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We describe an improved version of the data-independent acquisition (DIA) computational anal-
ysis tool DIA-Umpire, and show that it enables highly sensitive, untargeted, and direct (spectral
library-free) analysis of DIA data obtained using the Orbitrap family of mass spectrometers.
DIA-Umpire v2 implements an improved feature detection algorithm with two additional filters
based on the isotope pattern and fractional peptide mass analysis. The targeted re-extraction
step of DIA-Umpire is updated with an improved scoring function and a more robust, semi-
parametric mixture modeling of the resulting scores for computing posterior probabilities of
correct peptide identification in a targeted setting. Using two publicly available Q Exactive
DIA datasets generated using HEK-293 cells and human liver microtissues, we demonstrate
that DIA-Umpire can identify similar number of peptide ions, but with better identification
reproducibility between replicates and samples, as with conventional data-dependent acquisi-
tion. We further demonstrate the utility of DIA-Umpire using a series of Orbitrap Fusion DIA
experiments with HeLa cell lysates profiled using conventional data-dependent acquisition and
using DIA with different isolation window widths.
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1 Introduction

Data-independent acquisition (DIA) MS [1–4] has recently
emerged as a promising alternative to data-dependent ac-
quisition (DDA) for quantitative proteomics analysis (for a
recent review, see [5]). The fundamental concept of DIA is
to acquire fragment ion information for all precursor pep-
tide ions within a certain window of m/z values, sequentially
covering the entire range of relevant m/z values. This strat-
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egy is exemplified using the sequential window acquisi-
tion of all theoretical mass spectra (SWATH)-MS [3] ap-
proach, and is now available on most instrument platforms.
At present, DIA data are most commonly analyzed using
targeted extraction tools such as OpenSWATH [6], Spectro-
naut [7], PeakView, and Skyline [8] for extraction of quan-
tification information from DIA data, and tools for sta-
tistical scoring of extracted signals such as mProphet [9].
These tools are dependent on the availability of spectral li-
braries, typically built from DDA data acquired in parallel
with DIA data from the same or similar samples. Recent
studies have further advanced such targeted extraction ap-
proaches to various proteomics applications [10–18] includ-
ing PTMs [12,13], protein–protein interaction [13,14], protein
heritability analysis [19], and immunopeptidomics analysis
[18].

Colour Online: See the article online to view Figs. 1, 4 and 5 in colour.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



2258 C.-C. Tsou et al. Proteomics 2016, 16, 2257–2271

Significance of the study

As data-independent acquisition MS emerging as a promis-
ing technique, development of computational analysis tool
for DIA data obtained from a wide range of mass spectrome-
ters is the next critical step to facilitate its adoption for a board
range of proteomics applications. The computational tool,
DIA-Umpire v2, presented in this work is capable of highly
sensitive, untargeted analysis of DIA data from complex
protein samples generated using the Orbitrap family of mass

spectrometers. The tool supports various DIA strategies and
mass spectrometers. Most importantly, the workflow is not
completely dependent on a spectral library and is compati-
ble with many existing DDA-type analysis pipelines, so the
users can continue using the database search engines and
post-processing tools they are familiar with to analyze the
pseudo-MS/MS spectra extracted using DIA-Umpire from
DIA data.

We have recently described an alternative workflow, DIA-
Umpire [20], for untargeted and direct (i.e. spectral library-
free) analysis of DIA data. The feature detection algorithm of
DIA-Umpire detects peptide and fragment ion features, and
uses their peak elution similarities to group detected frag-
ment and precursor signals. The detected m/z and intensity
values of grouped signals are then assembled into pseudo-
MS/MS spectra that are fully compatible with any analysis
tools developed for DDA data, including MS/MS database
search engines (e.g. X! Tandem [21], Comet [22], MSGF
+ [23]), peptide-spectrum match statistical validation (Pep-
tideProphet [24], Percolator [25], PeptideShaker [26]) and pro-
tein inference tools such as ProteinProphet [27]. We have
demonstrated that reliable quantification can be obtained
from both MS2 fragment ion intensities and from MS1 pre-
cursor peptide ion intensities. We have also demonstrated
and implemented in DIA-Umpire an optional hybrid work-
flow, which builds an internal library from confident iden-
tifications from database search results when multiple DIA
runs are available. This “internal” (i.e. DIA-derived) library
can then be used to query preprocessed precursor-fragment
groups using the second, targeted re-extraction step to reduce
the number of missing identifications (quantifications) across
all experiments from the same dataset. It should also be noted
that DIA-Umpire-derived identifications are compatible with
other targeted extraction tools, i.e. a DIA-derived spectral li-
brary can be built using tools such as SpectraST [28], with the
subsequent interrogation of the data using that library with
targeted extraction tools such as Skyline or OpenSWATH.

Because most of the recent studies used DIA (SWATH-
MS) data generated using AB Sciex 5600 instruments, we
sought to evaluate the performance of the DIA-Umpire com-
putational strategy on data generated using the Orbitrap fam-
ily of mass spectrometers (Thermo Fisher Scientific) which
also support acquisition of SWATH-like DIA data and other
DIA variants [7,29,30]. The Orbitrap mass analyzer, available
in both the Q Exactive and the Orbitrap Fusion instruments,
enables acquisition of tandem mass spectra with high mass
accuracy and scan rate—two of the main prerequisites for
successful interrogation of complex samples using DIA data.
Here we present DIA-Umpire v2, the new version of the soft-
ware that enables analysis of complex DIA datasets generated

using the Orbitrap instruments. We describe improvements
made in the algorithms of DIA-Umpire, including the in-
troduction of signal isotope pattern and fractional mass fil-
ters, the new targeted re-extraction scoring function, and the
semiparametric mixture modeling approach for computing
the probabilities of correct identifications of peptide signals
in DIA data at the targeted re-extraction stage. Using two Q
Exactive DIA and DDA datasets published by Bruderer et al.
[7], and a series of human HeLa cell line experiments on an
Orbitrap Fusion performed as part of this work, we show that
DIA-Umpire v2 enables highly sensitive analysis of DIA data.

2 Materials and methods

2.1 Q Exactive datasets

The raw files for two sets of Q Exactive DIA and DDA
data described in [7] were downloaded from PeptideAtlas
(http://www.peptideatlas.org; PASS00589). The first set was
generated using HEK-293 cell lysates and the second set using
human liver microtissue samples. All samples were analyzed
using both DDA and DIA.

2.2 Orbitrap Fusion datasets

The MS system, Orbitrap Fusion Tribrid mass spectrometer
(Thermo Scientific, San Jose, CA), was coupled with an Ul-
timate 3000 RSLCnano system (Thermo Fisher Scientific).
HeLa cells (predigested using trypsin) were purchased from
Thermo Scientific. One microgram of HeLa cells were loaded
onto self-packed analytical column (300 mm length x 100 um
i.d.) using 3 um ReproSil-Pur C18-AQ particles (Dr. Maisch,
Ammerbuch, Germany). The mobile phases consisted of (A)
0.1% formic acid and (B) 0.1% formic acid and ACN. Peptides
were separated through a gradient of up to 85% buffer B over
135 min at flow rate of 500 nL/min. The gradient initially
started from 1% B to 2% B for 2 min and then was increased
linearly to 25% B at 112 min, to 35% at 122 min, then to
90% B at 123 min, held for 6 min. Finally, the gradient was
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decreased linearly to 1% at 130 min and held for 20 min for
re-equilibration.

The MS instrument was operated in the positive ion mode,
with an electrospray through a heated ion transfer tube
(250�C). Full-scan MS spectra were acquired in the Orbitrap
mass analyzer (m/z range: 400−1250 Da) with the resolution
set to 60 000 (FWHM) at m/z 200 Da. Full-scan target was 3e5
with a maximum fill time of 50 ms. All data were acquired in
profile mode using positive polarity. MS/MS spectra of both
DDA and DIA data were acquired in the Orbitrap as well with
a resolution of 15 000 (FWHM) at m/z 200 Da and higher
collisional dissociation MS/MS fragmentation.

For DDA data, up to top 15 most intense ions were selected
for MS/MS for each scan cycle. Target value for fragment
scans was set at 1e5 with a maximum fill time of 35 ms
and intensity threshold was kept at 2e4. Isolation width was
set at 1.4 Th. Two sets of independent DDA experiments
(labeled DDA1 and DDA2) were acquired, each containing
three replicate runs.

DIA experiments were performed using different isolation
window settings. A total of five DIA settings with 25, 20,
15, 10, and 5 Da SWATH-type fixed size isolation windows
(resulting in 2.7, 3.3, 3.9, 6.2, and 13 s cycle time, respectively)
were used to acquire the data. For each DIA experiment,
the target value for fragment scans was set at 1e5 with a
maximum fill time of 50 ms. Three replicates were acquired
for each DIA experiment with one of the specified window
sizes.

2.3 Definition of datasets

All DDA and DIA experiments were processed indepen-
dently. FDR estimations at peptide ion or protein level, DIA
internal library generation, and master protein list generation
were done for each dataset separately. These datasets were
defined as follows. The Q Exactive DIA (or DDA) datasets are
referred to as “HEK-293 DDA,” “HEK-293 DIA,” “Microtissue
DDA,” and “Microtissue DIA” datasets. For the Orbitrap Fu-
sion DIA data, three replicates for each isolation window size
setting were considered as part of the same dataset, referred
to as “DIA 5Da,” “DIA 10Da,” “DIA 15Da,” “DIA 20Da,”
and “DIA 25Da.” The two independent sets of DDA data
(each consisting of three replicates) were labeled “DDA1”
and “DDA2” datasets.

2.4 DIA-Umpire pseudo-MS/MS extraction

All .raw files were converted into mzXML format using
msconvert.exe (version 3.0.6721) [31] with vendor (Xcalibur
version 2.3-176401/2.3.0.1765) peak picking option to gener-
ate centroid spectra. The DIA mzXML files were first pro-
cessed by the signal extraction (SE) module of DIA-Umpire
to generate pseudo-MS/MS spectra in MGF format. For de-
tection of precursor ion signal, the following parameters were

used: 10 ppm mass tolerance for the Orbitrap Fusion datasets
and 15 ppm for the Q Exactive datasets, charge state range
from 1+ to 5+ for precursor ion detection in MS1 scans, and
2+ to 5+ for unfragmented precursor ion detection in MS2
scans. For detection of fragment ions in MS2 scans, 20 ppm
mass tolerances for the Orbitrap Fusion datasets and 25 ppm
for the Q Exactive datasets were used. S/N for both precursor
and fragment signals was set to 1.1. The maximum retention
time range was set to 2 min, and the algorithm allowed miss-
ing peaks in up to two consecutive MS1 scans for detection
of single m/z trace signals. Because the signal quality of the
centroid spectra generated using Xcalibur library via mscon-
vert.exe was manually inspected and deemed to be sufficiently
high, no additional background detection and noise removal
was used in the DIA-Umpire_SE module. Furthermore,
because the MS2 scans in the resulting mzXML files con-
tained the isolation window ranges there was no need to spec-
ify these settings in the parameter file of the DIA-Umpire_SE
module.

2.5 Filtering of detected features using fractional

mass and isotope peak pattern

The first step of DIA-Umpire analysis is extraction of pre-
cursor and fragment ion signals by the feature detection al-
gorithm. DIA-Umpire v2 implements two new filters, the
fractional mass filter and the isotope pattern filter, to remove
detected precursor ion and fragment features that are less
likely to be true features.

Fractional mass filters have been used in a number of ap-
plications previously [32–34]. These studies have shown that
the mass values of certain molecules (e.g. tryptic peptides and
metabolites) distribute in specific fractional number regions.
This characteristic can be used to detect false signals and to
reduce the number of false positive peptide identifications.
In this study, we adopted the fractional mass boundary equa-
tions described in Toumi and Desaire [34] which were derived
for human tryptic peptides. In order to allow modified pep-
tides in the analysis, we extended the allowed fractional mass
range by 2 × d (d = 0.1 used in this study; parameter file op-
tion). For each detected precursor ion or fragment ion feature
with neutral mass M, the fractional mass D(M) is calculated
as

D (M) = M − INT(M)

INT(M) is the largest integer not greater than M. The upper
and lower bounds (the range of allowed fractional masses) of
the fractional mass filter are derived according to the follow-
ing equations, respectively:

H (M) = D (0.00052738 × M + 0.066015 + d)

L (M) = D (0.00042565 × M + 0.0003821 − d)
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Finally, the binary classifier B(M) based on the fractional
mass (1: accepted; 0: rejected) is determined as follows:

B (M) =⎧⎨
⎩

1, if H (M) ≥ D (M) ≥ L (M)
1, if H (M) < L (M) ∧ [D (M) ≤ H (M) ∨ D (M) ≥ L (M)]

0, otherwise

Second, an isotope pattern filter has been introduced to
remove precursor features showing a poor fit between the
observed and the theoretical isotope peak distributions. The-
oretical isotope peak intensity ratios given peptide molecu-
lar weights were calculated from all human tryptic peptides.
The isotope peak ratios up to the 10th isotopic peak were es-
tablished in DIA-Umpire by generating nine (from the 2nd
isotopic peak to the 10th isotopic peak) scatter plots (Sup-
porting Information Fig. 1). To determine the boundary of
the theoretical isotope ratios, the mean (�) and standard de-
viation (�) of each 100 Da bin in each plot were calculated.
The 99.8% (±3.3 × �) confidence intervals were then se-
lected to represent the boundaries for each bin (plotted in
Supporting Information Fig. 1). For a possible peak feature
detected with peak intensities I = (I1, I2, . . . , In) and neutral
mass M, the observed peak ratios O = (O2, . . . , On), Oi = Ii

/I1 were calculated, where n is the isotope peak number (n
= 1 refers to the monoisotopic peak). Then the mean �i

and the standard deviation �i of the closet mass bin for
M from ith scatter plot (corresponding to ith isotope ratio)
were extracted, and the boundary (Hi, Li) of the expected
peak ratio was calculated as follows: Hi = �i + 3.3× �i and
Li = �i − 3.3 × �i. Then the isotope pattern fitness probability
score between the observed peak ratio and the theoretical pep-
tide isotope distribution was estimated as 1 − C(X2, n − 1),
where C(X2, n − 1) is the standard the Chi-squared probabil-
ity cumulative distribution function, and X2 is Chi-squared
value calculated as follows:

X2 =
n∑

i=2

(Oi − E i)
2

E 2
i

E i =
⎧⎨
⎩

Oi, if Oi ≥ L i and Oi ≤ H i

H i, if Oi > H i

L i, if Oi < L i

In this study, all detected features with isotope pattern
fitness probability score below 0.3 were removed.

2.6 DDA MS/MS and DIA pseudo-MS/MS database

search

The DDA and DIA pseudo-MS/MS spectra extracted us-
ing DIA-Umpire were searched using X! Tandem, Comet,
and MSGF+ search engines using the following parameters:
allowing tryptic peptides only, up to one missed cleavage,
methionine oxidation specified as variable modification, and

cysteine carbamidomethylation as static modification. The
precursor ion mass tolerance and the fragment ion mass
tolerance were set, respectively, to 10 and 20 ppm for the
Orbitrap Fusion data and to 15 and 25 ppm, respectively,
for the Q Exactive data. The data were searched against a
nonredundant human protein sequence FASTA file extracted
from the UniProtKB/Swiss-Prot database (release date: June
19, 2015; 20 200 sequences), appended with the correspond-
ing reversed sequences as decoys for target-decoy analysis.
The output files from each search engines were further an-
alyzed by PeptideProphet, and the results were combined
using iProphet [35] followed by ProteinProphet [27].

2.7 FDR estimation independently for each DDA/DIA

run

The FDRs for peptide ion (i.e. unique combination of peptide
sequence, charge state, modification, and modification site
parameters) and protein identifications were first estimated
independently for each individual run. For each individual
run (e.g. Orbitrap Fusion DIA 5Da window, Replicate 1; de-
noted as “DIA 5Da R1”), FDR at the peptide ion level was
estimated by sorting the identifications using the iProphet
computed peptide ion probability followed by the selection
of the probability threshold corresponding to 1% FDR based
on the target-decoy strategy [36]. The numbers of peptide
ions at 1% FDR determined independently for each run (col-
umn “Peptide ion IDs (1% Run level FDR)”) are shown in
Supporting Information Table 1 (Q Exactive HEK-293 data),
Supporting Information Table 2 (Q Exactive liver microtissue
data), and Supporting Information Table 3 (Orbitrap Fusion
HeLa data). At the protein level, protein groups assembled by
ProteinProphet for each run independently were sorted using
the maximum peptide ion iProphet probability taken as the
protein-level score, followed by target-decoy-based FDR esti-
mation. The number of protein groups determined indepen-
dently for each run at 1% FDR are also shown in Supporting
Information Tables 1–3 (column “Protein IDs (1% Run level
FDR)”).

2.8 FDR for peptide ion identifications in DDA data

at the dataset level

In addition to estimating FDR at individual run level, FDR
for DDA data was also estimated at the dataset level. In the
dataset level FDR strategy, the list of peptide ions was fil-
tered to achieve 1% FDR for the entire dataset (e.g. Orbitrap
Fusion “DDA1” dataset consisting of three replicate runs
“DDA1 R1,” “DDA1 R2,” and “DDA1 R3”). If a peptide ion
passed the desired FDR threshold (here 1%) at the dataset
level, then all identifications of that peptide ion in each indi-
vidual run within the same dataset were counted as identified
in that run. Such a filtering strategy is useful for reducing the
number of missing values in each individual run (which is
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important for achieving more complete quantification ma-
trix across the dataset), while maintaining the desired FDR
at the dataset level. It also allows fairer comparison of DDA
numbers with DIA numbers after the second, targeted re-
extraction step using the spectral library build from all identi-
fied spectra in the dataset (see below). The number of peptide
ion identifications for each DDA run determined using the
dataset level FDR strategy is shown in Supporting Informa-
tion Tables 1–3 (column “Peptide ion IDs (1% FDR dataset
level)”).

2.9 FDR for protein identifications in DDA data at

the dataset level

To estimate protein FDR for DDA data at the dataset level,
ProteinProphet [27] was used to assemble protein groups for
each dataset taking pepXML files for all replicate runs from
the same dataset as input. Protein FDR was estimated using
the target-decoy approach based on the maximum peptide
ion probability across all files within the dataset. At 1% FDR,
the master protein list for each dataset was first generated.
For each protein (representing a protein group) in the master
list, that protein was considered identified in that individual
run if it had at least one peptide ion identified in that run that
was included in the 1% dataset level FDR list. The number
of protein identifications for individual DDA runs counted
using the dataset level FDR strategy is shown in Supporting
Information Tables 1–3 (column “Protein IDs (1% Dataset
level FDR)”).

2.10 Generation of the spectral library for targeted

re-extraction in DIA data

Analysis of DIA data using DIA-Umpire includes an addi-
tional targeted data extraction step using spectral library build
from the peptides identified using the initial, untargeted anal-
ysis. In each DIA dataset, all peptide ion identifications pass-
ing 1% dataset level FDR (estimated as described above for
DDA data) were taken as input into the DIA-Umpire target
extraction module (DIA-Umpire_Quant.jar) to generate an
internal spectral library and perform targeted re-extraction
analysis [20] to further reduce the number of missing quan-
tifications for each DIA dataset. For building consensus spec-
tra in the internal spectral library, an option has been added
in DIA-Umpire v2 to use the fragment selection algorithm for
quantification described in Tsou et al. [20]. With this option
enabled, the consensus spectrum for each peptide ion is cre-
ated using the TopN best fragments selected across all runs
within the dataset (top six fragments in this study). The algo-
rithms for building consensus spectra, retention time predic-
tion, and mass calibration in DIA-Umpire v2 remained the
same.

2.11 Targeted re-extraction scoring function

Several components of the scoring function for the targeted
re-extraction step were revised, and thus described here in
more detail. A precursor-fragment group G generated by DIA-
Umpire, and a library spectrum S, represented as

S = {(
IS

1 , MS
1

)
,
(
IS

2 , MS
2

)
, . . . ,

(
IS

NS, MS
NS

)}

G = {(
IG

1 , MG
1 , CG

1 , T G
1

)
,
(
IG

2 , MG
2 , CG

2 , T G
2

)
, . . . ,(

IG
NG, MG

NG, CG
NG, T G

NG

)}
where NS and NG are the numbers of fragment peaks in
the library spectrum and in the precursor-fragment group,
respectively (NS � 6 in this study). Ir

S and Mr
S are the inten-

sity and the theoretical m/z value, respectively, of a fragment
r that belongs to the library spectrum S. Similarly, Ir

G and
Mr

G are the intensity and m/z value, respectively, of a frag-
ment r that belongs to the precursor-fragment group G. Cr

G

and Tr
G are the Pearson correlation coefficient and peak apex

retention time difference, respectively, between the peak pro-
files of a fragment r and the precursor anchoring group G.
All negative Pearson correlation coefficients were set to 0.
A matching intensity vector INTG-S = (I1

G, I2
G, . . . , INS

G) of
length NS, with Ir

G taken as the intensity of the fragment peak
r in G that matches a fragment in S, and as zero if no fragment
peak can be found in G within the specified mass tolerance (in
ppm units) window DM around Mr

S. Thus, INTG-S contains
L nonzero values, where L is the total number of matched
fragments between G and S (L � NS). The following nine
subscores are calculated during the spectral matching:

(1) Spectral Similarity Score, in DIA-Umpire v2 calculated
using the Dot product scoring described in Toprak et al.
[37] between the vector INTG-S and the library spectrum
intensity vector (I1

S, I2
S, . . . , INS

S).
(2) Mass Error Score (MES):

MES = 1 −
∑L

j = 1 PPM(MG
j , MS

j )

DM × L

PPM (ma, mb) = |ma − mb| × 2 × 106

ma + mb

(3) Correlation Score (CS):

CS =
∑L

j=1 CG
j

L

The scores described above are essentially the same as
described earlier for DIA-Umpire [20], except that Spectral
Similarity Score is computed using the dot product instead
of the Pearson correlation. In addition, the following six new
scores are introduced:
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(1) Apex Delta Score (ADS):

ADS =
∑L

j=1

∣∣∣T G
j

∣∣∣
L

(2) Weighted Number of matched Fragments (WNF):

WNF =
L∑

j=1

CG
j ×

(
1 − PPM(MG

j , MS
j )

DM

)

(3) Retention time difference between the predicted reten-
tion time and the observed monoisotope peak apex reten-
tion time of the precursor peptide anchoring precursor-
fragment group G.

(4) Precursor isotope peak CS, computed as the Pearson cor-
relation coefficient between the monoisotope peak elu-
tion profile and the second isotope peak profile of the
precursor anchoring group G (set to zero if the correla-
tion is negative).

(5) Precursor isotope pattern fitness probability score, calcu-
lated as described earlier in Section 2.

(6) Difference between the experimental mass of the precur-
sor anchoring group G and the theoretical mass of the
peptide ion in the internal library.

The final match score (U-score) between S and G is cal-
culated as a linear combination of all the nine subscores de-
scribed above. The linear combination coefficients are trained
for each dataset as described for DIA-Umpire previously [20].

2.12 Posterior probabilities of correct identification

at the targeted extraction step

The probability calculation in DIA-Umpire v2 has been re-
vised to implement a more robust semiparametric mixture
modeling approach. For each library spectrum S, let U be the
best final match score (U-score described above) of all candi-
dates in the searched range for S. The observed distribution
of scores for all spectra in a particular run searched at the tar-
geted extraction step, f(U), is a joint distribution of correct and
incorrect identifications, i.e. f (U) = �0 f0(U) + �1 f1(U),
where f0 and f1are the respective distributions of incorrect
and correct identifications, and �0 and �1 are the priors (pro-
portions of true and false matches), where �0 + �1 = 1.
To estimate the distributions f0 and f1, DIA-Umpire v2
implements the semiparametric density estimation similar
to that of Robin et al. [38], which has been described for
peptide-spectrum match validation by Choi et al. [39] and im-
plemented in PeptideProphet (“P” option) and in iProphet.
The idea behind the semiparametric mixture modeling is
to use decoy identifications (that are known to be false) to
first represent f0, so that f1 can then be deconvoluted using
the expectation maximization (EM) algorithm with a modi-
fied kernel density estimation. The first step of this mixture
modeling approach is to estimate �0 to avoid the over-fitting

problem (maximum likelihood will be always at the point

when �1equals 1 [38]) in the EM algorithm. �0 = F (q )
/

Fd(q )
,

where F (.) and Fd(.) are respective cumulative distribution
functions of empirical distributions of target and decoy iden-
tifications, and q is the mean score of decoys. The priors
�0 and �1 estimated this way are then fixed throughout the
EM algorithm. The kernel density estimation of distributions
f (U) and f0(U) is obtained by the following equations:

f (U|h) = 1

nh

n∑
i = 1

K

(
U − Ui

h

)

f0 (U|h) = 1

ndh

nd∑
i = 1

K

(
U − Ui

h

)

where K is the Gaussian density function, and n and nd are
the numbers of identifications from all target library spectra
and decoy spectra, respectively. The bandwidth parameter h is
estimated using the Silverman’s rule of thumb [40]. The initial
estimation of f1(U) is done by the DIA-Umpire’s original
Gaussian mixture modeling approach [20]. In the E-step of
the EM mixture modeling algorithm, the probability p(Ui) of
score Ui for spectrum Si is calculated as

p (Ui) = �1 f1 (Ui)

f (Ui)

Then in the M-step the kernel density estimation of the
correct distribution is updated as

f1 (U) =
∑n

i=1

[
p(Ui) × K

(
U − Ui

h

)]/
h

∑n
i=1 p(Ui )

The EM algorithm iterates until the difference of log-
likelihoods between two consecutive iterations is less than
0.00001 or the EM algorithm has reached 50 iterations. Once
the EM algorithm is finished, the final �0 and �1 are updated
by the following equations:

�1 = 1

n

n∑
i = 1

p (Ui)

�0 = 1 − �1

Given a U-score Ui, the final probability is calculated as
described above with the updated priors.

2.13 Combing untargeted and targeted re-extraction

identification results

DIA-Umpire v2 exports additional identifications obtained at
the targeted re-extraction step into separate pepXML files. In
order to be able to estimate FDR after inclusion of these addi-
tional identifications, decoy identifications and their prob-
abilities are exported as well. Note that, for consistency,
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DIA-Umpire prints the corresponding reversed sequences in
the resulting targeted re-extraction pepXML files for all decoy
identifications, even though the actual spectra representing
those decoys in the internal library were obtained using the
shuffling approach. For each identification obtained at the tar-
geted re-extraction step, DIA-Umpire prints the U-score prob-
abilities calculated as described above, which are labeled as
iProphet probabilities in the generated pepXML files. These
steps allow the protein inference algorithm of ProteinProphet
to combine the results (pepXML files), including decoy iden-
tifications, from the initial untargeted database search step
with the results from the targeted re-extraction step.

2.14 FDR for peptide ion identifications in DIA data

at the dataset level

As with DDA data, in addition to estimating FDR at individual
run level, FDR for DIA data was also estimated at the dataset
level. The list of peptide ions identified at the untargeted step
was filtered to achieve 1% FDR for the entire dataset (e.g.
Orbitrap Fusion “DIA 5Da” dataset consisting of the three
replicate runs “DIA 5Da R1,” “DIA 5Da R1,” and “DIA 5 Da
R3”). If a peptide ion passed the desired FDR threshold (here
1%) at the dataset level, then all identifications of that pep-
tide ion in each individual run within the same dataset were
counted as identified in that run. Peptides that were not iden-
tified in a particular run based on the untargeted analysis
alone, but that were detected in that run using targeted re-
extraction with a high probability (here, 0.99 or higher), were
also counted as identified. It should be noted that inclusion of
identifications from the targeted re-extraction step does not
change the dataset level FDR, set to 1%, because no new iden-
tifications are added at this step. The number of peptide ion
identifications for each DIA run is shown in Supporting In-
formation Tables 1–3 (column “Peptide ion IDs (1% Dataset
level FDR)”).

2.15 FDR for protein identifications in DIA data at

the dataset level

For estimating protein FDR at the dataset level for DIA
data (after targeted re-extraction), ProteinProphet [27] was
run for each dataset independently taking all pepXML from
the untargeted (database search) step and from the targeted
re-extraction step as input. FDR was then estimated using
the target-decoy approach [36] based on the maximum pep-
tide ion probability (iProphet probability from the untargeted
database search step or the probability based on U-score from
the targeted re-extraction step, also labeled as iProphet prob-
ability in the pepXML files as explained above). The master
protein list corresponding to 1% FDR for each dataset was
generated. A protein in the master list was then considered
identified in an individual run if it had at least one pep-
tide ion identified in that run that at 1% dataset level FDR

in untargeted database search or with a probability 0.99 or
higher at the targeted re-extraction step. The number of pro-
tein identifications obtained this way is shown in Supporting
Information Tables 1–3 (column “Protein IDs (1% Dataset
level FDR)”).

2.16 Data availability

All Orbitrap Fusion MS data files and DIA-Umpire results for
all the datasets presented in this paper have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org/) via the PRIDE partner repository
with the dataset identifier PXD003179.

3 Results and discussion

3.1 Improved feature detection using fractional

mass and isotope pattern filters

The DIA-Umpire workflow relies on accurate and sensitive
detection of precursor and fragment ion signals. The sensi-
tivity of the feature detection algorithm is a key factor for suc-
cessful extraction of pseudo-MS/MS spectra and subsequent
untargeted peptide identification using database search. To
increase the number of identifications, minimal filtering cri-
teria can be applied to extract as many features as possible.
In doing so, false (noise) features do not necessarily nega-
tively affect the results because MS/MS database search with
FDR filtering can effectively eliminate randomly assembled
pseudo-MS/MS spectra. However, it is not always practical
to consider all possible features because the overall computa-
tion costs (time and memory usage) increase with the num-
ber of features extracted from the data. In large datasets, this
could become an issue, especially for the precursor-fragment
grouping algorithm of DIA-Umpire and for MS/MS database
searching. Therefore, one challenge for the untargeted fea-
ture detection approach of DIA-Umpire is to find a reasonable
balance between the number of extracted features and the to-
tal computation costs. To address this issue, we introduced
two new filters, the fractional mass and the isotope pattern
filters, in DIA-Umpire v2 to remove detected precursor ion
and fragment features that are less likely to be true peptide
features (see Section 2 for details).

We first investigated the effects of these new feature detec-
tion filters using two DIA runs, one from the Orbitrap Fusion
(10 Da isolation window) HeLa cell lysate dataset generated
as part of this work, and the other from the publicly available
Q Exactive HEK-293 cell lysate dataset [10] (see Section 2 for
details regarding the experimental datasets). We processed
these two DIA runs through the DIA-Umpire SE module
without any filtering to maximize the number of detected
precursor features. The pseudo-MS/MS spectra extracted by
DIA-Umpire were then searched using X! Tandem, Comet,
and MSGF+ search engines, and the results from all three
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search engines were combined using iProphet. Peptide ion
identifications were filtered to achieve 1% peptide ion level
FDR (see Section 2 for details regarding MS/MS database
search and FDR calculations). All confidently identified pep-
tide ions were linked to the corresponding detected precursor
peptide ion features.

In total, there were 416 607 and 812 944 precursor ion
features detected in the Orbitrap Fusion and Q Exactive runs,
respectively. Of these, only 33 173 (7.9%) and 17 759 (2.1%)
features were identified at 1% FDR threshold, respectively, in
these two datasets. Figure 1A and B plot the fractional masses
of the identified and unidentified features in different mass
ranges for the two DIA runs, with the valid fractional mass
regions (d = 0.1) highlighted in blue. Clearly, the fractional
masses of almost all of the identified features were in the valid
fractional mass regions. We then applied the fractional mass
filter, which effectively removed 86 845 (22.6%) and 215 509
(27%) of the unidentified features for the Orbitrap Fusion
and the Q Exactive run, respectively, at a loss of only 0.13 and
0.45% of true identifications for the Orbitrap Fusion run and
the Q Exactive run, respectively.

As for the isotope pattern filter, Fig. 1C and D show
the number of identified precursor features at different iso-
tope pattern fitness probability thresholds. The majority of
the identified features had an isotope pattern fitness prob-
ability of 0.8 or higher (95.6% for the Orbitrap run and
96.9% for the Q Exactive run). However, there were a small
number of identified peptide ions which had extremely low
isotope pattern fitness probabilities. Some of these cases
may be due to co-elution with other high abundance pep-
tide ion signals, whereas others could be false identifica-
tions. Additional analysis showed that the detected features
with extremely low isotope pattern probabilities were mostly
lower abundance signals (Supporting Information Fig. 2).
Overall, the isotope pattern fitness probability threshold
was found to be useful for more effective removal of false
features.

By combining the two filters, the fractional mass filter and
the isotope pattern filter, DIA-Umpire v2 reduced the number
of extracted features more effectively and without a significant
reduction in the number of identified peptides. Further anal-
ysis (Supporting Information Table 4) showed that the filters
were able to reduce the computation time for DIA-Umpire
signal processing step and the number of pseudo-MS/MS
spectra generated, in turn reducing the MS/MS database
search time. Figure 1E and F show the ROC curves of the
detected features for the two DIA runs. Based on this analy-
sis, for the remainder of this study we applied the fractional
mass filter with d = 0.1 and the isotope pattern fitness proba-
bility threshold of 0.3. These parameters were also selected as
defaults in DIA-Umpire v2. Note that these two filters were
developed based on prior information available from the anal-
ysis of human tryptic peptides. They may not be applicable to
data from other organisms or proteolytic enzymes, however
the filtering thresholds can be adjusted (or the filters turned
off altogether) in the DIA-Umpire_SE parameters file.

3.2 Application of DIA-Umpire v2 to AB Sciex

TripleTOF 5600 datasets

We first evaluated the performance of DIA-Umpire v2 us-
ing the AB Sciex TripleTOF 5600 E. coli and Human
datasets which were used as part of the original DIA-Umpire
manuscript [20]. The derived pseudo-MS/MS spectra were
searched using X! Tandem, Comet, and MSGF+ search en-
gines and combined by iProphet. Protein and peptide ion
identifications were filtered at 1% FDR independently for
each run. The number of identifications for each DIA run
is shown in Supporting Information Table 5. Using DIA-
Umpire v2, we were able to identify similar numbers of pep-
tides and proteins in these data as previously reported using
the earlier version (v 1. 25) of the software.

3.3 Q Exactive DIA datasets

We then evaluated the performance of DIA-Umpire v2 using
the full Q Exactive DIA dataset [10], which included HEK-293
cell lysate and human liver microtissue data (see Section 2).
In the original publication, the authors used a spectral library-
based targeted extraction workflow (Spectronaut). To build
the spectral library, parallel DDA experiments were con-
ducted using the same samples. Because DIA-Umpire allows
library-free analysis, in this study we did not use the DDA-
derived spectral library. Instead, the DDA data were used for
comparing the number of identifications obtained using DIA
and DDA strategies.

The DIA data were first processed using the DIA-
Umpire’s SE module (DIA_Umpire_SE.jar) to generate
pseudo-MS/MS spectra (see Section 2 for details). The spec-
tra were searched using X! Tandem, Comet, and MSGF+
search engines. The results from the individual search en-
gines were combined using iProphet, and protein lists were
assembled using ProteinProphet. The corresponding DDA
data were processed in the same way as DIA pseudo-MS/MS
spectra. The results (peptide ion and protein identifications)
were filtered at 1% FDR independently for each run (see Sec-
tion 2, Supporting Information Table 1 for HEK-293 cells,
and Supporting Information Table 2 for liver microtissue
data). On average, the number of peptide ions identified
per run at 1% FDR was slightly higher in DIA compared to
DDA data (Supporting Information Tables 1 and 2, columns
“Peptide ion IDs (1% FDR Run level)”). The number of pro-
teins identified per run was comparable between DIA and
DDA in HEK-293 data, and slightly less in DIA data than
DDA data in the liver microtissue dataset (Supporting In-
formation Tables 1–2, “Protein IDs (1% FDR Run level)”
column).

After the untargeted identification step, the DIA-Umpire’s
targeted re-extraction module was used to generate internal
spectral libraries from the spectra identified at 1% dataset
level FDR for each dataset. Then targeted re-extraction was
performed to reduce the number of missing identifications
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Figure 1. Effects of feature
detection filtering. (A) The
fractional mass of detected
precursor features from the first
replicate of the Orbitrap Fusion
DIA 10 Da dataset. The gray and
red dots represent unidentified
and identified features, respec-
tively. Blue regions are the valid
regions of the fractional mass
filter. (B) Same as (A), results
for the first replicate of HEK-293
Q Exactive dataset. (C) The
number of identified precursor
features at different isotope
pattern fitness probability
thresholds, the Orbitrap Fusion
data. (D) Same as (C), the Q
Exactive data. (E) The results
of applying the isotope pattern
filter alone or combination with
the fractional mass filter, the
Orbitrap Fusion data. (F) Same
as (E), the Q Exactive data.

across the runs from the same dataset (see Section 2). Figure 2
shows that, after targeted re-extraction and with the data
filtered at 1% dataset level FDR, DIA outperformed DDA
with respect to the number of peptide ions (Fig. 2A) and
proteins (Fig. 2C) identified on average per run in both
HEK-293 and liver microtissue datasets (individual run num-
bers are shown in Supporting Information Tables 1 and 2,
columns “Peptide ion IDs (1% FDR Dataset level)” and “Pro-
tein IDs (1% FDR Dataset level)”). Note that, for fair com-
parison, the number of identifications per run in DDA was

counted using the dataset level FDR strategy as well (see
Section 2).

Importantly, DIA resulted in better identification coverage
across different runs within the same dataset. Identification
coverage for an individual run is defined here as the fraction
of the total number of identifications in the dataset identified
at 1% dataset level FDR that were detected in that run. The
identification coverage was in the range of 63–79% at the
peptide ion level and 82–91% at the protein level in DIA data,
compared to 38–54% at the peptide ion level and 69–81% at
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Figure 2. Identification numbers and reproducibility in the Q Ex-
active DIA and DDA datasets. (A) The number of peptide ion iden-
tifications at individual run level in different datasets. (B) The cov-
erage of peptide ion identifications (identification reproducibility
across the dataset). (C) Same as (A), protein level; (D) same as
(B), protein level.

the protein level in DDA data (Fig. 2B and D). These results
were consistent with the original findings by Bruderer et al. [7]
for these data that demonstrated a very high completeness (i.e.
low number of missing quantification values across different
runs) that could be achieved using DIA.

However, we also observed that the total number of pep-
tide ion identifications per dataset (vs. individual run num-
bers discussed above) was higher in DDA than in DIA,
especially in the very low FDR range (below 1%). This is
evident from Fig. 3B, which plots the ROC curves for the
total number of peptide ion and protein identifications for
each dataset. DIA identified approximately 15% less peptide
ions at 1% FDR in both datasets. At the protein level, the
numbers were similar in the HEK-293 data, and DIA identi-
fied approximately 5% less proteins than DDA in the liver mi-
crotissue data. This shows that, using the spectral library-free
workflow of DIA-Umpire, the main advantage of DIA ver-
sus DDA data remains a better identification coverage (and
thus quantification completeness) across the dataset, whereas
DDA still provides a slight advantage in the total depth of the
analysis.

The original study in which these data were analyzed using
targeted, spectral library-based software Spectronaut [7] re-
ported fewer missing values than the results of DIA-Umpire.
The details regarding FDR estimation in Spectronaut were
unavailable in the original manuscript, and thus it is pos-
sible that the very high level of quantification completeness
achieved using Spectronaut was in part due to forced quan-
tification of background (noise) signals (instead of reporting

Figure 3. Number of identifications as function of FDR in the
Q Exactive datasets. (A) Peptide ion identifications, HEK-293 Q
Exactive DIA and DDA data. (B) Protein identifications, HEK-293
Q Exactive DIA and DDA data. (C) Same as (A), liver microtissue
Q Exactive DIA and DDA data. (D) Same as (B), liver microtissue
Q Exactive DIA and DDA data.

them as missing values). Nevertheless, DIA-Umpire does
have a limitation and dependence on the detection of pre-
cursor ion signals. Peptides with insufficient quality of MS1
precursor ion signals to be detected using untargeted feature
detection may have sufficiently strong fragment signals in
DIA MS2 spectra, and thus can still be identified using tar-
geted extraction approaches based on fragment ion profiles
alone. Although DIA-Umpire attempts to reduce the num-
ber of missing quantifications using targeted re-extraction,
it queries internal library spectra against the pre-assembled
precursor-fragment groups, not against the raw data. Thus,
the targeted re-extraction step of DIA-Umpire is still limited
by the completeness of the precursor-fragment signals as-
sembled from the detected MS1 and MS2 features at the first
stage of the analysis. Thus, we also support alternative work-
flows by making the untargeted identification results of DIA-
Umpire compatible with targeted extraction and quantifica-
tion tools. To achieve as few missing quantification values
across the dataset as possible, a spectral library can be built
from DIA-Umpire-derived identifications and used then by
other targeted extraction tools (e.g. Skyline, OpenSWATH,
and Spectronaut).

3.4 Orbitrap Fusion DIA datasets

We next investigated the performance of DIA-Umpire on
data from another advanced mass spectrometer from the
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Orbitrap family of instruments, Thermo Orbitrap Fusion,
which brings high resolution, high mass accuracy, and high
scan speed capabilities all together in a single instrument. It
is capable of acquiring MS/MS spectra in either ion trap or in
the Orbitrap, allowing implementation of conventional DDA,
SWATH-like DIA, wiSIM, and hybrid DDA/DIA workflows
such as pSMART [30]. Here, we conducted five SWATH-like
DIA experiments with different isolation windows of fixed
widths (5, 10, 15, 20, and 25 Da). Because the DIA-Umpire’s
feature detection algorithm was optimized for high mass
accuracy data (in both MS1 and MS/MS spectra), the DIA
MS/MS spectra were acquired in the Orbitrap, and the alter-
native DIA methods in which MS/MS spectra are acquired
in the ion trap such as wiSIM DIA were not explored in this
work. The DDA experiments in this work were conducted for
the purpose of providing a baseline number for comparison
with DIA data, and thus a common Top 15 most intense
ions DDA approach was used. Three replicate runs were per-
formed for each DDA and DIA experiment (see Section 2 for
experimental details).

We processed the DIA and DDA data using same search
parameters and FDR estimation as described above for the
Q Exactive data. Figure 4A and C show the summary of pep-
tide ion and protein identification numbers, respectively, for
the DIA and DDA datasets (detailed numbers are shown in
Supporting Information Table 3). There were 30 000–32 000
peptide ions corresponding to 4300–4400 proteins identi-
fied by DDA per run (at 1% dataset level FDR). The best
of the DIA datasets (5 and 10 Da isolation width datasets)
identified similar or slightly higher number of peptide ions
(33 000–34 000), corresponding to 4000–4200 proteins
(slightly lower than DDA). Note that the experiments were
conducted with only 135-min LC gradient time and with-
out any fractionation step. Similar to what was observed for
the Q Exactive datasets discussed above, DIA allowed better
identification coverage across the runs from the same dataset
(Fig. 4B and D).

Decreasing the isolation window widths from 25 Da (the
window size used frequently to acquire SWATH-MS data
on AB Sciex 5600 instruments) resulted in higher number
of identifications per run. The best performance was ob-
served at 10 Da isolation width, and the number of identifi-
cation dropped slightly (more at the peptide ion than protein
level) with 5 Da setting. At the same time, the identification
reproducibility (identification coverage) was generally better
for larger window sizes. Using smaller isolation windows re-
duces the number of co-fragmented peptides and therefore al-
leviates the difficulties of de-convoluting DIA MS/MS spectra
using the approach of DIA-Umpire. However, using smaller
isolation widths increases the number of required MS/MS
scans to cover the same precursor m/z range, and therefore
increases the cycle time. For example, narrowing the isolation
window size from 10 to 5 Da, under the instrument settings
used in this work, increased the cycle time from 6.2 to 13 s.
Longer cycle times result in fewer measurement points ac-
quired per peptide elution peak, making the measurement of

peak shape correlation between the precursor and fragment
signals less reliable. This, in turn, makes it more difficult to
detect low abundant and short eluting peptide ions (see Sup-
porting Information Fig. 3), thus lowering the reproducibility
of identifications (Fig. 4B and D). The increase in the cycle
time can be avoided by decreasing the scan acquisition time
and or by decreasing the number of MS/MS scans acquired
in each cycle (i.e. by reducing the overall fragmentation mass
range). However, these changes could lead to identification
losses. The optimal settings are likely to vary depending on
the nature of the biological samples under investigation.

Investigating the total number of identifications per dataset
(i.e. triplicate runs from each dataset combined) between DIA
and DDA at various FDR levels in more detail, DDA had more
peptide ions identified in the very low FDR range (below
0.5% FDR) than DIA with any window size (Fig. 4E), even
though the DIA numbers (5 and 10 Da windows) exceeded
those of DDA in the FDR range of �1% or higher. It is
well known that, due to error rate inflation when going from
peptide to protein level [36], achieving a certain low protein
level FDR (e.g. 1%) requires peptide identifications with lower
FDR value at the peptide level. This explains why the number
of protein identifications at 1% protein FDR was higher in
DDA data (Fig. 4F), even though the opposite was observed at
1% FDR at the peptide ion level. The reason why in DDA data
there were more peptide ion identifications with very high
confidence (FDR below 1%) is that MS/MS spectra acquired
using DDA with a tighter isolation width of 1.4 Da were
on average less noisy and contained more peptide-specific
fragment ions than pseudo-MS/MS spectra extracted using
DIA-Umpire.

3.5 Performance of semiparametric mixture

modeling

DIA-Umpire v2 implements an improved scoring function
and a more robust strategy based on semiparametric mix-
ture modeling with kernel density estimation (replacing a
parametric Gaussian mixture model) for computing poste-
rior probabilities of true identifications at the targeted re-
extraction step (see Section 2 for details). We illustrate these
improvements here by performing a comparison with the
results obtained using DIA-Umpire v1.25 [20] on the Orbi-
trap Fusion and Q Exactive DIA datasets. Figure 5 shows
an example of U-score histograms and mixture modeling re-
sults obtained using the two versions for a single DIA run
from the Q Exactive liver microtissue dataset. The results
from all the other DIA runs used in this work, including the
Orbitrap Fusion data, are shown in Supporting Information
Fig 4. Figure 5 shows a wider distribution of high scoring
(i.e. likely correct) identifications, while the width of the de-
coy distribution is unaffected. This results in better discrim-
ination between correct and incorrect (decoy) identifications
in these data. Combining the new scoring and the semipara-
metric mixture modeling, DIA-Umpire v2 can extract more
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Figure 4. Identification num-
bers and reproducibility in the
Orbitrap Fusion DIA and DDA
datasets. (A) The number of
peptide ion identifications at
individual run level in differ-
ent datasets. Red dot indicates
the actual identification num-
ber from a replicate. (B) The
coverage of peptide ion iden-
tifications (identification repro-
ducibility across the dataset).
The number was calculated as
the number of identifications
for each replicate divided by
the total number of identifi-
cation from all the replicates.
Red dot indicates the actual
value derived from a replicate.
(C) Same as (A), protein level.
(D) Same as (B), protein level.
(E) The number of peptide ion
identifications as a function of
FDR (dataset level, three repli-
cates combined). Solid line: DIA
dataset. Dash line: DDA dataset
(DDA1 and DDA2). (F) Same as
(E), at the protein level. Solid
line: DIA dataset. Dash line: DDA
dataset (DDA1 and DDA2).

identification at different FDR threshold, especially in the Q
Exactive data (Supporting Information Fig. 5).

In addition, the flexible mixture modeling by the semi-
parametric kernel density estimation provides a better fit for
the correct distribution than that achievable under paramet-
ric (e.g. Gaussian shapes) assumptions. This ensures that the
computed probabilities of correct identifications are more ac-
curate [39]. This is a particularly significant feature for new
applications we are currently exploring, e.g. for combining the
results of targeted extraction using the internal library built
by DIA-Umpire with that using external DDA libraries (built

from sample-specific DDA data, or using global libraries such
as human SWATHAtlas spectral library).

4 Concluding remarks

In this paper, we presented DIA-Umpire v2 and demon-
strated that it is capable of highly sensitive, untargeted anal-
ysis of DIA data from complex protein samples generated
using the Orbitrap family of mass spectrometers. Using pub-
licly available Q Exactive DIA data, and using Orbitrap Fusion
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Figure 5. Score histograms and mixture modeling. (A) Score his-
tograms and parametric Gaussian mixture modeling result ob-
tained using DIA-Umpire v 1.25. (B) Score histograms and semi-
parametric mixture modeling result obtained using DIA-Umpire
v2. (C) The number of targeted re-extraction identifications as a
function of FDR obtained using DIA-Umpire v 1.25 and v2. Data
for one representative run from the Orbitrap HEK-293 Q Exactive
dataset.

data acquired as part of this work, we showed that the DIA can
achieve similar identification numbers and better identifica-
tion reproducibility across the datasets than DDA data. With
fewer missing quantification values, DIA data should pro-
vide improved statistical power for postquantification analy-
sis, e.g. using tools such as mapDIA [41] developed specifi-
cally for DIA data. Importantly, the workflow of DIA-Umpire

does not require a spectral library, which should facilitate the
adoption of DIA for a broad range of discovery proteomics
applications. DIA-Umpire is fully compatible with many ex-
isting DDA-type analysis pipelines, so the users can continue
using the database search engines and postprocessing tools
they are familiar with to analyze the pseudo-MS/MS spectra
extracted using DIA-Umpire from DIA data.

The untargeted, spectral library-free approach of DIA-
Umpire provides an alternative way to process DIA data. Un-
like existing targeted extraction software tools, DIA-Umpire
extracts peptide precursor and fragment signals without any
hypothesis or prior knowledge about the content of the sam-
ples. The untargeted detection has an advantage of finding
new peptide ion signals in DIA data that may not be present
even in a comprehensive spectral build from DDA data. It
also alleviates the burden of building comprehensive, sample-
specific libraries using DDA data in the first place. Further-
more, because DIA-Umpire-derived identifications are com-
patible with the targeted extraction tools (e.g. Skyline), one
can generate a DIA-derived spectral library to perform tar-
geted extraction and quantification using those tools, poten-
tially maximizing the amount of quantitative information that
can be extracted from the data.

The Orbitrap Fusion experiments conducted as part of
this work demonstrated the high quality of DIA data with
respect to the number of identifications and the identifi-
cation reproducibility. Future work should also explore the
accuracy of peptide and protein quantification that can be
extracted from these data, either using the fragment ion in-
tensities from MS2 data or MS1 precursor ion intensities (as
both quantification options are supported in DIA-Umpire).
It should also be noted that the quality of MS1 signal and
good chromatography are very important for DIA-Umpire
analysis, as these factors ensure accurate detection of pre-
cursor features and assembly of precursor-fragments groups.
Evaluation of the Orbitrap Fusion data acquired using dif-
ferent window sizes showed noticeable differences in the
numbers of identified peptides and proteins, with an over-
all preference for a 10 Da window size. However, more
comprehensive and consistent evaluation of different instru-
ment settings should be performed in the future work. Fi-
nally, the analysis presented here was primarily concerned
with the untargeted, spectral library-free workflow of DIA-
Umpire. Thus, evaluation of the performance of targeted ex-
traction tools on the Orbitrap Fusion DIA data generated in
this work, or comparison between different computational
strategies, go beyond the scope of this work. Nevertheless,
we hope that the data presented here, which we make avail-
able via the ProteomeXchange consortium database (dataset
identifier PXD003179), can be used for that purpose in the
future.
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