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Introduction

Restoration of degraded ecosystems is an increasingly 
important component of conservation efforts, comple-
menting the preservation of wild places (Dobson et al. 
1997). Global spending on restoration is growing rapidly 
and includes over US$1 billion per year spent on river 
restoration projects in the USA alone (Bernhardt et al. 
2007). As these investments grow, it is important to 
ensure that resources are targeted effectively. There have 
been repeated calls for a better understanding of the costs 
and benefits of restoration (Kondolf 1995, Bash and 
Ryan 2002, Palmer et  al. 2005, Bernhardt and Palmer 
2007), as well as the sociopolitical challenges of imple-
menting restoration plans (Light and Higgs 1996, Hobbs 
2004, Hobbs 2007), yet methods for prioritizing resto-
ration investments have not yet addressed multi-stressor 
landscapes (Beechie et al. 2008, McBride et al. 2010, Holl 
and Aide 2011, Wilson et al. 2011).

Many of the key challenges in prioritizing restoration 
projects stem from the fact that most ecosystems are 
impacted by multiple local and global stressors, which 

often interact in complex and little-understood ways 
(Crain et al. 2008, Darling and Côté 2008). The implica-
tions of this are threefold. First, single-stressor resto-
ration efforts may have little real benefit if they fail to 
account for the remaining problematic stressors at a site 
(Evans et  al. 2011, Allan et  al. 2013). Second, when 
stressors interact, the ecosystem response to the reme-
diation of a particular stressor will depend on how that 
stressor interacts with co-occurring stressors (Crain et al. 
2008, Darling and Côté 2008, Brown et al. 2013). Third, 
the economic and sociopolitical costs of remediating any 
one stressor may vary among sites depending on the 
presence of other co-occurring stressors, even when these 
stressors themselves have no mechanistic interactions 
(Evans et al. 2011, Wilson et al. 2011). As a result, certain 
combinations of stressors may lead to opportunities for 
economic efficiency (e.g., logistical savings via shared 
equipment and personnel costs), thereby lowering the 
cost of restoration. In other cases, combinations of 
stressors may lead to conflicts among stakeholders who 
differ in their assessment of the costs and benefits of 
restoration projects.

Spatial analyses of cumulative stress or impact (CS) 
are increasingly embraced as a means of summarizing a 
host of ecosystem impairments (Danz et al. 2007, Halpern 
et  al. 2008, Vörösmarty et  al. 2010, Allan et  al. 2013, 
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Halpern and Fujita 2013). Integrating multiple stressors 
into a single index provides a straightforward summary 
of ecosystem stress, which enables practitioners to focus 
their efforts toward a particular level of CS if desired. 
For instance, some organizations focus on protecting 
areas that are in a relatively pristine state, while others 
actively seek to restore areas that are already heavily 
degraded (Game et al. 2008, Ban et al. 2010, Vörösmarty 
et al. 2010). While cumulative stress ratings can streamline 
initial prioritization, large-scale analyses still identify far 
more potential intervention locations with equivalent CS 
than it would be feasible to restore. Furthermore, decision 
makers may mistakenly interpret CS ratings as a prior-
itization (Tulloch et al. 2015); in reality, indices of CS do 
not give any indication of how the practical challenges 
of restoration efforts vary among the many sites with 
equivalent stress ratings (Brown et al. 2013), nor do they 
give a full indication of the ecological benefits of reme-
diating a site. Thus, it would be desirable to derive further 
insight into restoration opportunities from multi-stressor 
datasets than is provided by CS alone.

In multi-stressor landscapes, both economic and socio-
political costs are key practical constraints on restoration 
success (O’Connor et  al. 2003, McBride et  al. 2007, 
Joseph et al. 2009, Faleiro and Loyola 2013) and both 
types of costs may depend in complex ways on the suite 
of stressors at a site. For example, dam removals are an 
increasingly common strategy for restoring aquatic con-
nectivity, but the cost of a dam removal often depends 
on whether there are co-occurring stressors, like invasive 
species and contaminated impounded sediments, which 
would be exacerbated by removing that dam (Stanley 
and Doyle 2003). In that context, the cost of removing 
contaminated sediments and controlling invasive species 
must be considered as part of the dam removal cost. 
At  the same time, conflicts among stakeholders may 
be  driven by stressor interactions in a way that is not 
reflected in the economic costs of a dam removal 
(Jórgensen and Renöfält 2013). In the North American 
Great Lakes, for example, dam removals are often con-
tentious because they have the potential to facilitate the 
spread of invasive species and may allow migratory fishes 
to serve as vectors for pathogens and contaminants 
(McLaughlin et  al. 2013). Conflicts over the ecological 
costs and benefits of dam removal are often severe, but 
do not have an obvious resolution because they are 
rooted in the contrasting mandates and value systems of 
different stakeholders (Kueffer and Kaiser-Bunbury 
2013). In the case of dams, then, consideration of only 
the economic cost, or only the sociopolitical cost of 
removal, would likely result in a poor estimate of the true 
practical challenges of a project.

We develop and analyze a framework for under-
standing how the economic and sociopolitical costs of 
ecological restoration might vary among sites with equiv-
alent cumulative stress in multi-stressor ecosystems. 
Though we focus on understanding restoration costs, our 
approach could readily be adapted to also consider 

various societal and ecological benefits of restoration. 
For example, ecosystem remediation can be carried out 
to enhance ecosystem services (Palmer and Filoso 2009), 
to protect biodiversity across a suite of species (Auerbach 
et al. 2014) or particular beneficiary species, or to address 
organizational mandates to remediate a particular 
stressor or class of stressors. Our framework is equally 
applicable across the full cumulative stress spectrum, 
allowing the prioritization of restoration among sites at 
any level of overall impairment. Based on our analysis 
of idealized models, we propose a heuristic metric of the 
practical challenges of restoring a site to improved con-
dition. To explore potential applications of this approach, 
we apply this metric to cumulative stress data for the 
world’s rivers and the Great Lakes to identify locations 
where restoration may be most feasible.

Models and Analysis

We first define key terms and then introduce three 
general classes of functions that describe the relation-
ships between stressor intensity and the costs of resto-
ration. We then analyze these functions in a series of 
increasingly complex scenarios: a two-stressor landscape 
with no interactions among stressors, a two-stressor 
landscape with interactions, and then a multi-stressor 
landscape with diverse stressor interactions and divergent 
cost functions. Though simple, our initial two-stressor 
scenarios provide the foundation of the final, multi-
stressor scenario.

Definitions

Consider a group of I sites or regions that are candi-
dates for restoration. Each site i has a vector of N 
stressors Xi. Each element Xi,n describes the intensity or 
severity of stressor n at site i. We assume that intensities 
for all stressors have been converted to a standard scale 
(e.g., a continuous value ranging from zero to one; Allan 
et al. 2013). This normalization process puts otherwise 
incommensurable stressors (e.g., invasive species and 
heavy metal contamination of sediments) into compa-
rable units based on expected ecological importance and 
provides a standardized scale for measuring improve-
ments in ecosystem condition resulting from remediation 
(Halpern and Fujita 2013).

The economic cost of remediating a stressor to 
improved condition is given by a cost function, which 
describes the cost of reducing the intensity of stressor n 
at site i to some target level of lower intensity, Ti,n: 

In this formulation, the cost of restoring stressor n at 
i is calculated independently for each stressor. This is 
appropriate for sites with only a single stressor, but for 
sites with multiple stressors, we must account for the 
possibility that the presence of other stressors will 
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increase or decrease the cost of remediating i. To do this, 
we define a new cost function describing the cost of reme-
diating stressor n at i given the other stressors that must 
also be remediated at that site: 

Here xi−n denotes the vector describing the intensities 
of stressors other than n. In this formulation, the cost 
of remediating a stressor may be more or less expensive, 
relative to sites where it occurs alone, depending on 
what other remediation is occurring at the site. We 
define synergy as the potential savings in economic cost, 
at site i, for stressor n when all other stressors are also 
restored. 

Synergy is a fundamental concept in our model; it 
describes how the cost of remediating a stressor will 
depend on the set of other stressors at a site. Synergies 
can be positive or negative. The set of stressors −n creates 
an opportunity for positive synergy when the cost of 
restoring stressor n is lowered relative to sites where it 
occurs alone. This might occur, for example, when a set 
of stressors can all be remediated using the same per-
sonnel and equipment, so that these costs can be shared 
among stressors; or when the remediation of stressors −n 
would diminish the intensity of stressor n (i.e., a syner-
gistic stressor interaction) and thus the cost of remedi-
ating it. Conversely, the set of stressors −n can lead to 
negative synergy when the cost of remediating stressor n 
is higher than at sites where it occurs alone. This will 
primarily occur via antagonistic stressor interactions, 
where the remediation of stressors −n increases the 
intensity of stressor n. Dams and invasive species are a 
case in point; the cost of removing a dam is typically 
higher at sites with the potential to harbor invasive 
species (because of subsequent control costs) than at sites 
where dams occur without invasive species.

Because the term ϕ
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interactions among stressors, the total cost of restoring 
site i is the summation of these terms over all N stressors, 
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savings due to synergies at site i is the summation of Si,n 
across all N stressors, S
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This framework can also be applied to understanding 
the sociopolitical costs of restoration. In this case, we 
focus upon the human dimensions of launching, coordi-
nating, and completing restoration projects. Accordingly, 
we define sociopolitical cost in the broadest possible 
sense to encompass all social and political aspects of 
restoration. As with economic synergies, sociopolitical 
synergies are a fundamental concept in our model because 
they describe how the sociopolitical cost of remediating 
a stressor will depend on the other stressors at a site. The 
set of stressors −n creates an opportunity for positive 
synergy when the sociopolitical cost of restoring stressor 
n is lowered relative to sites where that stressor occurs 
alone. This can occur, for example, among stressors that 
can be remediated using similar expertise, regulatory per-
missions, or existing collaborations among agencies. 
Where these stressors co-occur, sociopolitical costs can 
be shared among stressors. Conversely, the set of stressors 
−n leads to negative synergy when the sociopolitical cost 
of restoring n is higher at sites with −n than at sites where 
n occurs alone. This can occur when the remediation of 
one stressor exacerbates another, and stakeholders differ 
in their valuation of these two stressors. Dams and 
invasive species are a case in point: dam removal can 
allow invasive species to spread further in a watershed, 
and dam removals are often contentious because stake-
holders differ in their valuation of ecological benefits vs. 
ecological costs (e.g., facilitating species invasions). 
Consequently, the sociopolitical cost of dam removal is 
typically higher at sites with both dams and invasive 
species than at sites where dams occur without risk of 
species invasions.

Classes of cost functions

Nearly all restoration cost functions will belong to one 
of three classes (Fig.  1). The first class includes any 
function where the cost is constant and independent of 
stressor intensity (Type I, Fig. 1). This class of functions 
likely describes the sociopolitical dimension of most res-
toration projects: there will be a set of sociopolitical 
challenges (engaging experts, aligning stakeholders, reg-
ulatory hurdles, etc.) that will be incurred regardless of 
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Fig. 1.  Three general classes of cost functions, which relate the cost of restoring a stressor (vertical axis) to the intensity of that 
stressor (horizontal axis).
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the severity of the stressor. The second class includes any 
function in which cost increases linearly with stressor 
intensity. This might describe, for example, the cost of 
controlling an invasive plant species via manual appli-
cation of herbicide (e.g., as with Phragmites; Farnsworth 
and Meyerson 1999), where the total cost of restoration 
increases roughly linearly with the total amount of her-
bicide used and the number of person-hours needed to 
apply it. The third and perhaps most common class 
includes any function in which cost is a strictly increasing 
but concave-down function of stressor intensity. This 
class of functions describes cases where highly degraded 
sites are only marginally more expensive to restore. Such 
cases are likely to be common because economies of scale 
should apply to restoring highly degraded sites. For 
example, economies of scale are known to exist for 
groundwater remediation (Sutherland et al. 2005), PCB 
mitigation (Woodyard 1990), the removal of heavy 
metals from soils (Jelusic and Lestan 2014) and the man-
agement costs of nature reserves (Armsworth et al. 2011). 
By definition, Type III functions exhibit the mathematical 
property of being strictly and globally subadditive (i.e., 
ϕ
(

X
1
+X

2

)

<ϕ
(

X
1

)

+ϕ(X
2
)).

Super-additive cost functions (i.e., concave-up), in 
which heavily degraded sites have an increased cost of 
remediation per unit of stressor intensity (i.e., a dise-
conomy of scale), are likely to be rare because they can 
arise in only two ways. First, when severely degraded 
sites require categorically different and more expensive 
remediation methods than less degraded sites, the resto-
ration cost per unit of stressor intensity may be higher 
for the most degraded sites. For example, moderate 
amounts of acid mine drainage may be mitigated using 
low-cost wetland treatment systems (Sheoran and 
Sheoran 2006), but more costly treatment methods are 
required for the more heavily degraded sites. Second, 
when an invasive species or pathogen has a very rapid 
rate of growth or spread, it may be more costly to control 
in regions where it is well established due to the likelihood 
of reinvasion. For example, eradication of an invasive 
species may be possible and relatively inexpensive where 

that species is at low density, but costly suppression strat-
egies may be needed for well-established invaders (Myers 
et al. 2000).

Scenario I: Two stressors, no synergies

The simplest multi-stressor restoration scenario is a 
landscape with two stressors, no stressor synergies (Si = 0 
at all sites), and no differences in the cost functions 
among sites and between stressors. Each site in this land-
scape has an identical level of cumulative stress (i.e., 
Xi,1 + Xi,2 equal for all i sites), but sites differ in the degree 
to which the intensity of one stressor is greater than the 
intensity of the other (i.e., degree of stressor heteroge-
neity; Fig. 2A). For two sites A and B with equivalent 
CS, site A has higher stressor heterogeneity than B if 
XA,1 > XB,1 and XA,2 < XB,2.

In this and all following scenarios, we assume that the 
goal is to reduce all stressors to some target intensity T. 
Thus, we simplify the notation hereafter by writing the 
cost function ϕ

n
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 as simply ϕ
n

(

X
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)

. In the 
case where restoration targets vary significantly among 
stressors, conclusions are by definition less general, so 
we focus on scenarios where the target stressor intensity 
is comparable.

In this simple scenario, it is always preferable to work 
at sites with high stressor heterogeneity. If cost follows 
either a Type I or Type II function, the cost of remedi-
ation depends only on the number of stressors that must 
be addressed. As a result, sites with a single stressor will 
always be less costly than sites with two stressors. For 
Type III functions, we can make use of the subadditivity 
in the cost function to show that, in this simple scenario, 
there is a perfect negative correlation between stressor 
heterogeneity and the cost of restoration. For two sites 
where site A has higher stressor heterogeneity than site 
B (i.e., XA,1 > XB,1 and XA,2 < XB,2), if the cost function 
is subadditive (e.g., as in Type III), then 
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Fig. 2.  For subadditive cost functions, sites with high stressor heterogeneity are less expensive to restore. (A) Hypothetical 
patterns of stressor intensity in a simple landscape of two sites A and B each with two stressors (s1, s2). Sites A and B have 
equivalent cumulative stress (XA,1 + XA,2 = XB,1 + XB,2), but site A has higher stressor heterogeneity. (B) Due to subadditivity in the 
cost function (solid line), site A is less expensive to restore (i.e., CA,1 + CA,2 < CB,1 + CB,2).
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Eq. 1 dictates that it will always be less expensive to 
restore site A than site B. This result is an outcome of 
the mathematical property of subadditivity in Type III 
cost functions and is illustrated graphically in Fig. 2B. 
Note that for super-additive functions, which we hypoth-
esize to be rare, the opposite conclusion arises: it will 
always be preferable to work at sites with low stressor 
heterogeneity, because high intensity stressors would be 
disproportionately costly to remediate.

Scenario II: Two stressors with synergies

We again consider a landscape with two stressors, but 
now allow for synergies among the two stressors at a site 
(i.e., Si ≠ 0). When these two stressors have negative syn-
ergies (Si < 0), sites where both stressors occur will carry 
an additional cost that is not shared by sites with only one 
stressor. As a result, negative synergies among stressors will 
always reinforce the findings in the previous scenario, i.e., 
it will remain preferable to work at sites with high stressor 
heterogeneity. When these two stressors exhibit positive 
synergies (Si  >  0), sites where both stressors occur will 
present an opportunity for lowered costs that is not present 
at sites with only a single stressor. Whether this reverses 
the conclusion in the previous scenario will depend on the 
magnitudes of synergies: when synergies are large, they 
may reverse the inequality in Eq. 1. In that case, it will be 
preferable to work at sites with two stressors rather than 
one because the marginal cost of addressing the second 
stressor is low given restoration effort toward the first.

Scenario III: A multi-stressor landscape

In realistic multi-stressor landscapes, the cost of 
restoring a site to improved condition will typically be a 

complex function of the number and intensity of stressors 
at that site, their individual cost functions, and synergies 
among these stressors. We conducted a series of simu-
lation experiments to explore how the correlation 
between cost and stressor heterogeneity might depend on 
this complex set of factors. We simulated landscapes in 
which each site had identical cumulative stress and the 
same number of stressors, but the intensity of each 
stressor varied among sites. We modeled synergies 
between stressors as random draws from a normal dis-
tribution with mean of zero and variable standard devi-
ation (σ). We assumed that all stressors but one followed 
the same cost function; the exceptional stressor was con-
sidered more costly to restore by a linear factor z per unit 
stressor intensity. Each simulation yielded an estimate of 
total cost to restore a site, reflecting both direct costs of 
remediating the set of stressors (hereafter “base cost”) 
and costs arising from stressor synergies. For details, see 
Appendix S1.

As a first experiment, we manipulated σ to explore how 
synergy strengths affect the correlation between resto-
ration cost and stressor heterogeneity. When synergies 
were small relative to the base cost, the total cost of 
restoring a site (i.e., base cost plus synergies) was highly 
correlated with stressor evenness (Fig. 3A). As synergies 
increased in magnitude, the correlation between the total 
cost of restoration and stressor evenness declined, even-
tually approaching zero when the standard deviation of 
synergies was larger than the base cost of restoring a site. 
In other words, stressor heterogeneity is a reliable metric 
of overall cost when synergies among stressors are small, 
but an unreliable metric when synergies are so large that 
they are the primary determinants of restoration cost.

As a second experiment, we manipulated z to explore 
how differences in the costs of restoring stressors might 

Fig. 3.  Correlation between the cost of restoration and stressor heterogeneity (vertical axes) as a function of (A) the magnitude 
of the variance in interactions among stressors and (B) the magnitude of the variance in differences in the costs of remediating 
stressors in simulated multi-stressor landscapes.
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affect the correlation between cost and stressor hetero-
geneity. When all stressors were described by equivalent 
cost functions (z = 1), the total cost of restoring a site 
was highly correlated with stressor evenness (Fig.  3B; 
note this correlation was equivalent to that in Fig.  3A 
when synergies were small). As z increased in magnitude, 
the correlation between total cost and stressor evenness 
declined, eventually approaching 0.1 when the most 
expensive stressor was about 103 times more expensive 
to restore. Thus, stressor heterogeneity is a reliable metric 
of cost when stressors are all equivalently costly to 
restore, but an unreliable metric when one or more 
stressors are orders of magnitude more costly than 
others. In that case, the cost of restoring a site is deter-
mined primarily by the intensity of the most expensive 
stressor(s).

Heuristic translation of the model

Inspired by our analytical and simulation results, we 
propose a simple rule of thumb for guiding restoration 
investments in multi-stressor landscapes: among sites 
with equivalent levels of cumulative stress, restoration 
investments should be targeted at sites with the highest 
stressor heterogeneity. The rationale for this heuristic is 
two-fold. First, parsimony dictates that the fewer 
stressors that must be addressed to achieve a desired 
improvement in ecosystem condition, the more cost-
efficient restoration efforts will be, all else being equal. 
High stressor heterogeneity arises when some stressors 
have high intensity and others have low intensity, such 
that large reductions in cumulative stress can be achieved 
by focusing restoration on a relatively small number of 
high-intensity stressors. This is true regardless of whether 
remediation efforts reduce a particular stressor com-
pletely or partially; in both cases, cumulative stress can 
be alleviated most effectively by selecting sites where a 
modest number of serious stressors can be tackled and 
the remaining stressors are already at low levels. Our 
analytical and simulation results suggest that this logic 
of parsimony should apply to all sites except those domi-
nated by strong positive interactions among stressors or 
sites dominated by stressors that are disproportionately 
costly to remediate.

The second rationale for this heuristic stems from the 
high degree of uncertainty surrounding stressor interac-
tions. In multi-stressor landscapes, ecological restoration 
can have negative effects when the remediation of one 
stressor increases the severity or impact of another (i.e., 
antagonistic stressor interactions; Crain et  al. 2008, 
Darling and Côté 2008, Brown et  al. 2013), but these 
interactions are often complex and difficult to predict. 
Sites that require the fewest types of intervention have 
the lowest odds of unexpected antagonistic interactions. 
Accordingly, prioritizing sites with high stressor hetero-
geneity, where only a modest number of stressors must 
be addressed, represents a conservative or precautionary 
approach because it limits the chance that unexpected 

outcomes will jeopardize the success of restoration 
efforts.

Case studies: Laurentian Great Lakes and 
global rivers

We propose using stressor evenness and cumulative 
stress as complementary indices that together provide 
information about the practical challenges of restoring a 
site to improved condition. To demonstrate this 
approach, we used data from recent multi-stressor 
mapping analyses of the world’s rivers (Vörösmarty et al. 
2010) and the Laurentian Great Lakes (Allan et al. 2013). 
In each case, our goal was to use stressor heterogeneity 
to identify sites at which the practical challenges of res-
toration are expected to be lowest (hereafter “restoration 
opportunities”) and to demonstrate this approach across 
the entire cumulative stress spectrum, from relatively 
pristine sites to those that are highly degraded.

The Great Lakes dataset consists of raster data layers 
for 34 stressors and for CS across the entire basin, each 
at a 1 × 1 km resolution. Cumulative stress represents the 
summation of local stressor intensities weighted by an 
expert-derived index of the relative ecological impact of 
each stressor (Allan et al. 2013). The global rivers dataset 
consists of raster data layers for 23 stressors and for CS, 
each at a 0.5° (~50  ×  50  km) resolution. CS was again 
based on an additive combination of stressor intensities 
and impact weights (Vörösmarty et al. 2010). Our process 
for identifying restoration opportunities from a set of 
individual stressor maps consists of three steps (illustrated 
in Fig. 4). First, we combined all individual stressor maps 
(Fig. 4A–D) into two intermediate map products: a map 
of cumulative stress (CS), calculated using expert-derived 
weightings as in the original papers (Fig 4E), and a map 
of stressor heterogeneity calculated using the Gini index 
(Fig. 4F). The Gini index is widely used in economics as 
a measure of inequality among elements in a set. In our 
stressor context, it takes values from zero (all stressors 
have identical intensity) to one (a single high-intensity 
stressor amidst many zero-intensity stressors). Preliminary 
analyses yielded similar patterns based on using the coef-
ficient of variation as an index of heterogeneity (Appendix 
S2). Second, to compare sites of similar CS, we grouped 
sites into 100 bins representing 1% increments of CS. 
Third, within each CS bin, we selected the 10% of pixels 
with the greatest stressor heterogeneity, reflecting an arbi-
trary threshold identifying sites at which the practical 
challenges of restoration are most likely to be low (inset 
of Fig. 4). The set of sites identified as restoration oppor-
tunities was robust to alternative stressor normalization 
methods and measures of heterogeneity (see Appendix 
S2). For simplicity, we refer to each map pixel as a site, 
though we recognize that the relevant scales for stressor 
remediation vary and that multi-stressor datasets are best 
interpreted at broad spatial scales.

In the Great Lakes, the set of sites identified as resto-
ration opportunities had broad geographic coverage 



RESTORATION IN MULTI-STRESSOR LANDSCAPESSeptember 2016 � 1791

(Fig.  4G), highlighting opportunities for cost-effective 
restoration across the entire basin. Restoration opportu-
nities exist in all five Great Lakes, but high opportunity 
sites were often spatially clustered and more prevalent in 
some regions than others. For example, Lakes Erie and 
Ontario have similar levels of cumulative stress, yet 
opportunities were more prevalent in Lake Ontario than 
in Lake Erie. Opportunities were equally prevalent in 
littoral (<5 m depth, or <3 m in Lake Erie; 12.66% of 
sites were high opportunity) and offshore waters (>30 m 
depth, or >15 m in Lake Erie; 11.33% of sites), but were 
less common in the sub-littoral zone (5–30 m depth, or 
3–15 m in Lake Erie; 3.83% of sites). At the high cumu-
lative stress end of the spectrum (0.9–1.0 CS), high 
stressor heterogeneity occurred primarily in the littoral 
zone, yet high heterogeneity and low cumulative stress 
(0–0.1 CS) were found exclusively offshore.

Several specific stressors were often the single 
most  intensive stressor at high opportunity sites in the 
Great Lakes. Among all sites classified as restoration 

opportunities, non-native fish stocking was the most 
dominant stressor in 31.62% of sites, followed by copper 
contamination (28.10%), sea lampreys (12.42%), and 
PCBs (6.79%). Among sites with high stressor heteroge-
neity but low (0–0.1) CS, invasive mussels were the most 
dominant stressor in 39.22% of sites, followed by suscep-
tibility to water level alteration (28.76%), non-native fish 
stocking (17.78%), and shipping (11.59%). Sites with high 
heterogeneity and also high (0.9–1.0) CS were dominated 
by a different set of stressors: copper contamination 
(59.21%), water warming (33.78%), and sea lampreys 
(13.03%).

The Great Lakes Restoration Initiative (GLRI) offers 
a unique opportunity to evaluate whether actual resto-
ration sites would have been selected as opportunities 
under our approach. We calculated stressor heteroge-
neity within a 5-km buffer around the coordinates 
reported for each of the 277 projects funded between 
2010 and 2012 (GLRI 2014). To our surprise, these major 
restoration investments have been disproportionately 

Fig. 4.   The derivation of a map of restoration opportunities from a set of individual stressor maps. A set of individual stressor 
maps (A–D shows four of 34 maps used) are combined into (E) a map of cumulative stress and (F) a map of stressor heterogeneity, 
calculated using the Gini index. These two maps are then combined into (G) a single map of restoration opportunities by selecting 
the sites within the top decile of stressor heterogeneity for similar levels of cumulative stress (inset on G).
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targeted at locations where numerous problematic 
stressors give rise to high CS (Allan et al. 2013) but strik-
ingly low heterogeneity (Fig. 5). Indeed, >75% of GLRI 
sites occur within the lowest decile of stressor heteroge-
neity, indicating that many different restoration actions 
would be needed to substantially improve ecosystem 
condition.

In the global rivers dataset, the set of sites identified 
as restoration opportunities also exhibited both broad 
geographic coverage and spatial clustering (Fig.  6). 
Opportunities exist on all continents, but exhibit spatial 

clustering such that there is much higher concentration 
of opportunities on some continents (e.g., North 
America) than others (e.g., South America). Sites with 
high stressor heterogeneity but low (0–0.1) CS were typi-
cally clustered in high northern latitudes. Conversely, 
sites with high heterogeneity and high (0.9–1.0) CS were 
globally distributed with particular concentrations in 
western and southern Africa, India, and China.

In the world’s rivers, several specific stressors were 
often the single most dominant stressor in high oppor-
tunity sites. Among sites classified as restoration oppor-
tunities, non-native fishes were the most dominant 
stressor in 29.1% of sites, followed by fishing pressure 
(25.7%), mercury pollution (14.1%), and fragmentation 
(12.7%). Among sites with high stressor heterogeneity 
but low (0–0.1) CS, mercury was the most dominant 
stressor in 79.1% of sites, followed by aquaculture 
(11.7%) and fishing pressure (9.0%). Sites with high 
heterogeneity and also high (0.9–1.0) CS were dominated 
by non-native fishes (41.4% of sites), human water stress 
(18.5%), and river fragmentation (13.6%).

Discussion

Our prioritization framework is rooted in parsimony 
arguments for selecting restoration sites to maximize eco-
logical return on investments in remediation. This 
approach leverages the increasing availability of spatial 
data on the severity of a wide variety of stressors (Danz 
et al. 2007, Halpern et al. 2008, Vörösmarty et al. 2010, 
Allan et al. 2013), which is generally analyzed solely from 
the standpoint of cumulative stress due to a lack of infor-
mation on restoration costs or interactions among 
stressors (Crain et  al. 2008, Darling and Côté 2008, 
Halpern and Fujita 2013). We find that the practical chal-
lenges of restoration will typically be negatively corre-
lated with the evenness of stressor intensities at a site, 
suggesting that a simple index of stressor heterogeneity 
can be quite helpful for identifying opportunities to most 
improve ecosystem condition by remediating a modest 
number of stressors.

For most ecosystems, detailed data on restoration 
costs are unavailable (Bernhardt et al. 2007). Our ana-
lytical and simulation model results (Fig.  3A, B) con-
stitute a sensitivity analysis that reveals that the stressor 
heterogeneity index is robust to considerable uncertainty 
in the details of the cost functions. We find that stressor 
heterogeneity will be strongly correlated with restoration 
cost except in three cases: when one or more dominant 
stressors are orders of magnitude more expensive to 
restore (per unit of stressor intensity) than other stressors, 
when synergies among stressors are so large that they are 
the primary determinant of the cost of restoring a site, 
and when sites are dominated by stressors that exhibit 
diseconomies of scale in restoration costs. If managers 
are able to avoid these three exceptional cases based on 
expert knowledge, then further detailed cost data are 
unlikely to be necessary in order to use stressor 

Fig.  5.  Recent restoration investments in the Laurentian 
Great Lakes have been disproportionately targeted at locations 
with numerous problematic stressors. Histograms are of the 
Gini index (A) at all 241 943 pixels in the Great Lakes and (B) at 
277 GLRI sites. Lower Gini scores indicate the presence of 
multiple high-intensity stressors.
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heterogeneity as a general metric to aid in identifying 
restoration opportunities.

We envision that the stressor heterogeneity metric will 
be most useful as a first-pass filter for rapidly reducing 
the number of candidate restoration sites, setting the 
stage for more formal prioritization methods. Restoration 
efforts that address one stressor in isolation may have 
little real benefit if they fail to account for the other prob-
lematic stressors at a site (Evans et al. 2011, Wilson et al. 
2011, Brown et al. 2013), yet limited data on restoration 
costs and benefits typically precludes formal return on 
investment (ROI; Auerbach et  al. 2014) or structured 
decision making (SDM; Tulloch et al. 2015) analyses that 
account for all problematic stressors in an ecosystem. By 
selecting sites with the highest stressor heterogeneity 
(e.g., our upper decile criterion), managers could quickly 
eliminate from consideration those sites with numerous 
problematic stressors. Importantly, because sites with 
high stressor heterogeneity have only a modest number 
of high-intensity stressors, they are well suited for further 
prioritization via ROI or SDM analyses that focus on 
that key subset of stressors.

Our framework for estimating restoration costs is 
equally applicable to any of the various motivations for 
restoring a site. Some organizations prefer to target res-
toration efforts toward high biodiversity sites, others 
target sites with important ecosystem services, and yet 
others choose sites based on an organizational mandate 
to remediate a particular class of stressors (Clewell and 
Aronson 2006, Bullock et al. 2011, Hallett et al. 2013). 
For each of these priorities, stressor heterogeneity can 
reveal sites at which restoration would have high benefit 
in return for addressing a minimal number of stressors. 
For example, intersecting maps of restoration opportu-
nities with maps of ecosystem services (Turner et al. 2007, 
Naidoo 2008, Egoh et al. 2009, Nelson et al. 2009, Allan 
et al. 2013) would highlight locations where restoration 

efforts could best contribute to sustaining key services. 
Similarly, intersecting maps of restoration opportunities 
with maps of biodiversity or priority species (Auerbach 
et al. 2014) would highlight locations where mitigation 
of only a subset of stressors could substantially augment 
conservation efforts. Because our metric is applicable 
across broad spatial scales, it could also be used to 
support regional coordination of conservation invest-
ments, which can be up to 10 times as cost effective as 
local-scale planning (Kark et al. 2009, Mazor et al. 2013, 
Neeson et al. 2015).

Stressor heterogeneity is a particularly useful metric 
for agencies mandated to manage a particular class of 
stressors, because it can be used to identify sites where 
remediation of their focal stressor alone would result in 
a large decrease in cumulative stress. For example, 59% 
of the sites in the Great Lakes with high CS and high 
heterogeneity were impacted most strongly by copper in 
sediments. If environmental management agencies (e.g., 
USEPA or Environment Canada) focused their efforts 
on these sites, remediation of sediment metals alone 
would result in a relatively large decrease in cumulative 
stress. This example illustrates the potential for stressor 
heterogeneity to serve as a first-pass filter that drastically 
reduces the number of candidate restoration sites: by 
focusing further prioritization efforts exclusively on high 
heterogeneity sites, managers could more feasibly 
perform the detailed analysis needed to predict the prob-
ability of successful management (Bottrill et  al. 2008, 
Joseph et  al. 2009). In that context, it is particularly 
striking that the hundreds of Great Lakes sites selected 
for major restoration investments under GLRI show low 
stressor heterogeneity along with high CS (Fig. 5). This 
pattern signifies that remediation of one or a few stressors, 
as was typical in GLRI projects, would have limited 
scope for ecosystem response due to the continuing 
occurrence of other high-intensity stressors. While the 

Fig.  6.  Restoration opportunities in the world’s rivers. High opportunity sites are those within the top decile of stressor 
heterogeneity among sites with comparable cumulative stress.
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GLRI site selection process surely incorporated many 
practical and societal issues that are not considered here, 
our results suggest that accounting for stressor heteroge-
neity could have been helpful.

A key assumption of our approach is that all stressors 
are equally remediable. In reality, some stressors, such 
as those associated with climate change, cannot be reme-
diated through local action. As a result, a site impacted 
primarily by climatic variables might exhibit high hetero-
geneity but offer few practical avenues for remediation. 
Thus, common-sense screening of both stressors and sites 
must be involved in applying cumulative stress or stressor 
heterogeneity metrics to restoration prioritization. Our 
approach is also constrained by the uncertainties and 
assumptions common to all threat mapping efforts 
(Halpern and Fujita 2013). However, threat mapping 
methods continue to be refined, and increasingly accurate 
threat maps are emerging for many of the world’s eco-
systems. Our framework provides a means to leverage 
these increasingly sophisticated spatial data sets to aid in 
the prioritization of restoration investments.

Our development of stressor heterogeneity as a metric 
of restoration feasibility has interesting parallels with the 
quantitative characterization of biodiversity. It has long 
been recognized that biodiversity at a site has two major 
dimensions: species richness and species evenness (Hayek 
and Buzas 1997). As a result, the diversity indices of 
choice integrate both richness and evenness (Magurran 
2004). In contrast, multi-stressor analyses have focused 
purely on generating defensible indices of cumulative 
stress by carefully weighting stressors (Teck et al. 2010) 
or using factor analyses to distill stressor associations 
(Danz et  al. 2007). This focus on CS alone results in 
discarding much of the information in multi-stressor 
datasets. Indeed, even a simple two-stressor case illus-
trates how stressor heterogeneity can be functionally 
independent of CS (Fig.  2). When comparing large 
numbers of sites for restoration purposes, our model 
results and case studies suggest that accounting for 
stressor evenness can substantially boost potential eco-
logical return on restoration investments when multi-
stressor data are available. Moreover, if additional 
considerations, such as ecosystem services or biodi-
versity, can be depicted spatially, analysis of stressor 
heterogeneity can be integrated with these other factors 
in a similar fashion to the example of CS offered in this 
paper. Ultimately, the more information that is incorpo-
rated into prioritization procedures, the higher return on 
restoration investments is likely to be for society.

High-resolution stressor mapping has become a key 
component of modern conservation science (Tulloch 
et al. 2015). By more fully utilizing the information within 
multi-stressor datasets, it may be possible to substantially 
reduce the cost of improving ecosystem condition 
through restoration efforts. Application of our stressor 
evenness heuristic to two prominent multi-stressor 
datasets suggests that restoration opportunities are geo-
graphically widespread, indicating potential for selecting 

portfolios of projects in which diverse constituencies 
have a stake. By design, this range of sites represents the 
full spectrum of conservation efforts, from preserving 
relatively pristine areas to remediating heavily degraded 
ones, thereby suiting the expertise and mandates of a 
wide range of organizations (Game et al. 2008, Ban et al. 
2010). As multi-stressor datasets become increasingly 
available for the world’s ecosystems, further strategic use 
of these data can provide an efficient means of prior-
itizing sites based on their potential for cost-effective 
restoration efforts.
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