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Multiple imputation of missing covariates
for the Cox proportional hazards
cure model
Lauren J. Beesley,a*† Jonathan W. Bartlett,b Gregory T. Wolfc

and Jeremy M. G. Taylora

We explore several approaches for imputing partially observed covariates when the outcome of interest is a cen-
sored event time and when there is an underlying subset of the population that will never experience the event of
interest. We call these subjects ‘cured’, and we consider the case where the data are modeled using a Cox pro-
portional hazards (CPH) mixture cure model. We study covariate imputation approaches using fully conditional
specification. We derive the exact conditional distribution and suggest a sampling scheme for imputing partially
observed covariates in the CPH cure model setting. We also propose several approximations to the exact distri-
bution that are simpler and more convenient to use for imputation. A simulation study demonstrates that the
proposed imputation approaches outperform existing imputation approaches for survival data without a cure
fraction in terms of bias in estimating CPH cure model parameters. We apply our multiple imputation techniques
to a study of patients with head and neck cancer. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

In survival analysis, a common assumption is that all subjects will eventually experience the event of
interest given long enough follow-up time. However, there are many settings in which this assumption
does not hold. For example, suppose we are interested in studying cancer recurrence in patients treated
for head and neck cancer. If the treatment completely eradicated the cancer in some individuals, then
there will be a subset of the population that will never experience a recurrence. We call these subjects
‘cured’ or ‘non-susceptible’.

One commonly used modeling approach for survival data with a cured fraction is a mixture model with
two components. The first component is a model for the probability that a subject is not cured, which
is usually modeled using logistic regression. The second component is a model for the failure time in
the susceptible (non-cured) population. Parametric, semiparametric, and nonparametric formulations of
the failure time model exist in the literature [1–7]. We consider a formulation of the mixture cure model
where failure time in the susceptible population is modeled using a Cox proportional hazards (CPH)
regression model [4,6,8]. It is important to note that subjects with observed events are known to be non-
cured, but cure status is not known for censored subjects. Cure models are appealing because they enable
enhanced interpretation and inference from data with a cure structure as cure models allow us to model
both the probability that a subject is cured and the hazard of an event in the non-cured group separately.

A challenge that arises in the application of these cure models is that often one or more covariates are
only partially observed. One simple approach is to ignore the missing data and analyze only the patients
with complete covariate data. ‘Complete case’ (CC) analysis is an undesirable approach because it does
not use data from patients with missing covariate values and is therefore inefficient. Also, CC analysis
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may be biased if the covariate missingness mechanism depends on the outcome. Other approaches in the
literature for handing missing covariates in the cure setting often involve modeling the joint distribution
of the missing covariates using general location models [7, 9] or by specifying a series of conditional
distributions [10]. Both approaches require us to explicitly specify the joint distribution of the covariates,
which may not be easily carried out, and they are not easily implemented using standard software.

In this paper, we explore multiple imputation as another approach for handling missing data in the cure
model setting. When performing multiple imputation, it is important to include outcome information in
the model for imputing partially observed covariates [11]. In the cure setting, however, many aspects
of the outcome (cure status and event times in the non-cured subjects) are not fully observed because
of censoring. We are interested in comparing different methods for incorporating the observed outcome
information to impute partially observed covariates when the primary outcome has a CPH cure structure.
We will study covariate imputation approaches using fully conditional specification (FCS).

Fully conditional specification is a multiple imputation approach in which we specify a conditional
distribution for each partially observed covariate [12, 13]. We then use these conditional distributions to
impute covariates as part of an iterative algorithm that cycles through the conditional distributions for
all the partially observed covariates. This often involves specifying a regression model for each partially
observed covariate and then using the regression models to impute the missing values. An attractive
feature of FCS is that it does not require us to explicitly specify the joint distribution of the covariates.
Suppose X is a set of covariates and Y is an outcome variable. Also, suppose our ultimate goal is to fit a
standard regression model for Y|X (e.g., linear, logistic). Let X(p) denote the pth covariate in X and X(−p)

denote all covariates in X except X(p). We would like to use the distribution of X(p)|X(−p),Y to impute
each partially observed X(p). If we have the distributions for Y|X and X(p)|X(−p), then we can derive the
distribution for X(p)|X(−p),Y directly. When X(p)|X(−p) and Y|X are normally distributed with predictors
incorporated in the mean structure, then the distribution of X(p)|X(−p),Y will also be normal and will
correspond to a linear regression that can be readily used to impute X(p). When the true distribution of
X(p)|X(−p),Y is unknown or difficult to sample from, we may attempt to approximate the distribution using
a simpler and more computationally convenient standard regression model. For example, for normal X(p),
we may specify the distribution of X(p)|X(−p),Y using some function of X(−p) and Y as predictors in a
linear regression model.

In survival analysis, the primary outcome usually consists of the pair (Y , 𝛿). If T is the underlying event
time and C is the censoring time, then Y = min(T ,C) and 𝛿 = I(T ⩽ C). The ultimate goal is usually
to fit a model for T|X. Although T is the outcome of interest, it is not directly observed because of cen-
soring. We can still derive the exact distribution of X(p)|X(−p),Y , 𝛿 to impute each partially observed X(p).
However, because of the complicated structure of survival data, the exact distribution of X(p)|X(−p),Y , 𝛿
will often be inconvenient or computationally intensive to sample from [14].

One possible alternative is to obtain a more convenient approximation to the exact conditional dis-
tribution of X(p)|X(−p),Y , 𝛿 for each partially observed covariate X(p). White and Royston derived an
approximate conditional distribution for proportional hazards survival data that reduced to a regression
model of X(p) with predictors X(−p), 𝛿, and Ĥ0(Y),where Ĥ0(Y) is the estimated cumulative baseline hazard
function [15]. One adaptation of this would be to using log(Y) in place of Ĥ0(Y) [16]. Another adaptation
would be to use a regression model for X(p) with predictors X(−p), 𝛿f1(Y), and (1 − 𝛿)f2(Y), where f1(Y)
and f2(Y) are functions of Y specified using splines or step functions.

Additionally, because Y = min(T ,C) is a mixture of a censoring time and the event time of interest,
it may not be appealing to include Y in the imputation regression models, and we may instead wish to
incorporate T directly. We can treat T as another partially observed variable and impute the value of
T from the distribution of T|T > C,X for censored subjects. Assuming C is uninformative for X(p),
we can then try to impute each partially observed X(p) by specifying the exact conditional distribution
X(p)|X(−p),T or by approximating the exact distribution with a regression model using T .

When the ultimate goal is to fit a mixture cure model, the form for the distribution of T|X is more
complicated. The most convenient estimation method introduces a partially observed variable, G, which
indicates cure status. Either an imputed value or the expectation of G is used in the mixture cure model
estimation algorithm [6]. When we have partially observed covariates, we can impute each partially
observed X(p) from the corresponding distribution of X(p)|X(−p), Y , 𝛿,G. Using assumptions for the distri-
bution of X(p)|X(−p), we can derive the exact conditional distribution from which to impute. We can also
impute using approximations to the exact conditional distribution that are more computationally con-
venient. Alternatively, we can impute the event time T for censored individuals and then impute each
partially observed X(p) using the approximated conditional distribution of X(p)|X(−p),T ,G.
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In this paper, we derive the exact conditional distribution and suggest a sampling scheme for imput-
ing partially observed covariates in the CPH mixture cure model setting. Additionally, we propose
several approximations to the exact distribution that are more convenient to use for imputation. We com-
pare the performance of our proposed imputation approaches with methods for survival data without a
cure fraction.

In Section 2, we present details about the CPH cure model. In Section 3, we present possible approaches
for imputing partially observed covariates in the cure setting. In Section 4, we report results from a set
of simulations and compare the performance of the imputation algorithms. In Section 5, we apply two
imputation approaches to a study of cancer recurrence in head and neck cancer patients, and in Section 6,
we present a discussion.

2. Cox proportional hazards cure model

We consider the setting where the primary outcome is a censored event time, and there is an underlying
subset of the study population that will never experience the event of interest. We call individuals that
will never experience the event ‘cured’. The CPH cure model is a mixture model with two components:
(1) a model for the probability that an individual is not cured; and (2) a CPH model for the hazard of an
event for non-cured subjects [4].

Let Yi = min(Ti,Ci) be the observed event/censoring time for individual i where Ti is the underlying
event time (defined as infinity if a subject is cured) and Ci is the censoring time. Let 𝛿i = I(Ti ⩽ Ci).
We define the cure status of individual i, Gi, as 1 when the individual is not cured and 0 when the individual
is cured. Gi is 1 when 𝛿i = 1 and is unknown when 𝛿i = 0. We assume censoring is independent
of G and T given covariates. We model the data as follows:

Logistic Model of Cure Status: logit(P(Gi = 1|Xi)) = 𝛼0 + 𝛼TXi i = 1, ..., n
CPH Model of Failure Time: h(t|Xi,Gi = 1) = h0(t)e𝛽

T Xi i = 1, ..., n

where h0(t) is the baseline hazard of having an event in the non-cured group. For simplicity, we assume
that we have the same set of covariates in both parts of the mixture model. Estimation of model parameters
can be carried out using an expectation–maximization (EM) algorithm [5, 6].

We consider the complete data partial log-likelihood corresponding to the CPH cure model assuming
that Gi is observed. The EM algorithm iterates between two steps. In the E-step for a given iteration, we
replace Gi in the complete data partial log-likelihood with

wi = E(Gi|𝛿i,Yi,Xi) = 𝛿i + (1 − 𝛿i)
piS(Yi|Xi,Gi = 1)

1 − pi + piS(Yi|Xi,Gi = 1)
(1)

Here, pi = P(Gi = 1|Xi) = expit(𝛼0 + 𝛼TXi) and S(Yi|Xi,Gi = 1) = e−H0(Yi)e𝛽
T Xi using the estimates

of 𝛼0, 𝛼, and 𝛽 from the previous iteration and an estimate of H0(t) obtained using a Breslow estimator
weighted by wi [17]. To improve the stability of the EM algorithm (model parameters are nearly uniden-
tifiable), we define censored individuals with very late censoring times as cured with wi = 0 [6]. The
M-step involves taking the complete data partial log-likelihood with wi substituted for Gi and maximiz-
ing it with respect to 𝛼0, 𝛼, and 𝛽. The EM algorithm allows us to handle the fact that cure status is only
partially observed. Variances of model parameter estimates can be estimated via bootstrap.

3. Multiple imputation of missing covariates

In this section, we discuss imputation by FCS in more detail. Then, we derive the exact conditional distri-
bution to impute partially observed covariates in the cure setting. We also present several approximations
to the exact distribution that are more convenient to use for imputation. We include several covariate
imputation models for survival data without a cured fraction.

3.1. Fully conditional specification

Fully conditional specification or ‘chained equations’ is a multiple imputation approach in which we
specify the conditional distribution for each partially observed variable and then use these distributions
to impute variables one-by-one as part of an iterative procedure [12, 13]. Suppose we are interested in
fitting a model to outcome O with partially observed covariates W = (X(1),… ,X(d)) and fully observed
covariates Z = (X(d+1),… ,X(s)). Let X = (W,Z). Recall that X(p) denotes the pth covariate in X and X(−p)

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4701–4717
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denotes all covariates in X except X(p). For each partially observed X(p), we specify the conditional distri-
bution f (X(p)|X(−p),O;𝜙p)where𝜙p is a set of parameters. Let f (𝜙p|X,O) denote the posterior distribution
of 𝜙p and let X(p,miss) and X(p,obs) denote the missing and observed portions of X(p). To impute missing
values for X(1) …X(d), we perform the following iterative chained equations algorithm. At iteration k, we
obtain updated imputed values by drawing

𝜙1
(k) ∼ f

(
𝜙1|X(1,obs)

(k−1) ,… ,X(d)
(k−1),Z,O

)
X(1,miss)
(k) ∼ f

(
X(1)|X(2)

(k−1),… ,X(d)
(k−1),Z,O;𝜙1

(k)

)
𝜙2
(k) ∼ f

(
𝜙2|X(1)

(k) ,X
(2,obs)
(k−1) ,… ,X(d)

(k−1),Z,O
)

X(2,miss)
(k) ∼ f

(
X(2)|X(1)

(k) ,X
(3)
(k−1),… ,X(d)

(k−1),Z,O;𝜙2
(k)

)
…

𝜙d
(k) ∼ f

(
𝜙d|X(1)

(k) ,… ,X(d−1)
(k) ,X(d,obs)

(k−1) ,Z,O
)

X(d,miss)
(k) ∼ f

(
X(d)|X(1)

(k) ,… ,X(d−1)
(k) ,Z,O;𝜙d

(k)

)
We iterate until convergence. When we have missingness in only one variable, no iteration is required,
and the algorithm reduces to standard parametric multiple imputation.

In our cure setting, we want to use the conditional distribution f (X(p)|X(−p), Y , 𝛿,G;𝜙p) to impute each
partially observed covariate X(p). In practice, however, f (X(p)|X(−p),Y , 𝛿,G;𝜙p) may be difficult to use for
imputation, and we may use an approximation, f̃ (X(p)|X(−p),Y , 𝛿,G; �̃�p). We approximate the posterior
distribution of �̃�p (or 𝜙p) by a multivariate normal distribution. If the distribution used for imputation
explicitly depends on G, we treat G as another partially observed variable and impute G as part of the
chained equations algorithm. If we also impute the true event time T for censored subjects, we could
impute partially observed X(p) using f (X(p)|X(−p),T ,G;𝜙p) or a corresponding approximation. We assume
that the covariates are missing at random (MAR).

For many of the imputation approaches we consider, drawing �̃�p, and missing X(p) values will reduce
to first fitting a regression model for X(p) using some function of X(−p),G, Y , 𝛿, and maybe T as predictors.
As in standard FCS, we fit this regression model only for subjects with observed X(p). We then draw the
parameter �̃�p from a multivariate normal with mean and variance obtained using the regression model
fit and use the drawn �̃�p and the conditional distribution implied by the regression model to draw each
missing value of X(p). We will call this regression model the imputation model for X(p). Alternatively,
we can obtain a draw of �̃�p by fitting the imputation model to a bootstrap sample of the data [18]. Mul-
tiple imputation using standard regression models can be implemented using the package MICE in R
[19]. For imputing covariates assumed to be normally distributed, we use predictive mean matching as
implemented in MICE.

The chained equations (FCS) algorithm will result in a single imputed dataset. We repeat the algorithm
to create several imputed datasets. Suppose our goal is to make inference from a particular model fit (in
our case, the CPH cure model). We fit this model to each imputed dataset, and then we use Rubin’s Rules
to produce a final estimate of the parameters and their variances from which we can make the desired
inference [20].

3.2. Imputation using the exact conditional distribution

We can use the complete data likelihood from the CPH cure model and an assumption about the distri-
bution of X(p)|X(−p) to derive the kernel of the conditional distribution of X(p)|X(−p), 𝛿,G, and Y for each
partially observed X(p).

Below, we derive the exact imputation distribution assuming X(p)
i ∼ N(𝜃0 + 𝜃TX(−p)

i , 𝜎2). We can
generalize our approach to impute covariates with non-normal distributions. We include a derivation for
Bernoulli random variables in the appendix. We assume that censoring does not depend on X(p) but may
depend on other covariates. Therefore, we do not need to specify a model for the censoring mechanism to
derive the conditional distribution of X(p). Let f (X(−p)

i ; 𝛾) be the joint distribution of X(−p)
i . In practice, we

will not need to explicitly specify this distribution. Let f (X(p)
i |X(−p)

i ; 𝜃0, 𝜃, 𝜎
2) be the distribution of X(p)
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given all the other covariates. We consider the complete data likelihood (assuming cure status is known)
for the CPH cure model:

L(𝛼, 𝛼0, 𝛽, 𝜃, 𝜃0, 𝛾, 𝜎
2) =

n∏
i=1

{
h(Yi|Gi = 1,Xi; 𝛽)𝛿i S(Yi|Gi = 1,Xi; 𝛽)P(Gi = 1|Xi; 𝛼, 𝛼0)

}Gi

×
{

P(Gi = 0|Xi; 𝛼, 𝛼0)
}1−Gi f

(
X(p)

i |X(−p)
i ; 𝜃0, 𝜃, 𝜎

2
)

f
(

X(−p)
i ; 𝛾

)

∝
n∏

i=1

{(
h0(Yi)e𝛽

T Xi

)𝛿i

e−H0(Yi)e𝛽
T Xi e𝛼

T Xi+𝛼0

1 + e𝛼T Xi+𝛼0

}Gi
{

1
1 + e𝛼T Xi+𝛼0

}1−Gi

e
−
(

X
(p)
i

−𝜃0−𝜃T X
(−p)
i

)2

2𝜎2 f
(

X(−p)
i ; 𝛾

)
From the aforementioned likelihood, we see that

f
(

X(p)
i |Gi, 𝛿i,Yi,X

(−p)
i

)
∝
{

e𝛿i𝛽
T Xi e−H0(Yi)e𝛽

T Xi e𝛼
T Xi+𝛼0

1 + e𝛼T Xi+𝛼0

}Gi
{

1
1 + e𝛼T Xi+𝛼0

}1−Gi

e
−
(

X
(p)
i

−𝜃0−𝜃T X
(−p)
i

)2

2𝜎2 (2)

We can use this kernel to draw from f (X(p)
i |Gi, 𝛿i,Yi,X

(−p)
i ) within the chained equations imputa-

tion procedure. We note that this kernel depends on both Gi and H0(t), and it is parameterized by
𝛼, 𝛼0, 𝛽, 𝜎

2, 𝜃, and 𝜃0. When X(p)
i is assumed to be normal, we can draw from (2) using an accept–reject

algorithm as described hereafter. When X(p)
i is binary and modeled as in the appendix, we do not require

an accept–reject algorithm to draw from f (X(p)
i |Gi, 𝛿i,Yi,X

(−p)
i ).

In order to impute partially observed covariates using their exact conditional distributions, we treat
G as another partially observed variable and impute G within the chained equations algorithm. We also
append a step at the start of each chained equations iteration in which we estimate H0(t). We can impute
by iterating the following steps:

Step 1: Estimating H0(t)
We can estimate H0(t) several different ways. Firstly, we can estimate H0(t) using a weighted Breslow
estimator [17]. Suppose we have event times t1, ..., tJ and let Rj be the risk set at time tj. Using the imputed
X from the most recent iteration, we estimate H0(t) at the kth iteration of the imputation algorithm as the
step function

Ĥ(k)
0 (t) =

J∑
tj⩽t

# events at time tj∑
i∈Rj

e[𝛽(k−1)]T
Xi w(k)

i

where w(k)
i is the conditional probability that a person is not cured at iteration k as expressed in Equation

(1) and 𝛽(k−1) is a draw of 𝛽 from the previous iteration [6]. We use this approach to estimate H0(t) in
our simulations.

We can also obtain a parametric estimate of H0(t) by fitting a CPH cure model with a parametric
baseline hazard such as Weibull. If the baseline hazard of an event in the non-cured subjects is truly
Weibull, then fitting a Weibull cure model rather than a semi-parametric CPH cure model may produce
extra efficiency in estimating 𝛽. However, if the baseline hazard in the non-cured group is not believed
to be Weibull, using this approach is not advised. Alternatively, H0(t) can be estimated using only the
subset of the data such that Gi = 1 (non-cured) as imputed at iteration k − 1. This can be estimated by
fitting a Cox model and using a traditional Breslow estimator applied to the Gi = 1 subset of the data or
by assuming a parametric form for the event hazard in the Gi = 1 group.

Step 2: Imputing cure status
To produce proper imputations using the FCS algorithm, we first draw the parameters. We can obtain
draws of 𝛼0, 𝛼, and 𝛽 at a given iteration by (1) fitting a logistic model to the most recent imputed data
with G as the outcome and X as covariates, (2) fitting a CPH regression model to the subset of subjects
such that Gi = 1, and then (3) drawing (𝛼0, 𝛼, 𝛽) from a multivariate normal distribution using the esti-
mated parameters and their corresponding covariance matrices from the logistic and CPH model fits. This
approach is much faster than fitting a cure model to the data to estimate the parameters and then using
bootstrap to estimate the covariance matrix. Alternatively, we can draw (𝛼0, 𝛼, 𝛽) by fitting the models in
(1) and (2) to a bootstrap sample [18].

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4701–4717
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Using the complete data likelihood for the CPH cure model, we can show that logit(P(Gi = 1|Xi, 𝛿i =
0, Yi)) = −Ĥ0(Yi)e𝛽

T Xi + 𝛼TXi + 𝛼0. We can draw imputed values of Gi using this probability relation.
We note that if 𝛿i = 1, then Gi is known to be 1, so we will not need to impute. Also, we define censored
individuals with late censoring times (after some cut-point c) as cured. Therefore, G is treated as missing
only if 𝛿 = 0 and Y ⩽ c, so we can view missingness in G as MAR conditional on 𝛿 and Y .

Step 3: Imputing the missing covariates

We specify the distribution f (X(p)
i |Gi, 𝛿i,Yi,X

(−p)
i ;𝜙p) for each covariate X(p) with missing values. As

described in Section 3.1, we (1) draw 𝜙p and (2) impute missing values of X(p) for each X(p) in
X(1),… ,X(d). If only one covariate has missingness, we perform (1) and (2) a single time for that covari-
ate. If we have missingness in many covariates, we perform (1) and (2) sequentially for each covariate
with missingness using the most recent imputations of the other variables. We describe how to perform
(1) and (2) to impute normal and binary covariates using their exact conditional distributions.

Normal X(p): We can draw (𝜃0, 𝜃, 𝜎
2) under the Bayesian linear regression model with X(p) as the out-

come and with X(−p) as the predictors using the most recent imputed values. This model is described by
Rubin (1987) [20] and used in MICE [19]. Unlike standard FCS, we fit this model using all subjects and
the complete imputed X(p) from the most recent iteration as the outcome [14]. If desired, we may also
draw new values of 𝛼 and 𝛽 as described in Step 2 and using the newly-imputed G. We then want to
impute each missing value X(p)

i by taking draws from the full conditional distribution knowing only the
kernel in (2). Many methods exist to draw from a distribution using only the kernel. To obtain an imputed
value for X(p)

i at a given iteration, we perform a Metropolis–Hastings draw from (2) using a normal ran-
dom walk proposal distribution centered at the imputed value from the previous iteration [21, 22]. The
variance of this proposal distribution is a tuning parameter that must be determined to ensure good mix-
ing properties and a reasonable acceptance rate [23]. Because of this accept–reject sampling, we may
need to perform many iterations of the chained equations fitting algorithm to reach convergence.

Binary X(p): Using notation from the appendix, we draw (𝜃0, 𝜃) using a logistic regression fit with
X(p) as the outcome and X(−p) as covariates. We then impute missing values X(p)

i using the probability
relation in Equation (4). This reduces to drawing X(p)

i from a Bernoulli(𝜋i) distribution with parameter
𝜋i = P(X(p)

i = 1|Gi, 𝛿i,Yi,X
(−p)
i ) from (A.1).

This ‘Exact Cure’ approach imputes each partially observed X(p) using its conditional distribution
implied by the CPH cure model and the model for X(p)|X(−p). However, when X(p) is normal, sampling
from this specification of f (X(p)

i |Gi, 𝛿i,Yi,X
(−p)
i ) requires us to use an accept–reject algorithm to impute

each missing X(p)
i at each iteration of the chained equations imputation procedure, and this can quickly

result in a large computational burden. This burden is amplified when we have missingness in multiple
covariates. To impute multiple partially observed covariates, we must specify the model for X(p)|X(−p) for
each partially observed X(p), which increases the number of parameters that must be drawn. Additionally,
we must derive the form of f (X(p)

i |Gi, 𝛿i,Yi,X
(−p)
i ) separately for different forms of the model for each

X(p)|X(−p) (e.g., Gamma, Poisson, etc). Because of this, we do not apply the Exact Cure approach to the
head and neck cancer example later on, which has missingness in many variables.

3.3. Approximations to the exact distribution using regression models

In the previous section, we derived exact conditional distributions to use for imputation of normal and
binary covariates and sampling from these distribution can often become computationally intensive. We
will consider approximations to the exact conditional distributions that do not require accept–reject sam-
pling and can more easily be implemented with existing software. We are interested in approximations
that correspond to standard regression models. We can then perform a FCS draw from the approximate
conditional distribution by fitting a standard regression model as described earlier.

We start by describing two simple covariate imputation approaches for survival data without a cure
fraction. We then describe an approach in the literature for imputing survival data without a cure fraction
that is motivated directly by the standard CPH model. Then, we propose an approximate distribution that
incorporates the cure structure of the data and is motivated by the CPH cure model formulation. Finally,
we consider a modification to these approaches in which event time T is imputed for censored subjects.

4706

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4701–4717



L. J. BEESLEY ET AL.

3.3.1. logY imputation for survival data without a cure fraction. One approach in the literature for imput-
ing covariates for survival data without a cure fraction is to use X(−p), 𝛿, and log(Y) as predictors in the
imputation model for X(p) used in the chained equations algorithm [16]. Unlike the Exact Cure approach,
this approach does not require us to impute cure status or estimate H0(t), so we do not require iteration
of the chained equations algorithm when we have missingness in only one covariate. We can impute
using MICE in R by specifying regression models with predictors X(−p), 𝛿, and log(Y) for imputing each
partially observed X(p) [19].

3.3.2. Outcome binning imputation for survival data without a cure fraction. One adaptation of existing
approaches for imputing covariates in the non-cure setting would be to use a regression model for imput-
ing each partially observed X(p) with predictors X(−p), 𝛿f1(Y) and (1 − 𝛿)f2(Y) where f1(Y) and f2(Y) are
some functions of Y . We propose using f1 and f2 in the form of step functions with step height determined
by the data. This allows for a very flexible association between the outcome and the partially observed
covariate. Additionally, this approach does not require us to impute cure status or estimate H0(t) explicitly.

We call this approach ‘Outcome Binning’ because it involves binning individuals based on the com-
posite outcome, (Y , 𝛿). We first separate subjects into a 𝛿 = 1 and 𝛿 = 0 group. We then define bins
of Y within each 𝛿 group using summary statistic-based cutoffs or by other methods. For convenience,
we define the bins using quartiles of Y within each of the 𝛿i = 1 and 𝛿i = 0 groups. We define a set of
dummy indicator variables, M1,… ,Mm, which identify the bin membership of each individual (Mk = 1
if the subject is in bin k). We then impute each partially observed covariate within the chained equations
procedure using a regression model for each X(p) with X(−p) and binary indicators M2,… ,Mm as pre-
dictors. After determining M1,… ,Mm, we can perform the chained equations imputation using MICE
in R [19]. With missingness in only one covariate, we can perform a single iteration of the chained
equations algorithm.

3.3.3. White and Royston imputation for the Cox proportional hazards model without a cure frac-
tion. Based on algebraic derivation involving Taylor approximations, White and Royston suggest using
X(−p), 𝛿, and H0(Y) as predictors in the imputation model for each partially observed X(p) in the standard
CPH model setting without a cure fraction [15]. This is quite similar to the approximation in Section
3.3.1 but replacing log(Y) with H0(Y). This requires us to obtain an estimate of H0(t) but does not require
us to impute cure status.

We note that H0(t) is the cumulative baseline hazard of an event in the entire study population. This is
not the same as the cumulative baseline hazard in the non-cured population, as the cured subjects cannot
experience the event of interest. When applied to survival data with a cure fraction, H0(t) is the cumulative
baseline hazard of an event in the (assumed to be misspecified) survival model without a cure fraction
based on the entire study population.

White and Royston ultimately recommend using the Nelson–Aalen estimator of H(t) to estimate H0(t)
before imputation. However, they also investigated an approach in which they add a step to the imputation
algorithm and re-estimate H0(t) at each iteration. We estimate H0(t) after each iteration of the chained
equations algorithm by fitting a Cox model to all subjects using the most recent imputed data, drawing
the Cox model parameter using a multivariate normal distribution with mean and covariance matrix from
the Cox model fit, and then using a Breslow estimator. We can also draw parameter values by fitting the
models to a bootstrap sample of the data [18]. Alternatively, we can fit a Weibull regression model to all
subjects and estimate the cumulative baseline hazard in the total population as a parametric function.

As we estimate H0(t) at the end of each iteration, we iterate the chained equations algorithm even
when we only have missingness in a single covariate. We can impute using MICE in R by iterating the
following steps: (1) estimate H0(t) and (2) impute each partially observed covariate X(p) sequentially using
an appropriate elementary imputation method in MICE (e.g., mice.impute.logreg() for binary covariates)
with predictors X(−p), 𝛿, and Ĥ0(Y) [19].

3.3.4. Approximated imputation for the Cox proportional hazards cure model. We use a similar approach
to White and Royston to derive approximate imputation models for normal and binary covariates in the
CPH cure model setting [15]. Although not shown here, we can derive approximate imputation models
for covariates with other distributions in a similar fashion. Suppose we have the same set of covariates
in both parts of the mixture cure model and that the set contains s covariates. Therefore, 𝛼 and 𝛽 both
have dimension s. Again, we suppose that a partially observed X(p) ∼ N(𝜃TX(−p) + 𝜃0, 𝜎

2). Taking the
logarithm of kernel (2), we have that
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i + constant

(3)

If we complete the square on (3), we see that the mean of this normal distribution will be a linear combi-
nation of X(−p)

i , Gi, Gi × 𝛿i, and Gi × H0(Yi). A second order Taylor approximation of e𝛼
T Xi and e𝛽

T Xi will
also give the interaction Gi × H0(Yi) × X(−p)

i . This suggests that when X(p) is normal and the assumptions
are satisfied, we can approximate the exact distribution f (X(p)

i |Gi, 𝛿i,Yi,X
(−p)
i ) using a linear regression

model with X(−p)
i , Gi, Gi × 𝛿i, Gi ×H0(Yi) and perhaps Gi ×H0(Yi) ×X(−p)

i as predictors. In the appendix,
we include a similar derivation for an approximate imputation model when X(p) is binary, and X(p) has a
logistic relation to X(−p). In the binary case, we approximate the exact distribution using a logistic regres-
sion model with X(−p)

i , Gi, Gi × 𝛿i, Gi × H0(Yi), and Gi × H0(Yi) × X(−p)
i as covariates. We will call this

imputation approach the ‘Approximate Cure’ approach.
The approximate imputation models implied by (3) and (A.2) explicitly depend on H0(t) and Gi. To

use the derived approximate distributions for covariate imputation, we estimate H0(t) and impute Gi as
part of the chained equations algorithm as we did in Section 3.2. In contrast, the imputation approaches
discussed in Sections 3.3.1– 3.3.3 do not require us to impute Gi.

The final interaction term in the imputation models implied by (3) and (A.2) may has many parameters
if Xi consists of many covariates, so that term may have to be dropped for settings with many covariates.
Also, it may be that the imputed Gi and Gi × 𝛿i are highly correlated, so one may need to only use Gi
because of collinearity issues.

In order to impute partially observed covariates using these approximations, we can perform a modifi-
cation of the Exact Cure algorithm proposed in Section 3.2. We can impute using MICE in R by iterating
the following steps: Step (1), estimate H0(t) as in Section 3.2; Step (2), impute cure status as in Section 3.2;
and Step (3), impute each partially observed covariate X(p) sequentially using an appropriate elementary
imputation method in MICE (e.g., mice.impute.logreg() for binary covariates) with predictors X(−p)

i , Gi,
Gi × 𝛿i, Gi × Ĥ0(Yi) and perhaps Gi × Ĥ0(Yi) × X(−p)

i [19].
A natural alternative to the proposed Approximate Cure approach is to first impute G and then impute

covariates separately for the G = 1 and G = 0 groups. We could then apply imputation approaches for
survival data without a cure fraction (such as the White and Royston method) for imputing covariates in
the G = 1 group. In simulations (not shown), this approach resulted in similar bias and inflated variances
compared with the Approximate Cure approach.

3.3.5. A modification: event time imputation. Because the observed event/censoring time Y = min(T ,C)
is a mixture of two underlying random variables, it may not be very intuitive to include Y as a predic-
tor in standard regression models for imputing missing covariates. Instead, we may wish to include the
true event time, T , which is not fully observed. We can treat T as another partially observed variable and
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impute values of T for censored individuals within the chained equations algorithm used to impute miss-
ing covariates. This modification can conceptually be applied to any of the imputation approaches we
have discussed.

In the cure setting, T is defined as infinity for cured individuals and is an event time for non-cured
individuals. Although cure status is not known for censored individuals, if we also impute G as part of
the chained equations imputation algorithm, then we can impute values of T for the non-cured, censored
subjects using an assumed truncated distribution f (t|t > C,G = 1,X). We can modify the Exact and
Approximate Cure imputation algorithms by adding a step to the chained equations imputation algorithm
to impute Ti for censored individuals who have Gi = 1 at iteration k. Then, we replace (Yi, 𝛿i) in the
subsequent imputation models for the partially observed covariates with the imputed (Ti,Gi). In several
simulations (not shown), however, T imputation does not appear to improve the performance of the Exact
Cure and Approximate Cure imputation algorithms.

We are interested to see how some simple covariate imputation approaches for survival data without a
cure fraction are impacted by first imputing T and then substituting (Y , 𝛿) by (T , 1) in the covariate impu-
tation models. We consider both the logY and Outcome Binning approaches. For the Outcome Binning
approach, we use octiles to define bins of T among all subjects. In these two approaches, cure status is
not known or imputed for censored individuals, and so we cannot impute censored T using the truncated
distribution f (t|t > C,X,G = 1). Instead, we impute the event time T using the truncated distribution
f (t|t > C,X), which we assume has a proportional hazards structure with a Weibull baseline.

We use a CPH model for the hazard of an event in the total study population. The survival function
of the truncated distribution f (t|t > Ci,Xi) of Ti is in the form STRUNC(t|Xi) = e−[H0(t)−H0(Ci)]e𝛽T Xi

, t > Ci.
To impute Ti for a censored individual, we can first generate Ui from a Uniform (0,1) distribution. We
can then draw Ti using the relation Ti = H−1

0

(
−log(Ui)e−𝛽

T Xi + H0(Ci)
)
. This requires us to draw 𝛽 and

estimate H0(t). If we assume the failure time is Weibull such that S(t|Xi) = e−𝜆t𝜂e𝛽
T Xi , then we can generate

Ti as Ti =
(

−log(Ui)e−𝛽
T Xi+𝜆C𝜂

i

𝜆

)1∕𝜂

after drawing values for 𝛽, 𝜆, and 𝜂. Within the chained equations

algorithm, we generate a Ti value for all censored subjects at each iteration. We can obtain draws of
𝛽, 𝜆, and 𝜂 by first fitting a Weibull regression model to the entire study population using the most recent
imputed X and then drawing 𝛽, 𝜆, and 𝜂 from a multivariate normal distribution with mean and covariance
estimated by the Weibull fit.

We note that in the CPH cure model setting, the truncated distribution f (t|t > C,X) is incorrectly
specified, and it may seem unintuitive to use this misspecified model to impute event times. However,
event time imputation has been used in the non-cure survival setting, and an analyst might naively try to
apply the same approach to survival data with a cure fraction [24]. We want to see whether this approach
improves or worsens the performance of imputation approaches for survival data without a cured fraction
when applied in the cure setting.

4. Simulations

In this section, we present results from a simulation study to compare the imputation approaches in
terms of bias, relative variance, and coverage rate of confidence intervals for estimating CPH cure
model parameters. We also compare with CC analysis and analysis of the full data without any
covariate missingness.

4.1. Simulation details

We create 500 simulated datasets of 500 observations each. For each dataset, we simulate multivariate
normal covariates X = (X1,X2)with zero means, unit variances, and a correlation of 0.5. We then simulate
cure status using the relation logit

(
P(Gi = 1|Xi,1,Xi,2)

)
= 0.5 + 0.5Xi,1 + 0.5Xi,2, leading to an average

cure rate of 40%. For the non-cured group, we simulate a survival time Ti. We model the event hazard
in the non-cured group as h(t) = h0(t)e0.5X1+0.5X2 with h0(t) = 0.002. We then generate censoring times
Ci ∼ U(250, 4500) and define Yi = min(Ti,Ci) and 𝛿i = I(Ti ⩽ Ci).

We impose ∼50–55% missingness in X2 using three models: (1) missing completely at random
(MCAR) with P(X2 missing|X1, 𝛿,Y) = 0.5, (2) MAR with logit(P(X2 missing|X1, 𝛿,Y)) = X1, and (3)
MAR with logit(P(X2 missing|X1, 𝛿,Y)) = 0.3− 0.4𝛿− 0.5X1𝛿. While this final missingness mechanism
may seem implausible, it could be induced when missingness depends on an unobserved variable U that
is independently related to T .

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4701–4717
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We note that we impose missingness in only a single covariate rather than many covariates (the typical
setting where FCS is applied). However, we are mainly interested in investigating various strategies for
modeling the univariate conditional distribution for one partially observed covariate. As such, we can
compare the imputation approaches by imposing missingness in only one covariate. Similar results can
be seen when we apply the imputation approaches with missingness in multiple covariates (Supporting
Information). We also consider the setting with many partially observed covariates in our head and neck
cancer example.

We perform multiple imputation of X2 using methods described in this paper. For each simulation
and method, we produce 10 imputed datasets. We then fit a CPH cure model to each imputed dataset
(ignoring imputed cure status) and use Rubin’s Rules to obtain a single set of estimates for each sim-
ulation [20]. We then compute bias, relative variance (compared with analyzing the full data with no
covariate missingness), and coverage in estimating model parameters across 500 simulations for each
method. Alternatively, for imputation approaches that result in imputed values for G, we could have per-
formed our final analysis by fitting Cox and logistic regressions given the imputed G. In simulations (not
shown), this approach resulted in a slight increase in efficiency for estimating the intercept for the logis-
tic part of the model, but it also resulted in some increases in bias for the approaches using approximated
distributions for imputation.

We use 100 iterations for each imputation algorithm except Exact Cure, for which we use 1500 because
of the slower convergence of the Metropolis–Hastings algorithms. When fitting the cure models to each
imputed dataset, we use 100 iterations of the EM algorithm and use 100 bootstrap samples of the imputed
dataset to estimate variances.

Computational time is shortest for the Outcome Bins and logY approaches, followed closely by the T
imputation methods. The Approximate Cure approach takes about four times as long as the Outcome Bins
method to run and about two times as long as the White and Royston method. The Exact Cure approach
takes at least 10 times as long as the Approximate Cure approach to run.

4.2. Simulation results

Table I shows simulation results under three different missingness mechanisms for X2. Under missingness
models (1) and (2), CC analysis is essentially unbiased. However, in model (3), CC analysis results in
biased estimates, particularly in estimating parameters for the logistic part of the mixture cure model. In
all missingness settings shown, the imputation methods have little bias in estimating 𝛼0, 𝛼1, and 𝛽1, the
logistic model intercept and the parameters associated with X1.

In all three missingness settings, the logY, White and Royston, Outcome Binning, T imputation, and
Approximate Cure (w/o extra interaction) approaches result in similar or larger bias than CC analysis in
estimating 𝛼2, the logistic parameter for X2. For all three missingness models, the imputation approaches
using T imputation result in larger 𝛼2 bias than their counterparts without T imputation. The Approximate
Cure approach with the interaction term and the Exact Cure approach produce comparably low bias in
estimating 𝛼2.

All imputation methods except the Exact Cure approach result in biased estimates for 𝛽2, the failure
time model parameter associated with X2. Among the biased imputation methods, however, the Approx-
imate Cure approach including the extra interaction term consistently results in the smallest 𝛽2 bias. The
logT approach produces smaller 𝛽2 bias than the logY approach. Outcome Binning results in similar 𝛽2
bias with and without the T imputation.

All imputation methods result in smaller empirical variance (so larger relative variance) in esti-
mating 𝛼0, 𝛼1, and 𝛽1 compared with CC analysis in all three simulation settings. Some reduction
in the variance in estimating 𝛽2 can also be seen, suggesting that we can still gain some informa-
tion about the effect of X2 by including information from subjects with missing X2. Coverage rates
for 𝛼0, 𝛼1, and 𝛽1 are similar for all imputation methods in all three simulation settings. CC coverage
of 95% confidence intervals for 𝛼0 and 𝛼1 under missingness model (3) is far below 0.95%. Reduc-
tions in coverage for some imputation approaches can be seen for 𝛼2 and 𝛽2. Undercoverage is mainly
because of increased bias. The Exact Cure approach and the Approximate Cure approach with the
extra interaction term tend to produce higher coverage rates in estimating 𝛽2 compared with the other
imputation methods.

In all three sets of simulations, we see large reductions in the Approximate Cure approach’s corre-
sponding biases by adding the extra interaction term. Although not shown, we do not see corresponding
decreases in bias by adding a Ĥ0(Yi) ∶ X(−p) interaction term to the White and Royston approach [15].
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Table I. Bias, relative variance, and coverage of cure model estimates across 500 simulations.

𝛼0 𝛼1 𝛼2 𝛽1 𝛽2

Method Bias (RV) CI Bias (RV) CI Bias (RV) CI Bias (RV) CI Bias (RV) CI

Full data −0.01 (1.00) 0.93 0.02 (1.00) 0.93 0.02 (1.00) 0.94 −0.01 (1.00) 0.95 0.00 (1.00) 0.95

Missingness Model 1: MCAR missingness in X2

Exact cure 0.00 (0.83) 0.94 0.01 (0.75) 0.92 0.03 (0.48) 0.94 −0.01 (0.82) 0.94 0.00 (0.48) 0.95
Approximations
Non-cure w/ (Y , 𝛿)

logY 0.00 (0.79) 0.94 0.00 (0.74) 0.91 0.08 (0.47) 0.92 0.01 (0.85) 0.95 −0.14 (0.71) 0.78
White and Royston 0.00 (0.81) 0.94 0.00 (0.73) 0.93 0.07 (0.47) 0.92 0.00 (0.82) 0.95 −0.13 (0.76) 0.81
Binning by (Y , 𝛿) 0.00 (0.80) 0.94 0.01 (0.75) 0.93 0.04 (0.48) 0.93 0.00 (0.83) 0.96 −0.11 (0.66) 0.87

Non-cure w/ T
logT 0.00 (0.80) 0.94 −0.02 (0.79) 0.93 0.14 (0.55) 0.89 0.01 (0.94) 0.96 −0.12 (0.90) 0.86
Binning by T 0.00 (0.81) 0.94 0.00 (0.78) 0.93 0.09 (0.53) 0.92 0.00 (0.86) 0.95 −0.10 (0.71) 0.89

Cure w/ (G,Y , 𝛿)
Approx cure 0.00 (0.85) 0.94 0.01 (0.75) 0.93 0.05 (0.50) 0.94 0.00 (0.81) 0.95 −0.13 (0.82) 0.82
Approx + Int* 0.00 (0.85) 0.93 0.02 (0.78) 0.92 0.02 (0.47) 0.93 0.00 (0.91) 0.95 −0.07 (0.75) 0.93

Complete case −0.01 (0.48) 0.94 0.03 (0.52) 0.96 0.03 (0.49) 0.94 0.00 (0.52) 0.97 0.00 (0.46) 0.95

Missingness Model 2: MAR missingness in X2 dependent on X1

Exact cure 0.00 (0.84) 0.95 0.01 (0.81) 0.94 0.04 (0.47) 0.93 0.00 (0.79) 0.95 −0.01 (0.34) 0.92
Approximations
Non-cure w/ (Y , 𝛿)

logY 0.00 (0.82) 0.94 0.01 (0.82) 0.95 0.13 (0.47) 0.91 0.02 (0.80) 0.95 −0.20 (0.63) 0.62
White and Royston 0.00 (0.79) 0.95 −0.02 (0.79) 0.95 0.14 (0.46) 0.89 0.02 (0.77) 0.96 −0.19 (0.63) 0.65
Binning by (Y , 𝛿) 0.00 (0.83) 0.95 0.00 (0.80) 0.94 0.10 (0.51) 0.92 0.01 (0.78) 0.95 −0.16 (0.54) 0.73

Non-cure w/ T
logT 0.01 (0.83) 0.94 −0.01 (0.85) 0.94 0.15 (0.61) 0.88 0.02 (0.85) 0.95 −0.16 (0.71) 0.73
Binning by T 0.00 (0.84) 0.94 0.00 (0.82) 0.95 0.11 (0.58) 0.93 0.01 (0.83) 0.95 −0.15 (0.53) 0.76

Cure w/ (G,Y , 𝛿)
Approx cure 0.00 (0.84) 0.94 −0.01 (0.76) 0.94 0.12 (0.49) 0.90 0.02 (0.71) 0.94 −0.20 (0.67) 0.61
Approx + Int* 0.00 (0.89) 0.95 0.01 (0.82) 0.94 0.05 (0.48) 0.94 0.00 (0.78) 0.94 −0.12 (0.65) 0.86

Complete case 0.00 (0.41) 0.95 0.04 (0.43) 0.94 0.05 (0.50) 0.95 −0.02 (0.31) 0.95 −0.02 (0.33) 0.91

Missingness Model 3: MAR missingness in X2 dependent on X1, 𝛿

Exact cure 0.00 (0.86) 0.94 0.01 (0.77) 0.93 0.03 (0.44) 0.94 −0.01 (0.82) 0.95 0.00 (0.60) 0.95
Approximations
Non-cure w/ (Y , 𝛿)

logY 0.00 (0.81) 0.93 0.00 (0.77) 0.94 0.07 (0.42) 0.93 0.00 (0.88) 0.95 −0.11 (0.88) 0.89
White and Royston 0.00 (0.83) 0.94 0.00 (0.79) 0.93 0.06 (0.44) 0.94 0.00 (0.87) 0.96 −0.09 (0.87) 0.90
Binning by (Y , 𝛿) 0.00 (0.86) 0.94 0.02 (0.79) 0.94 0.02 (0.44) 0.94 0.00 (0.81) 0.96 −0.08 (0.71) 0.92

Non-cure w/ T
logT 0.01 (0.83) 0.94 −0.03 (0.81) 0.92 0.16 (0.52) 0.88 0.01 (0.94) 0.96 −0.09 (0.99) 0.92
Binning by T 0.00 (0.84) 0.94 0.00 (0.80) 0.94 0.09 (0.47) 0.92 0.00 (0.86) 0.96 −0.07 (0.78) 0.94

Cure w/ (G,Y , 𝛿)
Approx cure 0.00 (0.87) 0.93 0.02 (0.78) 0.94 0.02 (0.44) 0.95 −0.01 (0.81) 0.96 −0.08 (0.94) 0.92
Approx + Int* 0.00 (0.88) 0.93 0.02 (0.82) 0.94 0.03 (0.44) 0.94 0.00 (0.89) 0.96 −0.05 (0.93) 0.95

Complete Case 0.18 (0.39) 0.83 0.29 (0.41) 0.77 0.03 (0.43) 0.96 0.00 (0.54) 0.95 0.00 (0.57) 0.95

*Includes Ĥ0(Y) ∶ G ∶ X1 interaction in imputation model.
CI indicates empirical coverage of 95% confidence intervals and RV indicates relative variance.

We also see that the Exact Cure imputation approach far outperforms all other imputation algorithms
in terms of bias, and among the biased imputation approaches, the Approximate Cure approach with
the interaction term is generally the best performer. In all three sets of simulations, the non-cure
imputation approaches that involve T imputation tend to have worse coverage or bias properties than
the corresponding approaches without T imputation. Finally, we see that among the approaches that
do not take the cure fraction into account (Outcome Binning, logY, White and Royston, and logT),
Outcome Binning without T imputation tends to produce the smallest bias overall across the three
simulation settings.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4701–4717
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5. Head and neck cancer example

We consider data from a cohort study of time to cancer recurrence in N = 1226 patients with head
and neck squamous cell carcinoma (HNSCC). This study was conducted by the University of Michi-
gan’s Head and Neck Specialized Program of Research Excellence (SPORE) and included consenting
patients treated for HNSCC at the University of Michigan Cancer Center between November 2003 and
July 2013. Details regarding the cohort study can be found in Duffy et al. and Virani et al. [25, 26].
Data on newly-diagnosed patients were collected from the time of diagnosis, and patients were then fol-
lowed for cancer recurrence after the start of treatment. A patient is considered to have recurred if cancer
becomes detectable. Personal and disease-related characteristics including age, cancer stage, cancer site,
comorbidities, cigarette use, alcohol use, gender, and body mass index (BMI) were collected at the time
of diagnosis and are reported in Table II.

Of the 1226 patients in the study, 374 (30.5%) experienced a cancer recurrence. Of these, 149 (39.8%)
had detectable cancer toward the end of their planned treatment. These patients are called ‘persistent’ and
are given a recurrence time of 1 day as exact recurrence times are unavailable for these subjects. Patients
were followed for a median time of 36.6 months. Of the observed recurrences, 360 (96.2%) occurred
within 36 months. Few patients had recurrences after 36 months, and the estimated survival curve had a
plateau in the later half of the study (∼36–60 months). For HNSCC, it is well established that patients
can be cured [27]. This provides some evidence that these data may follow a cure structure.

Based on biological knowledge of HNSCC recurrence and empirical evidence in the data, we assume
that a subset of the study cohort had been cured of disease by treatment, and we fit a mixture cure model.
We assume a CPH model for the hazard of cancer recurrence in the non-cured group, and we model prob-
ability of being cured of the primary HNSCC after treatment using a logistic regression. In particular, the
first component is a model for time until cancer becomes detectable in the non-cured group. We include
persistent patients in our analysis as persistence was defined subjectively and roughly corresponded to
whether there were early signs that the cancer was present. Because persistence is an outcome of the
treatment that was unobserved at baseline, these patients were included in the analysis. We fit a CPH cure
model to the CC data using age at diagnosis, cancer stage, cigarette use, human papillomavirus (HPV)
status, comorbidities, and cancer site as predictors in both parts of the mixture cure model. Results of
this model fit are shown in Table III.

Table II. Characteristics of N = 1226 study patients at HNSCC Diagnosis.

N (%) or Missing N (%) or Missing
Characteristic Mean (SD) N (%) Characteristic Mean (SD) N (%)

Model variables

Age at diagnosis 59.5 (11.7) Comorbidities 1 (0.01)
Cancer stage 0 (0) None 343 (27.9)

I/Cis 162 (13.2) Mild 535 (43.6)
II 123 (10.0) Moderate 239 (19.4)
III 181 (14.7) Severe 108 (8.8)
IV 760 (61.9) Cancer site 0 (0)

Cigarette use 0 (0) Larynx 245 (19.9)
Never 285 (23.2) Hypopharynx 53 (4.3)
Current 559 (45.5) Oral cavity 413 (33.6)
Former 382 (31.1) Oropharynx 515 (42.0)

HPV status 685 (55.8)
Negative 320 (26.1)
Positive 221 (18.0)

Auxiliary variables

Gender 0 (0) Enrollment year 0 (0)
Female 315 (25.6) 2003–2008 559 (45.5)
Male 911 (74.3) 2009–2011 363 (29.6)

Alcohol use 1 (0.01) 2012–2013 304 (24.7)
Never 115 (9.3) No. sexual partners 16.8 (53.4) 765 (62.3)
Current 300 (24.3) BMI 26.9 (5.9) 6 (0.4)
Former 810 (66.0)
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In the study of HNSCC, the association between HPV status and cancer recurrence is of particular
interest. However, HPV status was only obtained for 541 (44.1%) of the patients. Investigation into the
missingness of HPV status (not shown) suggests that HPV missingness is associated with diagnosis date
and therefore censoring time. However, assuming censoring is independent of HPV status, we can still
assume HPV status is MAR [28]. We want to impute HPV status using approaches discussed and then
compare results from corresponding CPH cure model estimates between imputation approaches and to
CC analysis.

We performed multiple imputation of HPV status (55.8% missing) and comorbidities (0.01% missing)
using both the Approximate Cure approach with the extra interaction term and the White and Royston
approach. We did not use the Exact Cure approach as we have many partially observed covariates, and
when we have many covariates to impute, the Exact Cure approach becomes increasingly computationally
intensive. HPV status is known to be associated with factors such as gender, smoking, alcohol use, and
number of sexual partners. HPV also has a much higher prevalence for oropharyngeal cancers compared
with other types of head and neck cancer. We observe that HPV status is associated with calendar time and
therefore year of study enrollment. As these variables are known to be associated with HPV status, they
may help us to obtain better imputations of HPV. Therefore, we use all factors in Table II as predictors
for the various imputation models, requiring us to also impute BMI, number of sexual partners, and
alcohol use as part of the chained equations algorithm. We note that sexual partners has a large amount
of missingness (62.3%), but we include it in the imputation algorithm because of its strong association
with HPV status. Number of sexual partners is observed for 198 (28.9%) of the subjects with missing
HPV status. Year of study enrollment was categorized into three intervals reflecting different rates of
HPV missingness. Greater effort was made to obtain HPV status for subjects enrolled after 2008, and
some samples obtained in 2012 and 2013 have not yet been tested. Some of the Table II variables are not
included in the final cure model analysis as cure models become increasingly unstable with a large amount
of predictors. We therefore implicitly assume that the predictors not included in the final model are not
independent predictors of the outcome. In order to satisfy the assumptions made in the derivation of the
Approximate Cure approach, we assume that censoring of recurrence time (including death from other
causes) does not depend on the partially observed variables and in particular HPV status and number of
sexual partners. We impute categorical covariates using polytomous regression in MICE [19]. Number
of sexual partners is imputed using predictive mean matching on the log-scale. We produced 20 imputed
datasets for each approach.

Table III shows the CPH cure model results for two imputation algorithms and CC analysis. Point esti-
mates and confidence intervals are very similar between the two imputation approaches. Based on the
simulation results, we may expect the biggest difference between the two approaches to be the bias in
estimating parameters for HPV status. For this dataset, however, the estimates for the parameters corre-
sponding to HPV status are very similar between the two imputation approaches. When we apply other
imputation approaches discussed in this paper to these data (not shown), we see similar results.

Differences can be seen between the model fits from imputation and from CC analysis. Confidence
intervals tend to be narrower for the imputation approaches than for CC analysis. Point estimates tend
to be somewhat similar with some exceptions. The most notable difference between the imputation and
complete case fits is in the estimates for the cigarette use variable. Point estimates from the imputation
approaches suggest that cigarette use may be associated with a decrease in the probability of being cured,
but it is not associated with the hazard of recurrence. In contrast, the complete case analysis suggests
that cigarette use is associated with a decreased hazard of recurrence in the non-cured group, but it is
not associated with cure status. Additionally, the confidence intervals for some cigarette use parameters
from the imputation approaches do not include the complete case point estimates. The complete case fit
shows some signs of model instability.

Point estimates for HPV status parameters are similar between the complete case and imputation
approaches, but the confidence intervals are smaller in the imputation model fits. This suggests that some
additional information about HPV status is obtained by including information from the patients with
missing HPV status.

6. Discussion

In this paper, we have explored approaches for imputing missing covariates in the CPH cure model set-
ting. We considered multiple imputation using FCS, an approach in which we impute partially observed
covariates by drawing from their conditional distributions.
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We derived the exact conditional distribution and suggested a sampling scheme for imputing normal
and Bernoulli covariates in the CPH cure model setting. We also proposed several approximations to the
exact distribution that are simpler and more convenient to use for imputation. Our approach can be gen-
eralized to impute covariates with different distributions. We compared the performance of our proposed
imputation approaches with existing imputation methods for survival data without a cure fraction.

A simulation study demonstrates that all imputation methods considered can substantially increase
precision in estimating many CPH cure model parameters compared with complete case analysis. Impu-
tation can produce smaller variances for estimating parameters corresponding to fully observed variables
compared with complete case analysis. Some variance reduction may also be seen in estimating param-
eters associated with the imputed variables. The Exact Cure imputation approach outperformed all other
imputation approaches in terms of bias. In our simulations, all other imputation approaches tended to
have some bias in estimating at least one of the parameters associated with the imputed variable/s. Among
the biased imputation approaches, the Approximate Cure approach with the interaction term was the best
performer. Among the approaches that do not account for the cure fraction, Outcome Binning tended
to have the best performance across the three simulation settings. The approaches in which the event
time is imputed without accounting for the cure structure of the data did not perform well in the cure
setting and are not recommended. In the head and neck cancer example, little difference could be seen
between the imputation approaches, but many differences were present between imputation and complete
case analysis.

While imputation using the exact conditional distribution is a clear frontrunner in terms of bias, it is
typically more difficult to implement and takes much longer to run than other methods because of the
many required Metropolis–Hastings draws. These issues become even more pronounced when there is
missingness in multiple covariates. If one is willing to allow some bias in estimating some model param-
eters (particularly those associated with the imputed variables), then the Approximate Cure imputation
approach with the interaction term may be preferred. For example, if we are only adjusting for an imputed
variable as a possible confounder, then adding some bias in estimating its parameters in exchange for
computational simplicity may be acceptable. If we desire an even simpler imputation scheme and do not
want to impute cure status, we may still be able to obtain some bias reduction by using Outcome Bin-
ning without the event time imputation rather than other existing imputation approaches for survival data
without a cure fraction.

We compare imputation approaches in terms of performance in estimating CPH cure model parame-
ters, and most of the imputation approaches proposed are compatible with and directly motivated by the
final modeling strategy. If we change the modeling strategy (for example, if we want to fit an acceler-
ated failure time model with a cure fraction), then the imputation approach may need to be adapted and
the comparative performance of the approaches may change. Additionally, although simulations suggest
there is a difference between imputation approaches, there may not always be a large practical difference
when applied to particular datasets as seen with the head and neck cancer data. The presented simula-
tions are limited to a setting with normal and binary covariates with linear covariate effects in the logistic
and failure time models. When imputing covariates with other distributions (e.g., ordered categorical),
the comparative performance of the imputation approaches may be different. Also, if the failure time
or logistic models include interactions/non-linear effects of the partially observed covariates, the differ-
ence between the Exact Cure method and the approximated methods would be expected to be even more
pronounced than in the linear effects case considered here [14].

We note that H0(t) in the CPH model is really an infinite-dimensional parameter, and we do not directly
incorporate this uncertainty into the estimation procedure. Additionally, we only consider multiple impu-
tation using FCS. FCS is convenient to use for imputation as it does not require us to explicitly specify
the joint distribution of the covariates. However, in the case of multiple imputed variables, the assumed
distributions for each partially observed X(p)|X(−p) are not guaranteed to be compatible and form a valid
joint distribution. In some cases, this could lead to problems (e.g., bias) when estimating parameters in
the final model fitting [14]. Several authors have provided conditions in which FCS is equivalent to joint
model imputation and converges to the desired sampling distribution [29, 30].

Appendix A: imputation for binary covariates

We will derive an approximate imputation model for imputing binary covariates. Suppose X(p) ∼
Bernoulli(t) where t = expit(𝜃TX(−p) + 𝜃0). Using the complete data likelihood for the CPH cure model,

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4701–4717
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we have
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This relation gives the form for the exact conditional distribution, which we can use to impute a partially
observed, binary X(p). Now, we attempt to find a simpler approximated model. We use a similar approach
as in the normal derivation. Assuming Var(𝛼TXi) and Var(𝛽TXi) are small, we approximate the above by
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This equation is a linear combination of X(−p)
i , Gi, Gi × 𝛿i, Gi × H0(Yi) and Gi × H0(Yi) × X(−p). This

suggests that we can impute X(p)
i using X(−p)

i , Gi, Gi × 𝛿i, Gi × Ĥ0(Yi), Gi × Ĥ0(Yi) ×X(−p) as predictors in
a logistic regression model if we impute Gi for censored subjects and estimate H0(Yi) as additional steps
in the multiple imputation algorithm.
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