
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/pmic.201500526. 

 

This article is protected by copyright. All rights reserved. 

 

Untargeted, spectral library-free analysis of data independent acquisition proteomics 

data generated using Orbitrap mass spectrometers 

 

Chih-Chiang Tsou
1
, Chia-Feng Tsai

2
, Guoci Teo

3
, Yu-Ju Chen

2
, Alexey I. Nesvizhskii

1,3
 

 

 

 

 

1 
Department of Computational Medicine and Bioinformatics, University of Michigan, 

Ann Arbor, MI 48109, USA 

2 
Institute of Chemistry, Academia Sinica, Taiwan. 

3 
Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA 

 

 

Corresponding author: 

Alexey I. Nesvizhskii 

Department of Pathology, University of Michigan 

4237 Medical Science I 

http://dx.doi.org/10.1002/pmic.201500526
http://dx.doi.org/10.1002/pmic.201500526
http://dx.doi.org/10.1002/pmic.201500526


 

 

 

This article is protected by copyright. All rights reserved. 

 

Ann Arbor, MI, 48109 

Email: nesvi@med.umich.edu 

Tel: +1 734 764 3516 

 

 

 

Abbreviations 

DIA: Data Independent Acquisition 

DDA: Data Dependent Acquisition 

SWATH: Sequential Window Acquisition of all THeoretical Mass Spectra 

MRM: Multiple Reaction Monitoring  

SRM: Selected Reaction Monitoring  

MS: Mass Spectrometry 

PSM: Peptide-Spectrum Match 

HCD: Higher-Collisional Dissociation 

FDR: False Discovery Rate 

EM: Expectation Maximization 

ROC: Receiver Operating Characteristic 
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We describe an improved version of the data independent acquisition (DIA) computational 

analysis tool DIA-Umpire, and show that it enables highly sensitive, untargeted and direct 

(spectral library-free) analysis of DIA data obtained using the Orbitrap family of mass 

spectrometers. DIA-Umpire v2 implements an improved feature detection algorithm with two 

additional filters based on the isotope pattern and fractional peptide mass analysis. The 

targeted re-extraction step of DIA-Umpire is updated with an improved scoring function and 

a more robust, semi-parametric mixture modeling of the resulting scores for computing 

posterior probabilities of correct peptide identification in a targeted setting. Using two 

publicly available Q Exactive DIA datasets generated using HEK-293 cells and human liver 

microtissues, we demonstrate that DIA-Umpire can identify similar number of peptide ions, 

but with better identification reproducibility between replicates and samples, as with 

conventional data dependent acquisition (DDA). We further demonstrate the utility of DIA-

Umpire using a series of Orbitrap Fusion DIA experiments with HeLa cell lysates profiled 

using conventional DDA and using DIA with different isolation window widths.  

 

 

SIGNIFICANCE OF THE STUDY 

As data independent acquisition mass spectrometry emerging as a promising technique, 

development of computational analysis tool for DIA data obtained from a wide range of mass 

spectrometers is the next critical step to facilitate its adoption for a board range of proteomics 

applications. The computational tool, DIA-Umpire v2, presented in this work is capable of 



 

 

 

This article is protected by copyright. All rights reserved. 

 

highly sensitive, untargeted analysis of DIA data from complex protein samples generated 

using the Orbitrap family of mass spectrometers. The tool supports various DIA strategies 

and mass spectrometers. Most importantly, the workflow is not completely dependent on a 

spectral library and is compatible with many existing DDA-type analysis pipelines, so the 

users can continue using the database search engines and post-processing tools they are 

familiar with to analyze the pseudo MS/MS spectra extracted using DIA-Umpire from DIA 

data. 

 

 

INTRODUCTION 

 

Data independent acquisition (DIA) mass spectrometry (MS) [1-4] has recently emerged as a 

promising alternative to data dependent acquisition (DDA) for quantitative proteomics 

analysis (for a recent review, see [5]). The fundamental concept of DIA is to acquire 

fragment ion information for all precursor peptide ions within a certain window of m/z 

values, sequentially covering the entire range of relevant m/z values. This strategy is 

exemplified using the SWATH-MS [3] approach, and is now available on most instrument 

platforms. At present, DIA data is most commonly analyzed using targeted extraction tools 

such as OpenSWATH [6], Spectronaut [7], PeakView, and Skyline [8] for extraction of 

quantification information from DIA data, and tools for statistical scoring of extracted signals 

such as mProphet [9]. These tools are dependent on the availability of spectral libraries, 

typically built from DDA data acquired in parallel with DIA data from the same or similar 

samples. Recent studies have further advanced such targeted extraction approaches to various 
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proteomics applications [10-18] including post-translational modifications [12, 13], protein-

protein interaction [13, 14], protein heritability analysis [19], and immunopeptidomics 

analysis [18]. 

 

We have recently described an alternative workflow, DIA-Umpire [20], for untargeted and 

direct (i.e. spectral library-free) analysis of DIA data. The feature detection algorithm of 

DIA-Umpire detects peptide and fragment ion features, and uses their peak elution 

similarities to group detected fragment and precursor signals. The detected m/z and intensity 

values of grouped signals are then assembled into pseudo MS/MS spectra that are fully 

compatible with any analysis tools developed for DDA data, including MS/MS database 

search engines (e.g. X! Tandem [21], Comet [22], MSGF+ [23]), peptide-spectrum match 

(PSM) statistical validation (PeptideProphet [24], Percolator [25], PeptideShaker [26]) and 

protein inference tools such as ProteinProphet [27]. We have demonstrated that reliable 

quantification can be obtained from both MS2 fragment ion intensities and from MS1 

precursor peptide ion intensities. We have also demonstrated and implemented in DIA-

Umpire an optional hybrid workflow, which builds an internal library from confident 

identifications from database search results when multiple DIA runs are available. This 

“internal” (i.e. DIA-derived) library can then be used to query preprocessed precursor-

fragment groups using the second, targeted re-extraction step to reduce the number of missing 

identifications (quantifications) across all experiments from the same dataset. It should also 

be noted that DIA-Umpire-derived identifications are compatible with other targeted 

extraction tools, i.e. a DIA-derived spectral library can be built using tools such as SpectraST 
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[28], with the subsequent interrogation of the data using that library with targeted extraction 

tools such as Skyline or OpenSWATH.  

 

Because most of the recent studies used DIA (SWATH-MS) data generated using AB Sciex 

5600 instruments, we sought to evaluate the performance of the DIA-Umpire computational 

strategy on data generated using the Orbitrap family of mass spectrometers (Thermo Fisher 

Scientific) which also support acquisition of  SWATH-like DIA data and other DIA variants 

[7, 29, 30]. The Orbitrap mass analyzer, available in both the Q Exactive and the Orbitrap 

Fusion instruments, enables acquisition of tandem mass spectra with high mass accuracy and 

scan rate – two of the main prerequisites for successful interrogation of complex samples 

using DIA data. Here we present DIA-Umpire v2, the new version of the software that 

enables analysis of complex DIA datasets generated using the Orbitrap instruments. We 

describe improvements made in the algorithms of DIA-Umpire, including the introduction of 

signal isotope pattern and fractional mass filters, the new targeted re-extraction scoring 

function, and the semi-parametric mixture modeling approach for computing the probabilities 

of correct identifications of peptide signals in DIA data at the targeted re-extraction stage. 

Using two Q Exactive DIA and DDA datasets published by Bruderer et al. [7], and a series of 

human HeLa cell line experiments on an  Orbitrap Fusion performed as part of this work, we 

show that DIA-Umpire v2 enables highly sensitive analysis of DIA data.  

 

METHODS 
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Q Exactive datasets 

The raw files for two sets of Q Exactive DIA and DDA data described in [7] were 

downloaded from PeptideAtlas (http://www.peptideatlas.org; PASS00589). The first set was 

generated using HEK-293 cell lysates and the second set using human liver microtissue 

samples. All samples were analyzed using both DDA and DIA.  

 

Orbitrap Fusion datasets 

The MS system, Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific, San Jose, 

CA), was coupled with an Ultimate 3000 RSLCnano system (Thermo Fisher Scientific). 

HeLa cells (predigested using trypsin) were purchased from Thermo Scientific (San Jose, 

CA). 1ug of HeLa cells were  loaded onto self-packed analytical column (300 mm length x 

100 um i.d.) using 3 um ReproSil-Pur C18-AQ particles (Dr. Maisch, Ammerbuch, 

Germany). The mobile phases consisted of (A) 0.1% formic acid and (B) 0.1% formic acid 

and acetonitrile. Peptides were separated through a gradient of up to 85% buffer B over 135 

minutes at flow rate of 500 nL/min. The gradient initially started from 1% B to 2% B for 2 

mins and then was increased linearly to 25% B at 112 min, to 35% at 122 min, then to 90% B 

at 123 min, held for 6 mins. Finally, the gradient was decreased linearly to 1% at 130 min and 

held for 20 min for re-equilibration.  

 

The MS instrument was operated in the positive ion mode, with an electrospray through a 

heated ion transfer tube (250 °C). Full scan MS spectra were acquired in the Orbitrap mass 

analyzer (m/z range: 400−1250 Da) with the resolution set to 60,000 (FWHM) at m/z 200 Da. 
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Full scan target was 3e5 with a maximum fill time of 50 ms. All data were acquired in profile 

mode using positive polarity. MS/MS spectra of both DDA and DIA data were acquired in 

the Orbitrap as well with a resolution of 15,000 (FWHM) at m/z 200 Da and higher-

collisional dissociation (HCD) MS/MS fragmentation.  

 

For DDA data, up to top 15 most intense ions were selected for MS/MS for each scan cycle. 

Target value for fragment scans was set at 1e5 with a maximum fill time of 35 ms and 

intensity threshold was kept at 2e4. Isolation width was set at 1.4 Th. Two sets of 

independent DDA experiments (labeled DDA1 and DDA2) were acquired, each containing 

three replicate runs.   

 

DIA experiments were performed using different isolation window settings. A total of five 

DIA settings with 25, 20, 15, 10, and 5 Da SWATH-type fixed size isolation windows 

(resulting in 2.7, 3.3, 3.9, 6.2, and 13 seconds cycle time, respectively) were used to acquire 

the data. For each DIA experiment, the target value for fragment scans was set at 1e5 with a 

maximum fill time of 50 ms. Three replicates were acquired for each DIA experiment with 

one of the specified window sizes. 

 

Definition of datasets 

All DDA and DIA experiments were processed independently. False discovery rate (FDR) 

estimations at peptide ion or protein level, DIA internal library generation, and master protein 
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list generation were done for each dataset separately. These datasets were defined as follows. 

The Q Exactive DIA (or DDA) datasets are referred to as ‘HEK-293 DDA’, ‘HEK-293 DIA’, 

‘Microtissue DDA’, and ‘Microtissue DIA’ datasets. For the Orbitrap Fusion DIA data, three 

replicates for each isolation window size setting were considered as part of the same dataset, 

referred to as ‘DIA 5Da’, ‘DIA 10Da’, ‘DIA 15Da’, ‘DIA 20Da’ and ‘DIA 25Da’. The two 

independent sets of DDA data (each consisting of three replicates) were labeled ‘DDA1’ and 

‘DDA2’ datasets.  

 

DIA-Umpire pseudo MS/MS extraction 

All .raw files were converted into mzXML format using msconvert.exe (version 3.0.6721) 

[31] with vendor (Xcalibur version 2.3-176401/2.3.0.1765) peak picking option to generate 

centroid spectra. The DIA mzXML files were first processed by the signal extraction (SE) 

module of DIA-Umpire to generate pseudo MS/MS spectra in MGF format. For detection of 

precursor ion signal, the following parameters were used: 10 ppm mass tolerance for the 

Orbitrap Fusion datasets and 15 ppm for the Q Exactive datasets, charge state range from 1+ 

to 5+ for precursor ion detection in MS1 scans, and 2+ to 5+ for unfragmented precursor ion 

detection in MS2 scans. For detection of fragment ions in MS2 scans, 20 ppm mass 

tolerances for the Orbitrap Fusion datasets and 25 ppm for the Q Exactive datasets were used. 

Signal-to-noise ratio for both precursor and fragment signals was set to 1.1. The maximum 

retention time range was set to two minutes, and the algorithm allowed missing peaks in up to 

two consecutive MS1 scans for detection of single m/z trace signals. Because the signal 

quality of the centroid spectra generated using Xcalibur library via msconvert.exe was 

manually inspected and deemed to be sufficiently high, no additional background detection 



 

 

 

This article is protected by copyright. All rights reserved. 

 

and noise removal was used in the DIA-Umpire_SE module. Furthermore, because the MS2 

scans in the resulting mzXML files contained the isolation window ranges there was no need 

to specify these settings in the parameter file of the DIA-Umpire_SE module. 

 

Filtering of detected features using fractional mass and isotope peak pattern  

The first step of DIA-Umpire analysis is extraction of precursor and fragment ion signals by 

the feature detection algorithm. DIA-Umpire v2 implements two new filters, the fractional 

mass filter and the isotope pattern filter, to remove detected precursor ion and fragment 

features that are less likely to be true features. 

 

Fractional mass filters have been used in a number of applications previously [32-34]. These 

studies have shown that the mass values of certain molecules (e.g. tryptic peptides and 

metabolites) distribute in specific fractional number regions. This characteristic can be used 

to detect false signals and to reduce the number of false positive peptide identifications. In 

this study, we adopted the fractional mass boundary equations described in Toumi et al [34] 

which were derived for human tryptic peptides. In order to allow modified peptides in the 

analysis, we extended the allowed fractional mass range by 2×d (d=0.1 used in this study; 

parameter file option). For each detected precursor ion or fragment ion feature with neutral 

mass M, the fractional mass D(M) is calculated as  

𝐷(𝑀) = 𝑀 − ⌊𝑀⌋  
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⌊M⌋ is the largest integer not greater than M. The upper and lower bounds (the range of 

allowed fractional masses) of the fractional mass filter are derived according to the following 

equations, respectively: 

𝐻(𝑀) = 𝐷 (0.00052738 × 𝑀 + 0.066015 + 𝑑)      

𝐿(𝑀) = 𝐷(0.00042565 × 𝑀 + 0.0003821 − 𝑑)  

Finally, the binary classifier B(M) based on the fractional mass (1: accepted; 0: rejected) is 

determined as follows:  

 

𝐵(𝑀) = {
1,      𝑖𝑓 𝐻(𝑀) ≥ 𝐷(𝑀) ≥ 𝐿(𝑀)

1,      𝑖𝑓 𝐻(𝑀) < 𝐿(𝑀) ∧ [𝐷(𝑀) ≤ 𝐻(𝑀) ∨ 𝐷(𝑀) ≥ 𝐿(𝑀)]

0,   otherwise

           

 

Second, an isotope pattern filter has been introduced to remove precursor features showing a 

poor fit between the observed and the theoretical isotope peak distributions. Theoretical 

isotope peak intensity ratios given peptide molecular weights were calculated from all human 

tryptic peptides. The isotope peak ratios up to the 10
th

 isotopic peak were established in DIA-

Umpire by generating 9 (from the 2
nd

 isotopic peak to the 10
th

 isotopic peak) scatter plots 

(Supplementary Figure 1). To determine the boundary of the theoretical isotope ratios, the 

mean (μ) and standard deviation (σ) of each 100 Da bin in each plot were calculated. The 

99.8% (±3.3×σ) confidence intervals were then selected to represent the boundaries for each 

bin (plotted in Supplementary Figure 1). For a possible peak feature detected with peak 

intensities I = (I1, I2, …, In) and neutral mass M, the observed peak ratios O = (O2, …, On), Oi 
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= Ii / I1, were calculated, where n is the isotope peak number (n = 1 refers to the monoisotopic 

peak). Then the mean μi and the standard deviation σi of the closet mass bin for M from i
th

 

scatter plot (corresponding to i
th

 isotope ratio) were extracted, and the boundary (Hi, Li) of the 

expected peak ratio was calculated as follows: Hi = μi + 3.3×σi and Li=μi -3.3×σi. Then the 

isotope pattern fitness probability score between the observed peak ratio and the theoretical 

peptide isotope distribution was estimated as 1 − 𝐶(𝑋2, 𝑛 − 1), where 𝐶(𝑋2, 𝑛 − 1) is the 

standard the Chi-Squared probability cumulative distribution function, and 𝑋2 is Chi-Squared 

value calculated as follows:  

                         𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
2

𝑛
𝑖=2              

𝐸𝑖 = {

𝑂𝑖, 𝑖𝑓 𝑂𝑖 ≥ 𝐿𝑖 𝑎𝑛𝑑  𝑂𝑖 ≤ 𝐻𝑖

𝐻𝑖 , 𝑖𝑓  𝑂𝑖 > 𝐻𝑖

𝐿𝑖 , 𝑖𝑓  𝑂𝑖 < 𝐿𝑖

                                     

In this study, all detected features with isotope pattern fitness probability score below 0.3 

were removed. 

  

DDA MS/MS and DIA pseudo MS/MS database search 

The DDA and DIA pseudo MS/MS spectra extracted using DIA-Umpire were searched using 

X! Tandem, Comet and MSGF+ search engines using the following parameters: allowing 

tryptic peptides only, up to one missed cleavage, methionine oxidation specified as variable 

modification, and cysteine carbamidomethylation as static modification. The precursor ion 

mass tolerance and the fragment ion mass tolerance were set, respectively, to 10 ppm and 20 

ppm for the Orbitrap Fusion data and to 15 ppm and 25 ppm, respectively, for the Q Exactive 
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data. The data were searched against a non-redundant human protein sequence FASTA file 

extracted from the UniProtKB/Swiss-Prot database (release date: June 19, 2015; 20,200 

sequences), appended with the corresponding reversed sequences as decoys for target-decoy 

analysis. The output files from each search engines were further analyzed by PeptideProphet, 

and the results were combined using iProphet [35] followed by ProteinProphet [27]. 

 

FDR estimation independently for each DDA/DIA run 

The false discovery rates (FDR) for peptide ion (i.e. unique combination of peptide sequence, 

charge state, modification and modification site parameters) and protein identifications was 

first estimated independently for each individual run. For each individual run (e.g. Orbitrap 

Fusion DIA 5Da window, Replicate 1; denoted as ‘DIA 5Da R1’), FDR at the peptide ion 

level was estimated by sorting the identifications using the iProphet computed peptide ion 

probability followed by the selection of the probability threshold corresponding to 1% FDR 

based on the target-decoy strategy [36].  The numbers of peptide ions at 1% FDR determined 

independently for each run (column “Peptide ion IDs (1% Run level FDR)”) are shown in 

Supplementary Table 1 (Q Exactive HEK-293 data), in Supplementary Table 2 (Q Exactive 

liver microtissue data), and in Supplementary Table 3 (Orbitrap Fusion HeLa data). At the 

protein level, protein groups assembled by ProteinProphet for each run independently were 

sorted using the maximum peptide ion iProphet probability taken as the protein-level score, 

followed by target-decoy based FDR estimation. The number of protein groups determined 

independently for each run at 1% FDR are also shown in Supplementary Tables 1-3 (column 

“Protein IDs (1% Run level FDR)”). 
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FDR for peptide ion identifications in DDA data at the dataset level 

In addition to estimating FDR at individual run level, FDR for DDA data was also estimated 

at the dataset level. In the dataset level FDR strategy, the list of peptide ions was filtered to 

achieve 1% FDR for the entire dataset (e.g. Orbitrap Fusion ‘DDA1’ dataset consisting of 

three replicate runs ‘DDA1 R1’, ‘DDA1 R2’, and ‘DDA1 R3’). If a peptide ion passed the 

desired FDR threshold (here 1%) at the dataset level, then all identifications of that peptide 

ion in each individual run within the same dataset were counted as identified in that run. Such 

a filtering strategy is useful for reducing the number of missing values in each individual run 

(which is important for achieving more complete quantification matrix across the dataset), 

while maintaining the desired FDR at the dataset level. It also allows fairer comparison of 

DDA numbers with DIA numbers after the second, targeted re-extraction step using the 

spectral library build from all identified spectra in the dataset (see below). The number of 

peptide ion identifications for each DDA run determined using the dataset level FDR strategy 

is shown in Supplementary Tables 1-3 (column “Peptide ion IDs (1% FDR dataset level)”). 

 

FDR for protein identifications in DDA data at the dataset level 

To estimate protein FDR for DDA data at the dataset level,  ProteinProphet [27] was used to 

assemble protein groups for each dataset taking pepXML files for all replicate runs from the 

same dataset as input. Protein FDR was estimated using the target-decoy approach based on 

the maximum peptide ion probability across all files within the dataset. At 1% FDR, the 

master protein list for each dataset was first generated. For each protein (representing a 
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protein group) in the master list, that protein was considered identified in that individual run 

if it had at least one peptide ion identified in that run that was included in the 1% dataset level 

FDR list. The number of protein identifications for individual DDA runs counted using the 

dataset level FDR strategy is shown Supplementary Tables 1-3 (column “Protein IDs (1% 

Dataset level FDR)”). 

 

Generation of the spectral library for targeted re-extraction in DIA data 

Analysis of DIA data using DIA-Umpire includes an additional targeted data extraction step 

using spectral library build from the peptides identified using the initial, untargeted analysis. 

In each DIA dataset, all peptide ion identifications passing 1% dataset level FDR (estimated 

as described above for DDA data) were taken as input into the DIA-Umpire target extraction 

module (DIA-Umpire_Quant.jar) to generate an internal spectral library and perform targeted 

re-extraction analysis [20] to further reduce the number of missing quantifications for each 

DIA dataset. For building consensus spectra in the internal spectral library, an option has 

been added in DIA-Umpire v2 to use the fragment selection algorithm for quantification 

described in Tsou et al [20]. With this option enabled, the consensus spectrum for each 

peptide ion is created using the TopN best fragments selected across all runs within the 

dataset (top six fragments in this study). The algorithms for building consensus spectra, 

retention time prediction, and mass calibration in DIA-Umpire v2 remained the same.  

 

Targeted re-extraction scoring function 
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Several components of the scoring function for the targeted re-extraction step were revised, 

and thus described here in more detail. A precursor-fragment group G generated by DIA-

Umpire, and a library spectrum S, represented as 

S = {(𝐼1
S, 𝑀1

S), (𝐼2
S, 𝑀2

S), … , (𝐼NS
S , 𝑀NS

S )} 

G = {(𝐼1
G, 𝑀1

G, 𝐶1
G, 𝑇1

G), (𝐼2
G, 𝑀2

G, 𝐶2
G, 𝑇2

G), … , (𝐼NG
G , 𝑀NG

G , 𝐶NG
G , 𝑇NG

G )} 

where NS and NG are the numbers of fragment peaks in the library spectrum and in the 

precursor-fragment group, respectively (NS ≤ 6 in this study). Ir
S
 and Mr

S
 are the intensity 

and the theoretical m/z value, respectively, of a fragment r that belongs to the library 

spectrum S. Similarly, Ir
G
 and Mr

G 
are the intensity and m/z value, respectively, of a fragment 

r that belongs to the precursor-fragment group G. Cr
G
 and Tr

G
 are the Pearson correlation 

coefficient and peak apex retention time difference, respectively, between the peak profiles of 

a fragment r and the precursor anchoring group G. All negative Pearson correlation 

coefficients were set to 0. A matching intensity vector INT
G-S 

= (I1
G
, I2

G
, …, INS

G
) of length 

NS, with Ir
G
 taken as the intensity of the fragment peak r in G that matches a fragment in S, 

and as zero if no fragment peak can be found in G within the specified mass tolerance (in 

ppm units) window DM around Mr
S
. Thus, INT

G-S 
contains L non-zero values, where L is the 

total number of matched fragments between G and S (L ≤ NS). The following nine sub-scores 

are calculated during the spectral matching: 

1. Spectral Similarity Score (SSS), in DIA-Umpire v2 calculated using the Dot product 

scoring described in Toprak et al.[37] between the vector INT
G-S 

and the library 

spectrum intensity vector (I1
S
, I2

S
, …, INS

S
). 

2. Mass Error Score (MES): 
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MES = 1 −
∑ PPM(𝑀𝑗

G,𝑀𝑗
S)𝐿

𝑗=1

DM×𝐿
          

PPM(𝑚𝑎, 𝑚𝑏) =
|𝑚𝑎−𝑚𝑏|×2×106

𝑚𝑎+𝑚𝑏
    

3. Correlation Score (CS): 

CS =
∑ 𝐶𝑗

G𝐿
𝑗=1

𝐿
       

The scores described above are essentially the same as described earlier for DIA-Umpire 

[20], except that SSS is computed using the dot product instead of the Pearson correlation. In 

addition, the following six new scores are introduced: 

4. Apex Delta Score (ADS):  

ADS =
∑ |𝑇𝑗

G|𝐿
𝑗=1

𝐿
      

5. Weighted Number of matched Fragments (WNF): 

WNF = ∑ 𝐶𝑗
G × (1 −

PPM(𝑀𝑗
G,𝑀𝑗

S)

DM

𝐿
𝑗=1 )    

6. Retention time difference between the predicted retention time and the observed 

monoisotope peak apex retention time of the precursor peptide anchoring precursor-

fragment group G. 

7. Precursor isotope peak correlation score, computed as the Pearson correlation 

coefficient between the monoisotope peak elution profile and the second isotope peak 

profile of the precursor anchoring group G (set to zero if the correlation is negative). 
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8. Precursor isotope pattern fitness probability score , calculated as described earlier in 

Methods.  

9. Difference between the experimental mass of the precursor anchoring group G and the 

theoretical mass of the peptide ion in the internal library. 

 

The final match score (U-score) between S and G is calculated as a linear combination of all 

the nine sub-scores described above. The linear combination coefficients are trained for each 

dataset as described for DIA-Umpire previously [20]. 

 

Posterior probabilities of correct identification at the targeted extraction step  

The probability calculation in DIA-Umpire v2 has been revised to implement a more robust 

semi-parametric mixture modeling approach. For each library spectrum S, let U be the best 

final match score (U-score described above) of all candidates in the searched range for S. The 

observed distribution of scores for all spectra in a particular run searched at the targeted 

extraction step, f(U), is a joint distribution of correct and incorrect identifications, i.e. 

𝑓(𝑈) = 𝜋0𝑓0(𝑈) + 𝜋1𝑓1(𝑈), where 𝑓0 and 𝑓1are the respective distributions of incorrect and 

correct identifications, and 𝜋0 and 𝜋1 are the priors (proportions of true and false matches), 

where 𝜋0 + 𝜋1 = 1. To estimate the distributions 𝑓0 and 𝑓1, DIA-Umpire v2 implements the 

semi-parametric density estimation similar to that of Robin et al [38], which has been 

described for PSM validation by Choi et al [39] and implemented in PeptideProphet (‘P’ 

option) and in iProphet. The idea behind the semi-parametric mixture modeling is to use 

decoy identifications (that are known to be false) to first represent 𝑓0, so that 𝑓1 can then be 

deconvoluted using the expectation maximization (EM) algorithm with a modified kernel 
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density estimation. The first step of this mixture modeling approach is to estimate 𝜋0 to avoid 

the over-fitting problem (maximum likelihood will be always at the point when 𝜋1equals 1 

[38]) in the EM algorithm.  𝜋0 =
𝐹(𝑞)

𝐹𝑑(𝑞)⁄  , where 𝐹(. ) and 𝐹𝑑(. ) are respective CDFs of 

empirical distributions of target and decoy identifications, and q is the mean score of decoys. 

The priors 𝜋0 and 𝜋1 estimated this way are then fixed throughout the EM algorithm. The 

kernel density estimation of distributions 𝑓(𝑈)  and 𝑓0(𝑈)  are obtained by the following 

equations: 

𝑓(𝑈|ℎ) =
1

𝑛ℎ
∑ 𝐾(

𝑈−𝑈𝑖

ℎ
)𝑛

𝑖=1                   

 𝑓0(𝑈|ℎ) =
1

𝑛𝑑ℎ
∑ 𝐾(

𝑈−𝑈𝑖

ℎ
)

𝑛𝑑
𝑖=1        

where K is the Gaussian density function, and n and nd are the numbers of identifications 

from all target library spectra and decoy spectra, respectively. The bandwidth parameter h is 

estimated using the Silverman's rule of thumb [40]. The initial estimation of 𝑓1(𝑈) is done by 

the DIA-Umpire’s original Gaussian mixture modeling approach [20]. In the E-step of the 

EM mixture modeling algorithm, the probability p(Ui) of score Ui for spectrum Si is 

calculated as  

𝑝(𝑈𝑖) =
𝜋1𝑓1(𝑈𝑖)

𝑓(𝑈𝑖)
       

Then in the M-step the kernel density estimation of the correct distribution is updated as 

𝑓1(𝑈) =
∑ [𝑝(𝑈𝑖) × 𝐾 (

𝑈−𝑈𝑖

ℎ
)]𝑛

𝑖=1

ℎ ∑ 𝑝(𝑈𝑖)
𝑛
𝑖=1

⁄     

The EM algorithm iterates until the difference of log-likelihoods between two consecutive 

iterations is less than 0.00001 or the EM algorithm has reached 50 iterations. Once the EM 

algorithm is finished, the final 𝜋0 and 𝜋1 are updated by the following equations: 
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𝜋1 =
1

𝑛
∑ 𝑝(𝑈𝑖)

𝑛
𝑖=1          

 𝜋0 = 1 −  𝜋1         

Given a U-score Ui, the final probability is calculated as described above with the updated 

priors.  

 

Combing untargeted and targeted re-extraction identification results 

DIA-Umpire v2 exports additional identifications obtained at the targeted re-extraction step 

into separate pepXML files. In order to be able to estimate FDR after inclusion of these 

additional identifications, decoy identifications and their probabilities are exported as well. 

Note that, for consistency, DIA-Umpire prints the corresponding reversed sequences in the 

resulting targeted re-extraction pepXML files for all decoy identifications, even though the 

actual spectra representing those decoys in the internal library were obtained using the 

shuffling approach. For each identification obtained at the targeted re-extraction step, DIA-

Umpire prints the U-score probabilities calculated as described above, which are labeled as 

iProphet probabilities in the generated pepXML files. These steps allow the protein inference 

algorithm of ProteinProphet to combine the results (pepXML files), including decoy 

identifications, from the initial untargeted database search step with the results from the 

targeted re-extraction step.   

 

FDR for peptide ion identifications in DIA data at the dataset level 

As with DDA data, in addition to estimating FDR at individual run level, FDR for DIA data 

was also estimated at the dataset level. The list of peptide ions identified at the untargeted 
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step was filtered to achieve 1% FDR for the entire dataset (e.g. Orbitrap Fusion ‘DIA 5Da’ 

dataset consisting of the three replicate runs ‘DIA 5Da R1’, ‘DIA 5Da R1’, and ‘DIA 5Da 

R3’). If a peptide ion passed the desired FDR threshold (here 1%) at the dataset level, then all 

identifications of that peptide ion in each individual run within the same dataset were counted 

as identified in that run. Peptides that were not identified in a particular run based on the 

untargeted analysis alone, but that were detected in that run using targeted re-extraction with 

a high probability (here, 0.99 or higher), were also counted as identified. It should be noted 

that inclusion of identifications from the targeted re-extraction step does not change the 

dataset level FDR, set to 1%, because no new identifications are added at this step. The 

number of peptide ion identifications for each DIA run is shown in Supplementary Tables 1-3 

(column “Peptide ion IDs (1% Dataset level FDR)”). 

 

FDR for protein identifications in DIA data at the dataset level 

For estimating protein FDR at the dataset level for DIA data (after targeted re-extraction), 

ProteinProphet [27] was run for each dataset independently taking all pepXML from the 

untargeted (database search) step and from the targeted re-extraction step as input. FDR was 

then estimated using the target-decoy approach [36] based on the maximum peptide ion 

probability (iProphet probability from the untargeted database search step or the probability 

based on U-score from the targeted re-extraction step, also labeled as iProphet probability in 

the pepXML files as explained above). The master protein list corresponding to 1% FDR for 

each dataset was generated. A protein in the master list was then considered identified in an 

individual run if it had at least one peptide ion identified in that run that at 1% dataset level 

FDR in untargeted database search or with a probability 0.99 or higher at the targeted re-
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extraction step. The number of protein identifications obtained this way is shown in 

Supplementary Tables 1-3 (column “Protein IDs (1% Dataset level FDR)”). 

 

Data availability  

All Orbitrap Fusion mass spectrometry data files and DIA-Umpire results for all the datasets 

presented in this paper have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org/) via the PRIDE partner repository with the 

data set identifier PXD003179. During the reviewing process, reviewers can access the data 

(https://www.ebi.ac.uk/pride/archive/login) using the following account details: Username: 

reviewer12096@ebi.ac.uk, and Password: mtlM1GSv 

 

RESULTS AND DISCUSSIONS 

 

Improved feature detection using fractional mass and isotope pattern filters  

The DIA-Umpire workflow relies on accurate and sensitive detection of precursor and 

fragment ion signals. The sensitivity of the feature detection algorithm is a key factor for 

successful extraction of pseudo MS/MS spectra and subsequent untargeted peptide 

identification using database search. To increase the number of identifications, minimal 

filtering criteria can be applied to extract as many features as possible. In doing so, false 

(noise) features do not necessarily negatively affect the results because MS/MS database 

search with FDR filtering can effectively eliminate randomly assembled pseudo MS/MS 

https://www.ebi.ac.uk/pride/archive/login
mailto:reviewer12096@ebi.ac.uk
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spectra. However, it is not always practical to consider all possible features because the 

overall computation costs (time and memory usage) increase with the number of features 

extracted from the data. In large datasets, this could become an issue, especially for the 

precursor-fragment grouping algorithm of DIA-Umpire and for MS/MS database searching. 

Therefore, one challenge for the untargeted feature detection approach of DIA-Umpire is to 

find a reasonable balance between the number of extracted features and the total computation 

costs. To address this issue, we introduced two new filters, the fractional mass and the isotope 

pattern filters, in DIA-Umpire v2 to remove detected precursor ion and fragment features that 

are less likely to be true peptide features (see Methods for details).  

 

We first investigated the effects of these new feature detection filters using two DIA runs, 

one from the Orbitrap Fusion (10 Da isolation window) HeLa cell lysate dataset generated as 

part of this work, and the other from the publicly available Q Exactive HEK-293 cell lysate 

dataset [10] (see Methods for details regarding the experimental datasets). We processed 

these two DIA runs through the DIA-Umpire signal extraction module without any filtering 

to maximize the number of detected precursor features. The pseudo MS/MS spectra extracted 

by DIA-Umpire were then searched using X! Tandem, Comet, and MSGF+ search engines, 

and the results from all three search engines were combined using iProphet. Peptide ion 

identifications were filtered to achieve 1% peptide ion level FDR (see Methods for details 

regarding MS/MS database search and FDR calculations). All confidently identified peptide 

ions were linked to the corresponding detected precursor peptide ion features. 
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In total, there were 416,607 and 812,944 precursor ion features detected in the Orbitrap 

Fusion and Q Exactive runs, respectively. Of these, only 33,173 (7.9%) and 17,759 (2.1%) 

features were identified at 1% FDR threshold, respectively, in these two datasets. Figures 1A 

and 1B plot the fractional masses of the identified and unidentified features in different mass 

ranges for the two DIA runs, with the valid fractional mass regions (d=0.1) highlighted in 

blue. Clearly, the fractional masses of almost all of the identified features were in the valid 

fractional mass regions. We then applied the fractional mass filter, which effectively removed 

86,845 (22.6%) and 215,509 (27%) of the unidentified features for the Orbitrap Fusion and 

the Q Exactive run, respectively, at a loss of only 0.13% and 0.45% of true identifications for 

the Orbitrap Fusion run and the Q Exactive run, respectively. 

 

As for the isotope pattern filter, Figures 1C and 1D show the number of identified precursor 

features at different isotope pattern fitness probability thresholds. The majority of the 

identified features had an isotope pattern fitness probability of 0.8 or higher (95.6 % for the 

Orbitrap run and 96.9 % for the Q Exactive run). However, there were a small number of 

identified peptide ions which had extremely low isotope pattern fitness probabilities. Some of 

these cases may be due to co-elution with other high abundance peptide ion signals, whereas 

others could be false identifications. Additional analysis showed that the detected features 

with extremely low isotope pattern probabilities were mostly lower abundance signals 

(Supplementary Figure 2). Overall, the isotope pattern fitness probability threshold was found 

to be useful for more effective removal of false features.  
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By combining the two filters, the fractional mass filter and the isotope pattern filter, DIA-

Umpire v2 reduced the number of extracted features more effectively and without a 

significant reduction in the number of identified peptides. Further analysis (Supplementary 

Table 4) showed that the filters were able to reduce the computation time for DIA-Umpire 

signal processing step and the number of pseudo MS/MS spectra generated, in turn reducing 

the MS/MS database search time. Figures 1E and 1F show the receiver operating 

characteristic (ROC) curves of the detected features for the two DIA runs. Based on this 

analysis, for the remainder of this study we applied the fractional mass filter with d=0.1 and 

the isotope pattern fitness probability threshold of 0.3. These parameters were also selected as 

defaults in DIA-Umpire v2. Note that these two filters were developed based on prior 

information available from the analysis of human tryptic peptides. They may not be 

applicable to data from other organisms or proteolytic enzymes, however the filtering 

thresholds can be adjusted (or the filters turned off altogether) in the DIA-Umpire_SE 

parameters file.  

 

Application of DIA-Umpire v2 to AB Sciex TripleTOF 5600 datasets 

We first evaluated the performance of DIA-Umpire v2 using the AB Sciex TripleTOF 5600 

E. coli and Human datasets which were used as part of the original DIA-Umpire manuscript 

[20]. The derived pseudo MS/MS spectra were searched using X! Tandem, Comet, and 

MSGF+ search engines and combined by iProphet. Protein and peptide ion identifications 

were filtered at 1% FDR independently for each run. The number of identifications for each 

DIA run is shown in Supplementary Table 5. Using DIA-Umpire v2, we were able to identify 
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similar numbers of peptides and proteins in these data as previously reported using the earlier 

version (v 1. 25) of the software.  

 

Q Exactive DIA datasets 

We then evaluated the performance of DIA-Umpire v2 using the full Q Exactive DIA dataset 

[10], which included HEK-293 cell lysate and human liver microtissue data (see Methods). In 

the original publication, the authors used a spectral library-based targeted extraction 

workflow (Spectronaut). To build the spectral library, parallel DDA experiments were 

conducted using the same samples. Because DIA-Umpire allows library-free analysis, in this 

study we did not use the DDA-derived spectral library. Instead, the DDA data were used for 

comparing the number of identifications obtained using DIA and DDA strategies. 

 

The DIA data were first processed using the DIA-Umpire’s signal extraction module 

(DIA_Umpire_SE.jar) to generate pseudo MS/MS spectra (see Methods for details). The 

spectra were searched using X! Tandem, Comet, and MSGF+ search engines. The results 

from the individual search engines were combined using iProphet, and protein lists were 

assembled using ProteinProphet. The corresponding DDA data were processed in the same 

way as DIA pseudo MS/MS spectra. The results (peptide ion and protein identifications) were 

filtered at 1% FDR independently for each run (see Methods, Supplementary Table 1 for 

HEK-293 cells, and Supplementary Table 2 for liver microtissue data). On average, the 

number of peptide ions identified per run at 1% FDR was slightly higher in DIA compared to 

DDA data (Supplementary Tables 1 and 2, columns “Peptide ion IDs (1% FDR Run level)”). 
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The number of proteins identified per run was comparable between DIA and DDA in HEK-

293 data, and slightly less in DIA data than DDA data in the liver microtissue dataset 

(Supplementary Tables 1-2, “Protein IDs (1% FDR Run level)” column).  

 

After the untargeted identification step, the DIA-Umpire’s targeted re-extraction module was 

used to generate internal spectral libraries from the spectra identified at 1% dataset level FDR 

for each dataset. Then targeted re-extraction was performed to reduce the number of missing 

identifications across the runs from the same dataset (see Methods). Figure 2 shows that, after 

targeted re-extraction and with the data filtered at 1% dataset level FDR, DIA outperformed 

DDA with respect to the number of peptide ions (Figure 2A) and proteins (Figure 2C) 

identified on average per run in both HEK-293 and liver microtissue datasets (individual run 

numbers are shown in Supplementary Tables 1 and 2, columns “Peptide ion IDs (1% FDR 

Dataset level)” and “Protein IDs (1% FDR Dataset level)”). Note that, for fair comparison, 

the number of identifications per run in DDA was counted using the dataset level FDR 

strategy as well (see Methods).  

 

Importantly, DIA resulted in better identification coverage across different runs within the 

same dataset. Identification coverage for an individual run is defined here as the fraction of 

the total number of identifications in the dataset identified at 1% dataset level FDR that were 

detected in that run. The identification coverage was in the range of 63-79% at the peptide 

ion level and 82-91% at the protein level in DIA data, compared to 38-54% at the peptide ion 

level and 69-81% at the protein level in DDA data (Figure 2B and 2D). These results were 
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consistent with the original findings by Bruderer et al [7] for these data that demonstrated a 

very high completeness (i.e. low number of missing quantification values across different 

runs) that could be achieved using DIA.  

 

However, we also observed that the total number of peptide ion identifications per dataset 

(vs. individual run numbers discussed above) was higher in DDA than in DIA, especially in 

the very low FDR range (below 1%). This is evident from Figure 3B, which plots the ROC 

curves for the total number of peptide ion and protein identifications for each dataset. DIA 

identified approximately 15% less peptide ions at 1% FDR in both datasets. At the protein 

level, the numbers were similar in the HEK-293 data, and DIA identified approximately 5% 

less proteins than DDA in the liver microtissue data. This shows that, using the spectral 

library-free workflow of DIA-Umpire, the main advantage of DIA versus DDA data remains 

a better identification coverage (and thus quantification completeness) across the dataset, 

whereas DDA still provides a slight advantage in the total depth of the analysis.   

 

The original study in which these data were analyzed using targeted, spectral library-based 

software Spectronaut [7] reported fewer missing values than the results of DIA-Umpire. The 

details regarding FDR estimation in Spectronaut were unavailable in the original manuscript, 

and thus it is possible that the very high level of quantification completeness achieved using 

Spectronaut was in part due to forced quantification of background (noise) signals (instead of 

reporting them as missing values). Nevertheless, DIA-Umpire does have a limitation and 

dependence on the detection of precursor ion signals. Peptides with insufficient quality of 
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MS1 precursor ion signals to be detected using untargeted feature detection may have 

sufficiently strong fragment signals in DIA MS2 spectra, and thus can still be identified using 

targeted extraction approaches based on fragment ion profiles alone. Although DIA-Umpire 

attempts to reduce the number of missing quantifications using targeted re-extraction, it 

queries internal library spectra against the pre-assembled precursor-fragment groups, not 

against the raw data. Thus, the targeted re-extraction step of DIA-Umpire is still limited by 

the completeness of the precursor-fragment signals assembled from the detected MS1 and 

MS2 features at the first stage of the analysis. Thus, we also support alternative workflows by 

making the untargeted identification results of DIA-Umpire compatible with targeted 

extraction and quantification tools. To achieve as few missing quantification values across 

the dataset as possible, a spectral library can be built from DIA-Umpire derived 

identifications and used then by other targeted extraction tools (e.g. Skyline, OpenSWATH, 

and Spectronaut).  

 

Orbitrap Fusion DIA datasets 

We next investigated the performance of DIA-Umpire on data from another advanced mass 

spectrometer from the Orbitrap family of instruments, Thermo Orbitrap Fusion, which brings 

high resolution, high mass accuracy, and high scan speed capabilities all together in a single 

instrument. It is capable of acquiring MS/MS spectra in either ion trap or in the Orbitrap, 

allowing implementation of conventional DDA, SWATH-like DIA, wiSIM, and hybrid 

DDA/DIA workflows such as pSMART [30]. Here, we conducted five SWATH-like DIA 

experiments with different isolation windows of fixed widths (5, 10, 15, 20, and 25 Da). 

Because the DIA-Umpire’s feature detection algorithm was optimized for high mass accuracy 
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data (in both MS1 and MS/MS spectra), the DIA MS/MS spectra were acquired in the 

Orbitrap, and the alternative DIA methods in which MS/MS spectra are acquired in the ion 

trap such as wiSIM DIA were not explored in this work. The DDA experiments in this work 

were conducted for the purpose of providing a baseline number for comparison with DIA 

data, and thus a common Top 15 most intense ions DDA approach was used. Three replicate 

runs were performed for each DDA and DIA experiment (see Methods for experimental 

details).  

 

We processed the DIA and DDA data using same search parameters and FDR estimation as 

described above for the Q Exactive data. Figures 4A and 4C show the summary of peptide 

ion and protein identification numbers, respectively, for the DIA and DDA datasets (detailed 

numbers are shown in Supplementary Table 3). There were 30,000-32,000 peptide ions 

corresponding to 4,300-4,400 proteins identified by DDA per run (at 1% dataset level FDR). 

The best of the DIA datasets (5 and 10 Da isolation width datasets) identified similar or 

slightly higher number of peptide ions (33,000-34,000), corresponding to 4,000-4,200 

proteins (slightly lower than DDA). Note that the experiments were conducted with only 135 

minute liquid chromatography (LC) gradient time and without any fractionation step. Similar 

to what was observed for the Q Exactive datasets discussed above, DIA allowed better 

identification coverage across the runs from the same dataset (Figures 4B,D).  

 

Decreasing the isolation window widths from 25 Da (the window size used frequently to 

acquire SWATH-MS data on AB Sciex 5600 instruments) resulted in higher number of 
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identifications per run. The best performance was observed at 10 Da isolation width, and the 

number of identification dropped slightly (more at the peptide ion than protein level) with 5 

Da setting. At the same time, the identification reproducibility (identification coverage) was 

generally better for larger window sizes. Using smaller isolation windows reduces the 

number of co-fragmented peptides and therefore alleviates the difficulties of de-convoluting 

DIA MS/MS spectra using the approach of DIA-Umpire. However, using smaller isolation 

widths increases the number of required MS/MS scans to cover the same precursor m/z 

range, and therefore increases the cycle time. For example, narrowing the isolation window 

size from 10 Da to 5 Da, under the instrument settings used in this work, increased the cycle 

time from 6.2 to 13 seconds. Longer cycle times result in fewer measurement points acquired 

per peptide elution peak, making the measurement of peak shape correlation between the 

precursor and fragment signals less reliable. This, in turn, makes it more difficult to detect 

low abundant and short eluting peptide ions (see Supplementary Figure 3), thus lowering the 

reproducibility of identifications (Figures 4B and 4D). The increase in the cycle time can be 

avoided by decreasing  the scan acquisition time and or by decreasing the number of MS/MS 

scans acquired in each cycle (i.e. by reducing the overall fragmentation mass range). 

However, these changes could lead to identification losses. The optimal settings are likely to 

vary depending on the nature of the biological samples under investigation. 

 

Investigating the total number of identifications per dataset (i.e. triplicate runs from each 

dataset combined) between DIA and DDA at various FDR levels in more detail, DDA had 

more peptide ions identified in the very low FDR range (below 0.5% FDR) than DIA with 

any window size (Figure 4E), even though the DIA numbers (5 and 10 Da windows) 
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exceeded those of DDA in the FDR range of ~ 1% or higher. It is well known that, due to 

error rate inflation when going from peptide to protein level [36], achieving a certain low 

protein level FDR (e.g. 1%) requires peptide identifications with lower FDR value at the 

peptide level. This explains why the number of protein identifications at 1% protein FDR was 

higher in DDA data (Figure 4F), even though the opposite was observed at 1% FDR at the 

peptide ion level. The reason why in DDA data there were more peptide ion identifications 

with very high confidence (FDR below 1%) is that MS/MS spectra acquired using DDA with 

a tighter isolation width of 1.4 Da were on average less noisy and contained more peptide-

specific fragment ions than pseudo MS/MS spectra extracted using DIA-Umpire.  

 

Performance of semi-parametric mixture modeling   

DIA-Umpire v2 implements an improved scoring function and a more robust strategy based 

on semi-parametric mixture modeling with kernel density estimation (replacing a parametric 

Gaussian mixture model) for computing posterior probabilities of true identifications at the 

targeted re-extraction step (see Methods for details). We illustrate these improvements here 

by performing a comparison with the results obtained using DIA-Umpire v1.25 [20] on the 

Orbitrap Fusion and Q Exactive DIA datasets. Figure 5 shows an example of U-score 

histograms and mixture modeling results obtained using the two versions for a single DIA run 

from the Q Exactive liver microtissue dataset. The results from all the other DIA runs used in 

this work, including the Orbitrap Fusion data, are shown in Supplementary Figure 4. Figure 5 

shows a wider distribution of high scoring (i.e. likely correct) identifications, while the width 

of the decoy distribution is unaffected. This results in better discrimination between correct 

and incorrect (decoy) identifications in these data. Combining the new scoring and the semi-
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parametric mixture modeling, DIA-Umpire v2 can extract more identification at different 

FDR threshold, especially in the Q Exactive data (Supplementary Figure 5).  

 

In addition, the flexible mixture modeling by the semi-parametric kernel density estimation 

provides a better fit for the correct distribution than that achievable under parametric (e.g. 

Gaussian shapes) assumptions. This ensures that the computed probabilities of correct 

identifications are more accurate [39]. This is a particularly significant feature for new 

applications we are currently exploring, e.g. for combining the results of targeted extraction 

using the internal library built by DIA-Umpire with that using external DDA libraries (built 

from sample specific DDA data, or using global libraries such as human SWATHAtlas 

spectral library).  

 

CONCLUSIONS 

In this paper, we presented DIA-Umpire v2 and demonstrated that it is capable of highly 

sensitive, untargeted analysis of DIA data from complex protein samples generated using the 

Orbitrap family of mass spectrometers. Using publicly available Q Exactive DIA data, and 

using Orbitrap Fusion data acquired as part of this work, we showed that the DIA can achieve 

similar identification numbers and better identification reproducibility across the datasets 

than DDA data. With fewer missing quantification values, DIA data should provide improved 

statistical power for post-quantification analysis, e.g. using tools such as mapDIA [41] 

developed specifically for DIA data. Importantly, the workflow of DIA-Umpire does not 

require a spectral library, which should facilitate the adoption of DIA for a broad range of 
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discovery proteomics applications. DIA-Umpire is fully compatible with many existing 

DDA-type analysis pipelines, so the users can continue using the database search engines and 

post-processing tools they are familiar with to analyze the pseudo MS/MS spectra extracted 

using DIA-Umpire from DIA data.  

 

The untargeted, spectral library-free approach of DIA-Umpire provides an alternative way to 

process DIA data. Unlike existing targeted extraction software tools, DIA-Umpire extracts 

peptide precursor and fragment signals without any hypothesis or prior knowledge about the 

content of the samples. The untargeted detection has an advantage of finding new peptide ion 

signals in DIA data that may not be present even in a comprehensive spectral build from 

DDA data. It also alleviates the burden of building comprehensive, sample-specific libraries 

using DDA data in the first place. Furthermore, because DIA-Umpire-derived identifications 

are compatible with the targeted extraction tools (e.g. Skyline), one can generate a DIA-

derived spectral library to perform targeted extraction and quantification using those tools, 

potentially maximizing the amount of quantitative information that can be extracted from the 

data.  

 

The Orbitrap Fusion experiments conducted as part of this work demonstrated the high 

quality of DIA data with respect to the number of identifications and the identification 

reproducibility. Future work should also explore the accuracy of peptide and protein 

quantification that can be extracted from these data, either using the fragment ion intensities 

from MS2 data or MS1 precursor ion intensities (as both quantification options are supported 
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in DIA-Umpire). It should also be noted that the quality of MS1 signal and good 

chromatography are very important for DIA-Umpire analysis, as these factors ensure accurate 

detection of precursor features and assembly of precursor-fragments groups. Evaluation of 

the Orbitrap Fusion data acquired using different window sizes showed noticeable differences 

in the numbers of identified peptides and proteins, with an overall preference for a 10 Da 

window size. However more comprehensive and consistent evaluation of different instrument 

settings should be performed in the future work. Finally, the analysis presented here was 

primarily concerned with the untargeted, spectral library-free workflow of DIA-Umpire. 

Thus, evaluation of the performance of targeted extraction tools on the Orbitrap Fusion DIA 

data generated in this work, or comparison between different computational strategies, go 

beyond the scope of this work. Nevertheless, we hope that the data presented here, which we 

make available via the ProteomeXchange consortium database (dataset identifier 

PXD003179), can be used for that purpose in the future.  
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FIGURE LEGENDS 

Figure 1. Effects of feature detection filtering. (A) The fractional mass of detected 

precursor features from the first replicate of the Orbitrap Fusion DIA 10 Da dataset. The grey 

and red dots represent unidentified and identified features, respectively. Blue regions are the 
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valid regions of the fractional mass filter. (B) Same as (A), results for the first replicate of 

HEK-293 Q Exactive dataset. (C) The number of identified precursor features at different 

isotope pattern fitness probability thresholds, the Orbitrap Fusion data. (D) Same as (C), the 

Q Exactive data. (E) The results of applying the isotope pattern filter alone or combination 

with the fractional mass filter, the Orbitrap Fusion data. (F) Same as (E), the Q Exactive data. 



 

 

 

This article is protected by copyright. All rights reserved. 

 

 



 

 

 

This article is protected by copyright. All rights reserved. 

 

Figure 2. Identification numbers and reproducibility in the Q Exactive DIA and DDA 

datasets. (A) The number of peptide ion identifications at individual run level in different 

datasets. (B) The coverage of peptide ion identifications (identification reproducibility across 

the dataset). (C) Same as (A), protein level; (D) Same as (B), protein level.  
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Figure 3. Number of identifications as function of FDR in the Q Exactive datasets. (A) 

Peptide ion identifications, HEK-293 Q Exactive DIA and DDA data. (B) Protein 

identifications, HEK-293 Q Exactive DIA and DDA data. (C) Same as (A), liver microtissue 

Q Exactive DIA and DDA data. (D) Same as (B), liver microtissue Q Exactive DIA and DDA 

data. 
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Figure 4. Identification numbers and reproducibility in the Orbitrap Fusion DIA and 

DDA datasets. (A) The number of peptide ion identifications at individual run level in 

different datasets. Red dot indicates the actual identification number from a replicate. (B) The 

coverage of peptide ion identifications (identification reproducibility across the dataset). The 

number was calculated as the number of identifications for each replicate divided by the total 

number of identification from all the replicates. Red dot indicates the actual value derived 

from a replicate. (C) Same as (A), protein level. (D) Same as (B), protein level. (E) The 

number of peptide ion identifications as a function of FDR (dataset level, three replicates 

combined). Solid line: DIA dataset. Dash line: DDA dataset. (F) Same as (E), at the protein 

level. Solid line: DIA dataset. Dash lines: DDA dataset. 
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Figure 5. Score histograms and mixture modeling. (A) Score histograms and parametric 

Gaussian mixture modeling result obtained using DIA-Umpire v 1.25. (B) Score histograms 
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and semi-parametric mixture modeling result obtained using DIA-Umpire v2. (C) The 

number of targeted re-extraction identifications as a function of FDR obtained using DIA-

Umpire v 1.25 and v2. Data for one representative run from the Orbitrap HEK-293 Q 

Exactive dataset.  



 

 

 

This article is protected by copyright. All rights reserved. 

 

 


