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 47 

ABSTRACT  48 

 49 

Past climate change has caused shifts in species distributions and undoubtedly 50 

impacted patterns of genetic variation, but the biological processes mediating responses 51 

to climate change, and their genetic signatures, are often poorly understood. We test six 52 

species-specific biologically informed hypotheses about such processes in canyon live 53 

oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses 54 
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encompass the potential roles of climatic niche, niche multidimensionality, physiological 55 

trade-offs in functional traits, and local-scale factors (microsites and local adaptation 56 

within ecoregions) in structuring genetic variation. Specifically, we use ecological niche 57 

models (ENMs) to construct temporally dynamic landscapes where the processes 58 

invoked by each hypothesis are reflected by differences in local habitat suitabilities. 59 

These landscapes are used to simulate expected patterns of genetic variation under 60 

each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 61 

226 individuals from across the species range. Using Approximate Bayesian 62 

Computation (ABC), we obtain very strong support for two statistically indistinguishable 63 

models: a trade-off model in which growth rate and drought tolerance drive habitat 64 

suitability and genetic structure, and a model based on the climatic niche estimated from 65 

a generic ENM, in which the variables found to make the most important contribution to 66 

the ENM have strong conceptual links to drought stress. The two most probable models 67 

for explaining patterns of genetic variation thus share a common component, 68 

highlighting the potential importance of seasonal drought in driving historical range shifts 69 

in a temperate tree from a Mediterranean climate where summer drought is common. 70 

 71 

INTRODUCTION 72 

 73 

Shifts in species distributions in response to climate change are a key factor 74 

structuring population genetic variation in both temperate and tropical species (Taberlet 75 

et al. 1998; Soltis et al. 2006; Carnaval et al. 2009; Morgan et al. 2011; Massatti & 76 

Knowles 2016). However, the biological mechanisms governing these shifts and their 77 

potential impact on patterns of neutral genetic variation are often poorly understood. For 78 

example, some plant species may be associated with ecological microsites partly or 79 

wholly defined by non-climatic factors (e.g., John et al. 2007; Frei et al. 2012; Allié et al. 80 

2015) that could constrain responses to regional-scale climate change (Kroiss & 81 

HilleRisLambers 2015). Likewise, geographic distributions may be limited by different 82 

abiotic stresses (e.g. cold temperatures, drought) among species (Normand et al. 2009), 83 

or by different factors in different geographic regions of a single species’ range (Morin et 84 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

al. 2007). Consequently, more detailed species-specific hypotheses about the causes of 85 

range shifts and their impacts on population genetic structure are needed 86 

(Papadopoulou & Knowles 2016). To this end, we develop and test a suite of competing 87 

biologically-informed models (Table 1) to explain the genetic structure of canyon live oak 88 

(Quercus chrysolepis Liebm., Fagaceae). These models make different predictions 89 

about patterns of genetic variation, depending upon the relative importance of climatic 90 

niche, niche multidimensionality, physiological trade-offs in functional traits, and local-91 

scale factors (e.g., microsites and local adaptation within ecoregions) in governing the 92 

species’ distribution and demographic history since the Last Glacial Maximum (LGM, 93 

21.5 ka). 94 

Considering that canyon live oak is a member of the climatically and ecologically 95 

heterogeneous California Floristic Province (CFP) of western North America and is 96 

distributed across a wide range of elevations (90 to 2,740 m; Thornburgh 1990), the 97 

response of this species to shifts in climate might be associated with different aspects of 98 

its ecology. For example, canyon live oak grows on many soil types and in many forest 99 

and chaparral communities (Thornburgh 1990), but is found exclusively in regions of 100 

high topographic complexity (Little 1971). Likewise, it is common throughout California, 101 

Oregon, and Baja California (Fig. 1), but is most abundant in sheltered canyons and on 102 

steep, rocky slopes, where it may be the dominant tree species (Thornburgh 1990). 103 

Consequently, while regions with climates similar to those of its present distribution likely 104 

existed in California’s flat Central Valley during the LGM (Ortego et al. 2015), the 105 

climatic niche by itself may not accurately represent past distributional shifts in regions 106 

where topographic complexity is very low. Alternatively, it is possible that shifts in 107 

distributions due to past climate change might reflect constraints due to trade-offs in 108 

functional and physiological traits. For example, a trade-off between drought tolerance 109 

and growth rate may exist in species from climates with hot, dry summers (Howe et al. 110 

2003; Alberto et al. 2013; Aitken & Bemmels 2016), and drought determines range limits 111 

of some plant species, including trees (Morin et al. 2007; Normand et al. 2009; Linares & 112 

Tíscar 2011; Rasztovits et al. 2014; Urli et al. 2014). Moreover, in many temperate trees, 113 

a trade-off between growth rate and cold tolerance drives population-level local 114 
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adaptation (Howe et al. 2003; Savolainen et al. 2007; Alberto et al. 2013; Aitken & 115 

Bemmels 2016) and may determine species range limits (Loehle 1998; but, see Morin et 116 

al. 2007 for a counterperspective). Given geographic variation in functional traits in 117 

many tree species, it is also possible that geographic range shifts in response to climate 118 

change will depend strongly on individual responses of specific populations to unique 119 

environmental factors (e.g., Davis et al. 2001; Pearman et al. 2010; Benito Garzón et al. 120 

2011; Valladares et al. 2014; Gotelli & Stanton-Geddes 2015; Hällfors et al. in press). 121 

Lastly, the response to past climate change might simply reflect shifts in habitat 122 

suitability as it relates to basic climate variables, without the need to invoke complex, 123 

species-specific nuances of niche or mechanistic trade-offs in functional traits. Basic 124 

climate variables (e.g., temperature, precipitation) are frequently used in correlative 125 

ecological niche models (ENMs) to model species distributions and to predict how 126 

distributions have changed over time (Alvarado-Serrano & Knowles 2014). In canyon 127 

live oak specifically, previous work has shown that patterns of genetic connectivity and 128 

admixture among populations are correlated with areas of high habitat suitability since 129 

the LGM, as predicted by a climatic ENM (Ortego et al. 2015). 130 

It is these types of biologically informed hypotheses that motivate this study (as 131 

opposed to generic statistical phylogeographic tests; reviewed in Papadopoulou & 132 

Knowles 2016). Specifically, through tests of six models (Table 1) we explore the 133 

relative support for alternative hypotheses about the niche of canyon live oak and 134 

factors that may have driven its response to climate change, including basic climate 135 

variables, microsites, niche multidimensionality, trade-offs in functional traits, and local 136 

adaptation within ecoregions. We use integrative distributional, demographic and 137 

coalescent (iDDC) modelling (Knowles & Alvarado-Serrano 2010; Brown & Knowles 138 

2012; He et al. 2013) to generate genetic expectations under each model, and 139 

Approximate Bayesian Computation (ABC; Beaumont et al. 2002; Csilléry et al. 2010) to 140 

evaluate the fit of empirical data characterized from 13 microsatellite loci in 226 141 

indiviuals sampled across the species range to the genetic predictions of each model. 142 

We highlight how careful extraction of spatially explicit information from ENMs reflecting 143 

the different processes that may influence range shifts in response to past climate 144 
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change is a key step in translating biologically-informed species-specific hypotheses into 145 

testable genetic predictions about a species’ response to climate change. 146 

 147 

MATERIALS AND M ETHODS 148 

 149 

Sampling and genotyping 150 

 We collected leaf tissue from a total of 257 adult individuals from 46 localities 151 

across California (Fig. 1; Table S2); 160 individuals were sampled by Ortego et al. 152 

(2015), and 97 additional individuals were collected to provide complete geographic 153 

sampling for this study. Samples were genotyped at 13 polymorphic nuclear 154 

microsatellite markers developed for use in Quercus (Steinkellner et al. 1997; Kampfer 155 

et al. 1998; Durand et al. 2010). Full characterization of microsatellite loci and DNA 156 

extraction and microsatellite genotyping followed the procedures described by Ortego et 157 

al. (2014, 2015). Only individuals that were successfully genotyped at 10 or more of the 158 

13 loci were retained for subsequent analyses (see Table S2), resulting in a dataset with 159 

a total of 226 individuals from 44 localities. 160 

 161 

Assignment of individuals into populations 162 

 Populations were initially classified geographically based on major mountain 163 

ranges. Individuals were also assigned to different genetic clusters on the basis of their 164 

microsatellite genotypes using the Bayesian analysis implemented in STRUCTURE v.2.3.4 165 

(Pritchard et al. 2000; Falush et al. 2003, 2007; Hubisz et al. 2009). The likelihood of 166 

different genetic clusters (K = 1 to 10) was estimated from 10 independent runs with one 167 

million MCMC cycles, following a burn-in step of 100,000 iterations. STRUCTURE was run 168 

both with and without a prior conditioned on either individual sampling localities or the 169 

mountain ranges of sampled localities (Hubisz et al. 2009). Genetic clusters generally 170 

corresponded well to mountain ranges, except for localities from the Sierra Nevada. 171 

Sierra Nevada localities were often assigned to two different genetic clusters – a group 172 

of northern and of southern localities (Fig. S1). As a result of these analyses, we divided 173 

the 226 individuals from 44 localities into six populations, which included the Peninsular 174 
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Ranges, Transverse Ranges, Southern Sierra Nevada, Northern Sierra Nevada, 175 

Southern Coast Ranges, and Northern Coast Ranges and Klamath Mountains (Fig 1, 176 

Table S2). A Mojave Desert population was excluded from all further analyses due to 177 

small sample size (n = 6). 178 

 179 

Translating hypotheses into ecological niche models 180 

Ecological niche models (ENMs) were used to generate habitat suitability maps 181 

for canyon live oak in the present and during the Last Glacial Maximum (LGM, 21.5 ka), 182 

using maximum entropy modelling with Maxent v.3.3.3k (Phillips et al. 2004, 2006). 183 

Details of the general niche modelling procedure and data sources are given in the 184 

Supporting Information. To construct ENMs, specific environmental variables were 185 

selected as proxies for the biological mechanisms hypothesized to determine habitat 186 

suitability, as summarized below (see Table S1 for complete details of all variables 187 

included in each model, and the Supplemental Methods for more detailed justification of 188 

variable selection): 189 

(1) GeneralENM: This model does not invoke a specific mechanism determining 190 

geographic range, but focuses on the assumption that basic climatic variables (Table 191 

S1; Hijmans et al. 2005) characterize habitat suitability according to a generic climatic 192 

ENM. 193 

(2) Microsite: This model focuses on the assumption that habitat suitability may 194 

be limited by the availability of specific microsites such as canyons, steep slopes, and 195 

mountain ridges where canyon live oak could have a competitive advantage over other 196 

tree species (Thornburgh 1990). We assume that the four topographic variables that are 197 

included in this model (elevation, slope, aspect, and terrain roughness index; Amante & 198 

Eakins 2009; Hijmans et al. 2015a; Title & Bemmels in prep) have not substantially 199 

changed within the CFP since the LGM, except for exposed continental shelf due to 200 

lower sea levels and increased extent of glaciation during the LGM (see Supporting 201 

Information). 202 

(3) Multidimension: This model assumes that a combination of basic climate 203 

variables, microsite, and additional climate variables putatively more closely related to 204 
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ecological processes (Table S1; Wang et al. 2006, 2012; Golicher 2012; Metzger et al. 205 

2013; Title & Bemmels in prep) determines habitat suitability. These variables include all 206 

variables from the GeneralENM and Microsite models (but excluding elevation), as well 207 

as additional ecologically-relevant variables summarizing evapotranspiration, thermicity, 208 

aridity, growing degree days, and length of the growing season (Table S1). Note that 209 

elevation was excluded because the relationship between elevation and climate under 210 

current conditions is very different from the relationship that existed during the LGM 211 

(Ritter & Hatoff 1975). 212 

(4) GrowCold: This model focuses on a possible trade-off between growth rate 213 

and cold tolerance that may constrain suitable habitat of canyon live oak. The model is 214 

constructed from variables hypothesized to reflect the level of abiotic stress and 215 

selective pressure experienced by the species and its fitness relative to competitors in 216 

relation to this trade-off (Table S1). We include variables related to cold-induced stress 217 

(e.g., mean temperature of the coldest quarter) as well as ameliorating variables 218 

indicating opportunity for growth during non-stressful conditions (e.g., growing degree 219 

days ≥ 5ºC). 220 

(5) GrowDrought: This model focuses on a possible trade-off between growth and 221 

drought tolerance that may constrain suitable habitat of canyon live oak. As in the 222 

GrowCold model, chosen variables are hypothesized to reflect the level of abiotic stress 223 

experienced by the species and potential impacts on its fitness relative to competitors in 224 

relation to this trade-off (see Table S1); both stressor and ameliorating variables were 225 

included (as discussed above). 226 

(6) LocalAdaptation: As in the Multidimension model, all available climatic and 227 

topographic variables (except elevation) are used to construct the ENM for this model, 228 

but with the difference that populations within each region are hypothesized to be 229 

strongly locally adapted. As such, habitat suitability in this model is predicted by unique 230 

climatic and topographic variables for each region separately, rather than the species as 231 

a whole (see also Gray & Hamann 2013). Given that genetic expectations are generated 232 

for the entire species range (as detailed below), regional habitat-suitability maps were 233 

standardized and combined into a single map (i.e., the habitat-suitability value of each 234 
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grid cell in the combined map was set equal to the highest habitat suitability for the 235 

corresponding grid cell in any of the individual regional maps). Regions of local 236 

adaptation were delimited using Commission for Environmental Cooperation North 237 

American Level III Ecoregions (CEC 1997), retaining only ecoregions with at least 25 238 

occurrence records. A total of six ecoregions met this criterion: California Coastal Sage, 239 

Chaparral, and Oak Woodlands; Coast Range; Klamath Mountains; Mojave Basin and 240 

Range; Sierra Nevada; and Southern and Baja California Pine-Oak Mountains. Each 241 

ecoregion comprised an average of 231 occurrence records (range: 47 to 401). The 242 

ecoregion-based population definitions described here were used only for the purpose of 243 

constructing ENMs in the LocalAdaptation model. Note also that such localized effects 244 

of ecoregion-specific habitat suitabilities were only investigated with respect to the same 245 

bioclimatic variables as in the Multidimension model (and not with respect to the subsets 246 

of bioclimatic variables featured in each of the other four models) because of 247 

computational limitations. 248 

 249 

Genetic predictions of each model 250 

The integrative distributional, demographic and coalescent (iDDC) approach (He 251 

et al. 2013) was used to generate genetic predictions under each model (Fig. 2). For 252 

each separate model, (i) relative habitat suitabilities were extracted from the spatially 253 

explicit distributional model provided by the ENM, and were then rescaled to inform 254 

carrying capacities and migration rates of (ii) a demographic expansion across the 255 

landscape. For each of the six models tested, demographic simulations were conducted 256 

on landscapes representing three consecutive time periods, with corresponding shifts in 257 

habitat-suitability in response to changes in climate since the Last Glacial Maximum 258 

(LGM) for each time period. Specifically, maps for the present time period and for the 259 

LGM were generated directly from projections of the ENMs; a map representing 260 

intermediate conditions was also generated, in which the value of each grid cell 261 

corresponds to the mean value of that grid cell in the present and LGM maps. 262 

Parameters from the spatially explicit demographic model were then used to (iii) 263 

generate genetic predictions under a spatially explicit coalescent simulation. Finally, 264 
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datasets simulated under the iDDC models were compared with the empirical data using 265 

an Approximate Bayesian Computation (ABC) framework for model selection and 266 

parameter estimation (Beaumont et al. 2002). 267 

Demographic simulations were conducted in SPLATCHE2 (Ray et al. 2010) and 268 

were initiated at 21.5 ka from hypothesized ancestral source populations for each model. 269 

Ancestral source populations were defined as all grid cells of the LGM map with habitat 270 

suitability greater than the median habitat suitability of all grid cells of the current climate 271 

map containing an occurrence record (Brown & Knowles 2012). This threshold averaged 272 

0.57 among models (range: 0.52 to 0.59). Note that relative LGM habitat suitability was 273 

obtained from each model directly as output of the ENM produced in Maxent (on a scale 274 

from 0 to 1). Next, habitat-suitability values for all maps across all time periods were 275 

categorized into 20 bins of equal magnitude, and maps were then used to perform the 276 

spatially explicit demographic simulations. In the demographic simulations, population 277 

carrying capacities and migration rates of each grid cell were rescaled proportionally 278 

according to habitat-suitability bins (with carrying capacity and migration rate ranging 279 

from zero to the maximum value of these parameters in a given simulation, as sampled 280 

from the prior distribution; see below). Note that because a single map is required by 281 

SPLATCHE2, custom Python scripts (provided by Q. He and deposited in Dryad, see Data 282 

Accessibility section) were used to convert the three maps of 20 bins each (39 bins for 283 

the intermediate map to account for intermediate values averaged between two bins; 284 

see above) into a single map with a theoretical maximum of 202x39 categories, with 285 

each category representing a unique combination of habitat-suitability bins across the 286 

three time periods. This makes it possible to model a dynamic landscape where habitat 287 

suitabilities change over time. Habitat-suitability bins representing each of the three 288 

temporal periods (LGM, intermediate, current) were consecutively applied for one third 289 

of the total number of generations each. Given that reproductive maturity in canyon live 290 

oak occurs after 15-20 years but individuals may live up to 300 years (Thornburgh 1990), 291 

average generation time was assumed to be 50 years, resulting in 430 generations from 292 

the LGM to present. 293 
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Following each time-forward demographic simulation, a time-backward 294 

coalescent genetic simulation was performed, in which the ancestry of an allele was 295 

traced back from the present into ancestral source populations. Before the the onset of 296 

population expansion from suitable areas at 21.5 ka modelled by the ENMs (see Fig. 3), 297 

alleles coalesced in a single large ancestral population (a maximum of 107

Individuals in simulated datasets were sampled from the same grid cells 300 

corresponding to the geographic locations from which the empirical data were sampled, 301 

and genetic data for these individuals were simulated along the coalescent genealogies 302 

at each locus using a strict stepwise microsatellite mutational model assuming no indels 303 

of more than one repeat unit, no recombination, and a maximum number of alleles equal 304 

to the number of repeat units separating the largest and smallest allele for each locus in 305 

the empirical data. 306 

 generations 298 

used in the simulations provided ample time for coalescence). 299 

 307 

Model selection and parameter estimation using ABC 308 

For the empirical data (Table S3) and each simulated genetic dataset, 24 309 

summary statistics were calculated (mean, total, and population heterozygosity, H; total 310 

and population pairwise population differentiation, FST) using Arlequin v.3.5 (Excoffier & 311 

Lischer 2010). Although the number of alleles, K, has previously been used as a 312 

summary statistic (He et al. 2013), it was not used here because K was difficult to fit to 313 

empirical data in simulations across all models (i.e., all models had a consistent 314 

tendency to generate values of K substantially lower than in the empirical data; see 315 

Table S4). We were thus concerned that the distance threshold between empirical and 316 

simulated datasets would need to be very large in order to retain a sufficient number of 317 

simulations for parameter estimation, which may have reduced the precision of 318 

parameter estimates (Beaumont et al. 2002). To check whether excluding K would have 319 

a major impact on model selection, we conducted simulations to validate our model 320 

selection procedure (validation methods described below) with and without K, and found 321 

that including K had very little impact on our ability to distinguish among models (results 322 

not shown). We also note that our models are highly capable of producing datasets with 323 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

properties that match the empirical data with respect to the 24 summary statistics used 324 

here (Table 1 and S4). 325 

Rather than estimating parameter posterior distributions directly from summary 326 

statistics, partial least squares (PLS) components were calculated from summary 327 

statistics in order to reduce the number of summary statistics and account for 328 

correlations among them (Boulesteix & Strimmer 2006) using the transformer tool in 329 

ABCtoolbox with boxcox transformation for the pooled first 10,000 runs of each model 330 

(following He et al. 2013). In order to determine the optimal number of PLS components 331 

to retain, root mean squared error (RMSE) plots were examined and five PLS 332 

components were retained for calculating the distance between simulations and the 333 

empirical observations, because RMSE of the four parameters in our models does not 334 

decrease substantially with additional PLS components (results not shown). 335 

Approximate Bayesian Computation (ABC) was used to estimate parameters and 336 

select among our six models using the wrapper program ABCtoolbox (Wegmann et al. 337 

2010) on a high-performance computing cluster (Advanced Research Computing at the 338 

University of Michigan). One million datasets were simulated for each model across a 339 

broad range of parameter values (i.e., maximum carrying capacity, Kmax; migration rate, 340 

m; ancestral effective population size before population expansion, Nanc; and 341 

microsatellite mutation rate, µ) under a uniform prior on the base 10 logarithm of each 342 

parameter. The priors for parameter values were the same among models (i.e., 343 

log(Kmax), 2.7 to 4.0; log(Nanc

In all models, priors on migration rate were carefully considered in order to reflect 352 

(a) biologically realistic values of migration rate, and (b) values that would result in 353 

), 3.0 to 6.0; log(µ), -6.0 to -2.0; and log(m), -3.0 to -1.7; Fig. 344 

4), with the exception of the GrowCold model, for which higher values of log(m) were 345 

used (log(m), -2.6 to -1.3) to ensure colonization of interior areas (see below). Note that 346 

the GrowCold model was the only model for which exclusively coastal ancestral source 347 

populations were inferred (Fig. S2). Because the same range of parameter values was 348 

used in all models, this different prior in the GrowCold model is unlikely to have biased 349 

model selection given that the density of simulations for the given range of parameter 350 

space was the same in all models. 351 
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colonization of the landscape within the time spanning the LGM to the present. For 354 

example, true migration rates of our species are not known, but the prior -3.0 ≤ log(m) ≤ 355 

-1.7 covers potentially high values of migration rates at the spatial and temporal scale of 356 

our simulations (5-arcminute or ~9km x 9km grid cells; 50 years per generation) and we 357 

tested a variety of migration rates (and carrying capacities) in initial simulations to 358 

identify a range of migration rates that would result in colonization of the landscape 359 

within the time spanning the LGM to the present. Specifically, we identified a minimum 360 

value of log(m) for which complete landscape colonization was achieved (i.e., lower 361 

values were not included in the prior for log(m) because the landscape would not be 362 

completely colonized, which could bias model selection). Likewise, we did not apply 363 

exceptionally high log(m) values because such values resulted in such rapid 364 

colonization that the differences among models in terms of their colonization patterns 365 

would be lost. 366 

 For each model, 5,000 simulations (0.5% of the total number of simulations per 367 

model) that most closely matched those of the empirical data were retained (He et al. 368 

2013) and used to generate posterior distributions of parameters, using ABC-GLM 369 

(general linear model) adjustment (Leuenberger & Wegmann 2010). Bayes factors were 370 

approximated in order to assess relative support for the most strongly supported model 371 

compared to each other model; the approximate Bayes factor in favour of model X over 372 

model Y is calculated as the marginal density of model X divided by the marginal density 373 

of model Y (Leuenberger & Wegmann 2010). 374 

 375 

Validation of model choice and parameter estimates 376 

 To determine whether the alternative models can be accurately distinguished with 377 

ABC given the data, we simulated 100 pseudo-observed datasets (PODs) under each 378 

model and analyzed them using our ABC procedure for model choice, using a subset of 379 

total simulations (100,000 per model) for computational efficiency. For each model, we 380 

calculated the proportion of the PODs for which the true model was either correctly or 381 

incorrectly identified. For PODs for which the true model was correctly chosen, the 382 

strength of support for the true model was calculated as the mean logarithm of the 383 
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Bayes factor comparing the true model to the model with the second-highest marginal 384 

density. This represents how strongly the true model is identified to the exclusion of all 385 

other models. When an incorrect model was chosen, the strength of support for the 386 

incorrect model was calculated as the mean logarithm of the Bayes factor comparing the 387 

incorrectly chosen model to the true model used to generate the POD. This value 388 

determines how strongly the incorrect model is favoured over the true model. Lastly, to 389 

assess the ability of each model to generate the empirical data, Wegmann’s et al. (2010) 390 

p-value was calculated from 5,000 retained simulations. This p-value is the proportion of 391 

simulated datasets with a smaller or equal likelihood than the empirical data under the 392 

ABC-GLM (Wegmann et al. 2010). 393 

 To assess the accuracy of parameters estimated with ABC, we calculated the 394 

posterior quantiles of true parameter values from 1,000 PODs for the models with 395 

highest support. A Kolmogorov-Smirnov test was used to test these quantiles against a 396 

uniform distribution. Deviation from a uniform distribution indicates bias in parameter 397 

estimation (Cook et al. 2006; Wegmann et al. 2010). 398 

To determine whether there are specific summary statistics that are easier or 399 

more difficult to fit to the empirical data in specific models, we generated a distribution of 400 

the simulated values of each summary statistic from 100,000 simulations per model 401 

(with simulation parameters drawn from the prior). We then calculated the percentile 402 

corresponding to the empirical value of each summary statistic within its simulated 403 

distribution, and calculated the distance between this percentile and the median (i.e., 404 

50th

 406 

 percentile) of the simulated distribution. 405 

RESULTS 407 

 408 

 Multiple disjunct putative ancestral source populations based on habitat suitability 409 

during the LGM were estimated under each of the six models (Figs. 3 and S2). These 410 

sources included locations in both coastal and inland mountain ranges, with the 411 

exception of exclusively coastal ancestral source populations estimated for the 412 

GrowCold model. Predicted habitat suitability during the LGM and intermediate time 413 
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periods differed substantially among the six models, with the exception of the 414 

GeneralENM and GrowDrought models, which had very similar predictions for these 415 

time periods. In contrast, the current distribution of predicted suitable habitat was very 416 

similar for all models, except that the Microsite model also predicted large areas outside 417 

of the species’ current range to contain suitable habitat (Figure S3). 418 

With respect to the relative probabilities of the six models, two models – the 419 

GeneralENM model and the GrowDrought model – had the highest support (highest 420 

marginal density; Table 1). However, the Bayes factor comparing these two models was 421 

less than three, suggesting that there is not a statistically significant difference in the 422 

support for one model over the other (Kass & Raftery 1995). In other words, the 423 

GeneralENM and GrowDrought models are approximately equally well supported, in 424 

contrast to the much lower support for all the other models (Table 1). These two most 425 

probable models are also highly capable of generating simulated data comparable with 426 

the empirical data (see p-values, Table 1), despite uncertainty in parameter estimates 427 

(Fig. 4). Even with fairly broad posterior distributions for some parameter estimates (Fig. 428 

4), the data contain information relevant to estimating the parameters (i.e., the posterior 429 

distribution differs from the prior), and there is evidence of increased accuracy of 430 

parameter estimates following GLM (general linear model) adjustment (Fig. 4). There is 431 

little evidence of bias in most parameter estimates (Fig. 5), except for slight deviations 432 

from uniformity detected from the quantiles of the mutation rate (µ) parameter for the 433 

GeneralENM and possibly the GrowDrought models (p = 0.0243 and 0.0503, 434 

respectively), and of the ancestral population size (Nanc

 Validation of model selection using pseudo-observed datasets (PODs) showed 438 

that for most models, the true model is correctly identified the majority of the time (Table 439 

2a) and average relative support for the true model is strong to very strong (Table 2b; 440 

Kass & Raftery 1995). Selection of an incorrect model with strong relative support is 441 

extremely uncommon. In the rare cases when an incorrect model is inferred, average 442 

relative support for the incorrectly chosen model compared to the true model is typically 443 

) parameter for the GrowDrought 435 

model (p = 0.0082). A slight tendency to potentially overestimate each of these 436 

parameter values was detected (Fig. 5). 437 
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very low (Table 2c), indicating that even if an incorrect model is identified as most likely, 444 

support is not strong enough to decisively exclude the true model from consideration. In 445 

contrast, for the GeneralENM and GrowDrought models there is limited ability to discern 446 

under which of these two models the PODs were simulated (Table 2). This is not 447 

surprising, given the similar relative support for these models in the empirical data 448 

(Table 1). Nonetheless, the GeneralENM and GrowDrought models are extremely 449 

unlikely to be confused with any of the other four models (Table 2). 450 

 Most models generated values of mean and total heterozygosity in agreement 451 

with empirical data, but simulated values of overall FST were typically higher than those 452 

of the empirical data in the Multidimension, GrowCold, and LocalAdaptation models 453 

(Table S4). These models also tended to produce certain population-specific simulated 454 

heterozygosity values that were lower than in the empirical data, and simulated pairwise 455 

FST values that were higher than in the empirical data. In contrast, the Microsite model 456 

tended to produce simulated pairwise FST values that were substantially lower than in 457 

the empirical data for comparisons involving the Northern Sierra Nevada population (and 458 

to a lesser extent, the Northern Coast Ranges and Klamath Mountains population). 459 

Simulated pairwise FST

 464 

 values involving the Northern Sierra Nevada population also 460 

tended to be lower than empirical values in the two most-supported models 461 

(GeneralENM and GrowDrought), although most other summary statistics in these 462 

models were similar to the empirical data. 463 

DISCUSSION 465 

 466 

 Considering the biologically informed hypotheses we focus upon in our study, our 467 

goal was to consider whether we could distinguish among possible processes that might 468 

determine habitat suitability for canyon live oak and consequently, how the species 469 

distribution has shifted in response to changing climatic conditions. Differences in 470 

relative support among the models (Table 1) not only demonstrate differences in how 471 

influential these processes have likely been, but also how drought in particular may 472 

mediate the response to climate change in canyon live oak. Specifically, strong relative 473 
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support based on ABC model selection for two statistically indistinguishable models 474 

(Table 1) suggests that either climatic variables predictive of the species distribution that 475 

are related to drought stress (GeneralENM model), or a physiological trade-off between 476 

growth rate and summer drought tolerance (GrowDrought model), or both (see Table 477 

S1), are primary determinants of habitat suitability. More generally, this shared 478 

component of the two most highly supported models highlights the potential importance 479 

of drought in driving historical range shifts in a temperate tree from the predominately 480 

Mediterranean climate of the California Floristic Province (CFP), a region characterized 481 

by summer drought. Below, we discuss how our work contributes to an expanding 482 

literature about the factors that limit species distributions based on work from other 483 

disciplines, and compare and contrast our results with knowledge of factors important to 484 

other tree species from less seasonally dry regions of the temperate zone. We also 485 

discuss the implications of our work for evaluating support for alternative hypotheses 486 

(e.g., cold tolerance, microsite variation, and local adaptation) using explicit predictions 487 

for patterns of genetic variation, and the general challenges of our approach and the 488 

limitations of such inferences (see also Papadopoulou & Knowles 2016; Massatti & 489 

Knowles 2016). 490 

 491 

Drought tolerance as a determinant of distributional shifts and genetic structure 492 

In the Mediterranean climate of the CFP, summer is the driest season (Hijmans et 493 

al. 2005), and plants must tolerate or avoid summer drought stress. As such, summer 494 

drought is likely an important environmental condition determining relative habitat 495 

suitability for plants, either directly through abiotic stress or indirectly through effects on 496 

relative fitness in relation to competitors. The high support for the GeneralENM and 497 

GrowDrought models demonstrates that summer drought may not only be a key 498 

determinant of habitat suitability, but it may also drive demographic responses to climate 499 

change that ultimately impact population genetic structure of canyon live oak. In both of 500 

these models, the climatic variables making the largest contribution to the ENMs are 501 

strongly related to summer drought stress, and to the ability of a plant to tolerate or 502 

avoid this stress (see Table S1). The GeneralENM model uses a generic ENM in which 503 
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drought was not explicitly modelled and in which other climatic variables unrelated to 504 

drought were considered, but the four climatic variables making the greatest contribution 505 

to the ENM reflect precipitation during the summer and winter, and precipitation and 506 

temperature seasonality. As such, they represent the degree to which summers are hot 507 

and dry, and winters are cool and wet. Summer conditions likely directly reflect drought 508 

stress, whereas these winter conditions are hypothesized to reflect soil moisture 509 

availability during early spring, which may be the period of maximum growth for trees 510 

from Mediterranean environments prior to the onset of summer drought (Montserrat-511 

Martí et al. 2009; Pinto et al. 2011). In comparison, the GrowDrought model features an 512 

ENM using climatic variables explicitly selected to reflect a possible trade-off between 513 

growth rate and summer drought tolerance. The climatic variables contributing most 514 

strongly to this ENM (Table S1) are preciptiation of the driest quarter and Emberger’s 515 

pluviothermic quotient, which captures annual climatic dryness as experienced by plants 516 

with particular relevance to Mediterranean climates (Daget 1977). 517 

The shared component of the two most supported models (i.e., drought stress) 518 

complements knowledge from other fields suggesting that drought limits geographic 519 

distributions and drives adaptation of some temperate tree species, especially those 520 

from Mediterranean climates. For example, across 1,577 European plant species, 521 

summer drought determines latitudinal range limits in 22% of species (Normand et al. 522 

2009). Although drought stress does not generally limit the ranges of most of these plant 523 

taxa, its role in structuring plant distributions is especially common in the Mediterranean 524 

biomes of southern Europe, and in central Europe at the transition between 525 

Mediterranean and less seasonally dry biomes (Normand et al. 2009). Plant taxa with 526 

distributions limited by drought include trees specifically; for example, among European 527 

trees drought stress has been implicated in determining dry-edge range limits of Fagus 528 

sylvatica (Rasztovits et al. 2014), Pinus nigra (Linares & Tíscar 2011), and Quercus 529 

robur (Urli et al. 2014). Drought mortality was also found to be regionally important (e.g., 530 

in the Great Plains and at high-elevation sites) in limiting the ranges of at least 12 North 531 

America tree species (out of 17 studied; Morin et al. 2007). 532 
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In addition to setting range limits, drought tolerance is a trait of adaptive 533 

significance among populations of some tree species. For example, a trade-off between 534 

growth rate and drought tolerance has been documented among populations of 535 

Douglas-fir (Pseudotsuga menziesii; White 1987), and is hypothesized to underlie 536 

several adaptive differences in functional traits such as growth rate, growth phenology, 537 

growth pattern (i.e., determinate versus indeterminate), and root to shoot ratio (White 538 

1987; Joly et al. 1989; Kaya et al. 1994). Putatively adaptive clines in phenotypic traits 539 

along precipitation gradients have also been observed in height growth and timing of 540 

bud flush in several western North American tree species (Aitken & Bemmels 2016). 541 

Although weak or non-adaptive clines along precipitation gradients may emerge when 542 

strong adaptive clines along temperature gradients exist (see below) if precipitation and 543 

temperature are geographically correlated, it is noteworthy that clines associated with 544 

precipitation are substantially stronger than those associated with temperature gradients 545 

in several species (e.g., Picea pungens, Pinus attenuata, Pinus monticola, Populus 546 

trichocrapha, and possibly Pseudotsuga menziesii and Quercus garryana; Aitken & 547 

Bemmels 2016). 548 

While our procedure identified seasonal drought tolerance as an ecological factor 549 

that has likely shaped the response of canyon live oak to climate change and left 550 

signatures in patterns of genetic variation, our approach considers only the historically 551 

most important factors structuring genetic variation since the LGM. We tested only 552 

dynamic models (i.e., models where habitat suitability changes over time) because we 553 

have strong reason to believe that accounting for demographic history will be required to 554 

fully explain genetic structure in this study system. In particular, canyon live oak has a 555 

long generation time (we assumed only 430 generations since the LGM) and limited 556 

seed-dispersal ability by acorns (Thornburgh 1990), such that genetic signatures of past 557 

range shifts in response to climate change are unlikely to have been completely erased 558 

by contemporary patterns of gene flow (see Ortego et al. 2015). It is possible that 559 

ecological factors other than drought tolerance may be more important in driving 560 

contemporary processes affecting gene flow among populations, but testing these 561 

processes under contemporary climatic conditions was beyond the scope of our models. 562 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

 563 

Lack of support for competing explanations for genetic structure 564 

Patterns of genetic variation in canyon live oak did not identify several commonly 565 

invoked competing factors (including cold tolerance, microsite variation, and local 566 

adaptation) as primary determinants of shifting geographic distributions in the face of 567 

climate change (Table 1). It is possible that this finding reflects differences in which 568 

environmental factors (e.g., temperature versus precipitation) are important for 569 

determining distributions and driving adaptation among different temperate tree species 570 

(see Howe et al. 2003; Normand et al. 2009; Aitken & Bemmels 2016). Yet, the lack of 571 

support for some of the models is nonetheless somewhat surprising, especially given 572 

that these models consider alternative ecological processes that are generally 573 

recognized to be broadly relevant across many taxa. For example, temperature is widely 574 

believed to limit cold-edge distributions in temperate trees through various physiological 575 

mechanisms (Sakai & Weiser 1973; Pigott & Huntley 1981; Morin et al. 2007; Normand 576 

et al. 2009; Mellert et al. 2011; Kollas et al. 2014; Lenz et al. 2014; Siefert et al. 2015). 577 

Furthermore, numerous tree species exhibit a trade-off between growth rate and cold 578 

tolerance at the population level, with more cold-tolerant populations exhibiting slower 579 

growth rate, earlier bud set, and (less frequently) shifts in phenology of bud flush (Howe 580 

et al. 2003; Savolainen et al. 2007; Alberto et al. 2013; Aitken & Bemmels 2016). This 581 

trade-off may also determine range limits at the species level, with warm-edge 582 

distributions limited by competition from faster-growing species and cold-edge 583 

distributions limited by low temperatures (Loehle 1998; but see also Morin et al. 2007). 584 

However, it is possible that the adaptive and ecological significance of drought in 585 

temperate trees has been understudied relative to that of cold temperatures because of 586 

biases in the choice of taxa studied. For example, most of the taxa studied are from 587 

temperate deciduous and conifer forests (Howe et al. 2003; Morin et al. 2007; 588 

Savolainen et al. 2007; Normand et al. 2009; Aitken & Bemmels 2016), whereas less 589 

attention has been paid to taxa from more seasonally dry regions of the temperate zone 590 

such as Mediterranean climates (e.g., Morin et al. 2007; Aitken & Bemmels 2016). In 591 

temperate broadleaf forests in particular, seasonal summer drought is uncommon and is 592 
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unlikely to be a major source of abiotic stress (Morin et al. 2007). The response to 593 

seasonal drought may also differ across biomes (Allen et al. 2010; Vicente-Serrano et al. 594 

2013). In other words, temperate trees from Mediterranean climates may simply be 595 

subject to fundamentally different primary ecological and adaptive constraints than those 596 

from wetter, colder, and less seasonally dry climates within the temperate zone. 597 

Lack of support for models reflecting alternative processes that could possibly 598 

affect habitat suitability (Table 1), especially those associated with local conditions, does 599 

not necessarily mean these processes do not play a role in response to climate change, 600 

but perhaps that their effects are minor at the regional scale studied here. In particular, 601 

lack of support for models incorporating local-scale factors (i.e., Microsite and 602 

LocalAdaptation models) suggests that responses to Pleistocene glacial cycles were 603 

primarily driven by climatic factors affecting habitat suitability over broad spatial scales. 604 

Consequently, although under current climatic conditions canyon live oak is distributed 605 

primarily in mountainous areas (Little 1971; Thornburgh 1990) and terrain roughness 606 

index (TRI) is one of the variables most highly predictive of current habitat suitability 607 

(Multidimension model; Table S1), TRI covaries with other predictor variables and may 608 

not itself be the driver of the species distribution. This interpretation also seems likely 609 

considering that both the GeneralENM and GrowDrought models receive high support, 610 

even though under these models the species is predicted to have been distributed in 611 

areas of low topographic complexity in the past (e.g., in California’s northern Central 612 

Valley; Fig. 2). Our results are therefore consistent with the hypothesis that canyon live 613 

oak, despite its abundance in sheltered canyons and on steep, rocky slopes, was 614 

capable of making shifts to topographically novel habitats such as the northern Central 615 

Valley during the LGM (Fig. 2), which may reflect the ability of this species to grow on a 616 

wide variety of soil types and in multiple community assemblages (Thornburgh 1990). 617 

Likewise, lack of support for the LocalAdaptation model (Table S1) suggests that 618 

the response of canyon live oak to climate change is not localized. Given that 619 

populations of many temperate and boreal tree species are locally adapted to climate 620 

(Savolainen et al. 2007; Alberto et al. 2013; Aitken & Bemmels 2016), local adaptation 621 

has been hypothesized to have been an important factor affecting Pleistocene range 622 
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shifts in trees (Davis et al. 2001), and is often considered to be a key factor that will 623 

determine the effects of future climate change on the potential geographic distributions 624 

of tree populations (e.g., Pearman et al. 2010; Benito Garzón et al. 2011; Gray & 625 

Hamann 2013; Valladares et al. 2014; Gotelli & Stanton-Geddes 2015; Hällfors et al. in 626 

press) and of adaptive genomic variation (Fitzpatrick & Keller 2015). In some cases, 627 

local adaptation may also leave a signature in patterns of neutral genetic variation 628 

(through its mediating effects on patterns of gene flow; e.g., Lee & Mitchell-Olds 2011). 629 

While the LocalAdaptation model was not the most probable model identified in our 630 

study, we note that it did receive very strong relative support compared to the 631 

Multidimension model (Bayes factors = 234; Table 1) in which exactly the same 632 

environmental variables were used to generate species-wide predictions of habitat 633 

suitability (Table S1). This suggests that further investigation into localized effects of 634 

other predictors of habitat suitability may indeed be worthwhile, especially with regards 635 

to the highly supported models identified here (Table 1). 636 

In addition to identifying the most probable models and determining that these 637 

models are indeed capable of generating the data (Table 1), we also compared the 638 

simulated summary statistics under each model with the empirical data (Table S4) to 639 

examine what made a model a poor fit. This revealed that the empirical data did not 640 

match the low heterozygosity and high pairwise FST values for certain populations 641 

predicted by the Multidimension, GrowCold, and LocalAdaptation models. This lack of fit 642 

suggests the generally small, disjunct ancestral source populations and spatially 643 

restricted LGM habitat suitability predicted by these models (Figures S2, 3) is not well 644 

supported by the data. In contrast, in the Microsite model, relatively low pairwise FST 645 

values in the simulated data compared with the empirical data, especially for 646 

comparisons involving the two northernmost populations, suggest that large areas of 647 

high habitat suitability predicted since the LGM in the northern portion of this species’ 648 

range in this model (Figures S2, 3) are not well supported. A qualitatively similar pattern 649 

(but with a smaller observed differences between simulated and empirical data) was 650 

observed in both of the most well supported models (GeneralENM, GrowDrought), 651 

suggesting even the most probable models do not capture the complex history of the 652 
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northern Sierra Nevada populations (Table S4). Exploring whether the northern Sierra 653 

Nevada historically contained smaller, more demographically isolated populations than 654 

suggested by our current models (Figures S2, 3) could be a hypothesis to test in future 655 

studies. 656 

 657 

The California Floristic Province during the late Pleistocene 658 

 The California Floristic Province (CFP) is a plant biodiversity hotspot (Myers et al. 659 

2000; Lancaster & Kay 2013) characterized by high topographic, climatic, and ecological 660 

heterogeneity. The maintenance of high biodiversity within the CFP has been 661 

hypothesized in part to reflect long-term regional-scale climatic stability that kept 662 

extinction rates low even through periods of intense global climatic change (Lancaster & 663 

Kay 2013). LGM habitat-suitability predictions for canyon live oak from the two most 664 

supported models (in fact, from all models except the GrowCold model; Figs. 3 and S2) 665 

are in agreement with this hypothesis. Both the GeneralENM and GrowDrought models 666 

predict high habitat suitability in some portion of every major mountain range in the CFP 667 

currently inhabited by the species, with the exception of the Mojave Desert and the 668 

northernmost portion of the range in the Klamath Mountains. The possible existence of 669 

these areas of high habitat suitability since the LGM throughout geographically disparate 670 

regions of the CFP suggests that canyon live oak is unlikely to have gone locally extinct 671 

in most regions of its current geographic distribution, and that only modest range shifts 672 

were needed in most regions in order for the species to track changes in suitable habitat. 673 

This scenario contrasts with the major continental-scale changes in climate in 674 

response to glacial cycles that characterized other temperate regions such as eastern 675 

North America and Europe (Taberlet et al. 1998; Soltis et al. 2006; Gavin et al. 2014). At 676 

smaller spatial scales, pronounced effects of climate change did occur within the CFP. 677 

For example, alpine glaciers in the Sierra Nevada expanded in size (Gillespie et al. 678 

2004), and pollen records indicate local changes in species abundance and shifts in the 679 

distribution of vegetation types to lower elevations (Roosma 1958; Cole 1983; Litwin et 680 

al. 1999; Heusser et al. 2015; McGann 2015), by as much as 600 to 750 m in the 681 

western Sierra Nevada (Ritter & Hatoff 1975). Nevertheless, at a regional scale, steep 682 
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elevational gradients and the moderating effects of orographic precipitation may have 683 

provided a ‘climatic buffering’ effect preventing extreme regional-scale fluctuations in 684 

climate (Lancaster & Kay 2013). As a result, species from the CFP were likely able to 685 

track geographic shifts in suitable climate by migrating over relatively short distances 686 

(Davis et al. 2008; Lancaster & Kay 2013). For canyon live oak in particular, large 687 

regions of moderately stable habitat during both glacial and interglacial periods may 688 

have served as reservoirs of genetic diversity and driven patterns of genetic connectivity 689 

and admixture among populations (Ortego et al. 2015). 690 

 691 

Utility of species-specific genetic predictions for testing hypotheses 692 

Because different processes can produce similar patterns of genetic variation, 693 

phylogeographic studies rely upon model-based inferences in which expectations for 694 

patterns of genetic variation under particular processes are specified. However, the 695 

approach applied here differs from other model-based inferences (see Knowles 2009; 696 

Hickerson et al. 2010). Specifically, biologically informed hypotheses about factors that 697 

may determine how taxa respond to climate change are explicitly modelled here by 698 

considering their predicted effects on the movement of species across a landscape. As 699 

such, our work adds to the growing number of studies that use spatially explicit models 700 

to capture how population dynamics (e.g., changes in population size and dispersal 701 

probabilities) impact patterns of genetic variation (e.g., Neuenschwander et al. 2008; He 702 

et al. 2013; Massatti & Knowles 2014). 703 

A key aspect of our approach – the generation of species-specific predictions for 704 

patterns of genetic variation given different factors that might determine the habitat 705 

suitability of a species – is a novel application that differs fundamentally from other 706 

approaches for using patterns of genetic variation to study the effects of climate change 707 

on geographic distributions of taxa. In particular, our approach considers that the best 708 

characterization of habitat suitability for taxa may not be one based on a typical ENM 709 

analysis of bioclimatic variables, as generally assumed in studies that rely on measures 710 

of habitat suitability to test hypotheses about the effects of climate change using genetic 711 

data (e.g., Knowles 2009; Lanier et al. 2015) There are nonetheless caveats with our 712 
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approach that should be considered, especially regarding the use of different 713 

environmental variables as proxies for competing biological processes hypothesized to 714 

determine habitat suitability. Specifically, we do not have an explicit means of 715 

determining if these environmental variables truly capture the processes they are 716 

intended to represent. This limitation is not unique to our approach. Instead, it is a 717 

broader conceptual concern with any approach in which predictions from correlative 718 

ENMs are used because it is not possible to ascertain whether environmental variables 719 

determine distributions directly, or are correlated with some other variable that is actually 720 

the source of causation but was not incorporated into the ENM (Austin 2002). While 721 

mechanistic ENMs that directly model functional traits of species could provide 722 

information to avoid misleading inferences about causal variables (Kearney & Porter 723 

2009), the detailed information required for such functional modelling is frequently not 724 

available, which contrasts with the broad applicability of the approach applied here. 725 

There are additional aspects of our study that should be kept in mind, some of 726 

which are not specific to our study, but are general issues with model-based inference. 727 

Our study provides a robust evaluation of competing models for observed patterns of 728 

genetic variation, as we evaluate not only the relative probabilities of models, but also 729 

conduct validations of our approach (i.e., we determine that the models are capable of 730 

generating the data, and that there is sufficient power to accurately distinguish among 731 

models given the quantity of genetic data collected in our study). As such, we can make 732 

strong statements about which of the different models best fit the data. However, we 733 

acknowledge there may of course be additional factors not considered here that might 734 

contribute to patterns of genetic variation, and therefore, our approach does not identify 735 

the optimal model (nor does any model-based approach). Recognizing the limits of the 736 

inference space is important for avoiding possible misinterpretations of model-based 737 

approaches, but it does not discount the insights gained with respect to the study goals. 738 

Instead, our work demonstrates that with thoughtful consideration of the factors that 739 

might determine habitat suitability (including not only climatic variables, but also 740 

potential trade-offs in functional traits that may impact a taxon’s ability to tolerate 741 

physiological stresses or compete, as well as localized effects related to microsite 742 
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variation and adaptive differences), such hypotheses can be translated into models for 743 

studying which factors mediate the effects of climate change on species distributions. 744 

Likewise, even though many assumptions are made in the procedures applied here (e.g., 745 

converting measures of habitat suitability into population demographic parameters; for 746 

details see Brown and Knowles 2012), these assumptions are arguably not more 747 

problematic than many assumptions implicitly made in other model-based approaches 748 

(e.g., not considering the spatial mosaic of habitat suitabilities that impacts both local 749 

population sizes and migration probabilities, despite the clear effects of such 750 

heterogeneity on patterns of genetic variation; see Knowles & Alvarado-Serrano 2010). 751 

Lastly, spatially explicit models, despite some of their limitations discussed above (see 752 

also Massatti & Knowles 2016), provide a window into a diversity of questions that would 753 

continue to go unexplored without their application. 754 

 755 

Conclusions 756 

We compare the relative statistical support for six different models concerning 757 

distributional shifts in canyon live oak in response to climate change, each of which is 758 

motivated by a different hypothesis about the mechanistic factors that may determine 759 

habitat suitability. We obtain very strong relative statistical support for two models that 760 

share a common conceptual link to summer drought, and show through validation of the 761 

model-selection procedure that we can be highly confident in the fit of data under these 762 

models, as well as in our ability to accurately discriminate among the different models. 763 

We suggest that drought tolerance may not only be a critical factor determining habitat 764 

suitability and mediating distributional shifts in response to climate change since the 765 

LGM in canyon live oak, but its importance may be generalized to other plants. 766 

Specifically, by comparison with studies of other temperate trees that have emphasized 767 

other processes but where focal taxa have typically been from less seasonally dry 768 

regions of the temperate zone, our work suggests that summer drought may play a key 769 

adaptive and ecologically important role in other trees from Mediterranean climates. 770 

Moreover, our approach demonstrates how different factors hypothesized to determine 771 

habitat suitability may be tested by using spatially explicit information from ENMs to 772 
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generate specific patterns of genetic variation for testing biologically informed 773 

hypotheses about the effects of climate change on species distributions. As such, the 774 

models supported in our study are a general example of the type of biologically informed, 775 

species-specific hypotheses that contribute to our broader understanding of the 776 

importance of biotic factors in structuring genetic variation (reviewed in Papadopoulou & 777 

Knowles 2016). 778 

 779 
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Table 1. Summary of models and relative support from the ABC procedure for each model. A higher marginal density 1082 

corresponds to higher support for the model, while p-values close to 1.0 indicate that the model is able to reproduce data 1083 

in agreement with the empirical data (Wegmann et al. 2010). Bayes factors represent the degree of relative support for 1084 

the most highly supported model (GeneralENM) over the other models. Bayes factors greater than 20 indicate strong 1085 

support, while those greater than 150 indicate very strong support (Kass and Rafterty 1995). 1086 

 1087 

Model 

Hypothesized factors mediating species  

response to climate change  

Marginal 

density 

Wegmann's 

p-value  

Bayes 

factor  

GeneralENM basic climatic variables of a generic ecological niche model 2.35 x 10 0.9900 
-2

 - 

Microsite availability of topographic microsites 1.27 x 10 0.0024 
-7

 1.86 x 10

Multidimension 

5
 

basic and ecologically-informed climate variables; microsites 8.20 x 10 0.0038 
-9

 2.87 x10

GrowCold 

6
 

trade-off between growth rate and cold tolerance 3.21 x 10 0.0046 
-7

 7.34 x 10

GrowDrought 

4
 

trade-off between growth rate and drought tolerance 8.43 x 10 0.9272 
-3

 2.79 

LocalAdaptation unique factors in each locally adapted ecoregion 3.51 x 10 0.0044 
-7

 6.70 x 10
4
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Table 2. Validation of the ABC procedure for model selection using pseudo-observed 1090 

datasets (PODs; see text for explanation). (a) Confusion matrix showing the ability of 1091 

the ABC procedure to correctly identify the model used to generate the POD. Numbers 1092 

in the table represent the percent of PODs (n = 100 for each model) determined by the 1093 

ABC procedure to be most highly supported by each of the models. Bold numbers on 1094 

the diagonal indicate that the true model was identified, while numbers off the diagonal 1095 

indicate incorrect model identification. (b-c) Average level of support, measured as the 1096 

mean logarithm of Bayes factors, log10(BF), for (b) the true model compared to the 1097 

second-most-supported model, when the true model is chosen, and (c) the incorrectly 1098 

chosen model compared to the true model, when an incorrect model is chosen. Values 1099 

in (b) represent the strength with which the ABC procedure unambiguously supports the 1100 

true model to the exclusion of all other models, when the true model is chosen. Values 1101 

in (c) represent the average strength with which the ABC procedure incorrectly favours 1102 

the chosen model over the true model, when an incorrect model is chosen. Asterisk (*): 1103 

mean log10(BF) ≥ 1.30, indicating strong relative support for the chosen model; dagger 1104 

(†): mean log10

 1106 

(BF) ≥ 2.18, indicating very strong support (Kass and Raferty 1995). 1105 

A) Model selected by ABC procedure  

True model  GeneralENM Microsite Multidimension GrowCold GrowDrought LocalAdaptation 

GeneralENM 52 7 7 6 19 9 

Microsite 6 80 4 6 1 3 

Multidimension 0 1 74 23 1 1 

GrowCold 0 1 25 74 0 0 

GrowDrought 29 11 4 4 47 5 

LocalAdaptation 3 3 0 2 2 90 

       B) Model selected by ABC procedure  

True model  GeneralENM Microsite Multidimension GrowCold GrowDrought LocalAdaptation 

GeneralENM 0.26 
     

Microsite 
 

2.12* 
    

Multidimension 
  

1.90* 
   

GrowCold 
   

1.38* 
  

GrowDrought 
    

0.69 
 

LocalAdaptation 
     

5.00† 
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       C) Model selected by ABC procedure  

True model  GeneralENM Microsite Multidimension GrowCold GrowDrought LocalAdaptation 

GeneralENM 
 

0.48 0.44 0.68 0.32 0.59 

Microsite 0.26 
 

0.70 0.54 1.41* 0.29 

Multidimension - 0.38 
 

0.43 1.00 0.48 

GrowCold - 0.62 0.37 
 

- - 

GrowDrought 0.26 0.72 0.73 0.92 
 

0.79 

LocalAdaptation 0.33 0.27 - 0.72 0.80 
 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Figure 1. Geographic distribution of canyon live oak (grey shading; according to Little 1107 

1971) and sampling localities, where the size of the black circle corresponds to the 1108 

number of individuals collected (sampling localities that are very close together were 1109 

combined). Numbers on the black circles indicate populations as follows: (1) Peninsular 1110 

Ranges, (2) Transverse Ranges, (3) Southern Coast Ranges, (4) Northern Coast 1111 

Ranges and Klamath Mountains, (5) Southern Sierra Nevada, and (6) Northern Sierra 1112 

Nevada. Several small, disjunct portions of the species distribution located east of the 1113 

depicted range are not shown. 1114 

 1115 

Figure 2. Dynamic ecological niche model used for demographic simulations, with an 1116 

example illustrated for the GeneralENM model. Demes representing ancestral source 1117 

populations (extracted from the areas of highest habitat suitability during the Last 1118 

Glacial Maximum, LGM; see Materials and Methods for details) are initiated (grey 1119 

arrow) within the LGM landscape at 21.5 ka. Demes are allowed to colonize the 1120 

landscape, with carrying capacity and migration rate of each deme scaled relative to 1121 

habitat suitability (coloured grid cells). Habitat suitability then shifts (black arrows) to that 1122 

of intermediate and current time periods as the simulation progresses. One third of the 1123 

total number of generations is simulated under each of the LGM, intermediate, and 1124 

current landscapes. 1125 

 1126 

Figure 3. Habitat suitability for canyon live oak during the Last Glacial Maximum (21.5 1127 

ka) from ecological niche models constructed for each of the iDDC models. 1128 

 1129 

Figure 4.  Prior and posterior distributions of model parameters for the two most 1130 

supported models, GeneralENM (a-d) and GrowDrought (e-h). Grey shading: prior 1131 

distribution; dotted black line: posterior distribution before the ABC-GLM procedure; 1132 

solid black line: final posterior distribution following ABC-GLM. Kmax, carrying capacity; 1133 

Nanc

 1135 

, ancestral population size; m, migration rate; µ, microsatellite mutation rate. 1134 

Figure 5. Distribution of posterior quantiles of true parameter values from 1,000 1136 

pseudo-observed datasets, used to assess bias in parameter estimation for the two 1137 
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most supported models, the GeneralENM (a-d) and GrowDrought (e-h) models. 1138 

Posterior quantiles (grey bars) are compared to a uniform distribution (dashed black 1139 

line). The p-values test for deviation from a uniform distribution using a Kolmogorov-1140 

Smirnov test, with p-values less than 0.05 indicating bias in parameter estimation. Kmax, 1141 

carrying capacity; Nanc, ancestral population size; m, migration rate; µ, microsatellite 1142 

mutation rate. 1143 
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