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Appropriate time step and numerical scheme avoid artifacts in random walk models  19 

Vertical mixing with buoyancy improved simulation of bloom spatial distribution 20 

Abstract 21 

Cyanobacterial harmful algal blooms (CHABs) are a problem in western Lake Erie, and in 22 

eutrophic fresh waters worldwide. Western Lake Erie is a large (3000 km2), shallow (8 m mean 23 

depth), freshwater system. CHABs occur from July to October, when stratification is intermittent 24 

in response to wind and surface heating or cooling (polymictic). Existing forecast models give 25 

the present location and extent of CHABs from satellite imagery, then predict two-dimensional 26 

(surface) CHAB movement in response to meteorology. In this study, we simulated vertical 27 

distribution of buoyant Microcystis colonies, and 3D advection, using a Lagrangian particle 28 

model forced by currents and turbulent diffusivity from the Finite Volume Community Ocean 29 

Model (FVCOM). We estimated the frequency distribution of Microcystis colony buoyant 30 

velocity from measured size distributions and buoyant velocities. We evaluated several random-31 

walk numerical schemes to efficiently minimize particle accumulation artifacts. We selected the 32 

Milstein scheme, with linear interpolation of the diffusivity profile in place of cubic splines, and 33 

varied the time step at each particle and step based on the curvature of the local diffusivity profile 34 

to ensure that the Visser time step criterion was satisfied. Inclusion of vertical mixing with 35 

buoyancy significantly improved model skill statistics compared to an advection-only model, and 36 

showed greater skill than a persistence forecast through simulation day 6, in a series of 26 37 

hindcast simulations from 2011. The simulations and in-situ observations show the importance of 38 
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subtle thermal structure, typical of a polymictic lake, along with buoyancy in determining vertical 39 

and horizontal distribution of Microcystis. 40 
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 46 

1 Introduction 47 

Harmful algal blooms (HABs) are a global problem that is linked to anthropogenic eutrophication 48 

of inland and coastal waters, and may be exacerbated by climate change [O’Neil, J. et al., 2012]. 49 

Lake Erie has experienced recurring blooms of toxin-producing cyanobacteria since the mid 50 

1990s [Brittain, S. M. et al., 2000; Michalak, A. M. et al., 2013; Wynne, T. T. and R. P. Stumpf, 51 

2015]. Lake Erie is the most productive, warm, and shallow of the Laurentian Great Lakes of 52 

North America. In the open waters of Lake Erie, cyanobacterial harmful algal blooms (CHABs) 53 

generally occur from July to October, and are dominated by the species Microcystis aeruginosa, 54 

which produces the group of hepatotoxin compounds known as microcystins [Rinta-Kanto, J. M. 55 

et al., 2009]. CHABs occur primarily in the shallow western basin, which receives the main 56 

hydraulic load from the Detroit River in the north and the main nutrient load from the Maumee 57 

River [Kane, D. D. et al., 2014] in the southwest (Fig. 1a). Occasionally, CHABs are transported 58 
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through the islands into the deeper central basin, while the eastern basin is largely free of CHABs 59 

(Fig. 1a)[Wynne, T. T. and R. P. Stumpf, 2015]. A bloom of record-breaking intensity and extent 60 

occurred in 2011. Analysis by Michalak et al. [2013] indicated that the conditions of meteorology 61 

and agricultural land use that caused the 2011 record bloom are likely to recur, and the 2015 62 

bloom subsequently exceeded the severity of the 2011 record bloom [Stumpf, R. P. and T. T. 63 

Wynne, 2015].  64 

Forecasts of CHAB abundance and spatial distribution are useful to water treatment plant 65 

operators, anglers, recreational boaters, and beach users. Lake Erie is a source of drinking water 66 

to 11 million people [French, R. et al., 2011]. In 2014, the City of Toledo issued a do-not-drink 67 

order that affected a half million residents for two days as a result of contamination of treated 68 

water by microcystins [Henry, T., 2014]. In addition to spatial forecasts, forecasts of Microcystis 69 

vertical distribution are of interest to water treatment plant operators because intake structures are 70 

usually located sub-surface, so the risk of toxins in their raw water may be greater during mixing 71 

events than when Microcystis colonies are concentrated on the surface. In addition to providing 72 

drinking water, Lake Erie supports economically valuable sport and commercial fisheries as well 73 

as recreation and tourism.  74 

Short-term and seasonal CHAB forecasts have been developed for Lake Erie. Seasonal forecasts 75 

predict the annual bloom severity using statistical models based on the cumulative March to July 76 

phosphorus load from the Maumee River, which are able to explain > 90% of the interannual 77 

variance in bloom severity [Obenour, D. R. et al., 2014]. Bloom severity is defined as the lake-78 

wide cyanobacterial biomass averaged over the 30 days containing the maximum biomass 79 
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[Obenour, D. R. et al., 2014; Stumpf, R. P. et al., 2012], and has been estimated using both 80 

satellite [Stumpf, R. P. et al., 2012] and plankton tow data [Bridgeman, T. B. et al., 2013]. The 81 

seasonal forecast is used by water treatment plant managers for seasonal planning, to determine 82 

recommended phosphorus load reductions to meet commitments under the Great Lakes Water 83 

Quality Agreement [GLWQA Annex 4, 2015], and is distributed to over 1600 subscribers. Short-84 

term forecasts are distinct from the seasonal forecast in the greater importance of physical 85 

transport processes over biological mechanisms in explaining short-term bloom variability. 86 

Experimental short-term forecasts have been developed for Lake Erie that indicate the present 87 

location and extent of CHABs from satellite imagery, then predict future movement of the CHAB 88 

using forecast meteorology, a hydrodynamic model, and a Lagrangian particle tracking model to 89 

simulate horizontal advection of neutrally-buoyant particles at the water surface [Wynne, T. T. et 90 

al., 2013; Wynne, T. T. et al., 2011].   91 

Skill assessment of short-term CHAB forecasts is needed so that forecast users may have an 92 

appropriate level of confidence in forecast data, and for development of improved models. 93 

However, CHAB forecast skill assessment can be challenging, and methods are not well 94 

established. Wynne et al. [2011] showed that a forecast model more accurately predicted 95 

horizontal movement of the bloom centroid (center of mass) than a persistence forecast over a 96 

ten-day simulation for an August 2003 event. A persistence forecast is a benchmark used for 97 

model skill assessment in which no change is assumed from the initial observed location. The 98 

same quantitative skill assessment method could not be applied in the case of an August 2008 99 

event because cloud cover and vertical mixing obscured parts of the bloom in subsequent images 100 
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and prevented an accurate estimate of the centroid location [Wynne, T. T. et al., 2011]. In a 101 

detailed analysis of the August 2008 bloom in Lake Erie, Wynne et al. [2010] found that wind 102 

speed was a significant predictor of apparent bloom intensity in satellite imagery, and presented 103 

evidence to support the hypothesis that variation in the mixing depth of the buoyant 104 

cyanobacterial colonies was the underlying mechanism causing changes in surface concentration. 105 

In a qualitative analysis of the first three years of the experimental Lake Erie CHAB forecast 106 

(2008-2010), Wynne et al. [2013] concluded that the forecast provided useful information, but 107 

could be improved by a means to fill in cloud-covered areas in the satellite images, and by 108 

simulation of vertical mixing of the buoyant cyanobacteria.  109 

To simulate concentration profiles of buoyant particles produced by vertical mixing in stratified 110 

turbulence, the partial differential equations governing advection and diffusion may be solved 111 

from an Eulerian or a Lagrangian perspective; each approach has strengths and weaknesses. Real 112 

phytoplankton communities have properties that vary among individuals within a population, 113 

such as size, specific gravity, light exposure history, and nutrient quotas. A strength of 114 

Lagrangian particle models is that nearly continuous distributions of properties can be 115 

represented by allowing properties to vary by particle [e.g., Ross, O. N. and J. Sharples, 2008], 116 

while in Eulerian models property distributions are usually represented by a limited number of 117 

discrete property classes [e.g., Medrano, E. A. et al., 2013].  118 

A weakness of the Lagrangian approach is that artificial accumulation of particles can occur in 119 

low diffusivity areas in random-walk turbulence simulations for the case of spatially (vertically) 120 

non-uniform diffusivity if an inappropriate numerical scheme or time step is used [Visser, A., 121 
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1997]. These artifacts can be easy to misinterpret as features of interest. Several studies have 122 

applied Lagrangian particle models to the 1D column case with steady, idealized diffusivity 123 

profiles [Gräwe, U. et al., 2012; Ross, O. N. and J. Sharples, 2008; Visser, A., 1997]. In 3D 124 

ocean and lake models, use of random-walk vertical mixing schemes can be challenging because 125 

the required time step varies spatially and temporally over the model domain. A fixed time step 126 

may be selected that is adequate in most places and times [Huret, M. et al., 2007], or in some 127 

cases a well-mixed profile was imposed in shallow regions where a small time step would be 128 

required to avoid formation of artifacts [Gilbert, C. et al., 2010]. Our application required 129 

realistic rather than idealized diffusivity profiles for a polymictic lake in which conditions are 130 

alternately turbulent and stratified, and to simulate concentration profiles rather than specify a 131 

well-mixed condition, even in shallow areas, therefore some development of the random-walk 132 

approach was required.   133 

We describe a short-term forecast system for CHAB abundance and distribution in Lake Erie that 134 

takes a similar approach to that of Wynne et al. [2011], but uses updated hydrodynamic and 135 

Lagrangian particle tracking models, and includes a means of filling in cloud-covered areas of 136 

satellite images using model data from a previous run. In addition, we describe a method to 137 

simulate vertical distribution of buoyant cyanobacteria in stratified turbulence. We evaluated the 138 

performance of several random-walk turbulence numerical schemes in terms of computational 139 

efficiency and their ability to minimize artifacts in simulations with vertically-varying diffusivity 140 

typical of a large polymictic lake. We compared simulated vertical distributions of cyanobacteria 141 

to observed profiles in Lake Erie. Finally, we show that model skill statistics were improved by 142 
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including vertical mixing with buoyancy in hindcast simulations of the spatial distribution of the 143 

2011 bloom in Lake Erie. 144 

 145 

2 Methods 146 

2.1 Hydrodynamic model 147 

The Finite Volume Community Ocean Model (FVCOM, v. 3.2) is an unstructured grid, finite-148 

volume, free surface, three-dimensional primitive equation ocean model that solves the 149 

momentum, continuity, temperature, salinity, and density equations [Chen, C. et al., 2003]. 150 

Turbulence closure is implemented through the MY-2.5 scheme for vertical mixing [Galperin, B. 151 

et al., 1988], and the Smagorinsky scheme for horizontal mixing [Smagorinsky, J., 1963]. 152 

FVCOM has been adapted and implemented for the Great Lakes in several recent studies 153 

[Anderson, E. J. et al., 2015; Anderson, E. J. and D. J. Schwab, 2013; Anderson, E. J. et al., 154 

2010; Bai, X. et al., 2013], yielding accurate predictions of temperature, water levels, and 155 

currents. In particular, FVCOM has been applied to Lake Erie for extreme storm prediction 156 

[Anderson, E. J. et al., 2015] and serves as the oceanographic model underlying NOAA’s next-157 

generation Lake Erie Operational Forecast System (LEOFS), a real-time short-term 158 

hydrodynamic forecast model (http://tidesandcurrents.noaa.gov/ofs/leofs/leofs.html). 159 

The FVCOM-based LEOFS model was applied for this study with bathymetry interpolated from 160 

the NOAA National Geophysical Data Center. 161 

(www.ngdc.noaa.gov/mgg/greatlakes/greatlakes.html).  The unstructured grid consisted of 6,106 162 
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nodes and 11,509 elements (Fig. 1). Spatial resolution was 2 km in the central basin, 1.5 km in 163 

the western basin and 0.5 km in Maumee Bay and the islands (Fig. 1b) to improve representation 164 

of currents in these key areas for CHAB transport, with 20 uniform vertical sigma layers. 165 

Dynamic water levels (6-minute) were prescribed at open boundaries at the Detroit River and the 166 

Niagara River, taken from adjustments to the NOAA/NOS gauges at Gibraltar (9044020) and 167 

Buffalo (9063020), to drive the primary inflow and outflow, respectively (Fig. 1a). Atmospheric 168 

forcing conditions were generated using station-based interpolation methods as in the NOAA 169 

Great Lakes Coastal Forecasting System (Beletsky et al., 2003; Schwab and Beletsky, 1998). 170 

Hourly meteorological forcing variables of wind speed, wind direction, air temperature, dewpoint 171 

temperature, and cloud cover were interpolated over Lake Erie from several land-based 172 

meteorological stations and offshore NOAA/NDBC buoys (45004, 45132, and 45142), when 173 

available. Wind speeds were adjusted to 10-m height and empirical relationships were used to 174 

adjust land-based meteorological variables for over-lake modification (Beletsky et al., 2003; 175 

Schwab and Beletsky, 1998). 176 

Hydrodynamic model simulations were based on the real-time LEOFS nowcast, which was 177 

initialized on January 1, 2004 with uniform temperature of 2 ºC. For the 2011 scenario presented 178 

here, the hydrodynamic model simulation was initialized on January 1, 2011 with initial 179 

conditions provided by the simulation from the previous year, and produced hourly output of 180 

three-dimensional currents, water temperature, turbulent diffusivity, and 2D water level 181 

fluctuations. 182 
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2.2 Lagrangian particle tracking model 183 

Lagrangian particle tracking was accomplished using a Fortran program developed previously to 184 

study transport of larval cod in the Gulf of Maine [Churchill, J. H. et al., 2011; Huret, M. et al., 185 

2007], which is distributed as part of the FVCOM code package 186 

(http://fvcom.smast.umassd.edu/), and has previously been applied in the Great Lakes [Anderson, 187 

E. J. and M. S. Phanikumar, 2011]. Advection of particles was determined by 188 ݀݀ݐ (ݐ)ࢄ = ,(ݐ)ࢄ)ࢂ  (ݐ
(1)

where X(t) is the three-dimensional particle position at time t, and V(X(t),t) is the three-189 

dimensional, time varying velocity field. Linear interpolation in space and time was used to 190 

obtain V(X(t),t) from hourly-archived FVCOM output. The contribution of advection to the 191 

particle position was updated by integrating Eq. (1) using an explicit fourth-order Runge-Kutta 192 

scheme with a time step, ∆t = 600s. Vertical mixing due to turbulent eddy diffusivity was 193 

optionally simulated using one of several random-walk schemes, described below. We used 194 

reflected boundary conditions at vertical and horizontal boundaries in all simulations. 195 

2.3 Well-mixed condition test 196 

We compared the performance of several random walk vertical mixing numerical schemes using 197 

a well-mixed condition test case [Visser, A., 1997] that can be used to evaluate whether a given 198 

numerical scheme and time step will produce artifacts in simulated concentration profiles. In our 199 

case, the well-mixed condition simulation was performed by initiating 1000 particles, uniformly 200 

distributed through the water column, then simulating 1D vertical mixing with neutral buoyancy 201 
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using time series of Lake Erie diffusivity profiles output from FVCOM for the month of August, 202 

2011 (Table 1). Random noise in the simulated concentration profiles decreases with increasing 203 

number of particles, and 1000 particles were found to be adequate in 1D simulations [Ross, O. N. 204 

and J. Sharples, 2004]. These simulations are expected to give uniform concentration at all time 205 

regardless of the diffusivity profile, consistent with the Eulerian solution to the 1D diffusion 206 

equation with initial uniform concentration [Visser, A., 1997].  207 

To evaluate performance in the well-mixed condition test in a way that is directly relevant to our 208 

application, we defined a signal-to-noise ratio, SN, based on simulated surface concentration, 209 

(ݐ)ܰܵ = 1.0|/(ݐ)ܥ − (2) |(ݐ)௪௠ܥ

where ܥ௪௠(ݐ) is the time-dependent concentration in the 1-m thick surface layer, normalized to 210 

the column-mean concentration, in a well-mixed condition simulation with neutral buoyancy. A 211 

constant value of 1.0 is expected for ܥ௪௠(ݐ), therefore |1.0 −  represents the magnitude 212 |(ݐ)௪௠ܥ

of “noise” due to artifacts and random fluctuations due to calculating concentration by counting 213 

discrete particles in a control volume. The “signal” is provided by the analogous surface 214 

concentration, (ݐ)ܥ, from an identical simulation with buoyancy. A large value of SN indicates 215 

that artifacts are small compared to the effect of interest, which is the fluctuation in surface 216 

concentration due to buoyancy. SN can be made arbitrarily large by using a small time step and a 217 

large number of particles, but at the expense of computational time. We selected a value of 5 as a 218 

goal minimum value for SN, based on the “Rose criterion” for the detection limit of the human 219 

eye for image features [Rose, A., 1948]. Accordingly, we used the frequency of occurrence of SN 220 
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< 5 over the hourly records in a simulation as the performance criterion by which to evaluate the 221 

numerical schemes and time step criteria. 222 

2.4 Random walk vertical mixing schemes 223 

We evaluated the Visser [1997] scheme, as-implemented by Huret et al. [2007] 224 

ݐ)ݖ + (ݐߜ = (ݐ)ݖ + ݐߜ௕ݓ + ݐߜ൯(ݐ)ݖᇱ൫ܭ + ܴඨ2ߪݐߜ(ݖ̃)ܭଶ  
(3)

where z(t) is the vertical position of the particle at time t, ݐߜ is the vertical random walk time 225 

step, wb is a floating/sinking/swimming vertical velocity component, K is the vertical turbulent 226 

diffusivity, ܭᇱ =  R is a random variable sampled from a uniform distribution with zero 227 , ݖ݀/ܭ݀

mean and standard deviation ߪ, and ̃ݖ = (ݐ)ݖ +  is a vertical position displaced 228 ݐߜ((ݐ)ݖ)ᇱܭ0.5

from the particle position as a function of the diffusivity gradient. Following Ross and Sharples 229 

[2004], a cubic spline interpolation was used to obtain a continuous, differentiable diffusivity 230 

profile.  231 

In addition to the Visser scheme, described above, we evaluated random walk vertical mixing 232 

schemes with higher order accuracy including the Milstein, Strong 1.5 (S1.5), and Platen two-233 

step (PC2) schemes that were implemented in Fortran for the General Ocean Turbulence Model 234 

by Gräwe [2011]. After evaluating the performance of ten random walk schemes [Gräwe, U., 235 

2011], Grawe et al. [2012] recommended the use of either the Milstein scheme or higher-order 236 

schemes such as S1.5 or PC2. The order of accuracy (rate of convergence) of numerical 237 

approximations to stochastic differential equations is separated into weak and strong cases, where 238 
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the weak case relates to the accuracy of the ensemble particle distribution, while the strong case 239 

relates to the accuracy of particle trajectories [Gräwe, U., 2011]. The weak order of accuracy of 240 

the schemes that we evaluated was 1 for Visser and Milstein, and 2 for S1.5 and PC2. The strong 241 

order of accuracy was 1 for Milstein, 1.5 for S1.5, and was not defined for Visser or PC2 [Gräwe, 242 

U., 2011]. The Milstein scheme is  243 

ݐ)ݖ + (ݐߜ = (ݐ)ݖ + ݐߜ௕ݓ + ൯ሾΔWଶ(ݐ)ݖᇱ൫ܭ0.5 + ሿݐߜ + Δܹඥ2(4) ((ݐ)ݖ)ܭ

where Δܹ is a random variable drawn from a Gaussian distribution with zero mean and standard 244 

deviation √ݐߜ. Because the Milstein scheme is first order, linear interpolation of the diffusivity 245 

profile to obtain ((ݐ)ݖ)ܭ and ܭᇱ൫(ݐ)ݖ൯ are sufficient, and the added computational expense 246 

compared to the Visser scheme (Eq. 3) is minimal. The second order schemes S1.5 and PC2 247 

retain additional terms from the stochastic Taylor expansion, including higher order derivatives 248 

that require the application of cubic splines to the diffusivity profile, and S1.5 requires an 249 

additional random variable, therefore the second order schemes have greater computational 250 

expense. We refer to Gräwe [2011] for a full explanation of the S1.5 and PC2 schemes.  251 

2.5 Random walk time step 252 

Visser [1997] introduced a time step criterion, ݐߜ ≪ min (1/|ܭᇱᇱ|), where ܭᇱᇱ is the second 253 

derivative of the diffusivity profile, so that the diffusivity profile is reasonably approximated by a 254 

first-order Taylor series expansion over the range of particle displacement. Ross and Sharples 255 

[2004] found that 256 
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ݐߜ = ᇱᇱ| (5)ܭ|1100

is acceptable in most applications. To ensure the use of an appropriate time step throughout a 3D 257 

model domain, and to avoid the need to specify an appropriate ݐߜ in advance, we modified the 258 

code of Huret et al. [2007] to allow an appropriate value of ݐߜ to be calculated and applied for 259 

each particle at each ݐߜ. To evaluate Eq. (5) independently of spline interpolation, we calculated 260 ܭᇱᇱ directly at the FVCOM sigma levels using a centered finite difference approximation, and 261 

extended the profile beyond the surface and bottom by reflection. We further limited 0.01 ݏ ݐߜ  262≥ ≥  Δݐ. We tracked the minimum ݐߜ during simulations to confirm that the lower limit of 0.01 263 

seconds was rarely applied. 264 

2.6 Measurement of Microcystis colony size distribution 265 

We assigned buoyant velocity in the model based on measured size distributions and regressions 266 

of buoyant velocity versus colony diameter. We measured Microcystis colony diameter of Lugol 267 

preserved samples collected from western Lake Erie in the summers of 2012, 2013, and 2014. In 268 

2012 and 2013 colony diameters were measured by microscopy (Table 1). In 2014 we used the 269 

FlowCam (Fluid Imaging Technologies). The FlowCam captures images of individual colonies 270 

and estimates their equivalent spherical diameter by image analysis. Wang et al. [2015] showed 271 

that counts and colony diameters of Microcystis given by FlowCAM and microscopic image 272 

analysis diameters were nearly identical. Colonies in Lake Erie are typically > 50 µm 273 

[Vanderploeg, H. A. et al., 2001] and buoyant. Samples were preserved with 1% formalin upon 274 

collection, immediately refrigerated, and analyzed within 24 hours.  FlowCam analyses were 275 
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performed with a 2× objective and 1 × 3 mm field of view flow cell with samples diluted as per 276 

manufacturer recommendations to avoid capturing more than one image per trigger event. 277 

Fluorescent triggering mode was used to avoid imaging detrital material that might be confused 278 

with Microcystis. Samples were diluted in 0.2 µm filtered algal culture media [e.g., Vanderploeg, 279 

H. A. et al., 2001] and injected into the FlowCAM with a 60-mL syringe, which was constantly 280 

turned over so as to prevent the buoyant colonies from aggregating in the syringe. The image 281 

analysis algorithm was calibrated to identify the colony outline including the mucilage. 282 

2.7 Measurement of Microcystis colony buoyant velocity 283 

Microcystis colony buoyant velocity was measured using microscopic videography [Bundy, M. 284 

H. et al., 1998; Strickler, J. R., 1985], a method in principle similar to that of Nakamura et al. 285 

[1993]. Surface water samples were collected on 15 and 21 July 2015 (Table 1) at station WE15 286 

(Fig. 1b, -83.0, 41.6) during the early afternoon. Water was placed in 1-L glass bottles in an 287 

incubator outdoors with a neutral density filter to cut light intensity to 50% of surface irradiance. 288 

Measurements of colony velocities were made throughout the morning and afternoon of the next 289 

day. Digital video clips were captured of individual colonies rising through a 2-cm × 2-cm cross 290 

section × 30-cm tall glass cuvette filled with ambient lake water inside of a water jacket in a 291 

temperature controlled environmental room maintained at the lake temperature. Image capture 292 

and analysis software (Templo Motus, Vicon Motus, Contemplas, GmbH, Germany) was used to 293 

measure the velocity of the rising colonies. Diameters of the colonies were determined from 294 

image analysis of video images using Image-Pro software (Media Cybernetics, Rockville, MD). 295 
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Water samples were diluted as needed with 0.2- µm filtered lake water to avoid turbulence 296 

induced by multiple rising colonies. 297 

2.8 Measured vertical profiles of temperature and cyanobacterial concentration 298 

Vertical profiles of temperature and cyanobacterial concentration (reported in μg chlorophyll a L-299 

1) were measured using the FluoroProbe (bbe Moldaenke, GmbH), which uses spectral 300 

fluorometry to partition total chlorophyll into multiple phytoplankton classes on the basis of their 301 

characteristic pigments (green algae, cyanobacteria, diatoms/dinoflagellates, cryptophytes), with 302 

correction for possible interference by colored dissolved organic matter [Catherine, A. et al., 303 

2012; Kring, S. A. et al., 2014]. Standard factory calibration settings for representative algal 304 

classes were used. Profiles were measured at 11 stations (Fig. 1) weekly from June through 305 

September, 2015 (Table 1). Profiles were selected for model skill assessment in which the 306 

cyanobacterial chlorophyll was greater than chlorophyll from other algal classes, which occurred 307 

13 July to 28 September.   308 

2.9 Satellite remote sensing data 309 

To initialize model simulations, and for model skill assessment, we used a series of images of 310 

cyanobacterial blooms in Lake Erie from July to October 2011 (Table 1) that were derived from 311 

the Medium Resolution Imaging Spectrometer (MERIS) [Wynne, T. T. and R. P. Stumpf, 2015]. 312 

MERIS standard level 2 data sets (in units of sr-1) were used with a spectral shape algorithm 313 

based around 680 nm [Wynne, T. et al., 2008] to obtain the cyanobacterial index (CI). CI varies 314 

linearly with biomass, with a value of 10-3 sr-1 corresponding to approximately 105 cells mL-1 315 
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[Stumpf, R. P. et al., 2012], which is the World Health Organization’s threshold of significantly 316 

increased risk for human health effects [Chorus, I. and J. Bartram, 1999]. For our analysis, we 317 

converted CI to chlorophyll concentration using an empirical relationship derived from field 318 

radiometry and grab sample extracted chlorophyll from eutrophic lakes in Florida (R2 0.95, std. 319 

error 7.7 µg L-1, range 16 to 115 µg L-1). The relationship was also verified for satellite-derived 320 

CI, and gave a relative root-mean square error of 27% [Tomlinson, M. C. et al., 2016].  321 

ℎ݈ܥ = 12570 ܫܥ + 10 (6)

A value of CI = 10-3 sr-1 is approximately equivalent to 23 µg L-1 chlorophyll, which we used as a 322 

threshold to define the presence of a CHAB. 323 

2.10 Hindcast simulations 324 

Daily satellite images for the period July to October 2011 were evaluated, and 26 images were 325 

selected that had > 50% cloud-free views of western Lake Erie. A ten-day model simulation was 326 

initialized from each image by assigning surface chlorophyll concentration values to FVCOM 327 

nodes by nearest neighbor interpolation. Concentration was converted to Lagrangian particles by 328 

specifying a chlorophyll mass per particle (1010 µg Chl particle-1) and placing the specified 329 

number of particles within a control volume. The FVCOM node-centered tracer control elements 330 

were used as control volumes (Fig. 1). Vertical layers were specified as constant-thickness (1 m) 331 

z-layers.  332 

Preliminary hindcast skill assessment indicated a need to censor satellite data within a buffer 333 

region of shorelines due to frequent false positives in these areas, which was likely caused by 334 
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contamination of the water signal from relatively bright surrounding land or by bottom 335 

reflectance. The buffer width was set to 1 km south of Stony Point (41.94 °Lat.) and east of 336 

Catawba Island (-82.85 °Lon.) and to 1.5 km elsewhere. The buffer was not applied in Maumee 337 

Bay because CHABs were often present [Wynne, T. T. and R. P. Stumpf, 2015], reducing the 338 

likelihood of false positives. Buffered or missing data areas were assigned values by nearest 339 

neighbor if pixels containing valid data were available within 2 km. If no valid pixels were 340 

available within 2 km of a node one of two approaches was used: 1) it was assumed that no 341 

CHAB was present (Chl = 0), or 2) model output was carried forward to fill in the no-data area if 342 

a previous model run was available covering the time period.  343 

Two types of simulations were run, 2D and 3D. In 2D simulations, the surface chlorophyll 344 

concentration was applied to the surface 1 m, with Chl = 0 below, and random walk vertical 345 

mixing was turned off. In 3D simulations, surface chlorophyll concentration was applied over the 346 

surface mixed layer (SML) depth (see below), and random walk vertical mixing was simulated. 347 

Both 2D and 3D simulations included 3D advection.  348 

2.11 Estimation of the surface mixed layer depth 349 

It was necessary to estimate the surface mixed layer (SML) depth for buoyant Microcystis 350 

colonies for the purpose of initializing the vertical distribution of particles (chlorophyll 351 

concentration) in 3D simulations from satellite-derived surface chlorophyll concentration. The 352 

vertical distribution of buoyant particles in the water column depends on buoyancy in addition to 353 

turbulent diffusivity (e.g., Fig. 2d,e); therefore, we used the Lagrangian particle model to estimate 354 

the initial vertical distribution of Microcystis colonies rather than using diffusivity or temperature 355 
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profiles from FVCOM directly. Initial vertical profiles were simulated at a subset of FVCOM 356 

nodes (stations) because a large number of particles is needed to obtain a well-resolved profile, 357 

which would be computationally intensive to simulate at all 6,106 nodes. The SML depth was 358 

estimated by running 1D column vertical random walk simulations at 11 station locations (Fig. 359 

1b) that were selected to provide representative coverage of the western basin where CHABs are 360 

most common, with additional stations added at representative deeper locations. 1D simulations 361 

were initialized with 1000 particles uniformly distributed over the column 36 hours prior to the 362 

initialization time of the 3D model (satellite image time) to allow the particle distribution 363 

sufficient time to adapt to the varying diffusivity. Random walk vertical mixing was forced by 364 

hourly diffusivity output from FVCOM. The SML depth for Microcystis colonies was estimated 365 

as the depth at which the 1D concentration profile decreased to half the surface concentration, 366 

and the satellite-derived surface concentration was applied from the surface to this depth; this 367 

approach provides an unbiased estimate of the total column biomass for the case of a uniform 368 

concentration profile or a profile that can be approximated by a linear decrease. SML depth was 369 

interpolated spatially to the FVCOM nodes by the nearest neighbor method. 370 

2.12 Model skill statistics 371 

Comparison of model results to in-situ profile data was conducted using column-integrated 372 

quantities to minimize the effect of noise in the profile data on the statistics. Turbulent diffusivity 373 

is strongly influenced by the static stability of the water column, which can be quantified using 374 

the potential energy anomaly, ߶,  375 
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߶ = 1ℎ න ොߩ) − ௛ݖ݀ݖ݃(ߩ
଴ ; ොߩ = 1ℎ න ௛ݖ݀ߩ

଴  
(7)

where  is the local density, h is the water column depth, and g is acceleration due to gravity   376 

[Simpson, J. and D. Bowers, 1981; Wiles, P. et al., 2006]. Vertical distribution of concentration 377 

was characterized by calculating the center of mass of the normalized concentration profile, ߪ௠ 378 

௠ߪ = ܥ1 ෍ ܿ௞ߪ௞௞್
௞ୀଵ ; ܥ = ෍ ܿ௞௞್

௞ୀଵ  
(8)

where ߪ =  ℎ is the normalized vertical coordinate, c is the concentration at layer k normalized 379/ݖ

to the column-mean concentration, kb = 20 is the number of uniformly-spaced ߪ layers in the 380 

model grid. The observed concentration profile was averaged over the ߪ layers of the model grid 381 

for the purpose of comparison to the model profiles. 382 

Skill assessment in hindcast simulations was conducted by comparing model results to remote 383 

sensing images that were within the model simulation period. Each hindcast simulation was 384 

initialized from a satellite image, and two to four subsequent images were typically available 385 

within the simulation period for skill assessment. Skill assessment was conducted using a binary 386 

categorical variable (CHAB, no CHAB), and pixel-by-pixel comparisons of model to remote 387 

sensing observations were conducted. FVCOM tracer control elements (Fig. 1) were used as the 388 

spatial segmentation (pixels).  389 

Our approach to skill assessment statistics followed Hogan and Mason [2012]. Two statistics 390 

were calculated from the elements of the contingency table, which are the number of a, correctly 391 

ρ
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predicted events (hits); b, false events (false alarms); c, false negatives (misses); and d, correct 392 

non-events. The frequency bias (B) gives the ratio of the number of forecasts of occurrence to the 393 

number of observed occurrences, 394 

ܤ = ܽ + ܾܽ + ܿ  
(9)

and the Pierce Skill Score (PSS) gives the hit rate minus the false alarm rate.  395 

ܲܵܵ = ܽ݀ − ܾܿ(ܾ + ݀)(ܽ + ܿ)  
(10)

An unbiased forecast has a frequency bias B = 1.0. PSS values range from -1.0 to 1.0, with 396 

positive values indicating that the hit rate was greater than the false positive rate, and therefore 397 

the model had greater skill than a random forecast or constant CHAB or no-CHAB prediction 398 

[Hogan, R. J. and I. B. Mason, 2012]. 399 

To provide a reference forecast for skill comparison, we defined a “persistence” forecast as the 400 

assumption of no change from the satellite image that was used to initialize the model, which 401 

represents the best available information to a forecast user in the absence of a useful model. We 402 

took the further steps of filling in missing data in the persistence forecast with the most recent 403 

satellite data for each spatial segment, and applying the same shoreline buffering procedure that 404 

was used to initialize the model.  405 

To test whether the model had significantly greater skill than the persistence forecast, we used the 406 

bootstrap method described by Hogan and Mason [2012] to estimate the confidence interval 407 

around the difference in skill score of the model compared to the persistence forecast. Starting 408 
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with a series of n triplets of observations, model predictions, and persistence predictions, we 409 

created 1000 different bootstrap samples, each of length n, by taking random samples with 410 

replacement from the series. We then calculated the difference in PSS, ΔPSS, for each bootstrap 411 

sample. Finally, we estimated the 95% confidence interval as the 0.025 to 0.975 quantiles of the 412 

ensemble of 1000 values of ΔPSS. While analytical formulas are available to estimate the 413 

uncertainty in PSS, the bootstrap method accounts for effects of spatial and temporal 414 

autocorrelation in environmental data, which effectively reduce the number of independent 415 

observations to be < n [Hogan, R. J. and I. B. Mason, 2012]. 416 

 417 

3 Results and Discussion 418 

Western Lake Erie is polymictic, meaning that it does not continuously stratify during the 419 

summer owing to shallow bathymetry and exposure to wind. Temperature profiles simulated by 420 

FVCOM show periods of temporary stratification that are strongest during calm afternoons when 421 

the surface is warmed by the sun and warm summer air (Figure 2a, 19-20 Aug.). At night, 422 

cooling of the surface often causes deepening of the surface mixed layer by convection. This diel 423 

cycle can be overpowered by shear-induced mixing during windy periods (Fig. 2a, 21-22 Aug.). 424 

The temperature difference over the water column during periods of stratification is small (Fig. 425 

2a), but the static stability is sufficient to cause turbulent diffusivity to vary by orders of 426 

magnitude over a depth range of a few meters (Fig. 2b). Random walk turbulence schemes are 427 

susceptible to formation of artificial accumulations of particles in the presence of strong gradients 428 

in diffusivity [Visser, A., 1997]. 429 
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3.1 Vertical random walk schemes 430 

We tested the random walk schemes using a 1D well-mixed condition simulation (see Methods) 431 

that was run using hourly time series of diffusivity profiles output from FVCOM for the month of 432 

August 2011 at stations representative of the range of conditions that occur during the summer 433 

CHAB season in western Lake Erie (Fig. 1). The range of conditions represented by the 434 

diffusivity profiles can be characterized by defining a Peclet number that represents the ratio of 435 

mixing time scale to floating/sinking time scale of the water column, ܲ݁ =  ഥ, where h is 436ܭ/௕ℎݓ 

the water column depth and ܭഥ is the column mean eddy diffusivity [Ross, O. N. and J. Sharples, 437 

2004]. Values of Pe >> 1 indicate that wb has a strong influence on particle concentration 438 

profiles. Combining the time series of diffusivity profiles that was used in the well-mixed 439 

condition simulations with wb = 70 μm s-1 (see below), values ranged on the order of 0.01 < Pe < 440 

100. A small time step is usually required for Pe << 1 because small h and large ܭഥ will produce 441 

strong gradients in diffusivity for realistic diffusivity profiles (i.e., K ~ 0 at the bottom or at the 442 

thermocline), and therefore, small values of the Visser time step criterion (Eq. 3). At the 3-m 443 

deep station (WE6) the variable time step occasionally was limited by the specified minimum and 444 

maximum values of 0.01 and 600 s, with typical hourly means of 0.2-3 s. At the 13-m deep 445 

station (NDBC45005) in the central basin the water column was continuously stratified, and 446 

longer time steps could be used; hourly minimum values of the variable time step were typically 447 

0.2-2 s, mean values were 3-30 s and maximum hourly values were constrained by the upper 448 

limit of 600 s.  449 
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Example time series of concentration profiles output from a well-mixed condition simulation are 450 

shown in Figure 2. A typical particle accumulation artifact is visible in Fig. 2c, where the 451 

normalized concentration deviated from the expected constant value of unity. The artifact formed 452 

when high diffusivity in the surface mixed layer on 24 August (Fig. 2b) caused particles to jump 453 

across the sharp diffusivity gradient into the area of low diffusivity in the lower half of the water 454 

column without the opportunity for the gradient term (Eq. 3-4) to push the particles back toward 455 

the high diffusivity SML. Improved performance can be seen in Fig. 2d, where the variable time 456 

step was reduced during the high diffusivity event on 24 August, thereby limiting the maximum 457 

particle displacements and reducing the magnitude of the artifact.   458 

The Gräwe Milstein scheme [Gräwe, U., 2011] with the variable time step provided the best 459 

combination of computational efficiency and accuracy of the random-walk numerical schemes 460 

tested. The shortest run time was achieved by the Gräwe Milstein scheme (Fig. 3a), which was 461 

unique in the use of linear interpolation of diffusivity to the particle position, while the other 462 

schemes used cubic splines at a greater computational cost. The second order schemes, PC2 and 463 

S1.5, required greater computational effort to calculate additional terms and had the longest run 464 

times. The run time of the variable time step simulation was similar to that of the fixed 1 s time 465 

step for the Visser and Milstein schemes because the average of the variable time step was 466 

similar to the value of the fixed 1 s time step (Fig. 3a). The Milstein schemes showed improved 467 

accuracy compared to the Visser scheme with the fixed 1 s time step (Fig. 3b), consistent with the 468 

finding of Gräwe [2011]. All schemes were more accurate with the variable time step than with 469 

the fixed 1 s time step (Fig. 3b) because the Visser time step criterion (Eq. 5) was always 470 
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satisfied in the case of the variable time step. The second order schemes did not offer sufficiently 471 

improved accuracy to compensate for their greater computational effort (Fig. 3a,b).  472 

In contrast to our result, Gräwe (2011) found that the second order schemes did offer improved 473 

accuracy that justified the additional computational effort, but for the case of idealized diffusivity 474 

profiles specified at high vertical resolution and for a realistic test case of a tidally-mixed bay 475 

with model diffusivity output at 200 levels. In our case of a shallow polymictic lake, diffusivity 476 

profiles were highly irregular with sharp gradients (Fig. 2b), and diffusivity was output at only 20 477 

levels. We found that spline fits often had spurious features between the levels at which 478 

diffusivity was specified by FVCOM that were not representative of physically realistic 479 

diffusivity profiles. Higher-order random walk schemes depend on higher-order derivative terms 480 

from the spline fits to the diffusivity profiles [Gräwe, U., 2011], which may not be accurate in the 481 

case of a non-representative spline fit. The higher order schemes might produce better results if 482 

we were to output diffusivity at a large number of levels, but that would come at the expense of 483 

greater computational effort in the hydrodynamic model. For our application, the Gräwe Milstein 484 

scheme produced satisfactory results and did not require a spline fit, so it was selected for further 485 

work.  486 

3.2 Microcystis colony size distribution and buoyant velocity 487 

The parameter wb represents the Microcystis colony terminal velocity resulting from the balance 488 

of forces between buoyancy and fluid drag. Our approach was to specify a Microcystis colony 489 

size distribution, then apply an empirical relationship between wb and colony diameter to obtain a 490 

frequency distribution of wb for use in the model. According to Stoke’s law for the terminal 491 
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velocity of a floating/sinking spherical particle in a fluid, one might expect the relationship 492 

between wb and colony diameter to give a straight line on a log-log plot with a slope of 2. 493 

However, Nakamura et al. [1993] showed that Microcystis colony specific gravity approaches 494 

that of the surrounding fluid as colony diameter increases owing to the fractal geometry of the 495 

colonies and the increasing volume of void spaces filled with the surrounding water; the result is 496 

that the slope of the log-log plot is < 2.  497 

The Microcystis colony diameter frequency distribution measured by FlowCam was unimodal 498 

with a median of 117 μm and a maximum of 740 μm (Fig. 4a, Station WE12, 4 Aug 2014). The 499 

size frequency distribution measured by microscopy on samples collected at stations WE 2,4,6, 500 

and 8 in July – October 2013 and June – July 2014 gave a similar size distribution to that of the 4 501 

August 2014 sample (Fig. 4a). It is likely that the colony size distribution varies to some extent 502 

spatially and temporally [e.g., Lin, L. et al., 2014], and our estimate could be refined through 503 

additional measurements. Even so, the consistency between our two estimated size distributions 504 

gives some indication of representativeness.  505 

Our measured values of Lake Erie Microcystis colony buoyant velocity, wb, were similar to those 506 

of Nakamura et al. [1993] for colonies larger than 200 μm in their sample collected from a lake in 507 

Japan on 3 August 1990, and generally less than their 18 September sample (Fig. 4b). We were 508 

not able to resolve colonies smaller than 200 μm by our method; however, large colonies account 509 

for the majority of biomass and toxin concentration. For example, colonies > 112 μm accounted 510 

for 93% of Microcystis cells (biomass) in Lake Erie samples [Chaffin, J. D. et al., 2011], and 511 

colonies > 100 μm showed the highest proportion of microcystin-producing genotypes, highest 512 
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microcystin cell quotas, and highest microcystin production rate, compared to smaller colony size 513 

classes in Lake Wannsee, Germany [Kurmayer, R. et al., 2003]. In addition to colony size, 514 

Microcystis buoyancy is a function of Microcystis strain and light exposure history, as it affects 515 

gas vacuole and carbohydrate content of the cells [Ibelings, B. W. et al., 1991; Xiao, Y. et al., 516 

2012]. Further research is necessary to define buoyant velocities over a wide size range of Lake 517 

Erie Microcystis under a variety of environmental conditions. Our results, while limited in size 518 

range, do show similarity between the > 200 μm values of Nakamura et al. [1993] and samples 519 

from two different dates in Lake Erie, and support using the lower estimate of buoyancy (Fig. 4b, 520 

N93 3 Aug.) from Nakamura et al. [1993]. 521 

For the model simulations, we assigned buoyant velocities to Lagrangian particles by random 522 

sampling with replacement from the frequency distributions shown in Figure 4c, which were 523 

obtained by applying the regression lines (Fig. 4b) from the data of Nakamura et al. [1993] to the 524 

diameter frequency distribution from the 8 August 2014 sample from Lake Erie (Fig. 4a). We 525 

tested the sensitivity of 1D model simulations to the two buoyant velocity frequency distributions 526 

shown in Figure 2c, and refer to these hereafter as “N93 3 Aug” and “N93 18 Sep”. Example 527 

time series of concentration profiles simulated with the low estimate of buoyancy (N93 3 Aug) 528 

are shown in Figure 2e. 529 

3.3 Vertical profiles of cyanobacterial concentration and temperature 530 

We tested the ability of the random-walk model with buoyancy to simulate realistic Microcystis 531 

concentration profiles by comparing measured profiles of cyanobacterial chlorophyll 532 
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concentration from Lake Erie (predominantly Microcystis) to corresponding 1D simulations. On 533 

20 July, the concentration profile showed strong accumulation within the surface two meters 534 

(Fig. 5a), which corresponded to a surface mixed layer defined by a thermocline at 2-m depth 535 

(Fig. 5b). A second profile was measured on 9 September, which showed concentration 536 

enrichment within a 3-m thick surface mixed layer (Fig. 5c), which was similarly defined by a 537 

thermocline at 3-m depth (Fig. 5d).  538 

The temperature difference across the thermocline in both cases was only about 1 °C (Fig. 5b,d), 539 

but the FVCOM simulations indicated that such subtle stratification features can have a strong 540 

influence on diffusivity (e.g., Fig. 2a,b). The accuracy of temperature simulations in 541 

hydrodynamic models is often only within a few degrees, which brings into question whether the 542 

subtle stratification features that are influencing the Microcystis vertical distribution can be 543 

reasonably simulated by a hydrodynamic model. Even though the simulated temperature profiles 544 

have a warm bias of 1-2 °C, at these locations and times, they show thermoclines at multiple 545 

levels that are similar to the observed profiles (Fig. 5b,d). The deeper thermocline may have 546 

formed due to convective deepening of the SML overnight, followed by surface warming during 547 

the day that produced the shallower thermocline; the profiles were captured in the afternoon. It is 548 

the static stability of the profile rather than the absolute temperature that is important in 549 

simulation of the diffusivity, and the static stability of the simulated and observed profiles is in 550 

reasonable agreement (Fig. 5b,d). Over the full set of 69 profiles, the frequency distribution of 551 

static stability simulated by FVCOM was in reasonable agreement with the observed frequency 552 



29 

 

distribution, although the model was biased slightly less stable than the observations (Fig. 6b, 553 

Table 2). 554 

Simulated normalized concentration profiles of buoyant particles showed enrichment within the 555 

surface mixed layer, similar to the observed profiles (Fig. 5a,c). We calculated the center of mass, 556 

σm, of the concentration profile as a column-integrated indicator of the vertical distribution of 557 

concentration (horizontal lines in Fig. 5a,c). Concentration was weighted toward the surface (σm 558 

> -0.5) in > 80 % of the observed profiles (Fig. 6a), which is consistent with the assumption to 559 

treat Microcystis colonies as buoyant particles in the model.  560 

We selected the lower estimate of buoyancy (N93 3 Aug) for use in the hindcast simulations. The 561 

simulated frequency distribution of σm was in reasonable agreement with the observed 562 

distribution for both the low and high estimates of wb, although the low estimate was closer to the 563 

observations (Fig. 6a, Table 2). Similarly, the direct measurements of wb also indicated better 564 

agreement with the lower estimate of buoyancy (Fig. 4b). 565 

3.4 Hindcast simulations of CHAB intensity and distribution 566 

Having shown that 1D random walk simulations reasonably approximated the changing vertical 567 

distributions of buoyant Microcystis colonies in response to varying turbulence, we went on to 568 

test whether inclusion of this mechanism in the forecast model improved model skill. Hindcast 569 

simulations were initiated from each of the 26 quality satellite images of CHAB distribution for 570 

the 2011 CHAB season.  571 



30 

 

In one example, a hindcast simulation was initialized on 6 August, which was a calm day (wind < 572 

5 m s-1) with an intense CHAB event throughout the central western basin (Fig. 7a). On the 573 

following day, wind increased (5-10 m s-1), and a second satellite image indicated reduced 574 

surface CHAB intensity and distribution (Fig. 7d). The 3D simulation captured the reduced 575 

surface CHAB intensity on 7 August, while the 2D model did not, which can be seen 576 

qualitatively by comparing Figures 7e and 7f, and was indicated quantitatively by reduced 577 

frequency bias (B) of the 3D simulation compared to the 2D simulation (3D B = 1.10; 2D B = 578 

1.34). On day 9 (15 Aug.), the simulated CHAB distribution was distinctly different between the 579 

2D and 3D models (Fig. 7h,i). In comparison to the 2D model, the 3D model CHAB distribution 580 

was more similar to the observed distribution (3D PSS = 0.56; 2D PSS = 0.41), having less 581 

CHAB coverage in the central basin east of Sandusky and more continuous coverage along the 582 

coast from Monroe to Toledo. Both 2D and 3D models simulated the advection of CHAB to Port 583 

Clinton (Fig 7b,c and h,i), which was minimally affected by CHAB on 6 August and fully 584 

covered on 15 August (Fig. 7a,g). 585 

In a second example, a hindcast simulation was initialized on 29 August, which was a date with 586 

only partial coverage by the satellite image, leaving no data over much of the western basin (Fig. 587 

8a). Output from a previous model run was used to initialize the CHAB distribution in the 588 

western basin (Fig. 8b,c). On simulation day four (2 Sept.) a second partial satellite image 589 

indicated extensive CHAB coverage in the western basin (Fig. 8d), consistent with both models. 590 

Both 2D and 3D models underestimated the CHAB coverage, although the 3D model better 591 

matched the observed coverage (2D B = 0.81, PSS = 0.76; 3D B = 0.90, PSS = 0.84; Fig. 8d,e,f). 592 
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The partial image on 2 September did not show the extensive CHAB outbreak into the central 593 

basin east of Leamington, Ontario, although it was simulated by both 2D and 3D models (Fig. 594 

8e,f), and was revealed the following day in the 3 September satellite image (Fig. 8g). The 3D 595 

model better simulated the CHAB distribution on simulation day 5 (3 Sept.) than the 2D model 596 

(2D B = 0.79, PSS = 0.68; 3D B = 0.99, PSS = 0.80; Fig. 8g,h,i). 597 

The examples in Figures 7 and 8 show, that both 2D and 3D models capture some observed 598 

events that may be attributed to advection, but the 3D model performed better in several cases. 599 

The 3D model is initialized with a better estimate of total biomass than the 2D model because an 600 

estimate of the surface mixed layer depth for buoyant Microcystis colonies is used to assign the 601 

depth over which the satellite-derived surface concentration is applied. In addition, the 3D model 602 

is able to simulate changing surface concentration in response to changing mixed layer depth. 603 

Finally, the 3D model produced different final CHAB spatial distribution than the 2D model, 604 

which likely results from the more accurate vertical distribution within a complex 3D flow field.  605 

3.5 Summary of hindcast skill statistics 606 

Skill statistics were summarized by simulation day to evaluate how long the model can be run 607 

from initialization before skill begins to decline. The Pierce skill score (PSS) gave positive values 608 

for the 2D model, 3D model, and the persistence forecast on simulation days 1-10 (Fig. 9). 609 

Positive values of PSS indicate that the hit rate was greater than the false positive rate, and 610 

therefore the model had greater skill than a random forecast or constant CHAB or no-CHAB 611 

prediction [Hogan, R. J. and I. B. Mason, 2012]. The frequency bias was less than 1.0 on 8 of 10 612 

forecast days, indicating that both models had an overall bias toward under-prediction, although 613 
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not consistently so (Fig. 9a,b). The 95% confidence intervals on the difference in PSS indicated 614 

that the 3D model displayed significantly greater skill in the hindcast simulations than the 615 

persistence forecast through simulation day 6, and was not significantly worse than the 616 

persistence forecast through day 10 (Fig. 10). The 3D model had significantly greater skill than 617 

the 2D model over the full simulation period. The 2D model had significantly less skill than the 618 

persistence forecast on all simulation days (Fig. 10). 619 

It may be surprising that the persistence forecast displayed a reasonable level of skill. This can be 620 

explained in that the spatial distribution of CHABs in Lake Erie has a number of persistent 621 

features. For example CHABs often persist in the southern and western portions of the western 622 

basin, while they are rarely present in the Detroit River plume and in the central basin east of the 623 

islands, as indicated by 13 years of Lake Erie CHAB spatial patterns compiled by Wynne and 624 

Stumpf [2015]. The model does not necessarily preserve these persistent features. For example 625 

CHABs may be erroneously flushed from Maumee Bay in long simulations, although this 626 

happened to a lesser extent in the 3D model than in the 2D model (Fig. 7g,h,i). The skill of the 627 

persistence forecast indicates that the most recent satellite image is a reasonable indication of the 628 

CHAB distribution for several days after. 629 

Skill statistics based on pixel-by-pixel comparisons, and use of a persistence forecast as a 630 

benchmark, provide a useful point of comparison among models, but do not capture all aspects of 631 

model performance. For example, the large simulated plume that extended into the central basin 632 

on 3 September (Fig. 8g,h,i) does not exactly match the observed plume in terms of shape and 633 

position. This pattern mismatch detracted from pixel-by-pixel skill statistics, but both models 634 
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provided information regarding the existence of this transport event before it could be seen in 635 

satellite imagery; information that would be useful to forecast users even if the shape of the 636 

plume is not entirely accurate. A persistence forecast can score reasonably well in skill statistics 637 

that compare spatial patterns, but cannot provide any information on likely transport trajectories. 638 

Therefore, even though the 2D model had less skill than the persistence forecast (Fig. 10), this 639 

does not indicate that the 2D model has no value because it may provide useful information on 640 

likely transport trajectories. It is a challenge to formulate skill statistics that test for accuracy in 641 

simulation of transport events, largely because it is difficult to identify and quantify transport 642 

events by comparing among subsequent satellite images. Wynne et al. [2011] attempted to 643 

calculate skill statistics based on movement of the bloom centroid; however, this approach is 644 

likely to work only for special cases because accurate calculation of the bloom centroid is 645 

sensitive to missing data (cloud cover) and the bloom often consists of multiple patches that may 646 

move in different directions rather than one distinct patch. Formulation of appropriate skill 647 

statistics for CHAB forecasts is an area for further work.  648 

3.6 Ecological significance 649 

Aside from the specific application of CHAB forecasting, the observations and simulations 650 

shown here provide interesting insights on the physical processes that influence phytoplankton 651 

ecology in a polymictic lake. Previous studies of Lake Erie circulation and thermal structure 652 

considered the western basin to be largely unstratified [e.g., Beletsky, D. et al., 2013], but our 653 

study highlighted the importance of fine-scale thermal structure in the western basin in a 654 

biological context. Surface mixed layer depth varies hour by hour due to subtle features in the 655 
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temperature profile caused by the diel cycle of surface heating and cooling, further modified by 656 

varying wind stress. Colony buoyancy is sufficient to keep Microcystis concentrated within the 657 

constantly changing surface mixed layer depth. The thermal structure is subtle in comparison to 658 

the continuous seasonal stratification that occurs in deeper lakes, and in the central and eastern 659 

basins of Lake Erie, but important nonetheless to the Microcystis vertical distribution. The 660 

position of Microcystis colonies in the water column is critical to their light exposure, nutrient 661 

acquisition, and ultimately to their ability to dominate the phytoplankton community, and 662 

produce toxic blooms.  663 
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Table 1. Dates of measurements and model simulations. 825 
 826 
Measurement or simulation Date 
Well-mixed condition simulations Aug., 2011 
Satellite images, 2D, 3D simulations 26 dates, July to Oct., 2011 
Colony size distribution (FlowCam) 4 Aug., 2014 
Colony size distribution (microscopy) Weekly sampling July to Sep., 2012 and 2013 
Buoyant velocity measurements 15 and 21 July, 2015 
Vertical profiles (FluoroProbe) Weekly sampling July to Sep., 2015 

 827 
 828 
  829 
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Table 2. Statistics evaluating the skill of the Lagrangian particle model in simulating the vertical 830 

distribution of cyanobacterial chlorophyll concentration (center of mass of the normalized 831 

concentration profile) and of FVCOM in simulating temperature profiles (potential energy 832 

anomaly). The statistics are the mean bias, root mean square deviation (RMSD), and Pearson 833 

correlation coefficient (r). 834 

Bias RMSD r
Center of mass, N93 18 Sep, σ 0.04 0.09 0.56
Center of mass, N93 3 Aug, σ -0.01 0.08 0.53
Potential energy anomaly, J m-3 -0.20 0.72 0.83

  835 
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Buffalo on the Niagara River. b) An enlarged view of the western portion of the FVCOM model 840 

domain. FVCOM domain boundaries are indicated with a heavy black line, and node-centered 841 

tracer control elements with gray lines. Surface mixed layer depth was estimated in hindcast 842 

simulations at the stations identified with symbols. Well-mixed condition simulations were 843 

conducted at the named stations. Profiles of temperature and cyanobacterial chlorophyll 844 

concentration were measured at the stations indicated by red triangles. 845 
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 869 

Figure 6. Cumulative frequency distributions of simulated and observed a) center of mass of the 870 

normalized cyanobacteria concentration profile, and b) potential energy anomaly of the 871 
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temperature profile for 69 profiles collected in July - September of 2015 at stations indicated in 872 

Figure 1. 873 
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buoyancy. While both 2D and 3D models simulated CHAB advection toward Port Clinton 884 

observed on 15 August, the 3D model better simulated reduced intensity and coverage observed 885 

on 7 and 15 August due to higher winds, and continued CHAB coverage near Toledo and 886 

Monroe on 15 August.  887 
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Figure 3. Figure 
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Figure 4. Figure 
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Figure 5. Figure 
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Figure 6. Figure 
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Figure 7. Figure 
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Figure 8. Figure 
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Figure 9. Figure 
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Figure 10. Figure 
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