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1 Kernel Matrix K for Trans-Ethnic Meta-Analysis

In Section 2.3, we proposed two choices of K for trans-ethnic meta-analysis. In this section, we

provide more details including their general structures. Suppose that the first n1 studies belong

to the first ancestry group, then followed by another n2 belong to the second ancestry group,

and so on. n1 + n2 + . . .+ np = n is the total number of studies. Let At denote a set of indices

for the studies in the tth ancestry group, t = 1, . . . , p. Corresponding to the way we arrange the

input data, A1 = {1, . . . , n1},A2 = {n1 +1, . . . , n1 +n2}, . . . ,Ap = {n1 + . . .+np−1 +1, . . . , n1 +

. . .+np−1+np}. Using those notations, we propose two choices for K, which can be summarized

as follows:

Choice 1. Group-wise independent kernel structure

Define each entry of the K matrix as

Kij =

1 if i, j ∈ At for some t ∈ {1, . . . , p}

0 otherwise
,

where i, j ∈ {1, . . . , n}. The K matrix can be written as
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K =



1 . . . 1 0 . . . 0 0 . . . 0
...

...
. . .

...

1 . . . 1 0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0
...

...
. . .

...

0 . . . 0 1 . . . 1 0 . . . 0
. . .

. . .
. . .

. . .

0 . . . 0 0 . . . 0 . . . 1 . . . 1
...

...
...

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1



2. Genetic similarity (Fst) kernel structure

Define each entry of the K matrix as

Kij = 1−
Fst

tt
′

D
, with D = max

t,t′∈{1,...,p}
{Fst

tt
′ },

where i ∈ At for some t ∈ {1, . . . , p}, j ∈ At′ for some t
′ ∈ {1, . . . , p}, and Fst

tt
′ is the

pairwise Fst between ancestry group t and t
′
. Since Fst

tt
′ ≤ D,∀ t and t

′
, as a consequence,

0 ≤ Kij ≤ 1, ∀ i and j. In general, the K matrix under this assumption can be written as

K =



1 . . . 1 1− Fst12
D . . . 1− Fst12

D 1− Fst1p

D . . . 1− Fst1p

D
...

...
. . .

...

1 . . . 1 1− Fst12
D . . . 1− Fst12

D 1− Fst1p

D . . . 1− Fst1p

D

1− Fst21
D . . . 1− Fst21

D 1 . . . 1 1− Fst2p

D . . . 1− Fst2p

D
...

...
. . .

...

1− Fst21
D . . . 1− Fst21

D 1 . . . 1 1− Fst2p

D . . . 1− Fst2p

D
. . .

. . .
. . .

. . .

1− Fstp1

D . . . 1− Fstp1

D 1− Fstp2

D . . . 1− Fstp2

D 1 . . . 1
...

...
. . .

...

1− Fstp1

D . . . 1− Fstp1

D 1− Fstp2

D . . . 1− Fstp2

D 1 . . . 1
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2 Derivation of the Hypothesis Test

After calculating the test statistic T , the next step is to obtain the corresponding p-value for

assessing the association evidence. If we had just used the minimum p-value (which is denoted

as our test statistic T) to assess significance, we would ignore the multiple comparisons between

different pρ values, which would result in inflated type I error control. Thus, we derived the

asymptotic distribution of T to obtain its p-value, details provided as follows:

Recall that the score test statistics can be written as:

Sρ = (1− ρ)β̂
′

Σ̂−1KΣ̂−1β̂ + ρβ̂
′

Σ̂−111
′
Σ̂−1β̂. (1)

And for any given ρ, the null distribution of Sρ can be closely approximated by

n∑
j=1

λjχ
2
1,j , (2)

where (λ1, . . . , λn) are the eigenvalues of Σ̂−1/2VρΣ̂
−1/2, and {χ2

1,j} are independent χ2
1 random

variables.

Let Z = Σ̂−1/21 and M = Z(Z
′
Z)−1Z

′
, then M is a projection matrix onto the space spanned

by Z. In addition, define u = Σ̂−1/2β̂. Based on those notations, the first term of the right side

of (1) can be written as:

(1− ρ)β̂
′

Σ̂−1KΣ̂−1β̂ = (1− ρ)u
′
Σ̂−1/2KΣ̂−1/2u

= (1− ρ)u
′
(I−M)Σ̂−1/2KΣ̂−1/2(I−M)u (3)

+ 2(1− ρ)u
′
(I−M)Σ̂−1/2KΣ̂−1/2Mu (4)

+ (1− ρ)u
′
MΣ̂−1/2KΣ̂−1/2Mu, (5)

and the second term of the right side of (1) can be written as:

ρβ̂
′

Σ̂−111
′
Σ̂−1β̂ = ρu

′
Σ̂−1/211

′
Σ̂−1/2u

= ρu
′
MZZ

′
Mu. (6)

Following the derivation as in Lee et al. (2012), it can be easily shown that (3) + (4) = (1− ρ)κ
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and (5) + (6) = τ(ρ)η0, where

κ = u
′
(I−M)Σ̂−1/2KΣ̂−1/2(I−M)u

+ 2u
′
(I−M)Σ̂−1/2KΣ̂−1/2Mu,

τ(ρ) = [a2b(1− ρ) + ρ]/a.

with a = (Z
′
Z)−1, b = Z

′
Σ̂−1/2KΣ̂−1/2Z, and η0 = (Z

′
Z)−1u

′
ZZ

′
u.

As a result, we have Sρ = (1− ρ)κ+ τ(ρ)η0.

The asymptotic distribution of Sρ can be approximated as (1− ρ)(
∑m

k=1 λ
′
kηk + ζ) + τ(ρ)η0,

since under the null, each elements of u has mean 0 and variance 1, u
′
(I−M)Σ̂−1/2KΣ̂−1/2(I−

M)u asymptotically follows
∑m

k=1 λ
′
kηk, where {λ′

1, . . . , λ
′
m} are non-zero eigenvalues of (I −

M)Σ̂−1/2KΣ̂−1/2(I−M), ηks are iid χ2
1 random variables, η0 = (Z

′
Z)−1u

′
ZZ

′
u asymptotically

follows χ2
1 distribution. Furthermore, since M is a projection matrix, (I −M)u and Mu are

asymptotically independent. Therefore, ζ = 2u
′
(I−M)Σ̂−1/2KΣ̂−1/2Mu satisfies the following

conditions:

E(ζ) = 0, var(ζ) = 4trace(Σ̂−1/2MΣ̂−1/2KΣ̂−1/2(I−M)Σ̂−1/2K),

corr(η0, ζ) = 0, and corr(u
′
(I−M)Σ̂−1/2KΣ̂−1/2(I−M)u, ζ) = 0

In addition, by asymptotic independence between (I −M)u and Mu, it can be shown that

u
′
(I−M)Σ̂−1/2KΣ̂−1/2(I−M)u and (Z

′
Z)−1u

′
ZZ

′
u are also asymptotically independent. Since

the Pearson correlation between κ and η0 is zero, we can approximate Sρ as the mixture of two

independent variables. We can approximate the distribution of κ by using the moment matching

or characteristic function inversion method (Davis, 1980) after adjusting for the extra variance

term of ζ.

To estimate the distribution of T = min{pρ1 , . . . , pρb}, let qmin(ρ) denote the (1 − T )th

percentile of the distribution of Sρ for each ρ in the grid search. The p-value of T is

1 − P (Sρ1 < qmin(ρ1), . . . , Sρb < qmin(ρb))

= 1 − E[P (κ < min{(qmin(ρv)− τ(ρv)η0)/(1− ρv)})|η0], (7)

which can be obtained by one-dimensional numerical integration.

To sum up, our proposed method can be implemented through the following algorithm:

Step 1: Set a grid 0 ≤ ρ1 ≤ ρ2 ≤ . . . ≤ ρb ≤ 1.

Step 2: Compute Sρ1 , . . . , Sρb using equation (1).
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Step 3: Compute Z, M, λ
′
ks, τ(ρi), and

µS =
m∑
k=1

λ
′
k, σζ = 2

√
trace(Σ̂−1/2MΣ̂−1/2KΣ̂−1/2(I−M)Σ̂−1/2K), and σS =

√√√√2
m∑
k=1

(λ
′
k)

2 + σ2ζ

Step 4: For each ρi, i ∈ {1, . . . , b}, calculate pρi using equation (2), T = min{pρ1 , . . . , pρb}
and qmin(ρi)

Step 5: Numerically integrate F (δ(x)|λ)f(x|χ2
1), where

δ(x) = (min{(qmin(ρi)− τ(ρi)x)/(1− ρv)} − µS)

√
σ2S − σ2ζ
σS

+ µS ,

f(x|χ2
1) is the density function of χ2

1, and F (δ(x)|λ) is a distribution function of a mixture of

chi-square distribution
∑
λ

′
kχ

2
k. The p-value is found as

p− value = 1−
∫
F (δ(x)|λ)f(x|χ2

1)dx.

3 Using Z-scores instead of Effect-size Estimates

Based on p-values (pi), sample sizes (ni) and direction of effects (∆i), we can construct a

signed Z-score Zi = Φ−1(1− pi/2) ∗ sign(∆i) for each study, where Φ(·) is the standard normal

distribution function. Now we show how to transform the Z-scores as input data for our proposed

method.

3.1 Continuous Traits

For continuous traits, the linear regression model can be written as

yik = β0 + βigik + εik,

where yik is a trait value of study i individual k, gik is a minor allele count, and εik ∼ N(0, ω2
i )

is the error term. Let us denote xik = (1, gik) and Xi = (xi1, . . . ,xini)
′
. Then the estimator of

βi follows the normal distribution

β̂i ∼ N(βi, σ
2
i ),

where σ2i = ω2
i (X

′
iXi)

−1
2,2 and (X

′
iXi)

−1
2,2 is the (2,2) element of (X

′
iXi)

−1. The two side p-value

is pi = 1− 2Φ(|β̂i/σi|), and thus the Z-score Zi follows N(βi/σi, 1). This result implies that we
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can reconstruct β̂i using a Z-score by estimating σ2i . Since

(X
′
iXi)

−1 =
1

ni
∑ni

k=1 g
2
ik − (

∑ni
k=1 gik)

2

( ∑ni
k=1 g

2
ik −

∑ni
k=1 gik

−
∑ni

k=1 gik ni

)
,

we then have under the Hardy-Weinberg equilibrium

niω
2
i

ni
∑ni

k=1 g
2
ik − (

∑ni
k=1 gik)

2
≈ ω2

i

ni2qi(1− qi)
,

where qi is a minor allele frequency (MAF) for the corresponding queried SNP. As a result,

under the Hardy-Weinberg equilibrium β̂i is equivalent to
√

ω2
i

ni2qi(1−qi)Zi. With an additional

assumption that the variance of error term (ω2
i ) are the same across studies, we can use

β̃i = Zi/
√
niqi(1− qi)

and its standard error

σ̃i = 1/
√
niqi(1− qi)

as inputs for our proposed method.

3.2 Binary Traits

For binary traits, the logistic regression model can be written as

logitPr(yik = 1) = β0 + βigik.

Asymptotically, var(β̂i) = J−1(βi), where J(βi) =
∑ni

k=1 xikx
′
ikµik(1−µik), and µik =

exp(β
′

ixik)

1+exp(β
′
ixik)

.

Since

xikx
′
ik =

(
1 gik

gik g2ik

)
,

we then have

J(βi) =

ni∑
k=1

exp(β
′
ixik)

[1 + exp(β
′
ixik)]

2

(
1 gik

gik g2ik

)
.

If we use ri = ncase,i/ni to denote the proportion of case samples for study i and assume that

its effect size βi is very small, then
exp(β

′

ixik)

[1+exp(β
′
ixik)]2

≈ ri(1− ri) for any k ∈ {1, . . . , ni}, and J(βi)

reduces to

J(βi) = ri(1− ri)
ni∑
k=1

(
1 gik

gik g2ik

)
= ri(1− ri)

(
ni

∑
gik∑

gik
∑
g2ik

)
.
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The remaining derivations then follow the same calculation as in the continuous traits case.

As a result, for binary traits, the log odds ratio estimate β̂i is asymptotically equivalent to

Zi/
√
niri(1− ri)qi(1− qi). If all studies have similar ratios of cases and controls, the ri(1− ri)

term can be ignored. Therefore,

β̃i = Zi/
√
niqi(1− qi)

and its standard error

σ̃i = 1/
√
niqi(1− qi)

can be used as inputs for both continuous and binary traits.

4 Estimation of Bayes factor thresholds corresponding to genome-

wide p-value significance levels

We carried out 20 million null simulations for MANTRA to find Bayes factor thresholds corre-

sponding to genome-wide p-value significance levels. Following our type I error simulations as in

Section 3.1.1, each simulated dataset had 27 studies (9 ancestry groups in triplicate) and each

study had 500 cases and 500 controls. We then applied MANTRA to those 20 million nulls to

obtain Bayes factors, and calculated the empirical type I error rates as the proportion of Bayes

factors (out of the 20 million) that were greater than a given Bayes factor threshold. When we

used log10 Bayes factor = 5 as a threshold, the empirical type I error rate was 1.8× 10−6 with

the exact binomial confidence interval (1.25× 10−6, 2.4× 10−6). Supplementary Figure 1 plots

the obtained empirical type I error rates (illustrated in -log10(empirical type I error rate) on the

vertical axis) and the Bayes factors (illustrated in log10(Bayes’ factor) on the horizontal axis).

Due to our limited computing resources, it would take us months to run MANTRA on billions

of null simulations that are required to find a comparable Bayes factor threshold to the commonly

used genome-wide significance level (α = 5×10−8); therefore, we performed a regression analysis

between the Bayes factor thresholds and the empirical type I error rates. We obtained the

empirical type I error rates for a sequence of Bayes factor thresholds and fitted a linear regression

model using -log10(Empirical type I error rate) as a response variable and the log10 Bayes’

factor threshold as a predictor. The obtained regression intercept and slope are were 1.08577

(p-value < 2× 10−16) and 0.98106 (p-value < 2× 10−16) respectively. Based on those regression

parameters, we estimated the Bayes factor threshold (on the log10 base) that corresponds to

the genome-wide significance level as 6.34. We note that the estimated significance level from

this linear model that corresponds to log10 Bayes factor = 5 was α = 1.0 × 10−6, which is

slightly lower than the observed significance level 1.8× 10−6. We employed both α = 1.8× 10−6

and 1.0× 10−6 to the power simulations and found that the results were very similar (data not
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shown).

To sum up, we defined the level of significance as a p-value less than 1.8 × 10−6, or as a

log10 Bayes factor larger than 5. We also employed the significance level as a p-value less than

5× 10−8 or as a log10 Bayes factor larger than 6.34.

5 Supplementary Tables and Figures
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Supplementary Table 1: Type-I error rate estimates at different α levels based on 100 million
replicates. Each entry represents an estimated type I error rate calculated using the proportion
of p-values smaller than the given level α. One integrated study was simulated per ancestry
group, and each study had 1500 cases and 1500 controls.

α = 10−2 10−3 10−4 10−5 10−6

TransMeta.Fst 1.051× 10−2 1.1× 10−3 1.079× 10−4 1.1× 10−5 1.05× 10−6

TransMeta.Indep 1.008× 10−2 0.9× 10−3 8.589× 10−5 7.4× 10−6 9.0× 10−7

Supplementary Table 2: Pairwise Fst values used for the T2D meta-analysis. The Fst values
were extracted from Supplementary Table 6 of International HapMap 3 Consortium. (2010). In-
tegrating common and rare genetic variation in diverse human populations. Nature, 467(7311),
52-58.

Ancestry European east Asian south Asian Mexican and
Mexican-American

European 0 0.111 0.035 0.031

east Asian 0.111 0 0.077 0.070

south Asian 0.035 0.077 0 0.035

Mexican and 0.031 0.070 0.035 0
Mexican-American
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Supplementary Table 3: P-values and Bayes’ factors of the six meta-analysis methods for the
24 SNPs with TransMeta.Fst p-value < 5×10−8 among the 69 SNPs from the T2D trans-ethnic
meta-analysis data. Values in the parenthesis are the optimal ρ values for our proposed method.
Values in the last column are the I2 statistic for measuring the heterogeneity level.

SNP F.ST (ρ) INDEP(ρ) FE RE RE-HE Bayes I2

rs7903146 6.17e-77 (0.00) 3.59e-84 (0.25) 6.44e-75 2.89e-07 3.55e-76 74.13 0.83
rs10811661 4.42e-27 (1.00) 4.42e-27 (1.00) 1.11e-27 1.28e-24 2.74e-27 25.36 0.10
rs7756992 4.04e-26 (0.25) 3.57e-31 (0.25) 3.39e-26 2.19e-04 1.88e-27 24.87 0.81
rs3802177 6.55e-19 (0.09) 2.10e-19 (0.25) 1.61e-18 1.61e-18 3.39e-18 16.27 0
rs1111875 1.12e-18 (1.00) 1.33e-20 (0.25) 2.80e-19 2.49e-05 3.29e-19 17.12 0.65
rs4402960 5.51e-18 (0.25) 4.22e-18 (0.25) 7.50e-18 1.54e-17 1.55e-17 15.52 0.01
rs163184 4.12e-14 (1.00) 2.63e-14 (0.25) 1.03e-14 4.80e-07 1.64e-14 12.41 0.55
rs9936385 3.32e-12 (0.25) 9.15e-13 (0.25) 9.65e-13 3.01e-10 1.67e-12 10.63 0.11
rs7178572 5.70e-11 (0.25) 4.91e-11 (0.25) 1.47e-11 1.47e-11 2.45e-11 9.35 0

rs5215 1.25e-10 (1.00) 1.07e-10 (0.25) 3.12e-11 8.47e-05 3.24e-11 8.98 0.57
rs12571751 2.19e-10 (1.00) 2.43e-10 (1.00) 2.19e-10 2.19e-10 3.46e-10 8.22 0
rs1801282 3.86e-10 (1.00) 2.89e-10 (0.25) 4.24e-10 4.24e-10 6.41e-10 7.99 0
rs849135 3.88e-10 (0.00) 2.21e-10 (0.25) 1.06e-09 2.84e-03 1.07e-09 7.62 0.53

rs17791513 1.01e-09 (0.00) 1.11e-08 (0.09) 2.42e-08 4.71e-03 1.76e-08 6.60 0.65
rs4430796 1.06e-09 (1.00) 2.59e-09 (1.00) 1.16e-09 1.10e-07 1.71e-09 7.53 0.24
rs4458523 1.72e-09 (1.00) 1.79e-09 (1.00) 1.91e-09 1.91e-09 2.88e-09 7.32 0
rs11257655 2.06e-09 (1.00) 5.31e-09 (1.00) 1.92e-09 8.71e-04 2.22e-09 7.33 0.61
rs2943640 6.52e-09 (1.00) 6.63e-09 (1.00) 7.01e-09 7.01e-09 9.96e-09 6.73 0
rs7612463 8.25e-09 (1.00) 1.7e-08 (0.25) 6.28e-09 6.28e-09 9.21e-09 6.86 0
rs11717195 1.46e-08 (0.25) 3.17e-08 (1.00) 2.26e-08 2.26e-08 3.25e-08 6.20 0
rs4812829 2.09e-08 (0.00) 1.59e-08 (0.25) 4.21e-08 1.42e-04 5.98e-08 6.07 0.4
rs12970134 2.98e-08 (1.00) 4.79e-08 (1.00) 2.48e-08 2.48e-08 3.55e-08 6.06 0
rs10830963 2.98e-08 (0.25) 3.76e-08 (0.25) 1.99e-07 2.91e-03 2.48e-07 5.60 0.50
rs2261181 3.05e-08 (1.00) 7.51e-09 (0.25) 2.34e-08 1.31e-05 3.11e-08 6.24 0.27
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Supplementary Table 4: Supplementary Table 3 continued: P-values and Bayes’ factors of
the six meta-analysis methods for the remaining 45 SNPs among the 69 SNPs from the T2D
trans-ethnic meta-analysis data.

SNP F.ST (ρ) INDEP(ρ) FE RE RE-HE Bayes I2

rs7845219 6.56e-08 (1.00) 8.63e-08 (1.00) 5.84e-08 5.84e-08 8.57e-08 5.99 0
rs516946 6.57e-08 (0.09) 6.60e-08 (0.25) 1.11e-07 1.11e-07 1.63e-07 5.59 0
rs1552224 1.35e-07 (1.00) 7.71e-08 (0.25) 9.61e-08 2.11e-03 9.68e-08 5.81 0.63
rs17168486 3.86e-07 (1.00) 4.36e-07 (0.09) 3.74e-07 4.38e-03 3.65e-07 5.08 0.58
rs12899811 6.29e-07 (1.00) 1.40e-06 (1.00) 7.42e-07 2.05e-05 1.09e-06 4.74 0.16
rs2028299 6.48e-07 (1.00) 9.0e-07 (1.00) 7.741e-07 2.35e-04 9.09e-07 4.81 0.42
rs1535500 1.45e-06 (0.00) 1.53e-06 (0.25) 5.36e-06 1.13e-02 5.61e-06 4.10 0.52
rs3923113 1.96e-06 (0.25) 2.29e-06 (1.00) 2.31e-06 1.51e-02 5.47e-07 4.62 0.74
rs2796441 1.96e-06 (1.00) 2.43e-06 (1.00) 1.63e-06 1.63e-06 2.39e-06 4.42 0
rs2075423 2.03e-06 (1.00) 2.52e-06 (1.00) 2.17e-06 9.69e-04 3.17e-06 4.34 0.45
rs12427353 3.11e-06 (0.00) 3.13e-06 (0.25) 3.41e-06 3.41e-06 4.17e-06 4.14 0
rs243088 3.49e-06 (1.00) 3.56e-06 (0.25) 3.73e-06 3.73e-06 5.46e-06 4.25 0
rs7163757 4.76e-06 (1.00) 6.51e-06 (1.00) 4.14e-06 4.14e-06 6.04e-06 4.11 0
rs10842994 4.76e-06 (0.25) 6.92e-06 (1.00) 6.75e-06 6.75e-06 9.84e-06 3.93 0
rs8108269 4.98e-06 (1.00) 6.86e-06 (1.00) 4.60e-06 1.97e-03 6.71e-06 3.90 0.43
rs7041847 5.31e-06 (1.00) 7.21e-06 (1.00) 4.03e-06 4.12e-06 5.88e-06 4.20 0
rs11634397 6.29e-06 (0.00) 7.85e-06 (0.25) 1.60e-05 2.58e-03 2.16e-05 3.62 0.31
rs1359790 9.61e-06 (0.25) 2.46e-06 (0.25) 1.08e-05 8.73e-03 1.07e-05 3.60 0.47
rs780094 1.45e-05 (1.00) 1.62e-05 (1.00) 1.29e-05 2.76e-02 5.34e-06 3.81 0.75

rs10203174 3.29e-05 (0.00) 7.11e-06 (0.09) 7.28e-05 1.64e-01 4.99e-05 2.59 0.65
rs7955901 3.11e-05 (0.00) 1.62e-05 (0.00) 1.86e-03 3.68e-01 1.79e-04 2.15 0.76
rs6795735 3.59e-05 (0.00) 1.41e-04 (0.25) 2.00e-04 4.65e-03 2.80e-04 2.60 0.27
rs7593730 3.6e-05 (0.00) 1.13e-05 (0.00) 4.74e-04 1.89e-01 1.34e-04 2.41 0.68
rs7202877 4.32e-05 (0.00) 2.28e-04 (0.09) 5.53e-04 6.23e-02 2.09e-04 2.43 0.72
rs13233731 1.11e-04 (0.00) 1.97e-06 (0.00) 4.08e-03 3.42e-01 1.35e-05 3.90 0.85
rs16861329 2.68e-04 (0.00) 1.46e-05 (0.00) 5.06e-02 6.95e-01 1.01e-04 2.45 0.90
rs11063069 3.33e-04 (0.00) 4.02e-04 (0.25) 9.97e-04 3.87e-02 1.40e-03 1.78 0.25
rs3786897 3.83e-04 (1.00) 3.20e-04 (0.25) 3.34e-04 2.22e-01 1.45e-05 3.84 0.83
rs9470794 3.95e-04 (0.00) 2.61e-04 (0.09) 1.75e-03 3.48e-01 1.53e-03 1.81 0.68
rs6815464 4.39e-04 (0.00) 4.39e-04 (0.00) NA NA NA 2.13 0
rs6878122 5.81e-04 (0.25) 3.23e-04 (0.25) 5.75e-04 1.36e-01 4.64e-05 2.23 0.82
rs1802295 6.97e-04 (0.00) 1.22e-03 (0.25) 1.10e-03 1.56e-01 1.95e-04 1.97 0.81
rs831571 6.84e-04 (1.00) 3.99e-04 (0.25) 5.26e-04 2.10e-01 4.56e-04 2.25 0.73
rs459193 1.06e-03 (1.00) 1.51e-03 (1.00) 8.20e-04 8.20e-04 1.15e-03 1.84 0
rs2334499 1.61e-03 (1.00) 1.64e-03 (0.25) 1.38e-03 1.38e-03 1.93e-03 1.69 0
rs10923931 3.03e-03 (0.00) 1.01e-03 (0.00) 7.10e-03 3.55e-01 8.61e-03 0.95 0.46
rs10401969 3.91e-03 (0.00) 3.35e-03 (0.09) 7.18e-03 1.62e-01 6.19e-03 1.15 0.68
rs6467136 6.72e-02 (0.00) 5.93e-02 (0.00) 2.14e-01 4.63e-01 1.80e-02 0.80 0.76
rs10278336 1.08e-01 (0.00) 1.21e-01 (0.09) 1.11e-01 1.73e-01 1.33e-01 0.11 0.16
rs7403531 1.54e-01 (0.25) 3.78e-02 (0.00) 1.28e-01 7.23e-01 6.81e-02 0.20 0.68
rs6723108 3.49e-01 (1.00) 4.30e-01 (1.00) 3.17e-01 3.17e-01 3.64e-01 -0.21 0
rs17584499 4.98e-01 (0.00) 4.63e-01 (0.00) 5.20e-01 5.62e-01 5.60e-01 -1.18 0.52
rs7560163 5.76e-01 (1.00) 6.06e-01 (1.00) 4.72e-01 4.72e-01 5.08e-01 -0.37 0
rs10886471 5.86e-01 (0.00) 6.45e-01 (0.00) 6.46e-01 6.46e-01 7.05e-01 -0.45 0
rs391300 8.42e-01 (1.00) 8.78e-01 (1.00) 7.40e-01 7.40e-01 7.90e-01 -0.55 011



Supplementary Table 5: Summary Table of the I2 statistic for each of the 2000 SNPs in the
five power comparison scenarios. In each cell of the table, we first present the median of the I2

statistic for all the SNPs (out of 2000) whose optimal ρ value from TransMeta.Fst is as specified
at beginning of the row, then we present the corresponding inter-quartile range (IQR) in the
parenthesis.

The optimal ρ value Scenario (a) Scenario (b) Scenario (c) Scenario (d) Scenario (e)

ρ = 0 0.05 (0.28) 0.55 (0.27) 0.69 (0.17) 0.50 (0.29) 0.70 (0.17)
ρ = 0.09 0 (0.17) 0.39 (0.45) 0.65 (0.33) 0.21 (0.45) 0.64 (0.18)
ρ = 0.25 0 (0.11) 0.20 (0.51) 0.36 (0.38) 0.11 (0.36) 0.63 (0.23)
ρ = 1 0 (0.18) 0.03 (0.32) 0.27 (0.36) 0.12 (0.33) 0.53 (0.32)

Overall median (IQR) 0 (0.21) 0.52 (0.33) 0.68 (0.19) 0.45 (0.38) 0.67 (0.20)

Supplementary Table 6: Contingency Table of the selected optimal ρ value from Trans-
Meta.Fst for each of the 2000 SNPs in the five power comparison scenarios. In each cell of
the table, the entry represents the total number of SNPs (out of 2000) which has the selected
optimal ρ value as listed at the beginning of the row under the scenario specified at the top of
the column.

The optimal ρ value Scenario (a) Scenario (b) Scenario (c) Scenario (d) Scenario (e)

ρ = 0 480 1674 1864 1573 1385
ρ = 0.09 309 136 58 120 109
ρ = 0.25 276 77 36 122 143
ρ = 1 935 113 142 185 363

Total counts 2000 2000 2000 2000 2000
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Supplementary Figure 1: Calibration of the Bayes’ factor to the empirical type I error rate.
The vertical axis measures the empirical type I error rate on a -log10 scale, the horizontal axis
measures the Bayes’ factor on a log10 scale. The blue straight represents the fitted regression
line -log10(empirical type I error rate) = 1.08577 + 0.98106 × log10(Bayes’ factor).
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Supplementary Figure 2: Empirical power for TransMeta and existing methods under the
five effect size scenarios. Three studies were simulated per ancestry group, each with 500 cases
and 500 controls. The empirical power was obtained based on 2000 replicates with the level of
significance defined as a p-value less than 5× 10−8 or as a log10 Bayes’ factor larger than 6.34.
The five effect size scenarios are (a) ‘Trans-ethnic fixed-effect’, where no heterogeneity exists
in allelic effects at the causal SNP between populations; (b) ‘Out-of-Africa effect’, where only
studies from the non-African populations carry the causal variant; (c) ‘Europe and south Asia
effect’, where only studies from the European and south Asian populations carry the causal
variant; (d) ‘Heterogeneous Out-of-Africa effect’, where the causal variant has genetic effects
only in non-African populations, but the effect size in the east Asian populations is different
from that in the European and south Asian populations; (e) ‘Environment modifying effect’,
where the causal variant has genetic effect only in the populations living in Europe and USA.
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Supplementary Figure 3: Empirical power for TransMeta and existing methods under the
five effect size scenarios. One integrated study was simulated per ancestry group, each with 1500
cases and 1500 controls. The empirical power was obtained based on 2000 replicates with the
level of significance defined as a p-value less than 5×10−8 or as a log10 Bayes’ factor larger than
6.34. The five effect size scenarios are (a) ‘Trans-ethnic fixed-effect’, where no heterogeneity
exists in allelic effects at the causal SNP between populations; (b) ‘Out-of-Africa effect’, where
only studies from the non-African populations carry the causal variant; (c) ‘Europe and south
Asia effect’, where only studies from the European and south Asian populations carry the causal
variant; (d) ‘Heterogeneous Out-of-Africa effect’, where the causal variant has genetic effects only
in non-African populations, but the effect size in the east Asian populations is different from
that in the European and south Asian populations; (e) ‘Environment modifying effect’, where
the causal variant has genetic effect only in the populations living in Europe and USA.
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Supplementary Figure 4: Power comparison of the effect-size and Z-score based TransMeta
under the five effect size scenarios. One integrated study was simulated per ancestry group, each
with 1500 cases and 1500 controls. The empirical power was obtained based on 2000 replicates
with the level of significance defined as a p-value less than 1.8 × 10−6. The left panel is based
on TransMeta.Fst and the right panel is based on TransMeta.Indep. In each plot, the x-axis
denotes empirical power of the Z-score based TransMeta and the y-axis denotes empirical power
of the effect-size based TransMeta. The solid dots represent the power of transformed Z-scores
using only sample sizes, and the solid squares represent transformed Z-scores using both sample
sizes and MAFs.
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Supplementary Figure 5: Comparison of the empirical power for TransMeta under the five
effect size scenarios, using different grid searches for ρ . Three studies were simulated per
ancestry group, each with 500 cases and 500 controls. The empirical power was obtained based
on 2000 replicates with the level of significance defined as a p-value less than 1.8 × 10−6. The
two grids being compared are: ρ = (0, 0.09, 0.25, 1) v.s ρ = (0, 0.1, 0.2, . . . , 0.8, 0.9, 1). The left
panel is based on TransMeta.Fst and the right panel is based on TransMeta.Indep. The five
effect size scenarios are (a) ‘Trans-ethnic fixed-effect’, where no heterogeneity exists in allelic
effects at the causal SNP between populations; (b) ‘Out-of-Africa effect’, where only studies
from the non-African populations carry the causal variant; (c) ‘Europe and south Asia effect’,
where only studies from the European and south Asian populations carry the causal variant;
(d) ‘Heterogeneous Out-of-Africa effect’, where the causal variant has genetic effects only in
non-African populations, but the effect size in the east Asian populations is different from that
in the European and south Asian populations; (e) ‘Environment modifying effect’, where the
causal variant has genetic effect only in the populations living in Europe and USA.
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