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Modeling plant–water interactions:
an ecohydrological overview from
the cell to the global scale
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Vegetation and the water cycles are inherently coupled across a wide range of
spatial and temporal scales. Water availability interacts with plant ecophysiology
and controls vegetation functioning. Concurrently, vegetation has direct and
indirect effects on energy, water, carbon, and nutrient cycles. To better under-
stand and model plant–water interactions, highly interdisciplinary approaches
are required. We present an overview of the main processes and relevant inter-
actions between water and plants across a range of spatial scales, from the cell
level of leaves, where stomatal controls occur, to drought stress at the level of a
single tree, to the integrating scales of a watershed, region, and the globe.
A review of process representations in models at different scales is presented.
More specifically, three main model families are identified: (1) models of plant
hydraulics that mechanistically simulate stomatal controls and/or water transport
at the tree level; (2) ecohydrological models that simulate plot- to catchment-
scale water, energy, and carbon fluxes; and (3) terrestrial biosphere models that
simulate carbon, water, and nutrient dynamics at the regional and global scales
and address feedback between Earth’s vegetation and the climate system. We
identify special features and similarities across the model families. Examples
of where plant–water interactions are especially important and have led to key
scientific findings are also highlighted. Finally, we discuss the various data
sources that are currently available to force and validate existing models, and we
present perspectives on the evolution of the field. © 2015 Wiley Periodicals, Inc.

How to cite this article:
WIREs Water 2016, 3:327–368. doi: 10.1002/wat2.1125

INTRODUCTION

Transpiration is the process of water transfer from
the soil to the atmosphere through plant tissues;

during this process, water changes its phase and exits
from the plant. On average, transpiration amounts to
roughly 40 % of the land precipitation,1–3 and the

corresponding latent heat constitutes about 38 % of
the net radiation absorbed by the land surface.4

Therefore, it is not surprising that vegetation plays a
fundamental role in hydrology and climatology.5,6

Transpiration occurs almost entirely through small
openings in the leaves called stomata.7 This is the
same pathway through which plants acquire carbon
and, thus, represents a major nexus between hydrol-
ogy and the carbon cycle. Plants lose about 100–500
molecules of water to fix one molecule of CO2,

8 with
water representing a key element determining vegeta-
tion function and performance. The coupling of tran-
spiration and photosynthesis creates important
feedback between water, carbon, and nutrient cycles.
Soil biogeochemistry and nutrient dynamics are in
fact directly connected to water availability because
soil biota dynamics and rock weathering depend on
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soil moisture content9,10 and, also indirectly, through
the effect that soil water content has on vegetation
growth and litter production. Despite the strong con-
nection between vegetation and hydrology, histori-
cally, in hydrological applications, vegetation has
been represented with constant factors embedded in
equations for computing bulk evapotranspiration, for
example in the Penman–Monteith equation.11 Con-
currently, in many ecological applications with
detailed characterization of plant processes, hydrol-
ogy has been represented with a simple bucket
approximation.12,13

Given the central role of water-plant interac-
tions in the climate system, representations of vegeta-
tion attributes and especially stomatal functioning
were included in early Earth System Models
(ESMs).13–16 Since then, in the last two decades, eco-
hydrology (or hydroecology) has been an emerging
scientific field as testified by the growth of the num-
ber of published articles and citation metrics beyond
the average increase in scientific productivity
(Figure 1). This has also been the result of the
emphasis placed on water-vegetation interactions in a

series of seminal works.21–24 Ecohydrology has been
less recognized as an emerging field in ecology
because many ecologists and ecophysiologists would
have regarded themselves as ‘ecohydrologists’ well
before this term was popularized by hydrologists.25

Despite this, the emergence of ecohydrology as a
well-distinguished discipline helped a better exchange
and an explicit linkage between the two scientific
communities. Along with the emergence of ecohy-
drology, an increasing number of quantitative studies
focusing on the carbon, water, and nutrient cycles,
on regional and global scales, have appeared within
the realm of ‘biogeosciences’ under the growing pres-
sure to better understand the carbon cycle feedback
to climate change.26–28 There are recent studies in
which the boundaries between the fields of ecohy-
drology, ecophysiology, and biogeosciences are very
subtle and mostly a matter of spatiotemporal scales.
Beyond affecting water, carbon, and nutrient cycles,
vegetation functioning has important implications in
addressing other relevant questions, for example in
the assessments of land-use change impacts,17 evalua-
tion of ecosystem services,29 soil resources, and
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FIGURE 1 | Plant–water interactions occurr over a broad range of spatial scales from (a) leaf interior (≈ μm), to (b) individual plant (≈ m), to
(c) catchments (≈ km), up to (d) the entire Earth. A map of annual evapotranspiration (ET) on the Rietholzbach catchment17 and the annual global
estimate of annual evapotranspiration (ET) from the MOD16 product18 are shown. (e) The increasing attention that is paid by the scientific
community to ecohydrology is reflected in the number of published articles and the citations they received during the last 16 years (Source: ISI
Web of knowledge, August, 2015). The average increasing rate of publication in scientific literature is also shown as a benchmark.19 The MOD16
map is reprinted with permission from Ref 18. Copyright 2011 Elsevier; the leaf section is reprinted with permission from Ref 20. Copyright 2013
John Wiley and Sons.
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landscape formation30 as well as crop productivity.31

These are all topics where water availability interacts
with plant ecophysiology to produce complex
dynamics that are unlikely to be uncovered with nar-
rowly disciplinary approaches that ignore or trivial-
ize either hydrological or vegetation components.
Clearly, the perception of the significance and inte-
gration of vegetation processes into various fields of
environmental research has recently undergone a
considerable transformation.

It is important to underline that ecohydrology
should not be regarded as the analysis of how vegeta-
tion properties and organization affect streamflow. It
is a broader discipline that examines the two-way
interactions between the entire hydrological cycle
and plant functioning. When the main interest is on
relatively short-term (≈decade) analyses of stream-
flow and water availability or in hydrological engi-
neering design, classic hydrological tools, such as the
Penman–Monteith equation, can often suffice for the
purpose of representing vegetation and approaches
that involve multiple processes and feedbacks are
unlikely to considerably improve predictive capabil-
ities or specific design criteria. However, when the
focus shifts toward land-surface climate feedback,
carbon and nutrients cycles, or the aim is to elucidate
ecological mechanisms through which water availa-
bility affects vegetation functioning, then the neces-
sity of explicitly accounting for vegetation physiology
and anatomy and/or soil biogeochemistry becomes
extremely relevant. Furthermore, the feedbacks
between vegetation and the water cycle cannot be
captured if these are not explicitly represented in
models, and hypothesis testing can be severely
impaired by simplified model structures. An illustra-
tive example is provided by the potential effects that
model complexity and explicit consideration of ele-
vated CO2 feedback can have while evaluating
drought trends32,33 or aridity projections in a chan-
ging climate.34,35 A too simple representation of veg-
etation has been shown to provide misleading
assessments. Another example is the study of the
effects of land-cover change (e.g., deforestation,
grassland management) on evapotranspiration and
streamflow. Detailed numerical analyses17,36 and
actual observations37–39 suggest that the impact of
land-cover change on the hydrological cycle may typ-
ically be less pronounced in comparison with the
results obtained with model simulations using simpli-
fied approaches (e.g., Ref 40) or from small-scale
manipulation experiments.41 However, if the effects
of disturbances or long-term analyses (≈multiple dec-
ades) are sought, then the water cycle is more tightly
connected to the vegetation cover (e.g., Refs 42,43).

For instance, shifts in forest composition because
of species-specific mortality have been shown to
produce hydrologically relevant consequences.44

This is the result of processes that are typically
unaccounted for in classic ecohydrology such as soil-
biogeochemistry, forest demography, and distur-
bances, which therefore may represent fundamental
‘ecohydrological’ components. Another example of
ecohydrological links among vegetation, energy, and
the water cycle is vegetation–snow interaction. Plant
canopy that intercepts snow typically favors sublima-
tion, thereby reducing the amount of snowpack on
the ground. Vegetation also alters the radiation bal-
ance, shading ground snowpack from direct radia-
tion, yet typically increasing the longwave radiation
reaching the ground during snow-melting
periods.45–47 Additionally, the presence of vegetation
affects the turbulent exchanges, modifying the wind
profile.48,49 All of these processes are highly non-
linear and can contribute to the increase or decrease
of total snow melt below vegetation when compared
to cleared areas.50

In this overview, we provide an essential
description of the main processes and relevant inter-
actions between water and plants across a range of
spatial scales, from the cell level of leaves, where
stomatal controls occur, to drought stress at the level
of a single tree to the integrating scales of a water-
shed, region, and the globe (Figure 1). We treat only
terrestrial ecosystems and do not consider aquatic
plants in water bodies and oceans.51 Water controls
are also regarded from the plant’s perspective and,
therefore, issues related with vegetation such as a
mechanical roughness element and its effect on mod-
ulating river and overland flows52–54 are not
addressed. In combination with the description of the
physical and ecological processes, we also refer to
models available in literature that simulate specific
processes at different scales. We only focus on those
models that simulate the temporal and, eventually,
spatial dynamics of key vegetation states (e.g., leaf
area index, LAI). Because of this constraint, we do
not explicitly discuss steady-state models and analyti-
cal derivations (e.g., Refs 55–60), which have led to
considerable advances in the understanding of plant-
water interactions but are less amenable to address
real case studies. Models developed in forestry
research to simulate long-term (≈century) forest suc-
cession and management61,62 are also excluded
because of the rather minimalistic representation of
hydrological processes. Finally, we favor models with
a certain degree of generality that can be applied
beyond the specific conditions for which they were
derived. Furthermore, examples where plant–water
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interactions are especially important and have
already led to key scientific findings are highlighted.
We also present various data sources that are cur-
rently available to force and validate the current
models, concluding with perspectives on the evolu-
tion of the field.

CELL TO PLANT SCALE

Plants developed a vascular system consisting of non-
living and living cells in which water, carbohydrates,
and nutrients can move without an active ‘pump’
such as a heart designed to control and coordinate
such movements.63 Vascular plants need to solve the
problem of water and nutrient transport from soil to
different plant organs, especially leaves, which are
exposed to continued dehydration because of partial
contact with the sub-saturated atmosphere through
stomatal apertures. Concurrently, plants have to
transport the products of photosynthesis, such as
sugars, from the leaves to the other living organs. To
overcome the lack of a central pump, plants exploit
physical gradients in water potential (the energy state
of water64) and concentrations of osmotic sub-
stances.65 The mechanisms for water entering the
roots and leaving the leaves are described in the
‘Stomatal Controls’ and ‘Root Controls’ section,
while in the ‘Plant Vascular Transport’ section, we
provide the key elements of water transport mechan-
isms within plants. Fluxes of water or mass are
expressed using a ‘flux-gradient’ relation, where the
flux is proportional to a gradient in the ‘concentra-
tion’ of the driving quantity times a conductance
term. Throughout the text, we reference existing
models with different degrees of approximation of
the current process understanding. We refer the
reader to more specific reviews and books for a com-
plete treatment of plant physiology and plant vascu-
lar transport.8,66–70

Stomatal Controls
Leaves are the sites where water transported from
the xylem, i.e., the non-living vascular conduits of
plants used for water transport from roots to leaves
(Box 1), is evaporated (commonly referred to as
‘transpired’) to the atmosphere. At the same time,
carbon from the atmosphere is assimilated through
the photosynthetic reaction, which takes place in the
chloroplasts, mostly located in the mesophyll
cells71–73 (Figure 2). Water is transported to the ter-
minal part of the xylem network in the leaf veins,
while carbon is loaded and exported in the opposite
direction in the phloem, the vascular conduits that

transport sugars produced by photosynthesis to other
tissues in the plant (Figure 2). Stomatal size and den-
sity and leaf venation have been recognized to be
important for plant functioning and evolution.20,74,75

At the same time, the bulk of the resistance to water
transport in the leaf occurs outside the venation
network.76–78 Transpiration to the external atmos-
phere takes place through stomatal apertures of few
micrometers in size (� 2–40 μm), mostly located on
the lower side of the leaf.7,79 Stomatal apertures are
the common pathways for water and carbon fluxes
and therefore represent one of the most essential lin-
kages between ecological and hydrological dynamics.
There is a large amount of literature on environmen-
tal factors influencing stomatal apertures, such as
light, temperature, CO2, vapor pressure deficit,80–83

BOX 1

PLANT PHYSIOLOGY: DEFINITIONS

Concise definitions of plant physiological terms
are provided to guide readers. Xylem refers to
the non-living vascular conduits of plants that
transport water from the roots to the leaves
(Figure 4). Phloem refers to the vascular con-
duits that transport sugars produced by photo-
synthesis to other tissues in the plant (Figure 4).
Water potential is the potential energy of
water per unit volume relative to pure water in
reference conditions. Water potential quanti-
fies the tendency of water to move from one
area to another due to osmosis, mechanical
pressure, or matric effects such as capillary
action. Cavitation is the processes induced by a
change of pressure, that leads to the formation
of vapor bubbles in a liquid; in plants, it occurs
within the xylem. Non-structural carbohydrates
(NSC) are the free, low molecular weight sugars
(glucose, fructose, and sucrose) plus starch that
are readily available for transport and plant
metabolism. Abscisic acid (ABA) is a plant hor-
mone involved in many plant processes, includ-
ing stomatal closure, bud dormancy, and leaf
abscission. Aquaporins are integral membrane
proteins that form pores in the membrane of
biological cells and allow for the selective pas-
sage of water. Cytoplasm is the portion of the
cell that is enclosed within the cell membrane
and is composed by organelles and a gel-like
substance. Suberin is a waterproofing, waxy
substance present in the cell walls of certain
plant tissue.
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but despite the critical role that stomata play, the
details of their regulation are still not fully under-
stood.84 Ultimately, stomata are largely regulated
biologically, and it is through these tiny apertures
(or lack thereof if leaves are shed) that vegetation
imprints a unique signature on the water cycle.

Each stoma is surrounded by a pair of guard
cells that are, in turn, in contact with multiple epider-
mal cells (Figure 2). Stomata tend to open when
guard cells increase their turgor (the sum of water
potential and osmotic pressure, see Eq. (4)), while an
increase in epidermal cell turgor results in the oppo-
site reaction, exerting a hydromechanically negative
feedback85–87 (Figure 2(b)). As the guard cell turgor
is the sum of osmotic pressure and water potential,
stomatal apertures are controlled by both hydraulic
and chemical factors88 (Figure 2(c)). Stomata close
when water potential in the leaf drops because of a
large transpiration flux or low water potential in the
upstream xylem conduits.89–91 The hydraulic control
acts directly in the reduction of guard cell turgor,
while chemical signals are less well quantified.92

However, it is well established that chemical factors

are essential for stomata opening in response to
light.93–95 Furthermore, chemical compounds, such
as ABA, are typically released in response to water
stress from the leaves and roots96–98 and contribute
to a reduction in the stomatal aperture.99 Release of
ABA is an important evolutionary trait as in early
plants such as lycophyte and ferns, stomatal closure
is purely hydraulically controlled.100 A differential
sensitivity of stomata aperture to chemical com-
pounds is a likely explanation why certain plants
close stomata considerably in response to dehydrata-
tion, keeping a fairly constant leaf water potential
(commonly referred to as ‘isohydric behavior’), while
others tend to keep stomata open to favor carbon
assimilation, experiencing larger fluctuations and
lower values of the leaf water potential (‘anisohydric
behavior’).

Models have been presented to mechanistically
describe stomatal behavior and reproduce the
hydraulic dynamics in the leaf86,101–108 or simply to
reproduce functional relations in agreement with
observations.80,109,110 Models that represent the
exact mechanisms through which stomata respond to
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FIGURE 2 | A leaf is mostly composed of mesophyll and epidermal cells. The mesophyll is subdivided into palisade and spongy mesophyll. The
epidermis secretes a waxy substance called the cuticle to separate the leaf interior from the external atmosphere. Among the epidermal cells, there
are pairs of guard cells. Each pair of guard cells forms a pore called stoma. Water and CO2 enter and exit the leaf mostly through the stomata.
The vascular network of the plant is composed of xylem (blue) that transports water to the leaf cells and of phloem (red), which transports sugars
from the leaf to the rest of the plant. Water that exits the xylem is evaporated in the leaf interior (dashed lines). The terms Ψx,v Ψm, Ψe, Ψg, Ψi,
and Ψa are the water potential in the xylem of the leaf vein, mesophyll cell, epidermal cell, guard cell, leaf interior, and atmosphere, respectively.
Stomatal aperture responds positively to guard cell turgor pressure (Pg) and negatively to epidermal cell turgor pressure (Pe) (hydromechanical
feedback). The conductance of the stomatal aperture (gs) decreases with water potential in the leaf because of a combination of hydraulic and
chemical factors.
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the external environment and chemical signals111–113

still represent an open research frontier. Mechanistic
models have been mostly applied in plant physiologi-
cal studies, while ecohydrological models and ESMs
adopted empirical/conceptual solutions, where differ-
ent environmental factors are treated independently80

or the stomatal conductance (gs) is assumed to be
proportional to carbon assimilation (An) and
inversely related to leaf interior CO2 concentration
(ci) and a function of relative humidity or vapor
pressure deficit (VPD). These are, for instance, the
structures of the Ball-Berry114 and Leuning
equations115,116:

gs = g0 + a
An

Ci−Γ
f VPDð Þ; ð1Þ

where g0 is the residual (or ‘leakage’) stomatal con-
ductance, when An is equal to zero, a is an empirical
parameter, and Γ is the CO2 compensation point,
i.e., the concentration of CO2 at which the rate of
CO2 uptake is exactly balanced by the rate of CO2

release in respiration. The Leuning equation (Eq (1))
is widely used and requires an estimate of net assimi-
lation An, which is carried out using biochemical
models of photosynthesis, such as the Farquhar
model or its subsequent refinements.117–121

An alternative approach to characterizing stom-
atal regulation is to assume that stomatal apertures
are regulated to maximize carbon gain, while mini-
mizing water loss.122,123 These approaches, known
as ‘optimality arguments’, are appealing from a theo-
retical standpoint because they are based on ecologi-
cal evolutionary principles and appear to be
corroborated by observed stomatal behavior.123

However, they require specific assumptions for the
optimality function and temporal and spatial scales
of integration, which have all been questioned.84 Spe-
cific formulations of the optimality principle lead to
different analytical expressions for leaf-scale
conductance,124–126 and the approach has also
started to be adopted in ESMs.127

Note that most of the models referenced
above do not directly account for the effects induced
by plant water stress beyond VPD, which need to be
introduced empirically by either directly modifying
gs, the parameters of the biochemical photosynthesis
model,128,129 or some of the terms in the analytical
form of optimal stomatal conductance.130

Root Controls
Roots represent an interface between plants and soil,
providing entrance and initially distributed pathways

for fluxes of water and nutrients from the external
environment to the plant. The soil environment sur-
rounding the root is called ‘rhizosphere’ and can
present strong gradients of water potentials and
nutrient concentrations.131–134 Roots with diameters
smaller than 2 mm are generally defined as ‘fine
roots’, while roots of a larger diameter are named
‘coarse roots’. Fine roots are mostly composed of liv-
ing tissues and are essential for the uptake of water
and nutrients, while coarse roots serve as aggregated
conduits for transport and structural stability of the
plant.135,136 Water flows into the roots because the
water potential is typically larger in the soil than
inside the plants.137 Situations of reverse flow from
roots to soil may also occur and are typically referred
to as ‘hydraulic redistribution’.138,139 There is still a
debate as to whether the phenomenon is a part of a
typical plant life process or confined to specific condi-
tions; however, it is generally believed that it is of
considerably smaller magnitude than water
uptake.140 Water moves from the soil to the inner
part of fine roots overcoming a barrier called the
Casparian strip, which is mostly composed of suberin
for isolating the plant interior and preventing, for
instance, the entrance of pathogens. Afterwards,
water movement continues across cell cytoplasm
(sympalstic pathway) or through cell walls (apoplas-
tic pathway) and reaches the xylem and,
therefore, the vascular network where it can flow to
the main stem.141–143 Given a certain plant demand,
water uptake is a function of the rhizosphere
water potential distribution, axial and radial root
conductivities, and the three-dimensional
architecture of the root system.144–146 The axial and
especially the radial conductivities to water flow
are not constant but vary with water potential
and can be partially controlled chemically by the
plant through aquaporins147,148 even though the
exact mechanisms underlying this control are
still uncertain. Nutrient uptake can be passive and
follow water uptake or can be enhanced through
osmotic gradients at the root interface or by the
synthesis of various specialized transporters that
are dynamically integrated into the cell
membrane.149–151

The variability in soil water potential, axial and
radial conductivities, and three-dimensional root
architecture (Figure 3) is preserved in a number of
plant-scale models that generally have a specific
emphasis on root processes.154–161 The most com-
mon approach in ecohydrological models and ESMs
is to only consider root depth (zero-dimensional
model) in combination with some empirical function
of water content or water potential limiting water
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uptake or transpiration in conditions considered to
be ‘water stress’.161–163 Several models started also
considering the vertical distribution of root biomass
(one-dimension164,165), and others include a bulk
soil-to-root conductance,166,167 which is a function
of soil hydraulic conductivity and the amount of
roots expressed through some index such as root-
length-index or root-area-index.168 A hybrid
approach has recently been developed that preserves

three-dimensional information and hydraulic conduc-
tivities in a simplified form145 and may represent
an important way forward in representing the
hydraulic relations (and constraints) of describing the
process of plant water uptake. However, an impor-
tant limitation of the studies of root functioning and
uptake capacity, which has likely prevented the
development of a larger number of models or con-
ceptualization of intermediate complexity, is the
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FIGURE 3 | Representation of plant- and patch-scale root systems suitable for explicit 3-D hydraulic models of plant water and nutrient
uptake. (a) Spatial distribution of tree stems and their root systems based on measurements at the University of Michigan Biological Station152: the
central dot is tree stem (diameter ≥ 10 cm); the solid line shows the maximum lateral root extent, while the dashed line delineates distance
corresponding to 95% of vertically and radially integrated root length. (b) Plant-scale properties of root distribution are controlled by using explicit
root architecture obtained with the RootBox software.153 Roots of different order (color-coded) as well as overlapped areas where competition for
soil water and nutrients occurs are shown for three exemplary trees. (c) Patch-scale property of root distribution with depth is inferred from in situ
observations of the bulk biomass density152 converted to the length density from variations of root diameters and root specific density. For each
depth, the median density, 25–75%, and 10–90% ranges of the obtained distribution are shown.
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immense challenge of instrumenting and monitoring
roots in field conditions.

Plant Vascular Transport
It is currently accepted by the scientific community
that water movement in the xylem is governed by the
cohesion-tension theory,63,169,170 while the flow of
water in the phloem follows the Münch
hypothesis.171–173 According to the cohesion-tension
theory, water molecules are transported in the plant
in a metastable state generated by surface tension at
the air–water interfaces in the leaves; the tension is
transmitted throughout the entire water column in
the plants, and molecules remain cohesive among
themselves and adherent to the walls because of the
small size of conduits and cells. Under extreme nega-
tive potentials or external perturbations, water trans-
port can be interrupted by the formation of air
bubbles (the process of cavitation), and, thus, the
plant’s vascular transport becomes impaired.170

The vertical upward direction of the water flow
in the xylem (Jxyl) in a conduit of length (ΔL) can be
expressed through a ‘flux-gradient’ relation as the
product of the xylem conductivity (Kxyl) and the gra-
dient of water potential (ΔΨxyl) minus the gravita-
tional potential (ρgΔz):

Jxyl =Kxyl T,Ψ xyl
� �ΔΨxyl−ρgΔZ

ΔL
; ð2Þ

where the xylem conductivity Kxyl is a plant/tissue-
specific parameter that varies with temperature (T)
because temperature affects the water viscosity and
water potential itself. The dependence of Kxyl on the
water potential is typically described with a sigmoi-
dal shape, and it is particularly important because it
defines the resistance to cavitation, i.e., the formation
of air bubbles (embolism) in the xylem. Cavitation
implies a reduction of the conductive capacity of the
xylem conduits,174–177 typically indicated as percent-
age loss of conductivity (PLC) (Figure 4). The xylem
vulnerability curve (PLC vs Ψxyl) can be described by
the knowledge of the water potential at 50% loss of
conductivity (Ψxyl,50) and of another characteristic
value (e.g., Ψxyl,12), typically correlated to
Ψxyl,50.

178,179 The term Jxyl is called sap flow and can
be measured directly in the plants with various
methods.180

Similarly, following the Münch hypothesis of a
turgor-pressure driven flow, the water flux in the
phloem in the vertical downward direction (Jphl) in a
conduit of length (ΔL) is driven by the gradient of
turgor (ΔPphl) plus the gravitational potential (ρgΔz)

times the phloem conductivity (Kphl), which depends
on temperature and on the concentration of sucrose
in the phloem (Cphl) because sucrose concentration
affects the fluid viscosity181 (Figure 4):

Jphl =Kphl T,Cphl
� �ΔPphl + ρgΔZ

ΔL
: ð3Þ

The turgor (P) is defined as the sum of osmotic pres-
sure (Π), directly related to the concentration of
osmotic solutes through the Van’t Hoff relation or
other empirical functions182,183 and water
potential184,185:

P =Π +Ψ : ð4Þ

Conversely to sap flow, phloem flow is particularly
challenging to measure because of the size of the
phloem tissue and the disturbances induced by the
measurement itself. It has only been measured in lab-
oratory experiments,68,186 although promising tech-
niques for field measurements are emerging.187

In order for water transport to occur, there
should be a difference larger than the gravitational
potential in the water potential between roots and
leaves, which is typically the case during daytime in
the growing season. Water is not only exchanged ver-
tically in the phloem and xylem, but it can also move
radially between the phloem and xylem and between
storage reserves (mostly composed by living paren-
chyma cells residing near xylem conduits) and the
xylem. These exchanges make the xylem and phloem
hydraulically coupled188,189 and confer on the plant
a given capacitance for absorbing fluctuations
between the water demand of the leaves (transpira-
tion) and the water uptake from the roots.190–194

Capacitance is typically more significant in stems of
larger trees,195 and it is because of a combination of
the elastic shrinkage and swelling of the phloem, liv-
ing bark, and xylem tissue and because of the release
of water from ‘stiff’ storage in the parenchyma cells
near the xylem. Elastic shrinkage and swelling of the
tree is the main mechanism used to release stored
water in young trees, but it becomes marginal in
older trees where larger ‘stiff volumes’ of stored
water are the main contributors to tree capaci-
tance.196,197 In both young and old trees, the elastic
behavior of the xylem and phloem is large enough to
be clearly measured with high-resolution dendrom-
eters187,198,199 that can provide important informa-
tion on plant hydraulic behavior.200–202 Time scales
through which capacitance can buffer the difference
between root water uptake and transpiration demand
are confined to less than an hour for small, young
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trees and several hours, or even days during
droughts, for large, old trees.194,203

Only a few models have been currently pre-
sented to describe plant vascular transport in detail
as the prevalent option has been to lump the entire
plant system into a single conductance or resistance
term204 or to ignore plant hydraulics completely and
use the root zone soil water potential to directly sim-
ulate the controls at the leaf level (the case of ecohy-
drological models and ESMs, but see Ref 127).
Important exceptions are the Sperry model142 and
the TREES model,205,206 which use a series of resis-
tances from the soil to the leaves and xylem vulnera-
bility curves to describe plant hydraulic behavior.
The FETCH model,207 the XWF model,208–210 and
the model presented by Chuang et al.,211 describe
water flow through the plants with a porous media
analogy using the one-dimensional Richards equation
for the water potential along the hydraulic path.
Attempts to include numerical descriptions of phloem
transport, tissue growth, and diameter variations
have been even more rare, although important exam-
ples are available with different degrees of
complexity181,212–218 as a follow-up of the first pio-
neering attempts.219

Plant Physiology During a Progressive
Drought
When the soil water potential near the roots
decreases (or VPD substantially increases), a plant
may be unable to fully satisfy the transpiration
demand and thus progressively enters into a phase of
water stress. This is characterized by a drop in water
potential throughout the various plant compart-
ments, accompanied by a reduction of turgor in liv-
ing tissues, as the plant is only partially able to
compensate for low water potentials through osmotic
adjustments.220–222 The first process to be affected
by the low water potentials is growth (Figure 5). Cell
growth is mostly the result of cell division, enlarge-
ment, and cell wall synthesis.223,224 Cell enlargement
is a function of turgor pressure.185,225–227 A small
reduction of water potential can significantly
decrease or stop growth well before photosynthesis
or stomatal conductance are affected.228–230 As the
growth stops, respiration associated with the growth
also ceases.231,232 Growth impairment has been
neglected by ecohydrological literature and models,
but, in fact, it represents the first consequence of the
onset of water stress.

FIGURE 5 | Effects on plant physiology caused by a decrease in water potential and turgor. The length of the horizontal lines represent the
range of stress levels within which a process becomes first affected. Two different levels of minimum water potential, Ψ, are given: −2 and
−12 MPa. These are indicative, and the former corresponds to a value characteristic for drought intolerant plants/crops and the latter for drought-
adapted plants in deserts. Dashed lines signify an incipient or vanishing effect. The figure is inspired by Hsiao et al.220 and Porporato et al.22
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If water potential continues dropping, plants
need to preserve sufficiently high water potentials to
avoid catastrophic levels of cavitation and thus start
reducing the stomatal conductance (see the ‘Stomatal
Controls’ section). A reduction of stomatal conduct-
ance typically leads to a decrease in gas exchanges,
e.g., photosynthesis and transpiration. These are the
controls that have been typically placed at the foun-
dation of ecohydrology22 and embedded in ESMs.16

The decrease in turgor and photosynthesis further
modifies plant metabolism and carbon allocation
strategies.233,234 The decrease in transpiration alters
the leaf energy budget with lower latent heat and
higher sensible heat fluxes and eventually higher
emitted longwave radiation because, given constant
forcing, leaf temperature tends to increase with lower
stomatal conductance. A similar response in the
energy budget is also observed at the canopy or lar-
ger spatial scales.235

If the drought persists further, plant vascular
transport is also affected because the leaf and xylem
conductivities decrease at water potentials low
enough to allow cavitation and, thus, the formation
of emboli in the xylem conduits (‘Plant Vascular
Transport’ section, Figure 5). At relatively low water
potentials, leaves lose turgor, and the photosynthetic
machine starts to be structurally damaged.222,236,237

At this stage, roots can also become completely dis-
connected from the soil, a process typically unac-
counted for in models (but see Ref 206).
Maintenance respiration has also been found to
decrease as the drought progresses.232,238 This is
probably because of the slowing down of metabolic
activities, although specific mechanisms are yet not
fully understood. It is not rare that plants start to
shed leaves when exposed to a long severe
drought.239,240 For some plants, such as drougth-
deciduous trees, this is a routinely adopted
strategy.241–243

The decrease or even cessation of photosynthe-
sis poses a challenge for the plant that is called to rely
only on NSC reserves for its maintenance. The per-
manent hydraulic failure of vascular transport and
carbon starvation because of exhaustion or impossi-
bility to access NSC or a combination of these
mechanisms have been hypothesized as reasons for
plant mortality.244,245 Recent evidence supports an
earlier occurrence of hydraulic failure and a conse-
quent blockage of NSC transport.238,246 Regardless
of the exact mechanisms, a severe and extended
drought unavoidably leads to plant mortality, a phe-
nomenon occurring in many ecosystems worldwide,
even in those that are not typically associated with
droughts.247–249 This is particularly relevant as

drought stress conditions can be potentially exacer-
bated by higher temperatures and VPD in the
future.250–252 Given the fact that the exact mechan-
isms that lead to plant mortality are still unknown,
its modeling is a daunting task253,254 and represents
an important challenge to improving models of
water-vegetation interactions. Widespread plant mor-
tality can, in fact, lead to a considerable shift in spe-
cies composition and/or vegetation cover fraction,
with potentially long-lasting consequences for surface
energy exchanges and the water cycle, even though
recent observations suggest that observed changes
may be smaller than expectations in several
ecosystems.38,39,255

PLOT TO CATCHMENT SCALE

Historically, a representation of vegetation was
included in land-surface and hydrological models
because it affects transpiration through surface
roughness, albedo, and canopy resistance rc = rs/LAI,
where rs = 1/gs is the reciprocal of stomatal conduct-
ance. Through rc vegetation modifies water and
energy exchanges at the land surface. It may offer a
larger resistance between the soil and atmosphere
with respect to bare ground in well-water conditions
or a lower resistance in dry conditions, accessing
water storages through relatively deep roots. The
well-known Penman–Monteith equation11,256

accounts for these vegetation properties, and it has
been widely used in hydrological models. In its basic
form, it provides a static representation of vegetation
functioning in space and time, which has been recog-
nized to be a severe limitation in numerous contexts
(e.g., Refs 164,257) but still provides a reasonable
approximation for many other studies.258 Conse-
quently, models that explicitly and simultaneously
solve hydrological and vegetation dynamics (Box 2)
have been presented in the last 15 years (Table 1). In
literature, the definition of ‘ecohydrological model’
has been used in very different contexts, and in this
article, we refer to ecohydrological models as those
models that, in time and, eventually, space, evolve
some of the key vegetation states and concurrently
solve the water budget. In the simplest case, they only
dynamically simulate canopy resistance or LAI, while
in the most complex case, a series of carbon pools
and vegetation attributes (e.g., plant height or root
density) are prognostically simulated. Note that with
the above definition, we do not include steady-state
models and analytical derivations (e.g., Refs 55,60).
Rather than describing each ecohydrological model
separately, a non-exhaustive list of models is
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presented in Table 1. In the following, we summarize
the processes that these models represent. Ecohydro-
logical models typically solve water, energy, carbon,
and, quite rarely, nutrient cycles at the land surface
(Figure 6).

Water Budget
In terms of water budget, models use precipitation as
an input that can be partitioned to rainfall and snow-
fall. Liquid precipitation can fall directly on the
ground or be intercepted by the canopy, where it can
subsequently evaporate or drip. Depending on the
intensity of water flux reaching the ground and on
soil water content (or, more appropriately, water
potential) near the surface, water can either infiltrate
the soil or run off from the surface. Solid precipita-
tion can fall directly to the ground or become inter-
cepted by vegetation where it can sublimate or
subsequently fall to the ground. Snow accumulates
on the ground in the form of a snowpack, where it
melts or sublimates. Water in the soil undergoes

vertical and horizontal redistribution following gravi-
tational and soil matric potential gradients, typically
modeled with the Richards equation.278–281 Depend-
ing on the vertical profile of soil water potential and
plant demand, water is evaporated from the surface
as ground evaporation and/or taken up by plants and
transpired. As water storage in the plants is typically
ignored, root uptake and transpiration are exactly
the same flux in most of the models. Water that per-
colates to deeper layers or into fractured bedrocks
remains mostly inaccessible to plants (but see Ref
282) and typically contributes to aquifer recharge
first and streamflow at a later stage. In models that
do not have an explicit representation of the spatial
dimension, this water is subtracted from the water
budget as ‘deep leakage’ or ‘recharge’. In models
with an explicit spatial representation, after reaching
the stream network as surface or sub-surface flow,
water is routed through the channel network down-
stream to a specified outlet.

Energy Budget
Latent heat flux is the energy equivalent of the sum
of all water vapor fluxes (transpiration and evapora-
tion); therefore, it makes the water and energy cycles
tightly coupled. Models that explicitly solve the
energy budget compute the latent heat flux and its
partition into different components (evaporation and
transpiration) concurrently with the water budget
(e.g., Refs 164,165,259,264,275,283). Latent heat
flux (λE) is typically solved assuming conservation of
energy in a given domain:

Rn−H−λE−G−λpAn−AH =
dS
dt

; ð5Þ

where Rn is the net radiation, H is the sensible heat
flux, G is the ground heat flux, λp is the specific
energy consumed in the process of photosynthesis
(An), AH is the advected energy to the domain either
from lateral or vertical fluxes and dS/dt is the change
in the energy stored in the system. Most of the mod-
els assume negligible storage capacity of energy, i.e.,
dS/dt = 0, and also neglect the last two terms of the
left side of Eq. (5). Even with this assumption, the
problem remains difficult to solve because all of the
energy fluxes depend on one or, generally, more
prognostic surface temperatures (e.g., soil and sunlit
and shaded canopy temperatures). Models that
do solve the energy budget face the problem of sol-
ving one or a system of non-linear equations
embedded in Eq. (5) to derive the unknown surface
temperature(s). This operation is typically

BOX 2

VEGETATION DYNAMICS

The term ‘vegetation dynamics’, when referred
to models, may have different meanings
according to the context in which it is used. In a
large fraction of terrestrial biosphere model lit-
erature, vegetation dynamics is used to refer to
models where the vegetation type (e.g., PFT or
species) is prognostic in space and time. In other
words, vegetation dynamics are related to pro-
cesses such plant establishment and mortality,
forest demography, and disturbances that may
modify the amount and type of vegetation
occurrence. In ecohydrological model literature,
vegetation dynamics typically refer to models
that prognostically simulate vegetation attri-
butes such as LAI, root density, carbon allocation,
or, more generally, a number of carbon pools.
Finally, in some context, vegetation dynamics
may simply refer to a model that simulates the
temporal evolution of processes connected to
vegetation but not directly linked to the plant
structure such as photosynthesis, respiration, or
stomatal conductance. For the sake of generality,
in the article, we use the broadest definition of
vegetation dynamics that includes both fast and
slow processes through which models simulate
the temporal evolution of plant properties.
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computationally demanding. Therefore, several eco-
hydrological models still use simplified solutions of
the energy budget such as the Penman–Monteith or
Priestley-Taylor equations (e.g., Refs
260,265,269,273).

Carbon Budget
The carbon cycle is linked to the water and energy
cycles because carbon assimilated through photosyn-
thesis uses the same pathway between the outer
atmosphere and leaf interior as transpired water (see
the ‘Stomatal Controls’ section) and because changes
in vegetation properties (e.g., plant height and LAI)
modify boundary conditions for energy and water
exchanges (Figure 6). For instance, a change in LAI
modifies interception capacity, energy absorption and
emission as well as roughness; a change in photosyn-
thetic rate, An (Eq. (1)), may change stomatal con-
ductance and therefore transpiration. The
computation of carbon assimilation can be carried
out with various degrees of complexity. Some models
use a biochemical model of photosynthesis in which
An and leaf internal CO2 concentration (ci) are com-
puted as prognostic variables in a non-linear equa-
tion (e.g., Refs 164,165,259,275,276); others have
simpler approaches exploiting the water use effi-
ciency (WUE; i.e., the ratio between net carbon
assimilation and transpiration284) or light use effi-
ciency (LUE; i.e., the efficiency through which radia-
tion absorbed by vegetation is converted into

carbon285) concepts that empirically link carbon
assimilation to the transpired water or intercepted
light (e.g., Refs 264,265,271,286,287). In some eco-
hydrological models, vegetation dynamics are essen-
tially reduced to the simulation of carbon
assimilation only (e.g., Refs 262,276). In others, the
assimilated carbon is used to grow plants and to
evolve a given number of carbon pools. Carbon
pools are the way models account for the size and
dynamics of different plant compartments.288 The
number of carbon pools varies from model to model,
but a typical set is composed of at least of a foliage
pool, a fine-root pool, a sapwood or stem pool, and,
more recently, a carbon reserve pool (e.g., Refs
165,273). Carbon reserves have been ignored in early
ecohydrological models and ESMs with rare excep-
tions (e.g., Ref 289), but it is currently recognized
that plant dynamics cannot be simulated meaning-
fully without accounting for carbon reserves.290–292

Models that use carbon pools can also simulate the
dynamics of the biophysical structure of vegetation,
e.g., LAI, vegetation height, and root biomass.

Soil Biogeochemistry
Water, energy, and carbon fluxes are additionally
connected through soil biogeochemistry and nutrient
dynamics (Figure 6). Soil biogeochemistry is typically
simulated to account for a given number of carbon
and nitrogen pools.293 Other nutrients, such as phos-
phorous, sulfur, or potassium, are not typically
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included in ecohydrological models and rarely so in
ESMs (see the ‘Terrestrial Biosphere Models’ sec-
tion). The number of pools varies with model com-
plexity, but a typical approach is to explicitly
represent the carbon and nitrogen contents in plant
litter material and soil organic matter (SOM), parti-
tioned into various subcomponents, as well as inor-
ganic nutrients in mineral pools, which are directly
available for plant uptake (e.g., Refs 294–298). In
more recent model formulations, the SOM pool is
partitioned among the substrate (available SOM) and
the microbial biomass (bacteria, mycorrhiza) that
feeds on the substrate,299 while soil fauna is typically
neglected. In some models, extracellular enzymes cat-
alyzing the decomposition reactions are also explic-
itly represented.300–302 Exchanges between the
different pools are typically simulated as first-order
kinetics processes that account for temperature and
soil moisture effects or as higher-order kinetics of the
type described by the Michaelis-Menten equa-
tion.293,300,303,304 A fraction of carbon is lost in the
decomposition process as CO2 through heterotrophic
respiration. This is controlled by the capacity of the
soil microbial biomass to assimilate carbon, defined
as carbon use efficiency (CUE). The production of
mineral nutrients (e.g., NO3

−, NH4
+) is mostly con-

nected to the dynamics of the carbon pools and to
the stoichiometry (e.g., carbon-nitrogen ratio) of lit-
ter and SOM.305,306 Part of the nutrients can be lost
through deep leakage, erosion, or, in the case of
nitrogen, through denitrification and volatilization;
the remaining can be absorbed by roots. Plant nutri-
ent uptakes represent an essential component of vege-
tation functioning. Nutrient uptake depends on the
availability of mineral nutrients, root density, mycor-
rhiza symbiosis, and plant requirements, but exact
mechanisms are not fully understood, and their simu-
lation is typically quite simplified.298,299,307,308 The
link with the carbon cycle is evident as soil biogeo-
chemistry regulates the amount of heterotrophically
respired CO2 and controls the nutrients accessible to
the plants. Nutrient availability affects plant develop-
ment because of stoichiometric constraints in build-
ing plant tissues309 and because leaf nitrogen is
known to affect photosynthetic capacity.310–313 The
linkage with plant development offers important
feedback on water and energy exchanges because
plant structure (e.g., LAI, vegetation height) modifies
boundary conditions at the land surface.263

Spatial Representation of Processes
The description of how models deal with water,
energy, carbon, and nutrient cycles is weakly related

to the spatial dimension of the domain of simulation.
In other words, the discussed processes can be used
for a domain of 5 × 5 m2 as well as 100 × 100 km2,
changing only the climate forcing and boundary con-
ditions but largely preserving the same model struc-
ture. Although, the process’ importance and
heterogeneity clearly changes with the spatial scale,
the conceptualization remains the same, and similar
approaches have been used on very different scales.
The main issue with an increasing spatial scale is the
difficulty of prescribing appropriate boundary condi-
tions and parameter values with a consequent prob-
lem related to the ‘fallacy of average’, i.e., the false
assumption that the mean of a non-linear function of
several variables equals the function of the means of
these variables.314,315 Regardless of the scale, a spa-
tial domain has a well-defined topography that needs
to be accounted for because it affects climatic inputs
such as shortwave and longwave radiation316–319

and rainfall320 and because lateral exchanges of
water and nutrients may become significant. Lateral
exchanges of energy are believed to be less impor-
tant, but they are essentially unstudied. Distributed
ecohydrological models are typically designed to
account for the lateral exchanges of water320,321 and,
sometimes, nutrients322,323 even when process
description is simplified in a comparison with mecha-
nistic solutions.265 The spatial redistribution of these
resources in the simulated domain allows for an
emergence of topographically controlled patterns in
vegetation dynamics (e.g., different species composi-
tion in southern and northern exposed hillslopes,
higher plant density near the stream network, etc.)
that can eventually provide feedbacks about water
and energy exchanges.

Another important aspect of the spatial dimen-
sion is represented by competition, establishment,
and mortality of vegetation. There are a few ecohy-
drological models that aim to reproduce this specific
behavior, and they are especially developed to study
vegetation patterns in semi-arid environ-
ments.265,266,324 These models typically compromise
the rigorousness of process description in terms of
water, energy, and carbon dynamics, but they explic-
itly introduce ways, mostly based on stochastic
approaches, to simulate seed dispersal, plant estab-
lishment and mortality, and their interaction with
resource availability (water, radiation), which are
absent in more complex models. At an even simpler
level, models have been proposed to describe self-
organized (or self-emergent) vegetation patterns in
semi-arid environments using systems of partial dif-
ferential equations borrowed from the dynamic sys-
tems theory (e.g., Refs 325). While these studies are
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quite distant from the representation of the physical
processes, they are important as they put forward
hypotheses on the controls of vegetation spatial
organization and regular patterns observed in semi-
arid ecosystems.326–332

GLOBAL SCALE

Terrestrial Biosphere Models
The request for quantifications of global carbon and
water cycles and plant biogeography, especially in
the context of understanding the consequences of cli-
mate change, was conducive to the development of
models able to simulate vegetation dynamics (Box 2)
on a global scale.13,333–337 These models appear with
various names: dynamic global vegetation models
(DGVMs), terrestrial biosphere models, terrestrial
ecosystem models, and more recently, as vegetation
components of ESMs (e.g., Refs 14,338–342). Here,
the term terrestrial biosphere model is used to refer
to this family of models.13 Typically, terrestrial bio-
sphere models simulate water, energy, carbon, and
nutrient cycles using an approach similar to the eco-
hydrological models described earlier. As a matter of
fact, in most cases, formulations of carbon dynamics
and soil biogeochemistry have been first developed
for these models (e.g., Refs 15,343,344) and subse-
quently adopted by ecohydrological models.
A detailed description of terrestrial biosphere models
can be found in recent reviews by Prentice et al.,345

Levis,346 Quillet et al.,347 Medlyn et al.,348 and
Fisher et al.13; a list of popular models is presented in
Table 2 along with a summary of the specifications
of each model. The simulated biophysical and bio-
chemical processes are, to a large extent, similar to
the processes described in the ‘Plot to Catchment
Scale’ section. We rather emphasize the main differ-
ences in comparison to ecohydrological models
related to (1) spatiotemporal scale of application,
(2) model initialization and boundary conditions,
and (3) biogeography and forest demography. We
acknowledge that there is a tendency toward conver-
gence in process descriptions between certain ecohy-
drological and terrestrial biosphere models, and in
the future, the separation may become semantic or
mostly a function of the type and scale of
application.

A major distinction between ecohydrological
and terrestrial biosphere models relies on the differ-
ent spatiotemporal scales of their applications and,
thus, the generality that the latter are meant to
achieve. Terrestrial biosphere models are not tailored
to any particular place or catchment and have to

simulate vegetation occurring on the entire Earth’s
surface. In addition, terrestrial biosphere models typi-
cally address research questions for longer time scales
when compared with the time horizons of ecohydro-
logical studies, even though exceptions exist, and
some ecohydrological models have also been devel-
oped for long-term analyses.260,322 This implies that
their structure needs to be flexible enough to include
various processes and parameterizations and to simu-
late vegetation response across a large range of cli-
matic conditions and time scales. However,
structural and parameterization issues may emerge
because of simplified assumptions introduced for the
sake of generality and flexibility (e.g., Ref 371). Fur-
thermore, because the spatial representation in terres-
trial biosphere models is in the order of several km2,
they cannot account explicitly for topography. Each
computational element may receive a different cli-
mate forcing, but, in essence, terrestrial biosphere
models are one-dimensional as they do not exchange
mass and nutrient fluxes laterally, and the effect of
local topography in controlling meteorological inputs
is not accounted for.

The large spatiotemporal scales of the typical
applications carried out with terrestrial biosphere
models follow a different philosophy for assigning
the initial conditions (state variables) for the numeri-
cal simulations. For ecohydrological models, an ini-
tialization period of a few years is typically able to
bring the examined ecosystem to a representative
state (as the vegetation component is often assumed
to be in a mature state). Longer spin-up periods are
required for the initialization of terrestrial biosphere
models that simulate short- and long-term soil bioge-
ochemical processes (e.g., soil organic matter and
nutrient dynamics). All terrestrial biosphere models
account for soil carbon dynamics, many of them for
nitrogen (e.g., Refs 297,298,349), and a minor frac-
tion for phosphorous cycles.363,372,373 It is worth
noting that, although often unrealistic, the assump-
tion of vegetation in equilibrium with the observed
environmental conditions (climate, nutrient deposi-
tion, weathering rates) is commonly and unavoidably
applied for the spin-up of terrestrial biosphere mod-
els (e.g., Refs 315). In addition, contrary to the con-
fined spatial extent (i.e., plot and catchment scales)
and to the relatively short time-scales (i.e., less than
30 years) of the ecohydrological applications, the
applications of terrestrial biosphere models address
research questions on regional or global scales
with time horizons of several decades or centuries.
Therefore, land use and vegetation cover are often
not pre-assigned, as typically done in many ecohy-
drological applications, but are prognostic variables
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computed by the model. For the same reasons, pro-
cesses such as forest demography and natural or
anthropogenic disturbances such as fire, windthrow,
plant diseases, insect attacks, forest management,
and plant competition needs to be represented. Feed-
back on vegetation dynamics caused by nutrient
cycles is also much more relevant at those temporal
scales than they are for ecohydrological applications,
at least in forests.374 Forest demography in terrestrial
biosphere models is similar or identical to the one
developed for forest-gap models in forestry
research.61,375,376 Forest demography can be handled
by an average tree individual352,353,377 evolving in
time or by simulating cohorts of individuals with dif-
ferent age classes and size in the stand (e.g., Refs
61,315,360,366,378–380). This allows, for instance,
an explicit representation of the early and late succes-
sional species and more generally of heterogeneous
forests with gaps, uneven stand height, and den-
sity.381,382 Disturbances are typically very difficult to
simulate mechanistically even though a general
framework has been recently presented383. They are
mostly simulated by removing a certain amount of
biomass in a given domain with a given probability
of disturbance occurrence. Plant competition is often
simulated by implicitly assigning ‘bioclimatic limits’
of existence (temperature, soil moisture, or light
thresholds for establishment) to specific species or
plant functional types or removing plants that are
underperforming from a carbon balance perspective
(e.g., Refs 352,370). Mortality is far from being
mechanistically simulated384 and is typically related
to plant-negative carbon balances or prescribed with
given constant probabilities or as a function of plant
age or size.385,386 This background mortality is typi-
cally summed with the probability of disturbance
occurrence.

Vegetation Feedback to the Climate
System
There are several examples of the successful applica-
tions of terrestrial biosphere models, which elucidate
the feedback between vegetation dynamics and cli-
mate or hydrological cycles on global and regional
scales. One example is the predictions of the fate of
the Amazon forest. Early findings suggested the
potential dieback of the Amazon rainforest in
response to projected droughts with huge implica-
tions for the future of Earth’s climate.387 While these
extreme projections have been moderated using more
refined models, the response of the Amazon forest to
a changing climate remains very uncertain (e.g., Refs

388–391). There is a large community effort dedi-
cated to better understand the effect of drought on
the Amazon forest (e.g., Refs 392–395) because cur-
rent observations and future predictions are suggest-
ing a potential lengthening of the dry intervals and
an increase of drought risk.396,397 On local scales,
the Amazon’s deforestation has been demonstrated
to affect cloud formation and convective precipita-
tion because it changes the partition of net radiation
into sensible and latent heat, affecting boundary layer
development. This could possibly increase or
decrease convective precipitation downwind of the
cleared patches as a function of the extent of
deforestation.398–400

Another significant example is represented by
the tree and shrub encroachment observed at
high latitudes. The prognostic nature of vegetation
cover in terrestrial biosphere models allows them to
simulate shrub encroachment and tree line shifts fol-
lowing, for example, Earth’s warming. While the
exact causes of tree and shrub encroachment are
still uncertain,401,402 shrub presence in previously
non-vegetated or poorly vegetated areas of the Arctic
has the capacity to modify the hydrology and the
energy exchanges between the land and the atmos-
phere. If shrubs grow taller than typical winter
snowpack height, the albedo of the surface is sub-
stantially decreased, and at the same time, the long-
wave radiation regime is modified.403 These changes
in vegetation have a positive effect on local
and global warming with the potential to further
push shrub encroachment or northern tree line
expansion.43

A final example of important interactions
between plants and the water cycle is related to the
consequences of increasing atmospheric CO2 concen-
tration. Elevated CO2 concentration has a well-
known direct physiological effect at the leaf level,
increasing photosynthesis and reducing stomatal con-
ductance.404,405 The increased plant productivity
associated with elevated CO2 is typically indicated as
the CO2 fertilization effect (e.g., Ref 406). The inte-
gration of this effect from the leaf to the global scale
is still debated,407,408 but it has been postulated to
have contributed to an increase runoff409,410 and be
largely responsible for the terrestrial carbon sink with
direct feedback on Earth’s climate.27,411,412 While
the magnitude of CO2 fertilization on the ecosystem
scale and the persistence of the carbon sink in time
are still open research areas,413–415 the expected con-
sequences of elevated CO2 represent one additional
example that robust, long-term projections of future
water cycles cannot be made without accounting for
vegetation physiology.
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PROCESS UP-SCALING

Forcing and Boundary Conditions
The models described in the previous sections (plant
hydraulic, ecohydrological, and terrestrial biosphere
models) are designed to address scientific questions
on different spatiotemporal scales. Plant hydraulic
models are typically forced with very detailed mete-
orological inputs and boundary conditions (e.g., soil
type, tree height and diameter, root depth, plant
hydraulic traits, etc.), but they are used to simulate a
single tree or a specific forest stand and for a rela-
tively short period of time (a growing season, few
years). It would be unrealistic to simulate each indi-
vidual tree on the continental scale. At larger spatio-
temporal scales, different model types are typically
applied. Ecohydrological models are normally
employed from the plot to the catchment scale, while
terrestrial biosphere models are used from the plot to
the global scale. As described previously, terrestrial
biosphere models cannot account for fine-scale het-
erogeneities (e.g., topography, climate) because the
spatial resolution at which they usually operate is in
the order of several km2. This limitation has been
shown to be more relevant than previously thought
because the mean response obtained with meteoro-
logical forcing and boundary conditions mediated
over a large area can be different from the mean of
the responses obtained with a detailed treatment of
input and boundary conditions.315 In other words,
the non-linear dynamics inherent to hydrological and
vegetation processes play a considerable role. In an
analogy, the temporal resolution of the model is also
very important416,417 because coarse temporal resolu-
tions do not allow the solving of non-linear effects
produced by short-term variability in the forcing
(e.g., shortwave radiation). In this regard, however,
differences among models are less marked; most of
the ecohydrological and terrestrial biosphere models
use an hourly or half-hourly time step for the forcing,
at least to solve hydrological and energy dynamics,
with a few models still using daily or longer scales
(e.g., Ref 366). Plant growth, soil biogeochemistry,
and forest demography processes have typically
slower dynamics that can be simulated on the daily
time scale or even annually for processes such as for-
est demography.

Vegetation Heterogeneity
A very important ‘boundary condition’ in any model
that deals with vegetation is how vegetation itself is
parameterized. Historically, the existing diversity in
species and plant traits (e.g., Ref 418) has been

summarized using a given number (~8–25) of plant
functional types (PFTs) that aimed to distinguish cli-
matic zones (e.g., temperate, boreal, tropical), phe-
nology (evergreen, deciduous), and leaf morphology
(e.g., needle leaves, broadleaves) of the plant.419 This
approach has been utilized in both ecohydrological
and terrestrial biosphere models because it allowed a
synthesis of important differences in plant properties
as well as phenological behavior without entering in
the details of exact species or intra-species variability.
Recently, the PFT approach has been widely criti-
cized, and new approaches based on the definition of
plant traits and their distributions are becoming pro-
gressively popular (e.g., Refs 36,420–422). These
approaches rely on the knowledge of the observed
distributions of plant properties, ‘traits’, which can
correspond or be related to model parameters, such
as maximum photosynthetic capacity, leaf nitrogen
content, specific leaf area, root depth and turnover
rates, leaf dimension, etc. Beyond the distribution of
the values of a given plant trait, there are several eco-
logical studies that show a certain degree of coordi-
nation between many of these traits.423–425 An
illustrative example is the ‘leaf economics spectrum’

that suggests that leaf traits co-vary in a continuum
from leaves with a high photosynthetic capacity,
nitrogen content, specific LAI, and a short lifespan
typical of fast-growing species to the opposite combi-
nation typical of slow-growing species.423,426 While
cross-correlations have been mostly studied for leaf
traits, there is emerging evidence that this holds true
for many plant traits,427 and such information can
be transferred to the model parameters. Observed
trait distributions and cross-correlations can be used
to create ‘proxy species’, which do not correspond
exactly to an observed species but are deemed as
realistic within the range of observed natural varia-
tion. Models can then use a large number of these
‘proxy species’ to investigate the importance of varia-
bility of plant traits in carbon and water dynamics in
a given region or directly use observed distributions
of plant traits as input. Note that the latter should be
typically weighted for the occurrence of a given spe-
cies in a specific place or region. In fact, despite the
huge amount of biodiversity, forest biomass and pro-
ductivity are mostly controlled by a limited number
of dominant species.428 A great advantage of the
probabilistic approximation of plant trait diversity,
based on multivariate distributions of whole-plant
trait spectra rather than on few PFTs or species, is
that it allows for a probabilistic assessment of ecosys-
tem response and thus provides a framework for
quantifying uncertainties related to vegetation spatio-
temporal heterogeneity.36
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DATA FOR MODEL
PARAMETERIZATION AND
CONFIRMATION

Any model, regardless of the scale, needs climate for-
cings as well as data that can be used for confirma-
tion of model results. Meteorological forcing
requirements are similar in most of the models and
include air temperature, precipitation, relative humid-
ity, wind speed, atmospheric pressure, CO2 concen-
tration, and incoming shortwave and longwave
radiation. Boundary conditions consist of soil proper-
ties, such as soil depth, soil texture, or soil hydraulic
properties (e.g., Refs 429,430), and vegetation prop-
erties represented by functional and morphological
plant traits (see the ‘Vegetation Heterogeneity’ sec-
tion). In the case of distributed simulations, land
cover, topographical, and geological information is
also required. Modeling of soil biogeochemistry and
nutrient cycle theoretically needs additional data

about initial values of nutrient content, nutrient dep-
osition, and primary minerals weathering together
with a number of parameters that characterize kinet-
ics and turnover rates of microbial biomass and
organic substrate in the soil (e.g., Refs 300,431,432).

There are multiple measurements that can
potentially be used in models and that are carried out
directly on the plant scale in one or multiple indivi-
duals. These are leaf and stem water potential, sap
flow, stem diameter changes, leaf turgor, leaf temper-
ature, and gas exchange measurements at the leaf,
root, and stem level (Table 3). Additionally, plant
hydraulic traits such as stem capacitance and vulner-
ability curves or biochemical traits such as the ones
related to photosynthesis are necessary for the accu-
rate parameterization of stomata and plant hydraulic
models (e.g., Ref 253). When combined together,
these measurements provide a rather complete char-
acterization of plant behavior with a notable excep-
tion represented by short-term carbon allocation

TABLE 3 | List of Variables That Can Be Potentially Observed on Different Scales

Scale Variable Instrument/Product

Plant Sap flow Sap flow meter

Plant Leaf water potential Pressure chamber

Plant Stem water potential Psychrometer

Plant/stand Tree/branch diameter Forest inventory

Leaf Photosynthesis, stomatal conductance Gas analyzers

Leaf/stand Leaf/canopy temperature IR thermometers, thermocouple, thermal cameras

Leaf Turgor Turgor probes or estimated from water potential
and osmolyte concentration

Plant Plant respiration Gas analyzers

Plant Stem water content Coring, moisture probe

Stand Evapotranspiration Lysimeter, flux towers

Point/stand Soil respiration Gas analyzers

Plant/stand/global Leaf Area Index Direct sampling, optical sensors, remote sensing

Plant NSC dynamics (leaves and branches and fine roots) Sampling and laboratory analysis

Point/stand Soil water potential (tensiometers) and volumetric water
content

Soil moisture probe and tensiometer, remote
sensing

Point/stand Soil temperature Thermometers, optical sensor cable

Stand Energy fluxes (λE, H) Flux towers

Stand Carbon fluxes (NEE) Flux towers

Stand/regional Aboveground carbon stocks Forest inventories, remote sensing

Stand/regional Tree height Forest inventories, remote sensing

Regional/global Vegetation reflectivity indices (NDVI, EVI, chlorophyll
fluorescence)

Remote sensing

Regional/global Surface temperature Remote sensing, IR thermometers

Regional/global CO2 anomalies Remote sensing, ground long-term observatories

Regional/global Albedo Remote sensing
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dynamics (phloem transport, tissue growth, and res-
piration), which are currently very difficult or impos-
sible to measure in the field and mostly limited to
leaf growth and point measurements of NSCs
repeated a few times during a season.433

Moving from the plant to the plot/stand scale,
measurements are not typically carried out anymore
on the individual plants but express an integrated
quantity over a given area. This type of measurement
includes: (1) energy and mass exchange between the
land surface and the atmosphere obtained with flux-
tower monitoring systems that employ the eddy
covariance technique434–438 and (2) soil water con-
tent and temperature and soil respiration at different
locations. Measurements of soil water content pro-
vide a direct quantification of one of the key vari-
ables in the water-vegetation interaction but are
difficult to upscale from the sensor level to stand
scale because of considerable spatial
heterogeneities.152,439–441 Flux-tower measurements
are instead an up-scaled quantity but have problems
of continuity and interpretation.442,443 Despite well-
recognized issues,444,445 flux-tower observations have
represented and still represent the major source of
validation for ecohydrological and terrestrial bio-
sphere models as they provide values for variables
such as latent and sensible heat, net radiation, and
mass fluxes of water vapor and carbon. Lysimeters
can also be used to directly measure the leaching of
water and nutrients and the water content variation
in soil monoliths, and, therefore, evapotranspira-
tion.446,447 This measurement is probably the most
precise and continuous estimate of evapotranspira-
tion fluxes, but it is very expensive to set up and
maintain. Moving from fluxes to stocks, forest inven-
tories represent an important source of information
that characterizes standing and dead biomass and
plant demography (age, size, and species). When
inventories are repeated systematically in time, they
also provide information on plant turnover rates,
mortality, and growth (e.g., Refs 448–451), and they
can be used for model testing (e.g., Refs 315,382).
Recently, tree ring dendrochronology has been pre-
sented as a possibility to test simulations of carbon
accumulation as well as the effect of infrequent dis-
turbances.452 Despite the numerous problems that
exist in the scaling from single trees to areal esti-
mates, it represents a potential additional source for
model validation.

An alternative way to test models is the
recourse to observations carried out during ecologi-
cal manipulation experiments, e.g., rainfall exclusion
and addition, warming, CO2 enrichment (FACE),
girdling, and nutrient additions. Such experiments

can be used to test whether models can reproduce the
effect of treatment at least in terms of observed sensi-
tivity (e.g., Refs 394,453–456). When models are
able to do so without changing their parameteriza-
tion, this represents an important validation of their
predictive skills for conditions different from the cur-
rent climate. Manipulation experiments have mostly
been focused on measuring vegetation productivity,
especially in grasslands, but other metrics can also be
monitored and used for model validation, especially
if new experiments will be designed with this addi-
tional scope in mind.456–458 Despite their potential
importance, manipulation experiments have been sel-
dom used for model testing so far.

Moving to larger spatial scales, direct observa-
tions become more challenging, and remote-sensing
devices such as Lidar and hyperspectral cameras have
been recently employed. Observational devices can
be placed over land or aircraft platforms or on satel-
lites.459,460 Remote sensing observations can be car-
ried out with optic or radar sensors and are mostly
used to compute vegetation reflectivity indices, car-
bon stocks, and soil moisture. Carbon stocks are
typically observed with radar sensors on a regional
scale (e.g., Refs 461,462). Optic observations in mul-
tiple spectral bands typically map the entire Earth,
and they are used to derive vegetation indices as the
Enhanced Vegetation Index (EVI), the Normalized
Difference Vegetation Index (NDVI), or chlorophyll
fluorescence.463,464 Signals in multiple bands can also
be processed and converted into variables such as
LAI, carbon assimilation,465,466 or nutrient content
of the leaves,467 although the reliability of these esti-
mates is still uncertain (e.g., Refs 468,469). A few
remote-sensing products are also available for near-
surface soil water content (e.g., Ref 470), and prom-
ising results in this direction are expected from cam-
paigns such as Soil Moisture Active Passive
(SMAP).471 Finally, anomalies of atmospheric CO2

concentration are an important source of information
to estimate the net carbon uptake or release over very
large areas and on the seasonal and annual time
scale,412,472,473 and they may become even more so
in the future.474

CONCLUSION

The examined literature suggests that approaches to
simulate the intertwined dynamics of water, energy,
carbon, and nutrient cycles are becoming widely
available and that a number of models of different
complexity has been presented to address problems
on various scales. While the combination of
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hydrology and ecology can be considered a reality,
additional efforts need to be devoted to integrate
solutions developed for different scales.

The issue of scale is not merely an operational
one related to finding better parameterizations but
requires innovative approaches to preserve key physi-
cal and ecological mechanisms operating locally as
well as existing heterogeneities in larger-scale appli-
cations. We do not mean that the entire complexity
of plant-hydraulic or detailed biogeochemistry mod-
els should be retained in ecohydrological or terres-
trial biosphere models, but there is a wide margin to
better use the insights gained at local scales in water-
shed, regional, and global applications (see Ref 127).
For instance, models simulating plant-hydraulic and
carbon dynamics mechanistically are still rare and
confined to specialized studies,206,212,213,218 but they
have the potential to considerably improve the repre-
sentation of fundamental aspects such as plant
growth, response to elevated CO2, response to severe
droughts or pathogen attacks, and ultimately plant
mortality. These are subjects where we still have gaps
in process understating and where a well-structured
combination of modeling and observations is likely
to provide insights well beyond model improvements,
potentially increasing fundamental knowledge of
plant–water interactions. Modeling plant mortality
has been regarded as one of the great scientific chal-
lenges475 and surely it is, but we should not forget
that current models still struggle to correctly simulate
the response to water limitations476and have a lim-
ited flexibility to accommodate diverging responses
across species or within a landscape.36,315

Most of the processes underlying plant–water
interactions are highly non-linear; this implies that

averaging significant heterogeneities in space and
time may lead to considerable biases. While the
importance of solving ecohydrological processes at
the sub-daily temporal scales is progressively recog-
nized416,417,477 and implemented in most of the mod-
els, the relevance of being spatially explicit has been
less emphasized in literature.315 Only a few studies
presented process-based simulations accounting
explicitly for topographic attributes and lateral water
and mass exchanges.261,263,320,321 Applications of
ecohydrological models at a regional or continental
scale or the introduction of topography in terrestrial
biosphere models will represent possible solutions.
These solutions lead to operational issues related to
computational resources and accurate model parame-
terizations. Large spatial and long temporal scales
pose great challenges to model initialization and vali-
dation as current available data are typically inade-
quate when compared to the diversity of model
outputs. A better integration of data from multiple
platforms and scales and especially of remote-sensing
estimates is thus essential for improving distributed
and/or continental scale models.478,479 A more rigor-
ous treatment of uncertainty with stochastic analyses
and probabilistic predictions should also represent an
important avenue for the future as many model para-
meters (e.g., plant and microbial traits) are unlikely
to be known with a high accuracy everywhere and
vary not only in space but also in time.36 Studies and
modeling of plant–water interactions have seen great
advancements in the past years, but current short-
comings and the challenges posed by environmental
changes and preservation of water resources and
ecosystem services suggest that exciting research
opportunities are still ahead.
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