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Diffusion-weighted imaging outside the brain: consensus statement from an 

ISMRM sponsored workshop  

 

Review Paper 

 

Abstract 

The significant advances in MRI hardware and software, sequence design, and post-

processing methods have made diffusion-weighted imaging (DWI) an important part of 

body MRI protocols and have fueled extensive research on quantitative diffusion outside 

the brain, particularly in the oncologic setting. In this review, we summarize most up-to-

date information on DWI acquisition and clinical applications outside the brain, as 

discussed in an ISMRM sponsored symposium held in April 2015. We first introduce 

recent advances in acquisition, processing, and quality control; then review scientific 

evidence in major organ systems; and finally describe future directions.   
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1. Introduction 

Extra-cranial diffusion-weighted imaging (DWI) is now widely applied in clinical practice 

to enhance disease assessment, particularly in the oncological setting. A National 

Cancer Institute (NCI) sponsored open consensus meeting was held in 2008 in Toronto 

during the ISMRM meeting, which led to the publication of a consensus and 

recommendation paper in 2009 (1). Since then, the field of body DWI has seen rapid 

expansion in both research and clinical applications. In 2015, an ISMRM sponsored 

meeting was held from the 1st to 3rd April in Boston, which aimed to survey the current 

state-of-the-art knowledge and developments in extra-cranial DWI. This paper 

summarizes the discussions and consensus opinions at that meeting, and provides a 

broad review and update of developments in the field.  

 

2. Recent technological advances in DWI acquisition  

DWI is increasingly finding powerful applications outside the brain, where it was first 

used. This migration has been enabled by several factors, including technological 

advances, pulse sequence development and new data analysis frameworks.  

DWI in clinical scanners is generally performed with single-shot k-space 

trajectories, most commonly the echo-planar imaging (EPI), and analysis is performed 

on the magnitude channel, discarding the phase information. Single-shot EPI collects a 

series of gradient echoes to fill in the required k-space raster. Since the resulting echo 

train occurs over a finite time interval, they suffer (a) phase shifts and (b) signal 

attenuation from variations in the local applied magnetic field. These effects can be 

reduced by shortening the echo train length (ETL), by increasing receiver bandwidth or 
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using undersampling from partial Fourier reconstruction (2), multiple receiver coil 

parallel imaging (3), or both. Higher gradient systems have thus shortened readouts and 

improved EPI DWI. Higher field strength systems present competing influences for DWI 

(higher SNR vs. shorter relaxation times, etc.) but eventually successful compromises 

have been achieved. For example, RF field (B1) inhomogeneity at higher field can be 

particularly pronounced for large abdominal fields of view (FOV), but the rise in 

prevalence of receiver array coils allowed a reversal of this disadvantage by enabling 

better parallel imaging performance. Image-based shimming (4) has also been applied 

to emphasize the image quality of target areas within a large FOV. Similarly, transmit 

fields have been controlled to a higher degree to benefit DWI. Given the large fields of 

view and image matrices for body imaging, an increasingly prevalent approach is to limit 

the imaged volume to a target zone (reduced field of view, rFOV) (Fig. 1) either by inner 

volume imaging (IVI) or outer volume suppression (OVS). This approach has found 

application in, thyroid (5), pancreas (6), kidney (7), breast (8, 9), and spinal cord (10) 

DWI. Multiple excitation body coils, making selective excitation via shaped RF pulses 

more feasible with shorter pulse durations in the context of parallel transmission, have 

been demonstrated (11). 

Multi-shot DW EPI sequences using 2D navigators have been successfully 

applied in the brain, although more severe motions limit use in the abdomen. Alternative 

to EPI readout, a train of RF pulses in TSE/FSE sequences ‘undo’ phase evolution 

thereby effectively removing spatial distortion. While TSE/FSE is extremely robust and 

widely used for traditional imaging, insertion of DW gradient pulses in a TSE/FSE 

sequence makes the phase of transverse magnetization ill-defined relative to RF-pulse 

Page 3 of 78

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

leFO
R PEER REVIEW

 O
NLY

Page 4 of 64 

phase. This can lead to substantial artifact in multi-shot DW TSE/FSE. Fortunately, 

phase-cycling RF pulses stabilizes echo signal amplitude relative to arbitrary initial 

transverse magnetization phase thus greatly reduces these artifacts. Strategies to parse 

k-space and incorporate navigator information are varied and include periodically 

rotated overlapping parallel lines (PROPELLER) via short or long readouts (12), split-

echo propeller (SPLICE) and self-navigated interleaved spirals (SNAILS) (13-15). The 

trade-off between low distortion vs. motion artifact immunity for applications such as 

lesion detection and ADC quantification are being studied. Commercialized versions of 

these non EPI-based and multi-shot techniques are now available and look particularly 

promising in less kinetic organs such as breast and prostate (16-18). 

For a successful multi-b value DWI experiment, it is important to optimize SNR at each 

b-value. The number of signal averages is usually increased for higher b values so that 

a DWI with multiple b-values experiment can be performed at an acceptable SNR in 

clinically reasonable times.   

Another less commonly tuned encoding parameter is the diffusion time. To put it in 

context, the confinement length scales of extracranial organs often differs from those 

prevalent in cerebral tissue (~1-10 µm) and DTI (diffusion tensor imaging) metrics are 

correspondingly different. A useful guide to the diffusion sensitivity is the ratio of the 

diffusion length  to the confinement length scale. When the primary cell size 

(tubule, myofiber, duct) is larger in scale than cerebral axons, diffusivities are larger and 

anisotropies are smaller. This drop in contrast can be ameliorated by increasing the 

diffusion time, which is most conveniently done with a stimulated echo preparation (19-

2Dt
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21). When properly included, this not only increases contrast but detailed tissue 

modeling can also be achieved at longer diffusion times (22, 23). 

In summary, advances in hardware, pulse sequence variations, and generalized 

analysis have spurred tremendous recent progress in DWI outside the brain. The result 

is no longer a direct transposition of DWI methods from the brain but an adaptation 

specific to the challenges and opportunities of extracranial anatomies. 

 

3. Diffusion measurement reproducibility and precision assessment  

“Repeatability” and “reproducibility” are often used to empirically assess (in)consistency 

of quantitative measures. In terms of ADC, repeatability relates to the consistency of 

ADC values when the same imaging test of the same object (patient) is performed at 

short intervals on the same scanner by the same operator; whereas, reproducibility is 

the consistency of ADC values when the same imaging test (or as close as possible) of 

the same object is performed on different equipment, typically by different operators at 

different centers.  

3.1 Sources of variance 

Performing an ADC estimate spans multiple domains that independently contribute to 

variance: (a) biological (patient size/shape/cooperativeness/lesion location & 

heterogeneity/phenotype; potential therapeutic effects); (b) scan operator (protocol 

build, patient set-up, skill level); (c) MRI system (hardware/software platform; DWI 

sequence and acquisition parameters; and individual scanner idiosyncrasies); (d) 

algorithm to convert DWI to ADC; and (e) radiologist/analyst definition of measurement 

region. 
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3.2 Technical variance 

The MRI system itself and platform capabilities are the heart of technical variance.  

Cross-vendor/platform capabilities also lead to protocol variance. While high level 

parameters (e.g. geometry and b-values) can usually be matched, secondary 

parameters (DWI waveform design, echo-spacing, shim and fat-suppression technique, 

etc.) are often difficult to replicate across platforms. Unfortunately, what is the optimal 

protocol on one platform may not be optimal on another. Physical phantoms offer the 

best means to assess technical performance. A variety of ADC phantom designs have 

been proposed (24, 25). Ice water-based phantoms are popular for multi-center trials 

since they are inexpensive and provide an absolute truth diffusion coefficient since the 

media temperature is controlled that would otherwise add large uncertainty (>10%) in 

ADC values. In one phantom study across 35 multi-vendor/field-strength/site MRI 

systems, intra-exam stability of ice-water ADC measured at magnet isocenter was ~1% 

(2SD/Mean). Longer-term repeatability and cross-system reproducibility (34 systems 

excluding one outlier) were comparable at ~4% (2SD/Mean) at isocenter (26), though 

increased systematically for off-center ADC (27), with mean ADC bias estimated in vitro 

at -20% (±20%, superior-inferior) and +7% (±15%, right-left) for measurements away 

from isocenter (27). The ~4% reproducibility represents a technical baseline level to 

which other sources (biology, analysis methods) will add. Note that repeatability and 

inter-platform reproducibility in vivo will not be as good as the one for phantoms, due to 

added complexity during acquisition (motion, cardiac and pulsation artifacts, shimming, 

fat suppression, etc). System performance metrics used for site certification and 

periodic QC (quality control) in multi-center trials include: ADC bias from known value; 
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spatial variation in ADC; intra-exam ADC stability; DWI SNR; and acquisition protocol 

compliance. 

3.3 Repeatability and reproducibility of ADC in tissues 

Since diffusion measurement is completely non-invasive, it can be repeated within a 

single exam, which is certainly more convenient to patients. Rather than merely acquire 

two DWI series in immediate succession, the “coffee break” method offers some 

resemblance to the preferred repeated measures experiment, which spans multiple 

scan dates. Intra-vendor and inter-vendor variance of brain ADC was studied using 12 

human phantoms each scanned at different institutions, as well as repeated scans on 

two human phantoms on each system (28). Intraindividual differences from repeated 

scans on the same system were 2.5-5.4%, whereas the average inter-vendor 

differences ranged from 3.8-8.8%. For normal tissues in the abdomen, a short-term and 

long-term repeatability study on one 3T scanner revealed a 14% coefficient of variation 

(CV=SD/mean) (29). These results were similar to another abdominal study that also 

compared various acquisition techniques (30). In abdominal tumors, a two-site 

reproducibility study in 16 patients revealed a 14% coefficient of repeatability 

(2SD/Mean) for ADC calculated from b-value range 0-750, but much higher value (less 

consistent) using low b-values 0-100 (31). Another recent study in hepatocellular 

carcinoma (HCC) reported poor reproducibility of IVIM parameters D* and PF/f with CVs 

of 60.6% and 37.3%, while D/ADC had much better reproducibility (CV 19.7% and 

<16%) (32).  
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4. Diffusion quantification beyond ADC  

For nearly 30 years the ADC has been employed to describe water diffusion within 

biological tissues. The term apparent diffusion was used at the outset of clinical DWI in 

recognition that biological tissues are heterogeneous and contain multiple interacting 

compartments. These interactions include among others, water exchange and blood 

flow, and these properties will result in non-Gaussian diffusion. However, early diffusion 

measurement protocols using only 2 b-values [until recently of modest magnitude 

(<1000 s/mm2)] limited the analysis of diffusion data to the simplest model possible that 

of Gaussian diffusion described by a mono-exponential model from which the ADC is 

estimated (33). Modern clinical MR scanners benefit from multiple technical 

advancements in radiofrequency and gradient hardware which have resulted in 

significant improvements in DWI and there is now the opportunity to employ protocols 

using multiple b-values including b-values exceeding 2000 s/mm2 in the body. Using 

multiple b-values, particularly b-values in the range 0-200 s/mm2, sensitizes the 

diffusion measurement to capillary perfusion and other flow phenomena (34).  

4.1 Intravoxel incoherent motion (IVIM) DWI 

IVIM DWI models the diffusion-attenuated MRI signal as a sum of a static tissue 

molecular diffusion (D: diffusion coefficient, also reported as Dt: true diffusion 

coefficient, in mm2/s) and perfusion related pseudo diffusion: perfusion fraction (PF or f, 

which reflects the fraction of flowing blood, in %) and pseudo-diffusion coefficient (D*, 

which reflects the velocity of capillary blood, in mm2/s) (34-36) (Fig. 2). A free breathing 

or respiratory-triggered fat suppressed SS EPI sequence is suggested using a minimum 

number of b values. Optimal b-value selection for IVIM is more complex than for ADC 
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measurement because there are three parameters related to (in principle) independent 

tissue properties. There is no clear consensus regarding the optimal number of b values 

to be used. Recent IVIM studies have used distributions of 5 to 16 b-values that sample 

both perfusion (≤ 100 s/mm2) and diffusion (> 100 s/mm2) regimes (37-44). Because 

more b-value samples involve longer scan time, there is a need to use the smallest 

possible number of b-values where possible, for example down to 4 b values in the liver 

(0, 15, 150 and 800 s/mm2) (42). An added complexity is that b-value selection is also 

impacted by other properties of the imaging sequence, for example the flow sensitivity 

of the gradient profile, and also on the scanner manufacturer and the accuracy of the b-

value calculation. DWI data can be analyzed using least square method or Bayesian 

method. Where IVIM measurements are related to a flow phenomena the potential for 

directionally oriented flow should be considered. This has been reported in the kidney 

(45) where the anisotropy was observed for the pseudo-diffusion coefficient in the 

medulla, and in muscle (20) where a reformulation of the IVIM model in terms of 

“partially” incoherent motion was proposed. 

Repeatability studies show that IVIM estimation variability in the body may be within 

acceptable limits for PF or f, but estimates of the pseudo-diffusion coefficient D* are 

subject to much larger variations (42, 44, 46-48). In some applications, PF/f alone is 

diagnostic, and in such cases current acquisition and parameter estimation methods will 

be adequate. However, obtaining reliable D* estimates would increase the scope of 

IVIM examinations due to the potential link between D* and perfusion or other transport 

effects. Whilst most published repeatability studies focus on estimates from small 

regions or whole organs, for the approach to be useful in general, reliable voxel-wise 
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estimation is important so that parameter maps may be computed for radiological 

assessment. The variability reported for regions or organs under-estimate the errors 

with voxel-wise estimation.   

4.2 Diffusion kurtosis imaging (DKI) 

At higher b-values (>1000 s/mm2) the signal contribution of water from the extra-cellular 

space is substantially reduced, making the diffusion measurement more sensitive to 

restrictive compartments such as the intracellular compartment (49-51). The DKI model 

is an advanced mathematical fitting scheme that requires ultra high b-values, typically of 

approximately 2,000 s/mm2, and provides both a diffusion coefficient Dapp that is 

corrected to account for such non-Gaussian behavior as well as an additional metric, 

the apparent kurtosis Kapp, reflecting the extent of the non-Gaussianity.  These 

coefficients are computed using the following equation: 

�� = �� ∗ �
(�	
∗��

�

�

�
∗	


�∗����
� ∗����).  Kapp close to 0 indicates essentially Gaussian 

diffusion and is anticipated for b-values less than approximately 1,000 s/mm2 at which 

the mono-exponential fit generally still applies. Greater Kapp reflects deviation of the 

tissue’s signal decay from the mono-exponential fit as a result of non-Gaussian diffusion 

behavior and generally is observed to a greater extent as the b-value increases beyond 

approximately 1,000 s/mm2. The DKI model has been suggested to better reflect 

microstructural heterogeneity and complexity of tissue, potentially related to the 

intracellular environment.  

4.3 Stretched-exponential model 

The use of alternative non-Gaussian diffusion models includes a stretched-exponential 

model (52, 53). This diffusion model contains a single additional stretching term, which 
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can be linked to either non-Gaussian diffusion processes or heterogeneity of Gaussian 

diffusion processes within each voxel. The model has the advantage of describing both 

Gaussian and non-Gaussian processes depending on the value of the stretching term. 

The stretching parameter has been shown to be a useful index of regional heterogeneity 

in glioma and importantly was shown to be independent of applied gradient direction. 

This model has found broad application over a wide range of b-values and clinical 

settings (54, 55). Since water molecules diffuse in the order of a few micrometers during 

the course of a typical diffusion measurement and image voxels are in the order of a 

few mm, the diffusion measurement must represent the statistical properties of a 

distribution of underlying diffusion coefficients which may or may not be Gaussian 

processes. A direct approach is therefore to model the signal attenuation as a 

continuous distribution of diffusion coefficients and estimate statistics of the underlying 

distribution, as was done using a truncated Gaussian distribution (56). An alternative 

approach uses an effective medium theory to express the diffusion signal in terms of 

higher-order moments of the diffusion propagator, which results in the DKI model. 

Given the number of diffusion models available, it is necessary to evaluate which 

model best describes the data assuming the data supports such a model. Any given 

model will require more samples (acquisitions at a given b-value) than the number of 

free model parameters. Although in principle we can hypothesize a biological basis for 

choosing to employ a particular diffusion measurement protocol and model, this should 

be confirmed by testing goodness of fit for a number of diffusion models. A further 

consideration relating to the employment of diffusion models is to determine if they are 

robust. It is well known that increasing the number of model parameters may improve 
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the overall model fit but this may be at the expense of poor measurement repeatability 

and result in correlations between model parameters.  

 

5. Current scientific evidence outside the brain 

5.1. Liver DWI  

Liver DWI acquisition technique: Fat suppressed SS EPI technique is the most 

frequently used sequence in the liver. Most DWI studies have been conducted at 1.5T, 

although there are increasing reports using 3.0T, due to increased availability and 

higher SNR. DWI of the liver is usually performed prior to contrast material 

administration, although performing DWI after the administration of gadolinium based 

contrast agents (such as gadoxetic acid) does not significantly affect ADC values (57, 

58). The shortest possible TE is suggested, as well as the use of parallel imaging to 

improve SNR and decrease distortion. DWI may be performed in breath-hold (BH) or in 

free breathing (FB) mode with multiple signal-averaging to reduce the effects of motion 

or using a respiratory-triggered (RT) acquisition (59). The choice of FB vs. RT 

acquisition is still debated for liver DWI, in terms of image quality and parameter 

reproducibility. The choice depends on time and equipment availability. For the purpose 

of ADC quantification, it is generally recommended to acquire FB or RT data, so that 

multiple b values can be acquired (acquisition time between 2-6 min).    

Choice of b values: b values used for liver imaging are typically lower than 1000 s/mm2. 

Applying a low b value <100 s/mm2 provides ‘black blood’ images, which improves liver 

lesion detection and can be used as a substitute for T2WI (T2-weighted imaging). 

Intermediate and high b values (≥ 500 s/mm2) provide diffusion information used for 
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lesion characterization (60). We do not recommend the use of b value of zero for ADC 

quantification (except when IVIM is performed), in order to decrease  perfusion 

contamination. At least 2 or 3 b values (for example b<100, intermediate b value 400-

500, and higher b value between 500 to 1000) should be used for clinical purposes. 

More b values can be used for the purpose of IVIM.  

Liver lesion detection and characterization: DWI is considered to be more sensitive than 

FSE T2WI for liver lesion detection (61). The combination of DWI and CE (contrast-

enhanced)-T1WI is most sensitive for detection of malignant liver lesions, including liver 

metastases (Fig. 3) or HCC (Fig. 4). A recent meta-analysis showed no major 

difference between DWI and CE-T1WI using either extra-cellular or liver specific 

gadolinium based contrast agents for the detection of liver metastases (62). DWI 

demonstrates variable sensitivity for HCC detection; and the combination of DWI with 

contrast agents yields the best sensitivity for HCC detection. ADC quantification can be 

used to characterize liver lesions as cystic/necrotic or solid (Fig. 5). However, ADC 

alone is deemed insufficient for liver lesion characterization (61).  

Diagnosis of liver fibrosis and cirrhosis: There is data suggesting lower ADC in cirrhosis 

compared to non cirrhotic liver, and a negative correlation between liver ADC and the 

stage of liver fibrosis (63). It has been observed that the diagnostic performance of ADC 

is lower than that of liver stiffness measured with MR elastography (64). There is 

encouraging data on the use of IVIM for diagnosing fibrosis and cirrhosis (38), however 

comparison with other techniques such as elastography is needed (65).  

Liver tumor response: ADC has potential value in the evaluation of liver tumor response, 

with changes in ADC preceding changes in lesion size. Pre-treatment ADC may be 
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used to predict response to treatment. More prospective data is needed to determine 

the value of ADC in predicting clinical outcomes (59).   

 

5.2. Pancreas DWI  

MRI has high contrast resolution to detect the majority of pancreatic diseases through 

changes in T1/T2 relaxation and T1 contrast enhancement. However these changes 

might be insufficient to detect or characterize lesions that are of small size or occur in a 

background of chronic or acute inflammation. DWI provides another image contrast 

mechanism that may increase the sensitivity and the specificity of MRI of the pancreas 

(66). Different approaches might be used for detection and characterization of 

pancreatic lesions: 

• Use of a single low b-value (<100 s/mm2) instead of fat suppressed FSE T2WI to 

create black blood contrast. This is mainly used for detection of focal pancreatic 

lesions and focal liver lesions. 

• Use of 3 b-values (for example 0, 150, and 1000 s/mm2) to detect focal 

pancreatic lesions, examine signal changes, and extract ADC to improve 

characterization.  

• Use of a larger range of b values (typically 9-11 b values ranging from 0 to 1000 

s/mm2) in selected patients (because of large penalty in acquisition time) to improve 

the discrimination between focal pancreatitis and pancreatic adenocarcinoma by 

quantifying IVIM parameters. 
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Pancreatitis: There is lack of robust data about the role of DWI in pancreatic 

inflammation. It has been suggested that acute pancreatitis is associated with impeded 

diffusion and lower ADC compared to normal parenchyma (66). Recent studies suggest 

that DWI used in conjunction with T2WI and MRCP could be powerful for the 

assessment of acute pancreatitis (67), and that DWI may be useful in detecting infection 

in pancreatic fluid collections (68). DWI can also be used to detect focal lesions in 

autoimmune pancreatitis.  

Pancreatic adenocarcinoma: The addition of DWI to conventional MRI helps increasing 

the sensitivity of MRI for the detection of small pancreatic adenocarcinomas (69). PF/f 

extracted from the IVIM technique has a promising role for differentiation of pancreatic 

adenocarcinoma from mass-forming pancreatitis (70). However this strategy is not easy 

to implement in the clinic because of the long acquisition time and post-processing 

challenges.  

Pancreatic neuroendocrine tumors (Fig. 6): A recent small series comparing MRI to 

FDG-PET-CT for detection of pancreatic neuroendocrine tumors showed improved 

detection when adding DWI to T2WI; while (68)Ga-DOTATATE PET-CT was more 

sensitive than MRI for tumor detection (71). A significant negative correlation has been 

reported between ADC and tumor differentiation (72). DWI has also been reported as 

the most sensitive MRI sequence for the detection of liver metastases of 

neuroendocrine tumors (73).  

Pancreatic cystic lesions: DWI cannot be recommended for characterization of 

pancreatic cystic lesions, given the conflicting data (66).  
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In summary, DWI improves the sensitivity of MRI of the pancreas for the 

detection of focal solid lesions. Quantitative diffusion parameters are promising for the 

differential diagnosis of focal parenchymal solid lesions. The role of DWI in assessing 

complications of pancreatitis should be further investigated.  

 

5.3. Renal DWI  

The kidney is a particularly interesting organ to assess by DWI because of its high blood 

flow and water transport functions (74). DWI acquisition can be performed in the axial or 

coronal plane, using FB or RT acquisition.  

Characterization of renal lesions: A previous study compared the performance of CE-

T1WI and DWI when differentiating between benign cystic lesions, papillary and 

nonpapillary renal cell carcinomas (RCC) (Fig. 7), angiomyolipomas, and oncocytomas 

(75). It was found that DWI (AUC: 0.856; sensitivity: 86%; specificity: 80%) represents a 

reasonable, albeit less accurate, alternative to CE-MRI (AUC: 0.944; sensitivity: 100%; 

specificity: 89%) when characterizing renal masses. The diagnostic use of DWI is 

particularly relevant for patients with contraindications to gadolinium-based contrast 

agents (at risk for nephrogenic systemic fibrosis). However, DWI may generally provide 

additional information to radiologists: the same study showed that the combined use of 

DWI and CE-MRI led to an increased specificity of 96% compared to a specificity of 

89% for CE-MRI alone. A retrospective study in 83 patients focused on the use of ADC 

measurements to differentiate between subtypes of RCC (76). Interestingly, mean ADC 

values were computed for each lesion based on b values of 0 and 500 and of 0 and 800 

s/mm2. It was found that clear cell RCC was associated with significantly higher ADC 
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values compared with papillary and chromophobic RCC for both sets of b values (P 

<0.001). However, using b values of 0 and 800 sec/mm2 was more effective for 

distinguishing clear cell RCC from non-clear cell RCC (AUC: 0.973; sensitivity: 96%; 

specificity: 94%). It also led to significant differences in ADC values being found 

between papillary and chromophobic RCC (P<0.001), while this was not the case for b 

values of 0 and 500 sec/mm2. This study indicates that results may not be reproducible 

if different combinations of b values are used.  

Diffuse renal diseases: Diffuse renal diseases can be detected by morphological 

analysis only at advanced stages, which often leads to a delay in adequate treatment. 

DWI has shown promising results for the evaluation of acute and chronic renal failure 

with decreased ADC values reported in this group of patients compared to healthy 

volunteers. A recent prospective study in 71 patients with chronic kidney disease 

determined that ADC values were negatively correlated with pathology scores and 

significantly different among three groups of patients with different degrees or renal 

impairment (P <0.001) (77). The feasibility and reproducibility of DWI in transplanted 

kidneys have already been demonstrated (78) and initial results seem to be promising 

for the assessment of allograft deterioration (79). A recent study in 137 healthy 

participants concluded that ADC values in the kidney may also be age- and gender-

dependent (80). These findings suggest the need for greater standardization in DWI and 

for large studies in which differences in ADC measurements are analyzed by age group 

and gender. 

In summary, although morphological MRI and CT are excellent imaging 

modalities in the diagnostic work-up of a vast variety of renal pathologies, DWI shows 
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promising results as a noninvasive and sensitive technique to provide information 

beyond morphology.  

 

5.4. Prostate DWI 

DWI substantially improves localization of dominant tumors in the prostate and has 

served as an essential factor in the greatly expanded role of MRI in clinical 

management of prostate cancer over the last decade. DWI exhibits high sensitivity for 

high grade tumor, yet low sensitivity for low grade tumor (81), thereby helping to select 

patients with aggressive tumor for treatment while reducing overdiagnosis. ADC values 

obtained from DWI are inversely correlated with Gleason score (82) and are associated 

with tumor progression while on active surveillance (83) as well as with relapse 

following radiation or radical prostatectomy (84). 

 Historically, prostate DWI was acquired using a maximal b-value of 700-1,000 

sec/mm2.  Unsuppressed signal of benign prostate tissue within this b-value range 

obscures increased signal in tumors. However, improvements in scanner and sequence 

technology have facilitated acquisition at even higher b-values of 1,400-2,000 sec/mm2 

(85).  These “ultra” high b-values achieve greater suppression of benign prostate tissue, 

providing improved tumor conspicuity and localization (85). A particular role of ultra high 

b-value images is to help differentiate benign prostatic hyperplasia from transition zone 

tumors (85). In addition, the ultra high b-value images can be synthesized from images 

obtained using standard b-values rather than directly acquired (Fig. 8). This process 

entails no additional acquisition time in comparison with that required for acquisition of 

the standard b-value images and is useful if encountering excessive artifact or 
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insufficient SNR when directly acquiring ultra high b-value images. However, it should 

be noted that synthesized high b-value images are only extrapolations of low b-value 

behavior which may provide contrast variation relative to surrounding tissue but no 

additional quantification or representation of true high b-value behavior (e.g. kurtosis 

effects). Thus their use should be applied carefully and qualitatively. 

 The MRI Prostate Imaging and Reporting Data System (PI-RADS) version 2 

seeks to standardize prostate MRI interpretations (86). In this system, the criteria for 

assigning a 1-5 suspicion score on DWI reflect a composite assessment of both the 

ADC map and ultra high b-value images (whether acquired or synthesized). A 

peripheral zone lesion’s score on DWI serves as the dominant score in determining its 

overall suspicion category. However, in the transition zone, T2WI is the dominant 

sequence and determines the overall score in most instances. 

 Prostate DWI is prone to anatomic distortion and susceptibility-related artifact 

given the EPI acquisition. Rectal gas is a key factor in exacerbating such issues, 

particularly during non-endorectal coil imaging. A number of interventions may help 

reduce this artifact, including use of laxatives or enema, instruction to evacuate prior to 

imaging, and use of a suction catheter at the start of the examination to remove any 

rectal gas that remains despite these interventions. 

 

5.5. Breast DWI 

Technical considerations for breast DWI include optimizing acquisition protocols to 

achieve good image quality and appropriate b-value selection. EPI-based DWI 

sequences are susceptible to image distortions and ghosting artifacts, which are 
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particularly problematic for breast imaging due to off-center imaging, air-tissue 

interfaces, and high fat content in the breast. To reduce artifacts and optimize data 

quality, good shimming and suppression of lipid signal are essential. Advanced RF coil 

design, parallel imaging, and higher order shimming techniques help to overcome some 

of the unique challenges of breast DWI, particularly at higher field strengths. Currently, 

spatial distortion and lower resolution prevent direct correlation and one-to-one mapping 

of DCE-MRI and DWI features and limit clinical implementation of breast DWI, although 

a variety of new DWI acquisition strategies are under development to address these 

issues. 

The choice of b values directly affects SNR and quantitative ADC analysis, and 

may vary according to the application. For lesion conspicuity and detection purposes, a 

high maximum b-value (≥800 s/mm2) may be preferred (87), while for differentiation 

between benign and malignant lesions, choice of b-value may be less important (87, 

88). DWI acquisition using multiple b values provides a more accurate sampling of 

signal decay for calculation of ADC, and use of a nonzero minimum b value reference 

image can help eliminate contaminations from perfusion and flow. However, studies 

investigating these approaches have not clearly demonstrated a clinical diagnostic 

advantage in breast imaging (88). Given the time constraints of clinical practice, ADC 

calculation using two b-values (e.g. b = 0, 800 s/mm2) may be acceptable.  

Breast lesion detection and characterization: Breast malignancies demonstrate 

restricted diffusion, with high signal intensity on DWI and low ADC values, attributed to 

increased cellularity and decreased extracellular space (Fig. 9). The most widely 

explored application of DWI for breast imaging has been as an adjunct MRI technique to 
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reduce false positives and unnecessary biopsies associated with DCE-MRI. Numerous 

groups have demonstrated significant differences in ADC values of benign and 

malignant lesions and shown that ADC measures can improve diagnostic accuracy of 

conventional DCE-MRI (89). DWI may also offer a viable non-contrast method of breast 

MR screening without the costs and toxicity associated with DCE-MRI. Many 

mammographically and clinically occult breast cancers detected by DCE-MRI are also 

visible on DWI. In one study of asymptomatic women, DWI provided higher accuracy 

than screening mammography for the detection of breast malignancies (90).  

Treatment monitoring: Cytotoxic effects of neoadjuvant chemotherapy cause significant 

alterations in cell membrane integrity and reduced tumor cellularity, resulting in an 

increase in water mobility within the damaged tumor tissue. Increases in breast tumor 

ADC in response to treatment are detectable earlier than changes in tumor size on MRI, 

suggesting ADC may be a valuable early indicator of treatment efficacy (91). While a 

number of studies have shown promising associations of breast tumor ADC measures 

with outcomes to therapy, reports in the literature have been varied and more work is 

needed to validate DWI as a useful biomarker of treatment response in breast cancer.  

 

5.6. DWI in gynecological disease 

DWI should be corroborated with standard imaging sequences for the assessment of 

gynecological malignancies. A sagittal acquisition plane is suggested for assessing 

endometrial and cervical cancer, while axial acquisition is suggested for evaluating 

adnexal/ovarian pathology and for lymph node detection.  
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Myometrial tumor characterization: The differentiation between benign and malignant 

myometrial tumors on non-enhanced and post-contrast standard MRI sequences may 

be difficult with an overall accuracy of approximately 69%. A recent study has 

demonstrated the added value of DWI to improve characterization (92). In our 

experience, when a myometrial tumor displays a low T2 signal and/or a low DW signal, 

the tumor is always benign. If the tumor displays high or intermediate T2 signal and high 

DW signal, ADC map help differentiate benign from malignant tumors (93).  

Endometrial cancer (Fig. 10): Staging of endometrial cancer requires assessment of the 

depth of myometrial invasion, which strongly correlates with lymph node metastases. It 

has been shown that a fused T2 and axial oblique DWI perpendicular to the long axis of 

the myometrium is more accurate for assessment of myometrial invasion in comparison 

with T2WI or DCE-MRI (94). Moreover, DWI is helpful for detection of peritoneal 

implants.  

Cervical cancer: DWI is useful for detection of tumors not apparent on T2WI particularly 

in young patients with a diffusely infiltrating adenocarcinoma. In addition, DWI is a more 

sensitive technique than T2WI for detection of small residual tumor after chemoradiation 

therapy before surgery (95). Finally, DWI is useful after the end of therapy, to 

differentiate tumor recurrence from fibrosis (95). 

Ovarian pathology: Several groups have investigated the ability of DWI for 

characterization of ovarian tumors. In our experience, both malignant and benign 

tumors may display high residual signal on high b value images (e.g., b1000), while the 

absence of high b1000 signal is highly predictive of benignancy (96). On the other hand, 

a tumor displaying both low T2 and low DWI signal is generally benign. The addition of 
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DWI to conventional sequences increases the diagnostic confidence in 15% of cases 

(97). A second application of DWI has been in the assessment of peritoneal spread of 

gynecological malignancy with better contrast than on CT or conventional MRI. Finally, 

DWI may be useful to evaluate the early response to neoadjuvant chemotherapy in 

ovarian cancer with an increase in ADC after the first cycle of treatment (98). 

 

5.7. Spine DWI 

The vertebral bone marrow is composed of three main elements: fatty marrow, 

hematopoietic marrow and trabecular bone. The special tissue properties of the bone 

marrow and the complex anatomy of the spine, result in differences in magnetic 

susceptibility which complicate MRI specially EPI techniques. However, with advances 

in EPI techniques, such as improved gradient systems, parallel imaging and dynamic 

shimming; sagittal SS EPI has become a fairly robust tool (99). Other DW pulse 

sequences such as segmented EPI techniques and SS FSE sequences are possible 

alternatives. A precise ADC measurement can still be difficult and large variations are 

found in the literature, mainly explained by acquisition parameter differences (99).  

DWI is a powerful addition to the arsenal of MRI techniques for the detection of bone 

marrow tumor dissemination, improving sensitivity for detecting bone metastases in a 

variety of tumor types (100) (Fig. 11). DWI increases confidence in monitoring treatment 

response and assisting in the differentiation of treatment related changes from tumor, 

therefore has become an important component of whole body MRI oncology protocols 

(Fig. 12).   
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Distinguishing between benign and malignant etiologies of vertebral fractures with MRI 

is problematic, particularly if only one vertebra is affected. The value of DWI in 

discriminating between osteoporotic and metastatic vertebral fractures is controversial 

and insufficiently reliable (101, 102).  

DWI is useful in differentiating degenerative and infectious endplate abnormalities. 

Symptomatic degenerative vertebral endplate signal changes (Modic type 1) can be 

difficult to differentiate from acute spondylodiscitis using conventional MRI techniques. 

Recently a characteristic DWI finding of well-marginated, linear, typically paired regions 

of high signal at the interface of normal with abnormal marrow, referred to as a ‘claw’ 

sign, has been shown to be highly suggestive of degeneration and its absence in cases 

with Modic type I changes strongly suggestive of diskitis/osteomyelitis (103). 

 

5.8 Oncologic treatment response and whole body DWI 

The assessment of tumor response to oncologic treatment is still largely based on size 

measurement criteria or modification of these (104). However, with the growing use of 

cytostatic treatments, tumor size measurements are becoming insensitive to efficacy 

effects and there is a need for new imaging biomarkers to assess treatment 

effectiveness. DWI can determine the success of treatments through alternations in 

tumor size/volume, signal intensity and ADC changes. Numerous studies have shown 

that ADC values in a number of tumor types (including brain, lung, liver metastases, 

HCC, pancreas, kidneys, cervix, uterine, prostate, lymphoma, sarcoma and primary and 

secondary bone malignancies) increases with effective treatments, which include 

chemotherapy, radiotherapy, novel targeted treatments, embolization and 
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radiofrequency ablation. ADC increases often precedes reductions in tumor size, and 

can may be observed as early as 1-4 weeks of initiating treatment (105). However, the 

magnitude and temporal evolution of ADC change depends on the mechanism of action 

of the treatment, with those resulting in profound cell kill resulting in the most rapid and 

largest increases in the ADC values.  

A major strength of ADC measurements in the body is its measurement repeatability. In 

well-conducted studies, using free-breathing techniques, the test-retest repeatability of 

ADC measurements in single-center and cross-center studies have shown to be good. 

Bland-Altman analyses show that the coefficient of repeatability is typically about 15-

30% across multiple studies. More recently, the relatively robust nature of ADC 

measurements was shown within and between vendors, for machines operating at both 

1.5T and 3.0T (106). The inter-vendor repeatability was also shown to in one study to 

be about 14% (106). However, the measurement repeatability of quantitative DWI 

indices derived using more complex diffusion models (e.g. IVIM and DKI) can be poor, 

and it is important to apply complex models judiciously, considering aspects of image 

signal-to-noise, disease type and treatment contexts.  

A key unmet clinical need is for a robust biomarker to assess the treatment 

effectiveness of bone metastases, especially for prostate and breast cancers (107). This 

is because radionuclide bone scans do not directly identify metastases (bone scan 

uptake is a marker of osteoblastic activity) and there are no accepted bone scan criteria 

for defining therapy benefit. As a result, patients are treated to documented progression 

(defined clinically and with imaging), often resulting in unrecognized tumor burdens and 

delays before treatment changes are instituted. This need can potentially be met by 
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whole body MRI methods. Whole body DWI is technically feasible across vendor 

systems and can be undertaken at both 1.5T and 3.0T (Fig. 12). Visual assessments of 

the inverted-grey scale maximum intensity projection images can be used to appraise 

treatment effects; with treatment response showing reductions in high b-value signal 

intensity (Fig. 13). In addition, the DWI signal intensity of bone metastases can be used 

for disease volume segmentation and global ADC quantification (108). Effective 

treatments are associated with reductions in disease volume accompanying rises in the 

ADC values. Importantly, whole body imaging enables heterogeneity of response to be 

documented (commonly seen in the metastatic setting after several lines of treatments). 

However, the criteria for defining bone metastasis response, stable disease and disease 

progression using DWI are being established. It is likely that this would require a 

combination of imaging criteria, which may include changes in bone marrow fat fraction, 

signal intensity changes on conventional T1 and T2WI, as well as DWI signal and ADC 

measurement characteristics (107). 

 

6. Future directions 

6.1. IVIM DWI: Potential body imaging applications  

There is considerable recent literature on the use of IVIM, which employs a bi-

exponential diffusion model to estimate capillary contributions to the DW signal (40, 42, 

109). IVIM has the potential to help characterize diffuse liver disease (37, 38), focal liver 

and pancreatic lesions (110, 111) and renal function (112) (Fig. 2). IVIM is increasingly 

applied in a wide variety of cancer types, due to their typically hypervascular and 

hypercellular features (32, 110, 113). Data showing superiority of IVIM parameters over 
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ADC for tissue characterization is limited, and more evidence is needed. IVIM 

parameter reproducibility and the role of IVIM parameters in treatment response need 

also to be better defined. In addition, the biological significance of IVIM related 

“perfusion” needs to be better understood. 

 

6.2. Diffusion kurtosis imaging (DKI) 

While diffusion data is most commonly processed using a standard mono-exponential fit 

to obtain the parameter ADC, this model may not in fact optimally fit the raw diffusion 

data. Other more sophisticated models have been investigated, including the bi-

exponential and stretched exponential diffusion models, in efforts to obtain more reliable 

estimates of tissue diffusivity. However, these models do not reflect the non-Gaussian 

(non “free”) behavior of water diffusion that manifests at ultra high b-values and is 

believed to provide additional insights into tissue architecture (114). Recent publications 

employing higher b-values have shown advantages in using DKI, a model of diffusion 

that characterizes the excess kurtosis from non-Gaussian diffusion propagators in 

breast, prostate and pancreatic studies (115, 116). While largely applied for brain 

imaging, DKI has more recently been investigated in body imaging. The primary such 

application has been in the prostate, in which greater performance for differentiating low 

and high grade prostate cancer using K than standard ADC obtained from a mono-

exponential fit has been observed (117). DKI has also been preliminarily explored for 

tumor characterization in the breast as well as the head and neck. While hardware 

improvements have allowed for better quality of DWI performed at very high b-values of 

approximately 2,000 s/mm2 and thereby facilitated the clinical application of DKI in 
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recent years, great attention to acquisition detail is important to ensure sufficient SNR at 

the maximal b-values and thus reliability of the computed metrics. In addition, the exact 

microstructural property of tissue represented by Kapp , like the ADC, depends on the 

tissue architecture studied; higher specificity is therefore expected when DKI is 

combined with a biophysical model. 

 

6.3. DWI and PET/MRI 

PET/MRI is a novel hybrid imaging modality, combining the morphological, functional 

and molecular imaging potential of MRI and PET. The combination with DWI is an 

excellent example for the true potential of PET/MR, as it allows for insights into tissue 

structure and biology, which are not possible with PET/CT (118). There are generally 

two different strategies of combining DWI and PET in PET/MR. One can use the 

excellent sensitivity of DWI for lesion detection and combine it with PET. However, for 

whole-body imaging, adding DWI to a PET/MR protocol might be quite time-consuming, 

unless a very brief DWI protocol is employed. This only makes sense, when one 

expects truly synergistic information. It has been suggested that combining two 

excellent staging modalities may not always provide complementary but rather 

redundant information.  

A classic example would be primary staging in an FDG-avid malignancy where usually 

FDG is sufficient for tumor detection and DWI adds little information (119). However the 

situation is different when PET is used to gather biological information with specific 

tracers, like FLT (fluorothymidine)-PET for assessment of tumor proliferation or receptor 

imaging. In these cases lesions might be negative in PET but could still be picked up 
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with whole body DWI, thus synergistically combining lesion detection and 

characterization. More practical and less time consuming for PET/MR in oncology is 

region-specific DWI. This means that DWI is only added to the MR protocol for a 

specific area of interest, where PET might be limited for lesion detection, like in the liver 

to rule out small liver metastases. However, the true potential of combining DWI and 

PET in PET/MR lies not so much in lesion detection as described above, but to make 

maximum use of the quantitative information on tissue biology one gets in a single 

examination with optimum image coregistration. By analyzing the data on restricted 

water movement and tracer uptake on a voxel-by-voxel basis, a novel set of biomarkers 

might evolve, which add synergistic information on tumor biology to the classical 

biomarkers derived from tissue biopsy or liquid biopsy (120). Compared to the latter, 

PET/MR derived biomarkers have several advantages like being minimally invasive, 

allowing for serial whole-body assessment and depicting intra- and inter-lesional 

heterogeneity. This method could be helpful for biopsy guidance, prognostic 

assessment, radiation therapy planning or response evaluation (Fig. 14). 

 

Conclusion 

The 2015 ISMRM sponsored workshop has stimulated in depth discussions of body 

DWI and the current state of the art. The key points are summarized below: 

• Body DWI is no longer direct transportation of methods from the brain but an 

adaptation to specific challenges and opportunities of extracranial anatomies and 

pathologies.  
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• Validated quality control metrics are available to quantify measurement 

repeatability, reproducibility and precision of quantitative DWI. ADC 

measurements outside the brain show good to excellent measurement 

repeatability, although more data on inter-platform reproducibility is needed.  

• Perfusion insensitive ADC (e.g. obtained from b-values between 50 and 1000 

s/mm2) is robust and can be recommended for general evaluation.  

• DWI has been shown to improve disease assessment in the liver, pancreas, 

kidneys, prostate, breast, gynecological diseases and spine. 

• DWI (including whole body DWI) shows substantial promise for assessing tumor 

response in oncology, although larger prospective studies are needed to qualify 

ADC as a response biomarker.  

• Under appropriate measurement conditions, non-monoexponential diffusion models 

(e.g. IVIM, DKI and stretched exponential) could be explored to provide further 

tissue characterization, particularly in oncological applications.  

• Further exploration of non-monoexponential diffusion models and combination with 

PET imaging would further enhance the value of DWI in the body.  
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Table: Technical considerations for acquisition of DWI of the abdomen and pelvis. 

Factor Suggestion 

Underlying pulse 

sequence 

Free-breathing or respiratory-triggered (for abdominal applications) 

fat-suppressed single-shot echoplanar imaging 

TR ≥ 3000 ms 

TE Shortest possible (≤90 ms) 

Matrix At least 128x128 (higher for prostate) 

Slice thickness 3-7 mm (3 mm for prostate, matching T2WI) 

Parallel imaging 

reduction factor 

2 

Number of b-values At least 2 b-values needed; one or two additional intermediate b-

values may be obtained, particularly if performing quantitative ADC 

measurements  

Minimum b-value <100 s/mm2 

Maximum b-value 800-1000 s/mm2; further ultra high b-values in range of 1,400-2,000 

sec/mm2 may be acquired or computed and are routinely advised in 

the prostate 

Number of directions Three directions 

SNR considerations Ensure adequate number of averages and acquisition time to 

provide sufficient SNR on maximal b-value images 

Acquisition plane  Axial (abdomen), axial oblique (prostate), coronal (kidneys), sagittal 

(female pelvis) 

Post-processing Inline generation of ADC map using standard mono-exponential fit 

is appropriate for routine clinical applications  
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Figure Legends 

 

Fig. 1: 68 year-old male with high serum prostate specific antigen (20 ng/mL) and 

multiple prior negative prostate biopsies. Reduced FOV DWI at 3.0T (using FOV 24 cm, 

TR 4000/TE 65, slice thickness 3 mm, 160x80) at b1600 demonstrates hyperintense left 

apex tumor (arrows) with low ADC, and hypervascularity on DCE-MRI. The lesion is 

isointense on T2-weighted imaging. The lesion was confirmed to be prostate cancer 

(Gleason 4+3) on targeted ultrasound-guided prostate biopsy.  

 

Fig. 2: IVIM DWI performed in a 24-year old male volunteer. Coronal DWI performed 

over the abdomen using 7 b-values (0, 25, 50, 100, 200, 400 and 800 s/mm2) at 1.5T. 

Diffusion coefficient (D), pseudo diffusion coefficient (D*) and perfusion fraction (f) maps 

are shown. Note high quality parametric maps of D and f, while D* map is highly 

variable. Typical signal attenuation curves of voxel data fitting in the liver and kidneys 

are shown in the lower row, demonstrating biexponential behavior. IVIM DWI 

measurements can be made with greater confidence where there is excellent image 

signal-to-noise and in tissues with significant vascular perfusion, as is the case in the 

liver and kidneys and in many (but not all) types of cancer. 

 

Fig. 3: 51 year-old female with metastatic colon cancer. DW image at b 800 

demonstrates an infiltrative tumor (long arrow) in the right hepatic lobe with hyperintense 

peripheral and hypointense central components, corresponding to low/high ADC (central 

necrosis and solid peripheral components). There are additional smaller metastatic 

lesions in the left hepatic lobe with restricted diffusion (short arrows).    
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Fig. 4: 69 year-old male with liver cirrhosis secondary to chronic hepatitis C and 

hepatocellular carcinoma (HCC) with portal vein invasion. DW images at b50 and b500 

demonstrate right posterior lobe HCC with restricted diffusion (short arrow) with 

evidence of tumor thrombus involving the right posterior portal vein (long arrow), better 

depicted on DWI compared to contrast-enhanced T1-weighted images at the arterial and 

portal venous phases (AP and PVP). 

 

Fig. 5: 60 year-old male with metastatic gastrointestinal stromal tumor. DW images/ADC 

map demonstrate two large lesions: an intrahepatic lesion (arrow) is mildly hyperintense 

at b 50 and strongly hyperintense at b 1000 with low ADC (restricted diffusion) 

compatible with viable tumor. The extrahepatic lesion (asterisk) is strongly hyperintense 

at b 50, hypointense at b 1000, with high ADC, compatible with necrotic/cystic 

metastatic lesion. Post-contrast T1-weighted image confirms DWI findings.     

 

Fig. 6: 60 year-old male with small pancreatic neuroendocrine tumor, better depicted on 

high b value DWI and fused DWI-T2 images (arrow). The lesion is not visible on T2 

HASTE image.  

 

Fig. 7: 60 year-old male with papillary renal cell carcinoma. Standard imaging 

sequences demonstrate a left renal T2 hypointense lesion/T1 hyperintense lesion with 

evidence of enhancement on subtracted image. The lesion demonstrates restricted 

diffusion, with high signal on b1000 and on calculated b1600, with low mean ADC 

(approximately 0.8 x 10-3 mm2/s).    

Page 48 of 78

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

leFO
R PEER REVIEW

 O
NLY

Page 49 of 64 

 

Fig. 8: 55 year-old male with prostate cancer (Gleason score 3+4). Left midgland 

transition zone tumor (arrow) appearing hypointense on T2WI with low ADC. The tumor 

is hyperintense on diffusion images, and more conspicuous on calculated b1500 than on 

acquired b1000 diffusion image, due to incomplete suppression of background benign 

prostate tissue on b1000 image.  

 

Fig. 9: 31-year old female with Li-Fraumeni syndrome undergoing breast MRI 

screening. DCE-MRI demonstrates a mammographically occult mass at 3 o’clock in the 

right breast (arrow), measuring 11 mm with smooth margins and internal septations, 

rapid enhancement and washout, assessed as BI-RADS category 4. The lesion exhibits 

restricted diffusion on DWI, with bright signal compared to adjacent parenchyma on b 

800 s/mm2 (arrow) and low ADC of 1.15 x10-3 mm2/s. Ultrasound-guided biopsy 

revealed malignant phyllodes tumor. 

 

Fig. 10: 70 year-old female with endometrial carcinoma without myometrial infiltration 

(Stage IA). Comparison of axial oblique T2WI (a), DWI (b) and fused T2 and DWI (c). 

The contrast between the tumor and the myometrium is higher with DWI than with T2WI 

with better appreciation of the margins on the fused T2-DWI image. 

 

Fig. 11: 59 year-old male with lung cancer and metastatic vertebral lesions. Lesions 

demonstrate high intensity and high conspicuity on high b value DWI (b1000, arrows) 

(A) and appear hypointense on T1WI (B), minimally enhancing on T1 post-contrast  (C), 

and moderately hyperintense on T2 WI (D).  
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Fig. 12: 60 year-old male with multiple myeloma. Coronal reformatted whole-body DWI 

image with inverted greyscale contrast for b=800 s/mm2 demonstrates diffuse tumor 

burden in low signal in the bone marrow.  

 

Fig. 13: 65 year-old female with metastatic bone disease from breast cancer. Top row: 

Pre and post-treatment inverted greyscale maximum intensity projection b=900 s/mm2 

images. Disease segmentation (colored red) allows quantification of total disease 

volume (tDV) before and after treatment. Note reduction in disease volume after 

chemotherapy. Bottom image: ADC histograms associated with disease volumes pre 

and post-treatment shows more than 50% increase in median ADC values after 

treatment, in keeping with treatment response.  

 

Fig. 14: Multimodal multiparametric imaging using Anima M3P (by S. G. Nekolla and S. 

van Marwick; image courtesy: M. Eiber, D. Vriens). [11C]choline PET/MRI in prostate 

cancer. By creating a scatter plot of the correlation of SUV (y-axis) and ADC (x-axis), 

one can define 9 different areas (“Likelihood” plot). The most suspicious areas for 

malignancy are coded in red/orange (highest SUV and lowest ADC). The “Quotient” plot 

is a map of SUV divided by ADC. The areas with the brightest signal are the most 

suspicious ones. A biopsy could be targeted to areas with the highest likelihood of 

malignancy / potentially most aggressive tumor parts.  

Page 50 of 78

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

leFO
R PEER REVIEW

 O
NLY

Page 51 of 64 

Figures  

Fig. 1: 68 year-old male with high serum prostate specific antigen (20 ng/mL) and 

multiple prior negative prostate biopsies. Reduced FOV DWI at 3.0T (using FOV 24 cm, 

TR 4000/TE 65, slice thickness 3 mm, 160x80) at b1600 demonstrates hyperintense left 

apex tumor (arrows) with low ADC, and hypervascularity on DCE-MRI. The lesion is 

isointense on T2-weighted imaging. The lesion was confirmed to be prostate cancer 

(Gleason 4+3) on targeted ultrasound-guided prostate biopsy.  
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Fig. 2: IVIM DWI performed in a 24-year old male volunteer. Coronal DWI performed 

over the abdomen using 7 b-values (0, 25, 50, 100, 200, 400 and 800 s/mm2) at 1.5T. 

Diffusion coefficient (D), pseudo diffusion coefficient (D*) and perfusion fraction (f) maps 

are shown. Note high quality parametric maps of D and f, while D* map is highly 

variable. Typical signal attenuation curves of voxel data fitting in the liver and kidneys 

are shown in the lower row, demonstrating biexponential behavior. IVIM DWI 

measurements can be made with greater confidence where there is excellent image 

signal-to-noise and in tissues with significant vascular perfusion, as is the case in the 

liver and kidneys and in many (but not all) types of cancer. 
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Fig. 3: 51 year-old female with metastatic colon cancer. DW image at b 800 

demonstrates an infiltrative tumor (long arrow) in the right hepatic lobe with 

hyperintense peripheral and hypointense central components, corresponding to 

low/high ADC (central necrosis and solid peripheral components). There are additional 

smaller metastatic lesions in the left hepatic lobe with restricted diffusion (short arrows).   
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Fig. 4: 69 year-old male with liver cirrhosis secondary to chronic hepatitis C and 

hepatocellular carcinoma (HCC) with portal vein invasion. DW images at b50 and b500 

demonstrate right posterior lobe HCC with restricted diffusion (short arrow) with 

evidence of tumor thrombus involving the right posterior portal vein (long arrow), better 

depicted on DWI compared to contrast-enhanced T1-weighted images at the arterial 

and portal venous phases (AP and PVP).
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Fig. 5: 60 year-old male with metastatic gastrointestinal stromal tumor. DW 

images/ADC map demonstrate two large lesions: an intrahepatic lesion (arrow) is mildly 

hyperintense at b 50 and strongly hyperintense at b 1000 with low ADC (restricted 

diffusion) compatible with viable tumor. The extrahepatic lesion (asterisk) is strongly 

hyperintense at b 50, hypointense at b 1000, with high ADC, compatible with 

necrotic/cystic metastatic lesion. Post-contrast T1-weighted image confirms DWI 

findings.    
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Fig. 6: 60 year-old male with small pancreatic neuroendocrine tumor, better depicted on 

high b value DWI and fused DWI-T2 images (arrow). The lesion is not visible on T2 

HASTE image.  

Page 56 of 78

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

leFO
R PEER REVIEW

 O
NLY

Page 57 of 64 

Fig. 7: 60 year-old male with papillary renal cell carcinoma. Standard imaging 

sequences demonstrate a left renal T2 hypointense lesion/T1 hyperintense lesion with 

evidence of enhancement on subtracted image. The lesion demonstrates restricted 

diffusion, with high signal on b1000 and on calculated b1600, with low mean ADC 

(approximately 0.8 x 10-3 mm2/s).    
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Fig. 8: 55 year-old male with prostate cancer (Gleason score 3+4). Left midgland 

transition zone tumor (arrow) appearing hypointense on T2WI with low ADC. The tumor 

is hyperintense on diffusion images, and more conspicuous on calculated b1500 than 

on acquired b1000 diffusion image, due to incomplete suppression of background 

benign prostate tissue on b1000 image.  
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Fig. 9: 31-year old female with Li-Fraumeni syndrome undergoing breast MRI 

screening. DCE-MRI demonstrates a mammographically occult mass at 3 o’clock in the 

right breast (arrow), measuring 11 mm with smooth margins and internal septations, 

rapid enhancement and washout, assessed as BI-RADS category 4. The lesion exhibits 

restricted diffusion on DWI, with bright signal compared to adjacent parenchyma on b 

800 s/mm2 (arrow) and low ADC of 1.15 x10-3 mm2/s. Ultrasound-guided biopsy 

revealed malignant phyllodes tumor. 
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Fig. 10: 70 year-old female with endometrial carcinoma without myometrial infiltration 

(Stage IA). Comparison of axial oblique T2WI (a), DWI (b) and fused T2 and DWI (c). 

The contrast between the tumor and the myometrium is higher with DWI than with T2WI 

with better appreciation of the margins on the fused T2-DWI image.
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Fig. 11: 59 year-old male with lung cancer and metastatic vertebral lesions. Lesions 

demonstrate high intensity and high conspicuity on high b value DWI (b1000, arrows) 

(A) and appear hypointense on T1WI (B), minimally enhancing on T1 post-contrast  (C), 

and moderately hyperintense on T2 WI (D).  

 

 

 

Page 61 of 78

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

leFO
R PEER REVIEW

 O
NLY

Page 62 of 64 

Fig. 12: 60 year-old male with multiple myeloma. Coronal reformatted whole-body DWI 

image with inverted greyscale contrast for b=800 s/mm2 demonstrates diffuse tumor 

burden in low signal in the bone marrow.  
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Fig. 13: 65 year-old female with metastatic bone disease from breast cancer. Top row: 

Pre and post-treatment inverted greyscale maximum intensity projection b=900 s/mm2 

images. Disease segmentation (colored red) allows quantification of total disease 

volume (tDV) before and after treatment. Note reduction in disease volume after 

chemotherapy. Bottom image: ADC histograms associated with disease volumes pre 

and post-treatment shows more than 50% increase in median ADC values after 

treatment, in keeping with treatment response.  
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Fig. 14: Multimodal multiparametric imaging using Anima M3P (by S. G. Nekolla and S. 

van Marwick; image courtesy: M. Eiber, D. Vriens). [11C]choline PET/MRI in prostate 

cancer. By creating a scatter plot of the correlation of SUV (y-axis) and ADC (x-axis), 

one can define 9 different areas (“Likelihood” plot). The most suspicious areas for 

malignancy are coded in red/orange (highest SUV and lowest ADC). The “Quotient” plot 

is a map of SUV divided by ADC. The areas with the brightest signal are the most 

suspicious ones. A biopsy could be targeted to areas with the highest likelihood of 

malignancy / potentially most aggressive tumor parts.  
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Fig. 1: 68 year-old male with high serum prostate specific antigen (20 ng/mL) and multiple prior negative 
prostate biopsies. Reduced FOV DWI at 3.0T (using FOV 24 cm, TR 4000/TE 65, slice thickness 3 mm, 

160x80) at b1600 demonstrates hyperintense left apex tumor (arrows) with low ADC, and hypervascularity 
on DCE-MRI. The lesion is isointense on T2-weighted imaging. The lesion was confirmed to be prostate 

cancer (Gleason 4+3) on targeted ultrasound-guided prostate biopsy.  
257x69mm (150 x 150 DPI)  
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Fig. 2: IVIM DWI performed in a 24-year old male volunteer. Coronal DWI performed over the abdomen 
using 7 b-values (0, 25, 50, 100, 200, 400 and 800 s/mm2) at 1.5T. Diffusion coefficient (D), pseudo 

diffusion coefficient (D*) and perfusion fraction (f) maps are shown. Note high quality parametric maps of D 

and f, while D* map is noisy. Typical signal attenuation curves of voxel data fitting in the liver and kidneys 
are shown in the lower row, demonstrating biexponential behavior. IVIM DWI measurements can be made 

with greater confidence where there is excellent image signal-to-noise and in tissues with significant 
vascular perfusion, as is the case in the liver and kidneys.  
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Fig. 3: 51 year-old female with metastatic colon cancer. DW image at b 800 demonstrates an infiltrative 
tumor (long arrow) in the right hepatic lobe with hyperintense peripheral and hypointense central 

components, corresponding to low/high ADC (central necrosis and solid peripheral components). There are 
additional smaller metastatic lesions in the left hepatic lobe with restricted diffusion (short arrows).    
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Fig. 4: 69 year-old male with liver cirrhosis secondary to chronic hepatitis C and hepatocellular carcinoma 
(HCC) with portal vein invasion. DW images at b50 and b500 demonstrate right posterior lobe HCC with 
restricted diffusion (short arrow) with evidence of tumor thrombus involving the right posterior portal vein 
(long arrow), better depicted on DWI compared to contrast-enhanced T1-weighted images at the arterial 

and portal venous phases (AP and PVP).  
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Fig. 5: 60 year-old male with metastatic gastrointestinal stromal tumor. DW images/ADC map demonstrate 
two large lesions: an intrahepatic lesion (arrow) is mildly hyperintense at b 50 and strongly hyperintense at 
b 1000 with low ADC (restricted diffusion) compatible with viable tumor. The extrahepatic lesion (asterisk) is 

strongly hyperintense at b 50, hypointense at b 1000, with high ADC, compatible with necrotic/cystic 
metastatic lesion. Post-contrast T1-weighted image confirms DWI findings.      
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Fig. 6: 60 year-old male with small pancreatic neuroendocrine tumor, better depicted on high b value DWI 
and fused DWI-T2 images (arrow). The lesion is not visible on T2 HASTE image.  
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Fig. 7: 60 year-old male with papillary renal cell carcinoma. Standard imaging sequences demonstrate a left 
renal T2 hypointense lesion/T1 hyperintense lesion with evidence of enhancement on subtracted image. The 
lesion demonstrates restricted diffusion, with high signal on b1000 and on calculated b1600, with low mean 

ADC (approximately 0.8 x 10-3 mm2/s).    
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Fig. 8: 55 year-old male with prostate cancer (Gleason score 3+4). Left midgland transition zone tumor 
(arrow) appearing hypointense on T2WI with low ADC. The tumor is hyperintense on diffusion images, and 

more conspicuous on calculated b1500 than on acquired b1000 diffusion image, due to incomplete 
suppression of background benign prostate tissue on b1000 image.  
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Fig. 9: 31-year old female with Li-Fraumeni syndrome undergoing breast MRI screening. DCE-MRI 
demonstrates a mammographically occult mass at 3 o’clock in the right breast (arrow), measuring 11 mm 
with smooth margins and internal septations, rapid enhancement and washout, assessed as BI-RADS 

category 4. The lesion exhibits restricted diffusion on DWI, with bright signal compared to adjacent 
parenchyma on b 800 s/mm2 (arrow) and low ADC of 1.15 x10-3 mm2/s. Ultrasound-guided biopsy 

revealed malignant phyllodes tumor.  
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Fig. 10: 70 year-old female with endometrial carcinoma without myometrial infiltration (Stage IA). 
Comparison of axial oblique T2WI (a), DWI (b) and fused T2 and DWI (c). The contrast between the tumor 
and the myometrium is higher with DWI than with T2WI with better appreciation of the margins on the 

fused T2-DWI image.  
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Fig. 11: 59 year-old male with lung cancer and metastatic vertebral lesions. Lesions demonstrate high 

intensity and high conspicuity on high b value DWI (b1000, arrows) (A) and appear hypointense on T1WI 

(B), minimally enhancing on T1 post-contrast  (C), and moderately hyperintense on T2 WI (D).  
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Fig. 12: 60 year-old male with multiple myeloma. Coronal reformatted whole-body DWI image with inverted 
greyscale contrast for b=800 s/mm2 demonstrates diffuse tumor burden in low signal in the bone marrow.  
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Fig. 13: 65 year-old female with metastatic bone disease from breast cancer. Top row: Pre and post-
treatment inverted greyscale maximum intensity projection b=900 s/mm2 images. Disease segmentation 
(colored red) allows quantification of total disease volume (tDV) before and after treatment. Note reduction 

in disease volume after chemotherapy. Bottom image: ADC histograms associated with disease volumes pre 
and post-treatment shows more than 50% increase in median ADC values after treatment, in keeping with 

treatment response.  
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Fig. 14: Multimodal multiparametric imaging using Anima M3P (by S. G. Nekolla and S. van Marwick; image 
courtesy: M. Eiber, D. Vriens). [11C]choline PET/MRI in prostate cancer. By creating a scatter plot of the 

correlation of SUV (y-axis) and ADC (x-axis), one can define 9 different areas (“Likelihood” plot). The most 

suspicious areas for malignancy are coded in red/orange (highest SUV and lowest ADC). The “Quotient” plot 
is a map of SUV divided by ADC. The areas with the brightest signal are the most suspicious ones. A biopsy 
could be targeted to areas with the highest likelihood of malignancy / potentially most aggressive tumor 

parts.  
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