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ABSTRACT 

Understanding distribution patterns and multitrophic interactions is critical for managing bat- and 

bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. 

Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry 

systems, and agricultural systems mixed with natural forest, a systematic review of their impact 

is still missing. A growing number of bird and bat exclosure experiments has improved our 

knowledge allowing new conclusions regarding their roles in food webs and associated 

ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, 

their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We 

report that for birds but not bats community composition and relative importance of functional 

groups changes conspicuously from forests to habitats including both agricultural areas and 
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forests, here termed ‘forest-agri’ habitats, with reduced representation of insectivores in the 

latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and 

bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those 

in temperate and boreal communities. The relative importance of birds versus bats in regulating 

pest abundances varies with season, geography and management. Birds and bats may even 

suppress tropical arthropod outbreaks, although positive effects on plant growth are not always 

reported. As both bats and birds are major agents of pest suppression, a better understanding of 

the local and landscape factors driving the variability of their impact is needed.  

 

Key words: agricultural landscapes, arthropod suppression, bird and bat ecology, cacao, coffee, 

ecosystem services, exclosure experiments, flying vertebrates, food webs, pest suppression. 
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I. INTRODUCTION   

Agricultural expansion and land-use intensification now typify landscapes globally (Melo et al., 

2013; Laurance, Sayer & Cassman, 2014), representing a serious threat to biodiversity and 
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ecosystem processes (Flynn et al., 2009). Maintaining ecosystem services – the benefits that 

nature provides to humanity – is more important than ever as demand for food, fuel, fibre and 

other biological products grows (Millenium Ecosystem Assessment, 2005), and Earth’s climate 

changes (McShane et al., 2011; Urban, Zarnetske & Skelly, 2013). 

 Birds and bats provide many important ecosystem services such as the suppression of 

insect pests, seed dispersal, and pollination (Whelan, Wenny & Marquis, 2008; Kunz et al., 

2011; � ekercio� lu, Wenny & Whelan, 2016). It is hard to overstate the economic importance of 

the services rendered by these taxa (e.g. Cleveland et al., 2006; Boyles et al., 2011, 2013). In 

particular, the suppression of pest insects by birds and bats in tropical agroforestry systems 

facilitates substantial increases in crop yields (Karp et al., 2013; Maas, Clough & Tscharntke, 

2013) and may serve as a viable alternative to pesticides and other chemical compounds (e.g. 

Bianchi, Booij & Tscharntke, 2006; Clough, Faust & Tscharntke, 2009b). Biodiversity-friendly 

management of tropical farming landscapes thus provides a promising conservation strategy 

while enhancing human well-being through support of food security and ecosystem resilience 

(Fischer, Lindenmayer & Manning, 2006; Tscharntke et al., 2012a).  

 However, the impact of insectivorous birds and bats on arthropod communities, plant 

productivity and yield as well as the underlying taxonomic and functional drivers, are highly 

variable and the existing knowledge is still unbalanced and limited. Insectivorous birds and bats 

consume a wide variety of arthropods: not only herbivorous pests (e.g. � ekercio� lu, 2006a; 

Whelan et al., 2008; Kunz et al., 2011; Morrison & Lindell, 2012; Taylor et al., 2013a) but also 

predatory arthropods, such as ants and spiders (e.g. Mooney & Linhart, 2006; Gunnarsson, 

2007). Therefore, while birds and bats often improve crop yields directly by consuming 

herbivorous insects, they may at times depress crop yields through feeding as intraguild predators 
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(consuming both intermediate predators and herbivores). Whether birds and bats will ultimately 

suppress herbivores and contribute to yield productivity likely depends on specific functional 

traits (Philpott et al., 2009) as well as on factors such as geographic distribution (Olson et al., 

2001), seasonality (e.g. Erickson & West, 2002; Williams-Guillén, Perfecto & Vandermeer, 

2008; Singer et al., 2012; Taylor, Monadjem & Steyn, 2013b), landscape context (e.g. Fahrig et 

al., 2011), and local habitat structure or management regimes (e.g. Loeb & O’Keefe, 2006; Rice 

& Greenberg, 2000; Bhagwat et al., 2008; Maas et al., 2009).  

 Managing bird- and bat-mediated ecosystem services thus requires thorough 

understanding of multitrophic interactions, seasonal patterns (e.g. resource availability; 

precipitation; breeding cycles; presence of latitudinal effects and migrants) and the broader 

landscape context. Fortunately, community-wide manipulation experiments (e.g. experimental 

exclosures) can be readily used to identify the complex interactions between vertebrates and 

invertebrates that affect ecosystem services. In such studies, plants are enclosed in mesh nets that 

prevent access to foraging birds and bats while remaining accessible to arthropods. The relative 

impacts of bird- and bat-mediated predation on arthropod communities can then be isolated 

through deploying exclosures either during the day (to exclude only birds), at night (to exclude 

only bats and night-active birds), or throughout the daily cycle to assess joint impacts of birds 

and bats. Until recently, only the latter method was used in exclosure studies, with investigators 

attributing changes in arthropod density and plant damage exclusively to birds (Marquis & 

Whelan, 1994; Greenberg et al., 2000b; Johnson, Kellermann & Stercho, 2010) and not to bats 

(e.g. Kalka & Kalko, 2006; Kunz et al., 2011; Williams-Guillén et al., 2008).  

 In recent years, however, several exclosure experiments have demonstrated that both 

birds and bats significantly constrain arthropod populations, yet major knowledge gaps persist. 
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For example, few studies have addressed the influence of local and landscape management on 

pest control, as well as the ultimate effect of bird and bat predation on crop yields (Kellermann et 

al., 2008; Johnson et al., 2010; Karp et al., 2013; Maas et al., 2013), hampering the design of 

targeted service management. In addition, study sites have been biased, with the Paleotropics 

underrepresented (Maas et al., 2013) compared to the Neotropics (e.g. Van Bael & Brawn, 2005; 

Kalka, Smith & Kalko, 2008; Williams-Guillén et al., 2008; Morrison & Lindell, 2012; Karp et 

al., 2013).  

 Here, we compare arthropod suppression services of insectivorous birds and bats in 

tropical forest, agroforestry systems, and agricultural systems mixed with natural forest (here 

referred to as forest-agri systems), focusing on a growing number of landscape-scale exclosure 

experiments. Through comprehensive review and discussion of previous results, we describe 

trophic interactions among birds, bats and arthropods, the importance of environmental factors 

and biogeographic patterns in relation to vertebrate ecosystem functions, and address existing 

research gaps. We conducted a comprehensive literature search as well as a focused solicitation 

from colleagues for studies focusing on the role of birds and/or bats in regulating arthropod 

communities. Our search yielded 32 publications in which exclusions of birds and bats were used 

to quantify the effects of flying vertebrate predation on different arthropod groups. These 

publications provide the basis for our discussions of birds and bats in tropical agroforestry 

systems (i.e. coffee, cacao, and mixed fruit orchard) and forests, combining both prominent and 

new publications on bird and bat ecosystem services. 

In Section III, we provide an overview of zoogeographic patterns of bird and bat species and 

their functional diversity (feeding guilds, habitat affiliations). Section IV unravels general effects 

of birds and bats on arthropod food webs and plants via trophic cascades and discusses the 
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factors modulating these top-down effects. The importance of predation services in diversely 

managed agricultural landscapes and tropical communities, with particular focus on the economic 

importance of birds and bats, is discussed in Section V. Existing evidence for local and 

landscape-management effects on bird and bat predatory functions is described in Section VI. 

Finally, in Sections VII and VIII, we point out existing knowledge gaps and highlight the 

potential for bird- and bat-mediated arthropod suppression to contribute to food security and 

improved landscape management in the tropics, with important implications for future 

biodiversity conservation and research. Together, our conclusions contribute to both a practical 

and theoretical framework for the study and management of tropical landscapes affected by 

ongoing agricultural expansion and biodiversity loss. 

 

II. METHODS 

(1) Data source and preparation 

Quantum Gis 2.6 (QGis) was used for all Geographic Information System (GIS) operations. Bird 

data were taken from a database with standardized entries on the ecology of the bird species of 

the world. See � ekercio� lu, Daily & Ehrlich (2004) and � ekercio� lu (2012) for further details. 

For bats, the terrestrial mammals shapefile was downloaded from the International Union for 

Conservation of Nature and Natural Resources (IUCN) Red List website (in May 2014); records 

not pertaining to Chiroptera were deleted. Records with presence codes different from 1 and 2 

(extant and probably extant, respectively), and with seasonal codes different from 1, 2 and 3 

(resident, breeding season and non-breeding season, respectively), were deleted. The separate bat 

distribution polygons were merged into multipart polygons for each species, to yield our bat 

distribution layer. The landmass polygon layer was obtained from 
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http://www.naturalearthdata.com. The biogeographic realms were drawn by hand in QGis based 

on the realms defined by Olson et al. (2001). The tabular IUCN Red List data on Chiroptera, 

incorporating full taxonomic data, were downloaded and imported into a Microsoft Access 

database. 

 

(2) Bird and bat species richness and endemism per biogeographic region 

Bird data were updated from � ekercio� lu et al. (2004) and � ekercio� lu (2012), with new 

ornithological data published until 2014. For bats, spatial queries between the IUCN bat 

distribution data (IUCN, 2014) and the biogeographic realms layers (following Olson et al., 

2001) were made to determine bat species richness and number of endemic species in each 

region: each realm’s polygon was intersected with the bat distribution layer to find the total 

species richness, and the number of bat polygons contained exclusively within each realm was 

counted to derive the endemic species richness. 

 

(3) Mapping feeding-guild distributions of birds and bats 

Bird data were taken from a database with standardized entries on the ecology of the bird species 

of the world. See � ekercio� lu et al. (2004) and � ekercio� lu (2012) for further details. Bat data 

were based on diet data mainly from IUCN and the Animal Diversity Web (both retrieved in May 

2014), except for 14 species whose diet was retrieved from other scientific publications.  

 Feeding-guild data for birds and bats were adapted to be comparable between the two 

groups. All bat diet data were entered into an Access database. For bat species-rich genera, when 

diet was unequivocal and consistent for multiple species, the remaining species were assigned the 
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same diet (e.g. Rhinolophus insectivores). Forty-two species had unknown diets. Each bat was 

then assigned to one feeding guild (see below), depending on its main diet, which could comprise 

multiple items (e.g. insects and fruits). Bats were classified into the omnivorous guild whenever 

their diet comprised plant and animal matter. 

 Bird feeding guilds from � ekercio� lu et al. (2004) were adapted to be comparable with 

bats: the vertebrate-feeding guild was obtained by merging vertebrate-, scavenger, and fish-

feeding guilds, the plant-feeding guild was obtained by merging the fruit- and plant-feeding 

guilds (see below). Note that omnivorous birds only belonged to that guild when no clear main 

diet could be found, which is different from bats. Therefore the omnivorous bird guild is slightly 

underestimated in birds – or the bat omnivorous guild overestimated – and both are not directly 

comparable. 

 Feeding guilds were defined as follows: (a) invertebrate-feeding guild (only arthropods 

for bats). (b) Vertebrate-feeding guild (including avian scavengers, fish predators and blood-

feeding bats). (c) Omnivorous birds and bats [see � ekercio� lu et al. (2004) and � ekercio� lu 

(2012) for the omnivorous guild definition of birds; omnivorous bats were defined as feeding on 

both plant and animal matter]. (d) Seed-feeding guild (only birds). (e) Fruit-, leaf-, flower- and 

bark-feeding birds and bats. [This class was largely dominated by fruit-feeding species. Eighty 

per cent of the world’s plant-feeding (nectar and seeds excluded) birds feed on fruit; the 

remaining 20% feed on plant parts other than seeds, fruit, or nectar. Ninety-two per cent of plant-

feeding bats (nectar excluded) feed on fruit, the remaining 8% feed on leaves, flowers, and bark]. 

(f) Nectar- and pollen-feeding birds and bats. 

 To generate the world map for both birds and bats (see Fig. 1), we calculated percentage 

proportions of feeding guilds and total richness numbers for each realm. For birds, the latter were 
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exported from the bird database. To generate these numbers for bats, the table from the bat 

database (containing feeding guild data) was joined with the attribute table of the terrestrial 

mammals shapefile (IUCN, 2014), linked by Species ID. The bat layer was then spatially joined 

with the realms layer, and the sum was output, allowing us to count the number of bat species per 

feeding guild in each realm. Finally, feeding guilds and total species richness of birds and bats 

were represented as pie charts with their area proportional to the species richness in each realm. 

 

(4) Bird and bat species richness and feeding guilds per habitat 

Species lists of bats were downloaded from the IUCN Red List website (in May 2014), singly for 

each habitat type, and imported into the Access database. Forest bats were identified as species 

found in forest. Agricultural bats were identified as species found in agricultural systems (arable 

land, pastureland, and plantations). Forest-agri bats were defined as species found both in forest 

and agricultural systems . Bird data are from a database with standardized entries on the ecology 

of the bird species of the world, see � ekercio� lu et al. (2004) and � ekercio� lu (2012) for further 

details. We classified 6,093 tropical bird species based on their most preferred three habitats 

listed in published species accounts. The habitat preferences considered for this analysis were (1) 

only natural forest or woodland habitats (‘forest specialists’, 4,574 species), (2) agricultural areas 

including agroforests but not natural forest or woodland habitats (‘agriculture specialists’ 303 

species), and (3) both agricultural areas and forests/woodlands (“forest-agri birds,” 1,216 

species). 
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(5) Effect sizes of bird/bat exclosure studies on different arthropod groups 

We collected data from 32 exclosure studies on birds and bats from tropical agroforestry systems 

(i.e. cacao, coffee, mixed fruit orchard) and forests (seven tropical countries) to compare effects 

of predatory birds and bats on the abundance of herbivorous insects, ants, spiders and arthropods 

in general (see online supporting information, Table S1). We compare mean arthropod 

abundances in unmanipulated control treatments to experimental exclosures of birds, bats and 

birds+bats. Effect sizes were calculated as the logarithm of the ratio of insect abundance in the 

control versus the exclosure, then graphed in R (3.1) with the package ggplot2. 

 

III. ZOOGEOGRAPHY OF BIRDS AND BATS – SPECIES RICHNESS AND 

FUNCTIONAL DIVERSITY  

As flying vertebrates, bats and birds share several characteristics that allow them to provide 

important ecosystem services (Fujita & Tuttle, 1991; Muscarella & Fleming, 2007; � ekercio� lu, 

2006a, b; Whelan et al., 2008; Kunz et al., 2011; � ekercio� lu et al., 2016). Many bat and bird 

species, owing to their capacity for flight, are highly vagile and thus capable of moving across 

complex landscapes, allowing both opportunistic tracking of shifting food resources (Barber, 

Marquis & Tori, 2008; Richter & Cumming, 2008; McCracken et al., 2012) and the linkage of 

distinct geographic areas through seed dispersal and transport of nutrients and energy (Whelan et 

al., 2008; Kunz et al., 2011). Many studies of both birds and bats also demonstrate significant 

arthropod-suppression services in natural and human-modified habitats. Nevertheless, we know 

substantially less about the ecological functions and services of birds and bats in the tropics than 

we do in the temperate zone. There is particular urgency in understanding how human-driven 

changes in the richness, abundance and proportions of various species will affect ecosystem 
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functions. In this section, we summarize patterns of bird and bat species richness and functional 

diversity in different zoogeographic regions and habitats. 

  

(1) Zoogeography of birds and bats – species richness 

More than a third (3,564) of the world's approximately 10,300 bird species are found only in the 

Neotropics, and an additional 320 species migrate there for most of the year after breeding in the 

Nearctic region (� ekercio� lu et al., 2004). The highest endemic species richness in the 

Neotropics is followed by the Afrotropics (1,671 species), Indomalaya including Wallacea (1,242 

species), Australasia (Australia, Papua New Guinea, and surrounding islands: 1,019 species), and 

temperate and polar regions (Nearctic, Palearctic, New Zealand, Antarctica, and sub-Antarctic 

islands: 757 species) (Table 1). Only 1% of the world's bird species (98 species) are truly 

cosmopolitan, found on all continents except Antarctica. Another 150 species are found on most 

of the continents in the eastern hemisphere.  

According to the IUCN Red List data on Chiroptera (IUCN, 2014), more than 80% of the 

world’s 1,232 bat species (Kunz et al., 2011) are found in the tropics (Australasia, Oceania, 

Afrotropics, Indomalaya, and Neotropics). Of these, 785 [spatial data from IUCN (2014) for 

1,133 bat species] occur only in the tropics. The Neotropics harbour the most bat species (337), 

followed by Indomalaya (282), Australasia (270) and the Afrotropics (237, Table 1). No bat 

species is found in the Antarctic and no bat species is cosmopolitan (found in all biogeographic 

realms). Tropical realms have high percentages of endemic species (approximately 68–89%), 

though Indomalaya falls notably short (approximately 44%), as a consequence of being situated 

at the convergence of many realms. 
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 (2) Zoogeography of birds and bats – feeding guilds 

 Most avian feeding guilds (often used as a proxy for functional groups; cf. Philpott et al., 

2008) reach their peak richness in the Neotropics (Kissling, � ekercio� lu & Jetz, 2012; Fig. 1). 

However, proportionate representation of avian feeding guilds varies across biogeographic 

realms. Insectivores and frugivores have the highest representation in the tropics, with frugivores 

and insectivores being proportionally lower in the Afrotropics and in Australasia, respectively. 

Seed-eaters are well-represented in drier parts of the world, especially in Australasia, the 

Afrotropics and temperate regions. Nectarivores, on the other hand, reach their highest 

proportions in the Neotropics (home of the hummingbird radiation), the Pacific Ocean islands, 

and Australia. Scavengers (vertebrate-feeding guild) reach their highest species richness in the 

savannas of eastern Africa. Finally, piscivores (fish-eaters), carnivores (birds of prey), and 

herbivores are better represented in the temperate zone than in the tropics.  

 All bat communities are dominated by the invertebrate-feeding guild, comprised almost 

exclusively by insectivores (Fig. 1). The Palearctic has the highest proportion of insectivores but 

not the highest number of insectivorous species. As with birds, the species richness of fruit and 

nectar-feeding bats peaks in the tropics. Indomalaya and the Afrotropics have higher proportions 

of nectar and fruit-feeding guilds than temperate realms, but distinctly below the proportions 

found in the Neotropics, Oceania, and Australasia. Overall, herbivorous bats, the great majority 

of which are frugivorous, outweigh nectar-feeding bats in species number. The Neotropics 

represents the most speciose realm (Table 1), and harbours by far the majority of omnivorous bat 

species (56) and the lowest proportion of invertebrate-feeding bats (approximately 56%, species-

poor Oceania excluded). Bats overall have fewer feeding guilds than birds, with no plant, seed, 

non-arthropod invertebrate, or carrion specialists.  
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(3) Birds and bats in different land-use systems 

 Although few bird species prefer agricultural areas for feeding, breeding, and other 

activities, nearly a third of all bird species occasionally use such habitats (� ekercio� lu et al., 

2007), especially in combination with forests (� ekercio� lu, 2012; Fig. 2). Compared to primary 

forests, species richness of large frugivorous and insectivorous birds often declines in agroforests 

(i.e. coffee, cacao, and mixed fruit orchard), particularly among terrestrial and understorey 

species. By contrast, nectarivores, small-to-medium insectivores (especially migrants and canopy 

species), omnivores, and some granivores and small frugivores have higher species richness in 

agroforests compared with forest habitats (� ekercio� lu, 2012). 

 These global trends are supported by field research results from Afrotropical (Waltert et 

al., 2005), Indomalayan (Peh et al., 2006), Australasian (Marsden, Symes & Mack, 2006), and 

Neotropical (Leyequien, de Boer & Toledo, 2010) regions. In general, these field studies suggest 

that the replacement of forests with agricultural systems results in a shift towards less-specialized 

bird communities, comprised of more-widespread and relatively common species, and with 

altered proportions of functional groups (Karp et al., 2011; � ekercio� lu, 2012; Fig. 2). 

Specifically, agricultural systems harbour fewer insectivores and other invertebrate pest 

consumers but more seed predators (Tscharntke et al., 2008; � ekercio� lu, 2012). 

 Like birds, most bat species live in forests (Fig. 2), and about one quarter (246 species) 

occur exclusively there, yet bats are also well adapted to human landscapes. According to IUCN 

Red List data, almost a quarter of the world’s bats (271 species) use agricultural habitats such as 

arable land, pastureland, and plantations (IUCN, 2014). Forest–agri bat communities (which we 

define as bats occurring both in forest and agricultural habitats) are also well represented with 
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253 species, and have previously been shown to be successful in coffee and cacao agroforestry 

systems (Harvey & Villalobos, 2007; Williams-Guillén & Perfecto, 2010). In Costa Rica, for 

example, approximately 60% of bats surveyed in forest reserves and forest fragments were 

detected at least once in agricultural habitats (Mendenhall et al., 2014).  

 Across all habitat types, bat communities are dominated by insectivores (more than 60% 

of species) and frugivores (more than 20%). It should be noted, however, that there are very few 

agricultural-specialist bats (bats using agricultural habitats but not forest; 11 species), making it 

difficult to detect shifts in feeding-guild structure across habitats analogously to those we 

observed for birds. Apart from the loss of vertebrate feeders, bat feeding guilds in forest-agri 

systems remain similar to forest bat feeding guilds. Note that evidence from the Paleotropics on 

the representation of different feeding guilds in forests and agricultural habitats is limited (e.g. 

Furey, Mackie & Racey, 2010; Phommexay et al., 2011; in this review: 26 reports from the 

Neotropics versus six reports from the Paleotropics listed in Table S1), and additional 

investigations are needed to clarify if these results based largely on the Neotropics can be applied 

elsewhere.  

 

IV. EFFECTS ON FOOD WEBS 

 In temperate zones, predators affect plant communities by consuming herbivores, 

indirectly influencing plant community composition, age structure, diversity, crop yield, 

productivity, and even nutrient cycling (Letourneau et al., 2009). Such trophic cascades occur 

through a decrease in herbivorous arthropod abundance, reducing their negative effects on plants. 

Until recently, trophic cascades were thought to be rare in tropical terrestrial communities as a 

result of high species richness, including remarkable densities of insectivorous birds and bats 
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(Polis & Holt, 1992; Strong, 1992; Polis & Strong, 1996). In theory, diverse and complex 

predator–prey interaction networks should contain redundancy such that the loss of any 

individual predator guild would be compensated by functionally redundant species, thus 

preventing a trophic cascade. However, exclosure experiments have documented the presence of 

insectivorous bird- and bat-initiated trophic cascades in both natural and human-dominated 

tropical landscapes (Van Bael et al., 2008; Mooney et al., 2010; Mäntylä, Klemola & Laaksonen, 

2011).  

Most exclosure experiments have been conducted in the Neotropics and the Caribbean 

(Van Bael et al., 2008), although top-down effects on arthropods by birds and bats have also 

been documented in Hawaii (Hooks, Pandey & Johnson, 2003; Gruner, 2004, 2005; Gruner & 

Taylor, 2006), Asia (Koh, 2010; Maas et al., 2013), Australia (Loyn, Runnalls & Forward, 1983), 

and Africa (Dunham, 2008). Moreover, tropical trophic cascades have similar effect sizes as 

those in temperate and boreal systems (Mooney et al., 2010; Mäntylä et al., 2011; Morrison & 

Lindell, 2012). However, the specific effects of birds and bats on arthropod communities might 

not be the same in different regions because of differences in species richness and specialization, 

necessitating additional research from underrepresented tropical areas such as the Paleotropics.  

 

(1) Bird and bat effects on arthropods and plants in tropical communities 

 Birds and bats generally reduce total arthropod abundance and biomass in the tropics 

(Van Bael et al., 2008; Mooney et al., 2010; but see Van Bael, Brawn & Robinson, 2003; Van 

Bael & Brawn, 2005; Michel, 2012; Fig. 3), but they generally do not affect arthropod diversity 

(Mooney et al., 2010; but see Gruner & Taylor, 2006).  
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 Bird and bat top-down effects often differ by arthropod size, with some indications that 

birds – particularly breeding birds – consume larger arthropods than bats. Three studies have 

found that the effects of birds and bats combined reduced large arthropods (>5 mm or e3 mm) 

but not small arthropods (<2 mm; Greenberg et al., 2000b; Borkhataria, Collazo & Groom, 2006; 

Van Bael, Bichier & Greenberg, 2007a). Conversely, Karp & Daily (2014) found that birds 

reduced large and small arthropods while bats reduced only small arthropods, which they 

attributed to consumption of large arthropod larvae by birds but not bats. In Mexico, both birds 

and bats (separately and together) reduced both large and small arthropods (Williams-Guillén et 

al., 2008). In Jamaica, birds and bats reduced large arthropods in summer and autumn, but only 

reduced small arthropods in the summer (Johnson et al., 2009). This may be explained by the 

breeding currency hypothesis (Greenberg, 1995), which states that breeding resident birds take 

large arthropods suitable for nestlings (“breeding currency”) during the breeding season (spring 

and summer), whereas in the autumn Nearctic migrants and non-breeding residents consume 

more small prey.  

Birds and bats often reduce the abundance of leaf-chewing and phloem-feeding insects 

(Van Bael et al., 2008; Mooney et al., 2010), but the extent of limitation of these dominant pests 

often varies among study sites (Van Bael, Brawn & Robinson, 2003; Van Bael & Brawn, 2005; 

Michel, 2012; Michel, Sherry & Carson, 2014) and insect orders (Van Bael et al., 2007a; 

Williams-Guillén et al., 2008; Maas et al., 2013). Given the importance of herbivorous arthropod 

suppression for plant communities, including crops, further research into the factors underlying 

spatial and phylogenetic variation in bird and bat predation is encouraged. Moreover, birds and 

bats also frequently limit numbers of arthropod predators such as ants and spiders (Van Bael et 

al., 2008; Mooney et al., 2010; Mestre et al., 2013; Karp & Daily, 2014; but see e.g. Borkhataria 
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et al., 2006; Hooks et al., 2003; Maas et al., 2013; Michel et al., 2014; Fig. 3), potentially 

reducing top-down effects on herbivorous insect densities (Martin et al., 2013). 

 While rarely reported, birds and bats may suppress arthropod outbreaks in tropical 

communities. Birds and bats inhibited invasion by an introduced spider (Achaearanea riparia) in 

Hawaii (Gruner, 2005), and were observed consuming large quantities of caterpillars during an 

outbreak in Panama (Van Bael et al., 2004). Moreover, during an experimentally simulated 

outbreak, birds and bats substantially reduced the abundance of lepidopteran larvae in a Mexican 

shaded coffee plantation (Perfecto et al., 2004). These isolated experiments introduce the 

potential for widespread outbreak suppression.  

 Through preventing outbreaks and consuming herbivorous arthropods, birds and bats 

often indirectly affect plants, although these effects on plants are generally weaker than effects 

on arthropod abundances (Van Bael et al., 2008). Plant damage generally shows a stronger 

response to bird and bat exclusion than leaf biomass, plant growth, or reproductive output (e.g. 

fruit yield; Schmitz, Hambäck & Beckermann, 2000; Van Bael et al., 2008; Mooney et al., 2010; 

Mäntylä et al., 2011; Morrison & Lindell, 2012). However, birds and bats do not always protect 

plants, for reasons that remain unclear (see, e.g. Van Bael & Brawn, 2005; Williams-Guillén et 

al., 2008; Morrison & Lindell, 2012; Maas et al., 2013). Notably, leaf damage was actually 

greater in the presence of birds and bats outside experimental mammal exclosures at La Selva 

Biological Station in Costa Rica (Michel et al., 2014). 

 A potential limitation of exclosure experiments is that they likely underestimate bird and 

bat effects on arthropods, as many species capture insects in flight, distant from plants (or 

exclosures) (Kunz et al., 2011). In addition, the exclosure mesh size may potentially introduce a 

bias by hindering movement of larger arthropods (e.g. adult lepidopterans); few studies have 
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analysed such cage-induced size biases (Van Bael & Brawn, 2005; Gunnarsson, 2007; Maas et 

al., 2013). Nevertheless, studies to date indicate that birds and bats have strong and pervasive – 

although variable – effects on arthropods and plants in tropical communities. 

 

(2) Factors influencing tropical trophic cascade strength 

 The strength of top-down effects of bats and birds on tropical arthropods and plants can 

vary substantially. Below, we review insectivore, arthropod, plant, and community traits that 

could affect trophic cascade strength in the tropics.  

 

(a) Insectivore identity 

 Early exclosure experiments in tropical communities attributed arthropod suppression and 

plant effects to insectivorous birds, overlooking or minimizing the potential effects of gleaning 

bats, which are abundant in tropical areas and eat similar types of arthropod prey (Kalka & 

Kalko, 2006; Whelan et al., 2008; Kunz et al., 2011). Nevertheless, the relative impact of birds 

versus bats on the densities of arthropods in general and of specific arthropod groups could vary 

as a result of differences in anatomy, behaviour, and relative abundance. For example, many 

tropical herbivorous arthropods are largely nocturnal, presumably making them more vulnerable 

to bat predation (Kalka & Kalko, 2006). In Panama, gleaning bats have a larger impact on 

arthropod abundances and leaf damage than do birds, saving an estimated 52,000 kg of leaves 

from herbivory annually (Kalka & Kalko, 2006; Kalka et al., 2008). Other studies have 

demonstrated broadly similar impacts of birds and bats on arthropods and plants, although with 

sometimes differing effects by arthropod clade and season (Williams-Guillén et al., 2008; 

Morrison & Lindell, 2012). In the Caribbean lowland forest of Costa Rica, bat predation effects 
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on herbivorous arthropods exceed the effects of birds in areas where insectivorous birds have 

declined, suggesting that bats may functionally compensate for decreasing top-down limitation of 

arthropods provided by birds (Michel, 2012).  

 

(b) Insectivore foraging strategy 

 Bats and birds possess unique foraging traits that may affect herbivore suppression, 

indirect effects on plants, and the strength of trophic cascades in predator–herbivore food webs 

(Kéfi et al., 2012). Bats tend to be generalist predators, although different foraging strategies 

(e.g. gleaners versus hawkers) might result in different effects on arthropod densities (e.g. Kunz 

et al., 2011). By contrast, gleaning insectivorous birds often have specialized diets and/or 

foraging strategies (Sherry, 1984; Whelan et al., 2008). For example, specialized guilds such as 

bark-probers, leaf tossers, and ant followers are found only among birds. These specialists can 

have important effects on limiting arthropods unavailable to generalist predators (e.g. bark-

probing birds such as woodpeckers suppress wood-boring pests in temperate forest; see Fayt, 

Machmer & Steeger, 2005; Koenig et al., 2013; Flower et al., 2014). On the other hand, 

generalist predators sometimes have stronger top-down effects than specialists (Halaj & Wise, 

2001; but see Symondson, Sunderland & Greenstone, 2002; Borer et al., 2005).  

 Thus far we have discussed how birds and bats benefit plants by reducing the density of 

herbivorous arthropods, known as density-mediated effects. However, birds and bats may also 

benefit plants by inducing effects on phenotypic traits of prey such as mobility, dispersal 

propensity and feeding activity (trait-mediated effects; Werner & Peacor, 2003). Indeed, trait-

mediated effects can involve changes in the foraging habits of herbivorous prey, potentially 

causing host shifts that differentially affect plant species (Calcagno et al., 2011)  Even though 
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systematic research about trait-mediated effects of birds and bats on their prey is lacking, it 

seems that both bats and birds impose trait-mediated effects on arthropods with varying 

importance for arthropod suppression in different systems. For example, ultrasonic bat calls 

invoke behavioural responses in insects that alter insect infestation rates, mating behaviour, and 

reproductive success (Kunz et al., 2011), while birds can affect the foraging pattern of aphid-

tending ants in tree canopies (Mooney & Linhart, 2006). The relationship between bird and bat 

foraging strategies and the abundance of certain arthropod groups that differ in abundance and 

overall impact on plant productivity might explain their different relative impacts on pest control, 

plant growth and crop yields in the different land-use systems and tropical landscapes that have 

been investigated to date.  

 

(c) Insectivore diversity and abundance 

 Diversity and abundance of predators may either strengthen or weaken trophic cascade 

effects, depending on the nature of intraguild interactions. The species-complementarity model 

suggests that insectivore richness increases herbivore suppression through additive or synergistic 

effects (Tscharntke et al., 2005; Classen et al., 2014). For example, birds in mixed-species 

foraging flocks often eat arthropods flushed out by other species, thus potentially consuming 

more arthropods collectively (synergistic effects) than the sum of the arthropods consumed by 

each species independently (additive effects; Munn & Terborgh, 1979). The sampling-effects 

model posits that more-diverse communities will have an increased probability of containing a 

highly effective insectivore (e.g. Huston, 1997; Schmitz, 2007). Conversely, the selection-effects 

model predicts that the probability of a disruptive species (i.e. a species that interacts negatively 
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with other insectivores) increases with insectivore richness, thus weakening herbivore 

suppression (antagonistic effects; Letourneau et al., 2009).  

 A global meta-analysis of arthropod herbivore suppression in terrestrial ecosystems 

demonstrated that herbivore suppression increased with enemy (predator and parasitoid) richness 

in 183 of 266 experiments, while suppression decreased with enemy richness in 80 comparisons 

(Letourneau et al., 2009; see also Michel, 2012; Ruiz-Guerra, Renton & Dirzo, 2012). Besides 

species richness, functional richness (number of functional groups), richness of a few important 

functional groups (e.g. small understorey foliage-gleaning insectivores), and the presence of a 

highly efficient avian insectivore (Oreothlypis peregrina) also increased top-down effects in 

tropical cacao and coffee agroforests (Philpott et al., 2009). Moreover, predation on a simulated 

caterpillar outbreak was significantly greater in a diverse shade coffee system with a diverse and 

abundant insectivorous bird community than a monodominant system with lower avian diversity 

(Perfecto et al., 2004). The degree to which species richness affects top-down control by bats is 

essentially unknown, primarily because of the difficulties in adequately sampling bat 

communities: commonly used capture methods such as mist netting lead to substantial 

underestimation of the richness and abundance of insectivorous bats in tropical communities 

(MacSwiney et al., 2008; Williams-Guillén & Perfecto, 2011), since many insectivores have 

well-developed echolocation calls that allow them to avoid nets.  

 In addition to bolstering arthropod suppression, increasing bird and bat diversity could 

also affect the stability of arthropod suppression through ensuring that bird and bat abundances 

remain constant over time. The insurance hypothesis (Yachi & Loreau, 1999) posits that high 

predator diversity may ensure continued ecosystem functioning in the presence of environmental 

fluctuations or perturbations (e.g. by limiting pest outbreaks and/or contributing to long-term 
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yields). One explanation for this phenomenon is the portfolio effect, which posits that a statistical 

consequence of many species fluctuating in abundance is that total abundance can remain 

constant (Doak et al., 1998). Alternatively, more diverse communities could be more stable 

because they contain many competitors: if one species declines, then its competitor may exhibit 

density compensation and rapidly increase in abundance. Regardless of mechanism, more-diverse 

tropical insectivorous bird communities have been shown to be more stable (Karp et al., 2011). A 

critical remaining question, however, is whether diverse, stable bird and bat communities also 

suppress arthropod abundances more consistently over time than communities that fluctuate in 

total bird and bat abundance. 

 

(d) Presence of migratory birds 

 Top-down effects on arthropods are typically greater in tropical natural forests and 

agroforests when migrant birds are present (Van Bael et al., 2008; Williams-Guillén et al., 2008; 

Michel, 2012). Nearctic–Neotropical migrant birds (e.g. flycatchers, warblers) are largely 

insectivorous; for example, 29 of the 35 northern migrants on Barro Colorado Island, Panama, 

are insectivorous or omnivorous (Sigel, Robinson & Sherry, 2010). Moreover, Nearctic migrants 

may double insectivorous bird abundance in Neotropical forests during the northern winter, 

which overlaps with the tropical dry season when arthropod abundance is often low and, 

consequently, birds consume a larger proportion of the available arthropods (Van Bael et al., 

2008). Indeed, the relative importance of bird versus bat-mediated arthropod consumption was 

higher when migratory birds were present in Mexican coffee landscapes (Williams-Guillén et al., 

2008). However, top-down effects on arthropods were greater when migrants were absent in a 

different study excluding both birds and bats from shade tree branches at the same site, perhaps 

This article is protected by copyright. All rights reserved.



 
 

 

25 

due to the greater energetic needs of resident breeding birds (Philpott et al., 2004). The effects of 

migrant birds on arthropod suppression are thus unresolved.  

 

(e) Intraguild predation 

 Intraguild predation is a form of trophic omnivory that occurs when predators consume 

other predators, and may be unidirectional (top predator consumes intermediate predator) or 

mutual (predators consume one another). Intermediate predators are predicted to be more 

effective than top predators at suppressing shared prey when intraguild predation is 

unidirectional, as is the case with birds, bats, and arthropod predators (Vance-Chalcraft et al., 

2007). Consequently, intraguild predation of birds and bats on arthropod predators is expected to 

reduce herbivorous arthropod suppression and dampen the strength of trophic cascades 

(Tscharntke, 1997; Finke & Denno, 2005; Martin et al., 2013). However, a recent meta-analysis 

showed that the effects of vertebrate insectivores on herbivores and plants were strongest in 

systems with strong intraguild predation and weak trophic cascade strength (Mooney et al., 

2010). Insectivorous birds and bats with relatively large body sizes, high mobility, and 

sophisticated foraging strategies– particularly generalists – may be able to switch dynamically 

between arthropod predators and herbivores as availability allows, thus maintaining their role as 

top predators and indirectly suppressing leaf damage (Mooney et al., 2010).  

 

(f) Herbivore diversity 

 Arthropod community composition may also influence trophic cascade strength. In 

systems with high herbivore diversity, trophic cascades – including indirect effects on plants – 

are generally weaker (Schmitz et al., 2000). Indeed, Van Bael & Brawn (2005) found stronger 
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trophic cascade effects in seasonal forest, with lower herbivore diversity, than in moist forest 

during the dry season. In addition, fluctuations in arthropod abundances are often related to 

seasonal patterns (Janzen & Schoener, 1968), which likely affect the foraging behaviour of birds 

and bats (see Section V.2), and consequently trophic cascade strength.  

 

(g) Productivity 

 Systems with high primary productivity may have higher intermediate and top predator 

abundance and, consequently, stronger trophic cascades (Kagata & Ohgushi, 2006; Mooney et 

al., 2010). Herbivore reduction was stronger in areas of higher productivity (forest canopy versus 

understorey, seasonal versus moist forest) in Panama (Van Bael & Brawn, 2005). However, other 

tropical studies found that top-down effects on herbivorous arthropods and leaf damage were 

either unaffected by productivity (Greenberg et al., 2000a; Philpott et al., 2009; Mooney et al., 

2010) or were weaker in the higher-productivity environment (Greenberg & Ortiz, 1994). The 

effect of primary productivity on trophic cascade strength in tropical communities also remains 

unclear. 

 

(h) Plant ontogeny and defences 

 Young plants may allocate more resources to growth than anti-herbivore defences, while 

mature plants produce fewer but better defended leaves. Indeed, most tropical herbivory occurs 

when leaves are young (Coley & Barone, 1996), so trophic cascades may weaken as plants 

mature (Boege & Marquis, 2006). Strong anti-herbivore defences were associated with 

attenuation of trophic cascades in temperate systems (Schmitz et al., 2000). However, two meta-
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analyses of tropical and temperate exclosure studies found similar effect sizes for saplings versus 

mature plants (Mooney et al., 2010; Mäntylä et al., 2011).  

 

 (i) Natural versus agricultural systems 

 Agroforests such as coffee, cacao and mixed fruit orchard plantations differ from natural 

forests in many of the characteristics described above. Neotropical agroforest communities 

generally have lower insectivore and plant species richness and a higher degree of omnivory 

(Figs 1 and 2; Tejada-Cruz & Sutherland, 2004; Van Bael et al., 2008; � ekercio� lu, 2012; but 

see Maas et al., 2013), both of which may reduce trophic cascade strength. However, agroforests 

are home to many Nearctic bird migrants, and may have lower herbivore diversity, higher 

productivity, and a higher proportion of young plants, with variable effects on the strength of 

trophic cascades. These contrasting factors complicate prediction of trophic cascade strength in 

natural versus agricultural tropical communities. It is clear, however, that bird- and bat-mediated 

trophic cascades occur regularly in agricultural settings, potentially resulting in depressed pest 

abundances and increased yields for farmers (e.g. Maas et al., 2013; Kellerman et al., 2008; 

Johnson et al., 2010, Karp et al., 2013).  

 

V. BIRD AND BAT SERVICES IN AGRICULTURAL SYSTEMS 

 Predation by birds and bats constitutes an ecosystem service when it reduces arthropods 

that are herbivores on crops; often referred to as biological control. Moreover, limitation of 

herbivore populations may also have positive effects on the health of crop plants, since arthropod 

herbivores can vector crop diseases (Campbell, 1983; Evans, 2007; Wielgoss et al., 2012, 2014). 

Until recently, the relative importance of birds versus bats as predators of pests was unknown, as 
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exclosure experiments confounded bird and bat predation, even if bird predation was stressed as 

a key factor (Kalka et al., 2008; Williams-Guillén et al., 2008; Koh, 2010; Morrison & Lindell, 

2012).  

With the advent of molecular techniques such as quantitative polymerase chain reaction 

(qPCR) and next-generation sequencing (NGS), several recent studies have demonstrated the 

prevalence of significant arthropod crop pest species in the diet of bats roosting and foraging in a 

range of agroecosystems (Cleveland et al., 2006; Whitaker, McCracken & Siemers, 2009; 

Brown, 2010; Clare et al., 2011; Kunz et al., 2011; Bohmann et al., 2011; McCracken et al., 

2012; Taylor et al., 2013a).  

 

(1) Bird and bat predation in tropical agroforestry  

 Given the potential that bats also limit pests, recent exclosure studies have sought to 

disentangle the effects of birds and bats on arthropods in agricultural systems (Williams-Guillén 

et al., 2008; Maas et al., 2013; Karp & Daily, 2014). Williams-Guillén et al. (2008) showed that 

the effect of bats in reducing overall arthropod abundance in Mexican coffee plantations was 

greater than the effect of birds (84% versus 58%, respectively) during the wet season. By 

contrast, in the dry season when migrant birds were present, birds reduced total arthropod 

abundance more than bats (30% versus 6%, respectively). Recent studies in Indonesian cacao 

(Maas et al., 2013) and Costa Rican coffee plantations (Karp & Daily, 2014) also demonstrated 

differential effects of birds and bats, although with sometimes conflicting results. Bats appeared 

to have a greater impact than birds in Indonesian cacao farms (Maas et al., 2013). By contrast, in 

Costa Rican coffee farms, birds accounted for the majority of the reduction in abundance of the 

coffee berry borer (Hypothenemus hampei) (Karp et al., 2013). Thus, the few studies that have 
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separated bird and bat effects suggest seasonal, geographical and management-system 

differences.  

 

(2) Seasonal differences  

 Seasonal differences in arthropod suppression may have unique underlying factors for 

birds compared to bats. As discussed in Section IV, seasonal variability in bird effects is likely 

due to influxes of migrant birds in tropical agroforests (Greenberg et al., 2000a; Williams-

Guillén et al., 2008). Although bats may be resident year-round, insectivorous bats can be 

opportunistic predators, and many Neotropical bat species are seasonal omnivores (Patterson, 

Pacheco & Solari, 1996). For bats, seasonality in feeding behaviour is likely to be due to changes 

in metabolic requirements in the breeding season. The effects of bats are thought to be stronger 

when they are breeding (Williams-Guillén et al., 2008; Singer et al., 2012) because of substantial 

increases in basal metabolism and insect consumption by pregnant and lactating bats (Kunz, 

Whitaker & Wadanoli, 1995). Tropical birds that feed only on few or no insects during the non-

breeding season are also known to increase their insect intake or to add arthropod prey to their 

diet during the breeding season – seasonal feeding behaviour that has been described by the 

protein-limitation hypothesis (Cox, 1985). Strict insectivores may also switch to eating larger and 

softer-bodied prey during the breeding season, including chewing herbivores such as Lepidoptera 

larvae, as described by the breeding-currency hypothesis (Greenberg, 1995). Changes in the 

composition and quality of bird diets can also be linked to seasonal temperature fluctuations, 

migration, and seasonal changes in food availability (Whelan et al., 2000).  

The foraging behaviour of birds and bats is also likely influenced by fluctuating arthropod 

numbers (see Section IV.2c), which tend to be pronounced under more-extreme seasonal rainfall 
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conditions (Janzen & Schoener, 1968). Since many bats are opportunistic predators, their 

foraging activity in a particular agroecosystem may coincide with annual peaks in abundance of 

the primary pests in that system (Taylor et al., 2013b).  

 

(3) Zoogeographic patterns  

 Zoogeographic patterns are likely also to be key factors in regulating the strength of bird 

and bat effects on arthropod communities. While one study observed 188 bird species foraging in 

Central American cacao farms [abundance-based coverage estimation (ACE) indicated inventory 

completeness of 74%; Van Bael et al., 2007b), a study in cacao farms of Sulawesi found only 69 

bird species (ACE indicated inventory completeness of 79%; Maas et al., 2015). Similarly, in the 

Neotropics, foliage-gleaning bats include a wide range of arthropod types in their diet (Kalka & 

Kalko, 2006). In a study of Neotropical bats foraging in cacao farms, insectivorous foliage 

gleaners were the second most-species-rich feeding guild (Faria et al., 2006). By contrast, species 

richness of insectivorous foliage gleaners and activity of insectivorous bats declined greatly in 

several agriculture systems in Southeast Asia (Furey et al., 2010; Phommexay et al., 2011). 

Given the differences in species diversity and results on arthropod suppression, there may be a 

greater number of bat species preying on more types of arthropods in agroforests of the 

Neotropics relative to the Paleotropics. However, bat species diversity is poorly resolved for 

most sites, making zoogeographic comparisons difficult.  
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(4) Effects on leaf damage and crop yield 

 Whether birds and bats provide arthropod suppression services to farmers depends on 

whether their predation on arthropods results in reduced plant damage and higher crop yields. 

Across seven coffee and cacao studies, bird and bat predation combined reduced leaf damage 

significantly (Van Bael et al., 2008). By contrast, some other studies did not find significant 

effects on leaf damage (Williams-Guillén et al., 2008; Maas et al., 2013). One study measured 

yield changes directly and found a 31% reduction in yield when birds and bats combined were 

prevented from foraging on cacao trees; constituting an estimated loss of US $730/ha (Maas et 

al., 2013). Similarly, several studies documented that birds reduce coffee berry borer beetle 

(Hypothemus hampei) abundance and improve yields. Borer consumption saved farmers US 

$310/ha as a result of reduced coffee yield loss in one Jamaican plantation, US $44–105/ha in 

several other Jamaican plantations, and US $75–310 in Costa Rican coffee plantations 

(Kellerman et al., 2008; Johnson et al., 2010; Karp et al., 2013). Most of these studies focused 

only on bird effects, neglecting the critical role of insectivorous bats (but see Maas et al., 2013; 

Karp et al., 2013). For example, in Thailand, a single common bat species recently has been 

estimated to prevent rice (Oryza sativa) loss from planthopper pests of almost 2,900 tons per 

year, which translates into a national economic value of more than US $1.2 million or rice meals 

for almost 26,200 people annually (Wanger et al., 2014). 

 As outlined in Section IV.2e, whether or not the suppression of arthropods (biological 

control) occurs may depend on the identity of the arthropod feeding guilds that are suppressed by 

birds and bats; specifically, whether birds or bats feed as intraguild predators. Since birds and 

bats consume spiders, and spiders consume herbivorous or pest insect taxa such as lepidopteran 

larvae (Hooks, Pandey & Johnson, 2006), some herbivorous pests could be released from spider 
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predation as a result of bird and bat feeding activity. In Indonesian cacao plantations, birds and 

bats consumed both herbivores and spiders and therefore prevented crop damage, without having 

significant effects on crop diseases or leaf damage (Maas et al., 2013). One recent study in 

coffee, however, found that birds reduced herbivores and leaf damage, while bats primarily 

reduced spiders and did not affect leaf damage (Karp & Daily, 2014).  

 

(5) Pollination services and crop yield 

 While birds and bats are efficient predators in many agroecosystems, in some settings 

bats also play an important role as pollinators, thereby also directly impacting crop yields. In 

Southeast Asia, nectarivorous bats and fruit bats are pollinators of petai (Parkia spp.), durian 

(Durio spp.) and Indian trumpet (Oroxylum indicum), common economically important plants in 

agroforestry. Bat pollination accounts for 80–100% in fruit set in these crops (Bumrungsri et al., 

2008, 2009; Srithongchuay, Bumrungsri & Sripao-Raya, 2008). In southern Thailand alone, such 

pollination services to durian and petai were estimated to be worth US $13 million annually 

(Bumrungsri et al., 2009). Indirect interactions that impact pollination could also occur; for 

example, if bird and/or bat predation reduces arthropods that pollinate flowers (Maas et al., 

2013). No evidence of this was observed in a recent study of vertebrate predator and pollinator 

interactions for coffee, rather these ecosystem services were complementary (Classen et al., 

2014).  

 

VI. LOCAL AND LANDSCAPE-MANAGEMENT EFFECTS  

 The ecological services provided by birds and bats, including pest suppression and 

indirect benefits to crop yield (see Section V), are not distributed homogenously across space as a 
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result of changes in the abundance, diversity, and composition of species. Local and landscape-

level habitat characteristics have important consequences for the predatory services provided by 

many species and functional guilds that have particular habitat requirements (see Section III). 

Tropical agroforests vary in local vegetation characteristics such as shade, tree density, diversity, 

and height that modify the local environment from forest-like to open-sun habitat (Perfecto et al., 

1996; Moguel & Toledo, 1999). Tropical landscapes also vary in relative proportions of 

continuous forest, fragmented forest, agriculture, and urban land uses (Clough et al., 2009a; Karp 

et al., 2013). To date, few studies have experimentally excluded birds and bats to assess the 

influence of local and landscape features on ecosystem functioning.  

 

 (1) Local effects on predatory function 

 Bird and bat biodiversity and abundance typically declines as agroforestry systems 

change from high to low shade in coffee (Greenberg, Bichier & Sterling, 1997b; Philpott et al., 

2008; Williams-Guillén & Perfecto, 2010, 2011), cacao (Faria et al., 2006; Van Bael et al., 

2007b), and pastoral systems (Greenberg, Bichlier & Sterling, 1997a). Yet bird and bat exclosure 

experiments replicated across shade gradients reveal mixed results. In coffee, Perfecto et al. 

(2004) found greater predation of lepidopteran larvae and Johnson et al. (2009) found reduced 

leaf damage in high-shade relative to low-shade sites. However, Kellermann et al. (2008) and 

Greenberg et al. (2000a) found that shade management did not affect predation rates. Further, 

Johnson et al. (2010) found greater predation of the coffee berry borer in sunny relative to shady 

plantations. Only one study has focused on cacao, where no differences in bird and bat effects 

were observed across a shade gradient in Indonesia, except for lepidopteran larvae, which 

increased in abundance in response to bird and bat exclosures in cacao plantations with a higher 
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shade cover (Maas et al., 2013). Larger forest restoration plantings showed cascading effects of 

bird and bat presence on leaf damage; smaller plantings did not show reduced leaf damage 

although patterns were in the same direction as for larger plantings (Morrison & Lindell, 2012). 

Other common agricultural practices, such as the use of fertilizers, insecticides, tillage, and 

irrigation may affect bird and bat communities (e.g. Geluso, Aletnbach & Wilson, 1976; Kunz, 

Anthony & Rumage, 1977; Senthilkumar et al., 2001; Hallmann et al., 2014), but few studies 

have yet assessed these practices in tropical regions. Additionally, changes to local management 

of other agroforestry systems, including diverse home gardens and shaded pasturelands 

(agrosilvopastoral systems) may influence bird and bat predatory effects, but few have studied 

these changes. 

 

(2) Landscape effects on predatory function 

 Complex landscapes with a high proportion of natural habitat may enhance pest-

suppression services by increasing the diversity and abundance of natural predators (Bianchi et 

al., 2006). Indeed, in tropical regions, bird and bat biodiversity generally increases with forest 

cover and connectivity (Faria et al., 2006; Harvey et al., 2006; Harvey & Villalobos, 2007). 

Intact forests and more-diversified agriculture may also confer resilience and stability to tropical 

bird communities (Karp et al., 2011). 

 To date, few studies have excluded birds and bats along landscape complexity gradients 

(Tscharntke et al., 2012b). Karp et al. (2013), however, found greater effects of birds on the 

coffee berry borer near forest fragments, but did not find effects of bats. Johnson et al. (2009) 

found greater reductions in coffee leaf damage at greater distances from habitat patches and 

Kellermann et al. (2008) found no relationship between distance to habitat patch and predation of 
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the coffee berry borer. Maas et al. (2013) also evaluated effects of bird and bat predation in cacao 

plantations along a distance gradient from primary forest, but found no landscape effect on 

overall arthropod density or herbivory, with the only exception represented by lepidopteran 

larvae, which increased in abundance at higher distances to primary forest. Studies investigating 

naturally forested landscapes in France and New Zealand found enhanced avian attack of 

plasticine larval models near forest edges relative to forest interiors (Barbaro et al., 2014). 

However, landscape diversity (amount of different forest and open-land habitats) and native 

forest cover did not correlate with predation rates. Further, Michel (2012) compared bird and bat 

exclosures in a fragmented forest in Costa Rica and a continuous forest in Nicaragua, finding that 

birds suppressed herbivory to a greater degree than did bats in the continuous forest with intact 

bird communities, whereas bats suppressed herbivory to a greater degree than did birds in 

fragmented forest with depauperate bird communities.  

 The field experiments described above indicate some dependence of pest suppression 

services on the landscape context. Due to the ability to control more variables, simulation models 

may provide additional insight into the effects of landscape context on biological control. A 

recent attempt to model the effects of ‘land sharing’ (e.g. shade-grown coffee) and ‘land sparing’ 

(e.g. monoculture next to forest) on bird-mediated coffee borer beetle suppression revealed that 

trees and forest fragments were more important for suppression than intact forest (Railsback & 

Johnson, 2014). Indeed pest suppression by birds peaked when only 5% of the area was occupied 

by trees and forest fragments. While intact forest supported higher bird densities in their model, 

birds had to return to the forest nightly and did not move far enough from the forest in the course 

of a day to forage on pests across the entire area. 
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(3) Drivers of local and landscape effects 

 Despite limited evidence that bird and bat predatory function is dependent on local and 

landscape factors, there are many reasons to expect context dependency. Compared to non-volant 

vertebrates with similar body sizes, many bird and especially bat species are relatively mobile 

and capable of foraging over both small and large spatio-temporal scales (Kunz et al., 2011; 

Lundberg & Moberg, 2003; Whelan et al., 2008; but see Moore et al., 2008). This is particularly 

true for habitat generalists because their movements are not restricted by specific habitat types 

and allow them to cross complex landscapes. Hence, landscape context may be important when 

considering the conservation and management of bird- and bat-mediated ecosystem functions 

(Cleveland et al., 2006; Polis, Anderson & Holt, 1997; Struebig et al., 2009). On the other hand, 

some species are habitat specialists and dispersal limited (Moore et al., 2008), and therefore any 

reductions in habitat quality will reduce their abundance and predatory services. 

In addition to mobility, a number of functional traits including foraging mode, migration, 

trophic niche, nesting or roosting ecology, and body mass vary across bird and bat species 

(Fleming & Eby, 2005; Kunz & Lumsden, 2005; Patterson, Willig & Stevens, 2005). These traits 

are associated with bird and bat responses to changes in local vegetation structure and land-use 

change and therefore could help predict changes in pest-suppression services (Clough et al., 

2009a; Flynn et al., 2009; Maas et al., 2009; Williams-Guillén & Perfecto, 2010, 2011). 

 Nesting and roosting life-history characteristics may be key to understanding the 

importance of local and landscape-scale habitat alterations to vertebrate functions (Tscharntke et 

al., 2005). Species that nest or roost exclusively on plants are expected to be more sensitive to 

local habitat quality, while cliff nesting and cave roosting species are expected to be less 

sensitive to vegetation modification (Kingston, 2013). For example, investigations of a 
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fragmented landscape in peninsular Malaysia reveal that bat assemblage compositions were 

driven by the abundance of cave bats, which was associated with distance to karst outcrops, but 

less with patch size and isolation (Struebig et al., 2009). By contrast, Struebig et al. (2013) report 

a positive relationship between the abundance of forest bats and cavity numbers in repeatedly 

logged rainforest landscapes.  

 In regions where millions of bats occupy cave roost colonies, such as, for example, in 

Texas (McCracken et al., 2012) and Thailand (Wanger et al., 2014), it has been possible to 

derive pest-suppression estimates for agroecosystems in the foraging range of these bats. 

However, it is possible that the pest-suppression estimates in such cases might be inflated. Future 

research should investigate the landscape effects on pest suppression of very large roosts 

compared to areas where bats are more dispersed in the landscape, occupying many smaller 

roosts. 

 Information on roosting behaviour and roost restoration for tropical birds is highly 

limited. A recent study from Jamaican coffee farms (Railsback & Johnson, 2014) emphasizes the 

importance of nighttime roosting for birds. Accordingly, the availability of trees suitable as 

foraging or roosting sites for birds near coffee plantations enhanced the efficiency of arthropod 

suppression by birds, while the dispersion of trees within coffee farms did not affect those 

services.  

 Habitat loss and fragmentation may also alter behavioural traits associated with the 

movement and migration of birds and bats (Béchet et al., 2003; Bélisle, Desrochers & Fortin, 

2001), which could lead to losses of local populations and ecosystem functions in recipient 

habitats (Leibold et al., 2004; Bregman, � ekercio� lu & Tobias, 2014). A recent study from the 

cacao-dominated and highly dynamic forest margin landscape of Central Sulawesi highlights the 
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critical role of rapid forest tree declines on native forest bird diversity, documenting the collapse 

of an endemic bird population (Maas et al., 2013).  

 

VII. KNOWLEDGE GAPS AND NEED FOR FURTHER STUDIES  

 Many hypotheses have been proposed to explain variability in bird- and bat-mediated 

control of insect populations, but few have been evaluated. For example, the effects of herbivore 

diversity and primary productivity on bird and bat impacts on plants remain unclear. Moreover, 

basic natural history is missing for many tropical species, precluding our ability to account for 

spatial variation in pest control. For example, zoogeographic comparisons are complicated by 

missing information on the taxonomic structure of bat communities and bat species traits.  

 While we were able to provide an overview of the available literature on pest-suppression 

services of bats and birds across the tropics, including global distribution patterns of feeding 

guilds and habitat affiliations, our work demonstrated that there is a lack of systematic 

comparisons of the structure and trophic positioning between bat and bird communities. 

Furthermore, a greater emphasis on how roosting and nesting resources in focal and 

neighbouring habitats affects predatory functions could reveal whether these resources are strong 

drivers of arthropod suppression. Particularly for tropical birds, understanding of roosting 

behaviour and corresponding effects on ecosystem services and their management are highly 

limited. A better understanding of arthropod community structure and population dynamics in 

tropical agroforestry systems would significantly contribute to the quality of ecosystem research 

on birds and bats. In this context, the focus should be on underrepresented species groups, such 

as bats (especially in the Paleotropics) and abundant arthropods with high total biomass (e.g. 

Orthoptera, aphids, ants). 
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 With respect to the control of insect pests in tropical agricultural systems, there are 

several key questions and considerations that should be addressed in future studies. First, are the 

predation services of bats and birds of equal importance in different types of agricultural systems, 

in different zoogeographic regions, and in different land-use systems? Second, are there 

consistent, predictable differences in the effects of birds and bats on arthropods, multitrophic 

interactions and crop yield? Third, are there specific characteristics of birds and bats that 

determine their importance for ecosystem services (see Philpott et al., 2009)? For example, do 

generalists or specialist species perform these functions, and are these species rare or abundant? 

In this context, we also need to understand bird and bat responses to environmental factors such 

as habitat transformation, land-use intensification and climate change.  

Finally, are insectivorous birds and bats functionally redundant? Understorey insectivorous birds 

are declining in both Neotropical and Paleotropical forests (^ekercio� lu et al., 2002; Newmark, 

2006, Sigel et al., 2010; Yong et al., 2011). Insectivorous bird loss may release herbivorous 

arthropods from predation with potentially devastating consequences for plant communities if 

other insectivores, including bats, are not able to compensate (Michel, 2012). Further study into 

compensatory effects of insectivorous birds and bats is urgently needed. 

Few studies have assessed the importance of species-specific effects (e.g. in relation to 

abundance, traits, consumption rates or habitat preferences) and multitrophic interactions 

mediated by bird and bat predation (Philpott et al., 2009; Maas et al., 2013). These complex 

interactions between birds, bats and other natural enemies (e.g. ants and spiders) of leaf-chewing 

insects are likely jointly to affect the productivity of agricultural systems and therefore need to be 

considered simultaneously at different temporal and spatial scales and with careful consideration 

of the methods used. For example, bird and bat predation effects on spiders show contrasting 
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results in different exclosure studies (e.g. Van Bael et al., 2008; Mooney et al., 2010; Mestre et 

al., 2012, 2013; Karp & Daily, 2014; Borkhataria et al., 2006; Hooks et al., 2003; Maas et al., 

2013; Michel et al., 2014). This might be explained by the presence of different species-specific, 

local management, or geographic effects but could also be a result of enhanced spider 

abundances in experimental exclosures (e.g. web-building spiders might use exclosure nets as 

additional structures; Gunnarsson, 2007). The interactions between birds, bats and (predatory) 

ants are also poorly understood but very important given the strong evidence that their 

interactions drive the abundance of serious pest insect groups and crop yield in different 

agricultural systems throughout the tropics (Philpott, Greenberg & Bichier, 2005; Wielgoss et al., 

2012, 2014).  

 Most fundamentally, we need applied research that explores the practicalities of how 

growers can manage their farms to facilitate bird- and bat-mediated suppression of pest insects. 

Are there specific land-use patterns that promote ecosystem services by birds and bats (Clough et 

al., 2009a; Perfecto et al., 2004)? The literature suggests that bird and bat predatory effects may 

depend on local management practices and the landscape context, but results are inconsistent and 

provide little basis to draw general conclusions. Only a few studies, for example, have assessed 

the extent to which agricultural intensification affects pest consumption by birds and/or bats 

(Williams-Guillén & Perfecto, 2010; Karp et al., 2013; Maas et al., 2013).  

 In order to understand the landscape-scale effects of birds and bats on tropical arthropod 

and plant communities, we must first understand the suite of factors influencing tropical 

insectivorous bird and bat abundance and richness patterns. In this context, information on 

factors such as effects of deforestation (Struebig et al., 2008, 2009), habitat degradation 

(Mendenhall et al., 2014), land-use intensification (Melo et al., 2013; Laurance et al., 2014) and 
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climate change (Urban et al., 2013) appear to be particularly limited. An improved understanding 

of the effects of environmental factors on bird and bat communities is needed to provide 

evidence-based management strategies for processes such as shifting food resources (Barber et 

al., 2008; Richter & Cumming, 2008; McCracken et al., 2012), migration patterns (Béchet et al., 

2003), transport of nutrients and energy (Whelan et al., 2008; Kunz et al., 2011) and altered 

proportions of functional groups of birds and bats (Hansen et al., 2001; Erasmus et al., 2002; 

Maas et al., 2009; � ekercio� lu, 2012). 

Future experiments should be conducted to determine the single and combined effects of 

birds and bats on agricultural crop production and how these functions relate to specific local 

management practices (e.g. plant species diversity and composition; shade cover; herb layer) and 

landscape context (e.g. connectivity; surrounding forest cover). Such work should test 

hypotheses about the impacts of landscape moderation on ecosystem patterns and processes 

(Tscharntke et al., 2012b). Differences in species richness and functional diversity of birds and 

bats between different zoogeographic regions mean that management recommendations might 

not be transferable from one biogeographic region to another, increasing the need for studies 

conducted at landscape scales and specifically measuring the interactions between different taxa.  

At a more practical level, studies on particular management practices that can enhance 

bird and bat ecosystem services are needed. In particular, evaluating the effects of restoration 

efforts on predatory function at different spatial scales may be of practical value for managers. 

For example, farmers would benefit from knowing whether restoring roost sites or adding nesting 

boxes could facilitate the ecological services of birds and bats (Kelm, Wiesner & von Helversen, 

2008). As a method to increase bat populations locally by artificially increasing the number of 

available roosts, bat houses have been used very successfully in North America (Tuttle, Kiser & 
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Kiser, 2005; www.batcon.org) and in the Mediterranean area (Flaquer, Torre & Ruiz-Jarillo, 

2006). Anecdotal evidence suggests that bat houses may assist with the control of crop pests, as 

in the case of an organic pecan nut orchard in Georgia, USA, where the addition of 13 bat houses 

led to a colony of some 3000 bats. Prior to the bat houses being installed, hickory shuckworms 

were damaging more than 30% of the crop, whereas after the successful occupation of bat 

houses, crop losses due to shuckworm damage became negligible (Kiser, 2002). 

Evidence on the importance of bats in multitrophic food webs and the suppression of 

arthropods is limited, especially compared to the available number of studies on birds. However, 

existing results have led to several hypotheses concerning bats. For example, compared to birds, 

bats may (1) feed more often as generalist predators, (2) occupy a broader range of habitats, (3) 

be less speciose than birds (given their overall lower species richness), and (4) demonstrate lower 

sensitivity to seasonal influxes in migrant populations. These hypotheses lead to the conclusion 

that bat effects might be less variable across seasons and habitat types than birds, which could 

suggest that bat management involves fewer considerations than bird management. 

Therefore further bat research may be particularly important not just from the perspective 

of limited knowledge of bats compared to birds, but also because improved understanding of bat 

effects on trophic cascades (as well as the impact of different management regimes and 

multitrophic interactions) might be the key to making progress towards profitable biodiversity-

friendly management in tropical agriculture.  

 

VIII. MANAGEMENT OF BIRD AND BAT ECOSYSTEM SERVICES  

More studies that demonstrate the value of bird and bat pest-predation services could help 

promote the conservation of birds, bats, and other associated species. Specifically, vertebrate-
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mediated pest control could provide incentives for conserving source patches including caves, 

intact forest and high-quality matrices between source patches such as corridors, night roosts, 

forest remnants, and diverse agroforests (Jirinec, Campos & Johnson, 2011; Wanger et al., 2014). 

No studies have evaluated how hunting pressure affects predatory function, but incentives to 

curtail hunting could exist if it lowers the number of individuals arriving at recipient habitats and 

indirectly shifts migration patterns (Béchet et al., 2003). Hunting effects on insectivorous birds 

and bats might be of higher importance in the Paleotropics, where hunting also affects large 

numbers of smaller species, partly due to limited law enforcement, traditional hunting practices 

(for food and/or medicine) and the growing market for rare species that are traded as pets 

(Bennett et al., 2006; Nijman, 2010; Wiles et al., 2010; Scheffers et al., 2012). On the other 

hand, smallholder agroforests with a diverse shade tree cover have been shown to support 

substantially higher levels of species richness and functional diversity than intensified land-use 

systems, which may enhance the natural ecosystem services provided by birds and bats 

(Tscharntke et al., 2005; Whelan et al., 2008; Kunz et al., 2011). The proximity of forest also 

seems to support avian predatory function (Clough et al., 2009a; Karp et al., 2013; Maas et al., 

2015) although data on bat predation are lacking. Moreover, agroforestry systems with a complex 

vegetation structure can serve as an insurance against insect pest outbreaks and other threats, 

especially in smallholder plantations (Tscharntke et al., 2011). Integrating smallholder 

agroforestry systems (e.g. low use of pesticides; moderate to high shade levels; high fruiting tree 

diversity) into conservation strategies within tropical landscapes has become an even more 

attractive concept since it has been shown that win–win situations can be realized for both 

farmers and biodiversity (Perfecto, Vandermeer & Wright, 2009; Clough et al., 2011; Karp et al., 

2013).  
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Clearly, the potential of birds and bats to contribute significant economic-service value is 

great and in need of further quantification. Given the economic impact of these services 

(Kellermann et al., 2008; Johnson et al., 2010; Boyles et al., 2011, 2013; Karp et al., 2013; Maas 

et al., 2013), biodiversity-friendly management of tropical farming landscapes provides a 

promising conservation strategy that may also enhance human well-being through supporting 

food security and ecosystem resilience (Fischer et al., 2006; Tscharntke et al., 2012a).  

 

IX. CONCLUSIONS 

(1) Insectivorous birds and bats play critical arthropod-limitation roles in both natural and 

human-dominated ecosystems, with significant constraining effects on arthropod abundances 

demonstrated in the vast majority of existing studies.  

 (2) Contrary to ecological theory, the effect of arthropod suppression by birds and bats in the 

tropics is of similar strength to that in temperate and boreal systems (Van Bael et al., 2003; Van 

Bael & Brawn, 2005; Mooney et al., 2010; Mäntylä et al., 2011; Michel, 2012; Morrison & 

Lindell, 2012). 

(3) While birds and bats characteristically limit arthropods throughout the tropics, the strength of 

bird- and bat-mediated trophic cascades can be highly variable, depending on insectivore 

identity, foraging strategies, geographic distributions and resource availability (e.g. primary 

productivity, arthropod density and diversity, nesting site availability). Additionally, the impact 

of arthropod suppression depends on factors such as species density, functional diversity 

(Philpott et al., 2009), and the presence of migratory species (Van Bael et al., 2008; Williams-

Guillén et al., 2008; Michel, 2012).  

This article is protected by copyright. All rights reserved.



 
 

 

45 

(4) In tropical natural systems, speciose bird and bat communities benefit plants through limiting 

herbivory (e.g. Van Bael et al., 2008). In tropical agricultural systems, insect pest consumption 

can result in increased yields and substantial economic gains for farmers (Kellermann et al., 

2008; Johnson et al., 2010; Boyles et al., 2011, 2013; Karp et al., 2013; Maas et al., 2013). 

However, it is unclear how transferable results and recommendations are among different regions 

and land-use systems, highlighting the need for further research in underrepresented areas.  

(5) A number of critical research gaps and unanswered questions remain with respect to steps 

necessary to safeguard tropical bird and bat communities and the services they provide. Thus, we 

strongly recommend further studies on the importance of ecosystem services provided by highly 

functionally diverse and mobile predator groups such as birds and bats with special focus on their 

economic importance, potential impact on human well-being and biodiversity-friendly land-use 

management. Such studies will provide real-world implications for improved agricultural 

management, especially in tropical areas where agricultural expansion and land-use 

intensification represent serious threats to biodiversity and ecosystem processes.  
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XII. SUPPORTING INFORMATION 

Additional supporting information may be found in the online version of this article. 

Table S1. List of reports using exclosure studies of birds and bats to quantify predation effects 

on arthropod abundances (control versus exclosure treatments) used for the calculation of effect-

size graphs in Fig. 3. 
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Table 1. Total and endemic species richness of birds and bats living only in one region, for 

each biogeographic realm (following Olson et al., 2001). Bird data from � ekercio� lu et al. 

(2004) and � ekercio� lu (2012), updated with new ornithological data published until 2014. 

Bat data from IUCN Red List mammal data (IUCN, 2014).  

 

Biogeographic 

realm 

Total bat 

species 

richness 

Endemic bat 

species 

richness 

Total bird 

species 

richness 

Endemic bird 

species 

richness 

Afrotropics 237 211 (89%) 2,079 1,671 (80%) 

Australasia 270 185 (68%) 1,399 1,019 (73%) 

Indomalaya 282 124 (44%) 1,982 1,242 (63%) 

Neotropics 337 255 (75%) 3,996 3,564 (89%) 

Nearctic 94 12 (13%) 689 173 (25%) 

Oceania 14 10 (71%) 375 261 (70%) 

Palearctic 155 41 (26%) 1,160 349 (30%) 

 

 

 

 

 

This article is protected by copyright. All rights reserved.



 

 
 

 

71 

FIGURES  

 
 

 

Fig. 1. Bird and bat species’ proportions in the six largest feeding guilds (see Section II.3) in 

different biogeographic realms (following Olson et al., 2001). The size of the pie charts is 

proportional to bird (right) and bat (left) species richness in each realm.  
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Fig. 2. Feeding-guild composition of bird and bat communities in different habitats. Total number 
of species in each habitat is indicated below the bars. Forest specialists are birds that occur only 
in forest or woodland habitats. Agriculture specialists are birds that occur in agricultural areas 
including agroforests but not natural forest or woodland habitats. Forest-agri birds occur in both 
agricultural areas and forests/woodland. See Sections II.3 and II.4 for details of the classification 
of feeding guilds and habitats. The graph for birds is adapted from Sekercioglu (2012), with 
permission of Springer-Verlag. 
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Fig. 3. Effect sizes of bird and bat suppression of arthropod abundance for different groups 

and studies in cacao and coffee plantations, tropical forests and mixed fruit orchards. Effects 

on arthropods were calculated using log response ratios [LRR = ln(control mean/exclosure 

mean)]. A more negative LRR indicates a stronger negative effect of predator on prey 

abundance. Note that ants were not sampled in all studies (no data displayed for respective 

study ID). Original data, study ID numbers and additional details are given in Table S1. 
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