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Summary. Meta-analysis of trans-ethnic genome-wide association studies (GWAS) has proven to be a practical and profitable
approach for identifying loci that contribute to the risk of complex diseases. However, the expected genetic effect heterogeneity
cannot easily be accommodated through existing fixed-effects and random-effects methods. In response, we propose a novel
random effect model for trans-ethnic meta-analysis with flexible modeling of the expected genetic effect heterogeneity across
diverse populations. Specifically, we adopt a modified random effect model from the kernel regression framework, in which
genetic effect coefficients are random variables whose correlation structure reflects the genetic distances across ancestry groups.
In addition, we use the adaptive variance component test to achieve robust power regardless of the degree of genetic effect
heterogeneity. Simulation studies show that our proposed method has well-calibrated type I error rates at very stringent
significance levels and can improve power over the traditional meta-analysis methods. We reanalyzed the published type 2
diabetes GWAS meta-analysis (Consortium et al., 2014) and successfully identified one additional SNP that clearly exhibits
genetic effect heterogeneity across different ancestry groups. Furthermore, our proposed method provides scalable computing
time for genome-wide datasets, in which an analysis of one million SNPs would require less than 3 hours.
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1. Introduction
Although genome-wide association studies (GWAS) have suc-
cessfully identified more than 2000 loci that influence the
severity of human health outcomes, those identified loci ac-
count for only a small fraction of the genetic contribution to
complex diseases and traits (McCarthy et al., 2008). It has
been argued that numerous loci with very small effects can
explain additional disease risk or trait heritability, and the
challenge is to find those loci that can be identified only with
very large number of samples (Eichler et al., 2010). Since it is
too costly to design and conduct a single study with tens or
hundreds of thousands of samples, a more practical alterna-
tive is to combine studies that have already been conducted
through a meta-analysis (Evangelou and Ioannidis, 2013).

A natural extension of the traditional European-based
meta-analysis is to include samples from as many studies
as possible, even if they come from heterogeneous ancestries.
With the increased sample size, trans-ethnic meta-analysis is
expected to be more powerful at detecting novel loci without
the cost of additional genotyping (Cooper et al., 2008). In fact,
several trans-ethnic meta-analyses have been performed in the
last few years with success in discovering risk alleles across an-
cestry groups. For example, five consortia (Consortium et al.,
2014) aggregated published GWAS meta-analyses of type 2
diabetes (T2D) from four ancestry groups and successfully
identified seven new loci with very small effect sizes.

To take full advantage of the profitability of trans-ethnic
meta-analysis, improved statistical methods are required to

account for the distinctive ancestral origins among data. Ex-
isting methods for GWAS meta-analysis include the classical
fixed-effects and random-effects methods, as well as the re-
cently introduced new random-effects method by Han and Es-
kin (2011) and the Bayesian approach by Morris (2011). The
fixed-effects method (FE) (Evangelou and Ioannidis, 2013) is
the most popular approach for synthesizing GWAS data. It
assumes that the true effect of each risk allele is the same in
each dataset, and as a result, it has limited power in the pres-
ence of genetic effect heterogeneity (Evangelou and Ioannidis,
2013). The random-effects method (RE) was developed ex-
plicitly to model the between-study heterogeneity; however,
it implicitly assumes heterogeneity under the null hypothesis,
which causes it to have far more limited power than FE (Han
and Eskin, 2011). To relax the conservative assumption of RE,
Han and Eskin (2011) developed a new random-effects model
(RE-HE) which achieves higher power than RE. Morris (2011)
developed a trans-ethnic meta-analysis method by means of
a Bayesian partition model (MANTRA). MANTRA accounts
for the relatedness of studies by grouping them into differ-
ent ethnic clusters. Specifically, studies that are grouped into
the same ethnic cluster share the same underlying genetic ef-
fect, while different ethnic clusters have different underlying
genetic effects.

The aforementioned T2D trans-ethnic meta-analysis was
carried out using the FE method. In addition to identify-
ing novel T2D susceptibility loci, they analyzed 69 estab-
lished T2D susceptibility loci using Cochran Q test (Cochran,
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1954) to evaluate their genetic effect heterogeneity. Among
the 69 loci, three had very strong evidence of the heterogene-
ity (Cochran Q p-value < 10−3), and 12 had some evidence
of the heterogeneity (10−3 ≤ Cochran Q p-value < 0.05). For
those 15 loci, FE may not be sufficiently powerful to detect
the association signals. In order to improve power, we devel-
oped a new trans-ethnic meta-analysis approach, referred to
as TransMeta, and used it to reanalyze the T2D trans-ethnic
meta-data.

As mentioned above, one of the challenging issues in trans-
ethnic GWAS meta-analysis is to appropriately account for
the expected genetic effect heterogeneity. There can be sev-
eral reasons for the heterogeneous effect sizes. First, it is
highly possible that the queried SNP is not the underly-
ing causal SNP, but rather is correlated to the causal SNP
through linkage disequilibrium (LD). Variations in the LD
structures across ancestry groups can create the genetic ef-
fect heterogeneity. Second, the environmental risk factors may
differ between ancestry groups. With the possibility of in-
teraction between the causal variants and the environmen-
tal factors, marginal genetic effects may vary between pop-
ulations (Morris, 2011). To address the heterogeneity issue,
we consider a modified random effect model based on a ker-
nel machine framework (Liu et al., 2007). Specifically, we
treat the genetic effect coefficients as random variables, with
their correlation structure across ancestry groups reflecting
the expected heterogeneity (or homogeneity) among ancestry
groups. To test for associations, we derive a data-adaptive
variance component test with adaptive selection of the de-
gree of heterogeneity. This adaptive test combines models of
homogeneous and heterogeneous genetic effects, and provides
robust power regardless of the genetic effect distribution. For
details of our proposed method, TransMeta, see Section 2,
Methods.

The rest of this article is organized as follows: In Section
3, to compare the performance of TransMeta with FE, RE,
RE-HE, and MANTRA for meta-analyzing GWAS across ge-
netically diverse populations, we perform simulation studies
and reanalyze the T2D trans-ethnic meta-analysis. We con-
clude the article with a discussion in Section 4.

2. Methods

2.1. Statistical Models for GWAS Meta-Analysis

In this section, we first introduce statistical models of the
existing GWAS meta-analysis methods. Let β̂ = (β̂1, . . . , β̂n)

′

be the effect-size estimates, such as the log odds ratios or
regression coefficients, in n independent studies. If the sample
sizes in each study are sufficiently large, then

β̂|β ∼ MVN(β, �), (1)

where β = (β1, . . . , βn)
′
, with βi being the true effect size in the

ith study; and � = diag(σ2
1 , . . . , σ2

n ), with σ2
i being the variance

of β̂i.
FE assumes that all the studies share a common effect-size

μ (i.e., β1 = · · · = βn = μ). FE is powerful at detecting genetic
effects that are present in most, if not all, of the studies with
homogeneous effect sizes. The RE model assumes that the
true effect size βi for the ith study is generated from a normal

distribution with mean μ and variance τ1,

βi = μ + ηi, ηi ∼ N(0, τ1). (2)

RE typically assumes that even under the null hypothesis of
no association, βis can be different across studies, since τ1 is
not assumed to be zero under the null hypothesis. Due to this
conservative assumption, RE has far more limited power at
detecting association signals than FE. Han and Eskin (2011)
developed a new RE approach (RE-HE) that assumes no ge-
netic effect heterogeneity under the null hypothesis. Specif-
ically, they assumed that βis are zero among all the studies
under the null hypothesis (i.e., μ = 0 and τ1 = 0), and they al-
lowed varying effect sizes among studies under the alternative
hypothesis. The likelihood ratio test was used to evaluate the
null hypothesis of μ = 0 and τ1 = 0. Since asymptotic p-values
of RE-HE are only accurate when the number of studies (n)
is very large, they provide tabulated p-values precomputed
with an assumption of equal sample sizes across studies. In
the presence of inter-study effect-size heterogeneity, RE-HE
yields higher power than FE.

The aforementioned three frequentist meta-analysis meth-
ods can all be summarized under model (2) with certain as-
sumptions on τ1. With τ1 = 0 under both the null and the
alternative hypotheses, model (2) is exactly the same as FE.
RE assumes that τ1 is nonzero under both the null and the
alternative hypotheses, and tests whether μ = 0 or not, while
accounting for the between-study variance τ1. RE-HE assumes
that τ1 = 0 under the null hypothesis, and tests whether both
μ and τ1 are zero.

Unlike the frequentist approaches, the Bayesian meta-
analysis approach, MANTRA, assigns studies into ethnic clus-
ters under model (1). It assumes that studies that are grouped
into the same ethnic cluster share the same underlying ge-
netic effect. If we fix the number of clusters as one, all the
studies are grouped into one ethnic cluster with homogeneous
genetic effects; in this case, MANTRA can be viewed as a
Bayesian implementation of the fixed-effects method. If the
number of cluster is fixed to be the same as the number of
studies (n), each study is assigned to be its own cluster; in this
case, MANTRA can be viewed as a Bayesian implementation
of the random-effects method. MANTRA uses the Bayesian
partition model to adaptively determine the number of ethnic
clusters and the cluster membership and assesses the associ-
ation evidence by means of the Bayes factor.

2.2. New Model Framework for GWAS Meta-Analysis

The existing frequentist meta-analysis methods based on (2)
are not optimal when the effect sizes exhibit certain structures
across studies. In multi-ethnic meta-analysis, for example, the
studies can be grouped by their ethnicities. Genetically similar
groups may have more homogeneous genetic effects compared
to genetically diverse groups. In response, we propose a statis-
tical framework that can accommodate prior assumptions on
genetic effect distributions. Specifically, we adopt the kernel
machine framework (Liu et al., 2007) to flexibly model the
genetic effect distributions. Instead of assuming ηis are i.i.d
normal samples, we assume that ηis jointly follow a mean zero
Gaussian process with kernel function τ1K(·, ·), where K(·, ·)
is a bivariate function to represent genetic similarity between
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two groups. This kernel regression framework has been suc-
cessfully applied in many areas of genetic studies, including
rare variant association analysis (Wu et al., 2011) and path-
way analysis (Liu et al., 2007). In Section 2.3, we will discuss
choices of kernels for trans-ethnic meta-analysis.

We first propose to extend (2) to a hierarchical model by
modeling μ as a random variable with distribution N(0, τ2).
From this extension, our proposed model framework can be
summarized as

β̂|β ∼ MVN(β, �)

β|τ1, τ2 ∼ MVN(0, τ1K + τ211
′
), (3)

where K is an n × n kernel matrix and 1 = (1, · · · , 1)′. We
then apply a reparameterization τ1 = τ(1 − ρ) and τ2 = τρ,
where ρ reflects whether genetic effects are homogeneous
(ρ = 1) or heterogeneous (ρ = 0) across ancestry groups, and
τ represents the size of the regression coefficients β. From this
reparameterization, testing for both μ and τ1 being zero be-
comes testing for the common variance component τ being
zero. Our final model framework is

β̂|β ∼ MVN(β, �)

β|τ ∼ MVN(0, τVρ)

Vρ = (1 − ρ)K + ρ11
′
, 0 ≤ ρ ≤ 1, (4)

where Vρ is an n × n (scaled) covariance matrix of β. We note
that Vρ is a linear combination of two matrices, 11′ and K,
with coefficient ρ that determines the degree of heterogene-
ity. ρ = 0 indicates that the covariance structure of βis is the
same as the kernel matrix K, and ρ = 1 indicates that βis are
perfectly correlated (and hence homogeneous).

Our proposed model includes the three frequentist meta-
analysis approaches as special cases. For example, if ρ = 1
(i.e., Vρ = 11

′
), the model is effectively the same as FE since

all βis should be the same under the alternative hypothesis.
We show in Section 2.4 that the variance component score test
for τ = 0 with ρ = 1 is exactly the same as the inverse-variance
weighted meta-analysis test, the most popular test for the FE
approach. As a result, one of the important features of our
model is that it includes FE regardless of the choice of K.
We believe this is a desirable feature since numerous disease-
associated SNPs in various meta-analysis scenarios including
trans-ethnic meta-analysis exhibit homogeneous genetic ef-
fects across studies (Marigorta and Navarro, 2013). RE and
RE-HE are equivalent to testing for τ2 = 0 and τ1 = τ2 = 0
under (3), respectively, with K = I. This indicates that RE
is equivalent to testing for ρ = 0, and RE-HE is equivalent
to testing for τ = 0 while adaptively selecting ρ under the
reparameterized model (4) with K = I.

2.3. Choice of the Kernel Matrix K for Trans-Ethnic
Meta-Analysis

Suppose the GWAS meta-analysis has p ancestry groups, and
the tth group is denoted by t (t = 1, . . . , p). Using those no-
tations, we propose two choices for the kernel structure K:

Choice 1. Group-wise independent kernel structure:

We consider a simple assumption in which genetic effect
sizes are independently distributed across ancestry groups,
but homogeneous within the same ancestry group. In partic-
ular, Kij = 1 if and only if study i and j belong to the same
ancestry group t for some t ∈ {1, . . . , p}. In Web Appendix
Section 1, we provide the general form of K under this group-
wise independent structure.

Choice 2. Genetic similarity (Fst) kernel structure:
The fixation index (Fst) is a widely used measure of popu-

lation differentiation due to genetic structure (Wright, 1949).
Fst = 0 indicates there is no allele frequency differentiation
between populations, whereas a large value of Fst indicates
that populations are genetically very different. Fst has been
used as a genetic distance among populations. For example,
MANTRA uses Fst to group studies to ethnic clusters. For
each cluster, it is assumed that studies share the same genetic
effect. We adopt the strategy of using Fst in constructing the
kernel matrix K to incorporate genetic similarity into genetic
effect similarity. In particular,

Kij = 1 −
Fst

tt
′

D
, with D = max

t,t
′ ∈{1,...,p}

{Fst
tt
′ },

where study i and j belong to ancestry group t and t
′
, respec-

tively, and Fst
tt
′ is the pairwise Fst between the corresponding

ancestry groups. In Web Appendix Section 1, we provide the
general form of K under this genetic similarity (Fst) kernel
structure. Unlike MANTRA, which adaptively groups studies
based on the prior model of relatedness and observed effect
sizes via the Bayesian partition model, our method constructs
the genetic similarity (Fst) kernel using only the genotype data
and fixes it prior to carrying out the data analysis.

2.4. Hypothesis Test

Under the proposed model (4), testing for H0 : β1 = · · · =
βn = 0 is the same as testing for the variance component τ = 0
(i.e., H0 : τ = 0). We first consider a situation in which ρ is
given before carrying out the test. Following Zhang and Lin
(2003), the score test statistics of the variance component τ

with a given ρ is

Sρ = β̂
′
�̂−1Vρ�̂

−1β̂ = β̂
′
�̂−1[(1 − ρ)K + ρ11

′
]�̂−1β̂, (5)

where �̂ = diag(σ̂2
1 , . . . , σ̂2

n ), and σ̂2
i is an estimate of σ2

i . When

ρ = 1, the test statistic Sρ becomes
(∑n

i=1
β̂i/σ̂

2
i

)2

, which is

the test statistics of the inverse variance weighting.
For any given ρ, Sρ asymptotically follows a mixture of

χ2 distributions under the null hypothesis. Specifically, if
(λ1, . . . , λn) are the eigenvalues of �̂−1/2Vρ�̂

−1/2, the null dis-
tribution of Sρ can be closely approximated by

n∑
j=1

λjχ
2
1,j, (6)

where {χ2
1,j} are independent χ2

1 random variables. Several
methods exist to obtain tail probabilities of the mixture of χ2
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distributions. Among them, the method to invert a character-
istic function (Davies, 1980) provides very accurate estimates
of tail probabilities and is widely used in many recently devel-
oped genetic association tests (Wu et al., 2011). We use this
method when ρ is given.

In practice, however, we rarely have prior information on
which ρ is optimal in terms of power. Lee et al. (2012) have
studied a similar problem within the context of rare variant
association analysis; they proposed to use the minimum p-
value over a grid of ρ as a test statistic. We adopt the same
approach here. Specifically, the test statistic is T = inf

0≤ρ≤1
pρ,

where pρ is the p-value based on Sρ. T can be obtained by
a simple grid search across a range of ρ: set a grid 0 ≤ ρ1 ≤
ρ2 ≤ . . . ≤ ρb ≤ 1, then the test statistic becomes

T = min{pρ1 , . . . , pρb
},

and the optimal ρ is set as the one whose corresponding p-
value (pρ) equals to T . We observed that a dense grid of ρ

does not necessarily improve power. Therefore, we suggest
using ρ = (0, 0.32, 0.52, 1) for simulations and real data anal-
ysis. Once the test statistic T is calculated, the next step is to
obtain the corresponding p-value for assessing the association
evidence. If we had just used the minimum p-value (which
is denoted as our test statistic T) to assess significance, we
would ignore the multiple comparisons between different pρ

values, which would result in inflated type I error control.
Thus, we derived the asymptotic distribution of T to obtain
its p-value, details provided in Web Appendix Section 2.

2.5. Using Z-Scores Instead of Effect-Size Estimates

In previous sections, we constructed our methods based on
estimates of effect sizes and their standard errors. However,
Z-score-based approaches are also very popular in GWAS. Z-
score-based approaches use p-values (pi), sample sizes (ni),
and direction of effects (
i) to construct Z-scores for each
study, and then calculate a weighted sum of Z-scores to carry
out meta-analysis. A major advantage of the Z-score-based
approach is that it allows meta-analysis of data when effect
size estimates are not available or measurements of traits are
difficult to standardize, ex. tobacco or alcohol use (Evangelou
and Ioannidis, 2013). In this section, we extend our method
to Z-score-based approaches.

Based on input summary statistics (pi, ni, 
i), a signed
Z-score is constructed as Zi = �−1(1 − pi/2) ∗ sign(
i) for
each study, where �(·) is the standard normal distribution

function. For continuous traits, the effect size estimate β̂i

is asymptotically equivalent to Zi/
√

niqi(1 − qi) (up to a
scalar factor), where qi is a minor allele frequency (MAF)
of the SNP (Web Appendix Section 3). For binary traits,

the log odds ratio estimate β̂i is asymptotically equivalent
to Zi/

√
niri(1 − ri)qi(1 − qi), where ri = ncase,i/ni is a propor-

tion of case samples (Web Appendix Section 3). If all studies
have similar ratios of cases and controls, ri(1 − ri) term can

be ignored. Therefore, β̃i = Zi/
√

niqi(1 − qi) and its standard

error σ̃i = 1/
√

niqi(1 − qi) can be used as inputs for both con-
tinuous and binary traits.

3. Results

3.1. Simulation Studies

To investigate the performance of TransMeta, we ran a se-
ries of simulations with varying assumptions on genetic effect
heterogeneity across multiple ancestry groups. To generate
SNPs with realistic MAF spectrums across different ancestry
groups, we used Phase III of the HapMap Project (HMP3)
data (Consortium et al., 2010). HMP3 consists of approxi-
mately 1.6 million SNPs, obtained from 1184 subjects from
11 populations. We excluded the admixed African-American
population, combined the Japanese and Chinese as one pop-
ulation, and used the resulting nine populations as seed pop-
ulations to generate SNP genotypes.

The retrospective binary phenotype Yik of the kth individ-
ual in the ith study was generated using the following logistic
regression model

logit Pr(Yik = 1) = β0 + βigik, (7)

where gik is a genotype of the selected SNP, and βi is a log odds
ratio parameter. The intercept β0 was chosen to have disease
prevalence 0.05. In each replication, we randomly chose an
SNP with an MAF of at least 1% in all populations, and
generated SNP genotypes as gik ∼ Binomial(2, qi), where qi

denotes the MAF of the selected SNP. We also used model
(7) to estimate log odds ratio β̂i and its standard error σ̂i as

the input data. In addition, we recorded 
i = sign(β̂i), the
direction of effect and the p-value pi for testing H0 : βi = 0.
We generated 500 cases and 500 controls for each of the nine
ancestry groups in triplicate, which resulted in a total of 27
studies with a total sample size of 13,500 cases and 13,500
controls.

3.1.1. Type I error simulations. To estimate type I er-
ror rates at stringent α levels, we generated 20 million repli-
cates from model (7) with βi = 0. Table 1 shows that the
proposed methods control type I error rates at a very strin-
gent significance level (α = 10−6) with the Fst kernel (denoted
as TransMeta.Fst), although slightly conservative with the
independent kernel (denoted as TransMeta.Indep). We also
considered a setting where there is only one study per ances-
try group. Each study now has 1500 cases and 1500 controls.
We again used model (7) with βi = 0 to simulate a total of
100 million replicates, and found that empirical type I error
rates were well controlled (Supplementary Table 1).

3.1.2. Power simulations. Recently, Wang et al. (2013)
carried out comparisons of trans-ethnic meta-analysis meth-
ods under five different scenarios, which cover a wide range of
possible scenarios of genetic effect heterogeneity. We adopted
these five scenarios:

(a) “Trans-ethnic fixed-effect,” where no heterogeneity ex-
ists in genetic effects at the causal SNP between popu-
lations, specifically that, each of the 27 studies carries
a genetic relative risk of 1.12 at the causal SNP.

(b) “Out-of-Africa effect,” where each of the 18 studies
from the non-African populations carries a genetic rel-
ative risk of 1.08, whereas the nine studies from the
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Table 1
Type-I error rate estimates at different α levels based on 20 million replicates. Each entry represents an estimated type I

error rate calculated using the proportion of empirical p-values smaller than the given level α. Three studies were simulated
per ancestry group, and each study had 500 cases and 500 controls.

α = 10−2 10−3 10−4 10−5 10−6

TransMeta.Fst 9.7 × 10−3 1.1 × 10−3 9.6 × 10−5 1.0 × 10−5 9.5 × 10−7

TransMeta.Indep 9.8 × 10−3 0.9 × 10−3 7.6 × 10−5 5.8 × 10−6 4.0 × 10−7

African populations (LWK, MKK, and YRI) present
no genetic effects.

(c) “Europe and south Asia effect,” where the 12 studies
from the European and south Asian populations (CEU,
GIH, MEX, and TSI) share the same genetic relative
risk of 1.2, whereas the 15 studies from the remaining
populations present no genetic effects.

(d) “Heterogeneous Out-of-Africa effect,” where the causal
variant has genetic effects only in non-African popula-
tions, with the six studies from the east Asian popula-
tions (CHB + JPT and CHD) each carrying a genetic
relative risk of 1.15 while the European and south Asian
populations carry a genetic relative risk of 1.12.

(e) “Environment modifying effect,” where the causal vari-
ant has a genetic effect only in the populations living
in Europe and USA, with the nine studies from CHD,
CEU, and TSI each carry a genetic relative risk of 1.2.

In all scenarios, causal SNPs have the same direction of
associations across ancestry groups. For each scenario, we
generated 2000 replicates to obtain empirical power. To per-
form a fair comparison between the frequentist and Bayesian
methods, we generated 20 million SNPs under the null hy-
pothesis and calculated Bayes factors using MANTRA. We
observed that a log10 Bayes factor threshold larger than 5
corresponds to a p-value threshold less than α = 1.8 × 10−6.
To find a log10 Bayes factor threshold corresponding to the
genome-wide significance level, we carried out a simple regres-
sion analysis between empirical type I error rates and log10
Bayes factors, and found that log10 Bayes factor = 6.34 cor-
responds to α = 5 × 10−8 (see Web Appendix Section 4 for
details).

Figure 1 shows the empirical power of the five methods un-
der all five scenarios. TransMeta.Fst yields the highest or near
highest power among the five methods, except in scenario (e).
In scenario (a) where no heterogeneity exists, all five meth-
ods performed similarly, with FE having the highest power,
as expected. In the remaining three scenarios with hetero-
geneous genetic effects that are not due to the environment
modification, TransMeta.Fst outperformed the four existing
meta-analysis methods. Unsurprisingly, RE yielded the low-
est power across all five approaches. In scenario (e) where the
genetic effect is influenced by environmental exposures, popu-
lations that are closely related do not necessarily share similar
genetic effects. This violates the assumption of using the Fst

to take account of the variability in genetic effects, and in this
case, TransMeta.Indep yielded the highest power.

Figure 2 shows the empirical power of the five methods
with one integrated study per ancestry group. The patterns
of empirical power in this setting are very similar to what
we observed in Figure 1, where we had three substudies per
ancestry group, except for RE-HE, which had slightly higher
power than that of TransMeta.Indep. Since TransMeta.Indep
used the identity matrix as the kernel matrix (i.e., K = I) un-
der this setting, the similar performance of TransMeta.Indep
and RE-HE is not surprising. Overall, TransMeta.Fst attained
similar or higher power over competing methods except in sce-
nario (e).

The barplots in Supplementary Figures 2 and 3 summarize
the power of the five methods at the more stringent level
α = 5 × 10−8; the results were quantitatively similar to the
patterns we observed in Figures 1 and 2.

3.1.3. Comparison between effect-size-based and Z-score-
based TransMeta. To demonstrate that Z-scores can be used
for TransMeta as input summary statistics without loss of ef-
ficiency, we compared the power of the effect-size-based and
Z-score-based TransMeta. The proportion of case samples was
0.5 (i.e., ri = 0.5) for all studies, so we ignored ri in the trans-
formation. We also obtained transformed Z-scores with sam-
ple sizes only, assuming that MAFs of SNPs are the same
across all studies (i.e., β̃i = Zi/

√
ni). We included this setting

because Z-scores are typically obtained without MAFs.
Figure 3 compares the power of the effect-size-based and

the Z-score-based TransMeta under the same five scenarios
used for Figure 1. The power of these two approaches was
nearly identical when we used both sample sizes and MAFs
for the Z-score transformations, and the power of the Z-
score-based TransMeta was slightly lower than the effect-size-
based TransMeta when only sample sizes were used for the
Z-score transformations. For the one integrated study per an-
cestry group setting, the results were quantitatively similar
to the patterns in Figure 3 (Supplementary Figure 4). At the
genome-wide significance level, we again observed similar pat-
terns as in Figure 3 and Supplementary Figure 4 (data not
shown).

3.1.4. Computation time. TransMeta provides scalable
computation time for genome-wide datasets. To analyze 2000
SNPs in the power simulations, both TransMeta.Fst and
TransMeta.Indep took 20 seconds on average on a Linux
cluster node with 2.80 GHz CPU. To analyze one million
SNPs in a genome-wide dataset, TransMeta would require
less than 3 hours. Among the competing methods, MANTRA
was computationally expensive and took 45 and 95 minutes
on average to analyze 2000 SNPs with 9 and 27 studies, re-
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Figure 1. Empirical power for TransMeta and existing methods under the five effect-size scenarios. Three studies were
simulated per ancestry group, each with 500 cases and 500 controls. The empirical power was obtained based on 2000 replicates
with the level of significance defined as a p-value less than 1.8 × 10−6 or as a log10 Bayes factor larger than 5. The five-effect
size scenarios are (a) “Trans-ethnic fixed-effect,” where no heterogeneity exists in allelic effects at the causal SNP between
populations; (b) “Out-of-Africa effect,” where only studies from the non-African populations carry the causal variant; (c)
“Europe and south Asia effect,” where only studies from the European and south Asian populations carry the causal variant;
(d) “Heterogeneous Out-of-Africa effect,” where the causal variant has genetic effects only in non-African populations, but the
effect size in the east Asian populations is different from that in the European and south Asian populations; (e) “Environment
modifying effect,” where the causal variant has genetic effect only in the populations living in Europe and USA.

spectively. An R package “TransMeta” has been developed
to implement our proposed method and can be downloaded
at the authors’ website (https://sites.google.com/a/umich.
edu/leeshawn/software).

3.2. Application to Type 2 Diabetes (T2D) GWAS

We reanalyzed the published T2D GWAS meta-analysis
(Consortium et al., 2014). The aggregated data include 69
lead SNPs from the previously established T2D susceptibility
loci, with 26,488 cases and 83,964 controls from four major
ancestry groups of Europeans (12,171 cases and 56,862 con-
trols), east Asians (6,952 cases and 11,865 controls), south
Asians (5,561 cases and 14,458 controls), and Mexican and
Mexican-Americans (1804 cases and 779 controls). Associ-
ation summary statistics—such as MAFs, effect size esti-
mates, and standard errors—of the lead 69 SNPs were avail-
able for all four ancestry groups (Supplementary Table 3 of
Consortium et al., 2014). FE was employed to conduct the
meta-analysis.

We applied TransMeta to the aggregated data along with
the other four approaches. Due to the small number of SNPs
in the aggregated dataset, estimates of Fst may be unreliable.
Instead, we used the pairwise Fst from HMP3 (Supplemen-
tary Table 2). Supplementary Tables 3 and 4 list p-values
(or Bayes factors) of the 69 SNPs with selected optimal ρs
of TransMeta. Among those 69 SNPs, 37 had optimal ρ < 1

under TransMeta.Fst. Figure 4 compares p-values of Trans-
Meta.Fst and FE for different selected optimal ρs. When the
selected optimal ρ = 0, our method yields a smaller p-value
than FE, which indicates that TransMeta can be more pow-
erful than FE. When the selected ρ = 1, and hence FE is the
optimal test, FE yields a smaller p-value than TransMeta, but
the difference is minimal.

At the significance level α = 1.8 × 10−6 or a log10 Bayes
factor > 5, TransMeta.Fst, TransMeta.Indep, FE, and RE-
HE all identified 31 SNPs, while RE and MANTRA identi-
fied 18 and 28 SNPs, respectively. At the genome-wide sig-
nificance level of α = 5 × 10−8 or a log10 Bayes factor > 6.34,
both TransMeta.Fst and TransMeta.Indep identified 24 SNPs,
while FE, RE, RE-HE, and MANTRA identified 23, 12, 22,
and 19 SNPs, respectively.

At the genome-wide significance level, TransMeta was able
to identify one more SNP, rs10830963, with TransMeta.Fst
p-value = 2.98 × 10−8 (selected optimal ρ = 0.25) and Trans-
Meta.Indep p-value = 3.76 × 10−8 (selected optimal ρ = 0.25),
respectively. In contrast, p-values of FE, RE, and RE-HE were
all larger than 10−7, and MANTRA log10 Bayes factor was
5.6. The SNP rs10830963 is located in Melatonin receptor 1-B,
which belongs to the seven transmembrane G protein-coupled
receptor superfamily, and a previous study has shown that
this SNP is associated with fasting glycemia and T2D (Sparsø
et al., 2009).
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Figure 2. Empirical power for TransMeta and existing methods under the five effect-size scenarios. One integrated study
was simulated per ancestry group, each with 1500 cases and 1500 controls. The empirical power was obtained based on 2000
replicates with the level of significance defined as a p-value less than 1.8 × 10−6 or as a log10 Bayes factor larger than 5. The
five effect-size scenarios are (a) “Trans-ethnic fixed-effect,” where no heterogeneity exists in allelic effects at the causal SNP
between populations; (b) “Out-of-Africa effect,” where only studies from the non-African populations carry the causal variant;
(c) “Europe and south Asia effect,” where only studies from the European and south Asian populations carry the causal variant;
(d) “Heterogeneous Out-of-Africa effect,” where the causal variant has genetic effects only in non-African populations, but the
effect size in the east Asian populations is different from that in the European and south Asian populations; (e) “Environment
modifying effect,” where the causal variant has genetic effect only in the populations living in Europe and USA.

Figure 5 displays a forest plot of odds ratios and their cor-
responding confidence intervals for this SNP (extracted from
Supplementary Table 3 in Consortium et al., 2014). The odds
ratios of Europeans, south Asians, and Mexicans were all close
to 1.1, although the odds ratio for Mexicans was nonsignifi-
cant due to small sample size. In contrast, the odds ratio in
east Asians was close to one. Since east Asians are genetically
more distant than other populations (Supplementary Table
2), this result indicates that our approach to modeling ge-
netic effect heterogeneity using genetic distance can increase
power.

4. Discussion

We have proposed a novel trans-ethnic meta-analysis frame-
work that flexibly models the genetic effect heterogeneity
across ancestry groups. The framework incorporates the ge-
netic distances to model the genetic effect heterogeneity and
adaptively uses variance component test to achieve robust
power. Simulations and the trans-ethnic T2D GWAS appli-
cation suggest that our approach can improve power when
genetic effect-size heterogeneity exists.

Since TransMeta.Fst accommodates genetic similarity to
model the effect size similarity, we recommend TransMeta.Fst
as the primary test. However, if there is evidence suggesting
that the genetic effects are modified by nongenetic exposures
(such as environmental or lifestyle factors), TransMeta.Indep

may be a better choice. To avoid data fishing, the choice of
using TransMeta.Fst or TransMeta.Indep needs to be made
prior to data analysis. For the sequence of ρ values in the grid
search, we found that using a wide range of ρs does not neces-
sarily improve power. In fact, in Supplementary Figure 5, we
applied a denser grid with 11 points of ρ = (0, 0.1, . . . , 0.9, 1)
in the power simulations and found that the resulting power
is very similar or even identical to the power based on ρ = (0,
0.09, 0.25, 1). So we suggest using ρ = (0, 0.09, 0.25, 1) as the
default sequence of ρ values. We note that it is not required
to select ρ from the grid prior to perform the analysis, since
TransMeta automatically select the optimal ρ, and calculate
p-values while accounting for the selection.

Unlike the I2 statistic (Higgins et al., 2002), which was de-
veloped to measure the extent of heterogeneity, the optimal
ρ is set as the value (over a prespecified grid) whose score
statistic has the smallest p-value among all. As a result, the
optimal ρ should not be interpreted as a metric of heterogene-
ity. For example, we counted the number of optimal ρ values
in each of the five scenarios in the power simulations (Sup-
plementary Table 6) and observed that in the homogeneous
effect size scenario, only less than half of the optimal ρ values
in TransMeta.Fst are determined to be 1. (Please recall that
ρ equals to 1 models homogeneous effect sizes; the closer ρ is
to 0, the stronger the indication of heterogeneity.) However,
the optimal ρ does provide some insights into the extent of
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Figure 3. Power comparison of the effect-size and Z-score-based TransMeta under the five effect size scenarios. Three studies
were simulated per ancestry group, each with 500 cases and 500 controls. The empirical power was obtained based on 2000
replicates with the level of significance defined as a p-value less than 1.8 × 10−6. The left panel is based on TransMeta.Fst and
the right panel is based on TransMeta.Indep. In each plot, the x-axis denotes empirical power of the Z-score-based TransMeta
and the y-axis denotes empirical power of effect-size-based TransMeta. The solid dots represent the power of transformed
Z-scores using only sample sizes, and the solid squares represent transformed Z-scores using both sample sizes and MAFs.

heterogeneity. For example, in our power simulations, we ob-
served that the I2 statistic tends to decrease as the optimal ρ

increases, as shown in Supplementary Table 5. (Please recall
that I2 = 0 means homogeneity; and the level of heterogene-
ity increases as I2 approaches to 1.) In addition, we observed

in Supplementary Table 6 that when heterogeneity does exist,
such as scenarios (b)–(e) in the power simulations, the major-
ity of the optimal ρ values in TransMeta.Fst are selected to
be 0. Similar trends are observed in TransMeta.Indep, data
not shown.

Figure 4. Comparison of p-values of TransMeta.Fst and FE for 69 lead SNPs in T2D meta-analysis data. The left panel
displays p-values of SNPs whose TransMeta.Fst ρ is zero; the right panel displays p-values of SNPs whose TransMeta.Fst ρ

is one. In each plot, the x-axis denotes − log10(FE p-values), and the y-axis denotes − log10(TransMeta.Fst p-values).
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Figure 5. Forest plot of the estimated OR and 95% CI for
rs10830963 in each ancestry group. The association signal of
rs10830963 is detected by TransMeta only.

Our score statistics Sρ is a linear combination of two com-
ponents, each models the genetic effect homogeneity and the
genetic effect heterogeneity, respectively. As a result, although
TransMeta is designed to tackle heterogeneous effect sizes sit-
uations, it can also handle homogeneity scenarios. In fact, the
right panel of Figure 4 demonstrates that under genetic effect
homogeneity, our approach achieves almost the same statisti-
cal significance as FE.

We note that the empirical power of MANTRA is sim-
ilar or lower than that of TransMeta.Fst in scenarios (b)–
(d), but is higher in scenario (e)(Figures 1 and 2). This oc-
curred because under scenario (e), the genetic distance does
not provide guidance to the genetic effect similarity, which
violates the key assumption in both MANTRA and Trans-
Meta.Fst. Since MANTRA groups studies into clusters data-
adaptively, it is more robust than TransMeta.Fst under this
situation. As a result, MANTRA had higher power than
TransMeta.Fst.

RE-HE is equivalent to testing for τ = 0 while adaptively
selecting ρ under model (4) with K = I. When we have one
integrated study per ancestry group, the K matrix in Trans-
Meta.Indep is exactly equal to I, which makes RE-HE equiva-
lent to TransMeta.Indep in terms of testing (although they use
different approaches to obtain p-values). As a result, RE-HE
and TransMeta.Indep have similar power in all five scenarios
in Figure 2. When we have three studies per ancestry group
(Figure 1), RE-HE treats each study as its own cluster. In
contrast, TransMeta.Indep groups studies in the same ances-
try. As a result, TransMeta.Indep yields higher power than
RE-HE in nearly all scenarios in Figure 1.

The advancement of high-throughput sequencing technolo-
gies enables us to study associations of rare variants. Since the
statistical power of single rare variant test is low, gene/region
based tests are commonly used for rare variant association
analysis. Several groups have developed gene/region-based
rare variant meta-analysis methods (Lee et al., 2013; Tang
and Lin, 2014; Liu et al., 2014). In the future, we will extend
the framework of using genetic distance for modeling the ge-
netic effect heterogeneity to gene/region-based tests.

5. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections 2
and 3, along with the R code which implements our proposed
methods on the T2D data are available with this article at
the Biometrics website on Wiley Online Library.
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