the offline

phase is a set of ranked solutions based on this redundancy score.

The second component of our approach is an online phase to manage the interaction with the

developers. It will dynamically update the ranking of recommended refactorings based on the

feedback of the developer. This feedback can be to approve/apply or modify or reject the

suggested refactoring one by one as a sequence of transformations. Thus, the goal is to guide,

implicitly, the exploration of the Pareto front to find good refactoring recommendations. Since

the ranking is updated dynamically, our interactive algorithm allows the implicit move between

non-dominated solutions of the Pareto front.

After a number of interactions, developers may have modified or rejected a high number of

suggested refactorings or have introduced several new code changes (new functionalities, fix

bugs, etc.). In this case, the first component of our approach is executed again to update the last

set of non-dominated refactoring solutions by continuing the execution of NSGA-II based on the

two objectives defined in the first component as described in Algorithm 3 and also the new

constraints summarizing the feedback of the developer. In fact, we consider the rejected

refactorings by the developer as constraints to avoid generating solutions containing several

already rejected refactorings. This may lead to reducing the search space and thus a fast

convergence to better solutions. Of course, the continuation of the execution of interactive

NSGA-II is taking as input the updated version of the system after the interactions with

developers.

The whole process will continue to be executed until the developers decide to stop refactoring

the process.

 171

Algorithm 5.1. Pseudo-code of the Dynamic Interactive NSGA-

II for software refactoring at generation t

Input

Sys: system to evaluate, Pt: parent population

Output

Pt+1

00:

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

15:

15:

16:

17:

18:

19:

 Begin

/* Test if any user interaction occurred in the previous

iteration */

If UserFeedback = TRUE then

/* Rejected refactoring operations as constraints */

 Ct ← Get-Constraints ();

/* Updated source code after applying changes */

…Sys ← Get-Refactored-System ();

 UserFeedback ← FALSE;

End If

St ← Ø, i ← 1;

 Qt ← Variation (Pt);

 Rt ← Pt Qt;

Pt ← evaluate (Pt, Ct, Sys);

 (F1, F2, ...) ← Non-dominationed-Sort (Rt);

 Repeat

 St ← St  Fi; i ← i+1;

 Until | St | ≥ N;

 Fl ← Fi; //Last front to be included*/

 If | St | = N then

 Pt+1 ← St;

 Else

 Pt+1 ←

1
1




l
j

Fj;

 /*Number of points to be chosen from Fl*/

 K ← N – |Pt+1|;

 /*Crowding distance of points in Fl */

 Crowding-Distance-Assignment(Fl);

…Quick-Sort(Fl);

 /*Choose K solutions with largest distance*/

172 Software Refactoring

 Pt+1← Pt+1 ∪ Select(Fl, k);

End If

If t+1 = Threshold then

 UserFeedback ← TRUE;

/* Select and rank the best front */

…Rank-Solution (F1);

 Threshold ← Threshold + t+1;

End If

End

Algorithm 5.2. Pseudo-code of the Innoviazation procedure to

rank the non-dominated refactoring solutions.

Rank Solution procedure

Input

NS: Non-dominated SolutionSet of the first front

Output:

RNS: Ranked Non-dominated SolutionSet

Begin

/*Compute the score of each Refactoring Operation*/

HM ← Rank-Refactoring-Operation (NS);

/*Compute the score of each solution*/

For i=1 to |NS| do

 SolutionRanki ← 0;

 For each j=1 to |NSi| do

 SolutionRanki ← SolutionRanki + HM[Hash(NSi,j)];

 End for

End for

RNS ← Quick-Sort(NS);

Get-User-Feedback(RNS);

End

Rank Refactoring Operation procedure

Input

NS: Non-dominated SolutionSet of the first front

Output

HM: HashMap of refactorings along with their occurrences.

Begin

 173

HM ← Ø;

/* Compute the number of occurrence of each refactoring

operation*/

For i=1 to |NS| do

 For each j=1 to |NSi| do

/* If a refactoring operation does not exist in the list, add its

hash and set its occurrence number to 1*/

 If (NSi,j ∉ HM) then

 HM ← HM ∪ Hash(NSi,j);

 HM[Hash(NSi,j)] ← 1;

/* If a refactoring operation exists in the list, increment its

occurrence number */

 else

 HM[Hash(NSi,j)] ← HM[Hash(NSi,j)] + 1;

 End for

End for

End

Algorithm 5.3. Pseudo-code of the procedure to manage the

interactions with the developer (online phase).

GUF (Get User Feedback) procedure

Input

RNS: Ranked Non-dominated SolutionSet

Output

HM: HashMap of refactorings along with their occurrences.

Begin

Applied-Refactorings ← Ø;

Rejected-Refactorings ← Ø;

For i=1 to |RNS| do

 ref[i] ← 0;

End for

/* Main loop to suggest refactorings one by one to the

user*/

While |Rejected-Refactorings|< α do

/* Select index of the the solution with highest rank*/

174 Software Refactoring

 index ← Max-Rank(RNS);

 d ← User-Decision(RNSindex,ref[index]);

/* If the user has applied or modified the operation*/

 If (d = True) then

 Applied-Refactorings ← Applied-Refactorings ∪

RNSindex,ref[index];

/* If the user has rejected the operation*/

 else

 Rejected-Refactorings ← Rejected-Refactorings ∪

RNSindex,ref[index];

 End if

 ref[index] ← ref[index] + 1;

/* Update solutions indexes */

 For i=1 to |RNS| do

 Update-Rank(RNSi; Applied-Refactorings, Rejected-

Refactorings)

End While

End

5.3.2.3 Multi-objective formulation

In our previous work [86] [104], we proposed a fully automated approach, to improve the

quality of a system while preserving its domain semantics. It uses multi-objective optimization

based on NSGA-II to find the best compromise between code quality improvements and

reducing the number of code changes. In this work, we are introducing the interactive component

to our NSGA-II algorithm which radically change the process of finding good refactoring

solutions comparing to [86] [104]. We will compare later in the experiments the performance of

both algorithms. We present in the following the different adaptation steps of our approach.

Solution presentation. A solution consists of a sequence of n refactoring operations

involving one or multiple source code elements of the system to refactor. The vector-based

representation is used to define the refactoring sequence. Each vector’s dimension has a

refactoring operation and its index in the vector indicates the order in which it will be applied.

For every refactoring, pre- and post-conditions are specified to ensure the feasibility of the

operation as detailed in [87].

 175

The initial population is generated by randomly assigning a sequence of refactorings to a

randomly chosen set of code elements. The type of code element usually depends on the type of

the refactoring it is assigned to and also depends on its role in the refactoring operation. An actor

can be a package, class, field, method, parameter, statement or variable.

The size of a solution, i.e. the vector’s length is randomly chosen between an upper and

lower bound values. The determination of these two bounds is similar to the problem of bloat

control in genetic programming where the goal is to identify the tree size limits. Figure 5.19

shows an example of a refactoring solution including 3 operations applied to a simplified version

of a solution applied to JVacation v1.0, a Java open-source trip management and scheduling

software.

Solution variation. In each search algorithm, the variation operators play the key role of

moving within the search space with the aim of driving the search towards optimal solutions.

For the crossover, we use the one-point crossover operator. It starts by selecting and splitting

at random two parent solutions. Then, this operator creates two child solutions by putting, for the

first child, the first part of the first parent with the second part of the second parent, and vice

versa for the second child. This operator must ensure the respect of the length limits by

eliminating randomly some refactoring operations. It is important to note that in multi-objective

optimization, it is better to create children that are close to their parents in order to have a more

efficient search process. For this reason, we control the cutting point of the one-point crossover

operator by restricting its position to be either belonging to the first tier of the refactoring

sequence or belonging to the last tier.

For mutation, we use the bit-string mutation operator that picks probabilistically one or more

refactoring operations from its or their associated sequence and replaces them by other ones from

the initial list of possible refactorings. When applying the change operators, the different pre-

and post-conditions are checked to ensure the applicability of the newly generated solutions [87].

We also apply a repair operator to randomly select new refactorings to replace those creating

conflicts.

176 Software Refactoring

Solution evaluation. The generated solutions are evaluated using two fitness functions as

detailed in the following.

Minimize the number of code changes as an objective: The application of a specific

suggested refactoring sequence may require an effort that is comparable to the one of re-

implementing part of the system from scratch. Taking this observation into account, it is trivial to

minimize the number of suggested operations in the refactoring solution since the designer can

have some preferences regarding the percentage of deviation with the initial program design. In

addition, most of the developers prefer solutions that minimize the number of changes applied to

their design. Thus, we formally defined the fitness function as the number of modified

actors/code elements (packages, classes, methods, attributes) by the generated refactorings

solution divided by the sum of all the actors in the system.

)(____)(xoperationsinparametersofsumxf  where x is the solution is to evaluate. Any

solution with operations being executed in the same code elements will have better (lower)

fitness value for this objective. Such definition of the objective is in favor of code locality since

it encourages refactoring a same code fragment, as developers eventually prefer to refactor

specific elements that they are mostly familiar with instead of applying scattered changes

throughout the whole system. The proposed fitness function is different than our previous work

[86] where only the number of applied refactorings are counted. In fact, every refactoring type

may have a different impact on the system in terms of number of changes which can be

identified using our new formulation.

Maximize software quality as an objective: Many studies has been utilizing structural metrics

as a basis of defining quality indicators for a good system design [70] [125]. As an illustrative

example, Bansiya et al. proposed a set of quality measures, using the ISO 9126 specification,

called QMOOD. The adaptation of the QMOOD model in the problem of software refactoring

has been studied in [25] [92] and provided considerable improvements to the object-oriented

system’s design. Thus, we used the QMOOD model to estimate the effect of the suggested

refactoring solutions on quality attributes. QMOOD has the advantage that it defines six high-

level design quality attributes (reusability, flexibility, understandability, functionality,

 177

extendibility, and effectiveness) that can be calculated using 11 lower level design metrics. Its

objective function is defined as:

6

)(
6

1


 i

i SQA

Quality

(5.16)

Where QAi is the quality attribute number i being calculated based on the returned structural

metrics from the system S.

Since it may not be sufficient to consider structural metrics, we used the design coherence

measures of our previous work [25] to ensure that every refactoring solution preserves the

semantics of the design.

5.3.2.4 Interactive Recommendation of Refactorings

The first step of the interactive step will be executed as described in Algorithm 5.1, to investigate

if there are some common principles among many of the generated non-dominated refactoring

solutions. The algorithm check if the optimal refactoring solutions have some common features

such as identical refactoring operations among most or all of the solutions and a specific

common order/sequence in which to apply the refactorings. Such information will be used to

rank the suggested refactorings for developers using the following formula:

[0..1]

)][(

][

)(

0

)(

0

,,

0

)(

0

,,

, 







 

 

 

 

n

j

Ssize

i

yxji

n

j

Ssize

i

yxji

yx j

j

RRMAX

RR

RRank

(5.17)

where Rx,y is the refactoring operation number x (index in the solution vector) of solution number

y, and n is the number of solutions in the front. Si is the solution of index i. All the solutions of

the Pareto front are ranked based on the score of this measure applied to every solution.

Once the Pareto front solutions are ranked, the second step of the interactive step will be

executed as described in Algorithm 5.2. The refactorings of the best solution, in terms of

ranking, are recommended to the developer based on their order in the vector. Then, the ranking

score of the solutions will be updated automatically after every feedback (interaction) with the

178 Software Refactoring

developer. Our interactive algorithm proposes three levels of interactions as described in

Figure 5.17. The developer can check the ranked list of refactorings and then apply, modify or

reject the refactoring. If the developers prefer to modify the refactoring, then our algorithm can

help them during the modification process as described in Figure 5.18. In fact, our tool proposes

to the developer a set of recommendations to modify the refactoring based on the history of

changes applied in the past and the semantic similarity between code elements (classes, methods,

etc.). For example, if the developer wants to modify a move method refactoring them, having

specified, the source method to move, our interactive algorithm automatically suggests a list of

possible target classes ranked based on the history of changes and semantic similarity. This is an

interesting feature since developers often know which method to move, but find it hard to

determine a suitable target class. The same observation is valid for the remaining refactoring

types. Another action that the developers can select is to reject/delete a refactoring from the list.

After every action selected by the developer, the ranking is updated based on the feedback using

the following formula:

)Re(*5.0

)ReRe()Re()()(
)(

1

,

ListfactoringsModifiedRO

ListfactoringsjectedROListfactoringsAppliedRORRankSRank
iSsize

k

iki



 


(5.18)

Where Si is the solution to be ranked, the first component consists of the sum of the ranks of its

operation as explained previously and the second component will take the value of: 1 if the

recommended refactoring operation was applied by the developer, or -1 if the refactoring

operation was rejected or 0.5 if it was partially modified by the developer. The recommended

refactorings will be adjusted based on the updated ranking score.

It is important to note that we calculate the ranking score for each non-dominated solution

and then the solution with the highest score will be presented refactoring by refactoring to the

developer. In fact, refactorings tend to be dependent on one another thus it is important to ensure

the coherence of the recommended solution. After a number of modified or rejected refactorings

or several new code changes introduced, the generated Pareto front of refactoring solutions by

NSGA-II need to be updated since the system was modified in different locations. To check the

applicability of the refactorings, we continuously check the pre-conditions of individual

 179

refactorings on the version after manual edits. Thus, the ranking of the solutions will change

after every interaction. In case that many refactorings are rejected, the interactive NSGA-II

algorithm will continue to execute while taking into consideration all the feedback from

developers as constraints to satisfy during the search. The rejected refactorings should not be

considered as part of the newly generated solutions and the new system after refactoring will be

considered in the input of the next iterations of the interactive NSGA-II.

Figure 5.17. Recommended refactorings by DINAR

Fig. 3. Refactorings recommended by our technique.

Figure 5.18. Recommended target classes by our technique for a move method refactoring to modify.

180 Software Refactoring

In the non-interactive refactoring systems, the set of refactorings, suggested by the best-

chosen solution, needs to be fully executed in order to reach the solution’s promised results.

Thus, any changes applied to the set of refactorings such as changing or skipping some of them

could deteriorate the resulting system’s quality. In this context, the goal of this work is to cope

with the above-mentioned limitation by granting to the developer’s the possibility to customize

the set of suggested refactorings either by accepting, modifying or rejecting them. The novelty of

this work is the approach’s ability to take into account the developer’s interaction, in terms of

introduced customization to the existing solution, by conducting a local search to locate a new

solution in the Pareto Front that is nearest to the newly introduced changes. We believe that our

approach may narrow the gap that exists between automated refactoring techniques and human

intensive development. It allows the developer to select the refactorings that best matches his/her

coding preferences while modifying the source code to update existing features.

To illustrate our interactive algorithm, we consider the refactoring of JVacation v1.0, a Java

open-source trip management and scheduling software [153]. After generating the upfront list of

best refactoring solutions that represents a good trade-off between improving quality while

minimizing the number of refactorings, we extracted three solutions from the Pareto front, for the

purpose of simplicity, and we considered a fragment of each solution, Figure 5 describes each

solution refactorings along with its rank after the execution of the first step of the interactive

algorithm. The solutions are ranked based on Equation 5.18 to identify the most common

refactorings between the non-dominated solutions. This is achieved by counting the number of

occurrences of operation within the Pareto front solution set, this number will be averaged by the

maximum number of occurrences found.

 181

Figure 5.19. Three simplified refactoring solutions recommended for JVacation v1.0.

The solution with the highest rank will be selected for execution, its related operations will

be shown to the user based on their order in the vector. Figure 5.20 summarizes the various

interactions between the developer and the suggested refactorings. The first recommended

refactoring of the top ranked solution (Solution 2) was applied by the developer thus the ranking

score was increased by 1 for both solutions 2 and 3 since they include this refactoring in their

solutions. In the second interaction, the recommended refactoring was partially modified by the

programmer thus the ranking score of the second solution was increased by 0.5 for solution 2 but

by 1 for solution 1 since the applied operation exists in that solution. In the third interaction, the

recommended refactoring was rejected thus the score of the top solution number 2 was decreased

by 1.

Operation Source/entity Target entity Operation rank

Solution1 fitness scores before normalization (0.198, 3)

Move Method
ctrl.booking.BookingController::handleLodgingViewEvent(java.aw

t.event.ActionEvent):void
ctrl.booking.LodgingModel 0.4165

Extract Class
ctrl.booking.SelectionModel:: - flightList + addFlight():void

+clearFlight():void
ctrl.booking.FlightList 0.2915

Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.DateEdit 0.0525

Solution1 Rank 0.7605

Solution1 fitness scores before normalization (0.202, 4)

Move Method
ctrl.booking.BookingController::handleLodgingViewEvent(java.aw

t.event.ActionEvent):void
ctrl.booking.lodgingList 0.4025

Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.LabelCombo 0.4025

Inline Class ctrl.ModelChangeEvent ctrl.CoreModel 0.0555

Extract Class
ctrl.booking.SelectionModel:: - travelerList + addTraveler():void

+clearTraveler():void
ctrl.booking.TravelerList 0.4165

Solution2 Rank 1.2770

Solution3 fitness scores before normalization (0.209, 5)

Extract Class
ctrl.booking.SelectionModel:: - flightList + addFlight():void

+clearFlight():void
ctrl.booking.FlightList 0.2915

Move Method
ctrl.booking.BookingController::handleLodgingViewEvent(java.aw

t.event.ActionEvent):void
ctrl.booking.lodgingList 0.4025

Extract Class
ctrl.booking.SelectionModel:: - travelerList + addTraveler():void

+clearTraveler():void
ctrl.booking.TravelerList 0.4165

Inline Class ctrl.ModelChangeEvent ctrl.CoreView 0.0555

Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel 0.0025

Inline Class ctrl.ModelChangeEvent ctrl.Core 0.0025

Solution3 Rank 1.1710

182 Software Refactoring

Operation R1:MoveMethod(ctrl.booking.BookingController::handleLodgingViewEvent:void, ctrl.booking.LodgingModel)

Decision Applied

Changes AppliedRefactoringsList = {R1} RejectedRefactoringsList = {}

SolutionSet Solution1 Solution2 * Solution3

Initial rank 0.7605 1.2770 1.1710

Interation1 0.7605 2.2770 (+1) 2.1710 (+1)

Operation R2:MoveMethod(gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date, gui.components.LabelCombo)

Decision Modified to: R2: MoveMethod(gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date, gui.components.DateEdit)

Changes AppliedRefactoringsList = {R1, R2} RejectedRefactoringsList = {}

 Solution1 Solution2 * Solution3

Initial rank 0.7605 1.2770 1.1710

Interation1 0.7605 2.2770 (+1) 2.1710 (+1)

Interation2 1.7605 (+1) 2.7770 (+0.5) 2.1710

Operation R3: InlineClass (ctrl.ModelChangeEvent, ctrl.CoreModel)

Decision Rejected

Changes AppliedRefactoringsList = {R1, R2} RejectedRefactoringsList = {R3}

 Solution1 Solution2 * Solution3

Initial rank 0.7605 1.2770 1.1710

Interation1 0.7605 2.2770 (+1) 2.1710 (+1)

Interation2 1.7605 (+1) 2.7770 (+0.5) 2.1710

Interation3 1.7605 1.7770 (-1) 2.1710

Operation R4: ExtractClass (ctrl.booking.SelectionModel:: - flightList + addFlight():void +clearFlight():void, ctrl.booking.FlightList)

Decision Applied

Changes AppliedRefactoringsList = {R1, R2, R4} RejectedRefactoringsList = {R3}

 Solution1 Solution2 Solution3 *

Initial rank 0.7605 1.2770 1.1710

Interation1 0.7605 2.2770 (+1) 2.1710 (+1)

Interation2 1.7605 (+1) 2.7770 (+0.5) 2.1710

Interation3 1.7605 1.7770 (-1) 2.1710

Interation4 2.7605 (+1) 1.7770 3.1710 (+1)

Figure 5.20. Four different interaction examples with the developer applied on the refactoring solutions recommended for

JVacation v1.0.

The algorithm will stop recommending new refactorings based on the request of the

developer or when the system achieve acceptable quality improvements in terms of number of

design defects and quality metrics. These parameters can be specified by the developer or the

team manager.

5.3.3 Validation

In order to evaluate the ability of our refactoring framework to generate good refactoring

recommendations, we conducted a set of experiments based on nine open source systems and

 183

two industrial projects provided by the IT department at the Ford Motor Company. Each

experiment is repeated 30 times, and the obtained results are subsequently statistically analyzed

with the aim to compare our proposal with a variety of existing approaches [6] [70] [71] [86]

[106]. In this section, we first present our research questions and then describe and discuss the

obtained results.

5.3.3.1 Research Questions and Evaluation Metrics

We defined four research questions that address the applicability, performance in comparison

to existing refactoring approaches, and the usefulness of our interactive multi-objective

refactoring approach. The four research questions are as follows:

RQ1: To what extent can our approach recommend relevant refactorings to developers?

RQ2: To what extent can our approach efficiently rank the recommended refactorings?

RQ3: How does our interactive formulation perform compared to fully-automated refactoring

techniques?

RQ4: Can our approach be useful for developers during the development of software systems?

To answer all these research questions, we considered the refactoring solutions recommended

by our approach after interactions with the developers as described in the previous section. To

answer RQ1, it is important to validate the proposed refactoring solutions from both quantitative

and qualitative perspectives. For the quantitative validation, we asked a group of developers to

analyze and apply manually several refactoring types using Eclipse on several code fragments

extracted from different systems where most of them correspond to code smells identified in

previous studies as worth removing by refactoring [71] [86]. Then, we calculated precision and

recall scores to compare between refactorings recommended by our approach after interaction

with developers and those suggested manually:

]1,0[
operations expected

 operations expected operations suggested
RC 


recall

(5.19)

]1,0[
operations suggested

 operations expected operations suggested
PR precision 




(5.20)

184 Software Refactoring

Another metric that we considered for the quantitative evaluation is the percentage of fixed

code smells (NF) by the refactoring solution. The detection of code smells after applying a

refactoring solution is performed using the detection rules of [71]. Formally, NF is defined as:

]1,0[
smells code#

 smells code fixed#
NF

(5.20)

The detection of code smells is very subjective and some developers prefer not to fix some

smells because the code is stable or some of them are not important to fix. To this end, we

considered another metric G based on QMOOD that estimates the quality improvement of the

system by comparing the quality before and after refactoring independently from the number of

fixed design defects. Four main different quality factors are considered by QMOOD: reusability,

flexibility, understandability and effectiveness. All of them are formalized using a set of quality

metrics. Hence, the total gain in quality G for each of the considered QMOOD quality attributes

qi before and after refactoring can be easily estimated as:

4

4

1


 i

qi
G

G
and iiq qqG

i
 '

(5.21)

where q’i and qi represents the value of the quality attribute i respectively after and before

refactoring.

For the qualitative validation, we asked groups of potential users of our tool to evaluate,

manually, whether the suggested refactorings are feasible and efficient at improving the software

quality and achieving their maintainability objectives. We define the metric Manual Correctness

(MC) to mean the number of meaningful refactorings divided by the total number of suggested

refactorings. The MC metric is computed after the user interaction is completed. In fact, the

number of correct refactorings includes the number of refactorings applied by developers when

using our tool since they can either apply, modify or reject a refactoring recommendation. MC is

given by the following equation:

 185

gsrefactorin proposed#

gsrefactorin appliedcoherent #
MC

(5.22)

To avoid that the computation of the MC metric will be biased by the developers’ feedback,

we asked the developers who did not participate in the experiments to use our tool to manually

evaluate the correctness of the recommended refactorings.

We considered also some other useful metrics to answer RQ2 that counts the percentage of

refactorings that were accepted (NAR) or rejected (NRR) or applied with some modifications

(NMR). Formally, these metrics are defined as:

]1,0[
gsrefactorin drecommende#

 gsrefactorin accepted#
NAR

 (5.23)

]1,0[
gsrefactorin drecommende#

 gsrefactorin rejected#
NRR

 (5.24)

]1,0[
gsrefactorin drecommende#

 gsrefactorin modified#
NMR

 (5.25)

To answer RQ2, we evaluated the relevance of the recommended refactorings in the top k

where k =1, 5, 10 and 15 using the following metrics PR@k, MC@k, NAR@k, NRR@k and

NMR@k.

To answer RQ3, we compared our approach to four other existing fully-automated search-

based refactoring techniques: Kessentini et al. [71], O’Keeffe and Ó Cinnéide [70], Ouni et al.

[86] and Harman et al. [6] that consider the refactoring suggestion task only from the quality

improvement perspective. Kessentini et al. [71] formulate software refactoring as a mono-

objective search problem where the main goal is to fix design defects and improve quality

metrics. O’Keeffe and Ó Cinnéide [70] also proposed a mono-objective formulation to automate

the refactoring process by optimizing a set of quality metrics. Ouni et al. [86] and Harman et al.

[6] proposed a multi-objective refactoring formulation that generates solutions to fix code smells.

186 Software Refactoring

Both techniques are non-interactive and fully-automatic. We considered in our experiments

another popular design defects detection and correction tool JDeodorant [106] that does not use

heuristic search techniques. The current version of JDeodorant is implemented as an Eclipse

plug-in that identifies some types of design defects using quality metrics and then proposes a list

of refactoring strategies to fix them. Since JDeodorant just recommends a few types of

refactoring with respect to the ones considered by our tool. We restricted, in this case, the

comparison to the same refactoring types supported by JDeodorant. All these existing techniques

are fully-automated and do not provide any interaction with the developers to update their

solutions. We used the metrics MC, RC, PR, NF and G to perform the comparisons.

To answer RQ4, we used a post-study questionnaire that collects the opinions of developers

on our tool. We also wished to assess how the refactoring actually increases the software quality

and productivity in that the effort to add new features or fixing bugs should reduce after

performing the refactorings. To this end, we asked 22 software engineers, including 7 developers

from our industrial partner, to add five new features and fix a set of ten bugs. We divided them

into two groups. To avoid that the achieved results might be due to the different levels of ability

of the two groups, we adapted a counter-balanced design where each subject performed two

tasks, one on the original system and one on the refactored system. The details of these scenarios

will be described later. To estimate the impact of the suggested refactorings on the productivity

of developers, we defined the following metric TP to measure the time required to perform the

same activities on the system with and without refactoring:

grefactorin before system on the i task perform torequired minutes #

grefactorinafter system on the i task perform torequired minutes #
iTP

(5.26)

5.3.3.2 Software Projects Studied

We used a set of well-known open-source Java projects and 2 systems from our industrial

partner, the Ford Motor Company. We selected these 10 systems for our validation because they

range from medium to large-sized open-source projects, which have been actively developed

over the past 10 years, and their design has not been responsible for a slowdown of their

developments. Table 1 provides some descriptive statistics about these programs.

 187

Table 5.17. Statistics of the studied systems.

Systems Release #classes KLOC #Code smells #Refactorings

Xerces-J v2.7.0 991 240 91 83

JHotDraw v6.1 585 21 25 49

JFreeChart v1.0.9 521 170 72 88

GanttProject v1.10.2 245 41 49 56

Apache Ant v1.8.2 1191 255 112 103

Rhino v1.7R1 305 42 69 59

Log4J v1.2.1 189 31 64 71

Nutch v1.1 207 39 72 84

JDI-Ford v5.8 638 247 83 94

MROI-Ford V6.4 786 264 97 119

5.3.3.3 Scenarios

The first group of two developers added these features and fixed the bugs in the system

before refactoring. The second group includes the remaining two developers and performed the

same activities on the system after refactoring.

Our study involved 14 subjects from the University of Michigan and 8 software engineers

from the Ford Motor Company. Subjects include 6 master students in Software Engineering, 8

Ph.D. students in Software Engineering and 8 software developers. All the subjects are

volunteers and familiar with Java development and refactoring. The experience of these subjects

on Java programming ranged from 2 to 19 years.

Subjects were first asked to fill out a pre-study questionnaire containing five questions. The

questionnaire helped to collect background information such as their role within the company,

their programming experience, their familiarity with software refactoring. In addition, all the

participants attended one lecture about software refactoring and passed six tests to evaluate their

performance to evaluate and suggest refactoring solutions.

As described in Table 5.18, we formed 3 groups. Each of the first two groups (A and B) is

composed of 3 master students and 4 Ph.D. students. The third group is composed of the 8

software developers from the Ford Motor company since they accept to participate only in the

188 Software Refactoring

evaluation of their two software systems. Table 5.18 summarizes the survey organization

including the list of systems and algorithms evaluated by the group. The groups were formed

based on the pre-study questionnaire and the tests result to make sure that all the groups have

almost the same average skills. We divided the subjects into groups according to the studied

systems, the techniques to be tested and developers’ experience. Consequently, each group of

subjects who accepted to participate in the study received a questionnaire, a manuscript guide to

help them to fill the questionnaire, the tools and results to evaluate and the source code of the

studied systems. Since the application of refactoring solutions is a subjective process, it is normal

that not all the developers have the same opinion. In our case, we considered the majority of

votes to determine if suggested solutions are correct or not. Each subject evaluates different

refactoring solutions for the different techniques and systems.

We executed five different scenarios. In the first scenario, we selected a total of 90 classes

from all the systems that include design defects (9 classes to fix per system). Then, we asked

every participant to manually apply refactorings to improve the quality of the systems by fixing

an average of two of these defects. As an outcome of the first scenario, we calculated the

differences between the recommended refactorings and the expected ones (manually suggested

by the developers. In the second scenario, we asked the different developers to manually evaluate

the last recommended solution by our algorithm after the interaction with the user. We did a

cross-validation between the groups to avoid that the computation of the MC metric will be

biased by the developers’ feedback thus we asked the developers who did not participate in the

experiments to use our tool to manually evaluate the correctness of the recommended

refactorings. In the third scenario, we asked the participants to use our tool during a period of

two hours on the different systems and then we collected their opinions based on a post-study

questionnaire that will be detailed later. In the fourth scenario, we collected a set of 6 bugs per

system from the bug reports of the studied release for every project and asked the groups to fix

them based on the refactored and non-refactored version. To avoid that the achieved results

might be due to the different levels of ability of the two groups, we adapted a counter-balanced

design where we asked every group to fix 2 bugs on the version before refactoring and then 2

other bugs on the version after refactoring. We selected the bugs that require almost the same

effort to be fixed in terms of number of changes with an average of 15 changes. In the last

 189

scenario, we asked the groups to add two simple features for every system before refactoring,

and then two other features on the system after refactoring. All the features require almost the

same number of changes to be introduced or deleted with an average of 23 code changes per

feature. In the two last scenarios, the bugs to fix and features to add are related to the classes that

are refactored by the developers when using our tool.

The participants were asked to justify their evaluation of the solutions and these justifications

are reviewed by the organizers of the study (one faculty member, one postdoc, one Ph.D. student

and one master student). In addition, our experiments are not only limited to the manual

validation but also the automatic validation can verify the effectiveness of our approach. Subjects

were aware that they are going to goals of the experiments, but do not know the particular

experiment research questions and the used algorithms.

Table 5.18. Survey organization.

Subject groups Systems Algorithms / Approaches

Group A

Xerces-J Interactive NSGA-II,

Kessentini et al. [71],

O’Keeffe and Ó Cinnéide [70], Ouni et al [86],

Harman et al. [6],

JDeodorant [106]

JHotDraw

JFreeChart

GanttProject

Group B

Apache Ant Interactive NSGA-II,

Kessentini et al. [71],

O’Keeffe and Ó Cinnéide [70], Ouni et al. [86],

Harman et al. [6],

JDeodorant [106]

Rhino

Log4J

Nutch

Group C

JDI-Ford
Interactive NSGA-II,

O’Keeffe and Ó Cinnéide [70],

Ouni et al. [86]

JDeodorant [106]
MROI-Ford

5.3.3.4 Experimental setting

The parameter setting influences significantly the performance of a search algorithm on a

particular problem [95]. For this reason, for each algorithm and for each system, we perform a

set of experiments using several population sizes: 50, 100, 200, 300 and 500. The stopping

criterion was set to 100,000 evaluations for all algorithms in order to ensure fairness of

comparison. The other parameters’ values were fixed by trial and error and are as follows: (1)

crossover probability = 0.8; mutation probability = 0.5 where the probability of gene

190 Software Refactoring

modification is 0.3; stopping criterion = 100,000 evaluations. Each algorithm is executed 30

times with each configuration and then the comparison between the configurations is done using

the Wilcoxon test. In order to have significant results, for each couple (algorithm, system), we

use the trial and error method in order to obtain a good parameter configuration. Regarding the

evaluation of fixed code smells, we focus on the eight following code smell types [15]: Blob,

Spaghetti Code (SC), Functional Decomposition (FD), Feature Envy (FE), Data Class (DC),

Lazy Class (LC), Long Parameter List (LPL), and Shotgun Surgery (SS). We choose these code

smell types in our experiments because they are the most frequent and hard to fix based on

several studies [15] [55].

The upper and lower bounds on the chromosome length used in this study are set to 10 and

350 respectively. Several SBSE problems including software refactoring are characterized by a

varying chromosome length. This issue is similar to the problem of bloat control in genetic

programming where the goal is to identify the tree size limits. To solve this problem, we

performed several trial and error experiments where we assess the average performance of our

algorithm using the HV (hypervolume) performance indicator while varying the size limits

between 10 and 500 operations.

5.3.3.5 Statistical test methods

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental study is

based on 31 independent simulation runs for each problem instance and the obtained results are

statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%).

The latter tests the null hypothesis, H0, that the obtained results of two algorithms are samples

from continuous distributions with equal medians, against the alternative that they are not, H1.

The p-value of the Wilcoxon test corresponds to the probability of rejecting the null hypothesis

H0 while it is true (type I error). A p-value that is less than or equal to α (≤ 0.05) means that we

accept H1 and we reject H0. However, a p-value that is strictly greater than α (> 0.05) means the

opposite. In fact, for each problem instance, we compute the p-value obtained by comparing

Kessentini et al. [71], Ouni et al. [86], Harman et al. [6] and JDeodorant [106] results with

DINAR ones. In this way, we determine whether the performance difference between DINAR

 191

and one of the other approaches is statistically significant or just a random result. The results

presented were found to be statistically significant on 31 independent runs using the Wilcoxon

rank sum test with a 99% confidence level (α < 1%).

The Wilcoxon rank sum test allows verifying whether the results are statistically different or

not. However, it does not give any idea about the difference in magnitude. To this end, we used

the Vargha and Delaney’s A statistics [121] which is a non-parametric effect size measure. In our

context, given the different performance metrics (such as PR, RC, MC, etc.), the A statistics

measures the probability that running an algorithm B1 (interactive NSGA-II) yields better

performance than running another algorithm B2 (such as Kessentini et al. [71], Ouni et al. [86],

etc.). If the two algorithms are equivalent, then A = 0.5. In our experiments, we have found the

following results: a) On small and medium scale software projects (GanttProject, Rhino, Log4J

and Nutch) interactive NSGA-II is better than all the other algorithms based on all the

performance metrics with an A effect size higher than 0.94; and b) On large scale software

projects (JDI-Ford, MROI-Ford, Apache Ant, Xerces-J, JHotDraw and JFreeChart), interactive

NSGA-II is better than all the other algorithms with an A effect size higher than 0.87.

5.3.3.6 Results and Discussions

Results for RQ1: We reported the results of our empirical qualitative evaluation in

Figure 5.21 (MC). As reported in Figure 5.21, the majority of the refactoring solutions

recommended by our interactive approach were correct and approved by developers. On average,

for all of our ten studied projects, 87% of the proposed refactoring operations are considered as

semantically feasible, improve the quality and are found to be useful by the software engineers of

our experiments. The highest MC score is 93% for the Gantt project and the lowest score is 86%

for JFreeChart. Thus, it is clear that the results are independent of the size of the systems and the

number of recommended refactorings. Most of the refactorings that were not manually approved

by the developers are either violating few pre- or post-conditions or introducing a design

incoherence.

192 Software Refactoring

Figure 5.21. Median manual correctness (MC) value over 31 runs on all the five systems using the different refactoring

techniques with a 99% confidence level (α < 1%).

Since the MC metric just evaluates the correctness and not the relevance of the recommended

refactorings, we also compared the proposed operations with some expected ones defined

manually by the different groups for several code fragments extracted from the ten systems.

Most of these classes represent some severe code smells detected using our previous work [71].

Figure 5.22 and Figure 5.23 summarize our findings. We found that a considerable number of

proposed refactorings, with an average of more than 82% in terms of precision and recall, are

already applied by the software development team and suggested manually (expected

refactorings). The recall scores are higher than precision ones since we found that the

refactorings suggested manually by developers are incomplete compared to the solutions

provided by our approach and this is was confirmed by the qualitative evaluation (MC). In

addition, we found that the slight deviation with the expected refactorings are not related to

incorrect operations but to the fact that the developers were interested mainly to fix the severest

code smells or improving the quality of the code fragments that they frequently modify.

 193

Figure 5.22. Median precision (PR) value over 31 runs on all the five systems using the different refactoring techniques

with a 99% confidence level (α < 1%).

Figure 5.23. Median recall (RC) value over 31 runs on all the five systems using the different refactoring techniques with

a 99% confidence level (α < 1%).

We evaluated also the ability of our approach to fixing several types of code smell and to

improve the quality as described in Figure 5.24 and Figure 5.25. Figure 5.24 depicts the

percentage of fixed code smells (NF). It is higher than 82% on all the ten systems, which is an

acceptable score since developers may reject or modify some refactorings that fix some code

smells because they do not consider them very important (their goal is not to fix all code smells

in the system) or the current version of the code becomes stable. Some systems, such as Rhino

and Gantt, have a higher percentage of fixed code smells with an average of more than 88%.

194 Software Refactoring

This can be explained by the fact that these systems include a higher number of code smells than

others. Figure 5.25 shows that the refactorings recommended by the approach and applied by

developers improved the quality metrics value (G) of the ten systems. For example, the average

quality gain for the two industrial systems was the highest among the ten systems with more than

0.3. The improvements in the quality gain confirm that the recommended refactorings helped to

optimize different quality metrics.

Figure 5.24. Median percentage of fixed code smells (NF) value over 31 runs on all the five systems using the different

refactoring techniques with a 99% confidence level (α < 1%).

Figure 5.25. Median quality gain (G) value over 31 runs on all the five systems using the different refactoring techniques

with a 99% confidence level (α < 1%).

 195

To summarize and answer RQ1, the experimentation results confirm that our interactive

approach helps the subjects to refactor their systems efficiently by finding the relevant

refactorings and improve the quality of all the ten systems.

Results for RQ2: We evaluated the ability of our approach to help software engineers in

finding quickly good refactorings based on an efficient ranking of the proposed operations. We

evaluated the manual correctness and the precision of the recommended refactoring at the top k

of the list at the different interactions where k was varied between 1, 5, 10 and 15 as described in

Figure 5.26 and Figure 5.27. Figure 5.26 shows that the lowest MC@1 is 93% and the highest is

100% on the different ten systems confirming that the top1 refactoring was almost always correct

and relevant for the developers. The MC@15 presents the lowest results which are expected

since we evaluated the manual correctness of the top15 recommended refactorings at several

interactions which increase the probability to contain few irrelevant refactorings. However, the

average MC@15 still could be considered acceptable with an average of more than 81%. The

same observations are also valid for the PR@k however the results are a bit lower than MC@k.

The average PR@k results were respectively 94%, 89%, 84% and 80% for k = 1, 5, 10 and 15.

Thus, it is clear that the ranking function using by our interactive approach to exploring the

Pareto front is efficient.

Figure 5.26. Median of manual correctness (MC) of the recommended refactoring at the top k = 1, 5, 10 and 15 with a

99% confidence level (α < 1%).

196 Software Refactoring

Figure 5.27. Median of precision (PR) of the recommended refactoring at the top k = 1, 5, 10 and 15 with a 99%

confidence level (α < 1%).

Figure 5.28. Median percentage of accepted refactorings (NAR), percentage of modified refactorings (NMR) and

percentage of rejected refactorings (NRR) values over 31 runs on all the five systems with a 99% confidence level (α <

1%).

We have also considered three other metrics NAR (percentage of accepted refactorings),

NMR (percentage of modified refactorings) and NRR (percentage of rejected refactorings) to

evaluate the efficiency of our interactive approach to rank the refactorings. We collected this

data using a feature that we implemented in our tool to record all the actions performed by the

developers during the refactoring sessions. Figure 5.28 shows that, in average, more than 71% of

the recommended refactorings were applied by the developers. In addition, an average of 17% of

the recommended refactorings were modified by the developers. The users reject lower than 12%

of suggested refactorings. Thus, it is clear that our recommendation tool successfully suggested a

good set of refactorings to apply.

 197

To conclude, our way to rank the recommended refactorings helped software engineers to

quickly find good refactorings recommendations (answer to RQ2).

Results for RQ3: Figures from Figure 5.21 to Figure 5.25 confirm the superior performance

of DINAR compared to both fully automated and manual refactoring techniques. Figure 5 shows

that DINAR provides significantly higher manual correctness results (MC) than all other

approaches having MC scores respectively between 50% and 75%, on average as MC scores on

the different systems. The same observation is valid for the precision, recall and quality gain as

described in, respectively, Figure 5.22, Figure 5.23 and Figure 5.25. However, the percentage of

fixed code smells (NF) is slightly lower than Kessentini et al. [71] and Ouni et al. [86] as showed

in Figure 5.24. This is can be explained by the fact that the main goal of developers is not to fix

the maximum number the code smells detected in the system (which was the goal of Kessentini

et al. [71] and Ouni et al. [86]) thus they rejected or modified some refactorings suggested by

DINAR. In addition, DINAR is based on a multi-objective algorithm to find a trade-off between

fixing code smells, improving the quality and preserving the semantics. Thus, the slight loss of

NF is justified by a better improvement of the quality as described in Figure 5.25. Figure 5.29

shows that DINAR can help developers to find suitable refactorings quicker than existing search-

based refactoring approaches and manual refactorings but it was not the case for JDeodorant.

This can be explained by the fact that JDeodorant is not using heuristic search but just proposing

a template to fix certain types of code smell and does not suggest high-quality refactorings as

described previously (lowest quality scores). However, the time required to use DINAR is still

comparable to JDeodorant but provides more effective refactoring solutions.

Overall the superior performance of DINAR can be explained by several factors. First,

Kessentini et al. [71] and Harman et al. [6] use only structural indications (quality metrics) to

evaluate the refactoring solutions thus a high number of refactorings are not feasible

semantically. Thus, our approach reduces the number of semantic incoherencies when suggesting

operations. Second, the innovization component improved the efficiency of suggested refactoring

solutions by DINAR compared to NSGA-II where the developers need to select one solution

from the Pareto front that cannot be updated dynamically. Third, JDeodorant proposes some pre-

198 Software Refactoring

defined patterns to fix some types of code smells that cannot be sometimes generalized. Finally,

manual refactoring is an error-prone process that is also time-consuming.

In our qualitative evaluation, we considered how the refactoring actually increases the

software quality and productivity in that the effort to add new features or to fix bugs should

reduce after performing the refactorings on the JDI-Ford system. To this end, we created six

scenarios as described in Figure 5.29 and we asked four software engineers from our industrial

partner, with almost the same experience, to add four new features and fix a set of eight bugs

(three scenarios to add and modify existing features, and the remaining ones to fix a set of bugs).

Then, we compared the time required by the two groups of developers to finalize the same tasks

on the JDI-Ford system before and after refactoring using the metric TP. Figure 5.29 shows that

the time is reduced on average by 25% to finalize the tasks when the refactored system is used.

In some scenarios, the time is reduced by more than 45% since the required tasks are time-

consuming (involving the implementation of new features).

Figure 5.29. Productivity difference (T) value on six different tasks performed on JDI-Ford system.

Results for RQ4: To answer RQ4, we asked the subjects to take a post-study questionnaire

after completing the refactoring tasks using DINAR and all the techniques considered in our

experiments. The post-study questionnaires collected the opinions of the participants about their

experience in using DINAR compared to manual and fully-automated refactoring tools.

 199

The post-study questionnaire asked participants to rate their agreement on a Likert scale from

1 (complete disagreement) to 5 (complete agreement) with the following statements:

 The interactive dynamic refactoring recommendations are a desirable feature in

Integrated Development Environments (IDEs).

 The interactive manner of recommending refactorings by DINAR is a useful and

flexible way to refactor systems compared to fully-automated or manual refactorings.

The agreement of the participants was 4.7 and 4.4 for the first and second statements

respectively. This confirms the usefulness of DINAR for the software developers considered in

our experiments.

The remaining questions of the post-study questionnaire were about the benefits and also

limitations (possible improvements) of DINAR. We summarize in the following the feedback of

the developers. Most of the participants mention that DINAR is faster than manual refactoring

since they spent a long time with manual refactoring to find the locations where refactorings

should be applied. For example, developers spend time when they decide to extract class to find

the methods to move to the new created class or when they want to move a method then it takes

time to find the best target class by manual exploration of the source code. Thus, the developers

liked the functionality of DINAR that helps them to modify a refactoring and finding quickly the

right parameters based on the recommendations. Furthermore, refactorings may affect several

locations in the source code, which is a time-consuming task to perform manually, but they can

perform it instantly using DINAR.

The participants found DINAR helpful for both floss refactoring, to maintain a good quality

design and also for root canal refactoring to fix some quality issues such as code smells. The

developers justify their conclusions by the following interesting features in DINAR: a) the list of

recommended refactorings helps them to choose the desired refactoring very quickly, b) DINAR

offers them the possibility to modify the source code (to add new functionality) while doing

refactoring since the list of recommendations are updated dynamically. So, developers can

switch between both activities: refactoring and modifying the source code to modify existing

200 Software Refactoring

functionalities. c) DINAR allows developers to access all the functionality of the IDE (e.g.,

Eclipse). d) the suggested refactorings by DINAR can fix code smells (root canal refactoring) or

improve some quality metrics (floss canal refactoring) due to the use of the multi-objective

approach. Another important feature that the participants mention is that DINAR allows them to

take the advantages of using multi-objective optimization for software refactoring without the

need to learn anything about optimization and exploring explicitly the Pareto front to select one

“ideal” solution. The implicit exploration of the Pareto front in an interactive fashion represents

an important advantage of DINAR along with the dynamic update of the recommended list of

refactoring using innovization. In fact, the developers found a lot of difficulties with the multi-

objective tool of Ouni et al. [86] to explore the Pareto front to find a good refactoring solution. In

addition, they did not appreciate the long list of refactoring suggested by [86] since they want to

take control of modifying and rejecting some refactorings. In addition, the validation of this long

list of refactorings is time-consuming. Thus, they appreciate that DINAR suggests refactoring

one by one and update the list based on the feedback of developers.

The participants also suggested some possible improvements to DINAR. Some participants

believe that it will be very helpful to extend DINAR by adding a new feature to apply

automatically some regression testing techniques to generate test cases to test applied

refactorings. Another possible suggested improvement is to use some visualization techniques to

evaluate the impact of applying a refactoring sequence.

5.3.4 Conclusion

We proposed an interactive recommendation tool, called DINAR, for software refactoring

that dynamically adapts and suggests refactorings to developers based on their feedback and

introduced code changes. DINAR allows developers to benefit from search-based refactoring

tools without explicitly invoking any knowledge about optimization and multi-objective

optimization algorithms. To evaluate the effectiveness of DINAR, we conducted a human study

with a set of software developers who evaluated the tool and compared it with the state-of-the-art

refactoring techniques. Our evaluation results provide strong evidence that DINAR improves the

applicability of software refactoring and proposes a novel way for software developers to

refactor their systems.

 201

As part of the future work, we should validate DINAR with additional refactoring types,

systems and code smell types in order to conclude about the general applicability of our

methodology. We will also compare DINAR with other refactoring techniques. Furthermore, in

this work, we only focused on the recommendation of refactorings. We are planning to extend

the approach by automating the test and verification of applied refactorings. In addition, we will

consider the importance of code smells during the correction step using previous code-changes,

classes-complexity, etc. Another future research direction related to our work is to adapt our

interactive refactoring recommendation approach to several other software engineering problems

such as software re-modularization, change detection and the next release problem.

202

 Conclusion and Future Work

 Threats to Validity

We explore in this section the factors that can bias our empirical study. These factors can be

classified into three categories: construct, internal and external validity. Construct validity

concerns the relation between the theory and the observation. Internal validity concerns possible

bias with the results obtained by our proposal. Finally, external validity is related to the

generalization of observed results outside the sample instances used in the experiment.

In our experiments, construct validity threats are related to the several quantitative measures

used in our experiments. To mitigate this threat, we manually inspect and validate the

remodularization solutions by a set of experts. Another threat concerns the data about the

expected operations of the studied systems. In addition to the documented operations, we are

using Ref-Finder which is known to be efficient. Indeed, Ref-Finder was able to detect

operations with an average recall of 99% and an average precision of 79%. To ensure the

precision, we manually inspect the operations found by Ref-Finder and select only those types

considered in our experiments.

We take into consideration the internal threats to validity in the use of stochastic algorithms

since our experimental study is performed based on 31 independent simulation runs for each

problem instance and the obtained results are statistically analyzed by using the Wilcoxon rank

sum test with a 99% confidence level (α = 1%). However, the parameter tuning of the different

optimization algorithms used in our experiments creates another internal threat that we need to

evaluate in our future work. In fact, parameter tuning of search algorithms is still an open

research challenge till today. We have used the trial-and-error method which one of the most

used ones [154]. However, the use of ANOVA-based technique [155] could be another

 203

interesting direction from the viewpoint of the sensitivity to the parameter values. Another threat

is related to the order of applying the objectives that my influences the outcome of the search.

We are planning to investigate the impact of the order of objectives on the results by evaluating

several combinations. In addition, the weights used for the semantic functions are selected

manually and further experiments are required to study the impact of the variation of these

weights on the quality of the results. Another threat is related to our experiments to show how

the execution time is related to the size of the system in terms of number of classes. The number

of classes of a system can be not enough to have a strong conclusion especially when other

factors such as the density of the interdependency graph probably will influence execution time

more than the number of classes in the system. In addition, it is may not be enough to show with

3 version of Eclipse if the execution time is a linear or non-linear.

We identify other three threats to internal validity: selection, learning and fatigue, and

diffusion. Another internal threat is related to the problem of isomorphic solutions since inferring

goodness based on an objective function can sometimes be misleading. To this end, we manually

validated the solution as described in the experiments and we found correlation between the

fitness function values and the success metrics (different from the fitness functions and

correspond to the developers opinion after manually validating some solutions) used in the

experiments. However, we cannot generalize our correlation results since it was limited to few

solutions and the problem of isomorphic solutions is out of the scope of this work. In addition, it

is challenging to address this problem especially for the case of many-objective optimization

where a high number of solutions are generated. Thus, we plan in our future work to study the

correlation through extensive empirical studies between the improvements of the fitness function

values and the quality of solutions validated manually by experts on several software engineering

problems. An additional internal threat is that our approach is limited to the use of static metrics

analysis. However, our approach is generic thus additional objectives/metrics and inputs can be

easily added to extend our algorithm. To this end, we are planning to use dynamic analysis

techniques to evaluate the system after remodularization and evaluate the impact of suggested

operations on the dynamic/runtime relations.

204 Conclusion and Future Work

For the selection threat, the subject diversity in terms of profile and experience could affect

our studies. First, all subjects were volunteers. We also mitigated the selection threat by giving

written guidelines and examples of operations already evaluated with arguments and

justification. Additionally, each group of subjects evaluated different operations from different

systems using different techniques/algorithms.

Randomization also helps to prevent the learning and fatigue threats. For the fatigue threat,

specifically, we did not limit the time to fill the questionnaire. Consequently, we sent the

questionnaires to the subjects by email and gave them enough time to complete the tasks.

Finally, only ten operations per system were randomly picked for the evaluation.

Diffusion threat is limited in our study because most of the subjects are geographically

located in a university and a company, and the majority does not know each other. For the ones

who are in the same location, they were instructed not to share information about the experience

before a certain date.

To ensure the heterogeneity of subjects and their differences, we took special care to

diversify them in terms of professional status, university/company affiliations, gender, and years

of experience. In addition, we organized subjects into balanced groups. This has been said, we

plan to test our tool with Java development companies, to draw better conclusions. Moreover, the

automatic evaluation is also a way to limit the threats related to subjects as it helps to ensure that

our approach is efficient and useful in practice. Indeed, we compare our suggested operations

with the expected ones that are already applied to the next releases and detected using Ref-

Finder.

External validity refers to the generalizability of our findings. In this study, we performed our

experiments on five different systems belonging to different domains and with different sizes.

However, we cannot assert that our results can be generalized to other applications, other

programming languages, and to other practitioners. Future replications of this study are

necessary to confirm the generalizability of our findings. The participants considered in our

experiments are not the original developers of the open source systems thus some of their

evaluations of the remodularization solutions could be not very accurate since there are,

sometimes, good reasons for the design and implementation choices made and this can be mainly

 205

determined by the original developers. However, this not the case for the Ford project since some

of the original developers of the system participated in our experiments. In addition, the number

of participants in our experiments is limited. We are planning to integrate additional original

developers from these open source projects to evaluate the detected code smells as part of our

future work.

 Conclusion

It has been, and it is still challenging to automatically refactor software systems while taking

into account several developers preferences to assess the maintenance process in a realistic

software development context. The related work has emphasized the formalization of refactoring

as single and multi-objective optimization problem and automated the generation of refactored

systems based on several metrics that vary from the structure to the semantics etc. In this context,

our first goal was to investigate how the automation can process incorporate all the developers’

preferences and if so, will it generate satisfactory results. We have shown through several

contributions the feasibility of considering as many preferences as possible by breaking the

boundaries of the few number of objectives that the existing techniques were limited to.

Although our approach has proven scalability, its industrial application has revealed practical

limitations related to the dynamics of the development environment that requires more flexibility

that was not handled by our approach.

The above-mentioned drawbacks were the main motivation for a further investigation of

incorporating the developer in the loop of the optimization process. Our goal was to enable a

more flexible and robust refactoring process that allows developers to have better control over

the suggested code changes. We found that we can also benefit from the developer’s feedback to

prune the search space and converge towards a region of his / her interest. Therefore, our

approach was able to profile the developer instead of optimizing several metrics that

mathematically define his / her preferences.

To conclude, this thesis investigated the consideration of SE problems as many-objective and

interactive problems to overcome the limitation of the existing work which is mostly

approaching them from fully single or bi-objective perspective. Eventually, we have introduced a

206 Conclusion and Future Work

new scalable search-based software engineering methodologies for various software engineering

problems which are linked to model and code transformation. Some of the introduced

methodologies presented the first real-world application of a many-objective and innovization

paradigms on a domain specific software engineering problem. We formulated several

challenges to test the applicability of our proposals and we compared them against related work

approaches. The generated results were validated from both quantitative and qualitative

perspectives.

 Future Work

Although software refactoring, as a practice, has been issuing considerable improvements in

software overall quality, automated refactoring techniques, provided by the literature, have not

yet been able to fully evolve while estimating the amount of testing effort needed for the

refactored code. Despite the aim of refactoring is to improve the software’s quality, the amount

of effort required to refactor large systems and test them afterward remains unpredictable. Also,

some of the code changes may affect the system’s intended functionality or can also introduce

some faults. Also, developers interleave functional-oriented code updates with some refactoring

operations, as the mean of updating the system to the new specifications. The impact of these

changes has not yet been taken into account by the refactoring tools and this represents one of

the main limitations of the existing refactoring techniques. Another important drawback is that

all techniques assume that refactoring operations are always correctly executed, this transaction-

based perspective is not always true especially if refactoring pre- and post-conditions are not

well implemented, and with the lack of testing support, it may increase the vulnerability of the

refactored code. This side effect of refactoring has not yet been analyzed in the literature and this

is another limitation of existing techniques.

Although software testing is a research intensive area as it prevents the propagation of faults,

updating or prioritizing the existing test suits is in itself challenging. As the number of possible

test cases increases, their execution time after every code change tends to be very expensive and

so the testing effort becomes hard to predict. This problem has been well studied in the literature

and resulted in many approaches related to test cases minimization, prioritization and selection

while maximizing testing coverage has been proposed. However, Minimizing the cost of testing

 207

is not the only challenge that developers face, as the testing effort does depend on the quality of

tests cases that are usually designed without foreseeing the upcoming code changes, and without

coupling testing to a refactoring plan, developers will be spending much more time in following

up with the refactored code to re-update test suites.

To address the previous shortcomings, we will investigate, as a future research direction, the

combination of refactorings generation with test suites update as an optimization problem. Our

approach aims will be to find the best sequence of refactoring that optimizes the software quality

through the reduction of code smells while providing the user with an adequate test cases

selection to execute based on the locations in which refactoring operations occurred. Although

formulating each of refactoring and testing as optimization problems have been widely studied in

Search-Based Software Engineering, no practical work has been done to provide a technique

which supports such heterogeneous solution representation due to the impracticality of its

evaluation under one uniform search space. We intend to address this challenge by formulating

the refactoring / testing practices as a multitasking problem. The multitasking paradigm [156]

evolves multiple optimization tasks at once, with each task, i.e. refactoring and testing,

contributing a unique factor influencing the evolution of individuals in a composite solution

space. Such formulation is referred to as multifactorial optimization.

208

APPENDIX A. LIST OF ALGORITHMS

Algorithm 3.1. High-level pseudo-code for NSGA-II adaptation to our problem. 36

Algorithm 5.1. Pseudo-code of the Dynamic Interactive NSGA-II for software refactoring at

generation t.. 171

Algorithm 5.2. Pseudo-code of the Innoviazation procedure to rank the non-dominated

refactoring solutions.. 172

Algorithm 5.3. Pseudo-code of the procedure to manage the interactions with the developer

(online phase). ... 173

209

APPENDIX B. LIST OF PUBLICATIONS

The full list of publications, based on this dissertation, is the following:

Journals:

1. Mkaouer, Mohamed Wiem and Kessentini, Marouane. Model Transformation Using

Multiobjective Optimization. Advances in Computers Journal 92: 161-202. 2014.

2. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Shaout, Adnan, Koligheu, Patrice,

Bechikh, Slim, Deb, Kalyanmoy, and Ouni, Ali. Many-objective software

remodularization using NSGA-III. ACM Transactions on Software Engineering and

Methodology Journal (TOSEM) 24, 3, Article 17 (May 2015), 45 pages, ACM.

3. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Bechikh, Slim, Ó Cinnéide, Mel,

and Deb, Kalyanmoy. On the use of many quality attributes for software refactoring: a

many-objective search-based software engineering approach. Empirical Software

Engineering Journal: 1-43. (First online: 23 December 2015: 10.1007/s10664-015-9414-

4), Springer.

4. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Ó Cinnéide, Mel , Hayashi, Shinpei,

and Deb, Kalyanmoy. A robust multi-objective approach to balance severity and

importance of refactoring opportunities. Empirical Software Engineering Journal: 1-34.

(First online: 04 March 2016: 10.1007/s10664-015-9414-4), Springer.

5. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Ali Ouni, Ó Cinnéide, Mel and Deb,

Kalyanmoy. Interactive Dynamic Search-Based Software Engineering: A Case Study on

Software Refactoring. ACM Transactions on Software Engineering and Methodology

Journal (TOSEM), Under revisions.

210 List of Publications

International Conferences:

1. Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel Ó Cinnéide,

Kalyanmoy Deb: Software refactoring under uncertainty: a robust multi-objective

approach. GECCO (Companion) 2014: 187-188, ACM0

2. Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb, Mel

Ó Cinnéide: High dimensional search-based software engineering: finding tradeoffs

among 15 objectives for automating software refactoring using NSGA-III. GECCO 2014:

1263-1270, ACM.

3. Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb, Mel

Ó Cinnéide: Recommendation system for software refactoring using innovization and

interactive dynamic optimization. In Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering (ASE '14). ACM, 330-337, New York,

NY, USA.

4. Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel Ó Cinnéide: A

Robust Multi-objective Approach for Software Refactoring under Uncertainty. SSBSE

2014: 168-183

5. Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Daniel R. Tauritz:

Preference-based multi-objective software modelling. CMSBSE@ICSE 2013: 61-66,

IEEE.

 211

Please note that only the following publications were included in this dissertation.

1. Mkaouer, Mohamed Wiem and Kessentini, Marouane. Model Transformation Using

Multiobjective Optimization. Advances in Computers Journal 92: 161-202. 2014.

2. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Shaout, Adnan, Koligheu, Patrice,

Bechikh, Slim, Deb, Kalyanmoy, and Ouni, Ali. Many-objective software

remodularization using NSGA-III. ACM Transactions on Software Engineering and

Methodology Journal (TOSEM) 24, 3, Article 17 (May 2015), 45 pages, ACM.

3. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Bechikh, Slim, Ó Cinnéide, Mel,

and Deb, Kalyanmoy. On the use of many quality attributes for software refactoring: a

many-objective search-based software engineering approach. Empirical Software

Engineering Journal: 1-43. (First online: 23 December 2015: 10.1007/s10664-015-9414-

4), Springer.

4. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Ó Cinnéide, Mel , Hayashi, Shinpei,

and Deb, Kalyanmoy. A robust multi-objective approach to balance severity and

importance of refactoring opportunities. Empirical Software Engineering Journal: 1-34.

(First online: 04 March 2016: 10.1007/s10664-015-9414-4), 2016.

5. Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb, Mel

Ó Cinnéide: Recommendation system for software refactoring using innovization and

interactive dynamic optimization. In Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering (ASE '14). ACM, 330-337, New York,

NY, USA.

6. Mkaouer, Mohamed Wiem, Kessentini, Marouane, Ali Ouni, Ó Cinnéide, Mel and Deb,

Kalyanmoy. Interactive Dynamic Search-Based Software Engineering: A Case Study on

Software Refactoring. ACM Transactions on Software Engineering and Methodology

Journal (TOSEM), Under revisions.

212

BIBLIOGRAPHY

1 IEEE Std. 1219-1998. Standard for Software Maintenance. IEEE Computer Society Press,

Los Alamitos, CA. 1998.

2 Abran, Alain and Nguyenkim, Hong. "Measurement of the maintenance process from a

demand‐based perspective. Journal of Software Maintenance: Research and Practice 5(2):

63-90. 1993.

3 Miller, Webb and Spooner, David L. Automatic generation of floating-point test data. IEEE

Transactions on Software Engineering 2(3): 223. 1976.

4 Harman, Mark and Jones, Bryan F. Search-based software engineering. Information and

software Technology 43(14): 833-839. 2001.

5 Harman, Mark, Mansouri, S. Afshin, and Zhang, Yuanyuan. Search-based software

engineering: Trends, techniques and applications. ACM Computing Surveys 45(1): 1-61.

2012.

6 Harman, Mark and Tratt, Laurence. Pareto optimal search based refactoring at the design

level. Proceedings of the 9th annual conference on Genetic and evolutionary computation.

London, England, ACM: 1106-1113. 2007.

7 France, Robert and Rumpe, Bernard. Model-driven development of complex software: A

research roadmap. Future of Software Engineering, IEEE Computer Society. 2007.

8 Taentzer, Gabriele. AGG: a graph transformation environment for system modeling and

validation. Proc. Tool Exihibition at Formal Methods. 2003.

9 Varró, Dániel and Pataricza, András. Generic and meta-transformations for model

transformation engineering. «UML» 2004—The Unified Modeling Language. Modeling

Languages and Applications, Springer: 290-304. 2004.

10 ATLAS Group. The ATLAS Transformation Language. http:// www.eclipse.org/gmt. 2000.

11 Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised

Submission.OMGDocument ad/2003-08-07. http://www.omg.org/cgi-bin/doc?ad/2003-08-

07. 2003.

12 Clark, T. and Warmer J. Object Modeling with the OCL: The Rationale behind the Object

Constraint Language, volume 2263 of Lecture Notes in Computer Science, Heidelberg,

Springer-Verlag. ISBN. 2002.

13 Ribeiro, Oscar R. and Fernandes, João M. Some rules to transform sequence diagrams into

coloured Petri nets. 7th Workshop and Tutorial on Practical Use of Coloured Petri Nets and

the CPN Tools (CPN 2006), Citeseer. 2006.

14 Ouardani, Adel, Esteban, Philippe, Paludetto, Mario, and Pascal, Jean-Claude. A Meta-

modeling Approach for Sequence Diagrams to Petri Nets Transformation within the

 213

requirements validation process. Proceedings of the European Simulation and Modeling

Conference (ESM2006), Citeseer. 2006.

15 Fowler, Martin, Beck, Kent, Brant, John, Opdyke, William, and Roberts, Don. Refactoring –

Improving the design of existing code. Addison Wesley, ISBN 978-0201485677. 1999.

16 Ermel, Claudia, Ehrig, Hartmut, and Ehrig, Karsten. Refactoring of model transformations.

Electronic Communications of the EASST 18. 2009.

17 Anquetil, Nicolas and Lethbridge, Timothy C. Experiments with clustering as a software

remodularization method. IEEE Sixth Working Conference on roceedings. 1999.

18 Abdeen, Hani, Ducasse, Stéphane, Sahraoui, Houari, and Alloui, Ilham. Automatic package

coupling and cycle minimization. IEEE 16th Working Conference on Reverse Engineering.

2009.

19 Bavota, Gabriele and Carnevale, Filomena. Putting the developer in a loop:an interactive

GA for Software Re-modularization. Search based software engineering, Lecture notes in

computer science volume 7515. pp 75-89. 2012.

20 Deb, Kalyanmoy and Jain, Himanshu. An evolutionary many-objective optimization

algorithm using reference-point-based nondominated sorting approach, part I: Solving

problems with box constraints. IEEE Transactions on Evolutionary Computation. 18(4):

577-601. 2014.

21 Deb, Kalyanmoy, Pratap, Amrit, Agarwal, Sameer, and Meyarivan, T. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation 6(2): 182-197. 2002.

22 Deb, Kalyanmoy and Srinivasan, Aravind. Innovization: Innovating design principles

through optimization. Proceedings of the 8th annual conference on Genetic and

evolutionary computation, ACM. 2006.

23 Mkaouer, Mohamed Wiem and Kessentini, Marouane. Model Transformation Using

Multiobjective Optimization. Advances in Computers 92: 161-202. 2014.

24 Mkaouer, Mohamed Wiem, Kessentini, Marouane, Shaout, Adnan, Koligheu, Patrice,

Bechikh, Slim, Deb, Kalyanmoy, and Ouni, Ali. Many-objective software remodularization

using NSGA-III. ACM Transactions on Software Engineering and Methodology (TOSEM)

24(3): 17. 2015.

25 Mkaouer, Mohamed Wiem, Kessentini, Marouane, Bechikh, Slim, Ó Cinnéide, Mel, and

Deb, Kalyanmoy. On the use of many quality attributes for software refactoring: a many-

objective search-based software engineering approach. Empirical Software Engineering: 1-

43. 2015.

26 Mkaouer, Mohamed Wiem, Kessentini, Marouane, Ó Cinnéide, Mel , Hayashi, Shinpei, and

Deb, Kalyanmoy. A robust multi-objective approach to balance severity and importance of

refactoring opportunities. Empirical Software Engineering: 1-34. 2016.

27 Zhuang, Liu, HeQing, Guo, Dong, Li, Li, Tao, and Juan, Zhang Juan. Solving Multi-

objective and fuzzy multi-attributive integrated technique for QoS-Aware Web Service

Selection. IEEE International Conference on Wireless Communications, Networking and

Mobile Computing. 2007.

214 BIBLIOGRAPHY

28 Wada, Hiroshi, Champrasert, Paskorn, Suzuki, Junichi, and Oba, Katsuya. Multiobjective

optimization of sla-aware service composition. IEEE Congress on Services-Part I. 2008.

29 Bowman, Michael, Briand, Lionel C, and Labiche, Yvan. Solving the class responsibility

assignment problem in object-oriented analysis with multi-objective genetic algorithms.

IEEE Transactions onSoftware Engineering. 36(6): 817-837. 2010.

30 Kremmel, Thomas, Kubalík, Jiří, and Biffl, Stefan. Software project portfolio optimization

with advanced multiobjective evolutionary algorithms. Applied Soft Computing 11(1): 1416-

1426. 2011.

31 Rodríguez, Daniel, Ruiz, Mercedes, Riquelme, José C, and Harrison, Rachel. Multiobjective

simulation optimisation in software project management. Proceedings of the 13th annual

conference on Genetic and evolutionary computation, ACM. 2011.

32 Praditwong, Kata, Harman, Mark, and Yao, Xin. Software module clustering as a multi-

objective search problem. IEEE Transactions on Software Engineering 37(2): 264-282.

2011.

33 Barros, Marcio de Oliveira. An analysis of the effects of composite objectives in

multiobjective software module clustering. Proceedings of the 14th annual conference on

Genetic and evolutionary computation, ACM. 2012.

34 Colanzi, Thelma Elita and Vergilio, Silvia Regina. Applying search based optimization to

software product line architectures: Lessons learned. Search Based Software Engineering,

Springer: 259-266. 2012.

35 Sarro, Federica, Ferrucci, Filomena, and Gravino, Carmine. Single and multi objective

genetic programming for software development effort estimation. Proceedings of the 27th

annual ACM symposium on applied computing, ACM. 2012.

36 Sayyad, Abdel Salam, Menzies, Tim, and Ammar, Hany. On the value of user preferences in

search-based software engineering: a case study in software product lines. IEEE 35th

International conference onSoftware engineering. 2013.

37 Sayyad, Abdel Salam, Ingram, Joe, Menzies, Tim, and Ammar, Hany. Scalable product line

configuration: A straw to break the camel's back. IEEE/ACM 28th International Conference

on Automated Software Engineering. 2013.

38 Kalboussi, Sabrine , Bechikh, Slim, Kessentini, Marouane, and Ben Said, Lamjed.

Preference-based Many-objective Evolutionary Testing Generates Harder Test Cases for

Autonomous Agents. 5th international Symposium on Search-Based Software Engineering.

2013.

39 Ramírez, Aurora, Romero, José Raúl, and Ventura, Sebastián. On the performance of

multiple objective evolutionary algorithms for software architecture discovery. Proceedings

of the 2014 conference on Genetic and evolutionary computation, ACM. 2014.

40 Olaechea, Rafael, Rayside, Derek, Guo, Jianmei, and Czarnecki, Krzysztof. Comparison of

exact and approximate multi-objective optimization for software product lines. Proceedings

of the 18th International Software Product Line Conference-Volume 1, ACM. 2014.

41 Panichella, Annibale, Kifetew, Fitsum Meshesha, and Tonella, Paolo. Reformulating branch

coverage as a many-objective optimization problem. IEEE 8th International Conference on

Software Testing, Verification and Validation. 2015.

 215

42 Kleppe, Anneke G, Warmer, Jos, and Bast, Wim. The model driven architecture: practice

and promise, Addison-Wesley Longman Publishing Co., Inc., Boston, MA. 2003.

43 Wimmer, Manuel, Strommer, Michael, Kargl, Horst, and Kramler, Gerhard. Towards model

transformation generation by-example. IEEE 40th Annual Hawaii International Conference

on System Sciences. 2007.

44 Sun, Yu, White, Jules, and Gray, Jeff. Model transformation by demonstration. Model

Driven Engineering Languages and Systems, Springer: 712-726. 2009.

45 Dolques, Xavier, Huchard, Marianne, Nebut, Clementine, and Reitz, Philippe. Learning

transformation rules from transformation examples: An approach based on relational

concept analysis. 14th IEEE International Enterprise Distributed Object Computing

Conference Workshops. 2010.

46 Langer, Philip, Wimmer, Manuel, and Kappel, Gerti. Model-to-model transformations by

demonstration. Theory and Practice of Model Transformations, Springer: 153-167. 2010.

47 Mancoridis, Spiros, Mitchell, Brian S, Rorres, Chris, Chen, Yih-Farn, and Gansner, Emden

R. Using Automatic Clustering to Produce High-Level System Organizations of Source

Code. IWPC, Citeseer. 1998.

48 Mitchell, Brian and Mancoridis, Spiros. On the automatic modularization of software

systems using the Bunch tool. IEEE Transactions on Software Engineering 32(3): 193-208.

2006.

49 Harman, Mark, Hierons, Robert M., and Mark, Proctor. A New Representation And

Crossover Operator For Search-based Optimization Of Software Modularization.

Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann

Publishers Inc.: 1351-1358. 2002.

50 Seng, Olaf, Stammel, Johannes, and Burkhart, David. Search-based determination of

refactorings for improving the class structure of object-oriented systems. Proceedings of the

8th annual conference on Genetic and evolutionary computation, ACM. 2006.

51 Bavota, Gabriele, De Lucia, Andrea, Marcus, Andrian, and Oliveto, Rocco. Software re-

modularization based on structural and semantic metrics. 17th Working Conference on

Reverse Engineering. 2010.

52 Ouni, Ali, Kessentini, Marouane, Sahraoui, Houari, and Hamdi, Mohamed Salah. Search-

based refactoring: Towards semantics preservation. 28th IEEE International Conference on

Software Maintenance (ICSM). 2012.

53 Mäntylä, Mika, Vanhanen, Jari, and Lassenius, Casper. A taxonomy and an initial empirical

study of bad smells in code. International Conference on Software Maintenance. 2003.

54 Marinescu, Radu. Detection strategies: Metrics-based rules for detecting design flaws. IEEE

International Conference on Software Maintenance. 2004.

55 Moha, Naouel, Gueheneuc, Yann-Gael, Duchien, Laurence, and Le Meur, Anne-Francoise.

DECOR: A method for the specification and detection of code and design smells. IEEE

Transactions on Software Engineering 36(1): 20-36. 2010.

56 Van Emden, Eva and Moonen, Leon. Java quality assurance by detecting code smells. IEEE

9th Working Conference on Reverse Engineering. 2002.

216 BIBLIOGRAPHY

57 Martin, Robert C. Design principles and design patterns. Object Mentor 1: 34. 2000.

58 Counsell, Steve, Hierons, Robert M, Najjar, Rajaa, Loizou, George, and Hassoun, Youssef.

The effectiveness of refactoring, based on a compatibility testing taxonomy and a

dependency graph. IEEE Academic and Industrial Conference-Practice And Research

Techniques. 2006.

59 Piveta, Eduardo Kessler, Hecht, Marcelo, Pimenta, Marcelo Soares, and Price, Roberto Tom.

Detecting Bad Smells in AspectJ. Journal of Universal Computer Science 12(7): 811-827.

2006.

60 Meananeatra, Panita. Identifying refactoring sequences for improving software

maintainability. Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering. 2012.

61 Tsantalis, Nikolaos, Chaikalis, Theodoros, and Chatzigeorgiou, Alexander. JDeodorant:

Identification and removal of type-checking bad smells. IEEE 12th European Conference on

Software Maintenance and Reengineering. 2008.

62 Du Bois, Bart, Demeyer, Serge, and Verelst, Jan. Refactoring - improving coupling and

cohesion of existing code. 11th Working Conference on Reverse Engineering. 2004.

63 Murphy-Hill, Emerson. Improving usability of refactoring tools. Companion to the 21st

ACM SIGPLAN symposium on Object-oriented programming systems, languages, and

applications. 2006.

64 Xi, Ge and Murphy-Hill , Emerson. Manual refactoring changes with automated refactoring

validation. Proceedings of the 36th International Conference on Software Engineering.

Hyderabad, India, ACM: 1095-1105. 2014.

65 Xi, Ge and Murphy-Hill, Emerson. BeneFactor: a flexible refactoring tool for eclipse.

Proceedings of the ACM international conference companion on Object oriented

programming systems languages and applications companion. Portland, Oregon, USA,

ACM: 19-20. 2011.

66 Foster, Stephen R., Griswold, William G., and Lerner, Sorin. WitchDoctor: IDE support for

real-time auto-completion of refactorings. 34th International Conference onSoftware

Engineering (ICSE). 2012.

67 Tahvildari, L.adan and Kontogiannis , Kostas. A metric-based approach to enhance design

quality through meta-pattern transformations. Seventh European Conference on Software

Maintenance and Reengineering. 2003.

68 Dig, Danny. A Refactoring Approach to Parallelism. IEEE Software 28(1). pp. 17-22. 2011.

69 Kataoka, Yoshio, Ernst, Michael D., Griswold, William G. , and Notkin, David. Automated

Support for Program Refactoring Using Invariants. International Conference in Software

Maintenance. pp. 736-743. 2001.

70 O’Keeffe, Mark and Ó Cinnéide, Mel. Search-based refactoring for software maintenance.

Journal of Systems and Software 81(4): 502-516. 2008.

71 Kessentini, Marouane , Kessentini, Wael, Sahraoui, Houari , Boukadoum, Mounir, and

Ouni, Ali. Design Defects Detection and Correction by Example. IEEE 19th International

Conference on Program Comprehension (ICPC). 2011.

72 Kilic, Hurevren, Koc, Ekin, and Cereci, Ibrahim. Search-based parallel refactoring using

 217

population-based direct approaches. Search Based Software Engineering, Springer: 271-

272. 2011.

73 Jouault, Frédéric and Kurtev, Ivan. Transforming models with ATL. satellite events at the

MoDELS Conference, Springer. 2005.

74 Wiggerts, Theo A. Using clustering algorithms in legacy systems remodularization. IEEE

4th Working Conference on Reverse Engineering. 1997.

75 Maqbool, Onaiza and Babri, Haroon A. Hierarchical clustering for software architecture

recovery. IEEE Transactions on Software Engineering. 33(11): 759-780. 2007.

76 Mitchell, Brian S and Mancoridis, Spiros. On the evaluation of the Bunch search-based

software modularization algorithm. Software Computing 12(1): 77-93. 2008.

77 Shtern, Mark and Tzerpos, Vassilios. Methods for selecting and improving software

clustering algorithms. IEEE 17th International Conference on Program Comprehension.

2009.

78 Bavota, Gabriele, De Lucia, Andrea, Marcus, Andrian, and Oliveto, Rocco. Using structural

and semantic measures to improve software modularization. Empirical Software

Engineering 18(5): 901-932. 2013.

79 Abdeen, Hani, Sahraoui, Houari, Shata, Osama, Anquetil, Nicolas, and Ducasse, Stéphane.

Towards automatically improving package structure while respecting original design

decisions. 20th Working Conference on Reverse Engineering. 2013.

80 Palomba, Fabio, Bavota, Gabriele, Di Penta, Massimiliano, Oliveto, Rocco, De Lucia,

Andrea, and Poshyvanyk, Denys. Detecting bad smells in source code using change history

information. IEEE/ACM 28th International Conference on Automated Software

Engineering. 2013.

81 Ferrucci, Filomena, Harman, Mark, Ren, Jian, and Sarro, Federica. Not going to take this

anymore: multi-objective overtime planning for software engineering projects. IEEE

International Conference on Software Engineering. 2013.

82 Jaimes, Antonio López, Montano, Alfredo Arias, and Coello Coello , Carlos A. Preference

incorporation to solve many-objective airfoil design problems. IEEE Congress on

Evolutionary Computation. 2011.

83 Deb, Kalyanmoy and Jain, Himanshu. Handling many-objective problems using an

improved NSGA-II procedure. IEEE congress on Evolutionary computation. 2012.

84 Harman, Mark. Software engineering: An ideal set of challenges for evolutionary

computation. Proceedings of the 15th annual conference companion on Genetic and

evolutionary computation. 2013.

85 Di Pierro, Francesco, Khu, Soon-Thiam, and Savic, Dragan A. An investigation on

preference order ranking scheme for multiobjective evolutionary optimization. IEEE

Transactions on Evolutionary Computation11(1): 17-45. 2007.

86 Ouni, Ali, Kessentini, Marouane, Sahraoui, Houari, and Boukadoum, Mounir.

Maintainability defects detection and correction: a multi-objective approach. Automated

Software Engineering 20(1): 47-79. 2012.

87 Opdyke, William and Johnson, Ralph. Refactoring: An Aid in Designing Application

218 BIBLIOGRAPHY

Frameworks and Evolving Object-Oriented Systems. In Proceedings of the Symposium on

Object Oriented Programming Emphasizing Practical Applications. ACM. 1990.

88 Hamdi, Mohamed Salah. SOMSE: A semantic map based meta-search engine for the

purpose of web information customization. Applied Soft Computing 11(1): 1310-1321. 2011.

89 Kim, Miryung, Notkin, David, Grossman, Dan, and Wilson Jr, Gary. Identifying and

summarizing systematic code changes via rule inference. IEEE Transactions on Software

Engineering 39(1): 45-62. 2013.

90 Das, Indraneel and Dennis, John E. Normal-boundary intersection: A new method for

generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM

Journal on Optimization 8(3): 631-657. 1998.

91 Asafuddoula, Md, Ray, Tapabrata, and Sarker, Ruhul. A decomposition based evolutionary

algorithm for many objective optimization with systematic sampling and adaptive epsilon

control. Evolutionary Multi-Criterion Optimization, Springer. 2013.

92 Ó Cinnéide, Mel, Tratt, Laurence, Harman, Mark, Counsell, Steve, and Hemati Moghadam,

Iman. Experimental assessment of software metrics using automated refactoring.

Proceedings of the ACM-IEEE international symposium on Empirical software engineering

and measurement, ACM. 2012.

93 Rachmawati, Lily and Srinivasan, Dipti. Multiobjective evolutionary algorithm with

controllable focus on the knees of the Pareto front. IEEE Transactions on Evolutionary

Computation 13(4): 810-824. 2009.

94 Prete, Kyle, Rachatasumrit, Napol, Sudan, Nikita, and Kim, Miryung. Template-based

reconstruction of complex refactorings. IEEE International Conference on Software

Maintenance. 2010.

95 Arcuri, Andrea and Fraser, Gordon. Parameter tuning or default values? An empirical

investigation in search-based software engineering. Empirical Software Engineering 18(3):

594-623. 2013.

96 Arcuri, Andrea and Briand, Lionel. A practical guide for using statistical tests to assess

randomized algorithms in software engineering. 33rd International Conference on Software

Engineering (ICSE). 2011.

97 Brockhoff, Dimo and Zitzler, Eckart. Are all objectives necessary? On dimensionality

reduction in evolutionary multiobjective optimization. Parallel Problem Solving from

Nature-PPSN IX, Springer: 533-542. 2006.

98 Cohen, Jacob, Cohen, Patricia, West, Stephen G, and Aiken, Leona S. Applied multiple

regression/correlation analysis for the behavioral sciences, Routledge. 2013.

99 Glass, Robert L. Frequently forgotten fundamental facts about software engineering. IEEE

software(3): 112,110-111. 2001.

100 Hall, Tracy, Zhang, Min, Bowes, David, and Sun, Yi. Some code smells have a significant

but small effect on faults. ACM Transactions on Software Engineering and Methodology

23(4): 33. 2014.

101 Yamashita, Aiko. Yamashita, A. (2012). Assessing the capability of code smells to support

software maintainability assessments: Empirical inquiry and methodological approach.

Empirical Inquiry and Methodological Approach. Doctoral Thesis, University of Oslo. 2012.

 219

102 Jin, Yaochu and Branke, Jürgen. Jin, Y. and J. Branke (2005). Evolutionary optimization in

uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3):

303-317. 2005.

103 Beyer, Hans-Georg and Sendhoff, Bernhard. Robust optimization–a comprehensive survey.

Computer methods in applied mechanics and engineering 196(33): 3190-3218. 2007.

104 Mkaouer, Mohamed Wiem, Kessentini, Marouane, Bechikh, Slim, and Ó Cinnéide, Mel. A

robust multi-objective approach for software refactoring under uncertainty. Search-Based

Software Engineering, Springer: 168-183. 2014.

105 Li, Xiaodong. A non-dominated sorting particle swarm optimizer for multiobjective

optimization. Genetic and Evolutionary Computation. Springer. 2003.

106 Fokaefs, Marios, Tsantalis, Nikolas, Stroulia, Eleni, and Chatzigeorgiou, Alexander.

JDeodorant: identification and application of extract class refactorings. 33rd International

Conference on Software Engineering. 2011.

107 Beyer, Hans-Georg. Actuator noise in recombinant evolution strategies on general

quadratic fitness models. Genetic and Evolutionary Computation–GECCO 2004, Springer.

2004.

108 Das, Indraneel. ROBUSTNESS OPTIMIZATION FOR CONSTRAINED NONLINEAR

PROGRAMMING PROBLEMS. Engineering Optimization+ A35 32(5): 585-618. 2000.

109 Jin, Yaochu and Sendhoff, Bernhard. Trade-off between performance and robustness: an

evolutionary multiobjective approach. Evolutionary Multi-Criterion Optimization, Springer.

2003.

110 Chatzigeorgiou, Alexander and Manakos, Anastasios. Investigating the evolution of code

smells in object-oriented systems. Innovations in Systems and Software Engineering 10(1):

3-18. 2013.

111 Olbrich, Steffen M, Cruze, Daniela S, and Sjøberg, Dag IK. Are all code smells harmful? A

study of God Classes and Brain Classes in the evolution of three open source systems. IEEE

International Conference on Software Maintenance. 2010.

112 Fontana, Francesca Arcelli, Mäntylä, Mika V, Zanoni, Marco, and Marino, Alessandro.

Comparing and experimenting machine learning techniques for code smell detection.

Empirical Software Engineering: 1-49. 2015.

113 (Xerces-J). [Online]. Available: http://xerces.apache.org/xerces-j.

114 (JFreeChart). [Online]. Available: http://www.jfree.org/jfreechart/.

115 (GanttProject). [Online]. Available: http://www.ganttproject.biz.

116 (ApacheAnt). [Online]. Available: http://ant.apache.org.

117 (JHotDraw). [Online]. Available: http://www.jhotdraw.org.

118 (Rhino). [Online]. Available: https://developer.mozilla.org/en-US/docs/Rhino/.

119 (Log4J). [Online]. Available: http://logging.apache.org/.

120 (Nutch). [Online]. Available: http://nutch.sourceforge.net/.

121 Vargha, András and Delaney, Harold D. A critique and improvement of the CL common

language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral

220 BIBLIOGRAPHY

Statistics 25(2): 101-132. 2000.

122 Deb, Kalyanmoy and Gupta, Shivam. Understanding knee points in bicriteria problems and

their implications as preferred solution principles. Engineering optimization 43(11): 1175-

1204. 2011.

123 Zhang, Qingfu and Li, Hui. MOEA/D: A multiobjective evolutionary algorithm based on

decomposition. IEEE Transactions on Evolutionary Computation 11(6): 712-731. 2007.

124 Zitzler, Eckart and Künzli, Simon. Indicator-based selection in multiobjective search.

Parallel Problem Solving from Nature-PPSN VIII, Springer. 2004.

125 Mkaouer, Mohamed Wiem, Kessentini, Marouane, Bechikh, Slim, Deb, Kalyanmoy, and Ó

Cinnéide, Mel. High dimensional search-based software engineering: finding tradeoffs

among 15 objectives for automating software refactoring using NSGA-III. Proceedings of

the 2014 conference on Genetic and evolutionary computation, ACM. 2014.

126 Bansiya, Jagdish and Davis, Carl G. A hierarchical model for object-oriented design quality

assessment. IEEE Transactions on Software Engineering. 28(1): 4-17. 2002.

127 Du Bois, Bart and Mens, Tom. Describing the impact of refactoring on internal program

quality. International Workshop on Evolution of Large-scale Industrial Software

Applications. 2003.

128 Alshayeb, Mohammad. Empirical investigation of refactoring effect on software quality.

Information and software Technology 51(9): 1319-1326. 2009.

129 Chidamber, Shyam R and Kemerer, Chris F. A metrics suite for object oriented design. IEEE

Transactions on Software Engineering 20(6): 476-493. 1994.

130 Lorenz, Mark and Kidd, Jeff. Object-oriented software metrics: a practical guide, Prentice-

Hall, Inc. 1994.

131 Brito e Abreu, Fernando. The MOOD metrics set. Proceedings of the European Conference

on Object-Oriented Programming (ECOOP). Workshop on Metrics, Vol. 95, p. 267. 1995.

132 Shatnawi, Raed and Li, Wei. An empirical assessment of refactoring impact on software

quality using a hierarchical quality model. International Journal of Software Engineering

and Its Applications 5(4): 127-149. 2011.

133 Corazza, Anna, Di Martino, Sergio, and Maggio, Valerio. LINSEN: An efficient approach to

split identifiers and expand abbreviations. 28th IEEE International Conference on Software

Maintenance (ICSM). 2012.

134 Dean, Jeffrey, Grove, David, and Chambers, Craig. Optimization of object-oriented

programs using static class hierarchy analysis. ECOOP’95—Object-Oriented

Programming, 9th European Conference, Åarhus, Denmark, August 7–11, 1995, Springer.

1995.

135 Bechikh, Slim, Ben Said, Lamjed, and Ghedira, Khaled. Estimating nadir point in multi-

objective optimization using mobile reference points. IEEE congress on Evolutionary

computation (CEC). 2010.

136 Bechikh, Slim, Ben Said, Lamjed, and Ghédira, Khaled. Searching for knee regions of the

Pareto front using mobile reference points. Software Computing 15(9): 1807-1823. 2011.

137 Basili, Victor R. Software modeling and measurement: the Goal/Question/Metric paradigm.

1992.

 221

138 Marinescu, Radu, Ganea, George, and Verebi, Ioana. inCode: Continuous quality

assessment and improvement. 14th European Conference on Software Maintenance and

Reengineering. 2010.

139 Yang, Shengxiang, Li, Miqing, Liu, Xiaohui, and Zheng, Jinhua. A grid-based evolutionary

algorithm for many-objective optimization. IEEE Transactions on Evolutionary

Computation 17(5): 721-736. 2013.

140 Brown, William, Malveau, Raphael, and McCormick, Skip. Anti patterns: refactoring

software, architectures, and projects in crisis. John Wiley & Sons, ISBN 978-0471197133.

1998.

141 Negara, Stas , Chen, Nicholas , Vakilian, Mohsen , Johnson, Ralph, and Dig, Danny. A

Comparative Study of Manual and Automated Refactorings. In the European Conference on

Object-Oriented Programming. 552-576. 2013.

142 Murphy-Hill, Emerson, Parnin, Chris , and Black, Andrew. E. R. Murphy-Hill, C. Parnin,

and A. P. Black, How we refactor, and how we know it, IEEE Transactions on Software

Engineering, vol. 38, no. 1, pp. 5–18. 2013.

143 Kim, Miryung, Zimmermann, Thomas, and Nagappan, Nachiappan. A field study of

refactoring challenges and benefits. Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, ACM. 2012.

144 Yang, Linchao, Kamiya, Tomoyuki, Sakamoto, Kazunori, Washizaki, Hironori, and

Fukazawa, Yoshiaki. RefactoringScript: A Script and Its Processor for Composite

Refactoring. International Conference on Software Engineering and Knowledge

Engineering. 2014.

145 Bavota, Gabriele, Carnevale, Filomena, De Lucia, Andrea, Di Penta, Massimiliano, and

Oliveto, Rocco. Putting the developer in-the-loop: an interactive GA for software re-

modularization. Search Based Software Engineering, Springer: 75-89. 2012.

146 Hall, Mathew , Walkinshaw, Neil , and McMinn, Phil. Supervised Software Modularization.

28th IEEE International Conference on Software Maintenance. pp. 23-30. 2012.

147 Ouni, Ali, Kessentini, Marouane , Sahraoui, Houari, and Hamdi, Mohamed Salah. The use of

development history in software refactoring using a multi-objective evolutionary algorithm.

Proceedings of the 15th annual conference on Genetic and evolutionary computation.

Amsterdam, The Netherlands, ACM: 1461-1468. 2013.

148 Deb, Kalyanmoy, Sinha, Ankur, Korhonen, Pekka J., and Wallenius, Jyrki. An interactive

evolutionary multiobjective optimization method based on progressively approximated value

functions. IEEE Transactions on Evolutionary Computation. 14(5): 723-739. 2010.

149 Karahan, Ibrahim and Köksalan, Murat. A territory defining multiobjective evolutionary

algorithms and preference incorporation. IEEE Transactions on Evolutionary Computation.

14(4): 636-664. 2010.

150 Fernandez, Eduardo, Lopez, Edy, Bernal, Sergio, Coello Coello, Carlos A., and Navarro,

Jorge. Evolutionary multiobjective optimization using an outranking-based dominance

generalization. Computers & Operations Research 37(2): 390-395. 2010.

151 Wagner, Tobias and Trautmann, Heike. Integration of preferences in hypervolume-based

multiobjective evolutionary algorithms by means of desirability functions. IEEE

222 BIBLIOGRAPHY

Transactions on Evolutionary Computation. 14(5): 688-701. 2010.

152 Farina, Marco, Deb, Kalyanmoy, and Amato, Paolo. Dynamic multiobjective optimization

problems: test cases, approximations, and applications. IEEE Transactions on Evolutionary

Computation 8(5): 425-442. 2004.

153 (JVacation). [Online]. Available: https://sourceforge.net/projects/jvacation/.

154 Eiben, Agoston E and Smit, Selmar K. Parameter tuning for configuring and analyzing

evolutionary algorithms. Swarm and Evolutionary Computation 1(1): 19-31. 2011.

155 Miller, Rupert G Jr. Beyond ANOVA: basics of applied statistics, CRC Press. 1997.

156 Gupta, Abhishek, Ong, Yew-Soon, and Feng, Liang. Multifactorial evolution: towards

evolutionary multitasking. Accepted IEEE Transactions on Evolutionary Computation 10:

1109. 2015.

157 Murphy-Hill, Emerson and Black, Andrew. Breaking the barriers to successful refactoring:

observations and tools for extract method. Proceedings of the 30th international conference

on Software engineering. Leipzig, Germany, ACM: 421-430. 2008.

158 Murphy-Hill, Emerson and Black, Andrew. Programmer-Friendly Refactoring Errors. IEEE

Transactions on Software Engineering 38(6): 1417-1431. 2012.

159 Murphy-Hill, Emerson and Black, Andrew. Refactoring Tools: Fitness for Purpose. IEEE

Software 25(5): 38-44. 2008.

160 Taentzer, Gabriele. AGG: a graph transformation environment for system modeling and

validation. Proc. Tool Exihibition at Formal Methods. 2003.

161 Bavota, Gabriel, Carluccio , BD, De Lucia, Andrea, Di Penta, Massimiliano, Oliveto, Rocco,

and Strollo, O. When Does a Refactoring Induce Bugs." An Empirical Study. SCAM. 2012.

162 Marinescu, Radu. Marinescu, R. (2004). Detection strategies: Metrics-based rules for

detecting design flaws. IEEE 20th International Conference onSoftware Maintenance. 2004.

163 Jaimes, Antonio López, Coello Coello, Carlos A, and Barrientos, Jesús E Urías. Online

objective reduction to deal with many-objective problems. Evolutionary multi-criterion

optimization, Springer. 2009.

164 Bechikh, Slim, Kessentini, Marouane, Ben Said, Lamjed, and Ghédira, Khaled. Preference

Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art.

Advances in Computers. R. H. Ali, Elsevier. Volume 98: 141-207. 2015.

165 Yang, Linchao , Kamiya, Tomoyuki , and Sakamoto, Kazunori. RefactoringScript: A Script

and Its Processor for Composite Refactoring: 711-716. 2014.

