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SUPPLEMENTAL METHODS 
 
Generation of ecological niche models 
 Ecological niche models (ENMs) were used to generate habitat suitability maps 
for canyon live oak in the present and during the Last Glacial Maximum (LGM, 21.5 ka), 
using maximum entropy modelling with Maxent v.3.3.3k (Phillips et al. 2004, 2006) in 
the R package dismo 1.0-12 (Hijmans et al. 2015b). 
 Species occurrence records were assembled using methods described by 
Ortego et al. (2015). Records were obtained from herbarium databases (Consortium of 
California Herbaria, http://ucjeps.berkeley.edu/consortium; Consortium of Pacific 
Northwest Herbaria, http://www.pnwherbaria.org; University of Arizona Herbarium, 
http://ag.arizona.edu/herbarium; Global Biodiversity Information Facility, 
http://www.gbif.org), as well as our own sampling localities. Only occurrence records 
from Oregon, California, and Baja California were used to construct ENMs, as our focus 
was on this portion of the species range. Relict, disjunct populations from Arizona, New 
Mexico, and Chihuahua might not have been connected with California populations 
since the LGM and could be adapted to different climatic conditions. Including these 
populations would potentially bias ENMs intended to predict habitat suitability for 
California populations. Occurrence records were filtered to remove duplicate records, 
records with coordinate precision greater than 1 km, records that were within 1 km of 
another record, and duplicate records that fell within the same grid cell of our climatic 
data. A total of 1,406 unique observations were retained and used to construct ENMs. 

Climatic and topographic data were obtained for both current and LGM 
conditions. All climate data for LGM conditions were derived from the Community 
Climate System Model v.4 (CCSM4; Gent et al. 2011), which has been shown to 
perform well for predicting reconstructed terrestrial climate conditions during the LGM 
(Harrison et al. 2014). Thirty-seven climate and topography variables were obtained 
from which to construct ENMs according to different hypotheses about the determinants 
of canyon live oak’s geographic range (Table S1). Nineteen bioclimatic variables 
representing temperature and precipitation regimes were obtained directly from the 
WorldClim Global Climate Dataset (www.worldclim.org; Hijmans et al. 2005). We 
calculated 17 additional variables of interest ourselves that could be derived from the 
WorldClim variables (Hijmans et al. 2005) combined with elevation (also used as a 
variable by itself; Amante & Eakins 2009) and solar radiation (www.cgiar-csi.org; Zomer 
et al. 2006, 2008). The calculation of these variables is summarized by Title & Bemmels 
(in prep) from formulae originally described elsewhere (Thornthwaite 1948; Daget 1977; 
Wang et al. 2006, 2012; Zomer et al. 2006, 2008; Wilson et al. 2007; Sayre et al. 2009; 
Metzger et al. 2013; Hijmans et al. 2015a). We also estimated annual actual 
evapotranspiration (AET) using a bucket model (D. Golicher, ECOSUR, San Cristóbal, 
Mexico; Golicher 2012). AET represents the combination of plant transpiration and 
evaporation but is difficult to directly measure or estimate because it is impacted by 
numerous factors (e.g., plant physiology, soil moisture, energy balance, watershed 
hydrology) operating at different spatial and temporal scales (Zhao et al. 2013). The 
bucket-model method of calculating AET is applicable only for averaging over long time 
periods at regional scales where local-scale factors such as watershed runoff caused by 
daily variation in rainfall are less relevant (Golicher 2012). 
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ENMs were constructed using Maxent 3.3.3k (Phillips et al. 2004, 2006) with the 
R package dismo 1.0-12 (Hijmans et al. 2015b) at 2.5-arcminute resolution, and were 
afterwards downscaled to 5-arcminute resolution (approximately 9 by 9 km) to decrease 
the number of grid cells and improve computational speed of demographic simulations. 
Habitat-suitability maps were generated for each model for current and LGM conditions. 
Glaciated regions of the Sierra Nevada and other mountain ranges (Gillespie et al. 
2004) were masked in LGM habitat-suitability maps by converting habitat-suitability 
values of these regions to zero. 
 
Selection of environmental variables included in each ENM 

The specific environmental variables used to construct the ecological niche 
models (Table S1) were selected in order to best reflect the ecological factors invoked 
in each hypothesis, summarized as follows: 

(1) GeneralENM: as this model tested the impact of response to basic climate 
variables in a generic ENM, we used all 19 WorldClim bioclimatic variables (Hijmans et 
al. 2005). These variables are frequently used in ecological niche modelling, and 
represent basic characterizations of overall climate in terms of temperature and 
precipitation. 

(2) Microsite: because this model tested the effect of topographic microsite 
availability, we deliberately did not include any climatic variables. In particular, we 
hypothesized that areas of high topographic complexity may be most likely to contain 
ideal microsites for canyon live oak. We therefore included terrain roughness index and 
slope as measures of topographic complexity. We included elevation and aspect as 
additional descriptors of topography. 

(3) Multidimension: because this model tested whether considering multiple 
aspects of ecological niche is necessary to understand response to climate change, we 
included all available variables (except elevation; see Materials and Methods). The 19 
WorldClim bioclimatic variables (Hijmans et al. 2005) we included reflect basic climate; 
the topographic variables consider the impact of microsite availability; and we 
hypothesized that some of the additional climatic variables we included (Title and 
Bemmels in prep) may characterize climate in a manner more directly physiologically 
meaningful to determining habitat suitability for a plant. These additional variables 
included measures of actual and potential evapotranspiration, heat and moisture indices, 
length of the growing season, and annual heat accumulation (i.e., growing degree-days). 

(4) GrowCold: for our two trade-off hypotheses, we selected variables that we 
hypothesized were most relevant to the physiological factors governing the trade-off (in 
terms of abiotic stress levels, and potential for avoiding or tolerating stress by growing 
during less stressful periods of the year). Rather than choosing every environmental 
variable that could in some way potentially be linked to each trade-off, we only selected 
a few that we assumed were most directly related to the trade-off in particular. We also 
chose quarterly rather than monthly estimates (when both estimates were available), 
because quarterly estimates may be better descriptors of overall seasonal climate 
patterns exerting a general influence on plant physiology and phenology than extremes 
restricted to a single month. 

To construct a model characterizing the potential trade-off between growth rate 
and cold tolerance, we first chose several temperature variables: mean annual 
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temperature and Sayre’s et al. thermicity index as descriptors of overall temperatures; 
mean temperature of the coldest quarter, which is likely related to the timing and 
severity of potentially damaging spring and fall frosts when risk of cold injury is highest 
(Howe et al. 2003); and mean temperature of the warmest quarter, which could reflect 
whether ideal temperatures for growth exist during the summer instead, when cold 
injury is not a concern. We also chose length of the frost-free period and growing 
degree-days ≥0ºC and ≥5ºC because these variables describe length of the growing 
season and available heat accumulation for growth. Conceptually, these variables are 
likely to reflect respectively the amount of cold stress and overall growth potential 
experienced by the plant. Finally, we also chose potential evapotranspiration as an 
additional descriptor of growth potential given unlimited water supply (since precipitation 
was not hypothesized to be a limiting factor for determining habitat suitability in this 
model). 

(5) GrowDrought: To reflect the potential trade-off between growth rate and 
drought tolerance (note that drought stress primarily occurs during the summer in the 
California Floristic Province) we chose several variables related to overall and seasonal 
precipitation: mean annual precipitation and precipitation of the driest and warmest 
quarters. We further used Thornthwaite’s aridity, humidity, and moisture indices, as well 
as the UNEP aridity index, to characterize overall climatic dryness and moisture 
availability, and thus the amount of drought stress likely experienced by a plant. Actual 
evapotranspiration was chosen as a measure of overall growth potential of the plant, 
given constraints to water supply. Finally, Emberger’s pluviothermic quotient, Q, was 
also included, which was originally developed as an index for differentiating among 
Mediterranean vegetation zones based on a physiologically inspired characterization of 
annual climatic dryness (Daget 1977). Q may thus reflect a continuum between areas of 
high growth potential and areas of high drought stress. 

(6) LocalAdaptation: This model tested whether different factors have different 
relative importance for determining habitat suitability in different ecoregions, within 
which populations may be locally adapted (see Materials and Methods). Because we 
did not hypothesize a priori which factors would be most important in each specific 
ecoregion, we included all available variables (except elevation), as in the 
Multidimension hypothesis. 
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SUPPLEMENTAL TABLES 
 
Table S1. Climatic and topographic variables included when constructing ecological niche models 
(ENMs) for each iDDC model. An X in the table indicates that a given variable was included in an ENM, 
and variables with ≥ 5% permutation importance in the Maxent ENM algorithm are indicated with an 
asterisk (*), or with a numerical superscript (1-6) indicating the number of population models for which 
permutation importance was ≥ 5% for the LocalAdaptation model. Citations for variables sources and 
calculations are as follows: A: Hijmans et al. (2005); B: Golicher (2012); C: Title and Bemmels (in prep); 
D: Zomer et al. (2006, 2008); E: Metzger et al. (2013); F: Thornthwaite (1948); G: Sayre et al. (2009); H: 
Daget (1977); I: Wang et al. (2006, 2012); J: Amante & Eakins (2009); K: Hijmans et al. (2015a); L: 
Wilson et al. (2007). 
 

  
Model 

Variable Citation 
General- 

ENM 
Micro- 

site 
Multi-

dimension 
Grow 
Cold 

Grow 
Drought 

Local 
Adaptation 

        Climate variables 
       Bio1 - mean annual temp A X 

 
X X 

 
X 

Bio2 - mean diurnal temp range A X 
 

X 
  

X 
Bio3 - isothermality A X 

 
X 

  
X1 

Bio4 - temp seasonality A X* 
 

X* 
  

X2 
Bio5 - max temp of warmest month A X 

 
X 

  
X 

Bio6 - min temp of coldest month A X 
 

X 
  

X 
Bio7 - temp annual range A X 

 
X 

  
X 

Bio8 - mean temp of wettest quarter A X 
 

X 
  

X 
Bio9 - mean temp of driest quarter A X 

 
X 

  
X 

Bio10 - mean temp of warmest quarter A X 
 

X X 
 

X 
Bio11 - mean temp of coldest quarter A X 

 
X X* 

 
X 

Bio12 - annual precip A X 
 

X 
 

X X 
Bio13 - precip of wettest month A X 

 
X 

  
X 

Bio14 - precip of driest month A X* 
 

X* 
  

X4 
Bio15 - precip seasonality A X* 

 
X* 

  
X4 

Bio16 - precip of wettest quarter A X 
 

X 
  

X 
Bio17 - precip of driest quarter A X 

 
X 

 
X* X1 

Bio18 - precip of warmest quarter A X 
 

X 
 

X X 
Bio19 - pecip of coldest quarter A X* 

 
X 

  
X 

actual evapotranspiration (AET) B 
  

X 
 

X X2 
potential evapotranspiration (PET) C, D 

  
X X* 

 
X 

PET seasonality C, E 
  

X 
  

X1 
Thornthwaite's aridity index C, E, F 

  
X 

 
X X 

Thornthwaite's humidity index C, E, F 
  

X 
 

X X1 
Thornthwaite's moisture index C, F 

  
X 

 
X X 

UNEP aridity index C, E 
  

X 
 

X X1 
Sayre's et al. thermicity index C, E, G 

  
X X 

 
X1 

Emberger's pluviothermic quotient C, E, H 
  

X 
 

X* X1 
length of frost-free period I 

  
X X 

 
X 

annual number of frost-free days I 
  

X 
  

X 
growing degree days ≥ 0ºC C, E 

  
X X* 

 
X 

growing degree days ≥ 5ºC C, E 
  

X X* 
 

X 
monthCount10deg C, E 

  
X 

  
X 

        Topographic variables 
       elevation J 

 
X* 

    aspect C, K 
 

X X 
  

X 
slope C, K 

 
X X 

  
X 

terrain roughness index (TRI) C, K, L   X* X*     X2 
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Table S2. Population and locality geographic coordinates and sample sizes for microsatellite genotyping. 
 

Pop # Population name Locality name Latitude Longitude n 
1 Peninsular Ranges Laguna Mountain 32.84524 -116.43885 12 
1 Peninsular Ranges Laguna Mountain 32.84954 -116.48535 10 
1 Peninsular Ranges Palomar Mountains 33.28688 -116.80194 2 
1 Peninsular Ranges Palomar Mountains 33.293433 -116.890233 7 
1 Peninsular Ranges Palomar Mountains 33.30272 -116.87217 2 
1 Peninsular Ranges Palomar Mountains 33.30433 -116.87156 4 
1 Peninsular Ranges Palomar Mountains 33.30513 -116.87831 5 
1 Peninsular Ranges Palomar Mountains 33.30585 -116.87193 2 
1 Peninsular Ranges Palomar Mountains 33.31366 -116.87095 2 
1 Peninsular Ranges San Jacinto Mountains 33.68201 -116.68956 3 
1 Peninsular Ranges San Jacinto Mountains 33.6855 -116.69991 1 
1 Peninsular Ranges San Jacinto Mountains 33.68962 -116.70644 2 
1 Peninsular Ranges San Jacinto Mountains 33.69373 -116.71179 4 
1 Peninsular Ranges San Jacinto Mountains 33.7283 -116.72005 4 
1 Peninsular Ranges San Jacinto Mountains 33.74875 -116.73753 1 
1 Peninsular Ranges San Jacinto Mountains 33.79186 -116.74465 2 
2 Transverse Ranges San Bernardino Mountains 34.10532 -116.97227 3 
2 Transverse Ranges San Bernardino Mountains 34.10846 -116.97408 3 
2 Transverse Ranges San Bernardino Mountains 34.11334 -116.97994 4 
2 Transverse Ranges San Bernardino Mountains 34.11794 -116.97784 3 
2 Transverse Ranges San Bernardino Mountains 34.13028 -116.9825 2 
2 Transverse Ranges San Bernardino Mountains 34.16885 -116.89307 3 
2 Transverse Ranges San Gabriel Mountains 34.17832 -117.67668 1 
2 Transverse Ranges San Gabriel Mountains 34.19299 -117.67851 1 
2 Transverse Ranges San Gabriel Mountains 34.35678 -117.74315 4 
2 Transverse Ranges San Gabriel Mountains 34.37137 -117.75443 5 
2 Transverse Ranges San Gabriel Mountains 34.37299 -117.75391 4 
2 Transverse Ranges San Gabriel Mountains 34.2985 -118.14864 2 
2 Transverse Ranges San Gabriel Mountains 34.31516 -118.1368 2 
2 Transverse Ranges San Gabriel Mountains 34.25204 -118.19614 2 
2 Transverse Ranges Los Padres National Forest 34.67807 -119.36795 8 
2 Transverse Ranges Figueroa Mountain 34.72447 -119.95008 9 
3 Southern Coast Ranges Hastings 36.35896 -121.551 11 
3 Southern Coast Ranges Almaden Quicksilver County Park 37.175667 -121.864365 2 
3 Southern Coast Ranges Lick Observatory 37.342607 -121.639584 11 
3 Southern Coast Ranges Mt Diablo State Park 37.88094 -121.92024 4 
3 Southern Coast Ranges Mt Diablo State Park 37.881764 -121.915026 4 
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3 Southern Coast Ranges Talmapais State Park 37.904302 -122.604107 1 
4 Northern Coast Ranges and Klamath Mountains Sonoma 38.67822 -123.13693 8 
4 Northern Coast Ranges and Klamath Mountains Willits 39.38811 -123.42426 4 
4 Northern Coast Ranges and Klamath Mountains Willits 39.44133 -123.31432 4 
4 Northern Coast Ranges and Klamath Mountains Redwood Highway 39.92774 -123.75834 5 
4 Northern Coast Ranges and Klamath Mountains Avenue of the Giants 40.21926 -123.81198 2 
4 Northern Coast Ranges and Klamath Mountains Shasta-Trinity National Forest-36 Road 40.38203 -123.29874 5 
4 Northern Coast Ranges and Klamath Mountains Shasta-Trinity National Forest-36 Road 40.41838 -123.45644 1 
4 Northern Coast Ranges and Klamath Mountains Redding 40.60477 -122.5023 12 
5 Southern Sierra Nevada Sequoia National Forest 36.16261 -118.70589 1 
5 Southern Sierra Nevada Sequoia National Park 36.74134 -119.0313 4 
5 Southern Sierra Nevada Sequoia National Park 36.74482 -119.06886 4 
5 Southern Sierra Nevada Stanislaus National Forest - Yosemite National Park 37.66518 -119.80762 2 
5 Southern Sierra Nevada Stanislaus National Forest - Yosemite National Park 37.71377 -119.72743 2 
5 Southern Sierra Nevada Stanislaus National Forest - Yosemite National Park 37.715669 -119.677205 4 
5 Southern Sierra Nevada Stanislaus National Forest - Yosemite National Park 37.731082 -119.604807 1 
5 Southern Sierra Nevada Stanislaus National Forest - Yosemite National Park 37.8161 -119.94467 5 
6 Northern Sierra Nevada Tahoe National Forest 39.28197 -120.98866 10 
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Table S3. Genetic summary statistics from empirical microsatellite data. Numerical subscripts 
on summary statistic names refer to population numbers (Fig. 1; Table S2). Mean values are the 
mean of the individual population values, while total values are calculated over all populations 
combined. Asterisk (*): number of alleles (K) was not included as a summary statistic for model 
selection (see Materials and Methods for explanation). 
 
Summary statistic Observed value 
  Heterozygosity 
H1 0.7506 
H2 0.7541 
H3 0.7761 
H4 0.7546 
H5 0.7662 
H6 0.6893 
Hmean 0.7485 
Htotal 0.7779 
  Population differentiation 
FST 0.0330 
FST(2,1) 0.0077 
FST(3,1) 0.0356 
FST(3,2) 0.0326 
FST(4,1) 0.0434 
FST(4,2) 0.0420 
FST(4,3) 0.0094 
FST(5,1) 0.0312 
FST(5,2) 0.0264 
FST(5,3) 0.0204 
FST(5,4) 0.0310 
FST(6,1) 0.0713 
FST(6,2) 0.0814 
FST(6,3) 0.0817 
FST(6,4) 0.0635 
FST(6,5) 0.0595 
  Number of alleles* 
K1 13.23 
K2 13.31 
K3 12.15 
K4 10.92 
K5 10.15 
K6 5.08 
Kmean 10.81 
Ktotal 17.85 
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Table S4. Ability of each model to generate simulated summary statistics in agreement with summary 
statistics of the empirical data. A simulated distribution of summary-statistic values was generated for 
each model (105 simulations per model; parameter values drawn from prior distribution), and the 
percentile corresponding to the empirical summary-statistic value within this distribution was calculated. 
Reported in the table is the distance between the empirical value and the median (50th percentile) of the 
simulated distribution (possible values: -50 to +50); values approaching ± 50 indicate summary statistics 
that are difficult to fit, whereas values close to zero indicate that simulated values were similar to those 
observed in the empirical data. For example, a value of (+) 9.7 indicates that the empirical value is 9.7 
percentiles above the simulated median value (i.e., the 59.7th percentile overall). Shading has been added 
to cells for visual clarity: no shading, empirical value within ± 20 percentiles of the simulated median 
value; light grey, within ± 20-30 percentiles; dark grey, ± 30-40 percentiles; black, ± 40-50 percentiles. 
Asterisk (*): number of alleles (K) was not included as a summary statistic for model selection (see 
Materials and Methods for explanation). 

 

Summary 
statistic 

Model 
General-

ENM Microsite 
Multi-

dimension GrowCold 
Grow-

Drought 
Local-

Adaptation 
Heterozygosity 

      H1  (+) 9.7 (+) 6.3 (+) 11.4 (+) 10.1 (+) 10.5 (+) 9.2 
H2 (+) 12.9 (+) 8.5 (+) 10.7 (+) 14.9 (+) 10.7 (+) 22.8 
H3 (+) 19.6 (+) 27.3 (+) 35.3 (+) 41.5 (+) 17.1 (+) 25.9 
H4 (+) 9.4 (+) 7.3 (+) 30.7 (+) 27.6 (+) 8.4 (+) 7.7 
H5 (+) 9.4 (+) 9.0 (+) 8.7 (+) 8.7 (+) 8.8 (+) 23.8 
H6 (+) 3.5 (+) 0.7 (+) 3.6 (+) 5.3 (+) 2.0 (+) 4.4 
Hmean (+) 10.7 (+) 9.7 (+) 19.9 (+) 21.8 (+) 9.4 (+) 16.2 
Htotal (+) 9.0 (+) 7.8 (+) 8.1 (+) 10.1 (+) 8.4 (+) 9.3 
Population differentiation 

     FST(2,1) (-) 43.1 (-) 28.1 (-) 45.0 (-) 43.0 (-) 43.9 (-) 45.9 
FST(3,1) (-) 14.9 (-) 19.4 (-) 39.6 (-) 43.0 (-) 21.2 (-) 26.7 
FST(3,2) (-) 21.2 (-) 23.8 (-) 39.2 (-) 43.6 (-) 14.9 (-) 39.7 
FST(4,1) (+) 7.4 (+) 29.9 (-) 38.8 (-) 33.7 (-) 1.0 (+) 8.6 
FST(4,2) (-) 2.0 (+) 19.1 (-) 38.5 (-) 35.7 (+) 5.3 (-) 28.8 
FST(4,3) (-) 34.2 (-) 39.6 (-) 45.1 (-) 45.3 (-) 33.0 (-) 39.0 
FST(5,1) (-) 0.3 (+) 18.2 (-) 18.6 (+) 5.1 (-) 12.6 (-) 35.7 
FST(5,2) (-) 15.3 (+) 2.6 (-) 14.8 (-) 14.0 (-) 7.9 (-) 42.9 
FST(5,3) (-) 19.3 (-) 32.0 (-) 42.1 (-) 44.7 (-) 16.7 (-) 42.7 
FST(5,4) (+) 8.9 (+) 12.8 (-) 41.6 (-) 37.2 (+) 11.4 (-) 34.0 
FST(6,1) (+) 25.8 (+) 44.7 (+) 6.9 (+) 17.8 (+) 27.4 (+) 12.4 
FST(6,2) (+) 23.3 (+) 41.4 (+) 18.6 (+) 19.4 (+) 33.2 (-) 13.5 
FST(6,3) (+) 17.9 (+) 5.5 (-) 22.7 (-) 33.5 (+) 25.1 (-) 5.8 
FST(6,4) (+) 25.1 (+) 39.3 (-) 30.3 (-) 25.5 (+) 33.5 (+) 17.3 
FST(6,5) (+) 27.8 (+) 37.3 (+) 17.9 (+) 25.3 (+) 36.2 (-) 23.4 
FST (-) 12.6 (+) 5.6 (-) 36.9 (-) 35.5 (-) 9.4 (-) 38.4 
Number of alleles*      
K1 (+) 28.4 (+) 26.8 (+) 29.8 (+) 26.8 (+) 27.8 (+) 27.3 
K2 (+) 30.3 (+) 27.7 (+) 28.8 (+) 30.5 (+) 28.3 (+) 34.5 
K3 (+) 45.3 (+) 47.5 (+) 49.1 (+) 49.9 (+) 44.4 (+) 47.1 
K4 (+) 26.4 (+) 25.6 (+) 43.4 (+) 40.5 (+) 24.8 (+) 24.8 
K5 (+) 21.5 (+) 21.6 (+) 20.9 (+) 20.6 (+) 20.2 (+) 30.0 
K6 (+) 1.5 (-) 0.4 (+) 1.0 (+) 1.6 (+) 0.6 (+) 0.8 
Kmean (+) 25.6 (+) 24.9 (+) 28.8 (+) 28.0 (+) 24.0 (+) 27.4 
Ktotal (+) 28.5 (+) 28.2 (+) 28.0 (+) 28.7 (+) 27.5 (+) 28.2 
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SUPPLEMENTAL FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Results of Bayesian clustering analyses in STRUCTURE. (a) Plots show the mean (± 
SD) log probability of the data (ln Pr(X|K)) over 10 runs (left axis, black dots and error bars) and 
the magnitude of ΔK (right axis, open dots) for each value of K (number of clusters). (b) Genetic 
assignments of individuals based on the Bayesian analyses implemented in the program 
STRUCTURE. Each individual is represented by a vertical bar, which is partitioned into K coloured 
segments showing the individual’s probability of belonging to the cluster with that colour. Thin 
vertical black lines separate individuals from the main geographical regions considered in this 
study according to population (see Fig. 1). Populations are defined as follows: (1) Peninsular 
Ranges, (2) Transverse Ranges, (3) Southern Coast Ranges, (4) Northern Coast Ranges and 
Klamath Mountains, (5) Southern Sierra Nevada, and (6) Northern Sierra Nevada.  
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Figure S2. Habitat suitability in ancestral source populations of canyon live oak from which 
demographic simulations were initiated for each model. 
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Figure S3. Current habitat suitability for canyon live oak from ecological niche models 
constructed for each iDDC model. 
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