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Abstract: The warehouse problem with deterministic production cost, selling prices, and demand was introduced in the 1950s and
there is a renewed interest recently due to its applications in energy storage and arbitrage. In this paper, we consider two extensions
of the warehouse problem and develop efficient computational algorithms for finding their optimal solutions. First, we consider a
model where the firm can invest in capacity expansion projects for the warehouse while simultaneously making production and sales
decisions in each period. We show that this problem can be solved with a computational complexity that is linear in the product of
the length of the planning horizon and the number of capacity expansion projects. We then consider a problem in which the firm
can invest to improve production cost efficiency while simultaneously making production and sales decisions in each period. The
resulting optimization problem is non-convex with integer decision variables. We show that, under some mild conditions on the cost
data, the problem can be solved in linear computational time. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 367–373, 2016

Keywords: warehouse problem; capacity expansion; cost efficiency improvement; project selection; production planning; optimal
investment

1. INTRODUCTION

Cahn [1] introduces the deterministic warehouse problem
as follows: “Given a warehouse with fixed capacity and an
initial stock of a certain product, which is subject to known
seasonal price and cost variations, what is the optimal pattern
of purchasing (or production), storage and sales?” This prob-
lem has a finite planning horizon, and a procurement and
a sales quantity are determined for each period, with costs
and revenues proportional to the chosen volumes. As a lin-
ear program (LP) with very special structure, Charnes and
Cooper [2] showed that it can be solved with a linear time
algorithm. Under the optimal policy, in each period only one
of four possible actions is taken, a property already shown by
Bellman [3]:

(i) produce and sell nothing;
(ii) produce nothing and sell all available inventory;
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(iii) produce up to the available capacity and sell nothing;
(iv) produce up to the available capacity and sell all

available inventory.

Moreover, the action choice for each period is independent
of the prevailing capacity volumes.

In this paper we present two generalizations of the ware-
house problem. In the first generalization, we allow the
decision maker to expand the capacity in any period by
implementing one of n distinct expansion projects. Any given
project may be implemented in at most one period and the
expansion costs are time and project dependent. We exploit
the fact that the optimal operational policy is independent of
the capacity values, to project the problem into one in which
only capacity expansion decisions need to be made, and show
that this problem can be solved in an amount of time that is
linear in the product of the number of periods and the number
of projects. We then consider the cost efficiency improve-
ment problem in which the firm can invest to reduce pro-
duction costs while simultaneously making purchasing and
sales decisions. This gives rise to a non-convex optimization
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problem with integer decision variables. We focus on a spe-
cial case of this problem and develop an efficient algorithm
to solve it. These models can be useful in investment related
optimization problems in energy storage and arbitrage. For
example, the warehouse capacity expansion problem may
be used for scheduling the installation of additional storage
units, while the warehouse cost efficiency improvement prob-
lem could be used to determine the measures that should be
taken to attain high storage efficiency.

This work is motivated by the first author’s industrial expe-
rience in petrochemical plants. In these production facilities
the firm is always searching for ways to improve profits and
teams of consultants are usually hired to study options to
improve productivity. The outcome of these studies is a list of
project proposals, each with different impacts on the facility’s
profits, that range from zero or low cost operational improve-
ments (such as equipment load management) to major capital
intensive projects (e.g., installing steam turbine generators
to produce electricity from the plant’s excess heat). Timing
of the project execution is critical as early execution can
have longer lasting benefits, while delaying the execution
could also have merit because the economic factors (such as
construction raw material and production interruption costs)
may become favorable in later time periods. The major-
ity of these project opportunities are categorized as either
capacity debottlenecking or cost efficiency projects. The firm
needs to determine which projects to implement and when
to implement them, while maintaining an optimal operations
schedule.

The warehouse problem can be considered as an Economic
Lot Sizing (ELS) problem with pricing and inventory bounds.
The ELS problem with pricing, first introduced by Thomas
[4], considers an ELS problem in which a facility simultane-
ously chooses its production level and selling price in every
time period, where the demand in a period is a known decreas-
ing function of the selling price. Subsequent formulations,
such as Geunes et al. [5], use the demand and production lev-
els as decision variables, with the revenue given as a function
of the demand. Note that since the demand is a decreasing
function of selling price, the pricing decision can be trans-
formed to demand or sales quantity decision, and the ELS
problem reduces to the warehouse problem when the demand
is linearly decreasing in price. Although this ELS formulation
captures most of the warehouse problem’s dynamics, the ELS
with pricing literature does not impose warehouse capacity
limits. The warehouse capacity limits are accounted for using
inventory bound constraints as studied in Hwang and van den
Heuvel [6] and Hwang et al. [7], among others, in which no
pricing decisions are considered.

Recent years have shown a renewed research interest in the
warehouse problem due to its applications in energy systems.
An energy storage element (e.g., underground gas storage or
electric batteries) can be modeled as a warehouse, and the

warehouse problem lends itself to the analysis of price arbi-
trage and commodity trading as well as operational policies
for fixed storage capacities (see for example [8–12]). Sev-
eral extensions of the warehouse model have been studied to
address these applications. For example, Rempala [13] intro-
duces a production rate capacity limitation, Secomandi [10]
applies rate capacities on both production and sales, and Lai
et al. [9] study the case when prices in different periods are
dependent.

The classic warehouse problem is introduced in the fol-
lowing section together with its optimal solution. Section 3
studies the capacity expansion while Section 4 studies cost
efficiency improvement in the warehouse problem. The paper
concludes with a discussion in Section 5.

2. WAREHOUSE PRODUCTION AND SALES
PLANNING

In this section we introduce a slightly generalized version
of the original warehouse problem solved by Charnes and
Cooper [2], and derive some simple results; these preliminary
analyses will be used in the subsequent sections on capacity
expansion and cost efficiency improvement problems.

In the classic warehouse problem, the firm determines its
production quantities xt and the sales quantities yt of a single
product in every time period over a planning horizon of T
periods. The sales in time t, yt , take place at the beginning of
the time period at a known unit price of pt , and the produc-
tion in time t, xt , is completed by the end of the period at a
known unit cost of ct , so products made in period t can be
sold starting from period t + 1, i.e., the production lead time
is one period. Both the selling prices pt and product costs ct

are known in advance. Unsold products can be stored in the
warehouse and sold in later periods. The objective of the firm
is to maximize its total profit over the planning horizon.

To formulate the warehouse problem, we denote by I t the
warehouse’s inventory at the end of period t. The system
dynamics can be written as It = It−1+xt −yt with yt ≤ It−1.
The initial inventory level I0 is known. There is no limit on
the production and sales rates, but the warehouse has a known
storage capacity Bt > 0 in time t which is nondecreasing over
time, thus It ≤ Bt for t = 0, 1, . . . , T . Note that the original
warehouse problem has a single constant capacity B for all
time periods, but we need this generalization for our model
in Section 3 where the Bt ’s become decision variables.

The formulation above can be simplified by noticing

It = I0 +
t∑

τ=1

(xτ − yτ ), t = 1, . . . , T , (1)

which allows us to eliminate the decision variables It , t =
1, . . . , T . This substitution would also reduce the number
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of constraints because there would be no need to specify
It = It−1 + xt − yt . This problem can be formulated as the
linear programming WH below.

WH : max
T∑

t=1

(ptyt − ctxt ) (2)

s.t.
t∑

τ=1

yτ −
t−1∑
τ=1

xτ ≤ I0, t = 1, . . . , T , (3)

t∑
τ=1

(xτ − yτ ) ≤ Bt − I0, t = 1, . . . , T , (4)

xt , yt ≥ 0, t = 1, . . . , T . (5)

The WH problem has linear objective function and linear
constraints, hence the KKT conditions are both necessary and
sufficient for optimality. We associate the dual variables λt

and μt for t = 1, . . . , T to the sets of constraints (3) and (4)
respectively, then the Lagrangian for this problem is

LWH(x, y; λ, μ)

=
T∑

t=1

(ptyt − ctxt ) +
T∑

t=1

λt

(
I0 +

t−1∑
τ=1

xτ −
t∑

τ=1

yτ

)

+
T∑

t=1

μt

(
Bt − I0 −

t∑
τ=1

xτ +
t∑

τ=1

yτ

)
. (6)

The first order optimality conditions are obtained by taking
the derivative of the Lagrangian with respect to each variable
then imposing complementary slackness. We will denote the
partial derivatives of LWH with respect to xt , yt , λt , and μt by
LWH

xt
, LWH

yt
, LWH

λt
, and LWH

μt
. We use I t in Eq. (1) to simplify

notation. The KKT optimality conditions are

xt ≥ 0; LWH
xt

= −ct +
T∑

τ=t+1

λτ −
T∑

τ=t

μτ ≤ 0;

xt · LWH
xt

= 0, t = 1, . . . , T (7)

yt ≥ 0; LWH
yt

= pt −
T∑

τ=t

λτ +
T∑

τ=t

μτ ≤ 0;

yt · LWH
yt

= 0, t = 1, . . . , T (8)

λt ≥ 0; LWH
λt

= It−1 − yt ≥ 0;

λt · LWH
λt

= 0, t = 1, . . . , T (9)

μt ≥ 0; LWH
μt

= Bt − It−1 + yt − xt ≥ 0;

μt · LWH
μt

= 0, t = 1, . . . , T . (10)

Each of the formulas Eqs. (7-10) has two inequalities and
one equality that must be satisfied to ensure optimality. The

two inequalities achieve primal and dual feasibility, respec-
tively. The complementary slackness requires that at least one
of these inequalities holds with equality, which is guaranteed
by the third condition. We will solve this problem by devel-
oping an algorithm that satisfies these optimality conditions
next.

The variables λt are duals to the constraints yt ≤ It−1, so λt

has an economic interpretation of the marginal benefit due to
increasing inventory in period t – 1, which is desirable when
we want to sell more products in period t. The μt variables
are duals to It ≤ Bt , so μt can be interpreted as the marginal
benefit due to increasing capacity in period t, which can be
used to produce and store more products xt . Based on this
observation, the values of λt and μt for t = 1, . . . , T can be
used to determine xt and yt for t = 1, . . . , T . We obtain the
optimal solution to WH by first finding the optimal λt and μt

values, and then use them to calculate the optimal production
and sales quantities xt and yt . To simplify notation, we will
denote μt = ∑T

τ=t μτ and λt = ∑T
τ=t λτ . Then they can be

obtained recursively by, λT +1 = μT +1 = 0, and for t ≤ T ,

μt = max
{
λt+1 − ct , μt+1

}
, λt = max

{
μt + pt , λt+1

}
.

The above analysis immediately extends the algorithm in
[2] to the case with constant capacity Bt ≡ B, t = 1, . . . , T .
In the rest of this paper, we use the notation a+ = max {a, 0}
and the indicator function 1{A} = 1 if event A is true and 0 if
A is false.

Algorithm 1 (Optimal Production and Sales Schedule)
Step 1: Start from the last time period t = T and recur-
sively calculate μt = (

λt+1 − μt+1 − ct

)+
and λt =(

μt − λt+1 + pt

)+
down to the first period t = 1.

Step 2: Start from the first period t = 1 and recursively cal-
culate yt = It−1 · 1{λt>0} and xt = (Bt − It−1 + yt ) · 1{μt>0}
up to the last period t = T.

This algorithm has linear computational complexity O(T ).
It is straightforward to verify its optimality by checking that
the KKT conditions (7)–(10) are satisfied for the solution pro-
duced by this algorithm, implying that the algorithm produces
an optimal solution.

Algorithm 1 gives a policy with the following 4 actions
based on the values of λt and μt :

(i) (Sell all inventory, produce to capacity): when λt > 0
and μt > 0;

(ii) (Sell all inventory, do not produce): when λt > 0 and
μt = 0;

(iii) (Do not sell, produce to capacity): when λt = 0 and
μt > 0; and
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(iv) (Do not sell, do not produce): when λt = 0 and
μt = 0.

This policy is in line with Bellman’s characterization of the
four decision options. Using this policy, the firm can make
an optimal decision knowing only λt and μt for every period
t = 1, . . . , T . An important observation to make is that the
marginal sales and production benefits λt and μt are inde-
pendent of the warehouse’s capacities Bt and the inventory
I t for all periods t = 1, . . . , T because they are calculated
independently from Bt and I t in Step 1 of Algorithm 1. In
essence, this implies that the λt and μt values only depend
on the production costs ct and sales prices pt , so modifying
the capacities for the different periods does not change the
λt and μt values. This important observation will be used in
solving the capacity expansion problem in Section 3.

A special case of problem WH is when production costs
are nonincreasing over time, i.e., ct is non-increasing in t. It
may seem beneficial in this case to withhold from production
unless it is profitable to sell the entire production quantity
in the immediate following period. In that scenario, the firm
would naturally produce if the sales price in the following
period is greater than the production cost in the current period,
and refrain from production otherwise. Indeed, the following
result shows that if the problem has no starting inventory and
the costs are nonincreasing over time, then Algorithm 1 gives
a simple solution under which whatever is produced is sold
in the following period.

PROPOSITION 1: If I0 = 0 and costs are non-increasing
over time, i.e., c1 ≥ c2 ≥ · · · ≥ cT , then an optimal solution
to WH is

xt = It = yt+1 = 1{pt+1>ct }Bt , t < T . (11)

PROOF: This result can be proved by verifying that the
given solution satisfies the KKT condition. Here we apply a
simpler argument, suggested by a referee.

Suppose that, in an optimal solution the firm produces a
unit in period t−2 and sells it in period t for some period t > 2.
Then this unit occupies the warehouse capacity in period t−1.
Now, delay the production of this unit to period t − 1 (this
can be done because the demand for period t – 1 is the same
for both cases). By ct−2 ≥ ct−1, the profit margin for the sale
of this unit in period t is at least as high, but it frees up an
additional unit of warehouse capacity for period t−2. Contin-
uing this argument, we either contradict the optimality of the
assumed optimal solution, or we obtain an alternative opti-
mal solution that produces only when it sells in the following
period. Furthermore, if it is profitable to produce in a period t
and sell it at the beginning of the next period t + 1 (implying
ct ≤ pt+1), then it is clearly beneficial to produce as much as
possible in period t, i.e., produce the capacity level xt = Bt ;

and otherwise, the firm should produce nothing in period t.
This shows that Eq. (11) is an optimal solution. �

3. CAPACITY EXPANSION INVESTMENT
PROBLEM

Consider the warehouse problem of the previous section,
but now the firm can invest in projects to increase the
warehouse capacity while scheduling production and sales.
Specifically, suppose the firm can choose from N project
options that have different expansion increments and costs.
An investment in project n ∈ {1, . . . , N} in time t ∈
{1, . . . , T } costs gnt and expands the capacity by bn units.
This capacity expansion becomes effective in period t and
lasts to the end of the time horizon, so we assume that the
project execution duration is negligible (but the results can
be easily extended to include project execution lead times).
The firm can execute a project at most once over the planning
horizon and cannot have partial project execution decisions,
and it needs to decide whether or not to execute each project,
and if so in which time period. The firm’s objective remains
to maximize its total profit.

To formulate the mathematical programming problem, we
use the binary decision variable znt ∈ {0, 1} for n = 1, . . . , T
and t = 1, . . . , N to choose between project options, so
znt = 1 if project n is executed in time t and 0 otherwise.
The constraints

∑T
t=1 znt ≤ 1 for n = 1, . . . , N ensure

that each project is executed at most once over the plan-
ning horizon. The warehouse capacity in time t becomes
Bt = Bt−1 + ∑N

n=1 bnznt . Similar to Eq. (1) in the previous
section, we can eliminate decision variables Bt by express-
ing it in terms of the initial capacity B0 and the investment
decisions as

Bt = B0 +
N∑

n=1

bn

t∑
τ=1

znτ , t = 1, . . . , T . (12)

We relax the integer constraints of the znt variables and
express this problem as the following linear program WH-B:

WH − B : max
T∑

t=1

(ptyt − ctxt −
N∑

n=1

gntznt ) (13)

s.t. (3), (4), (5)

T∑
t=1

znt ≤ 1, n = 1, . . . , N (14)

znt ≥ 0, n = 1, . . . , N , t = 1, . . . , T ,
(15)

where Bt in Eq. (4) is defined by Eq. (12). Notice that we do
not need to specify the constraint znt ≤ 1 in WH-B because
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it is implied by Eqs. (14) and (15). Although znt ’s integrality
constraints are ignored in this formulation, we will show in
Theorem 2 that there exists an integer optimal solution to this
LP relaxation.

As in WH, the optimization problem WH-B has a linear
objective function and a set of linear constraints, which means
that a solution that satisfies the first order KKT optimality
conditions is optimal. We will use the same dual variables
λt and μt , t = 1, . . . , T for constraints (3) and (4) defined
in the previous section. We will also use the dual variables
αn, n = 1, . . . , N for the constraints (14), where αn can be
interpreted as the marginal benefit from executing project n,
i.e., αn = 0 if the project is not implemented and should be
implemented whenever αn > 0. The Lagrangian of problem
WH-B is

LWH−B(x, y, z; λ, μ, α)

= LWH(x, y, z; λ, μ) −
T∑

t=1

N∑
n=1

gntznt

+
N∑

n=1

αn

(
1 −

T∑
t=1

znt

)
. (16)

Notice that we include the index z in LWH because the Bt

variables in problem WH were fixed, but we assume here that
Bt depends on znτ , n = 1, . . . , N , τ = 1, . . . , t , as given by
Eq. (12). Equivalently, the last term in Eq. (6) can be written
as

T∑
t=1

μt

(
B0 +

N∑
n=1

bn

t∑
τ=1

znτ − I0 +
t∑

τ=1

(yτ − xτ )

)
.

Because none of the xt , yt , λt , and μt variables appear outside
LWH in Eq. (16), the KKT conditions (7)–(10) apply to prob-
lem WH-B. Note that the znt variables appear in the Bt terms
in Eq. (10). Furthermore, if we let LWH−B

znt
and LWH−B

αn
be

LWH−B’s partial derivatives with respect to znt and αn, then
the following KKT conditions must also hold in an optimal
solution to WH-B:

znt ≥ 0; LWH−B
znt

= −gnt + bn

T∑
τ=t

μτ − αn ≤ 0;

znt · LWH−B
znt

= 0, t = 1, . . . , T , n = 1, . . . , N (17)

αn ≥ 0; LWH−B
αn

= 1 −
T∑

t=1

znt ≥ 0;

αn · LWH−B
αn

= 0, n = 1, . . . , N . (18)

To obtain an optimal solution, we need to ensure that all
the inequalities hold in the conditions (7)–(10), (17), and (18)
and that at least one inequality holds with equality for each

condition. We will present an algorithm that attains such a
solution.

Notice that the KKT conditions (17) and (18) only depend
on znt , αn, and μt , and can be satisfied independently of xt ,
yt , and λt . Therefore, if we can find the optimal μt values
from Step 1 of Algorithm 1 then pass them to another algo-
rithm that finds znt and αn for which the KKT conditions (17)
and (18) hold, then the relaxed capacity expansion problem
WH-B would be solved. Algorithm 2 below does just that.

Algorithm 2 (Optimal Capacity Expansion Algorithm)
Step 1: Run Step 1 of Algorithm 1 to get λt and μt for
t = 1, . . . , T .
Step 2: For n = 1, . . . , N , set tn = argmaxt

{
bnμt − gnt

}
(ties can be resolved arbitrarily), αn = [bnμtn

− gntn ]+, and
zntn = 1{αn>0}.
Step 3: Perform Step 2 of Algorithm 1 to get the production
and sales schedules xt and yt for t = 1, . . . , T .

The following theorem establishes the optimality of the
algorithm.

THEOREM 2: Algorithm 2 gives an optimal capacity
expansion and implementation solution in time O(NT ).

PROOF: Notice that all the znt and αn values from Algo-
rithm 2 are nonnegative, all znt assignments are binary, at most
a single znt is 1, and since tn is selected as the time period
with the largest bnμt − gnt among all time periods, we have
αn ≥ bnμt − gnt for n = 1, . . . , N and t = 1, . . . , T . There-
fore, primal and dual feasibility hold for Eqs. (17) and (18)
and we need only to demonstrate complementary slackness
to show optimality.

For a given n, the complementary slackness for Eq. (17)
holds for t �= tn since znt = 0 for t �= tn, so we need only to ver-
ify that complementary slackness holds for Eq. (17) in time
period tn. Now consider a project n for which bnμtn

≤ gntn . In
this case αn = (bnμtn

− gntn)
+ = 0 and zntn = 1{αn>0} = 0,

so complementary slackness holds for Eqs. (17) and (18). If
on the other hand bnμtn

> gntn , then αn = bnμtn
− gntn > 0

and complementary slackness would hold for Eq. (17), and
zntn = 1{αn>0} = 1, hence complementary slackness would
also hold for Eq. (18) since

∑T
t=1 znt = zntn = 1. Finally,

since the znt values are binary, it follows that the algorithm
also gives an optimal solution to the original problem.

To find the computational complexity of the algorithm,
consider a project option n. The largest term bnμt − gnt can
be found by evaluating every term for t = 1, · · · , T , which
can be done in O(T ). Since we have N project options, the
algorithm runs in O(NT ) time. �
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4. COST EFFICIENCY IMPROVEMENT
PROBLEM

In this problem, we are given a set of warehouse capacities
B1, . . . , BT , a set of prices in every period p1, . . . , pT , a start-
ing inventory level I0, and a starting production cost c0. Given
M cost efficiency improvement projects, the firm decides on
the projects to implement and their execution time periods
to maximize its total profit. A project m ∈ {1, . . . , M} exe-
cuted in time t ∈ {1, . . . , T } costs qmt and leads to a constant
unit production cost decrement km, which becomes effective
immediately, so the production cost in time t is ct = ct−1−km.
Therefore, if all cost efficiency improvements projects are
implemented then the production cost would be reduced to
c0 − ∑M

m=1 km. A project may be executed at most once over
the planning horizon and a selected project must be fully exe-
cuted (i.e., partial project implementations are not allowed).
Naturally, the production cost will still be positive even after
implementing all projects, thus we assume c0 >

∑M
m=1 km.

We further assume in this section that ct are nonincreasing
over time. As in the capacity investment problem, we assume
without loss of generality that the project execution duration
is negligible.

As with the capacity expansion problem, we let the binary
variable wmt ∈ {0, 1} be 1 if project m is implemented in
period t and 0 otherwise, m ∈ {1, . . . , M} and t ∈ {1, . . . , T }.
Following the simplification for I t and Bt in Eqs. (1) and (12),
we express the cost in time t in terms of c0 and the investment
decisions as

ct = c0 −
M∑

m=1

km

t∑
τ=1

wmτ , t = 1, . . . , T . (19)

To ensure that projects are not executed more than once, we
need to include the constraint

∑T
t=1 wmt ≤ 1, m = 1, . . . , M .

The objective function for this problem is

T∑
t=1

(
ptyt − ctxt −

M∑
m=1

qmtwmt

)
.

Observe that the optimal operational policy given in
Section 2 depends only on λt and μt , that are independent of
the starting inventory level. In particular, when a sale is made
under this policy, all inventory is sold, which means that the
starting inventory level may only affect the first production
period τ , i.e., the smallest τ ∈ {1, . . . , T } with μτ > 0, which
produces to raise the inventory level to the warehouse capac-
ity Bτ . We will therefore assume without loss of generality
that I0 = 0 for this problem, which also implies that y1 = 0.
Moreover, given that the production costs are non-increasing
over time, we can apply Proposition 1 to conclude that

yt+1 = xt = It = 1{pt+1>ct }Bt , for t = 1, . . . , T − 1. (20)

We further simplify our formulation by noticing that it is
never economical to produce or invest in the last period,
i.e., xT = wnT = 0 for all n. Substituting Eq. (20) into the
objective function, we obtain the cost efficiency improvement
problem as the following mathematical program:

WH − C : max
T −1∑
t=1

(
(pt+1 − ct )

+Bt −
M∑

m=1

qmtwmt

)

(21)

s.t.
T −1∑
t=1

wmt ≤ 1, m = 1, . . . , M , (22)

wmt ∈ {0, 1} , m = 1, . . . , M . (23)

The decision variables in this problem are wmt for m =
1, . . . , M and t = 1, . . . , T − 1. Note that the objective func-
tion (21) is non-concave because the costs ct depend on the
wmt variables as given by Eq. (19), hence this problem is dif-
ficult to solve in general, and we do not have a polynomial
time algorithm for finding its global optimal solution. In Al-
Gwaiz et al. [14], we developed an O(M2T 2) algorithm that
obtains a local optimal solution. In this note we focus on the
special case that the selling prices are not lower than the ini-
tial production cost, for which we can find the global optimal
solution in polynomial time.

When pt+1 ≥ c0, we have pt+1 ≥ ct and the objective
function for the mathematical program above is simplified to

T −1∑
t=1

(
(pt+1 − ct )Bt −

M∑
m=1

qmtwmt

)

=
T −1∑
t=1

(pt+1 − c0)Bt +
T −1∑
t=1

M∑
m=1

km

t∑
τ=1

wmτBt

−
T −1∑
t=1

M∑
m=1

qmtwmt

=
T −1∑
t=1

(pt+1 − c0)Bt +
T −1∑
t=1

M∑
m=1

(km

T −1∑
τ=t

Bτ − qmt )wmt .

Since the first term is a constant, the optimization problem
is equivalent to maximizing the second term, subjecting to
constraints (22) and (23).

This simplified optimization problem is easy to solve, and
it can be decomposed into M optimization subproblems, one
for each cost efficiency project m:

max
T −1∑
t=1

(km

T −1∑
τ=t

Bτ − qmt )wmt

s.t.
T −1∑
t=1

wmt ≤ 1,

wmt ∈ {0, 1} .
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The optimal solution for the optimization problem above
is easy to find: For cost efficiency project m = 1, . . . , M , if
km

∑T −1
τ=t Bτ − qmt ≤ 0 for all t = 1, . . . , T − 1, then do not

execute this project; otherwise, execute project m in period

t∗m = argmax
t=1,...,T −1

{
km

T −1∑
τ=t

Bτ − qmt

}
.

Standard method can be applied to find t∗m in O(T ).

PROPOSITION 3: If pt ≥ c0 for all t, i.e., the selling price
in each period is no less than the initial production cost, then
the cost efficiency improvement problem can be solved in
polynomial computational time O(MT ).

5. CONCLUSION

In this note, we have considered the capacity expansion
and cost efficiency improvement extensions of the classic
warehouse problem and developed efficient computational
algorithms to solve them. Other extensions are possible. For
example, holding costs were not included in our models, but
they can be easily incorporated. Since accounting for lin-
ear holding cost would introduce constant multiples to the
inventory terms, it can be transformed into our problem with
no holding costs but modified purchasing costs and selling
prices. Another extension could be to include lead times for
investments, which is also trivial because, given the deter-
ministic nature of our problem, we can shift the investment
times back by the lead time periods. A project to invest to
boost sales prices would be similar in spirit to the cost effi-
ciency improvement problem because it introduces the same
nonlinear positive term in the objective function but on the yt

variables instead of xt . Similarly, the cost efficiency improve-
ment problem can also be used for a problem with holding
cost reduction projects. More complicated options can be
considered for future research, such as options that simulta-
neously increase capacity and reduce costs. Finally, we have
assumed that all project options are independent in the sense
that the cost of one project is not correlated with the cost of
another one. It will be interesting to study the case where the
cost of one project influences the cost of another.
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